
Dynamic Load-Balancing of Streamlt Cluster

Computations

by

Eric Todd Fellheimer

B.S. Computer Science and Engineering, Physics
Massachusetts Institute of Technology, 2005

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2006

@ Eric Todd Fellheimer, MMVI. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis and to

grant others the right to do so.

A uthor
Department of Electrical Engineering and Computer Science

May 26, 2006

C ertified by

Una-May O'Reilly
Principa Researc Scientist

c ZT~is Supervisor

Accepted by....
<Atlur C. Smith

Chairman, Department Committee on Graduate Students

MASSACHUSETTS INS EOF TECHNOLOGY

AUG 1 4 2006 BARKER

LIBRARIES

MIT Libraries
Document Services

Room 14-0551
77 Massachusetts Avenue
Cambridge, MA 02139
Ph: 617.253.2800
Email: docs@mit.edu
http://Iibraries.mit.eduldocs

DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable
flaws in this reproduction. We have made every effort possible to
provide you with the best copy available. If you are dissatisfied with
this product and find it unusable, please contact Document Services as
soon as possible.

Thank you.

The images contained in this document are of
the best quality available.

2

Dynamic Load-Balancing of StreamIt Cluster Computations

by

Eric Todd Fellheimer

Submitted to the Department of Electrical Engineering and Computer Science
on May 26, 2006, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

This thesis discusses the design and implementation of a dynamic load-balancing
mechanism for computationally distributed programs running on a cluster written in
the StreamIt programming language. StreamIt is useful for streaming data appli-
cations such as MPEG codecs. The structure of the language carries a lot of static
information, such as data rates and computational hierarchy, and therefore lends itself
well to parallelization. This work details a simulator for StreamIt cluster computa-
tions used to measure metrics such as throughput. Built on top of this simulation is
an agent-based market used for load balancing the computation at StreamIt check-
points to adapt to exogenously changing loads on the nodes of the cluster. The
market models the structure of the computation as a supply chain. Our experiments
study the throughput produced by the market compared to other policies, as well as
qualitative features such as stability.

Thesis Supervisor: Una-May O'Reilly
Title: Principal Research Scientist

3

4

Contents

1 Introduction

1.1 High-Level Problem Statement .

1.2 R oadm ap .

2 Related Work

2.1 Ferguson

2.2 Spawn

2.3 Mirage

2.4 LeBaron

2.5 Hayek .

3 StreamIt

3.1 The Language .

3.2 Compile-Time Optimizations .

4 Experimental Setup

4.1 The StreamIt Simulator

4.1.1 The Model

4.1.2 Why Simulate

4.1.3 Simulation Simplifications

4.1.4 How It Works

4.1.5 Testing and Debugging . .

4.2 The Market

5

13

14

14

15

16

16

18

18

20

21

21

22

25

25

27

31

31

33

37

37

.

. .

. .

. .

. .

4.2.1 Market Runtime Analysis .

5 Experiments and Results

5.1 Testing Framework .

5.1.1 Experimental Parameters .

5.2 No Exogenous Load .

5.3 The Epsilon Parameter .

5.4 Singular Load Change .

5.5 Singular Load Change (Brute force)

6 Future Work

7 Conclusion

A Streamlt Simulator Javadocs

A.1 Package runtime.market

A.1.1 Interface Agent

A.1.2 Interface MarketRuntimeHandler.AgentFunction .

A.1.3 Class AdaptiveFilterAgent

A.1.4 Class FilterAgent

A.1.5 Class MarketRuntimeHandler

A.1.6 Class MarketRuntimeHandler.AgentData

A.1.7 Class ResourceAgent

A.2 Package runtime .

A.2.1 Interface RuntimeHandler

A.2.2 Class DynamicLoadBalancer

A .2.3 Class Plotter .

A.2.4 Class StaticLoadBalancer

A.2.5 Class StaticRuntimeHandler

A .3 Package gui .

A.3.1 Class SimulatorGUI

A.3.2 Class SimulatorGUI.ToolTip

6

40

43

43

44

44

50

52

58

63

65

67

. 68

. 68

. 69

. 69

. 71

. 77

. 83

84

. 85

. 85

. 86

. 88

. 90

. 92

. 93

. 93

. 95

A.4 Package sim.parse . 96

A.4.1 Class SimulatorOptionsParser 96

A.5 Package sim.desc . 101

A.5.1 Class ClusterDescriptor . 101

A.5.2 Class FilterDescriptor . 102

A.5.3 Class InputBuffer . 103

A.5.4 Class InputBuffer.BufferElement 106

A.5.5 Class PCDescriptor . 107

A.5.6 Class PipeDescriptor . 108

A.5.7 Class RandomProcPC . 109

A.5.8 Class StaticPC . 110

A.5.9 Class StreamItComputationDescriptor 111

A.6 Package sim . 115

A.6.1 Interface FilterListener . 116

A.6.2 Interface SimulationListener 117

A.6.3 Class FilterVertex . 118

A.6.4 Class PCVertex . 125

A.6.5 Class Simulator . 129

A.6.6 Class Simulator.ConsoleUl . 131

A.6.7 Class Simulator.rhType . 132

A.6.8 Class Simulator.SimulatorOptions 133

A.6.9 Class Util . 140

A.6.10 Exception FilterVertex.SourceException 142

7

8

List of Figures

2-1 Summary of Related Work . 15

2-2 A diagram of the virtual marketplace in [15]. 19

4-1 High-level functionality of the StreamIt simulator 26

4-2 Important command line switches for the StreamIt Simulator. 26

4-3 A graphical representation of the StreamIt simulator 30

4-4 Monetary distribution diagram in the market. 38

5-1 Results from the no exogenous load experiment 45

5-2 Sensitivity analysis with no exogenous load 46

5-3 Resource Budget versus checkpoint number for different market pa-

rameter combinations . 48

5-4 Throughput versus checkpoint number for different market parameter

com binations . 49

5-5 Sensitivity analysis for e . 51

5-6 Resource budget versus checkpoint number for different c values . . . 53

5-7 Throughput versus checkpoint number for different E values 54

5-8 Results from the singular load change experiment 55

5-9 Throughput plots for the different runtime handlers responding to sin-

gular load change . 56

5-10 Resource budget percentage of revenue for market runtime handler

with singular load change . 57

5-11 Results from the singular load change experiment (brute force) 58

9

5-12 Throughput plots for the different runtime handlers responding to sin-

gular load change . 59

5-13 Resource budget percentage of revenue for market runtime handler

with singular load change . 60

10

List of Programs and Files

1 A Fibonacci sequence generator in StreamIt. The feedback allows the

PeekAdd filter to use its previous outputs as inputs. Code taken from

the StreamItrepository. 24

2 An example stream graph. Filter V is the first vertex and filter V5 is

the final vertex........ 27

3 An example cluster graph. Edges are not currently needed because

network latency is currently not modeled (see section 4.1.3). The type

parameter specifies the load model of the processor. 29

4 Pseudocode for method timeToRun in class FilterVertex. The method

may return a negative value under two circumstances. The first occurs

when the filter must inject into an input buffer which is full. The

second is occurs when the filter cannot fire because it does not have

enough elements in its own input buffer. 35

5 The evaluateMapping() method of the MarketRuntimeHandler class 39

6 Revenue distribution pseudocode . 41

7 The simple stream graph used in all experiments. 44

8 Revenue distribution pseudocode with E. 50

11

12

Chapter 1

Introduction

The basis of modern day high-performance computing is parallel computation. In

such computations, the work is split among various nodes, or processors, which can

work simultaneously. Total efficiency of resource utilization (constantly using 100% of

all the processors) is rarely achieved, however, due to dependencies among the work

units on the various processing nodes.

