
Instructor Authoring Tool:

A Step Towards Promoting Dynamic Lecture-Style Classrooms

by

Jessie I. Chen

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degrees of

Bachelor of Science in Electrical Engineering and Computer Science

and Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

February 9, 2006

Copyright 2006 Jessie I. Chen. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

Author_
Department of Electrical Engineering and Compute Science

ge uaf , 2006

Certified by
Yiere Koile, David Cavallo

SThegs',/upervisors

Accepted by_
A 4hur C. Smith

Chairman, Department Committee on Graduate Theses

MASCHUSETTS NINS1flTE
OF TECHNOLOGY

BARKER AU

LIBRARIES

TABLEofCONTENTS
.. -................................ I

Abstract 3-... -.1-1... -- -- ... --- -------

Section 1: Introduction/Background 4... -............................. I I I I., I

Section 2: This Research - A Better Instructor Authoring Tool I I--- ... __-. ----- -...

Section 3: Approach 12............. I -.. --- -...

Section 4: The Instructor Authonng Tool (IAT) - System Overview 19...................... I- .. _ _ ... - --....................

4.1 User's View of System: Sample Scenario 20...................... I I ---.................. I I

4.2 Implementation 22.. -... ... -... I

4.2.1 Creating an Add-in to PowerPoint 23.................... 1111- 1.1 _ -1.11 -..

4.2.2 Graphical User Interface 23.. -..

1. Controls 24....................................... ---- -... ----- ---- 1- 1

11. Inserting an Exercise Slide 24..................................... I .. -1 11

111. Committing an Exercise 36.. -- .. -- .. -- ---

IV. Displaying List of Exercises, Exercise Details, and Editing Exercise 37
Answers..................... -... .. -..

V. Saving Exercises to the Database 46..................... I

4.2.3 CLP-Wide Classes 46... --................................. --.- .. ----.........................

4.2.4 IAT-Wide Classes 51...................................... I --............................ -.. -

4.2.5 Integration with "InstructorModeAddin" 54.. 1-1--l" --- .. ------1.11.1-111 --

Section 5: Future Work 56... I I ... I- ,- I -...

Section 6: Results and Conclusion 58.......................... -1 _ ---..................................... -1- 11.1111- -----

References 59.......... -................... I I --................. ---..................................... ...

Instructor Authoring Tool:
A Step Towards Promoting Dynamic Lecture-Style Classrooms

by
Jessie I. Chen

Submitted to the
Department of Electrical Engineering and Computer Science

February 9, 2006

In Partial Fulfillment of the Requirements for the Degree of
Bachelor of Science in Electrical Engineering and Computer Science

and Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

The Instructor Authoring Tool of the Classroom Learning Partner project provides an
efficient tool for university professors and other teachers of lecture-style classrooms to
construct lecture slides that can easily accommodate effective in-class exercises. In
designing such an authoring tool, five criterions were taken into consideration: An
enhanced ability to support instructors' use of in-class exercises by facilitating the slide-
generation process, the use of Microsoft PowerPoint as a basic tool, enabling real-time
feedback of student performance on exercises, the leveraging of past student mistakes
and misunderstood concepts in enhancing teaching, and the support of an automatic
tutoring system to be implemented at a later time. These criterions were successfully met
by the resulting instructor authoring tool, though improvements towards facilitating the
slide-generation process and support for real-time feedback of student performance have
yet to be tested in a formal academic setting.

Thesis Supervisors: Kimberle Koile, David Cavallo
Titles: Research Scientist, MIT Computer Science and Artificial Intelligence Lab;
Research Scientist, MIT Media Lab

3

Section 1: Introduction/Background

Worldwide Challenge: Better Use of IT Technology for Addressing Educational
Needs

Countries all around the world are making increasingly large monetary investments into

the field of educational technology. For 2002-2003, the United States alone estimated

12.1 billion dollars in technology spending for K-14 education, and worldwide corporate

external training spending is forecasted to grow to more than $80B by 2006 (Hinrichs

2002). However, as Senator Maria Cantwell writes in her Amendment to America's Bill on

Education concerning a February 2001 Net Day study, "...97 percent of teachers have

access to some computer technology, but only 32 percent were integrating computers in

classroom learning" (Hinrichs, 2002). This discrepancy starkly highlights our collective

need, in the words of Randy Hinrichs of Microsoft's Learning Science and Technology

Group, "to start creating learner centric technologies.....[that] shift... away from only

lecture based environments with pen and paper assessment.. .and... [somehow] use

technology to extend the classroom, making instruction more flexible for the

learner,.. .mentor, and ... instructor while focusing on the experience of learning" (Hinrichs

2002). According to Hinrichs, "Introducing technology into the classroom is one thing,

introducing it effectively is another" and "we concentrate too much on recreating [rather

than extending] the classroom" (Hinrichs 2002). Similarly, Professor William Graves of

Bryant University in his Frameworkfor an e-Learning Strategy also states that, "Indeed,

the needs of a learning society will not be met until virtual technologies are used, not just to

make instruction more convenient and accessible, but also more effective.. .This is the most

4

immediate and pressing challenge for most campuses.. .[of] Higher Education." (Hinrichs,

2002). In a recent US publication of the President's IT Advisory Committee on Using

Information Technology to Transform the Way We Learn, the collective authors

consistently suggested that "industrial experience over the past two decades demonstrate

that successful IT-assisted process improvement almost always requires that IT be coupled

with careful rethinking of the targeted processes and social institutions" (President's IT

Advisory Committee). We as innovators, therefore, have an immediate and pressing

responsibility to search for and arrive at effective novel applications of IT technology that

can revamp the roadmap of 21st century education to an extent that is in line with the

potentials and needs of our social institutions .

Classroom Presenter (CP): Addressing the Challenge

One attempt to address this challenge is the creation of Classroom Presenter (CP) by the

ConferenceXP research group of Microsoft Corporation. The problem that motivated the

work of CP was how to improve the ability of an instructor to present lecture material from

a computer. Although there are significant advantages to computer projection of lectures

such as the ability to prepare high quality examples in advance, the ease of switching

between slides and web content or other applications, and the ability to share and reuse

material (Bligh 2000), these advantages often come at the expense of flexibility during

presentation, causing lectures to become highly scripted. The goal of CP is to address

these inconsistencies in a presentation system suitable for both large lectures and

distributed classes." (Anderson et al 2004, 2005). After much research and

experimentation, the Classroom Presenter arrived at some significant conclusions,

5

including 1) The importance of integrating speech, ink, and slides (Anderson & Hoyer et.

al.), and 2) the importance of separating the control view from the display view by using

separate machines (Anderson et. al. 2004).

The Importance of Feedback and Unsuccessful Implementations

A third crucial finding of the Classroom Presenter project is the confirmation of the

importance of student feedback. According to Prof. Richard Anderson of the University of

Washington and founder of ConferenceXP, "Student-instructor interaction is vital to

student learning, but soliciting student feedback in large, university-level lecture classes is

challenging," and "As universities serve more students and face tighter resource constraints,

these large lectures are likely to persist, necessitating innovative approaches to large class

challenges (Anderson et. al. 2005) ." Hinrichs also states that, "The underbelly of

integrating technology into the classroom is the ability to capture the learner's experience

and to provide adequate feedback and response" (Hinricks 2002). This includes

facilitating both a student experience that enhances the student's ability to communicate

and collaborate, and a teacher experience supported by active presentation learning

services (Hinrichs 2002). For example, students should be able to write directly on

PowerPoint type applications during lectures, or during review of materials. Teachers

should be able to receive this feed back either real time or post lecture and make

adjustments to their instruction, to their materials, or otherwise influence their student's

learning behavior (Hinrichs 2002). Ideally, individual assignments can then build on

teacher's observing how students understand facts, concepts, procedures, processes and

principles as they're introduced. Over time, systems have indeed been built to enable

6

student feedback including the ActiveClass Project, which provided functionality for

students to submit questions (Ratto, et al. 2003), and eFuzion, which allowed students to

post questions and answers to a group website (Peiper). Nonetheless, ActiveClass-style

systems were generally unsuccessful in large classes because students tended to ask either

few or unrelated questions. In the summer of 2002 when eFuzion was deployed in a

classroom at the University of Illinois, it was reported to have improved the final grades of

students by approximately 6 points (Peiper). However, despite such apparent success,

systems such as eFuzion have proved to be distracting to both instructor and students as

they supported multiple simultaneous conversations (Davis 2005, Grimson 2005).

Classroom Feedback System (CFS): Promising Implementation

The Classroom Feedback System (CFS) is one promising implementation that emerged for

addressing the need for student feedback. Researchers for CFS identified from literature

and from experimentation with prototypes of CFS that there were four primary factors

inhibiting student-initiated interaction in large classrooms (Anderson 2003, Brown 1992).

These were 1) Feedback Lag: Students doubted the value of their questions on a topic

until the topic was closed, but felt the chance to ask their questions had passed one the topic

moved on, 2) Student Apprehension: Fear of speaking due to the size or climate of the class,

3) Single-Speaker Paradigm: Model in which only one person (student or instructor)

speaks at a time which does not scale to broad participation in large classes, and 3)

Comment Verbalization: Students have trouble communicating their confusions in words

(Anderson et. al. 2003, 2005). Based on these findings, the CFS system was implemented

to allow student generation of feedback from a fixed list of possible annotations (ie. MORE

7

EXPLANATION, GOT IT, EXAMPLE, etc) by right-clicking and then selecting a category from

a menu, which is then sent to the instructor's device and removed by the student once the

issue has been addressed. the implementation and testing of CFS resulting in the discovery

of several advantages to CFS-style student feedback systems: 1) CFS was successful in

promoting classroom interaction and directly addressed each of the four primary factors

inhibiting student-initiated interaction (Anderson, et al. 2003), 2) CFS created the

possibility for student-guided lectures (Anderson, et al. 2003, "Interaction"), and 3)

feedback from CFS created the possibility for instructors to postpone feedback and

loggable data promotes flexibility for addressing student needs (Anderson, et al. 2003,

"Interaction").

