
SoftECC : A System for Software Memory

Integrity Checking

by

Dave Dopson

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degrees of

Bachelor of Science in Computer Science and Electrical Engineering

and

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Sept 2005

© Dave Dopson, MMV. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.

CL_
Author

Department of Electric ngineering and Comput Science
n yS 3, 2005

C ertified by.....................
Frans Kaashoek

Professor
Supervisor

A ccepted by

Arthur C. Smith
Chairman, Department Committee on Graduate Sjjyj ets

MASSACHUSETTS INSTETUTE
OF TECHNOLOGY

AiOF 4 ARCHNES

r

F'

SoftECC : A System for Software Memory Integrity

Checking

by

Dave Dopson

Submitted to the Department of Electrical Engineering and Computer Science
on Sept 3, 2005, in partial fulfillment of the

requirements for the degrees of
Bachelor of Science in Computer Science and Electrical Engineering

and

Master of Engineering in Electrical Engineering and Computer Science

Abstract

SoftECC is software memory integrity checking agent. SoftECC repeatedly com-

putes page-level checksums as an efficient means to verify that a page's contents have

not changed. Memory errors that occur between two checksum computations will

cause the two checksum values to disagree. Legitimate memory writes also cause a

change in checksum value, so a page can only be protected during periods of time

when it is not being written to. Preliminary measurements with an implementation of

SoftECC in the JOS kernel on the x86 architecture show that SoftECC can halve

the number of undetectable soft errors using minimal compute time.

Thesis Supervisor: Frans Kaashoek
Title: Professor

2

Acknowledgments

I would like to thank Frans Kaashoek for overseeing this project and providing ex-

tensive feedback on my writing. I would also like to thank him for allowing me to

undertake this research in the first place and ensuring I always had the resources

necessary to complete my work.

I also owe a great debt of gratitude to Chris Lesniewski-Laas for conceiving the

original project idea and providing me with many hours of fruitful discussion.

The completion of this project happened to coincide quite poorly with the date for

my move from Boston to Seattle. Without Mayra's invaluable assistance in packing,

I would have had to choose between my belongings and my thesis.

Finally, I would like to thank my parents. Without their continual support and

encouragement, I would never have made it this far.

3

Contents

1 Introduction

1.1 Approach .

1.2 Vulnerability .

1.3 Contribution. .

1.4 Rest of Thesis .

2 Background and Related Work

2.1 Types of Memory Errors .

2.2 ECC memory: the hardware solution

2.3 Software Solutions .

3 Design

3.1 State Transitions . . .

3.2 The Trapwrite State.

3.3 The Trapall State

3.4 Design Alternatives

3.4.1 The Checksum

18

. 19

. 2 0

. .. 2 1

. 2 1

Q ueue . 21

4

9

10

11

12

13

14

14

15

16

3.4.2 Linux: Swapfile of a modified ramfs partition2

4 Implementation

4.1 Implementing Page State Transitions

4.1.1 Read and Write Trap Handlers

4.2 The JOSkern VMM extensions

4.2.1 Trapping Memory Access on x86

4.2.2 Checking for Prior Memory Access

4.3 Checksums

4.4 Redundancy for Error Correction

4.4.1 Full Memory Copy

4.4.2 Striped Hamming Code

4.4.3 Hard Disk Storage

5 Evaluation

5.1 Testing Methodology

5.2 Benchmarks

5.2.1 Sequential Writes . . .

5.2.2 Random Word Writes

5.2.3 Random Page Writes

5.2.4 Memory Traces

6 Summary

6.1 Conclusions .

5

23

. 23

. 25

. 27

. 28

. 30on x86

32

34

36

36

37

38

38

40

41

43

44

45

49

49

22

6.2 Future W ork . 49

6

List of Figures

3-1 Properties of the three page states . 19

4-1 Computational cost of various checksum implementations (2.4Ghz AMD

O pteron 150) . 35

5-1 Checking performance for sequential writes 43

5-2 Checking performance for sequential writes using the unoptimized check-

sum computation . 43

5-3 Checking performance for random word writes 44

5-4 Checking performance for random page writes 45

5-5 SPEC CPU2000 Benchmarks Represented In Memory Traces 46

5-6 Memory Trace Statistics . 47

5-7 Checking performance while replaying a 1M entry trace of bzip 47

5-8 Checking performance while replaying a 1M entry trace of gcc 47

5-9 Checking performance while replaying a IM entry trace of swim . . . 48

5-10 Checking performance while replaying a 1M entry trace of sixpack . . 48

7

List of Tables

8

Chapter 1

Introduction

Failing, damaged, or improperly clocked memory can introduce bit errors leading to

crashes, freeze-ups, or even data corruption. Even correctly functioning DRAM cells

are subject to cosmic rays that can induce transient, or soft errors. Because there are

many possible causes of system instability, these problems are notoriously hard to di-

agnose. This thesis describes SoftECC, a software memory testing solution designed

to detect and diagnose memory induced stability problems quickly and automatically.

SoftECC's goal is to protect against soft errors in memory without modifying

existing applications. As a kernel-level extension to the virtual memory system,

SoftECC uses the CPU's page-level access permissions to intercept reads and writes

before they occur and repeatedly compute page-level checksums. Using the check-

sums, SoftECC verifies that a page's contents are the same at two different points in

time. A memory error that happens between two checksum computations will cause

the two checksum values to disagree. Legitimate memory writes will also cause a

change in checksum value, so a page can only be protected during periods of time

when it is not being written to.

9

1.1 Approach

Every pair of consecutive checksums creates an interval of time. At the end of each

inter-checksum interval, SoftECC can tell three things: if a read has happened, if

the page's contents changed, and if there was a legitimate write. SoftECC cannot

directly detect errors; however, a page change without a legitimate write implies that

an error has occurred. Since writes also imply changes to the page contents, errors

are not detectable during inter-checksum intervals containing a legitimate write.

Consider a single page, P. There are four events of interest that can happen to

P: reads (R), writes (W), checksums (C), and errors (E). The order in which the

occur will determine what assurances SoftECC can provide about memory integrity.

Consider the following possibilities:

Vulnerable Interval: C... W... R... W... R...C

Detection Interval: C... R...R ... R... R...C

Protection Interval: C...................C

An inter-checksum interval with a legitimate write is a "vulnerable interval," as

any errors that occur will go undetected. Two checksum events surrounding a period

of time deviod of writes create a "detection interval," a period of time during

which any memory errors that occur will be detected. Any inter-checksum interval

with neither reads nor writes is called a "protection interval," because SoftECC

guarantees that any errors that occur on page P during this time will be detected

before the user application has a chance to access invalid data. Furthermore, if

SoftECC has stored redundancy information for page P, the error is can be corrected,

allowing the user application to continue running.

SoftECC creates detection intervals inside larger inter-write intervals. To

detect errors during an inter-write interval, SoftECC must calculate a first checksum

at the beginning of the interval, and a second checksum before the end of the inter-

val. Because of the cost of these checksums, not all inter-write intervals are worth

10

protecting. SoftECC tries to use checksums to create detection intervals inside the

largest inter-write intervals.

Similarly, because SoftECC cannot verify the integrity of reads that occur during

the same inter-checksum interval as an error, protection intervals can only be

created inside larger inter-read intervals. To reduce an application's vulnerability

to uncorrectable soft errors, SoftECC tries to use checksums to create protection

intervals inside the largest inter-read intervals.

1.2 Vulnerability

A page is vulnerable to undetected soft errors during any vulnerable interval (any

inter-checksum interval containing a write).