Consider even the simple case of some computation involving two processing nodes,

P1 and P2 . Throughout the computation, P computes data and P2 processes that

data further. If it takes P exactly the same amount of time to produce data as

it takes P2 to process it, then this system will achieve total efficiency in the steady

state. However, it is rare that two different processes will take the same amount of

time, especially considering that they may be run on completely different processing

units. Exogenous factors could also affect the computation. For instance, there may

be other computations running on the same system, or there may be non-negligible

communication time between the processing nodes.

Even if load-balancing (allocating the processing nodes to processors so that the

processors are being used nearly the same amount) is used, exogenous factors (as

mentioned above) could render static (compile-time) load-balancing ineffective. In

order to achieve effective adaptability, the computation ought to employ dynamic

load-balancing. That is, the computation must be able to reconfigure its processing

nodes while it runs.

13

The project works with the stream programming language StreamIt. To facili-

tate easier experimentation with different load-balancing techniques, a simulator was

created (section 4.1). On top of this simulator is an agent-based market for load-

balancing the cluster computation while the cluster's nodes face exogenous load.

1.1 High-Level Problem Statement

The goal of this project is to devise a market-like, dynamic load-balancing system

which adapts to changing load in a StreamIt (chapter 3) cluster computation. The

main metric will be throughput: the total number of elements processed per unit time.

The market will be designed as a tradeoff between an "optimal" solution (which

maintains high throughput, ignoring its large online overhead) and a static approach

(which has no online overhead but is not adaptive). That is, the market ought to run

efficiently so it doesn't take away too much resources from the main computation,

while still providing useful adaptations to the system. The scope and specifics of

these adaptations will be described in section 4.2.

1.2 Roadmap

This thesis starts with a chapter on related work (chapter 2). Most of the refer-

ences cited in this chapter dealt with the load-balancing problem or with complex,

distributed, and possibly agent-based systems. Chapter 3 discusses the StreamIt

programming language. The next chapter, chapter 4, discusses the design and imple-

mentation of the StreamIt simulator, as well as the design and implementation of the

load-balancing market. Experiments and results discussing stability and throughput

improvements are discussed in chapter 5. Chapters 6 and 7 discuss further improve-

ments and work to this line or research and general conclusions.

14

Chapter 2

Related Work

The relevant literature includes several examples of computational markets and agent-

based systems. Their features are summarized in figure (2-1). The following sections

summarize work related to this thesis and discuss important differences with our

work.

domain funding matching of commodity adaptability comments
buyers, sell-
ers

Ferguson CPU load Lump sum Sealed bid or time slices none Ignores
balancing per job Dutch with (fixed queuing

local adver- length) delays
tisements

Spawn grid comput- constant rate sealed-bid, time slices none
ing per job second price

Mirage Sensornet Per user, Sophisticated resource none
Testbeds sales tax, combinato- combina-

profit- rial auction tions in
sharing time/space

LeBaron economic Initial en- price cleared Risky stock Agents adap-
simulation dowment explicitly tively select

rules, rules
are neural
nets

StreamIt dynamic supply-chain Greedy mar- processing An agent's See section
Market load- distribution ket clearer nodes strategy 4.2

balancing depends on
stream com- past results
putations

Figure 2-1: Summary of related work. "Domain" refers to the problem or research

area motivating the work. "Funding" refers to how agents receive currency.

15

2.1 Ferguson

Ferguson uses microeconomic ideas to solve a load balancing problem[9]. He models

the problem as a graph of processing units. Edges in the graph represent network

connections. There is a bandwidth cost to send data between connected units. There

is also an effective processor "speed" of each processing node. Each job starts at one

of the processors and is not parallelized. However, it can migrate to other processors,

at some cost, to support load balancing.

In the economy, jobs bid on processors given an estimate of the time they need.

All jobs are given the same initial lump-sum endowment. They use this money to

then bid on a processor, basing decisions both on frugality and quality of service. In

Ferguson's work, jobs ignore queuing delays, time waiting for jobs to begin, instead

trying to optimize service time, the time to finish the job once it begins.

Processors hold auctions for their use after advertising their recent price history to

neighboring processors' bulletin boards. The system uses both sealed bid and Dutch

auctions1 . The auctions are decentralized, and processors may advertise in auctions

at neighboring nodes.

This work is similar to the thesis in that it describes the resource set as a graph

of processors and network connections, and that it focuses on load-balancing. One

complication we deal with is that the filters in a StreamIt program are not in strict

competition with one another. A "rational" filter would not starve its upstream

neighbor of processing resources. If it did, it would never get data inputs and thus

never be able to work.

2.2 Spawn

In Spawn[21, 11], the goal is to efficiently allocate resources for grid computation,

perhaps across the Internet. Each job is given a steady rate of currency, its funding

rate. Jobs can split themselves into different subjobs, but the total funding stays the

'In a Dutch auction, the price starts at some high value. Each round, the prices is decreased
until some agent accepts and buys the good at the current price.

16

same. While the Spawn system does not constrain how funding gets divided among

subjobs, all example code simply splits the funding evenly. Jobs and subjobs use their

funding to bid on time slices at the various processing nodes. The relative funding

rates in the system determine the relative priorities of different jobs.

CPU time slices are auctioned in a decentralized fashion at the various nodes, using

a sealed-bid second price auctions2. Jobs are given a right of first refusal allowing

them to continue paying the market prices for further time slices. This feature is not

beneficial to the market efficiency, but rather required because technical limitations

in the system do not allow processes to migrate.

If there are relatively few jobs in the system, the "market price" 3 will be lower

and jobs, in general, will be able spawn and successfully bid on more processor time

slices. Likewise, when there is vast competition, price will be higher and thus the

same funding rate will not be able to buy as many concurrent time slices. Therefore,

jobs will have a lesser tendency to split up and further divide their seemingly scarce

funding.

The work is mainly applicable for highly paralellizable algorithms, such as a par-

allel Monte Carlo simulation. While StreamIt programs are paralellizable, it is not

trivial to change the number of parallel processes used in a computation on the fly.

Specifically, once each filter is running in parallel, the computation could not spawn

additional processes even if the market allowed for it. A major difference between

the Spawn system and our own is the funding policy. In Spawn, funding is distributed

evenly among the work units in a given computation. In our system, agents adaptively

determine how to distribute their funding.

2 1n these auctions, each agent privately submits his bid. The agent bidding the highest value
receives the good, and pays the prices of the second highest bidder.

3Because there is an auction and not a commodities market, there is no explicit market price.
However, competition will raise the bidding values, and thus the loosely-defined market price.

17

2.3 Mirage

Mirage[8] is a system for allocating resources in a SensorNet Testbed. Agents place

combinatorial bids such as "I need 3 motes sometime next week" into a centralized

auctioneer.

In Mirage, priority is represented in a user share ratio. Through profit sharing, the

virtual currency returns to its equilibrium distribution (the currency is closed-loop

and there is a fixed total amount). For instance, if a user "owns" a share ratio of

20%, then he or she gets 20% of each winning bid. Mirage also employs a "use it or

lose it" [8, p. 5] in which a sales tax takes a percentage of a user's surplus over his or

her equilibrium value. These two forces are complementary: Profit-sharing allows a

low-priority user to accrue savings while higher-priority users deplete theirs, but sales

taxing does not allow this advantage to continue indefinitely.

Here, bidding strategies are employed by the end user. Moreover, the bids occur

in coarse time granularity. Resources are allocated on the order of hours, and bids are

cleared on the order of minutes. The relatively long clearance time is a consequence of

the relatively complex combinatorial auctions. This complexity would be unaccept-

able given the real-time nature of our system. The key difference between Mirage

and this thesis is that Mirage's goal is to create fairness in a distributed system while

ours is to optimize the throughput of a parallel computation.

2.4 LeBaron

LeBaron's work on agent-based financial markets[15] is the only work cited here that

truly adapts agents within the system. The various agents can purchase various

amounts of a "risky security" within a commodities market at each time step. Their

demand, which is a function of very recent market information, is represented by

a neural net. This information, referred to as the information set, includes returns

information and the price dividend ratio. The individual demands are summed, and

the market is cleared at some price. Then the agents either benefit or suffer based on

18

the state of the market and their most recent demand.