Classroom Assessment Techniques (CATs): Instructor Centered to Student Centered

While CFS was able to make progress in improving educational interaction in large lecture

halls, it was still highly instructor-centered; The feedback largely contributed to facilitating

the instuctor's delivery of material, but did not take into account prior knowledge and

experiences students bring into the classroom. To address this shortcoming, Sarah

Schwarm and Tammy VanDeGrift from the University of Washington attempted to use

Classroom Assessment Techniques (CATs) to elicit the process students used to construct

of knowledge, so that that very process can be shaped and guided to facilitate learning

(Schwarm 2002) . While CATs proved useful in helping educators understand how

students are making connections between concepts and existing knowledge, and thereby

helped move the university lecture hall another step towards being learner-centered, there

is still one fundamental change that needs to occur at the heart of the large lecture: The

8

integration of real-world problem solving.

Solving Real-World Problems and Beyond

David Merrill, one of America's leading pedagogues, indicated the following elements as

necessary for making any educational system effective: 1) New knowledge is

demonstrated to the learner, 2) Existing knowledge is activated as a foundation for new

knowledge, 3) New knowledge is applied by the learner, 4) Learners are engaged in

solving real-world problems, and 5) New knowledge is integrated into the learner's world

(Hinrichs 2002). While number one can easily be achieved through the lecture format, and

number two through incorporation of concepts like the CATs, we have yet to find a way of

faciliating three, four, and eventually five in the most common educational setting in which

students find themselves: the large lecture hall.

Seymour Papert of the MIT Media Lab's Future of Learning Group once made the

following comment:

Being a mathematician is no more definable as "knowing" a set of
mathematical facts than being a poet is definable as knowing a set of
linguistic facts. Some modern math ed reformers will give this statement a
too easy assent with the comment: "Yes, they must understand, not merely
know." But this misses the capital point that being a mathematician, again
like being a poet, or a composer or an engineer, means doing, rather than
knowing or understanding. (Papert, 1971)

In the same way, the large lecture hall has historically, to date, been prone to emphasizing

knowledge, and even understanding, at the expense of application. This method of

teaching highly curtails the healthy development of a student on every level, whether

intellectual, emotional, spiritual, or otherwise, and fails to integrate new knowledge into

9

the vastly multidisciplinary world in which we live. Even on a most practical level,

Hinrichs points out that

Neither university, nor industry has utilized the technology yet to enable our
engineering workforce to enhance their skills for employability. According
to the National Standards Skills Board, those skills include "listening,
speaking, using information technology and communications, gathering and
analyzing information, analyzing and solving problems, making decisions
and judgments, organizing and planning, using social skills and adaptability,
working in teams, leading others, building concensus, and self and career
development". The[se] employability skills are universal......[but] "We're
focusing on the technology, not the learning" (Hinrichs, 2002)

Hindrichs goes on to say that, "Lecturing is important and economical for conceptual

transfer, but learning by doing requires students to improve their performance to achieve

certain tasks. Project based learning that involves problem solving is learner centric and

can be enabled with today's communication and collaboration software" (Hindrichs 2002).

Overall, much of the current work in cognitive psychology has shown that students learn

better when engaged in solving problems, using problems that are be authentic, real world,

and, if possible, personal (Hindrichs 2002). (Problem based learning of the type Hindrichs

recommend is well represented by a number of recent instructional models including:

Collins et al (1989) Cognitive Apprenticeship; Schank et al (1999) Goal Based Scenarios;

Jonassen (1999), Constructivist Learning Environments; Savery & Duffey (1995) Problem

Based Learning; Clark & Blake (1997) Novel Problem Solving; and van Merrienboer

(1997) Whole Task Practice in 4C/ID Model (Hinrichs 2002).)

Personal Response System (PRS)

One method by which instructors can begin to incorporate the application of material

learned in lecture (Merrill's third principle), is through the use of in-class exercises. Using

10

students' answers to in-class exercises, specific misunderstandings can often be identified

through direct mapping to incorrect answers. The Personal Response System (PRS) is one

example of a system using this technique of formative assessment that has proven

successful in both small and large classroom settings. In PRS, students use a transmitter to

submit answers to multiple-choice, true and false, or matching questions. The results are

then tabulated and displayed on the instructor's computer in the form of a histogram

(Draper 2004). While providing a way for the application of new material through in-class

exercises, the PRS limits exercise types to multiple-choice, true and false, and matching

questions. Currently, a greater variety of in-class exercises may be an option only in

classrooms with a small enough class size so that instructors will be able to manually

assess student work performed on blackboards, paper, or tablet-pc-based systems (Simon,

et al. 2004).

Section 2: This Research - A Better Instructor Authoring Tool

In light of the current evolution of applied educational-IT, this MEng thesis project

proposes the creation of an enhanced Instructor Authoring Tool (IAT) for incorporation

into a larger project called the Classroom Learning Partner (CLP) which aims to extend

Classroom Presenter support for expanding possibilities in teaching. It will retain all the

advantages of CP, CFS, CATs, and PRS, but will in addition, 1) Allow students to submit

non-multiple-choice answers back to the instructor in real time, thereby enabling a greater

variety of in-class exercises to be used, and 2) Aggregate the responses for an

instructor-view-friendly display for classes with large numbers of students (100+), thereby

enabling these in-class exercises to be used even in large lecture halls.

11

The goal of the IAT and CLP at large is to empower large university-style lectures by

enabling more meaningful instructor-student interactions through diverse in-class

exercises. The CLP will facilitate what corresponds roughly to David Merrill's third

element of an effective educational system, that "New knowledge is applied by the

learner." The IAT enables instructors to practice teaching that is more dynamic by

providing solid groundwork for formative assessment, and encourages students to be

hands-on active participants in their own learning.

Currently, the resulting IAT is able to successfully build a multi-view PowerPoint slide

deck containing in-class exercises with expected answer types of "Number," "Text,"

"Sequence," "Set," "SchemeExpression," or "None." It is also able to export the .PPT

slide deck into a .CSD file that can be compatibly used within Classroom Presenter. In

addition, the IAT contains functionality for saving slide exercises to a database repository

for storage and integration with other CLP modules. It is hopeful that the CLP will quickly

and effectively lay the ground work necessary for incorporating Merrill's fourth ("Learners

are engaged in solving real-world problems") and fifth ("New knowledge is integrated into

the learner's world") elements into the large-lecture-style classes of the 21st century.

Section 3: Approach

In constructing the framework of a new IAT, the following elements were taken into

account: An enhanced ability to support instructors' use of in-class exercises by

facilitating the slide-generation process, the use of Microsoft PowerPoint as a basic tool,

12

enabling real-time feedback of student performance on exercises, the leveraging of past

student mistakes and misunderstood concepts in enhancing teaching, and the support of an

automatic tutoring system to be implemented at a later time.

Facilitating the Instructor Authoring Process

According to Professor of Education Larry Cuban of Stanford University, most

postsecondary educators with research responsibilities lack the time to become proficient

in emerging technologies or to envision the potential of technology as a teaching tool

(Cuban, 2001). Although many faculty members have embraced information technology

as a means of extending traditional lecture-and-text-based education systems, they often

use this technology only to post syllabi and lecture notes on course Web sites, or to provide

threaded discussions and chat rooms on course material (Cuban, 2001). Cuban states that,

while these applications are useful, they do not "tap into the real potential for using

computers to revolutionize teaching and learning" (Cuban, 2001). Similarly, recent

National Research Council reports had repeatedly called for the creation of effective

models, developed with the full understanding of the principles of learning, to promote

interactions between technology, user-driven research, and classroom practice (Brewer,

2004). In light of this, a user-friendly authoring tool for the instructor is of prime

importance.

PowerPoint as a Basic Tool

The Regents of the University of Minnesota have recently pointed to PowerPoint as an

important tool for facilitating "classroom assessment," a practice that provides instructors

13

feedback on what and how much their students are learning so that they may use the

information gathered to measure the effectiveness of their teaching practices, make

decisions, and implement changes that result in better student learning (Regents, 2006). In

her research on the use of PowerPoint slides in a classroom, Belinda Ho, Associate

Professor of English and Communication at the City University of Hong Kong, had also

listed a multitude of advantages in advocacy of PowerPoint as an instructional tool

including that "the slides cannot get lost," "they can be easily refined and reused in the

following years," "they are flexible," and "the presenter can print handouts with two, three,

or six slides on a page," overall bringing PowerPoint to light as an ideal starting point for a

new authoring tool (Ho, 2001). Nonetheless, Ho had also listed in her paper disadvantages

of PowerPoint including that "they foster more passive learning" and "they are not

well-suited to drawing impromptu sketches." These are the kind of setbacks that will also

need to be address in a new authoring system based on PowerPoint.

Enabling Real-Time Feedback

In a study sponsored by the U.S. Department of Education's Office of Educational

Research and Improvement, entitled "Using Technology to Support Education Reform," it

was reported that

A well-known problem in many conventional classrooms is the mismatch
between the level of presentation and the understanding of many students.
As teachers describe concepts and procedures, they depend on student
feedback to indicate any comprehension problems. Unfortunately, the
students who understand the material best are most likely to contribute to
class discussion. Students who don't understand simply remain silent, and
the instructor continues with an explanation that some students find
incomprehensible" (Means, 1993).