For an application, "vulnerability" is defined to be the average number of vul-

nerable pages (its "exposure size") multiplied by the length of real world time that

the computation is running (the "exposure time"). The units of vulnerability are

page-seconds. Vulnerability multiplied by the error density (errors / page / second)

yields the expected number of errors that will occur during a computation (which,

given that it is a very small number, should be very close to the probability of any

errors occurring).

During idle-CPU time, SoftECC lowers an application's vulnerability by check-

summing pages to reduce the application's exposure size. When the CPU is not idle,

SoftECC can lower soft error vulnerability by reducing an application's exposure

size at the cost of increasing the exposure time.

Creating a detection interval of length tdet reduces a computation's exposure

size by one page during that interval, decreasing vulnerability by tdet *1 page-seconds.

However, any time a page checksum is computed, the user application's execution is

put on hold, increasing the application's exposure time by one "checksum time

unit" (tchk). Thus, the two checksum operations needed to create a detection

11

interval increase vulnerability by tchk * nvuin (t 1) + tchk * nvrnn (t 2) page-seconds, where

nvuin(t) is the number of vulnerable pages at time t. Note that a decision to checksum

a particular interval decreases nvuin by 1 for all checksums during that interval, and

lengthens any encompassing intervals by 2 * tchk.

An omniscient checksumming agent would achieve the minimum possible vul-

nerability by checksumming any inter-write interval where the length of the interval

outweighs the cost of the checksum operations (tdet > tchk * nvuin (ti) + tchk * nvuin (t 2)).

A realtime checksumming agent, like SoftECC, will perform worse than the omni-

scient case because SoftECC cannot accurately predict how long until a page will

next be written (tnext).

At any point in time SoftECC can spend one checksum to speculatively begin a

detection interval worth tnext *1. However, if SoftECC is unlucky and checksums a

page shortly preceding an impending write, then the cost of the checksum operations

will exceed the value of the detection interval for a net increase in vulnerability. If

SoftECC is particularly unlucky, the cost of the second checksum alone will exceed

the value of the detection interval. In this case, SoftECC should allow the write

to proceed without checking, giving up the first checksum operation as a sunk cost.

In order to avoid checksumming a page that will soon be written to, SoftECC

waits to calculate the first checksum until the page has not been written for a period

of time. This reduces the chances of wasting time checksumming a page that is about

to be written, but it also prevents SoftECC from ever detecting over the entire

inter-write interval.

1.3 Contribution

The main contribution of this thesis is a demonstration of the feasibility of software

based memory integrity checking. More specifically, this thesis contributes a sim-

ple but effective algorithm for verifying memory integrity, significantly reducing the

12

chances of receiving undetectable and uncorrectable memory errors. This thesis also

contributes an implementation of memory integrity checking in the JOS kernel and

an experimental evaluation of the performance characteristics of this implementa-

tion. Finally, this thesis contributes suggestions for future work that would allow

100% detection performance and increased error recovery capability.

1.4 Rest of Thesis

The remainder of this thesis is structured as follows. Section 3 describes the design of

SoftECC . Section 4 details the implementation of SoftECC as an extension to the

JOS kernel. In section 5 we evaluate the performance characteristics of SoftECC

as it protects several different user-mode access-patterns. Section ?? provides an

argument for the utility of SoftECC on desktop systems and outlines a method for

achieving 100% protection. We conclude in section 6 and provide suggestions for

future work.

13

Chapter 2

Background and Related Work

2.1 Types of Memory Errors

There are several common causes of memory errors, each with different characteristics.

Hard Errors are caused by physical damage to the underlying DRAM circuitry.

Typically they will affect a particular pattern of memory addresses correspond-

ing to a damaged cell, line, or chip. While many types of errors are easily

reproducible and will be caught by BIOS memory tests, there are more insid-

ious patterns. For example, if the insulation partially breaks down between

several cells, writing to the cells nearby can alter the middle cell's voltage suffi-

ciently to induce a bit flip error. Such errors are pattern dependent and difficult

to find. Compounding this difficulty, such problems may occur only when the

affected memory chip heats up, or may occur only part of the time.

Soft Errors occur when the charge storage representing a bit is sufficiently disturbed

to change that bit's value. As process technology advances, both the capacitance

and voltage used to store information are decreasing, reducing the "critical

charge" necessary to induce a single bit error (9].

Cosmic Radiation is a form of soft error that occurs when random high energy

14

particles (mostly neutrons) impact DRAM cells, disrupting their charge storage.

According to Corsair, these single bit errors can happen as often as once a

month [6]. And computers in high altitude cities such as Denver face up to 10x

the risk of computers operating at sea level [8].

Package Radio-isotope Decay can lead to memory errors when trace quantities

of radioactive contaminants present in chip packaging decay, emitting alpha

particles. There was a particularly infamous problem in 1987 when Po21O from a

faulty bottle cleaning machine contaminated an IBM fab producing LSI memory

modules. Affected memory chips suffered over 20 times the soft error rate of

chips produced at other fabs, leading to a large scale hunt for the contaminant

source [7].

Configuration / Protocol Errors on a motherboard can cause problems as well.

In theory, a DRAM module should perform reliably if the motherboard follows

the module's specified timings 1. However, with so many DRAM and moth-

erboard manufacturers in the marketplace, the potential for incompatibility is

great. For example, if the motherboard supplies the DRAM with a lower than

specified voltage, the memory will perform slower than it would with its rated

voltage. Also, each memory module adds parasitic capacitance to the memory

bus. These issues can be a problem for cheap memory modules, which barely

meet their specification.

2.2 ECC memory: the hardware solution

The problem of DRAM cell reliability is not a new one, and for years manufacturers

have been making ECC-DRAM for servers and other machines where reliability is

at a premium. ECC-DRAM effectively and transparently protects against single bit

DRAM errors and provides detection (without correction) for double bit errors.

'For current generation memories, this information is stored on the module's EEPROM Serial
Presence Detect Chip.

15

However, ECC-DRAM requires 13% more memory cells per bit (72 cells per 64

bits), and is produced in lower volumes than normal DRAM, both of which increase its

price. Although memory pricing is volatile and inconsistent, it would be reasonable to

estimate a 33% price premium for ECC-DRAM over comparable non-ECC-DRAM.2

Thus, while many "high-end" servers use ECC DRAM, most users are rarely even

aware of the various memory options and almost never choose to pay the price pre-

mium for ECC-DRAM.

No software solution can improve upon the efficacy of hardware ECC at consis-

tency checking DRAM for single bit errors; however with the vast majority of com-

puting devices using non-ECC memory, there is a large space for solutions aiming to

close the reliability gap between normal DRAM and ECC-DRAM.

2.3 Software Solutions

One software memory testing solution is the Memtest86 utility, which runs an ex-

tensive battery of memory test patterns to expose subtle, infrequent, and pattern

dependent memory errors missed by power-on BIOS testing [2]. Memtest86 has its

own kernel and runs in real mode, requiring a reboot. Because Memtest86 tests can

only be performed offline, few users test their memory unless they have reason to

suspect it is failing. Furthermore, because it cannot test memory while it is in use,

Memtest86 provides no protection against soft errors.

In 2000 Rick van Rein noticed that many memory modules that failed a memtest

would fail consistently in the same location [1]. He then wrote a Linux kernel patch

called BadRAM that allocates to itself the regions of physical memory known to have

problems, preventing faulty DRAM cells from being allocated to user tasks. BadRAM

relies on the user to run memtest86 manually to calculate the BadRAM configuration

string (passed as a kernel parameter).
2As of 1/12/05 on Newegg.com: the price range for 1GB of PC3200 DDR DRAM was $155-$275

versus $200-$408 for ECC-DDR. DRAM.

16

BadRAM is a good approach for isolating hardware faults from the software level.