As the simulation progresses, agents are given the chance to change their rules,

the neural nets which determine their demand function. Here, agents simulate what

would have happened to their wealth had they been using some other rule. If the

other rule appears to be performing better, the agent may swap out his current rule

for this seemingly better one. These rules also evolve via a genetic algorithm. Thus,

both the agents and the underlying rules evolve through time.

An important parameter in this historical simulation is the memory length. The

memory length of an agent dictates how far back he simulates the market when

comparing two rules. LeBaron goes on to discuss how different mixtures of shorter

and longer memory length agents affect the dynamics of the market.

19

Info setInfo setInfo set

Price

Figure 2-2: A diagram of the virtual marketplace in [15].

2.5 Hayek

In Evolution of Cooperative Problem-Solving in an Artificial Economy [4], the authors

describe a general learning and problem-solving technique. Various agents work on

solving a given problem and are assigned credit based on successful cooperation as

well as individual contributions.

The Hayek artificial economy consists of computational agents who interact in a

sequence of auctions. The agents simulate the impact on the problem being solved

and return an estimate of value they would add. Agents bid based on their current

wealth and this estimate. Wealthy agents will "reproduce" via mutation at certain

times. Agents get a percentage of their offspring's income, and are taxed based on

how many instructions they execute.

The Hayek system successfully solves difficult problem. Problems such as Blocks

World have huge state spaces in which successful evaluator functions are nonlinear.

Despite these difficulties, Hayek performs significantly better than competing tech-

niques such as genetic algorithms. This work provides evidence that multi-agent,

economically based systems can perform qualitatively differently (and better) than

more traditional methods.

20

Chapter 3

StreamIt

The StreamIt programming language[20] enables a "compiler technology that enables

a portable, high-level language to execute efficiently across a range of wire-exposed

architectures." [10, p. 1]. In essence, the language is designed for programs to be

written for and executed on newer computational architectures which employ vast

parallelism and predictable communication. It is especially well suited for "streaming"

applications such as signal processing.

3.1 The Language

A StreamIt program's most basic component is the filter. Filters describe single

computation units with single input channels and single output channels. Filters

contain init, prework, and work functions. Each is expressed in syntax similar to

typical imperative languages such as C. Init sets up the filter, for instance by creating

data table lookups. The prework function is called after the init function and before

the steady state (i.e., work) is reached. The difference between prework and init is

the prework may communicate with other filters.

The work function must specify push, pop, and peek values. Push determines the

number of data elements the filter outputs after one execution of the work function.

The filter consumes pop elements and reads peek elements every time it fires. Firing is

used to mean a single, atomic execution of the filter's work function. The function can

21

access the input elements from its input queue (or buffer) using the peek (index) and

pop() operations. It writes to downstream queues using the push(value) operation.

All filter queues are first-in first-out (FIFO) queues.

The structure of a StreamIt program is built by composing filters and compo-

sitions thereof hierarchically. We will refer to a single filter or some composition

of filters from here on as a stream[10]. There are three constructs for composing

streams. The pipeline construct simply sequentially attaches the sub-compositions.

The output of the first is connected to the input of the second and so on.

A splitjoin creates a stream where the data go into a common stream, the splitter,

diverge to various streams, and reconvene at the joiner stream. Duplicate splitters

send a copy of each data element to all child streams. Roundrobin splitters, however,

send a specific number of incoming data to the first child stream, the second child

stream, and so on sequentially, until starting again at the first child stream. The

feedbackloop mechanism allows loops to be created in the stream graph. Programmers

may enqueue data values in feedback loops at the beginning of a computation. An

example StreamIt program is shown in program 1, which produces the Fibonacci

sequence.

3.2 Compile-Time Optimizations

The StreamIt compiler[10, 13] employs multiple techniques to improve runtime per-

formance. The most relevant of which to this work is partitioning, which attempts

to split the stream graph into a certain number of units which all have similar work

requirements. We refer to this process later on as static load-balancing to differentiate

from the dynamic load-balancing embodied in our computational market in section

4.2. The basic functionality is that ". . . the compiler estimates the number of instruc-

tions that are executed by each filter in one steady-state cycle of the entire program;

then, computationally intensive filters can be split, and less demanding filters can be

fused. Currently, a simple greedy algorithm is used to automatically select the tar-

gets. .. "[10, p. 5]. Partitioning is achieved through the use of both fusion (combining

22

filters) and fission (splitting filters). Fission is a more difficult problem because it is

similar to automatic parallelization in imperative languages. It is not implemented

currently in the compiler[10, p. 7].

Another interesting class of optimizations are those which rely on the inherent

memory model of the system[18]. Because the StreamIt language embodies rich static

information such as data transfer rates and work estimates of filters, it can model and

estimate cache behavior during a program execution. One of the cache optimizations

is scalar replacement, which replaces buffer variables with scalars to improve register

allocation. Execution scaling, on the other hand, repeats filter executions to improve

instruction locality.

While our work ignores cache-related complications (see section 4.1.3), dynamic

load-balancing does not preclude the use of cache optimizations like scalar replace-

ment. Cache and other low-level optimizations can be used along with load-balancing

for additional performance benefits.

23

void->void pipeline Fib {
add feedbackloop {

join roundrobin(O, 1);
body PeekAdd () ;
loop Identity <int >;
split duplicate
enqueue 0;
enqueue 1;

add

}
IntPrinter () ;

int->int filter PeekAdd {
work push 1 pop 1 peek 2 {

push(peek(1) + pop());

}
}
int->void filter IntPrinter {

work pop 1 {
println (pop());

}
}

Program 1: A Fibonacci
the PeekAdd filter to use
StreamItrepository.

sequence generator in StreamIt.
its previous outputs as inputs.

The feedback allows
Code taken from the

24

Chapter 4

Experimental Setup

4.1 The StreamIt Simulator

A high level view of the StreamIt simulator's functionality is shown in figure 4-1.

After compiling a stream program with the StreamIt compiler 1 , an xml stream graph

is generated. The stream graph and cluster graph are then input to the simulator.

The StreamIt Simulator is developed in the Java programming language. Java

was chosen for its portability and ease of development. Also, the StreamIt compiler

itself is implemented in Java, and it can produce Java code from StreamIt source

code.

A major design goal during the development process was to treat the simulator not

just as a case study in StreamIt optimizations, but also as a more general framework

for studying multiple agents interacting. Therefore, we intended to create a highly

modular system in which different components could be used without affecting the

behavior of the rest of the system. For instance, we made the RuntimeHandler

interface, which specifies the resource mapping of filters to processors. On top of this,

we created several implementations of this interface to test various resource mapping

policies. No matter which implementation we use, however, the rest of the system

behaves correctly.

A list of command line switches for the simulator is shown in figure 4-2.

'We modified the compiler slightly to output stream graphs in our xml format.

25

Options:
-cf, --clusterfile

-cli, --cli

-gui, -- gui
-n, --number_firings

-of, --outfile

-off, -- offset-scale
-rep, --repetitions

-rh, --runtimehandler

-sf, --stream_file

Name of the cluster graph xml file

Output text to the standard output stream

Display the GUI

Number of total filter firings to execute

Output simulation statistics to given file

Offset scale param for filter agents

How many times to repeat simulation

Which runtime handler to use

Name of the StreamIt graph xml file

Figure 4-2: Important command line switches for the StreamIt Simulator.

26

xml cluster graph
(processor speeds, loads)

xml
Streamlt program stream graph

throughput, agent data, etc.

Figure 4-1: High-level functionality of the StreamIt simulator. A modified version of
the compiler generates the stream graph xml file. That, along with the cluster graph
xml file, are input to the simulator.

