
Reliable Real-time Stream Distribution Using an
Internet Multicast Overlay

by

Ilia Mirkin

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Masters of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2006

( Massachusetts Institute of Technology 2006. All rights reserved.

Author.. . . -. - - ....

Eiepartment of El rical

Certified by .........................

Engineering and Computer Science
A January 31, 2006

Andrew B. Lippman
Senior Research Scientist

Thesis Supervisor

.. . · S . ;.

In ..................

Accepted by ......... ................... . ...............
Arthur C. Smith

Chairman, Department Committee on Graduate Students

LIBRARIES

ARCHNIES

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

I I

AUG 14 2006

i



Reliable Real-time Stream Distribution Using an Internet
Multicast Overlay

by
Ilia Mirkin

Submitted to the Department of Electrical Engineering and Computer Science
on January 31, 2006, in partial fulfillment of the

requirements for the degree of
Masters of Engineering in Electrical Engineering and Computer Science

Abstract
A real-time peer-to-peer stream distribution system is proposed. Distribution network adapts
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Chapter 1

Introduction

We have recently entered the age where video on demand is the norm and not the exception

or desire. People time-shift shows, recording them on VCR's and DVR's with great ease.

This also means that they watch the shows that they record at different times. However,

while sometimes extremely convenient, this detracts from one of the main advantages of a

simultaneous broadcast -- community.

One of the main advantages to watching (or listening to) shows at the same time is the

ability to comment and discuss them with others, especially during the show. Broadcasting

works well over the air waves, but distributing a video stream, or, in general, a stream of

bytes to many people on the Internet over the heterogenous network presented therein is

currently done using rather inefficient techniques.

This communications problems can be defined as the multicast distribution of real-time

streams. A stream is a continuous string of bits, without a beginning or an end. This string

comes in at a certain rate, and should be distributed to other nodes at the same rate for

the system to operate in real-time. Multicast distribution in this case is the concept that the

same stream will be distributed (copied) to many destinations, rather than an allusion to
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the particular implementation details.

The motivation behind this project is to lower the cost to the stream originator of stream

distribution in terms of both computational power and bandwidth requirements on a shared

network like the Internet. The stream content can be audio, video, or anything else that can

be represented by a computer. Trying to send the same stream to many hosts on the Internet

generally results in multiple unicast streams. This in turn means high uplink bandwidth

usage on the side of the provider, resulting in higher costs and poor scaling properties.

Let us consider instead a system that is enhanced by client nodes, not decimated by them.

A stream originates from a single source that has a certain sequence of data that it wants

to send out to the Internet at large, received by anyone interested in listening. Any listener

(node) must have enough capacity to receive the bandwidth of the stream. Furthermore, we

want to create a system that behaves in a cooperative fashion, so we require that any node

must be able to resend the stream to at least one more node1 . (While any given node may

not be using its capacity to retransmit the stream, in order to guarantee entry-points, this

must be a requirement.) Given these restrictions we want the resulting network to adapt

dynamically to ever-changing network conditions which occur in a real network along with

node failures.

There are few proposals and fewer implementations for doing this currently available, and

they are discussed below along with their shortcomings. Following this discussion, a new

approach is proposed along with some calculations and measurements of its performance.

1This requirement is relaxed in discussions in sections 2.5 and 3.1
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1.1 IP Multicast

Ethernet multicast has existed for dozens of years, but its primary limitation is that it only

works on a local Ethernet segment. This has been partially addressed by the Mbone[6][7]

project and IP multicast. Through careful routing, they provide people with the ability

to join multicast groups, and thus achieve the ability to do multicast over the Internet

by duplicating the packets that are sent at the router. This leads to two big limitations.

First, the way that routers figure out the overlay that determines the routing is not based

on a stream's bandwidth utilization. This is a problem because it does not consider the

link's capacity, only whether it is present or not. Secondly, very few networks route Mbone

properly, and certainly no regular Internet service providers will allow their subscribers to

obtain a multicast stream. This reduces the usefulness of the Mbone project to networks

where fine control over the routers is possible.