14

Providing feedback to students of their current level of understanding of concepts can be

critical for effective learning, as well as useful for the professor in accomplishing such

goals as presenting and effectively covering a probing question at the heart of the subject

matter, gathering student responses rapidly and anonymously, and quickly assembling a

public, aggregate display (such as a histogram) that makes salient the variation in the

group's ideas without disclosing individual contributions (Kadlowec, 2005; Roschelle,

2004). Professor Maria Satratzemi of Applied Informatics at the University of Macedonia

had said the following about an educational programming environment designed there:

We believe that knowledge of the path followed by students to the solution
of a problem is, usually, extremely valuable information to someone
wishing to explore student conceptions about programming and problem
solving techniques. The capability to systematically record such paths can
open up interesting new possibilities for exploring the conceptions of
students. Our educational programming environment systematically
records the actions of students, thus offering teachers with invaluable
information about the path to the solution followed by the students, the
steps backwards, the repeated tries, the mistakes, and the hesitations. We
designed an educational programming environment that records and stores
what is didactically essential. (Satratzemi, 2001)

An improved instructor authoring tool will aim to support a system that will make as much

of this kind of detail as possible available to instructors in a digestible format in real-time

during class so that he or she may be better informed and prepared to proceed in teaching.

Leveraging Past Student Mistakes and Misunderstood Concepts

The importance of utilizing past student mistakes and misunderstood concepts in

conjunction with technology in teaching has been demonstrated in a number of different

ways to date. Utah State University Assistant Professor Bryan Wamick once said of

projects by Al Researchers Roger Schank and Adam Neaman of Yale University, that "The

15

most impressive thing about [these] applications.. .is the care that the developers have

taken to make user mistakes meaningful. Specifically, they try to simulate those conditions

under which novices tend to make errors and then offer the appropriate just-in-time expert

advice" (Warnick, 2003). Schank and Neaman themselves have also produced thoughtful

discussions on how failures can be used to make errors both educative and motivational,

and also how computer simulations can help students to make educational mistakes in a

non-threatening atmosphere" (Schank, 2001). In addition, paying attention to student

errors can have other benefits such as bringing about a better understanding of why some

misconceptions about the world are harder to change than others (Feltovich, 2001). At the

same time, a record of past mistakes can be invaluable in the creation of wrong answers for

multiple-choice questions, a highly tested and endorsed method for evaluation (Higgins,

2006). Thus, it would also be important for an improved instructor authoring tool to

support an overall system that makes use of past mistakes and misunderstood concepts in

achieving its educational goals.

Maintaining a Record of Instructor and Student Input / Preparative Support for an
Intelligent Tutoring System

Finally, there are several reasons why it would be of benefit to maintain a systematic record

of inputs from both the professor and the student. First, cultural considerations will often

need to be taken into account when technologies or programs enter the classroom, each

with its own set of cultural entailments, representing the goals, expectations, histories,

values, and practices associated with a particular community, or entailments of a

community (Bouillion, 2001). When material is passed from one generation of instructors

to another, or even moved geographically, it is critical that provision is made for notes and

16

explanations by past instructors to be attached where cultural-specific choices had been

made. A record of student work will also provide a valuable means by which the

development of student learning with respect to particular concepts and skills can be

assessed over time, as opposed to for instance, making a single measurement at some final

or supposedly significant time point (Wilson, 2004). Nonetheless, there has been very

little technology developed thus far that provides a comprehensive system for inputting,

storing, retrieving, analyzing, and representing performance data (Means, 1993). Such a

need is worthy of address as one such tool developed in the past at the Education

Development Center by Researcher Midian Kurland, TextBrowser, which provides an

electronic analogue to teachers traditional methods for keeping track of assignments,

marking student papers, providing feedback, and recording and monitoring student

performance, had proven to be able to substantially enhance a teacher's ability to respond

to, store, retrieve, assess, and manipulate student work (Mean, 1993).

Finally, a crucial reason for maintaining a database of instructor and student input is as

preparation for an intelligent tutoring system (ITS) to be implemented in the future.

Among the benefits of intelligent tutoring systems, is the support it provides for human

tutors which will in turn enable them to provide more individualized help to his or her

students. For example, Professors Kenneth Koedinger and John Anderson of Carnegie

Mellon University reported, among the benefits derived from the use of their geometry ITS,

the following: "While students were engaged in interacting with the tutor, the human tutor

was free to roam around the classroom giving extra help to poorer students who needed it

or challenging better students to do more than they might otherwise" (Virvou, 2000).

17

Furthermore, one of the major problems of a mathematics tutor in a class is that he cannot

check the answers of all the students of his class simultaneously. Therefore, such a human

tutor can be significantly assisted by an ITS that performs individualized error diagnosis to

students' solutions" (Virvou, 2000). Tutoring systems can also be highly beneficial in

enabling students to learn about selected material at their own rate before it is taught or as a

supplement to course activities (Woolf, 2001). Associate Research Professor Beverly

Woolf at the University of Massachusetts predicts that such systems might become routine

supporting group collaborations of students-at-a-distance, exploration of hypothetical

worlds, and the making and testing of hypotheses... [As a result,] learning need not be

constrained to place and time" (Woolf, 2001).

One example of a highly successful tutoring system is the Pump Algebra Tutor (PAT),

originally developed by the Pittsburgh Advanced Cognitive Tutor Center at Carnegie

Mellon University with support from NSF, Darpa, and foundations in Pittsburgh.

Professor Koedinger comments that

With PAT, students can create tabular, graphical, and symbolic models of
problems. The cognitive tutor chimes in as needed with just-in-time
feedback. The tutor highlights possible errors with outline text comparing
student actions with its database of common errors. The student can also
request a "context sensitive" hint. The tutor tracks the learner's progress on
a problem and then, in a fairly complex process, selects the appropriate
advice: The tutor chooses the hint message by using the production system
to identify the set of possible next strategic decisions and ultimate external
actions. It chooses among these based on the student's current focus of
activity, what tool and interface objects the student has selected, the overall
status of the student's solution, and internal knowledge of relative utility of
alternative strategies. Successive levels of assistance are provided in order
to maximize the students' opportunities to construct or generate knowledge
of their own (Koedinger, 2003).

PAT also supports learning through "knowledge tracing," which tracks a student's

18

problem solving skills, identifies areas of difficulty, and presents problems in areas that

have not yet been mastered. PAT seems to work well: field studies show a 15-25 percent

difference between those classes that used PAT versus control groups (Koedinger, 2003).

Finally, Professor Koedinger discussed how PAT has also proven a successful tool for

teacher change (Koedinger, 2003). PAT offers a student-centered model of learning, that

teachers, once they are exposed to it, often tend to replicate in other areas of instruction

(Koedinger, 2003). Koedinger observes that, sometimes, teachers begin to borrow the

problems, the representational tools, and the feedback strategies embedded in the cognitive

tutors (Koedinger, 2003). He writes, "Teacher began to use PAT problems in their regular

classes and began to experiment with more student-centered learning by doing outside of

the computer lab.. .Thus, the computer becomes a pedagogical role model (Koedinger,

2003). These examples together highlight the potentials of an intelligent tutoring system if

one were to be derived from a record of ongoing instructor and student input. This is ample

encouragement for a new instructor authoring tool to set support in place for some form of

intelligent tutoring system to be designed in detail and implemented at a future time.

Section 4: The Instructor Authoring Tool (IAT) - System Overview

The IAT System consists of an Add-in to Microsoft PowerPoint that will enable instructors

to embed exercise objects within their PowerPoint slides. It consists of four main

components: A graphical user interface for exercise entry, display, and modification; the

tools for storing exercise objects and all associated information to a standing database used

to archive instructor and student input and for integration with other CLP modules; the

creation of precise and suitable classes for relevant objects to be stored to database and

19

shared with other CLP modules; and hooks for integration with the InstructorModeAddin

created by Professor Stephen Wolfman while at the University of Washington (a

PowerPoint Add-in which enables the viewing of the multiple modes of Classroom

Presenter and exporting PowerPoint slides to .CSD format, the format understandable to

Classroom Presenter (Simon, 2003)) so that the necessary metadata from instructor-created

exercises can be passed on to the exported .CSD files for use by other modules of the CLP.

4.1 User's View of System: Sample Scenario

The following is a sample user scenario that illustrates how the IAT will be used to create a

lecture slide containing an in-class exercise for 6.001 Structures and Interpretation of

Computer Programs, the introductory course in Computer Science given at MIT:

a. Prof. Grimson clicks on the "Insert Exercise Slide" button in the toolbar and a new slide

is inserted with a message prompting him to enter question text in a suggested location.

Icons indicating "Keyboard," or "Pen" also appear, and a message prompts him to choose

the mode of interaction he desires for his answer box.

b. Prof. Grimson clicks on "Keyboard" for interaction mode and a ComboBox appears

allowing him to select the expected answer type if he wishes. A rounded-rectangular

answer box also appears containing the text "Text Answer Box."

c. Prof. Grimson enters the question "The following expressions evaluate to what type? (*

3.14 (* 2 5))" in the suggested question TextBox.

d. Prof. Grimson selects "Text" for expected answer type.

e. Prof. Grimson enters "#" in the answer box.

f. Prof. Grimson clicks on the "Commit Exercise" button in the toolbar, and the expected

20

type combobox as well as the original answer box disappears. Instead, the slide is left with

a single box indicating the student answer area for this exercise. A tag also appears on top

of the answer box marked with "TEXT.. .1" indicating that this is the first answer box in

the slidedeck expecting an answer of type "Text." When Prof. Grimson mouses over this

tag, a mini window appears displaying the answer text "#" for this answer, along with the

date on which this exercise was created, and the full text for the expected type of this

answer box. In addition, a label with the text "Exercise #1" also appears on the top left

corner of his slide to help him keep track of his embedded exercises.

g. Prof. Grimson predicts that many of the students might end up thinking that the scheme

evaluator will return true or false when this expression is evaluated rather than an actual

number, and decides it would be helpful to enter "Boolean" as a common incorrect answer.

h. Prof. Grimson clicks on the "Display List of Exercises" button in the toolbar, and a

window appears listing all the exercises currently in his slide deck.

i. Prof. Grimson clicks on "Exercise#I-Slide#2~The following..." and a new window

appears labeled "Exercise Details" and "Exercise #1."

j. Prof. Grimson clicks on the "Add New Answer" button and a new blank answer row

labeled "2" appears with room for him to enter answer text, answer type, whether it is a

correct answer, any note or study material he would like to indicate, and a checkbox that

enables him to delete the answer in the future if he ever chooses to do so.

k. Prof. Grimson enters "Boolean" as the answer text, selects "Text" from the answer type

drop down menu, chooses "No" for whether the answer is correct, and under the notes

section jots the note that "Student should review textbook Chapter 1, Sec. 3."