=4

The simulator is used to simulate a StreamIt cluster computation, a parallel

computation in which the various filters are allocated to different processing nodes

in the cluster. The simulator can track various metrics such as total throughput and

time spent waiting for inputs for the individual filters.

4.1.1 The Model

??

The simulator uses a simplified model of the StreamIt language. Please refer to

section 4.1.3 for a detailed review of the differences.

The stream graph encapsulates most of the information about the computation.

It is a directed graph whose nodes are descriptions of filters. Edges are directed

downstream, meaning in the direction of data flow. Thus, the first vertex has no

parent vertices and the final vertex has no children vertices.

<?xml version=" 1.0" encoding=" iso-8859-1" ?>
<graph edgedefault="directed">

<node id="1" name="V1" />
<node id=" 2" name="V2" pop=" 2" peek=" 3" work=" 7" />
<node id="3" name="V3" peek="1" push="1" work="4" />
<node id=" 4" name="V4" work=" 2" />
<node id="5" name="V5" work=" 1" />

<edge
<edge
<edge
<edge
<edge

source=" 1"
source=" 1"
source=" 2"
source=" 4"
source='3"

Program 2: An example stream
final vertex.

target="2"
target="3"
target="4"
target="5"

target="5"

/>
/>
/>
/>

graph. Filter V is the first vertex and filter V5 is the

When a stream graph such as the one in program 2 is parsed, it produces a

DirectedGraph[12] whose vertices are of type FilterVertex. A FilterVertex con-

tains dynamic information about the filter. Such information includes links to the

27

</graph>

filter's neighbors as well as a reference to its InputBuf f er. Every filter has exactly

one input buffer which it uses to store data elements as they arrive from upstream

neighbors.

The FilterVertex also has a reference to the filter's static information stored in

the FilterDescriptor class. The FilterDescriptor contains four data members.

An atomic execution of a filter is referred to as a firing.

" push: The number of data elements output to downstream filters during each

firing of the filter.

" pop: The number of data elements removed from the input buffer during firing

of the filter.

" peek: The minimum number of data elements needed to fire.

" work: The estimated amount of work needed for a firing of this filter.

Another necessary input to the simulator is the cluster graph, which specifies the

processors in the cluster and their properties. When a cluster file such as the one

in program 3 is parsed, it generates a DirectedGraph whose vertices are instances

of the PCVertex class. The PCVertex class contains dynamic information about the

processor, such as which filters are currently executing on it. It also contains a link

to the static processor information contained in instances of subtypes of the abstract

PCDescriptor class. The PCDescriptor class contains the raw speed of the processor,

which is its speed with no load.

Subclasses of PCDescriptor specify the load model of the processor. The load

model returns the number of background processes running on the processors at a

given time. Because the speed of the processor is estimated by taking its raw speed

and dividing by the total number of processes running at a given time2 , the load model

can be used to derive the speed of the processor at any given time in the simulation.

The StaticPC subclass of PCDescriptor specifies a simple load model which always
2This should be a good estimate when the total number of processes remains somewhat constant,

the operating system gives the filter approximately - of the time slices where N is the total number
of processes, and that the execution of the filter will take many time slices to finish.

28

<?xml version=" 1.0" encoding=" iso -8859-1" ?>
<graph edgedefault="undirected">

<node id="1" name="p1" speed="5" type="rand" />
<node id="2" name="p2" speed="3" type="rand" />
<node id="3" name="p3" speed="'8" type="rand" />

</graph>

Program 3: An example cluster graph. Edges are not currently needed because

network latency is currently not modeled (see section 4.1.3). The type parameter

specifies the load model of the processor.

has 0 background processes. The RandomProcPC subclass of PCDescriptor specifies a

randomized load model which flips between loaded and unloaded states. When loaded,

the processor is likely to have many background processes although the actual number

is randomized in both states.

Checkpoints and Runtime Handlers

Checkpoints occur periodically during the computation. At this point, the simu-

lation flushes data elements in input buffers then runs the runtime handler. The

RuntimeHandler interface specifies the method which selects a new resource map-

ping. The resource mapping determines which processor each filter is on. Every filter

must be on exactly one of the processors. If the stream graph contains F filters and

the cluster graph contains P processors, then the total number of possible resource

mappings is PF. The mapping is allowed to change at every checkpoint.

The StaticLoadBalancer implements the RuntimeHandler interface. It mimics

the static load balancing done in the StreamIt compiler. The greedy algorithm

it contains prioritizes filters based on their work estimate and maps them to the

processor in order to equalize the total estimated time each processor needs to execute

all its filters. Because of its static nature, StaticLoadBalancer returns the same

mapping at every checkpoint.

The DynamicLoadBalancer is similar to the StaticLoadBalancer, except it uses

the current, as opposed to raw, speed of the processor to select the best mapping.

29

It employs the same greedy approach as the StaticLoadBalancer does. It returns

a different mapping at each checkpoint. The DynamicLoadBalancer represents a

runtime handler which can choose near-optimal resource mappings with a large high

overhead.

The MarketRuntimeHandler was created to be an adaptive runtime handler which

chooses effective resource mappings with small overhead. It is discussed in detail in

section 4.2.

30

Figure 4-3: A graphical representation of the StreamIt simulator. The green node is

the starting node (where the data originates). All other nodes are color coded: yellow

means its input buffer is empty, red means its input buffer is full. One can see that

the red node (V2) is a bottleneck because its buffer is full even though its immediate

downstream neighbor (V4) has room in its input buffer. We also see that four of the

filters have been allocated to processor p3.

4.1.2 Why Simulate

Experimenting with real StreamIt cluster computations could become quite cumber-

some. Initiating the computations is still not as streamlined as it could be. Also,

we do not have total control over the cluster during computation. We would have

to create scripts to introduce load into the clusters when necessary. Moreover, we

would like to be able to dictate the configuration of the cluster being used (which

computers are on it and the properties of each of these) in order to experiment with

many possible cluster arrangements.

Simulating these cluster computations provides much more power and flexibility.

In simulation, we can specify the details of the cluster. We have utter control over

how the processors become loaded. Moreover, we can run the entire simulation from

a single computer with a single command.

4.1.3 Simulation Simplifications

The main problem this work tries to resolve is that of load balancing the StreamIt

graph in an environment ridden with dynamic resource fluctuations. To this end,

there were numerous components of a real Streant cluster computation which were

not central to this problem.

* Instruction-Level Details

The simulator works by estimating the firing time of filters in a "one-shot"

manner based on processor speed, load, and computational work needed. A

more comprehensive version might actually emulate the computation by going

through each instruction in the computation. However, such a framework would

be out of the scope of this work and completely change the architecture of

the simulator. Nonetheless, using a more fine-grained approach would improve

simulation accuracy. For instance, it would be easier to add a cache model to

the simulation with instruction-level simulations.

* Network latency

Currently, all network latency is assumed to be 0. Adding such effects would

31

be rather simple though. Because the cluster is already specified as a graph,

all that would be needed would be to associate some network latency model to

each edge in the cluster graph, and add time samples of this load during filter

firings in the simulation. We did not expect the addition of network latency

to add to the richness of the market, and thus excluded this feature from the

simulation.

* StreamIt Features Excluded in the Simulation

The current implementation of StreamIt clustering does not provide support

for feedback loops in the computation graph. Thus, this feature is not included

in the simulation. Not having loops made the implementation of the simulator

much simpler. For instance, in the calcPrices method of FilterAgent, recur-

sive calls are executed on the filter's upstream neighbors. This algorithm surely

terminates because there are no loops. If there were loops, the algorithm would

have to add code to make sure it did not get stuck in infinite recursion.

Additionally, the simulator does not maintain roundrobin splitters, only du-

plicate splitters. Roundrobin splitters allow a filter to inject into the same

downstream filter multiple times before injecting into the next downstream fil-

ter. Adding such functionality would be quite easy, but would not add much

richness to our simulation.