Another problem with IP multicast is billing. When you have a unicast packet traveling

across the Internet, it is clear who the packet is from, and where it goes to. The sender pays

an ISP and the receiver pays an ISP. With multicast, it is more complicated, since the whole

advantage of it is that it does not use as many resources as unicast. The sender only sends

one "stream" to the ISP, but the ISP is then supposed to replicate the packet to a number

of different routes and send them on. Moreover, the sender is unable to control who the data

gets sent to, thus one could incur costs to a sender without them even knowing it. This is

most likely the reason that IP multicast has not been deployed on the Internet at large.

Even though IP multicast in general does not directly address streaming, only packet de-
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livery, some protocols have been developed that do so, within the given multicast framework.

The protocol that best addresses the streaming problem is the Resource ReSerVation Pro-

tocol (RSVP)[12]. This protocol is implemented in some Cisco routers, however, in addition

to having the same problems as IP multicast, it faces even less support on the Internet as

well as much higher algorithmic complexity. The protocol calls for reservation of resources

such that a router will make sure that there is enough bandwidth on a link for the multicast

data, to go through. Since this has to be assured along the entire length of the path that the

multicast data takes, this involves a lot of extra overhead.

1.2 Bullet

Bullet[9] is a system proposed by researchers at Duke University. It is designed for data

dissemination over a mesh structure. Their observation was that if trees are used for delivery,

then the system suffers because a weak link in the tree will cause all of the lower down nodes

to be limited by this weak link (and Bullet addresses this problem). This is true if the

assumption is that the amount of data to be delivered varies, and/or that the stream can be

split up such that not all parts are required in order to decode the data, as with Multiple

Description Coding (MDC), or with added redundancy. However if we assume a (relatively)

constant stream bitrate, then it does not matter where in the tree a given node is - either it

is getting the full stream or it is not. If the node is getting the full stream then it should be

able to retransmit the data to its children, independent of the bandwidth capacity between

the node and its parent, so long as that capacity is sufficient for obtaining a full copy of the
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stream in the first place.

As a result. the Bullet architecture is not well-suited for a stream multicast situation,

but is better suited towards its original purpose - raw data distribution. Once we constrain

the problem to a constant stream, we can make many assumptions that the Bullet team

could not, which lead to more efficient algorithms for the particular problem of single-source

streaming.

1.3 SplitStream

SplitStream[2] is a system that is much closer in scope and capabilities to the desired system

than the previous examples. In my opinion, its overall key contribution is the idea of parti-

tioning the stream up and sending each stream partition separately. This allows for nodes to

be used in the cooperative network which have asymmetric links that allow them to receive

the full stream but not be able to retransmit it in full. Splitting the stream up into many

pieces allows such nodes to just retransmit one of those pieces. Furthermore, it configures

the nodes as a mesh.

If we have a stream with bitrate N, and we split it up into M partitions, then we end

up with M separate streams with bitrate N/M each. This effectively lowers the bandwidth

requirement for a peer to be a useful node in the network, and thus allows more peers to

participate in the redistribution effort. This addresses the common problem of asynchronous

connections where the download capacity is big enough to receive a full stream but not big

enough to resend it to another node.
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Unfortunately, SplitStream does not guarantee the delivery of each stripe, meaning that

many nodes may end up with only part of a stream. If MDC or redundant coding is used,

then this may have little ill effect, however we want this system to be able to reliably send a

full real-time stream. Moreover, SplitStream relies on a few layers of software underneath in

order to perform routing, which increases the protocol overhead, which is undesirable when

one wants to squeeze the most possible out of a network connection.

It also seems that SplitStream does not explicitly deal with congestion in the middle of

the distribution tree rather than near the source. This is something that can and will occur

in real Internet overlays since a node's uplink capacity can vary, sometimes drastically, over

the period of it being a member of the overlay.

Lastly, there is little mention of adaptation due to changing network conditions. This

is a key factor, as throughout the day overall usage of network lines changes, and there

are even changes on smaller timescales also. The ideal system would dynamically perform

congestion control in a non-intrusive fashion by acting as a single TCP stream for the whole

application. (For example, BitTorrent uses TCP for each of its connections, but it makes

hundreds of them thus being unfair towards other applications that use single TCP streams

for their operations.)