1. Prof. Grimson then clicks on the "Apply Changes" button and the Exercise Details

21

window closes.

m. Prof. Grimson then creates several more exercise slides in a similar fashion and decides

that he now has all the slides he need for tomorrow's lecture.

n. Prof. Grimson clicks on the "Save Exercises to Database" button, and a messagebox

appears indicating to him that his exercises have been successfully saved.

o. Prof Grimson the goes to the "File" menu and selects "Export to CSD..." and a file

browser appears prompting him to select the location to which his .CSD file should be

saved.

p. Prof. Grimson names his lecture "Evaluation.csd," chooses to save to Desktop, and

clicks on the "Save" button.

q. Prof. Grimson then decides to briefly rehearse his lecture for the next day.

r. Prof. Grimson opens up Classroom Presenter, and opens Evaluation.csd.

s. Prof. Grimson chooses the Instructor view in Classroom Presenter.

t. Prof. Grimson is happy that the labels for exercises as well as the first answer text he

entered for each exercise is visible to him as he gives the lecture.

u. Just to be safe, Prof. Grimson switches to Student view to make sure that the answers to

his exercises do not appear in their answer boxes (but only in his own) and is satisfied.

4.2 Implementation

The IAT is implemented as a Microsoft PowerPoint Add-in. The Add-in provides a

graphical user interface for authoring exercises with any of five different expected answer

types, including "None" and one for runnable scheme expressions, and also saving

exercise objects to the database. The GUI consists of a standard PowerPoint toolbar, as

22

well as buttons with identical functionalities added to appropriate menus for user

flexibility; User input is generally received through windows forms, and the IAT is

merged with the InstructorModeAddin for exporting to .CSD by creating a single common

connect.cs class as the basis for the resulting Add-in.

4.2.1 Creating an Add-in to PowerPoint

Formerly widely performed in Visual Basic, an Add-in to any of Microsoft Office Suite

application can now be created using C# .NET within the Microsoft Visual Studios

environment. To do this, the developer should look for "Extensibility Projects" under the

"Other Projects" folder when creating a new project, and choose "Shared-Add-in." After

naming the project and selecting a location, clicking "OK" will open up the "Add-in

Wizard." In the next step, there will be an opportunity to select to "Create an Add-in using

Visual C#," followed by a prompt to "Select an Application Host." The developer can then

select as many applications as he would as host applications for the Add-in; In this case,

only PowerPoint is needed. After entering the "Name" and "Description" for the Add-in,

an "Add-in Options" page will enable the developer to specify loading and availability

options. After providing a summary of the Add-in's options, the developer can click

"Finish" and a Solution will be created which includes two projects, one in which the

Addin's skeleton, "Connect.cs," resides, and another which is the Add-in's "Setup"

project.

4.2.2 Graphical User Interface

23

I. Controls

The controls for the graphical user interface are added as an extra IAT ToolBar in

PowerPoint within the function "OnStartupComplete" within "Connect.cs." The

functionalities for each of the buttons on the toolbar also have an equivalent affordance

within one of the drop down menus at the top of the PowerPoint application window.

When adding custom images to toolbar items within Microsoft Office applications, one

method is to employ "AxHost," a class used by the "AxImp" tool to wrap "ActiveX"

controls and expose them as "Windows Forms" controls. The following is a sample

procedure that can be used to create a custom button image:

" Use the "GetIPictureDispFromPicture" method to take an "Image" object

and converts it to an "IPictureDisp" object, the type of the "Picture"

property exposed by the "CommandBarButton" class

* Add the "stdole" Interop Assembly to the list of references since

"IPictureDisp" is an interface defined in the "stdole" type library and

Interop Assembly

" Create .resX file for use for button images

In order to create a .resX file, a separate resource editor, called "ResourceEditor," was

created as a Visual C# project and used to generate the necessary images to use on the

IAT toolbar buttons.

II. Inserting an Exercise Slide

When the "Insert Exercise Slide" button, marked with a "Red Pen" icon, U, on the IAT

24

toolbar or under the "Insert" menu is clicked, the current slide index is retrieved and used

to add a new slide with the slide index incremented. A new TextBox shape is then added to

the new slide and given the name "QuestionText." The text for "QuestionText" is set to

"Click to add Question Text for Exercise" and the number of the current exercise. A second

TextBox, named "AnswerInstructionText" is also created to give the instructions "Click on

icon to add an Answer Box with mode "Keyboard" or "Pen"." All this is done using the

"Microsoft Office PowerPoint 2003 Visual Basic for Applications (VBA) Language

Reference."

Finally, a new object of type "KeyboardPen" is also generated and displayed with icons

indicating interactions modes "Keyboard" and "Pen," and the tag "Exercise" containing a

serialized empty exercise is also created and added to the slide. This is in preparation for

all future editing performed on the slide, since changes will always be made permanent by

unserializing, editing, and reserializing the "Exercise" tag. A screenshot of the active slide

is shown in Figure 1.

25

Figure 1. View of active slide after user clicks on a button to insert Exercise Slide.

0 The "KeyboardPen" Class

Originally, the intention was to embed the icons for Keyboard and Pen within

the PowerPoint slide itself. However, the VBA Language Reference was

insufficiently helpful to successfully perform all aspects of the embedding. As

a result, the "KeyboardPen" class evolved as an alternative built in Visual C#.

The class consists of just two button icons, each with its own handler, residing

in a frameless window. The handler for the "Pen" icon, , currently displays

a MessageBox with the text "The PEN mode of interaction has not yet been

implemented." The handler for the "Keyboard" icon, L-, deletes the

"AnswerlnstructionText" TextBox, and inserted a new rounded-rectangular

shape named "AnswerBox" with the text "Keyboard Answer Box" where the

user can enter the primary or first answer to this exercise. The "KeyboardPen"

26

Click to add Question Text for Exercise 1

Click on icon to add "Keyboard" or "Pen" Answer Box

class also creates and displays an object of type "ExpectedType." A screenshot

of the active slide is shown in Figure 2.

Figure 2: View of active slide after clicking on the "Keyboard" interaction

icon.

* The "ExpectedType" Class

The "ExpectedType" class is a windows form that consists of just a single

ComboBox containing all the possible answer types: None, Number, Text,

Sequence, Set, and Scheme-Expression. The ExpectedType form was

originally created with no border and a white background to give the effect of

being embedded within the PowerPoint slide. However, the FormBorderStyle

27

Click to add Question Text for Exercise 1

Text Answer Box

was changed to a FixedToolWindow for the user's ease of moving it around on

screen, and closing the form when desired. When a user selects an item in the

ComboBox, the "type_SelectedlndexChanged" handler checks to see if the

chosen item was "SchemeExpression." If not, the handler does nothing;

Otherwise, an instance of the "SchemeEx" form is created and displayed.

* Provision for Answers Containing Scheme Code

As the target class for the first round of system testing for CLP is MIT's

introductory course in Computer Science, 6.001 Structure and Interpretation of

Computer Programs, the IAT is implemented to support the creation of

exercises with an expected answer type of "SchemeExpression."

The "SchemeEx" Class

The "SchemeEx" class is the form that allows a user to create a new answer of

type "Scheme-Expression." When it is first displayed, the user sees only a form

containing a single GroupBox labled with "Answer #1" containing TextBoxes

for entering "Keywords IN" and "Example Scheme Answer." There are also

two CheckBoxes labeled "Match" and "Run" indicating the method by which

the answer should be tested, and also the buttons "Cancel" and "Commit

Exercise." A screenshot is shown in Figure 3.

28

Answer #1

Keywods N Example Scheme Answer

Test Method: F_ Match Run

Cancel Comnmit Exercise

Figure 3. SchemeEx form when it is first displayed.

If the user clicks on "Cancel," the window is closed with no other activity. If

"CommitExercise" is clicked with neither test methods checked, the default is

"Match." If "Run" is checked at any point, new fields for input entry will

appear. First, a TextBox for "Text Code" which a CheckBox labeled "Use

Example Scheme Answer as Test Code." When this is checked, the text "<Use

Example Scheme Answer as Test Code>" will appear in the "Text Code"

TextBox. A second TextBox allowed the user to enter the "Pre-execution

Environment," and underneath are fields for entering "Test Cases." When first

displayed, only fields for a singe test case appears, along with buttons labeled

"Add New Case," "Delete Selected," "Commit Exercise," and "Cancel." A

screenshot is shown in Figure 4.