In any system with hardware failure, there will be a delay before a sufficiently com-

petent user or administrator can purchase and install new hardware. Software fault

isolation can keep the system up and running while corrective action is taken, allowing

hardware to fail-in-place.

17

Chapter 3

Design

SoftECC is a software solution for detecting and correcting soft errors in physical

memory. As a kernel-level extension to the virtual memory system, SoftECC's

operation is transparent to user processes. SoftECC defines three page states based

on their memory access policies and the status of their stored checksum:

Hot: Pages that have been written since the last checksum occurred, and thus do not

have a valid checksum stored. User-mode writes and reads proceed normally. If

all memory pages are left hot, then SoftECC is effectively turned off. Errors

that occur while a page is hot will not be detected.

Trapwrite: Pages that are read-only, and have a valid checksum of their contents

stored so that they can be checked for memory errors. Trapwrite pages might

also have valid redundancy information stored. Writes to trapwrite pages must

be trapped, so that the page can be checked before the write occurs. Reads can

proceed without interruption. In order to minimize the latency of detection,

trapwrite pages should be periodically checked for errors.

Trapall: Pages that allow no access, trapping both reads and writes. Because no

access is possible, trapall pages need not be periodically checksummed.

18

The table in figure 3-1 shows an overview of the properties of the three page states,

which are discussed in more detail in the next few sections.

Hot I Trapwrite I Trapall
Valid Checksum no yes yes

Valid Redundancy no maybe yes
Writes poll trap trap
Reads poll poll trap

Vulnerable yes no no
Detection no yes yes
Protection no maybe yes

Figure 3-1: Properties of the three page states

3.1 State Transitions

In order to keep SoftECC's operation transparent to the user program, the transi-

tions from trapall to trapwrite to hot must be triggered automatically whenever

the user program attempts an access operation not allowed by the current state of

the page accessed. In other words, writes to any page force it to transition to the hot

state, and reads to a trapall page force it to transition to trapwrite. There are no

automatic transitions from hot to trapwrite to trapall, and without intervention

from SoftECC, pages would stay hot forever.

The principle of temporal locality says that memory accesses to a particular region

tend to be highly clustered in time. In other words, pages that have been accessed

recently are likely to be accessed soon and pages that have not been accessed recently

are less likely to be accessed soon. Therefor, it makes sense to checksum the hot

pages that have gone the longest since being written, and the trapwrite pages that

have gone the longest since being read.

SoftECC's policy with respect with respect to trapwrite pages is slightly dif-

ferent. In order to minimize the latency of detection, trapwrite pages should be

checked periodically even if they are still being accessed. However, it is not useful to

19

continually check pages that are not being accessed. If a trapwrite page becomes

old enough to be checked again and it has not been accessed, then it will be promoted

to trapall, stalling its checksum until just before the next pending access.

3.2 The Trapwrite State

The trapwrite state is for pages that are not expected to be written soon, but might

be read. In order to determine if reads are occurring, SoftECC periodically checks

whether reads have occurred since the last time it checked. If reads don't happen

within a certain period of time, SoftECC will assume that the page has stopped

being read and might not be read for a while. When reads stop occurring on a

trapwrite page, SoftECC promotes it to trapall, checksumming it first if reads

have occurred since the last checksum.

Even if a trapwrite page is still being read and can't be promoted to trapall,

it should still be periodically checksummed. This decision will validate all the reads

that have occurred since the last checksum and prevent any errors that have occurred

from affecting future reads.

If both reads and an error have occurred since the last checksum, the program

state is highly suspect. Even if the page has stored redundancy information allowing

the error to be corrected, the application may have already accessed incorrect data

and propagating the error to another location. For this reason, the application should

be terminated or reset as gracefully as possible. This may require allowing the ap-

plication to run with its questionable state just long enough to save any (hopefully

intact) user data to disk. A more ambitious approach to error recovery is described

in section 6.2.

20

3.3 The Trapall State

The trapall state is for pages that are not expected to be read or written soon.

While a page is in the trapall state, any errors that occur are guaranteed to be

detected before they are used. Thus, if these errors are corrected, the user application

can continue running. For this reason, trapall pages store redundancy information.

Redundancy information remains valid until the next write and thus, only needs to

be computed during the first trapall promotion after each write.

The trapall state is also important for performance reasons. On a machine with

1GB of memory, there are a quarter-million physical pages. At any point in time, only

a very small fraction of these pages will be in active use. Many of these pages will be

used to speculatively cache disk blocks that may never be used. If SoftECC had to

divide its page checking efforts between all physical pages, there would not be very

much compute time to spend on any single page and the level of protection offered

would be substantially lower. Instead, the vast majority of pages can be quickly

promoted to trapall status, allowing SoftECC to concentrate its checksumming

efforts on the pages that drift in and out of active use.

3.4 Design Alternatives

3.4.1 The Checksum Queue

Originally, SoftECC had a fourth state called checksum that would check for writes

periodically rather than trapping them. The goal of the checksum state was to avoid

trapping writes to pages that had been checksummed so recently that computing a

second checksum was not worthwhile. After each checksum, a page would spend a

short while in the checksum queue before being promoted to trapwrite (unless a

write was detected).

However, the goal of avoiding not-worthwhile second checksum calculations can

21

also be accomplished by the trapwrite state by simply not checking pages that trap

early writes. While this method still requires a trap, on a 2.4Ghz Opteron system,

checksum computations take 1020ns while traps are under 100ns. Thus, the main

cost of trapping a write is the checksum computation, not the actual trap. Because

early writes should be rare, it is not clear that marginal benefit of avoiding a rare

trap even exceeds the marginal overhead of managing a third page queue.

3.4.2 Linux: Swapfile of a modified ramfs partition

One possibility under consideration for achieving memory integrity checking on Linux

was to design a modified version of the ramfs filesystem with integrity checking. Ramfs

is a simpler version of tmpfs, a special combination block-device/filesystem that stores

its contents to virtual memory rather than to a block device. Ramfs is designed to

utilize only physical memory and does not support swapping to disk.

The idea was to use a ramfs partition to store a swapfile. The benefit of this

approach is that Linux's own memory management system would swap out the least

active pages to the modified ramfs disk where they would be checked for integrity.

This approach would not test the design of SoftECC in full detail, but would be

a means to enable memory protection on a Linux system without having to modify

the kernel's memory management system.

Unfortunately, this solution was simply impossible. Linux refuses to use a swapfile

stored on either a ramfs or tmpfs partition. This limitation is most likely due to an

internal conflict arising from the tight integration of ramfs with the virtual memory

system.

22

Chapter 4

Implementation

The JOS kernel was developed to be used as a teaching aid for MIT's Operating

Systems class, 6.828. It was designed with simplicity and extensibility in mind, and

after being used in the classroom for several years, it is now mature and thoroughly

tested. In short it is a ready made platform for testing new operating systems ideas

without having to deal with the complexity of a kernel intended for widespread use.

The rest of this chapter describes the modifications SoftECC makes to the JOS

kernel.

4.1 Implementing Page State Transitions

SoftECC maintains a queue of pages that are waiting to have a periodic action

performed. At each timer interrupt (in JOS, this happens 100 times per second),

SoftECC runs for a while, processing the page queue and checksumming pages. The

length of time that SoftECC consumes is carefully chosen in order to keep CPU-

usage at its target value (see listing 4.1). Each time a page makes its way to the head

of the queue, SoftECC considers the page (see listing 4.2), taking any necessary

actions, and inserting the page back into the tail of the queue.

When a hot page reaches the head of the queue, SoftECC uses the DIRTY bits

23

to check whether the page has been written since the last time it was inserted into the

queue (see section 4.2.2). If the page hasn't been written to, then SoftECC assumes

that the user process has stopped writing to the page and promotes it to trapwrite.