In general, it seems that it would be hard to make SplitStream adapt to a variety of

network conditions because it does not have the ability to directly deal with the network but

instead relies on the Pastry DHT infrastructure in order to pass data between nodes.
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1.4 BitTorrent

BitTorrent is a system for distributing files using the peer-to-peer concept[5]. File distri-

bution, however, is a completely different problem than distributing a stream. A file is an

array of bits, all of which are known at all times. A stream, on the other hand, comes in at

a certain rate, and does not have a beginning nor an end. Moreover, it is impossible to tell

what it will be in the future, and it is furthermore impossible to remember everything that

it was in the past.

This leads to an entirely different technique for content distribution. The file-based

content can be split up into many little chunks and the chunks can be sent to as many peers

as possible, at which point these new peers will be able to redistribute those files. There

needs to be no order on the reception of these, so any peer can receive any chunk at any time.

The connection pattern that results is a mesh, as there needs not be any implicit hierarchy

between the peers.

BitTorrent can be modified so that it only sends out the "current" chunk at any given

time. However, since it does not provide any timely delivery guarantees, there are many sce-

narios where its performance is suboptimal compared to an approach that uses a structured

tree. A direct peer-to-peer solution requires a hierarchy between the peers, and is used in

VidTorrent.
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1.5 End System Multicast

ESM is a system developed at CMU with many of the same goals as VidTorrent. It uses a

tree-based overlay to distribute data, but takes a much more video-based approach to the

data than VidTorrent.

In the implementation (or at least the way that it is described, source code is unfor-

tunately not available), the source will send out three separate streams along the same

distribution tree - a high bitrate video, a low bitrate video, and an audio stream. Thus

based on a node's bandwidth, it may receive all three, or only the latter two, or just the

audio. (This is one way of doing MDC's, although without the advantage in data size that

they are supposed to present.) If a client does not receive all three streams, then any of its

children will, of course, only be able to get just the streams that the client is getting.

The earlier paper[4] that describes their system lists many of the characteristics achieved

in this thesis. However the presented scheme has a lot of reliance on centralized resources by

rather arbitrary use of waypoints (well-connected servers) as well as a reliance on the details

of the stream to be encoded as specified.

The later paper[10] introduces many improvements, also seen in this thesis. Primarily,

this is their description of multiple tree use to achieve greater diversity. However they use

this in the context of MDCs instead of achieving diversity on an arbitrary data stream. Also,

this paper's suggestions are not found in the implementation provided (at least as described).
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1.6 Resilient Peer-to-Peer Streaming

Microsoft research had a second system[3] built around the same time as SplitStream. In

this system, they take the more direct tree-based approach rather than building on top of

the Pastry infrastructure. This system focuses on improving multicast distribution of video

encoded with the use of MDCs. Much like SplitStream, they use the multiple tree concept,

and try to build trees that minimize the number of nodes between the leaves and the root.

This is based on the argument that the fewer nodes there are in between, the lower the

chances of one of those nodes failing, for any constant number of nodes in the tree.

Due to this paper's focus on video, they were able to analyze the distribution method's

performance in a rather novel way, by considering the SNR of the incoming image. This is

affected by packet loss (presumably using UDP or the like), and how many of the MDC parts

there are available. Their results showed that increasing diversity, i.e. more trees greatly

improved SNR in the face of packet loss.
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Chapter 2

VidTorrent

2.1 Rationale

The high-level VidTorrent approach to streaming is the simplest one to rationalize conceptu-

ally. Instead of dealing with a file, we must deal with a stream. A stream means that there

is a concept of a present time (subject to some finite amount of buffering), a past that has

already been forgotten, and a future that we can't predict. As such, whenever we receive

any data, we must send it on immediately, otherwise it becomes an uphill battle to try to

keep track of more and more data that is received.

These constraints naturally lead to a tree-based design[1], since any node that already has

the data does not need to receive it again, and upon reception, the node must send the data

on to some other node due to the finite buffer problem. As such, each packet travels down a

spanning tree of the fully connected graph of nodes. It is possible to also consider frameworks

where each individual packet travels down a different spanning tree of this graph, and we do

this to a certain extent in the multi-tree section below (2.5). Generally, a distribution tree is

also known as an overlay; the two terms are used more or less interchangeably in this paper.
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The main question that is addressed in this chapter is how to construct these spanning

trees while maintaining minimal information on each node about other nodes in the overlay,

and without any explicit global view on the network deciding on the fate of incoming nodes.