The simulator does not take into account the prework functions of the various

filters. We are mainly interested in the long-term throughput of a StreamIt

computation, and the prework functions will most likely not contribute to the

steady state computational efficiency.

Additionally, variable rate filters do not exist in the simulation. All filters are

modeled with constant push, pop, and peek values.

* Additional Overhead Not Included

The most glaring shortcoming of the simulation is that it does not account for

the overhead of the runtime handler. In other words, it assumes the runtime

handler produces resource mappings instantly. Of course, the market runtime

32

handler will incur some overhead. We assume that the checkpoint period is

long and the overhead is minimal, and therefore the market's impact on overall

throughput is small. One possibility to overcome this deficiency would be for

the simulator to calculate work estimates based on Java bytecode. Because

the StreamIt compiler can produce Java code from the filters, the simulator

could compile all the filters and its own runtime handlers into bytecodes. Then,

it would be able to estimate work times for the runtime handler and filters

consistently.

A less severe shortcoming is excluding the overhead from the cluster runtime

library. We assume such overhead to be small. We also do not account for

migration times for checkpoints. That is, we leave out the time it takes for

filters to move from one processor to another.

4.1.4 How It Works

The StreamIt simulator is not an instruction-level simulator. Instead of simulat-

ing a StreamIt filter's work line by line, it employs a coarse-grained, data-driven

approach. Computation times are computed by using work estimates as well as in-

formation about the state of the processors. The system tracks data elements as they

move through the graph. Each of these elements has an associated timestamp, which

changes throughout the simulation.

The main loop of the simulation works by iteratively finding the next filter able

to perform some action (which will either be firing or injection'). This process uses

the StreamItComputationDescriptor class's nextToRun method. The nextToRun

method simply iterates through all filters in the StreamIt graph, and runs the

timeToRun method on each filter. It returns the filter which returned the small-

est positive value from nextToRun. Negative values are returned when the individual

filter does not have enough information to determine when it can next perform an

action, which occurs as the result of two possible situations:

3An individual filter is either ready to fire, ready to inject, or neither. It can never be ready to
inject and fire at the same time.

33

" The filter cannot inject into a downstream filter because the downstream filter's

input buffer is full.

* The filter cannot fire because it does not have enough data elements (as specified

by the peek attribute).

Pseudocode for the timeToRun method is shown in program 4.

Correctness Argument

Program 4 shows how filters determine when they can perform some event. We

would like to be able to validate the correctness of the simulation. Our criterion is

that of temporal monotonicity: filter events should be non-decreasing. Here, an event

corresponds to either a filter firing or a filter injection. Thus, the simulation would

be faulty if it first processes a firing at t = 100, and then a firing at t = 50.

At first, this correctness is not obvious. It seems possible that two filters would

return -1 and 100 from their timeToRun methods. Thus, a firing would first occur

at t = 100. But then, after this occurs, what if the other filter returns t = 50 on

the next iteration. Then we would fire at t = 50 after we already fired at t = 100,

a violation of our correctness condition. In the following, I will show that this and

other violations cannot occur.

Lemma 4.1.1. Each filter has temporal monotonicity.

Proof. Each filter is in one of two states when its timeToRun method is called: waiting

for injection or waiting for firing. Because a filter's event is only run after it returns a

positive value from this method, we only need to look at the cases in which it returns

a positive value. If the filter is waiting to fire and returns a positive value, then this

value is at least as large as the last time the filter injected(see nextPushTime). Thus,

monotonicity is maintained for firings.

If the filter is waiting to inject and the method returns a positive value, then we

see that that the value it returns is at least as large as the previous firing comple-

tion time (not shown in the pseudocode), and the previous injection time (because

nextPushTime is non-decreasing). Thus, monotonicity is maintained for injections.

34

//nextPushTime previously set to the time this filter last
... finished firing

if (filter is still pushing output downstream)

I
if (canPushNextOutput()
{

if (waitForSpace)

{

}

//wait for the downstream filter
nextPushTime = Max(nextPushTime

... downStreamDoneCompTime ());
waitForRoom = false;

to finish firing

return nextPushTime;

}
else //can't push next output , don't know when we will be

... able to , return -1

I
waitForSpace = true;
return -1;

I

/check if we have enough elements to fire
if (buffer . size () >= filterDesc . getPeek ()

{
/if so, return the appropriate time based on data

... element times and previous completion of injections
return Max(buffer.getTimeAt(filterDesc . getPeek() - 1),

... nextPushTime);

I
else //don't have enough elements, and not sure when they

... will come in, so return -1

I
return -1; 7/ can't fire for indefinite time

7/ not enough data elements!

I

Program 4: Pseudocode for method timeToRun in class FilterVertex. The method
may return a negative value under two circumstances. The first occurs when the filter
must inject into an input buffer which is full. The second is occurs when the filter
cannot fire because it does not have enough elements in its own input buffer.

35

}
else

{

}

Thus, Monotonicity is maintained in both cases. El

Now we must only show that monotonicity is maintained between any two pairs

of different filters. Let the sequence of n simulation events occur at times t = el,

t = e2, ... , t= e,.

Theorem 4.1.2 (Simulation Correctness). Event e. occurs at the same time or

before ey in the simulation if y = x + 1.

Proof. This proof is by contradiction. Suppose y = x + 1 and that ex > ey, which

must exist if simulation correctness is disobeyed.

If there are no negative values returned by nextPushTime, we see that there can

be no out of order simulation events. This is due to lemma 4.1.1. Thus, the out of

order events must occur after some negative value is returned. There are two possible

cases:

" Not enough data elements to fire

In this case, we have a firing at t = ey (let the filter that fires at this point Fy)

and ey < ex, where y = x + 1. In the iteration in which event e, is run (let

the associated filter be F2, we know that filter Fy returns a negative value from

timeToRun due to lemma 4.1.1. If Fx injects enough elements for Fy to fire at

t = ex, then we know ex : ey which contradicts ex > ey. If Fx does not do this,

then there must be some event in between ex and e. which does inject into ey,

however this contradicts y = x + 1. Thus, there is some contradiction.

" Cannot inject into filled downstream input buffer

In this case, we have an injection at t = ey (let the filter that injects at this

point Fy) and ey < ex, where y = x + 1. In the iteration in which event ex is

run (let the associated filter be F2, we know that filter Fy returns a negative

value from timeToRun due to lemma 4.1.1. If Fx fires at t = er, then we know

ex < ey which contradicts ex > ey. If Fx does not do this, then there must be

some event in between ex and ey which does remove from the input buffer of

Fx, however this contradicts y = x + 1. Thus, there is some contradiction.

36

Both cases lead to a contradiction, so the initial assumption must be false. 1:1

4.1.5 Testing and Debugging

Testing and validation occurred in two major steps. First, simple test cases were used

as basic "sanity checks." A simple stream graph pipeline was created, as well as a

simple cluster graph. The processors were given no exogenous load, and static load

balancing was used. Once we output the resource mapping, we were able to calculate

the theoretical throughput of the system. When the system was run, its throughput

did converge to the theoretical steady-state throughput 4 .

The second step was the liberal use of Java assertions. For example, in the

InputBuf f er class, there is an assertion making sure that the elements in the buffer

are in correct temporal sorted order. The nextToRun method of the FilterVertex

class makes the most important assertion: it asserts that whenever a filter is run,

the corresponding time is greater than or equal to the previous run of a filter. This

assertion therefore provides empirical evidence for the correctness of the program,

fortifying the proof in section 4.1.4.

The graphical interface was also somewhat helpful during the testing and devel-

opment process. Viewing the stream graph on the screen allowed us to quickly verify

that the corresponding file had been parsed correctly.

4.2 The Market

The MarketRuntimeHandler class is an implementation of the RuntimeHandler in-

terface which is meant to be an adaptive, low-overhead resource mapping mechanism.

Currently, the implementation is a very simplistic subset of true computational mar-

ket complexities. Nonetheless, we feel it provides insights into how a multi-agent

system might help in resource allocation problems.