Otherwise, the page is shuffled to the back of the queue to be checked again later.

When a trapwrite page reaches the head of the queue, SoftECC checks whether

the page has been read since the last queue insertion. If it hasn't been read since it

was inserted into the queue, SoftECC assumes that the user program has stopped

reading the page and promotes it to trapall. Otherwise, SoftECC shuffles the page

to the back of the queue, checking whether the page if its checksum age exceeds the

threshold.

Listing 4.1: The Periodic Function

int softecc-cpu-load ; // target %CPU load
int32-t softecc-time-left ; // unused CPU time belonging to SoftECC
uint32-t softecc.-time-last ; /7 the last time SoftECC was run

void on -periodic (void)
{

uint32_t time-start = gettime (;
uint32_t time-elapsed = (time-start - softecc-time-last);
softecc-time-left += time-elapsed * softecc-cpu-percent / 10);
uint32_t time-done = time-start + softecc-time-left;

while(get _time () < time-done) {
consider-queue-head (; // do some work

}

softecc-time-left -= get-time() - time-start /7 may be negative
softecc-time-last = time-start ; 7/ record this start time fo- next run

}

void on.idle (void)
{

consider-queue-head (); // do some work
sys-yield (;

}

24

Listing 4.2: The Consider Function

PageQueue page-queue;

void consider(struct Page* pp)

{
struct Page *pp = remove-head(page..queue);

switch (pp->state) {
case HOT:

if(check-dirty(pp)) {
// Move to the back of the line
page-queue. insert-tail (pp);

} else {
// Promote to Trapwrite status
set-checksum (pp);
pp->state = TRAPWRITE;
page-queue. insert-tail(pp);

}
break;

case TRAPWRITE:
if(check-access(pp)) {

/// Do I renew the checksum to minimize checksum-age?
if (checksum-age (pp) > param-max-checksum-age) {
check.page(pp);

}
// Move to the back of the line
page-queue. insert-tail (pp);

} else {
// Promote to TrapAll status
if(pp->flags & ACCESS) {
check-page(pp);

I
pp->state = TRAPALL;

}
break;

case TIRAPALL:
shrink-redundancy-information (pp);
page-queue. insert-tail (pp);
break;

}

4.1.1 Read and Write Trap Handlers

If SoftECC traps a write to either a trapwrite or trapall page (see section 4.2.1),

that page must transition to the hot state before the write can occur (see listing 4.3).
25

As discussed in section 1.2, it is not always worthwhile to compute a second checksum.

However, as long as the page's checksum-age and thus, the size of the potential

inter-checksum interval exceeds the threshold, SoftECC will check the page. Next,

SoftECC inserts the page back into the queue so that it will be periodically checked

to determine when the user-mode program is done writing to it. Finally, the time

used to perform these steps must be counted against SoftECC's CPU usage for the

purposes of load throttling (see section 4.1).

Likewise, if SoftECC traps a read to a trapall page, that page must transition to

the trapwrite state before the write can occur. As with writes, the second checksum

is only performed if the value of the potential protection interval exceeds a threshold.

Note that, if the user-mode application issues a write just after the read (which is

common), then the page will fail the threshold test and transition directly to the hot

state for only the cost of the trap.

26

Listing 4.3: Read and write trap handlers

void trap -write(struct Page* pp)

{
time-t time-start = get.time ();

if(checksum-age (pp) >= param.min-detect _threshold () {
check-page (pp);

}
pp->st ate = HOT;
page-queue. insert-tail(pp);

softecc-time-left -= (get-time () - time-start);

}
void trap-read (struct Page* pp)

{
timet timestart = get-time ();

if(checksum-age (pp) >= param _min _protect _threshold) {
check-page (pp);

}
pp->st ate = TRAPWRITE;
page-queue. inserttail (pp);

softecc-time.left -= (get-time () - time-start)
}

4.2 The JOSkern VMM extensions

The JOS kernel VMM is fairly simple, relying primarily on the Pagestructure to

represent physical pages (see listing 4.4). The original Page structure is fairly spartan,

containing only a reference count, and a free list pointer.

SoftECC extends the Pagestructure with five items. Each page needs to store its

current state number and most recent checksum for consistency checking. In order

to implement the page queue (see section 4.1), another link was required as well a

variable to store the time when the page was inserted into the queue (to determine

queue age; see section 4.1). Because trapping accesses to a physical pages requires

modifying all the virtual mappings that point to it, each page has a pointer to a list

27

of virtual mappings (see section 4.2.1). Lastly, SoftECC adds eight bits worth of

flags to the Pagestructure. Two of these will be needed for the special access and

dirty bits (see section 4.2.2).

Listing 4.4: The Page Structure

struct Page {

Page *

uint16-t

uint8-t

checksumt

Page *

uint32-t

Mapping *

uint8-t

struct Mapping

Mapping *

pte-t *

pp-link;

pp-ref ;

/
//

//7
/

//
/

//
//7

state ;

checksum;

queue-link;

queue-time ;

va-map-list

flags ;

free list link

reference count

new:

new:

new:

new:

new:

new:

current page state

stored checksum value

page queue link

time of last queue inse

list of mapped va entri

flags , esp accessed and

{

next _link;

pte ;

//7
//7

linked-list pointer

address of PTE that maps to

4.2.1 Trapping Memory Access on x86

Removing the write (PTEW) and user (PTEU) permission bits from a PTE causes

subsequent user-mode writes and reads to the corresponding virtual page to throw

a page fault which SoftECC can intercept. In order to trap accesses to a physical

page, SoftECC needs to modify all PTE's that map to that page.

Because SoftECC removes the PTEW bit to enable write trapping, it needs to

know the original state of that bit in order to restore the bit during trapped write. In

other words, SoftECC needs a way to distinguish between read-only virtual mappings

to trapwrite (and trapall) physical pages and originally writable virtual mappings

28

-tion

:s

dirty

.Page

to trapwrite pages. Because a physical page can have multiple virtual mappings

with differing permissions, this information must be for each virtual mapping. Be-

cause user-mode pages in JOS always have the PTEU bit set, its original status is

unambiguous.

Intel's x86 architecture defines three PTE bits to be available for operating system

use. Of these, JOS kernel utilizes two, referred to as PTECOW (Copy On Write)

and PTESHARE, and are both used primarily in the implementation of fork. When

a process forks, JOS marks all writable pages as copy on write and clears the PTE-W

bit. When the next user-mode write is trapped, the page is remapped to a copy of the

original, preventing writes from one process becoming visible in the other. However,

pages with the PTESHARE bit enabled are mapped directly by fork so that writes

will be visible to both processes, allowing inter-process communication. This leaves

only one available PTE bit remaining.

SoftECC defines the last remaining PTE bit to be PTEHOW (Heat On Write).

When SoftECC clears the PTEW bit, it stores the original state of that bit to

PTE-HOW, and when trapping a write restores PTEW only if PTEHOW is set.

When a page is trapping writes (the page state is either trapwrite or trapall),

PTE-HOW is a proxy to the "real" value of PTE-W as concerns the rest of the kernel.

Thus, any statement that wants to read PTE-W should instead read the logical "or"

of both PTEW and PTEHOW. Any statement that would have written PTEW

should now write PTEHOW if the underlying page is trapping writes and PTE-W if

not. These changes can also be abstracted by using the accessor methods defined in

listing 4.5. For example, when the original version of fork sets PTE-COW, it clears

PTE-W. Thus fork now clears both PTEW and PTEHOW.

Because JOS is an exokernel design [11], many of the more complicated operating

system features are implemented in user-space and call into sys-page-map to change

permission bits. Thanks to the flexibility of the exokernel design, updating this system

call was sufficient to ensure correctness for the majority of JOS kernel's feature set.