2.2 Overview

With VidTorrent, we try to achieve an end-to-end solution which allows data to flow from a

source to many clients with as few requirements as possible on the source or any given peer

in the overlay network being used to carry the data. In addition, each node must maintain

only limited local knowledge about the state of the distribution overlay.

We also want the overlay to be content-agnostic. While the name of this protocol does

start with "Vid", VidTorrent does not necessarily have anything to do with video per se -

it is just a very compelling application for sending streams of bits from one source to many

clients.

Overall latency need not be a concern for the system. Since this is a one-way broadcast

system, there do not need to be any delay guarantees from the source to any given peer in

the overlay. The only guarantee required is that the stream is delivered at the rate that it is

coming in. The analogy to this is that one doesn't care if they are watching television five

seconds off from it being recorded - but if there are breaks in the video, stream, then the

effect becomes perceptible to the user.

As with the other viable approaches discussed in the introduction, this system uses a

tree-based distribution system for delivery. The problem pointed out by the Bullet[9] paper
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regarding the capacity of the tree decreasing as one descends it is not a big concern since as

long as a node can receive a stream, it can resend the same stream to its children - there is

no effective decrease based on how much "empty" pipe is left-over.

Another key point of this system is that it will adapt to changing network conditions.

This is crucial since it is a generally accepted fact that channel capacities between any

two nodes on the Internet at large will change throughout the day. That means that any

distribution tree will need to adapt over time to account for these as, e.g. a node may be

able to support many children at night but only one during the day. This implies that there

needs to be active congestion detection and mitigation.

Lastly. as this must be able to be deployed in a real network environment, including home

connections, the system must have the capability to include hosts behind Network Address

Translation (NAT) firewalls/gateways. A recent study[8] has found that most commercial

(especially recent) hardware is amenable to either TCP or UDP hole-punching, which means

that given at least some public nodes available for intermediation, it is possible to initiate

direct connections between hosts behind NATs by using the public node to set the connection

up (but have all the data flow directly between two hosts behind different NATs without

going through the public host). This thesis will not describe in detail how this is integrated

into the larger framework, however the implementation does include this feature.

Before going into details of operation, it is useful to take a look at the basic constraints

of the system. Let us say that we have n nodes, and a stream of b bits per second. All of

the nodes (except the source, which, let's say is not counted in the n nodes) must receive
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the stream. Thus, the total flux of data into nodes must be nb bits per second. In turn,

this must mean that the flux of the uploads out of nodes must be at least that figure. If the

source has uplink capacity u and each node i has uplink capacity ui, then the inequality

nb < us + En ui must hold in order for all n nodes to receive the stream. (To be even more

accurate, at least one of the nodes can't be retransmitting in this scenario, but this detail

only serves to muddle the inequality.)

In deploying such a system, this inequality would have to be considered, along with

the expected uplinks of the clients in order to provide enough capacity at the source, or,

alternatively, by supplying high-capacity nodes to help out with the overlay by making up

for the expected low-capacity nodes.

2.3 Joining

The most important part of distributing a stream is being able to accommodate as many

nodes into the distribution tree as possible. One way of knowing how to connect into the

stream is to require everyone to know the source in order to receive the stream content. The

big disadvantage here is that the source will be put under unnecessarily high network load

since it will be queried each time a node tries to join into the overlay.

Thus the join algorithm needs to be able to handle joins that start their search at any

node, not exclusively the source, such that if there is an available spot anywhere in the tree,

then the joining node will eventually find it. A rendez-vous infrastructure for finding such

nodes in the stream is provided in the implementation, but goes beyond the scope of this
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thesis.

In a peer-to-peer system, it is hard to prevent nodes from accumulating knowledge about

the layout of the overlay. This case is no different - in order to be able to join in an

appropriate place in the overlay, the node must be able to find more nodes given a starting

set of nodes. The joining node selects on its own which node it will join to, given that node's

willingness to accept a new child.

The willingness to accept a new child is determined by a few factors. First, a node

may have a hard limit on resources, e.g. number of children, or total outgoing bandwidth.

Additionally, the channel capacity between the joining node and the node already in the

tree may not allow for reliable operation, which is a very important fact that needs to be

detected before a join is authorized.