29

Answer #1

Keywords IN Example Scheme Answer

T est Miethod: VMatch i4 Run

Test Code: F4 Use Example S eme Answer as Teat Code

.:<Use Example Scheme Answer as Test Code>

Pre-execution Environment:

Test Cases:

Inputs: Outputs :

2 r
Delete Add New

Add New Case

Delete Selected I Co"mmit Exercise 1 Cancel

Figure 4. SchemeEx window after user checks "Run" and "Use Example

Scheme Answer as Test Code"

Dynamically Displaying Fields for the "Run" Method

To enable information to be displayed on a need-basis in this way, the entire

"SchemeEx" form minus the end buttons is first laid out and created in

Windows Forms. During initialization, SchemeEx checks a "memo" variable

to ensure that SchemeEx is being called in the current context from

"ExpectedType" (as it will also be callable elsewhere). If so, "SchemeEx"

assumes the current exercise is being attached to a slide for the first time. From

here, SchemeEx creates a set of system.Drawing.Rectangle objects that are

used to store the locations and sizes of all the relevant items. (A set of

30

rectangles are also created which represent the current location of the

bottommost set of controls corresponding to the case with the highest number,

as these will change as new cases are added.) After all necessary locations and

sizes have been stored, all items below the Test Methods CheckBoxes are also

removed from the GroupBox. The buttons for "Cancel" and "Commit

Exercise" are added and the GroupBox and window are reset to the appropriate

size.

Test Case Entry: Two Levels of Dynamic Tables

Once the "Run" CheckBox has been checked, the fields for test case entry are

among the controls that appear. In order for them to function as desired, these

controls are set up as a dynamic table, in this case, on two levels.

* Level One

A single case consists of a CheckBox, a Label with the appropriate row

number, a TextBox for entering parameters, a set of outputs with all its

components, and buttons for editing the outputs. When "Run" is first

checked, space for one case is displayed as the default.

- Add New Case

On the first level, an entire new row corresponding to a new case

needed to be added when the user clicks on the "Add New Case"

button. To set up for this maneuver, a set of rectangles are created,

31

storing the locations and sizes corresponding to the controls that are

a part of the current, or bottommost, case. When the "Add New

Case" button is clicked, an integer called "step" is calculated and

passed on to a function called "CalculateNewLS"; "step" is

calculated based on the size of the previous entry, and

"CalculateNewLS" resets the locations of the reference Rectangles

to the appropriate values for the new controls to be added. Next, the

"AddBlankRow" function is used to create a new set of controls

using the updated reference Rectangles. The end buttons are

removed, the new set of controls are added, and the

"AddNewEndButtons" function is then used to restore the "Add

New Case," "Delete Selected," "Commit Exercise," and "Cancel"

buttons, as well as to reset the GroupBox and window again to the

appropriate size. The tags in all the controls that are part of a test

case are set to an integer corresponding to the row number of the test

case.

Delete Selected

The CheckBox to the left of each case is used to remove the case

from the display during editing. When the user checks any of the

boxes and clicks on the "Delete Selected" button, the

"buttonDeleteClick" handler first creates a list of all the tag values

that has been selected for deletion. Next, the handler goes through

32

all the test case rows and first stores all the test cases in an ArrayList

as they appear on the screen. Next, the handler runs the selected list

of tags for rows to delete through a standard Quicksort function to

enforce numerical ordering. The handler then runs through the list

containing the original cases on the screen in reverse order and

utilizes the quicksorted list to remove all the cases selected for

deletion in backwards numerical order.

With the new set of cases established, the handler then calls the

"DeleteCases" function which removes all end buttons as well as the

controls belonging to all cases from the GroupBox. The reference

rectangles are now reset to their original positions, and the handler

then loops through the new set of cases, calculating a "newStep"

and calling the "DrawCaseTable" function each time which takes

the row number of the case in consideration, creates and initializes

all the controls for the case, and adds them to the GroupBox. When

this is done, "AddNewEndButtons" is called again to reframe the

window.

* Level Two

When a new case is added, space for entering two different sets of

outputs are automatically displayed. A single output consists of a

CheckBox, a Label containing the row number of the output, a TextBox

for the output text, and a CheckBox indicating whether the output is

33

considered correct or not. In order for the number of outputs to be easily

editable as is the case for the number of cases, a second level of dynamic

tabling needed to be embedded within the first.

Add New Output

When the user clicks on the "Add New" button for the outputs of

any case, the handler calls the "AddBlankOutput" function which

acts very much like the handler for deleting cases. It first stores in

an ArrayList what the current set of cases look like on the screen,

adds an extra blank output where the user has indicated, resets the

reference Rectangles to their original positions, and redraws the

table with the new number of outputs for each case. Within the

"DrawCaseTable" function, afor loop is used to create and display

all the controls for a given set of outputs. A new function

"CalculateNewOT" is used to relocate the reference Rectangles for

the bottommost output row. This ensures that the table will display

correctly with any variable number of outputs per case, and all other

control displays can are fitted to take into account the variable

nature of the amount of space needed for all outputs to properly

display for each case.

U Delete Output

Deleting an output works in the same way as deleting a case from

34

the user's perspective. When the user checks the CheckBoxes in

front of unwanted outputs and clicks on the appropriate "Delete"

button for that case, the "DeleteOutput" function again creates a

snapshot of the screen. This time, it quicksorts the outputs selected

for deletion, removes them from the current set of outputs for the

appropriate case, and calls the "DeleteCases" button. From there, a

similar procedure is followed by which the reference Rectangles

will be reset, and calls to CalculateNewLS, DrawCaseTable, and

CalculateNewOT, will be made, finishing off with a call to the

AddNewEndButtons function for refraining.

The "Commit Exercise" Button

After entering all the desired information, the user will click on the "Commit

Exercise" button. When this happens, the handler calls the "Commit" function

which will take down the cases as they appear on the screen one last time, and

also record the inputs for keywords-in, example scheme answer, test code, and

pre-execution environment from the user; The expectedType for this answer is

automatically set to "SchemeExpression." The "Commit" function then checks

the "memo" variable again to see whether "SchemeEx" is being called from

"ExpectedType." If so, "Commit" also records the question text from the

appropriate shape on the current slide, creates a label for the exercise if it does

not already exist, closes the "ExpectedType" form, resizes the current

"AnswerBox" shape and sets its text to null, and also creates a "Comment" tag

35

which tags the box with the expected type, answer text, and date of creation. In

this case, the answer text would be set to "<SchemeExpression>." The

exercise is also serialized and placed in the "Exercise" tag of the current slide.

The "Cancel" Button

When the user clicks on the "Cancel" button, the "SchemeEx" window closes,

and no other change occurs.

III. Committing an Exercise

If the user chooses any type other than "SchemeExpression" from ComboBox that is a part

of the "ExpectedType" instance, they can simply enter the text of their answer in the

answer box provided and click on the "Commit Exercise" button in the toolbar, marked

with a "BullsEye" icon (), or from the "Edit" menu. When this happens, a process

occurs that is similar to that in the handler of the "Commit Exercise" button under

"SchemeEx." The expectedType for the first answer is set to the text in the ComboBox. If

no answer has been entered in the AnswerBox shape or if the QuestionText box is empty, a

MessageBox is displayed with the message "No answer has been entered," or "The

Question Text box is blank." If neither of these conditions are true, then the

"ExpectedType" window is closed, the AnswerBox shape is resized with the text set to null,

and a Comment tag containing the expected type, the answer text, and the date of creation

is created and placed in the lower right corner of the AnswerBox. Just as in the case with a

scheme answer, a label containing the number of the exercise is created in the upper left

corner of the slide, and the new exercise containing the current question text, answer, and

36

student answer area is serialized and placed in the "Exercise" tag of the current slide. A

screenshot of the active slide is shown in Figure 5.

Exercise 1

Click to add Question Text for Exercise I

TE~(TIJ

Figure 5.

the "Edit"

View of active slide after user clicks "Commit Exercise" from IAT ToolBar or

menu.

IV. Displaying List of Exercises, Exercise Details, and Editing Exercise Answers

At any point during the creation of the slide deck, the user can click on the "Display List of

Exercises" button from the IAT toolbar, E , or the "View" menu, an instance of the

"ExerciseList" class will appear bordering the left edge of the screen, displaying a list of all

the exercises currently in the slide deck by their exercise number, slide number, and the

first portion of their question text if it exists.

37

* The Exercises ListBox

The form for the exercise listing contains a single GroupBox labeled with the

format of display: "Exercise # ~ Slide # Question Text." Inside the GroupBox is

a Label containing the instructions "Click to Display Exercise Details," and a

ListBox whose background color has been set to a light grey to indicate an

affordance for clicking. When the user clicks on any of the exercises listed, a new

window appears containing the details for this exercise, and also allows the

exercise to be edited. A screenshot of the "ExerciseList" window is shown in

Figure 6.

Exercise#' Slide #' Question Text

Clx k to Disply Exarcksa Do tAs:

Exercise #2 Slide 3 Click to add Q

Figure 6. View of the ExerciseList window after user clicks the "Display List of

Exercises" button (4).

38

* The Exercise Details Window .

The exercise details window also contains a single GroupBox, labeled with the

exercise number. Inside the GroupBox, a TextBox displays the question text and

another allows any notes for the exercise to be entered. Underneath the question

text, the expected type and Interaction mode are displayed, both in ComboBoxes

and editable. The current answers for the exercise are then displayed in a dynamic

table similar to the one in SchemeEx. Below the answers are the buttons "Add New

Answer," "Delete Selected," "Apply Changes," "OK," and "Cancel." A screenshot

of the ExerciseDetails window is shown in Figure 7.

Exercise #3

Question Text:

ExpectedlType. $Number-'-- ------ Interection Mode: Tx

Answers-
TY~e Notes, Stud_ MWtenel

FNi ii Nm be~r -~e-s

Add New Answer

Delete Selected Appl Chng % OKCace

Figure 7. View of ExerciseDetails window.