29

Listing 4.5: PTE-HOW Compatible Accessor Methods

bool getPTE.W (pte-t pte)
{

return (pte & PTE.W) | (pte & PTE.HOW)
}
void setPTEW (ptet * pte)

{
struct Page* pp = pte2page (pte);
i f (pp->s t at e == TRAPWRTE

pp->s t a t e == TRAPALL)
*pte PThHOW; // set PTEIHOW

else
* pte PTEW; / set PTE-W

}
void clearPTEW (pte t* pte)

*pte &= PTEW // clear PTKW
*pte &= ~PTEROW; /7 clear PTEIHOW

4.2.2 Checking for Prior Memory Access on x86

To check for prior memory accesses to a page, SoftECC can inspect the accessed

(PTE-A) and dirty (PTED) PTE bits. These bits are set automatically by the CPU

whenever the corresponding virtual page is read from or written to. A physical page

should be considered accessed or dirty if any of the PTE's where it is mapped are

marked accessed or dirty. Periodically polling the accessed and dirty bits does not

allow SoftECC to intercept page access events before they occur; however, polling

avoids the overhead of trapping into kernel space.

There is one additional complication to consider when polling. If one of a page's

virtual mappings is accessed and then unmapped, the corresponding PTE will no

longer be associated with the physical page and thus the accessed and dirty bits will

be lost. This could result in a dirty physical page appearing to be not dirty. For

this reason, whenever a PTE is about to be overwritten, the status of its accessed

and dirty bits needs to be retained. This is accomplished by "or"ing these bits with

special per physical page ACCESS and DIRTY bits (stored in the Page structure; see

listing 4.4).

30

Listing 4.6: Checksum accessor methods

void check -page (struct Page* pp)
{

if(calculate-checksum(pp) != pp->checksum) {
h andle-memory -error (pp);

}
clear-access(pp);
clear-dirty (pp);

7/ Reset ACCESS bits
/7 Reset DIRTY bits

void set-checksum(struct Page* pp)

{
pp->checksum = calculate.checksum(pp);

clear -access (pp); // Reset ACCESS bits

clear-dirty (pp); // Reset DIRTY bits

}

31

}

4.3 Checksums

The simplest and quickest x86 checksum computation is a dword length (32 bit) xor

operation performed over the entire 4k page (see listing 4.7). Effectively, this produces

32 individual parity bits, each one covering a stripe of 1024 bits.

Since each stripe only has single bit parity, some double-bit errors are not de-

tectable; however, this limitation is not a problem. The probability of receiving a

true, instantaneous double bit error'is exceptionally low [7]. And the probability of

receiving two single-bit errors within the same 1024 bit stripe within the same inter-

checksum interval is very low as well. The probability of a double-bit error within a

single stripe during an period of time is the square of the probability of a single-bit

error during the same period of time. Unless the inter-checksum interval extends so

long (multiple years) that the probability of a single-bit error (within a single 1024

bit stripe) rises significantly, double-bit errors will be exceedingly rare, and detection

performance will be well defined by the vulnerability metric (see section 1.2).

Listing 4.7: The Checksum Computation

checksunt calculate-checksum-c (struct Page* pp)
{

// get a pointer to page contents
checksum-t* p = (checksumAt*)page2kva(pp);
checksum-t ret = 0;
int i;
for (i =0; i <1024; i++) {

ret = p[i; / Xor
}

return ret

}

Unfortunately, the default assembly code for checksum calculation generated by

gcc (see listing 4.8) is less than optimal, requiring almost 3000 ns to execute on a

'Actually, double-bit errors in DRAM need not be cause by the exact same event (eg high energy
cosmic neutron). Two single-bit errors within the same refresh cycle (approx 4-64ms, barring earlier
programmatic access) is sufficient.

32

2.4Ghz AMD Opteron 150 system with 1GB of DDR400 memory (see the table in

figure 4-1). The core loop is a single implicit memory load and a trivial xor instruction;

however, each loop iteration executes three instructions for loop control.

Far less obvious, there is a subtle alignment problem with the compiler generated

code (see listing 4.9). The core loop crosses a 16 byte boundary, putting it in a

different two different cache lines. The loader aligns the start of the function to a 16

byte boundary, but the compiler is not smart enough to realize just how important

the alignment of the core loop is. Simply inserting a few nop's before the core loop

improves performance to 2000 ns.

Forcing the compiler to unroll the loop provides considerable benefit (see list-

ing 4.10). The core loop is now 16 instructions, effectively amortizing the overhead

of the loop control instructions. Checksum now runs in 1489 ns.

Utilizing the 128bit packed xor from Intel's MMX intstruction set allows for even

more improvement, bringing execution time to 1058 ns (see listing 4.11). The core

loop is now a scant 8 pxor instructions that do the work of 32 regular xors. With only

8 instructions consuming 128 bytes of data, the calculation is now heavily bound by

memory bandwidth.

Finally, it is possible to optimize the memory access just slightly by interleaving

the instructions to exercise multiple cache lines at once, checksumming an entire page

in just 1024 ns (see listing 4.12).

Listing 4.8: Compiler-generated (gcc -03) assembly code for calculate-checksum
calculate.chccksum:

{...} ; set cdx = p (start of page)
xor %cax, %cax set cax = 0
xor %ccx, %ccx set ccx = 0

loop :
xor (%cdx. % ccx, 4) % cax cax = cax xor32 M.-EDY[cdx + 4*ccx}
inc %ccx increment index
cmnp $1024 , %ccx compare
ji loop loop if ccx < 1024

return eax

33

Listing 4.9: Annotated objdump output for compiler-generated code
080485d0 <calculate-checksum-c >:

----------- 16-BYTE-BOUNDARY -
80485d0: 55 push %ebp
80485d1: 89 e5 mov %csp.%cbp
80485d3: 8b 4d 08 mov 0x8(%ebp),%ecx
80485d6: 31 cO xor %eax,%cax
80485d8: 31 d2 xor %edx,%cdx
80485da: 89 f6 mov %esi.%csi
core-loop-start :
80485dc: 33 04 91 xor (%ccx.%edx ,4) ,%cax
80485df: 42 inc %edx
-------- --------- 16-BYTE-BOUNDARY- - --
80485c0: 81 fa ff 03 00 00 cmp $Ox3ff,%edx
80485e6: 7c f4 jIe 80485dc <core-loop-start>
80485c8: c9 leave
80485c9: c3 ret

Listing 4.10: Loop-unrolled (gcc -03 -funroll-loops) assembly code for calcu-
late-checksum

calculate- checksum
{ ... }I ; set edx = p (start of page)
xor %cax, %cax set cax = 0
xor %ccx, %ccx set ccx = 0

loop:
xor OxOO(%edx, %ecx, 4), %eax cax = cax xor32 MEM[edx + 4*ccx + 0]
xor 0x04(%edx, %ecx, 4), %eax cax = cax xor32 MEM[edx + 4*ccx + 41

xor Ox3c(%edx, %ccx, 4), %eax cax = cax xor32 IVIEMI[edx + 4*ecx + 60]
addl $Ox10, %ccx increment index
cmp $1024 . %ccx compare
j] loop loop if ccx < 1024
{ ... ; return eax

Listing 4.11: MMX Loop-unrolled assembly code for calculate-checksum
calculate-checksum