In order to join under a node, a bandwidth test must be done. There are many ways

to do a bandwidth test, however in this case, we do not want to overload the network and

possibly "steal" other connections' bandwidth (with TCP backoff). A light solution that

does not incur such problems is to send two packets consecutively, of known size, and to

detect the delay between them. So if there is a delay t between two packets of (large, e.g.

MTU) size s, then the estimated channel capacity is . Testing has shown that while this is

not as accurate as a full probe, it does get the capacity to within 15%.

The result of a bandwidth test is that if it passes, the node in the tree gives the potential

joiner a ticket which will have to be presented in order to actually join. The joiner tries to

get a selection of nodes to test against (by finding nodes topologically close to the node that
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it starts off with), and out of this selection, of the nodes which gave it a join ticket, it finds

the node with the lowest RTT. It then looks at this node's children, and tests the RTT to

these, selects the smallest one, and repeats. It then joins to the one of all those nodes with

the lowest RTT. This is done in order to maximize the chances of two nodes topologically

close on the Internet to also be topologically close in the distribution tree.

Rejoining to the tree upon disconnection happens in the same way as the initial join,

except that while in the tree, each node acquires a bit of local state in terms of information

about the tree (a few parents up, and a few children down), and the initial "seed" selection

is pulled from this acquired local state rather than a lookup on some initial node.

2.4 Buffering

Unfortunately, rejoining into the tree is an operation that can take some time - up to a few

seconds. In this time, some data will be missed. To combat this, each node can store a

buffer of the last 5 seconds of data that flows through the tree. To facilitate this, the source

splits up data into MTU-sized blobs, and assigns each one a sequence number.

When a node receives a data packet flowing through the tree, it stores the data along

with the sequence number in an internal FIFO (that is sized to keep the last few seconds

of data). When a node rejoins under a new parent, it asks the parent for all data that

the parent has with sequence numbers greater than the last sequence number in the joining

node's FIFO.

Also, it is important to fill the FIFO first, and play from the back of it rather than the
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front as far as the output is concerned (data should be forwarded down the tree immediately,

as previously determined). This allows interruptions to go unnoticed, assuming that they

are sufficiently few and short, by playing back the data in the FIFO while the node re-enters

into the tree. When the connection is repaired, the buffer module will arrange to refill the

FIFO with missed data, in addition to receiving the regularly scheduled "current" data.

This buffering step allows the system to be content-agnostic since there is a decent guar-

antee of data delivery. The guarantee is not absolute, or even as strong as it is with TCP,

but assuming no extenuating network conditions occur, it will flow from end to end.

While this section addresses buffering in the VidTorrent trees themselves, there is more

to be said about buffering of the data inside a given node before giving it to the player when

there is more than one tree involved. See this discussion towards the end of the next section.

2.5 Multiple Trees

Section 2.2 lists an inequality that must be satisfied in order for every node to receive the

stream. However one point that it neglects is the granularity of the uplink. If the stream is

of bandwidth b, having uplink capacity b + e will not help for < b because with a single

tree, you can only redistribute an integer number of copies of the stream.

One way to decrease the granularity of the uplink is to split the stream[2][10] into a

number of substreams. This is achieved in conjunction with sequence numbering by sending

into the ith tree sequence numbers n s.t. i n(mod k) if there are k trees/substreams. The

granularity is hence reduced from b to . We can adjust k arbitrarily to satisfy any minimumgranuarityis hece reuced rom bto k
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uplink capacity desired in order for a node to become a useful in the overlay.

This approach also opens up distribution of a stream encoded using an MDC which

would allow one to not be in all trees and still be able to decode the data. Unfortunately, at

the time of writing, there are no MDCs widely used to experiment with. Additionally, this

allows us to experiment with different approaches to full stream distribution. A RAID-like

approach can be used, such that if one of the trees becomes temporarily unavailable, all the

data of the stream still is (subject to the RAID type used). This sort of system would be

preferable where absolute guarantee of delivery is required as it eliminates the requirement

of a tree to rejoin quickly, but would also incur the overhead associated with RAID.

With a single source splitting up data amongst trees, each node must reconstruct the

original stream from the incoming packets. Since each packet contains a sequence number, it

is straightforward to reconstruct the stream if the packets arrive via the many trees in order.