* The "Add New Answer" Button and the Dynamic Table

The dynamic table for answer display works the same way as the dynamic table in

SchemeEx, but has only a single level. Each row for an answer consists of the

following controls: A CheckBox for deletion, a label containing the answer number,

39

a TextBox for answerText, a ComboBox for answer type, a comboBox indicating

whether the answer is correct, incorrect, or neither, and a TextBox for the instructor

to enter any notes or study materials associated with each answer. Each time the

"Add New Answer" button is clicked, handler calls the "CalculateNewLS"

function which updates the reference Rectangles, and calls the "AddBlankRow"

function which removes all the buttons from the form, creates a new set of controls

for a blank row, adds them to the GroupBox, and calls the "AddNewEndButtons"

function to have the "Add New Answer," "DeleteSelected," "ApplyChanges,"

"OK," and "Cancel" buttons readded to the GroupBox and the GroupBox and

window resized. The tags for all the controls associated with an answer are set to

their corresponding answer number. The handler also enables the "Apply Changes"

button to ensure that the user has the opportunity to save changes.

* Exercise Details for Scheme Answer

If the exercise for display contains any answers of type "SchemeExpression," then

an instance of the "ShemeAnswersList" class will be created and displayed when

"ExerciseDetails" is initialized. This window is aligned to the left of the

ExerciseDetails window, and looks very much like the ExerciseList form and lists

all the answers by answer number for the exercise of type "SchemeExpression."

When the user clicks on any listed answer, an instance of "SchemeExDetails" is

created and displayed beneath the SchemeAnswersList window. Figure 8 shows a

partial shot of the screen with all three windows opened.

40

-- --- - -a t -- ---- --

TE 11 1iii

Cikto add Oneotnar Tooex o n cs

&Eao.tnd Tyapo cnorEnao IntenetionnMode xet

A oners _SnitootndNoesStdvMe

r Exercise 2
.1

Sarch for

Eoompta t1 cf'aoe ttnnn one cape

opein

-nsvivs

Cwv NtsstvoNAO

Figure 8. Screenshot showing placement of ExerciseDetails, SchemeAnswersList,

and SchemeExDetails windows.

* The "SchemeExDetails" Class

The "SchemeExDetails" class is used to display and edit the information from a

scheme answer that has already been created, and is instantiated only through

SchemeAnswersList's "listBoxSchemeAnswersSelectedIndexChanged" handler.

The window consists of a GroupBox labeled by the answer number. Within the

GroupBox, under the label "MATCH," are TextBoxes for displaying keywords-in

and the example scheme answer. Under the label "RUN" are TextBoxes containing

the text code and the pre-execution environment, along with the CheckBox for

indicating whether to use the example scheme answer as the test code. Below the

41

AywoCRd

t..............Ea.... S .An e

RUN

PetC te UnvamEnaot
f _j p-- -o l ---- a - a --------

~est Cames 2,. .oa n ..o......... n.n..

Doltoe Add Nwi

Add New Cm-

Dte noted Carrn Eerise conce-

pre-execution environment, the test cases committed for this scheme answer are

displayed within a two layer dynamic table like the one used in SchemeEx.

Similarly, the buttons "Add New Case," "Delete Selected," "Commit Exercise,"

and "Cancel" appear on the bottom. This form can be use in the same way as

SchemeEx to make any desired changes to the scheme answer in display. Clicking

on the "Cancel" button closes the SchemeExDetails window without taking any

action, and clicking on the "Commit Exercise" button triggers a handler which

records the changes, unserializes the exercise on the slide in question, modifies the

scheme answer in question, reserializes the exercise and resets the "Exercise" tag

on the slide. The commit handler also closes the current SchemeAnswersList

window and redisplays one containing the updated scheme answers. A closeup

view of the SchemeExDetails window is shown in Figure 9.

42

Answer10

MATCH:

Keywords IN Example Scheme Answer

RUN

Test Code P Use Example Scheme Answer as Test Code

<Use Example Scheme Answer as Test Code>

Pre-execubon Environment:

x=3

Test Cases:

Inputs: outputs

r 2. J*2

Delete Add Nevi

Add New Case

Delete Selected Commit Exercise Cancel

Figure 9. Closeup view of SchemeExDetails window.

Adding a new Scheme Answer

If the user decides to add a new answer and selects "SchemeExpression as the type,

a SchemeEx form is displayed underneath the ExerciseDetails window. The button

"Apply Changes" on the ExerciseDetails form is disabled, as clicking "Commit

Exercise" in SchemeEx or SchemeExDetails would be equivalent to "Apply

Changes" for answers of type "SchemeExpression." The memo variable is used to

distinguish this instance of SchemeEx from one called from the "ExpectedType"

class. In the end, when the user clicks on the "Commit Exercise" button after filling

in all the information desired, the handler updates the "Exercise" tag accordingly

43

for the appropriate slide, the existing SchemeAnswersList window is closed along

with any SchemeExDetails window that might be open, and a new

ShemeAnswersList window is displayed which reflects the addition of the new

scheme answer. The ExerciseDetails window also needs to be reestablished to

reflect the changes, again as the commit is equivalent to "Apply Changes." The

developer should be careful to pass both the SchemeAnswersList and

ExerciseDetails instances to SchemeEx and SchemeExDetails to allow such

control. Note that in the case of the exercise being of expected type

"SchemeExpression," the "Apply Changes" button is still relevant when question

text, expected type, if the answer is correct, or notes and study material is modified.

It would also be needed if the user chooses to enter an answer of a type other than

"SchemeExpression" when the exercise is of expected type "SchemeExpression,"

although this situation should arise rarely. A partial view of the screen with the

new SchemeExpression type answer being added from ExerciseDetails is shown in

Figure 10.

44

Scheme-Expression Answers

Cib*ktoipLy AmnerextiLes

iple SchemeAns er

mes Answer as That Code
a Test Code>

Outputs:. c oa?
i. 7" 1_ __ ._

Exercise #2

Question Text
Click to add Question Text for Exercise 2

Expected Type: xepres ion Interaction Mode Text

Answers: _Correct? NotesShds Matenal

I. S heme-Expressio

AddNe n *

- Delete S act OK Cancel

Answer#2

Keyvvsords IN. Exampla Sob'me Ans-wer

Test Method F Match Run

Cancel Commit Exercise

& IC

Get the latest news about sino
PowerPoint

Automaticaly update this ist from
the web

arch for:

ample: Print more than one copy"

pen

SPre. t

Sample1014

Presartationl

Figure 10. A partial view of the screen when the user tries to

"SchemeExpression" type answer from the ExerciseDetails window.

add a new

* The "Apply Changes" Button

When the user clicks on the "Apply Changes" button after having completed all

editing within the ExerciseDetails form, the handler records each of the fields on

the form, being careful to distinguish between adding an answer text versus a

RunnableAnswer depending on the type chosen for the answer in each row. Next,

the new exercise is serialized and added to the "Exercise" tag of the appropriate

slide. Finally, the "Apply Changes" button is disabled when all actions are

completed.

45

N -

" The "OK" Button

Clicking on the "OK" button performs the same function as the "Apply Changes"

button but, in addition, also closes the ExerciseDetails window and the

SchemeAnswersList window if they exist.

" The "Cancel" Button

Clicking on the "Cancel" button closes the ExerciseDetails window and

SchemeAnswersList window if it exists without taking any action.

V. Saving Exercises to the Database

When the user has created his slide deck, clicking on the "Save Exercises to Database"

button, E, will store the created exercises to the database, making them available to

other CLP modules. This handler loops through each of the slides in the slide deck, and

first unserializes the exercise in the "Exercise" tag if one exists. This unserialized

"ExerciselAT" object is then used to generate "Exercise" objects that are in turn saved to

the database using the "SaveExercise" of an instantiated "CDatabaseExport" object that

has been initialized. A database ID of type "int" is returned as a result and can be used at

any point to retrieve the exercise from the database if desired.

4.2.3 CLP-Wide Classes

There are several classes that needed to be created in the construction of the IAT as part of

a larger relationship of classes representing fields to be stored in the CLP database

repository. In addition to being essential for certain modules to function, this repository

46

will also become the basis of future extensions such as the construction of an intelligent

tutor-type system. These classes are used within the IAT during database store and also

export to .CSD to generate objects compatible for integration with CLP. These classes are

"AnswerMetadata," "Case," "Exercise," "InstructorAnswer," "Question," and

"RunnableAnswer." (The other classes currently in the larger CLP-Wide set of classes are

"Answer," "BaseClass," "Lecture," "Student," and "StudentAnswer.") All of these classes

fall under the "CLPClasses" project.

I. The "AnswerMetadata" Class

The "AnswerMetadata" class is currently used to store notes input by the instructor for

each answer within an exercise. This information is stored in the "description" member.

Its Private Members are:

private int parentAnswerld;

private string description;

private string misunderstoodConcept;

private string studyMaterial;

which all have corresponding Properties.

"AnswerMetadata" must be marked with a "[Serializable]" tag in preparation for

serialization.

II. The "Exercise" Class

The "Exercise" class is the basis of all exercises created by an instructor when it is passed

onto Classroom Presenter in a .CSD file for use by other modules of the CLP, and saved

47

into the database repository.

Its Private Members are:

private int exerciseNumber;

private int slideNumber;

private Question question;

private ExpectedType expectedType;

private InteractionMode interactionMode;

private ArrayList instructorAnswers;

private int parentLectureld;

private string notes;

private Rectangle studentAnswerArea;

private AnswerType answerType;

which all have corresponding Properties.