{...}I ; set cdx = p (start of page)
pxor %xrml. %xmm; set xmml = 0
xor %ccx %ccx set ccx = 0

loop:
pxor OxOO(%cdx, %ecx), %xmm1 xmml = xmml xor128 NMMI~edx + ccx + 0]
pxor OxiO(%edx, %ccx), %xmm ; xmml = xmml xor128 MEvIMedx + ccx + 16]

pxor 0x70(%cdx, %ccx), %xmml xmml = xmml xor128 MvEMvI[edx + ccx + 112]
addl $0x80 %ecx increment index
cmp $4096 %.ccx compare
jIe loop loop if ccx < 4096

subl $OxO.%csp allocate 128bits of stack space
movdqu %xmml,(%csp) and store xmml
xor %cax,%eax cax = 0
xor 0x00(%csp),%cax eax = cax xor xmml[0:31]
xor 0x04(%csp).%cax cax = eax xor xmml[32:63]
xor 0x08(%csp),%cax cax = eax xor xmml[64:95]
xor OxOc(%esp),%cax cax = eax xor xmml[96:127]
addl $OxlO.%csp : release stack space

... } return cax

4.4 Redundancy for Error Correction

To enable error correction, enough redundant information must be stored about the

contents of a page that the location of a single-bit error is determinable. There are

at least three options, each with various advantages:

34

Listing 4.12: Interleaved MMX Loop-unrolled assembly code for calculate-checksum
calculate-checksum:

{...} II ; set edx p (start of page)
pxor %xmml, %xmm; set xmml = 0
xor %ecx, %ccx set ccx = 0

loop:
pxor 0x00(%cdx, %ecx), %xmml xmml = xmml xor128 MEMIedx + ecx + 0]
pxor 0x40(%edx. %ecx), %xmml xmml = xmml xor128 MEM edx + ecx + 64]
pxor 0x10(%edx, %ecx), %xmml xmml = xmml xor128 ME[edx + ecx + 16]
pxor 0x50(%edx, %ecx), %xmml xmml = xmml xor128 MEMI[cdx + ccx + 80]
pxor 0x20(%cdx, %ecx), %xmml xmml = xmml xor128 MEWIe edx + ecx + 32]
pxor 0x60(%edx, %ecx), %xmml xmml = xmml xor128 VEMI edx + ecx + 96]
pxor 0x30(%edx, %ecx), %xmml xmml = xmml xor128 MEM[edx + ccx + 48]
pxor 0x70(%cdx, %ecx), %xmml xmml = xmml xor128 MEM[edx + ecx + 112]
addl $0x80, %ccx increment index
cmp $4096. %ccx compare
jIc loop loop if ccx < 4096

cax = xor(xmml[0:311, xmml[32:63], xmml[64:95] xmml[96: 27]
return cax

Figure 4-1: Computational cost of various checksum implementations (2.4Ghz AMD
Opteron 150)

35

Checksum Cost
Plain C 2932 ns

Aligned C 2000 ns
Loop-unrolled 32-bit 1489 ns
Loop-unrolled MMX 1058 ns

Interleaved-unrolled MMX 1024 ns

4.4.1 Full Memory Copy

The simplest redundancy scheme is to allocate a second page, and make a full dupli-

cate copy of the original. The drawback to this approach is poor storage efficiency,

requiring double the physical DRAM. However, this method has a compelling advan-

tage: it is very fast (1694 ns).

Like the normal checksum operation, a memory copy is bounded by the DRAM

bandwidth, except that whereas a checksum condenses the incoming data to a single

dword, a memory copy writes a full page back to DRAM. Because both the checksum

and memcpy operations require reading the same data from memory, calculating

a checksum while performing a memcpy takes no more time than performing the

memcpy alone.

4.4.2 Striped Hamming Code

A hamming code[12] is perhaps the most compelling of the traditional error correcting

coding schemes. Most importantly, it does not require mangling the original data bits.

Also, it is reasonably compact and only moderately computationally expensive.

Hamming coding works by setting the value of every bit occupying a power of two

address in the signal (eg, the 1st bit, 2nd bit, 4th bit, 8th bit... 2 N bit) to be the

xor of all bits whose addresses' binary representations have the Nth bit set. These

bits are the parity bits. The bits not located at power of two addresses are data bits.

Naturally, in the actual implementation, the logical Hamming code signal addresses

will not match the actual addresses of the bits. The data bits will remain in place,

while the parity bits will be stored in an array of redundancy data.

To correct a single-bit error, simply flip the bit at the address that is the sum of

the addresses of all the parity bits that are incorrect. If only one parity bit is incorrect,

the error is that parity bit. In order that errors to the parity bits be detected, the

pages containing parity bits are checksummed by SoftECC in the same manner as

36

normal pages, except that because only SoftECC accesses these pages, they need

not be trapped or polled like normal pages.

4.4.3 Hard Disk Storage

The third redundancy level is to store a duplicate of the page's contents to disk.

This has the advantage of requiring no extra memory storage; however, disk access is

quite slow. Even the fastest hard disks still have access times of several milliseconds,

thousands of times longer than tchk . Not all of this time requires CPU attention, but

the CPU-overhead of disk management will still be greater than for the other two

schemes.

In some cases, hard disk redundancy already exists. The executable images and

the file cache originated from copies on disk. Also, the virtual memory system on

commercial operating systems periodically copies dirty pages to a swapfile in case

they need to be swapped out to make room for other memory uses.

37

Chapter 5

Evaluation

5.1 Testing Methodology

In order to analyze the performance of SoftECC on various workloads, a test harness

was created. SoftECC 's checking was disabled for the test harness, and only the

memory pages for the benchmark applications were included in the results.

The first plan for testing was to introduce errors at random memory locations at

randomized randomized time intervals and count how many were detected. Because

of the cyclical nature of the benchmarks, each page is guaranteed to be accessed at

least once per iteration, so any errors not detected after a complete iteration were

assumed to be missed. Because the results of the user-mode benchmarks are not

of interest, errors need not be corrected as they will not affect the program flow.

Unfortunately this conservative benchmarking strategy was extremely slow, taking

hours to produce a single data point.

An important properties of soft errors are that they are randomly distributed in

both space and time. Put another way, the probability or density of soft errors is

evenly distributed in space and time. Rather than introduce errors one at a time

randomly distributed between the various pages and averaging the results to achieve

a probability, introducing one error in each page would directly measure the instan-

38

taneous probability of detecting a randomly placed error.

Furthermore, the instantaneous probability of error detection or correction can

be measured without actually introducing errors and waiting. Errors that occur on

a page during a vulnerable interval will never be detected. Errors during either

detection or protection intervals will always be detected. Thus the instantaneous

probability of detection is simply the fraction of pages that are currently in a detection

or protection intervals.

Because all hot pages have been written at least once and do not have valid

checksums, hot pages are always in vulnerable intervals. Because they trap reads

and are guaranteed to have been checksummed since the last access, trapall pages

are always in protection intervals. Because they do not trap reads, the correct interval

type of a trapwrite is not known until it is next checksummed. If a trapwrite page

is checksummed without being accessed since its last checksum, then it just completed

a protection interval. Otherwise, it was a detection interval.1

Because pages only change inter-checksum interval status when they are check-

summed, it is possible to do better than randomly sampling the instantaneous prob-

ability of detection. By using the vulnerability metric, the overall probability of

detection for an interval of time can be calculated by monitoring for page checksum

events (see listing 5.1).

While this improved methodology does not provide the same tangibility as intro-

ducing and detecting actual errors, it is not only much much faster; it is also more

accurate, directly measuring the quantities of interest rather than approximating

them through statistical methods.

'If trapwrite pages are accessed while their checksum is still young, then they will transition
to hot without checksumming first, rendering the entire interval vulnerable. This design is fine,
however, because the next checksum will occur when the page is hot, correctly counting the time
the page spent in the trapwrite state as being vulnerable to silent errors.