As the latter condition will rarely be the case, each node must contain a sequencer which

will take a non-sequential input of packets and product a sequential output, representing the

original stream. At this point , we can also remove most of the intelligence from the buffer,

in favor of placing it into the sequencer.

There are a few reasons why the packets may be coming in out of sync via the different

trees. First, there may have been a failure somewhere higher up in one of the tree structures,

and this failure has caused a temporary pause in data transmission in that tree, while the

other trees are still going. Fortunately, given how the join algorithm works, there should be

no long outages like this, though a temporary out-of-sync condition can occur. This is, as
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usual, fixed by having a buffer sized to accommodate the time a rejoin can take.

The second and more problematic case is due to the inherent latency of the system,

determined by the number of hops (and their individual latencies) from the source. If a node

joins somewhere close to the source in one tree but far away from the source in another,

then the data coming in via one of these trees will be relatively constantly ahead of the data

coming in via the other tree. For cases where this difference in latency is just a second, there

is no problem because the local buffering will take care of it. However one can imagine very

large numbers of nodes such that there can be minutes of latency from the source to the

"bottom". In such cases, an excessive amount of buffering would need to be done, and instead

it is better to simply disconnect/rejoin one of the problem trees and hope for a more similar

latency difference as compared to the other trees. This condition is easily detectable when

all the trees are well connected but the incoming data has large discrepancies in sequence

numbers.

In the general case, the sequencer must keep a buffer of the data that it is given, and

output data sequentially per the sequence number. The problem is that a data packet may

forever be lost, and so the sequencer would end up waiting for it forever, increasing its buffer

and not passing any of the data to the decoder. This means that the sequential condition

must be relaxed a little. Instead, it should try to do its best, but, same as with the buffer,

it should be resource-constrained. Once the sequencer's buffer grows to a certain number of

packets (or, alternatively, a certain span of sequence numbers), it should give up on waiting

for whatever packet that it is waiting on and move on to the next one. (If a packet that has

23



been skipped comes in later, it should be ignored, as outputting it will confuse whatever is

receiving the stream even more.)

The amount that the sequencer buffers, as well as where in that buffer it plays is very

important. Since we try to assure elsewhere that no data is lost, the sequencer can assume a

constant average throughput. However, the buffer must be large enough to account for time

spent doing reconfiguration, and other network-related fluctuations, in order to assure that

the end output is coming out at a similar rate as that going in.

In order to do this, one must have an idea of the maximum time that it would take to

reconfigure everything. This is a very complicated measurement to make theoretically, since

it depends on the number of failures in any given tree, as well as the number of trees in

which there are failures. This measurement is much more suited to be taken in a simulation

with the real code running but in a controlled network environment.

2.6 Implementation

VidTorrent was built on top of a library which provides a very simple but powerful RPC

interface. This section will first address the convenient features of the RPC engine, and then

a few details of implementation of VidTorrent itself.

The RPC engine is mostly written in C++, with bindings to Python. The RPC spec

is written in a language specially developed for the engine, and is compiled by a meta-

compiler written in Scheme into C++ and Python bindings (also written in C++). The

engine provides the generic aspects of RPC, while the generated files deal with specifics such
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as narshalling/unmarshalling of the specific calls that are defined by the interface.

This allows all of the protocol to be implemented in a high-level functional language where

more time can be spent worrying about the details of the protocol rather than trivialities

like list management and hashes, as these are not the subject of research here, merely com-

putation tools. Using a high-level language also greatly enhances the clarity and readability

of the code, without exposing too many of the unnecessary details of doing RPC.

VidTorrent itself is split into a few interfaces that are logically separated but work to-

gether to achieve the overall result. There is a metadata interface that allows different nodes

to pass various information about the streams, such as number of substreams, expected bi-

trate, a name, etc. There is a buffer interface which allows nodes to access other nodes'

buffers in order to get catch-up information. And finally, there is a tree interface which deals

with all of the details of joining and staying in a particular tree. (Note that a node may be

in multiple trees.)
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Chapter 3

Analysis

3.1 Optimality

We consider optimality of the system on a theoretical level by analyzing worst-case scenarios

and making sure that every bit of uplink capacity will be able to be utilized constructively,

as well as any situations that may be detrimental to either the mesh or a particular node.