"Exercise" must be marked with a "[Serializable]" tag in preparation for serialization. In

addition, it must also include the following tags:

[System.Xml. Serialization.XmlInclude(typeof(InstructorAnswer))]

[System.Xml.Serialization.Xmllnclude(typeof(RunnableAnswer))]

[System.Xml.Serialization.Xmllnclude(typeof(Case))]

[System.Xml.Serialization.Xmllnclude(typeof(Answer))]

[System.Xml.Serialization.Xmllnclude(typeof(BaseClass))]

[System.Xml.Serialization.Xmllnclude(typeof(Question))]

[System.Xml.Serialization.Xmllnclude(typeof(AnswerMetadata))]

[System.Xml. Serialization.Xmllnclude(typeof(AnswerType))]

48

[System.Xml.Serialization.Xmllnclude(typeof(ExpectedType))]

[System.Xml.Serialization.Xmllnclude(typeof(IfCorrect))]

[System.Xml. Serialization.Xmllnclude(typeof(InteractionMode))]

This will allow the internal components of its instances to be serialized as part the instance.

III. The "InstructorAnswer" Class

The "InstructorAnswer" class extends "Answer," and is the basis of every answer created

by an instructor for an exercise when being passed on to a .CSD file or exported to a

database.

Its Private Members are:

private string description;

private string ifCorrect;

private AnswerMetadata answerMetadata;

private int number;

which all have corresponding Properties.

"InstructorAnswer" must be marked with a "[Serializable]" tag in preparation for

serialization. In addition, it must also include the following tags:

[System.Xml.Serialization.Xmllnclude(typeof(Answer))]

[System.Xml.Serialization.Xmllnclude(typeof(IfCorrect))]

[System.Xml. Serialization.XmlInclude(typeof(AnswerMetadata))]

This will allow the internal components of its instances to be serialized as part the instance.

IV. The "Question" Class

49

The "Question" class extends "BaseClass," and is used by the IAT to store question text for

each exercise when being passed on to a .CSD file or exported to a database.

Its Private Members are:

private int parentExerciseld;

private String questionText;

which all have corresponding Properties.

"Question" must be marked with a "[Serializable]" tag in preparation for serialization. In

addition, it must also include the following tag:

[System.Xml. Serialization.Xmllnclude(typeof(BaseClass))]

This will allow the internal components of its instances to be serialized as part the instance.

V. The "RunnableAnswer" Class

The "RunnableAnswer" class extends "InstructorAnswer," and is used to store information

for all answers of type "SchemeExpression" created by the instructor when being passed

on to a .CSD file or exported to a database.

Its Private Members are:

private string keyln;

private string exampleCode;

private string testCode;

private string preEx;

private ArrayList cases;

which all have corresponding Properties.

"RunnableAnswer" must be marked with a "[Serializable]" tag in preparation for

50

serialization. In addition, it must also include the following tag:

[System.Xml.Serialization.Xmllnclude(typeof(InstructorAnswer))]

This will allow the internal components of its instances to be serialized as part the instance.

VI. The "TestCase" Class

The "TestCase" class is used to store information about each case in a ShemeAnswer when

passed on to the .CSD file or exported to the database as part of an exercise.

Its Private Members are:

private int parentAnswerld;

private string parameters;

private ArrayList outputs;

private ArrayList ifCorrect;

which all have corresponding Properties.

"TestCase" must be marked with a "[Serializable]" tag in preparation for serialization. In

addition, it must also include the following tags:

[System.Xml. Serialization.XmlInclude(typeof(BaseClass))]

This will allow the internal components of its instances to be serialized as part the instance.

4.2.4 IAT-Wide Classes

Certain IAT-wide classes with more efficient formatting had also been created for use

before storing to database and exporting to .CSD . These are "ExerciselAT.cs,"

"InstructorAnswerIAT.cs," "RunnableAnswerIAT.cs," and "TestCaselAT.cs." All of

these classes fall under the "IATClasses" project.

51

I. The "ExerciselAT" Class

The "Exercise" class is the basis of all exercises when first created by an instructor. It is

then used to generate the "Exercise" object passed onto Classroom Presenter in a .CSD file,

and for saving to the database repository.

Its Private Members are:

private int exerciseNumber;

private int slideNumber;

private ExpectedType expectedType;

private InteractionMode interactionMode;

private ArrayList instructorAnswers;

private int parentLectureld;

private string notes;

private Rectangle studentAnswerArea;

which all have corresponding Properties.

"Exercise" must be marked with a "[Serializable]" tag in preparation for serialization. In

addition, it must also include the following tags:

[System.Xml. Serialization.Xmllnclude(typeof(InstructorAnswerIAT))]

[System.Xml.Serialization.Xmllnclude(typeof(RunnableAnswerIAT))]

[System.Xml.Serialization.Xmllnclude(typeof(TestCaselAT))]

This will allow the internal components of its instances to be serialized as part the

instance.

52

II. The "InstructorAnswerIAT" Class

The "InstructorAnswerIAT" class the basis of every answer when first created by an

instructor for an exercise. It is then used to generate "InstructorAnswer" objects to be

passed onto a .CSD file or exported to a database as part of an exercise.

Its Private Members are:

private string description;

private string ifCorrect;

private string answerMetadata;

private int number;

private string answerText;

private string expectedType;

which all have corresponding Properties.

"InstructorAnswer" must be marked with a "[Serializable]" tag in preparation for

serialization.

III. The "RunnableAnswerIAT" Class

The "RunnableAnswerIAT" class extends "InstructorAnswerIAT," and is used to store

information for all answers of type "SchemeExpression" when first created by the

instructor. It is then used to generate "RunnableAnswer" objects when appropriate as they

are passed on to a .CSD file or exported to a database as part of an exercise.

Its Private Members are:

private string keyln;

private string exampleCode;

53

private string testCode;

private string preEx;

private ArrayList cases;

which all have corresponding Properties.

"RunnableAnswer" must be marked with a "[Serializable]" tag in preparation for

serialization.

IV. The "TestCaseIAT" Class

The "TestCaselAT" class is used to store information about each case in a ShemeAnswer

when first created. When "TestCase" is instantiated, the constructor adds two empty string

objects to the output member, and two default "NO" strings to the ifCorrect member.

Its Private Members are:

private string parameters;

private ArrayList outputs;

private ArrayList ifCorrect;

which all have corresponding Properties.

"TestCaselAT" must be marked with a "[Serializable]" tag in preparation for serialization.

4.2.5 Integration with "InstructorModeAddin"

In order for the IAT add-in to be integrated with the InstructorModeAddin, the connect.cs

file from each were merged. Changes were also made to the "SlideViewer. Slide" class, as

well as the "PPTDeckBuilder.PPTSlideLoader" class.

54

I. Modifications to the "SlideViewer.Slide" Class

An extra private member of type "System.Collections.ArrayList" called slideExercises is

added to the "SlideViewer.Slide" class as a vehicle for passing all relevant information

from instructor inputs to the .CSD version of the slide deck for use by another CLP module.

II. Modifications to the "PPTDeckBuilder.PPTSlideLoader" Class

" Provisions were made within the "PPTDeckBuilder.PPTSlideLoader" class for

passing the relevant instructor input on to the exported .CSD file for use in

Classroom Presenter. Within "PPTSlideLoader," "BuildSlideDeck" is the

function responsible for creating an array of "SlideViewer.Slide" objects for use in

constructing the .CSD. An addition was made, so that upon export,

"BuildSlideDeck" would go through each PowerPoint slide in the slide deck,

unserialize all the exercises on each slide as "ExerciselAT" object, generate

appropriate "Exercise" object from them, and attach these to the corresponding

"SlideViewer.Slide" through its private member and property "SlideExercises."

* In addition, changes were also made to the public method

"LoadSlidesFromPresentation" from "PPTSlideLoader." Because the

InstructorModeAddin has created functionality to easily switch back-and-forth

between instructor and student view, it is important for the instructor to be able to

modify the student answer area in one view and not have to repeat the process in the

55

other. At the same time, it is also important to have on display the answer text in

each AnswerBox in instructor view only as a lecture-aid. Within PowerPoint, this

is resolved by means of the Comment tags. For viewing in Classroom Presenter, a

separate instructor answer box containing the answer text is created on-the-fly

during export, and removed immediately following the process. This procedure

occurs within the "LoadSlidesFromPresentation" function where, for each exercise

slide, an "InstructorAnswerBox" shape containing the answer text, identical in size

and location to the current "AnswerBox," is created and set to "Instructor" mode

only. Based on this information, the "BuildSlideDeck" function will then ensure

that the answer text is added only to the slide image used for the "Instructor" view

in .CSD. When the function has completed the export, the "InstructorAnswerBox"

shapes are permanently removed. Thus, the process is completely transparent to

the user.

III. Compatibility with Classroom Presenter

In generating a .CSD file, the InstructorModeAddin performs serialization to generate the

correct format. Thus, when Classroom Presenter is ready to open a .CSD file for use, the

file undergoes a process by which it is unserialized. This unserialization will be

successfully performed as long as the developer is careful to update shared projects

between the Presenter source code and the new joint InstructorModeAddin/IAT Addin

which performs the original serialization in exporting to .CSD.

Section 5: Future Work

56

Currently, the top priority for extending the IAT is to make provision for creating exercise

slides that contain multiple exercises, each with its own answer box. When this is possible,

an instructor will be able to create slides that are more similar to the ones currently used for

in-class exercises with multiple parts.

A basic plan for accomplishing this will involve either adding to the "Insert Exercise Slide"

or replacing it with an "Insert Exercise" function. One of the first steps would be to design

a scheme for allocation of space, and placement of exercises on the slide as they are added.

Other questions to consider include whether to have question textboxes inserted

automatically with an exercise, or to insert textboxes only and assume the same question

for additional textboxes when a question text already exists. One possibility would be for

exercises to be added always in a designated area on the slide, say the upper right corner,

and have the user move them to the location of his choice; Another would be to create a

selection of templates with different numbers and layouts of exercises on a slide and have

the user select the type of exercise slide to insert. Then all the exercises can either be

present already when the slide is inserted, or added one by one as desired in the preset

locations as the user clicks on the "Insert Exercise." The user is still free to move around

objects and customize the slide as he sees fit.