The market works as follows. The final vertex is given a revenue allotment of

4The convergence is due to the initial cost of having to fill up the input buffers prior to steady
state execution and the initial latency.

37

1 monetary unit. The final vertex then divides this revenue among its upstream

neighbors and its resource budget. For instance, if the final vertex has upstream

neighbors B and D, it could allot .4 to B, .5 to D, and .1 to its resource budget. This

continues until all filters have divided their revenues. Thus, B divides its .4 among

its upstream neighbors and a resource budget. This process can be seen in figure

4-4. Strategies on how exactly the agents split their revenues are determined by the

FilterAgent class and its subclasses.

Figure 4-4: Monetary distributions. Lettered boxes are filters. Green boxes represent

revenue distributions. Green boxes just above the filters are the associated resource

budget. The total sum of all the resource budgets will always add to the revenue

of the final vertex, which is arbitrarily set to 1 monetary unit. Revenue allocation

occurs in sequence from the final vertex upstream to the start vertex.

Once all filters have calculated their resource budgets, these are input into a

centralized market clearing mechanism. The market clearance is accomplished via

a greedy algorithm (see the getBestMapO method of the MarketRuntimeHandler

class) which uses the filters' resource budgets as indicators of priority. Thus, a filter

which allots twice as much to its resource budget as another would expect to be run

on a processor twice as fast as the other filter (or on a less loaded processor). Refer

to program 5 for code relating to the market clearance mechanism.

38

* A heuristic evaluation of a mapping based on market balancing.
* @param map The mapping of filter to resource (initial greedy selections)
* @return a score of how good the mapping is (the lower, the better)

private double evaluateMapping(Map<FilterVertex , PCVertex> map, double t)

{
final Collection <FilterAgent > agentCol = new LinkedHashSet<FilterAgent >()
for(FilterVertex v : map.keySet()
{

agentCol.add(filterAgents.get(v));
}

final Map<FilterAgent , Double> agentSpeedInMap = new LinkedHashMap<
... FilterAgent , Double>();

final Map<FilterAgent , Double> agentSpendingMap = new LinkedHashMap<
... FilterAgent , Double>();

//populate the agentSpeedInMap and agentSpendingMap mappings
for(FilterAgent a : agentCol)

{
//System. out. println(a + ". " + map. get (a. getFilterVertex()));
final double mySpeedInThisMap getSpeedInMap(map, a, t)

agentSpeedlnMap. put (a, mySpeedInThisMap);
agentSpendingMap . put (a, a. get ResourceBudget ());

}

final double agentSpeedMin = Collections.min(agentSpeednMap.values());

final double agent~pendingMin =Collections .min(agent~pendingMap. values())

double score = 0;

//calculate error sum of ratios
for(FilterAgent a : agentCol)

{
final double ri = agent~peedlnMap.get(a) / agent~peedMin;
final double r2 = agentSpendingMap.get(a) / agentSpendingMin;

final double diff = ri - r2;
score += diff*diff;

}

//calculate total processing speed of used processors
final double totalSpeed = Util .Sum(agentSpeedInMap.values());

//divide by total speed means we'll use more of the faster procs
final double result = score / (totalSpeed * totalSpeed * totalSpeed)

return result

}

Program 5: The evaluateMapping() method of the MarketRuntimeHandler class is
used in the greedy market clearing algorithm to determine the best greedy mapping
choice at each stage.

39

An astute reader might note a potential problem with this scheme. If the final

vertex allots almost all of its revenue to its own budget, then it will be of much higher

priority than any other filter, hindering global efficiency. Luckily, this is not a real

problem: even though each filter attempts to greedily maximize its own throughput,

it "knows" that it will surely perform poorly if its upstream neighbors rarely provide

input or if its downstream neighbors cannot handle its output (when their input

buffers fill).

The revenue distribution algorithm resides in the distributeRevenue method of

the Adapt iveFilterAgent class. The main metric agents use is the fraction of time

in the previous checkpoint spent waiting for data. If it is high, data is not coming in

fast enough, so the agent will lower its resource allocation, allowing upstream filters

to gain priority. It the fraction is too low, then the filter is likely to be not keeping up

with the influx of data elements. Thus, it increases its resource budget. More extreme

values of the data wait fraction will elicit greater budget changes, but only to a certain

extent. Agents are restricted in how much they can change their allocation at each

checkpoint in order to facilitate stability. Pseudocode for the revenue distribution is

shown in program 6 along with a description of the relevant parameters, OFFSET and

OFFSETSCALE.

While we have presented two specific policies for market clearance and revenue

distribution, there remain many other policies waiting to be explored. We hope to

explore other policies as well as the parameterization space of the current policies.

Please refer to chapter 6 for further discussion on possible avenues of future research.

4.2.1 Market Runtime Analysis

Let the stream graph have F filter nodes and the cluster graph have P processor

nodes. Then the runtime of the market clearance mechanism, as described above

is approximately O(PF2). This behavior is a consequence of the greedy algorithm.

At a high level, the algorithm has F iterations, each of which runs in order O(PF),

hence the total runtime behavior of O(PF2). This runtime seems reasonable, even

for relatively larger stream and cluster graphs. Nonetheless, we predict significant

40

oldResourceBudgetFrac = 0.5;

Function RevenueDistribution (revenue) returns resourceBudget
dataWaitFracOfCheckpointTime = dataWaitDuration /

... checkpointDuration ;
error = dataWaitFracOfCheckpointTime - OFFSET;
correction = error * OFFSET.SCALE;
resourceBudgetFrac oldResourceBudgetFrac - normalized (

... correction);
oldResourceBudgetFrac = resourceBudgetFrac;
return resourceBudgetFrac * revenue;

Program 6: Revenue distribution pseudocode. The code works by modifying the frac-
tion of its revenue which it allots to upstream inputs each checkpoint. The main metric
used here is the dataWaitFracOf CheckpointTime, the fraction of time in the previ-
ous checkpoint period spent waiting for input data. This method is parameterized
by two values, the OFFSET and the OFFSETSCALE. The OFFSET is the cutoff value for
the dataWaitFracOf CheckpointTime metric. If dataWaitFracOf CheckpointTime is
above OFFSET, the filter has spent too much time waiting. The OFFSET-SCALE deter-
mines how much the new fraction of input money to upstream filters can be modified
at each checkpoint.

room for improvements in this algorithm by using results from past runs or other

heuristics.

41

42

Chapter 5

Experiments and Results

It would not be feasible to search the entire parameter space of the StreamIt simula-

tor during experimentation. The layout of the stream graph along with the features

of the filters, the speed and load model of the processors, the runtime handler, as

well as several runtime handler related parameters can all be specified as inputs to

the simulator. Therefore, we concentrated on two major notions during the experi-

mentation process. First, the market ought to produce better throughput than the

StaticLoadBalancer, but not as good throughput as the DynamicLoadBalancer.

Secondly, we were interested in the complex and adaptive behavior of the economy

of agents. Is the market stable? How quickly does it react to catastrophic changes in

load? We pursue these questions in the following sections.

5.1 Testing Framework

The testing framework is a set of python scripts. These scripts run the StreamIt

Simulator on various inputs and accrue the results. In most cases, the python script

will generate some data which is read by a simple gnuplot script which plots the

results. Moreover, the simulator itself produces several plots each time it runs. These

plots contain single-execution behavior, such as the resource budget each filter sets

at each checkpoint in the MarketRunt imeHandler.

43

5.1.1 Experimental Parameters

The output and behavior of each simulator run is determined by the set of parameters

passed in. The relevant parameters include the stream graph, the cluster graph, the

runtime handler, revenue distribution parameters (only if using the market).

All experiments used the stream graph shown in program 7. The experiments also

use the same cluster graph as seen in program 3, except with varying load models

(refer to section ?? for a discussion on load models). None of the experiments change

the market clearance mechanism.