Direct calculations are usually impossible, but an analysis of what to look for as well as

simulation results are presented.

A few cases will be considered. The first is a big problem that will undoubtedly dog any

system that does not use a global algorithm for overlay configuration. If the source can only

send to one other peer, and a node joins under it that can't send to any more peers, then

the system still works fine. However if another node wants to join in, it can't, even if it can

redistribute the stream to more nodes. In order to solve this problem, some sort of algorithm

needs to be devised in order to drop a "bad" node in order to let a "good" one join. The

case that I described here is simple, but much more complex cases can arise that would be

much harder to detect. Such an algorithm is beyond the scope of this thesis.
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Another problem that needs to be analyzed is whether it is needed to move nodes around

throughout the lifetime of the tree. For example, if a high-uplink node joins somewhere

far down the tree, should it be propagated up the tree to reside closer to the source? The

answer is not straightforward. If a node has many children, then whatever ill effects occur

on the node will also occur on the children. As such, we want to take one of two approaches:

either minimize the number of children, or minimize the chances of failure. To minimize the

number of children, the node needs to be further down in the tree, to minimize the chances

of failure, it needs to be further up in the tree. My conclusion on the issue is that it should

be moved up in the tree, since a node with a large number of children is more likely to be a

node on a stable connection, and thus is unlikely to fail on its own. Furthermore, it makes

sense to have a tree with higher fanout towards the top than towards the bottom since that

minimizes latency to the "last" node in the tree due to decreased height.

Upon node failure in a single tree, the node must rejoin into the tree. The time that it

takes to rejoin is determined by the length of time that it takes to detect the disconnect,

as well as the time to find a new node to connect under. The former is governed by imple-

mentation details while the latter is governed by the general algorithm. Finding a new node

to connect to depends on the length of time that it takes to consider a node, as well as the

probability that a node will be suitable. Also, due to the algorithm that tries to find the

lowest RTT node, the depth of the tree is a contributing factor.

A contributing factor to the probability of being able to join under a node is the frequency

of leech nodes, i.e. nodes that can not redistribute the stream. In general, it is beneficial to
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the tree for these nodes to be as far down as possible. The closer a node is to the source, the

lower the chances of a break in the tree from that node's perspective. As such, it is best for

nodes that are closer to the tree to have more children, since a break above a node results

in failures in all of its subtrees. (Of course, the more children there are, the more nodes will

be effected by a failure.)

3.2 Reliability

Reliability in the system is determined by the time it takes to reconfigure the tree after nodes

drop out, either gracefully (e.g. application exit) or ungracefully (e.g. network failure). The

resulting tree should still exhibit the desired qualities outlined in the previous section.

Furthermore, the reliability of the system is measured by how often (if ever) data is

dropped from nodes or even entire subtrees. This can occur if a node takes too long to rejoin

a tree and the buffer is gone. Along the same line, we can measure the average fullness of

the buffer. If the buffer ever gets low, then that means that we were almost ready to reach

the buffer frontier which leads to pauses in playback. While this is not fatal (i.e. no data

loss), it is undesirable to the user.

To consider reliability from a node's point of view, there are two causes for drops in

buffer levels. First, a parent in a tree dying will cause that tree to not receive data, and

second parents of parents in a tree may be dying and causing data from those trees to not

be propagated down. In actuality, the two are rather similar, since the effect on data flow

from the tree is the same - there is no data. With multiple failures, be it multiple nodes in
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a single tree, or multiple trees, or both, this effect can be compounded.

If the system is operating at full capacity all the time (i.e. all the links are saturated),

then multiple failures will have adverse effect on the integrity of the data, i.e. packets will be

dropped. However if there is residual bandwidth, then upon recovering from a single failure

all the data that was missed will be recovered and immediately propagated down the tree at

a faster rate than the one it would normally arrive at.

3.3 Method

Two different modes of testing can be used. The coarser one is a framework that allows

spawning and control of nodes along with a visualization of the overlay. Every node reports

to a central visualizer, which can then in turn either spawn more nodes or kill any particular

node. This allows a very simple view of the behavior of the join algorithm, as well as of

the multi-tree dynamics. Unfortunately the nodes are usually running on a small number of

computers, which are in turn interconnected by high-bandwidth links. This scenario is very

far from the real-world one in terms of RTT and bandwidth variation.