Another aspect to consider is how much freedom to give to the user in committing

exercises. Should all the exercises on a slide be required to be committed at once? Or

perhaps only those whose answer boxes are selected? How should they be mapped to the

ArrayList of exercises attached to the "Exercise" tag?

57

Other possibilities for future work include fine-tuning the SchemeExpression interfaces so

that they can be used for code segments in other language, creating an interface for the user

to generate custom answer types while building the slide deck, implementing the modified

interface for using the "Pen" mode of interaction, and investigations into the PowerPoint

API so that items like the "KeyboardPen" and "ExpectedType" type objects can be

embedded directly into a slide rather than standing as separate windows. Investigations

into attaching event handlers to PowerPoint shapes would also allow a more seamless

compositional process where actions like committing and exercise can happen

automatically, for example, as soon as the use enters an answer value.

Section 6: Results and Conclusion

Using the IAT, the user is currently able to successfully build a PowerPoint slide deck

containing in-class exercises with expected answer types of "Number," "Text,"

"Sequence," "Set," "SchemeExpression," or "None." The slides can contain at most one

exercise per slide, and the student answer area size and location can be set by the user for

each exercise. The user is also able to see information for answer text, expected type, and

date of creation, as well as a label containing exercise number in "Instructor" mode, while

only the answer area is visible in the "Student" view of the slide. In addition, the user is

able to export the .PPT slide deck into a .CSD file compatible with Classroom Presenter as

long as the Presenter's source code has been updated for compatibility with the IAT Addin.

When opened in Classroom Presenter, the exported .CSD file will successfully display the

appropriate information in both "Instructor" and "Student" mode. In addition, the user is

58

also able to save the exercises from his slide deck to the database repository for storage and

integration with other CLP modules.

The IAT was able to successfully meet the design criterion of using Microsoft PowerPoint

as a basic tool. It also laid the groundwork for leveraging past student mistakes and

misunderstood concepts by providing a means for instructors to author multiple incorrect

answers as well as correct ones and at the same time to attach any comments or notes to

each. This criterion as well as the preparative work for an intelligent tutoring system have

also been jump-started by the IAT's ability to successfully store all relevant instructor

input into a database repository. While informal testing of the IAT for exercise authoring

has been positive, both of the last two criteria, 1) enhancing support to instructors by

facilitating the slide-generation process, and 2) enabling real-time feedback of student

performance, have yet to be formally tested in a true academic setting. Nonetheless, it is

hopeful that this implementation of the IAT would be is a part of an overall CLP system

with the potential of being a critical turning point in the evolution of information

technology as it applies to education in the 21st century.

References

Anderson, R., Anderson, R., Hoyer, C., Simon, B., Videon, F., Wolfman, S. (2005)

"Lecture Presentation from the Tablet PC," University of Washington

Anderson, R., Anderson, R., Simon, B. VanDeGrift, T., Wolfman, S., Yasuhara, K. (2004)

"Experiences With a Tablet PC-Based Lecture Presentation System," University of

59

Washington, University of Virginia

Anderson, R., Anderson, R. VanDeGrift, T, Wolfman, S., and Yasuhara, K. (2003)

"Promoting Interaction in Large Classes with Computer-Mediated Feedback,

CSCL.

Anderson, R., Anderson, R. VanDeGrift, T, Wolfman, S., and Yasuhara, K. (2003)

"Interaction Patterns with a Classroom Feedback System: Making Time for

Feedback", CSCL.

Anderson, R., Hoyer, C., Prince, C., Su, J., Videon, F., Wolfman, S. "Speech, Ink, and

Slides: The Interaction of Content Channels," Department of Computer Science

and Engineering, University of Washington.

Bligh, D.A. (2000) What's the use of lectures? Jossey-Bass Publishers, San Francisco.

Bouillion, L.M., L.M. Gomez. "The Case of Considering Cultural Entailments and Genres

of Attachment in the Design of Educational Tehcnologies." Smart Machines in

Education: The Coming Revolution in Educational Technology. Menlo Park, CA:

AAAI Press/MIT Press.

Brewer, C. A. (2004) Near Real-Time Assessment of Student Learning and Understanding

in Biology Courses. BioScience, November 2004, Vol. 54 No. 11.

Brown, A. L. (1992) Design experiments: Theoretical and methodological challenges in

creating complex interventions in classroom settings. The Journal of the Learning

Sciences, 2: 141-178.

Cuban, L. (2001) Oversold and Underused: Computers in the Classroom. Cambridge,

MA: Harvard University Press.

Davis, R. (2005), personal communication.

60

Draper, SW. (2004) "From active learning to interactive teaching: Individual activity and

interpersonal interaction," in Teaching and Learning Symposium: Teaching

Innovations, The Hong Kong University of Science and Technology.

Feltovich, P.J., R.L. Coulson, R.J. Spiro. "Learners' (Mis)Understanding of Important and

Difficult Concepts: A Challenge to Smart Machines in Education." Smart

Machines in Education: The Coming Revolution in Educational Technology.

Menlo Park, CA: AAAI Press/MIT Press.

Grimson, E. (2005), personal communication.

Hinrichs, RJ. (2002) "Technology, Learning and Scholarship in the Early 21st Century,"

from Microsoft Corporation, Microsoft Research, Learning Science and

Technology

Higgins, E., L. Tatham. "Exploring the potential of Multiple-Choice Questions in

Assessment." Learning & Teaching in Action, Vol 2 Issue 1: Assessment.

Ho, B. (2001) "From using transparencies to using PowerPoint slides in the classroom",

from AARE 2001 Conference Papers compiled by Peter L. Jeffery.

Kadlowec, J. (2005) "Using rapid feedback to enhance student learning in mechanics."

From 3 5th ASEE/IEEE Frontiers in Eductaion Conference.

Koedinger, K. (2003) "Cognitive Tutors as Modeling Tools and Instructional Models."

Smart Machines in Education: The Coming Revolution in Educational

Technology. Menlo Park, CA: AAAI Press/MIT Press.

Koile, K. (2005), personal communication.

Laplante, Phillips and Wiesner, Peter. (2002). Pedagogy for the Web-based technical

education.

61

http://www.opencroquet.org/Site%20PDFs/Enabling%/o20Learning%202004.pdf

Means, B., Blando, J., Olsen, K., Middleton, T., Morocco, C.C., Remz, A.R., Zorfass, J.

(1993). "Using Technology to Support Education Reform." Study and report

sponsored by the U.S. Department of Education, Office of Educational Research

and Improvement, under Contract No. RR91172010.

Merrill, MD. "First Principles of Instruction." Submitted for publication to Educational

Technology Research & Developemnt.

http://id2.usu.edu/Papers/5FirstPrinciples.PDF

Papert, S. (1971) "Teaching Children to be Mathematicians vs. Teaching About

Mathematics." To be published in the International Journal of Mathematical

Education in Science and Technology (New York: John Wiley & Sons, 1972) and

in Proceedings of 1970 CEMREL Conference on Algebra (Carbondale, Illinois:

CEMREL, Spring, 1971).

Peiper, C., Warden, D., Chan, E., Capitanu, E., Kamin, S. "eFuzion: Development of a

Pervasive Educational System," University of Illinois at Urbana, Champagne,

Department of Computer Science

President's IT Advisory Committee. "Report to the President on Using Information

Technology to Transform the Way We Learn."

http://www.itrd.gov/pubs/pitac/pitac-tl-9feb01.pdf

Ratto, M, Shapiro, RB, Truong, TM and Griswold, WG. (2003) "The Activeclass Project:

Experiments in Encouraging Classroom Participation," in CSCL.

Regents of the University of Minnesota (2006) "Active learning with PowerPoint: Using

PowerPoint to Facilitate Classroom Assessment Techniques." University of

62

Minnesota Center for Teaching and Learning Services.

Roschelle, J., W.R. Penuel, L. Abrahamson. (2004) "Classroom Response and

Communication Systems: Research Review and Theory." Presented at the Annual

Meetings of the American Educational Research Association, San Diego, CA,

April 2004.

Satratzemi, M., Satratzemi, M., Dagdilelis, V. , Evagelidis, G. (2001) "A system for

program visualization and problem-solving path assessment of novice

programmers." from ACM 2001.

Schank, R., A. Neaman. (2003) "Motivation and Failure in Educational Simulation

Design." Smart Machines in Education: The Coming Revolution in Educational

Technology. Menlo Park, CA: AAAI Press/MIT Press.

Schwarm, S., and VanDeGrift, T. (2002) "Making Connections: Using Classroom

Assessment to Elicit Students' Prior Knowledge and Construction of Concepts." In

Proceedings of the International Conference of the Learning Sciences.

Simon, B., Anderson, R., Hoyer, C., and Su, J. (2004) "Preliminary Experiments with a

Tablet PC Based System to Support Active Learning in Computer Science

Courses," in 9th Annual Conference on Innovation and Technology in Computer

Science Education (ITICE).

Simon, B., Anderson, R., Wolfman, S. (2003) "Activating Computer Architecture with

Classroom Presenter." Workshop on Computer Architecture Education (WCAE),

San Diego, USA. June 2003.

Virvou, M. (2000) "Involving Effectively Teachers and Students in the Life Cycle of an

Intelligent Tutoring System." Educational Technology & Society 3(3) 2000.

63

Warnick, B.R. (2003) "Review of Smart Machines in Education Technology." Ed Rev,

January 2003.

Wilson, M., K. Scalise. (2004) "Using assessment to improve learning: The BEAR

Assessment System." University of California, Berkeley, March 2004.

Woolf, B.P. (2003) "Growth and Maturity of Intelligent Tutoring Systems: A Status

Report." Smart Machines in Education. The Coming Revolution in Educational

Technology. Menlo Park, CA: AAAI Press/MIT Press.

64