39

Listing 5.1: Statistics gathering for inter-checksum intervals (at checksum events)

void stats-on-checksum(struct Page* pp)
{

pause-time (;

// Calculate the length of the Inter-Checksum Interval
time-t ICI-duration = get-time() - pp->checksum time;
pp->checksum-time = get-time (;

switch(pp->status) {
case HOT:

// By design hot pages have been written at least once
7/ Thus, this was a vulnerable interval
stats . vuln += ICI-duration;
break;

case TRAPWRITE:
7/ This is the complex one ...
// By design there were no writes , but maybe reads , so

// Check the ACCESS bit (s)
check-access (pp);
if (pp->flags & ACCESS)

stats . detect += ICI-duration;
else

stats . protect += ICI.duration
break;

case TRAPALL:
// By design , there were no reads , no writes:

// Thus, this was a protection interval
stats . protect += ICI-duration;
break;

unpause-time (;

}

5.2 Benchmarks

Perhaps the most important consideration when benchmarking SoftECC is to decide

what user program to execute. The memory access patterns of the user program will

have a far greater impact upon the performance of SoftECC than any other single

factor. Unfortunately, many traditional benchmarks end up as pathological best or

40

worst cases.

For example, many CPU intensive benchmarks have a very small memory footprint

and operate primarily on a single page of stack memory. For a program with such a

small memory footprint, SoftECC would be unable to significantly impact reliability.

At any point in time the program's error exposure will already be limited to its single

page of memory. And if SoftECC were to checksum this memory page, it would

almost immediately be written to.

What follows are preliminary benchmarks that outline some of the factors affecting

SoftECC's performance.

5.2.1 Sequential Writes

Consider a benchmark that repeatedly performs sequential writes to memory (see

listing 5.2). Such a memory access pattern has bad temporal locality because the

pages most recently accessed have the least chance of being accessed, while the oldest

pages are most likely to be accessed next. Because SoftECC uses a LRU-like scheme,

it will tend to checksum the oldest pages first, just as they are about to be written

to again.

Listing 5.2: Sequential Write Benchmark

int array-size = 1000 * (PGSIZE/4);
uint32_t array [array-size];

void bench-seq-write() {
while(1) {

for(int i=0; j<arraysize ; j++) {
array[i] = i;

}
}

}

Unless SoftECC can checksum pages faster than they are written, it will spend

all of its time working on checksumming pages that will soon be overwritten. This is

41

demonstrated in figure 5-1, which shows SoftECC's detection rate hovering near zero

until the checksumming exceeds the rate of writing around 25% CPU-load. After this

point, SoftECC is able to checksum pages immediately after the user application

finishes writing to them and detection performance rises to nearly 100%.

At 25% CPU-load (33% CPU-overhead), SoftECC has a 0.33:1 CPU usage ratio

with the user application. This indicates that the user application takes 3 times

as long to write a page as SoftECC takes to checksum a page. Herein lies the

significance of optimizing SoftECC 's checksum algorithm (see section 4.3). Using

the unoptimized checksum algorithm, SoftECC the rise in detection doesn't occur

until 45% CPU-load (81% CPU-overhead) (see figure 5-2).

42

I
I

Se+07

Se+07-

4e+07--

30+07

10+07

0 10 20 30 40 50 600 7 0 90 10 20 30 40 50 so 70 so 90 10
SCPU~okd

Figure 5-1: Checking performance for sequential writes

05

Se+07

7e+07--

Ge+07-

4e+07--

4e+07--

3e+07--

2e+07--

1 e+07 i. . 1 1 .. - -1 - -- -|

Figure 5-2: Checking performance for sequential writes using
sum computation

the unoptimized check-

5.2.2 Random Word Writes

Consider a benchmark that allocated all available memory to

written with random accesses (see listing 5.3). Because this

temporal locality, we expect SoftECC to perform poorly.

a single array that was

benchmark exhibits no

As can be seen in the left graph of figure 5-3, SoftECC doesn't manage to protect

a significant fraction of the data pages until its checksumming keeps up with the rate

of page turnover, allowing it to compute a checksum after each memory write. For

random word writes, this implies that SoftECC will need an order of magnitude

more compute time than the user-mode code 2. Because of this, SoftECC's failed

2It takes 1024 dword reads to checksum a page, versus 1 dword write to invalidate that checksum.

43

I
I

I
I

I

0 .

0 --

0 --

50--

0 10 20 310 40 CIO6 70 .0 90 10

0 10 20 3 0 5 0 9

.. CPU4.-

7

1

'. CPU-imd
0 0

100

90

g0

40

30

20

10

a 70 so 90 1000 10 20 30 40 50 so
. CPU-k-c

Listing 5.3: Random Word Write Benchmark

int array-size = 1000 * (PGSIZE/4);
uint32_t array [array-size];

void bench-rand-word-write() {
while(1) {

uint32_t r = sys-genrand();
int i = r \% array-size;
array [p] = r

}
}

efforts increase the exposure time without decreasing the exposure size, yielding

a net increase in the vulnerability metrics that only gets worse with increasing CPU

use (see the right graph in figure 5-3).

I
I

4.5e+09

3e+09

2.50+09

2e+09

0 90 100 0 10 20 30 40 0 60

Figure 5-3: Checking performance for random word writes

5.2.3 Random Page Writes

While protecting fine-grained random word writes is costly, the situation is quite

different for coarse grained random writes. Consider a benchmark that simulates the

activity of a block cache for a filesytem by picking a random page and writing to it

(see listing 5.4).

The only thing that prevents the rise in this graph from occurring at 99.9% CPU-load is that random
number calculations are expensive, dominating the runtime of the user-code.

44

100

90

BO

70

S0

40

1 0

00 10 20 3D 40 5. CP sod 6 70 70 BO 90

Listing 5.4: Random Page Write Benchmark

int array-size = 1000 * (PGSIZE/4);
uint32-t array [array-size I;

void bench-rand-page() {
while (1) {

uint32_t r = sys.genrand(;
int i = r % 1000;
for (int j =0; j <1024; j++) {

array[i*PGSIZE+j] =r;

}
}

}
1CC , ,3.5e+07

30+07
80.

70 - 2.50+07

a1 .5e+07
4000

301l+07--

20 --

10 - - 58+06 --

0 10 20 30 40 50 60 70 80 9 100 0 10 20 30 40 50 so 70 s0 so 100
.CPU-10a ". CPU-I..d

Figure 5-4: Checking performance for random page writes

5.2.4 Memory Traces

While artificial benchmarks can provide many insights as to the factors affecting Soft-

ECC 's performance, ultimately, it is SoftECC 's integrity checking performance on

real-world applications that is of greatest interest. Real-world applications have far

more complexity than can be captured by an artificial benchmark. Unfortunately, it

is not feasible to port a large application such as gcc to JOS kernel, as this would

require emulating a significant fraction of the standard POSIX kernel API calls. For

this reason, we acquired 1 million entry memory access traces from four applications:

bzip, gcc. and swim. These traces were published as a part of the course materials

for Notre Dame's Operating Systems Principles class, CSE 341 [10], and were derived

from four SPEC CPU2000 benchmarks of the same names (see table 5-5) [13].

45

Benchmark Category Suite
176.gcc C Programming Language Compiler CINT2000

256.bzip2 Compression CINT2000
171.swim Shallow Water Modeling CFP2000

200.sixtrack High Energy Nuclear Physics Accelerator Design CFP2000

Figure 5-5: SPEC CPU2000 Benchmarks Represented In Memory Traces

Figures 5-7, 5-8, 5-9, and 5-10 reflect the performance of SoftECC while replaying

1 million entry traces of bzip, gcc, swim, and sixpack. One striking feature of these

graphs is that on all four benchmarks, SoftECC is able to achieve approximately a

50% error detection rate with less than 1% CPU-load, which implies that about half

of the pages utilized by these applications are being accessed in a read-only manner.