Despite its lack of ability to approximate real-world scenarios, this framework has proved

to be quite useful. First, it allows one to analyze join/reconfiguration dynamics visually, and

directly in result to external stimuli such as killing a node. Further than showing the proof

of concept, it allows us to test the system easily by leaving nodes running for a long time

and seeing if anything "bad" happens (node failure due to code or algorithm errors, other

effects of long-term use). This proved an invaluable debugging tool in the early stages.
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The improved framework is one where, in addition to the capabilities of the previous

framework, we can also easily control the link properties between any two nodes, in terms of

both RTT and bandwidth capacity. Specifying each one of these manually is rather tedious,

but it is possible to automatically assign them under some realistic real-world distribution.

This allows us to provide an arbitrarily accurate representation of real-world use. We can

have nodes that are constrained, e.g. home users as well as unconstrained nodes, such as

infrastructure nodes or well-connected users.

The final question is what sorts of distributions of RTT and bandwidth should be used.

One way to do this is to place nodes randomly onto a Cartesian plane, and determine

RTT based on the distance between them. The trees built by the VidTorrent join algorithm

should be spatially related, in that we should ideally see a minimum spanning tree of the fully

connected graph of nodes with weights proportional to the RTT (assuming no bandwidth

restrictions). However due to a current lack of a balancing infrastructure, the tree will be

heavily influenced by join order. We can also demonstrate clustering effects by creating a

distribution of nodes on the plane with pre-determined "hot spots" around which nodes are

created. This should lead to a tree with very few connections between the hot spots.

Further, once this framework is developed, we still need to determine the health of the

system, not only the connections made during steady-state operation. A number of factors

affect reliability, as described above, and these all need to be evaluated. Changes in these

values also needs to be assessed in response to various changes to the system.

The nodes must be randomly placed on a 2D plane, as detailed earlier in this chapter, and
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information from them was collected every second. Since we use TCP for all transmission,

inserting link losses does not affect the integrity of the transmissions, but is equivalent to

having a higher RTT/lower bandwidth. The RTT can determined by the Cartesian distance

between the nodes. Constraining the bandwidth is also an interesting effect, though it is quite

tricky to implement. Constraining the RTT is almost equivalent to adjusting bandwidth for

most settings, since even though a packet may travel at an arbitrary rate, you can only send

packets so big and so often. The resulting simulated network has the property that data

comes in bursts, instead of at a steady rate as would happen in a bandwidth-constrained

system.

The number of children, as well as the fullness of the buffers should be collected for each

tree from each VidTorrent node. The number of children allows us to measure the average

out-degree, while the fullness of the buffer allows us to monitor recovery effects. Furthermore,

the settled topology of the constructed trees is recorded and analyzed for problems. At each

node we can also compare the difference in overall delays for each tree that the node is in.

This difference is what determines the buffer length that the sequencer has to maintain in

order to be able to reassemble the stream without dropping any packets.

3.4 Last-hop IP Multicast

While this system purely relies on unicast IP infrastructure, it would be a nice addition to

add IP multicast for last-hop distribution. This would allow just one node on any native

multicast enabled network to be in the VidTorrent tree, while the rest of the local nodes
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would receive data over multicast from the it. This in turn presents problems in data transfer

reliability which are beyond the scope of this thesis. This problem is nicely addressed in

Dimitris Vyzovitis's Masters thesis[1]. The advantage of using this technique is that the

local nodes do not need to know anything about VidTorrent, and that using native multicast

is much more efficient than sending individual unicast streams.
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Chapter 4

Conclusion

This thesis set out to explore some of the ways in which we can perform application-layer

single-source multicast for live stream distribution, subject to many of the real-world con-

straints of the Internet. In particular, care was taken to not rely on inexistent technology

(such as MDCs), or in fact, on any particular method of encoding. This system remains

content-agnostic, but is still able to take advantage of diversity through splitting of the

stream.

In relation to these, the problems of implementation were discussed and analyzed, and a

testing framework was proposed. Furthermore, an implicit argument was made throughout

the paper that the system can scale arbitrarily, and as long as constraints are met, anyone

is able to use it to distribute live content at minimal cost.
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