<?xml version=" 1.0" encoding=" iso -8859-1" ?>
<graph edgedefault=" directed">

<node id="1" name="VJ" FIRST-VERTEX="" />
<node id="2" name="V2" work=" 7" />
<node id="3" name-"V3" work="4" />
<node id="4" name="'V4" work=" 2" />
<node id="5" name-"V5" work="1" LASTNVERTEX="" />

source=" 1"
source=" 1"
source="2"
source="4"
source="3"

target="2"

target="3"

target="4"
target="5"

target=" 5"

/>
/>

</graph>

Program 7: The simple stream graph used in all experiments.

5.2 No Exogenous Load

In this experiment, our goal was to use a simple cluster graph with three processors

of varying speeds with no exogenous load. Such a setup allows us to study market

volatility (i.e., resource budgets, resource mappings, throughput) in a static environ-

ment. We also wanted to see how the throughput of the various runtime handlers

would compare in a static environment. We know the policy we have given each agent

44

<edge
<edge
<edge
<edge
<edge

(see program 6) is adaptive. When filters assess their local state, they will respond

with different resource budgets (interpreted as prices by the market clearer). Our goal

is to assess the macroscopic stability or volatility of these dynamics from checkpoint

to checkpoint.

This experiment used static load for all three processors. We ran the simulator

with the static and dynamic load balancers. We also performed a sensitivity anal-

ysis on the OFFSET and OFFSET-SCALE parameters of the MarketRuntimeHandler.

Throughput results are shown in table 5-11.

runtime handler throughput

static 1.1969
dynamic 1.1969
market (OFFSET=.2, OFFSETSCALE=.25) 1.0978

Figure 5-1: Results from the no exogenous load experiment.

The market, in terms of throughput, performs 91.7% as well as the other two

runtime handlers, for the two parameters which maximized its throughput. This

seems reasonable because the market has nothing to adapt to. Also, there will be some

startup, stabilization time at the start of the market before steady-state behavior.

Additionally, that the static and dynamic runtime handlers performed exactly the

same makes sense: when there is no exogenous load, these two policies perform almost

exactly the same.

A sensitivity analysis of the market parameters is shown in figure 5-2. From left

to right (varying OFFSET), there is a striking sensitivity. The best throughput values

occur close to OFFSET=.2. Recall that the OFFSET parameter determines a level of

satisfaction with a given input data waiting time. Therefore, one may view decreasing

values of OFFSET as increasing levels of "greed." If OFFSET=.5, then the agents are

content with waiting for data half the time. Performance will be poor because agents

will not react correctly to high data wait times. If OFFSET=0, then the agents are

only satisfied with no data waiting time. They will all spend all of their revenue on

resource budget, and performance will degrade. Thus, in this case, it appears that

Sensitivity Analysis of Market Parameters in Unloaded Processor Model

1

1.1

0.8
0.9

a 0.6 0.7

0.6

0.5
0 0.4 0.4

0.2

01 Y

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Offset

Figure 5-2: OFFSET and OFFSETSCALE sensitivity analysis for the market with no

exogenous load. The variables were modified in increments of .05. The color coding

shows the various levels of throughput.

46

OFFSET=.2 provides the right balance between greed and apathy.

From bottom to top (varying OFFSET-SCALE), one can make out similar patterns. If

OFFSET-SCALE=O, agents will never change their resource budgets, and thus the mar-

ket will not react to anything. If OFFSET-SCALE=1, the agents will be able to change

their resource budgets significantly at each checkpoint. This will hinder performance

due to unwieldy market volatility. Specifically, if the resource budgets change too

quickly, using the previous checkpoint period to speculate on the future will provide

poor results.

Figure 5-3 compares the resource budget values for the filters versus the checkpoint

number for two different combinations of market parameters. Figure 5-3(a) shows the

plot for the parameter combination which maximized throughput, while 5-3(b) shows

the plot for the parameter combination which produced very poor throughput. It is

interesting to note the regular, cyclic behavior in both of these plots. The second plot

displays immense volatility, as it comes from a high value of OFFSETSCALE. Because

the resource budget is a measure of filter priority, it makes sense that the right plot

would show immense volatility in the resource mappings generated by the market

clearance and that its performance is poor.

Figure 5-4 shows the same two market parameter combinations as above, but

graphs the time evolution of throughput in both cases. In 5-4(b), the volatility of

the resource mappings is manifest in the throughput volatility, and net throughput

is low. However, in 5-4(a), the market is able to maintain longer periods of higher

throughput. Thus, the net throughput is better than in the other case. Nonetheless,

there is still significant volatility in throughput considering the lack of exogenous

load. This phenomenon most likely relates to the brittle nature of the market clearing

mechanism, which makes no guarantees that a small change in resource budgets will

produce a "small" change to the resource mappings.

47

I
I
a
I

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

Q7

I
I
s

Tirre Variation of Resource Budget

VsV1
V4 --------

-V

-A

- -

4

0 100 200 300 400 500 S00 7

Checkpoint Number

(a) OFFSET=.2, OFFSET-SCALE=.25

ire Variation of Resouroe Budget

V5 -

0.5

(14

G.

0.2

0.1

0

0 100 200 300 400 500 600 700
Checkpoint Number

(b) OFFSET=.4, OFFSETSCALE=.95

Figure 5-3: Resource Budget versus checkpoint number for different market parameter
combinations

48

Throughput vs. Time

Total Throughput
Chockpolnt Throughput

- -l

tZ

0 100 200 300 400
Ch*ckpoint Nurnber

500 600 700

(a) OFFSET=.2, OFFSET.SCALE=.25

ThroughpLt vs. Time

0 100 200 300 400
Checkpoint Number

500 600 700

(b) OFFSET=.4, OFFSET.SCALE=.95

Figure 5-4: Throughput versus checkpoint number for different market parameter

combinations

49

1.4

1.2

e
0.6

(14

0.2 -'

0

a.7

0.6

0.5

0.4

S

S
9-

0.2

0 - ----

I
AMhPut

5.3 The Epsilon Parameter

After the experiments in 5.2, we wanted to see if there was some way to improve the

stability, and thus the throughput. To this end, we added an epsilon(E) parameter

to the revenue distribution policy of the agents. This parameter provides a "cush-

ion" around the OFFSET. Within this cushion, the agent will make no change to her

resource budget percentage of revenue. An updated view of the resource distribution

pseudocode is shown in program 8.

oldResourceBudgetFrac = 0.5;

Function RevenueDistribution(revenue) returns resourceBudget
dataWaitFracOfCheckpointTime = dataWaitDuration /

... checkpoint Duration;
error = dataWaitFracOfCheckpointTime - OFFSET;

if (abs(error) < EPSILON)
resourceBudgetFrac oldResourceBudgetFrac

else
correction = error * OFFSETSCALE;
resourceBudgetFrac oldResourceBudgetFrac -

... normalized(correction)
endif

oldResourceBudgetFrac = resourceBudgetFrac;
return resourceBudgetFrac * revenue;

Program 8: Revenue distribution pseudocode with E.

We used the same setup as that of the last experiment, and fixed OFFSET=.2,

OFFSET-SCALE=.25. Figure 5-5 shows a plot of throughput versus the E parameter. In

all previous experiments, effectively E = 0. Thus, we see that for small values of the

parameter, for .03 < 6 < .04, the throughput actually improves (and even does better

than the static and dynamic load balancers). For higher values of this parameter,

performance drops precipitously. When the parameter is small, the cushion provides

added stability without dramatically affecting the agent's preferences. However, when

E gets larger, agents will effectively become less particular about data wait times, and

50

the market will be less adaptive.

Sensitivity Analysis of Epsilon in Unloaded Prooessor Model

..

.

0.9
0.160.06 0.08

Epsilon

r the market withFigure 5-5: E sensitivity analysis fc
was modified in increments of .01.