This observation is confirmed by the statistics in table 5-6.

There is no similar effect for the correction rate, implying that every page is

being accessed repeatedly. Unfortunately, the source of these repeated accesses is the

looping of the memory trace.

As demonstrated in table 5-6, for gcc, swim, and sixpack, there are a significant

number of pages that are only accessed once during the trace. However, these ac-

cesses occur each time the memory trace loops. Because the memory traces are so

short, these accesses appear periodic to SoftECC , much like the access patterns in

the sequential write benchmark. Consequently, the number of single access pages is

roughly proportional to the overhead threshold where protection performance begins

to rise. Similarly, the number of single write pages is roughly proportional to the

overhead threshold where detection performance begins to rise. This suggests that

these memory traces are insufficiently short to demonstrate SoftECC's performance,

and better benchmarks are needed.

46

Figure 5-6: Memory Trace Statistics

I
I
I

i.2e+08 :

l+08

8e+07

88.07

2e.07

Figure 5-7: Checking performance while replaying a IM entry trace of bzip

Er ected :m_

80 -

20 -

40 1 3

Figure 5-8: Checking performance while replaying a 1M entry trace of gcc

47

Trace bzip gcc swim [sixpack

Writes 122419 107184 67170 160983
Reads 877581 892816 932830 839017

Unique Addresses 11113 37697 93694 84920
Unique Pages 317 2852 2543 3890

Read-only Pages 167 1707 1374 1825
Pages Written 1 time 26 471 397 827
Pages Written 2 times 10 148 124 271
Pages Accessed 1 time 16 886 690 1399
Pages Accessed 2 times 19 293 292 500

so

70

to Onproftid Edooo
. 01181,1 --- x..

0 10 20 30 40 50 60 70 80 90

pI8ilenl -ol-~~o~lol.-

3 4 '. CPU1oad
100100 0

1 se+o9

1.4e+09

1 2e+09

10+09

Be+08

6e+08

M'

I1000 10 20 30 40 50 P la 60 70 80 90

1.4e+09

1.2e+09 -

10+09

Be+011

6e+011

4e+08 -

200

10 20 30 40 50 60 70 80 90 100
.. CPU-lDaI

Figure 5-9: Checking performance while replaying a 1M entry trace of swim

0-

70 -

60

40

30 -

0 0 20 3 40 -6 7 0 10 10 20 30 40 r. 60o 70 .0 90 100
"CPU-load

2.5e+09

2e+09

1.5e+09

1e+09

58+08 1-

Figure 5-10: Checking performance while replaying a IM entry trace of sixpack

48

lewod

to Unproteoled 011016
toOSilentno -

A-Ji
L~~~~t-

to Unprolied Fools'
b Silt oEno

0,46

0-

100

70

40

10

10 20 30 40 so 60 70 so 90 100

0 10 20 30 40 so
, CPU-jowd

so 70 ao 90 100

Chapter 6

Summary

6.1 Conclusions

The preliminary benchmarks indicate that SoftECC can halve the number of unde-

tected soft error using only minimal compute time. Most multi-user, multi-process

operating systems in use today exibit significant spacial and temporal locality of data

access and stand to benefit greatly from the added reliability SoftECC can provide.

Because it is implemented at the kernel-level, SoftECC's operation is transparent to

user-mode applications. This indicates that for a minimal overhead cost, SoftECC

can provide added protection against soft errors to existing systems. Furthermore,

SoftECC is capable of exploiting idle CPU-time to perform its checks.

6.2 Future Work

Linux Implementation

Ideally, SoftECC would have been implemented as a patch to the Linux kernel.

However, there are significant implementation issues to overcome before SoftECC

on Linux can become a reality. Perhaps the greatest challenge is to find ways to

49

minimize SoftECC 's impact on other virtual memory features. For x86 systems,

the only practical way to trap user mode memory accesses is to modify the virtual page

table entries by removing the Write, Present, or User permission bits. Overloading

the functionality of the page table permission bits requires checking every statement

within the 'kernel that references these bits in order to verify that existing kernel

functionality has not been compromised.

While the size and complexity of the Linux kernel prevented a Linux implemen-

tation during this iteration of the project, an implementation on a full-featured OS

will be necessary before SoftECC can have any broad applicability.

Enhanced Error Recovery

The recovery scenario to a correctable but not protected (detected before potential

use) error would be much better if it were possible to emulate the backward execution

of the application code. In some (but clearly not all) cases, this can be done even on

x86. In the best case, an error could be demonstrably unused, and the application

could continue running. In other cases, it is possible to prove that the error propagated

to certain other memory locations, which could also be corrected by emulating the

reexecution of the instructions that used tainted data. Even if it is not possible to

prove that all tainted memory locations had been fixed, the application level recovery

scheme (graceful termination) would have a better chance of success.

Improved Benchmark Results

Unfortunately, due to constraints on what user-mode benchmarks could be ported

to the JOS kernel, the benchmarking results are incomplete. Future work entails

aquiring or recording more extensive memory access traces, including access timing

information. These would be used to give a much clearer picture of SoftECC's

performance in real-world scenarios. Alternatively, real-world applications could be

ported to run on top of the JOS kernel.

50

Bibliography

[1] van Rein R. (2000). BadRAM: Linux kernel support for broken RAM

modules http://rick.vanrein.org/linux/badram/

[2] Brady C. (1999 - 2004). Memtest86 3.2 (GPL) http: //www.memtest86. com/

[3] Demeulemeester S. (2004). Memtest86+ 1.50 (GPL) http://www.memtest.

org/

[4] Cazabon C. (1999). Memtester 4.0.5 (GPL 2) http: //pyropus. ca/sof tware/

memtester/

[5] Harbaugh T. (2005). Blue Smoke devel-20050509 (http: //bluesmoke.

sourceforge.net/

[6] Lieberman D, VP Engineering. (1998). ECC Whitepaper. CorsairMicro. July

30, 1998.http://www.corsairmicro.com/main/tecc.html

[7] Ziegler JF. (1994). IBM experiments in soft fails in computer electronics

(1978-1994) IBM Journal of Research and Development. Vol 40 No 1 1996.

http://www.research.ibm.com/journal/rd/401/tocpdf.html

[8] Wilson R, Lammers D. (2004). Soft errors become hard truth for logic

EE Times Online. May 3 2004. http: //www.eetimes. com/showArticle. jhtml?

articleID=19400052

51

[9] Mastipuram R, Wee EC. (2004). Soft errors' impact on system reliabil-

ity EDN.com & Cypress Semiconductor. Sep 30 2004. http: //www. edn. com/

article/CA454636.html

[10] Thain D. (2004). CSE 341 Project 4: Memory Simulator Operating Sys-

tems Principles (class). http://www.cse.nd.edu/~dthain/courses/cse341/

spring2005/projects/memory/

[11] Engler DR, Kaashoek F, O'Toole J Jr. (1995). Exokernel: an operating

system architecture for application-level resource management. Pro-

ceedings of the 15th ACM Symposium on Operating Systems Principles (SOSP

'95), Copper Mountain Resort, Colorado, December 1995, pages 251-266. http:

//www.pdos.lcs .mit .edu/papers/exokernel-sosp95.ps

[12] Furutani K, Arimoto K, Miyamoto H, Kobayashi T, et all. (1989). A Built

in Hamming code ECC circuit for DRAMs IEEE Journal of Solid-State

Circuits, vol 24, no 1. Feb 1989 http://ieeexplore.ieee.org/iel1/4/584/

00016301.pdf

[13] Standard Performance Evaluation Corporation. (2001). SPEC CPU2000 V1.2.

6585 Merchant Place, Suite 100. Warrenton, VA 20187, USA. http: //www. spec.

org/cpu2000/

52