0 0.02 0.04 0.1 0.12 0.14

no exogenous load. The variable

CL

I-

1.25

1.2

1. 15

1.1

1.05

0.

1

95

In order to get a better sense of the nature of varying E, we plotted execution

data for the runs with three different 6 values. The lowest values (c < 0.02) produced

throughput similar to when the parameter did not exist. The middle range (.03 <

E < 0.04) produced the best results, and the higher values (E > 0.05) produced poor

throughput results. In figure 5-6 we see plots of the resource budgets for the three

different values. Each displays qualitatively different behavior. Figure 5-6(a) looks

like the typical, cyclical behavior we have already studied in figure 5-3(a). In figure

5-6(b), however, the amplitude of budgetary fluctuations has dropped dramatically,

and the market ought to be much more stable. Figure 5-6(c) shows a market which is

too lax. It has reached a steady state in which all agents are content (even though its

corresponding throughput is not impressive). Because E is too high in this case, the

51

agents are not picky enough over their own performance, and thus global performance

degrades.

Figure 5-7 shows the effects of the e parameter on the throughput at each check-

point. We are now able to truly see the positive effects the 6 parameter can have

on the system in figure 5-7(b). Because of the added stability, the market clearance

does not make dramatically different resource mappings. Therefore, when the market

adapts and reaches a good mapping, it is able to retain this high throughput and

perform quite well. Figure 5-7(c) shows the embodiment of too little adaptability.

The market fails to improve upon a poorly performing resource mapping.

5.4 Singular Load Change

In this experiment, there is a simple load change in one of the processors. After

checkpoint 400, the processor with raw speed 8 has 5 exogenous processes. This

could model some abrupt change in the cluster environment, such as when another

user starts a large, time-consuming process on one of the machines. The other two

processors remain with the same static load. We run the three runtime handlers,

using the market parameters which produced the greatest throughput from the first

experiments (OFFSET=.2, OFFSETSCALE=.25). The static load balancer ought to

perform poorly in this case because it optimizes the resource mapping for a cluster

which will change dramatically. We expected the dynamic load balancer and market

to perform well, as they ought to be able to adapt to the changing environment.

Table 5-8 summarizes the results from this experiment. The dynamic load balancer

performed much better than the static load balancer, as expected. Surprisingly,

though, was the weak throughput measure while using the market. It's throughput

was actually lower than in the static case.

Figure 5-9 shows plots of the throughput measurements for the three runtime

handlers. Surprisingly, we see little market fluctuations in figure 5-9(a) after the

single processor load changes abruptly at checkpoint 400. We normally see a lot of

fluctuation in throughput as the market constantly adjusts itself.

52

Tim Varobotn of Raowue udgt

0.350,3

0.25

0 .2

0.1

0 100 200 300 400 500 600 700

Ctw*.pfit Numibm

(a) E = .01

Thmu Vailghonof u m udcs

0.4 - --

VI

V3

0.3.

02

0.15

01

0.00

0 100 200 300 4 00 000 00 700 Sao
Chedkpto Numbw

(b) E = .03

TIFM VchMec inn ub rdfUern c ale

0.4

0.35 --- 2

0.3
.. - ---

(..) .=. .. -.

Figure 5-6: Resource budget versus checkpoint number for different f values

53

1.4
Totd Thrau96A

s -ceas9Ip9.nt lN20ghpAt

1.2

s 08

1A

2

0.4

O L2 --- .- 4-- - - - -.. -- -- - - - - --

0 100 200 2 00 600 50 600 700
Chmocko Nwrm

(a) E = .01

ThrahpLA vs Tns
1.4 T T hroug0p -

C Irth hpLA

1.2 -_-_-_-_--_-__ -__

14
2

62- -

0 1 0 200 300 400 600 600 700 820

Checkpw*n Nurnbwr

(b) E = .03

1.4p r kTotp Thrm drpt a

1 .--.. ..

0 100 200 So0 400 Soo 000 700

(c)~ E 12

Figure 5-7: Throughput versus checkpoint number for different E values

54

runtime handler throughput

static 0.439410
dynamic 0.728940
market (OFFSET=.2, OFFSET-SCALE=.25) 0.326990

Figure 5-8: Results from the singular load change experiment

To get a better feel for what was going on inside the market, we plotted the

resource budget percentages in figure 5-10. Immediately, one can see the degenerate

nature of this run. All budget allocations quickly converge to either 0 or 1 after

checkpoint 400. What could cause such a situation? We see that the final vertex V5

passes on all of its revenue to its upstream neighbors. Thus, it has a resource budget

of 0. Despite it giving itself low priority, it spends very little time waiting for inputs.

Filter V2 and V3 , however, consume the entire revenue pool as each has a budget of

2. They are the top priority filters, yet they spend much of their time waiting for

inputs.

We tracked down the issue to the greedy market clearance mechanism. It turned

out that the greedy version had some poor properties. Because the algorithm does

not explore the entire resource mapping space, of course it will not always return the

"optimal" solution1 . More importantly, the algorithm does not guarantee fairness.

Here, fairness means that if filter A's resource budget is greater than filter B's, then

filter A runs at least as fast as filter B 2 .

We hypothesize that the fairness property provides for the feedback which main-

tains stability in the market. That is, when there is fairness, resource budgets of

the agents converge to certain values. Agents who have low data wait times (below

OFFSET) increase their resource budget, and agents who have high data wait times

decrease their budgets. After this budget change happens for several checkpoints

'Here, the optimal solution is the one which minimizes the difference between the ratio of the
filters' speeds in the mapping and the ratios of the filters' resource budgets. There is also a small
factor which tries to make sure the allocation takes advantage of fast processing resources.

2We must be careful about what "speed" means. Here, it means that the raw speed of the
processor, divided by sum of the total number of filters on the processor and the exogenous processes.
Thus, speed = R E, where R is the raw speed, F is the number of filters on the processor, and E
is the number of exogenous processes.

55

ThughpA vs Time

1.4 1 1 .

1.2

3 28

me

0.4

0 .2 -. -.. - - --- - .--- .----- - .-

a 200 400 S0o oo 1000 1200 1400 1600 1800 2000
Checkpoint Nwtb

(a) market

ThioughpLA vs. Tm
1.4

Tom -rhroghput'

1.2

-. --. -14 - -

a2

0 200 400 000 600 1000 1200 1400 1600 1800 200
CheckpointNwur

(b) static

1.4 T T 2)1

2 - - -

12 -- - - - -

0 200 400 600 600 1200 1200 1400 1800 1800
Checkpooitt N- -

(c) dynamic

Figure 5-9: Throughput plots for the different runtime handlers responding to singular
load change

56

w

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

01

Resource Budgt Percent of Revenue at each Checkpoint

V6
V1

V2 ------
1 V3

.

.. -- - ---- ----- -----

0

---.-----.......------ -- ---------

-- --------..........----------?- ---------.........---------............

...... -----

-. -.

-- --- -- ---- --- -- ---- -- -

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Checkpoint Number

Figure 5-10: Resource budget percentage of revenue for market runtime handler with

singular load change

57

V!

n-

A

(and when the exogenous load does not change and the market clearance mechanism

is fair), feedback occurs in the form of a different resource allocation. After this point,

resource budgets start to change in the opposite direction. This is the nature of the

stable, yet fluctuating market.

5.5 Singular Load Change (Brute force)

In order to test our aforementioned hypothesis that market clearance fairness pro-

vides feedback and thus stability, we reran the singular load change experiment with

brute force runtime handlers. These runtime handlers search through the entire re-

source mapping space to pick the one which suits the particular policy the best. We

see in figure 5-11 that the brute force market performs much better than the brute

force static load balancer, and just slightly worse than the brute force dynamic load

balancer. The market's throughput is approximately 91.98% of the dynamic load

balancer's throughput.

Figure 5-11: Results from the singular load change experiment (brute force)

Our hypothesis seems to be supported by the following figures. In figure 5-12(a),

we see that throughput fluctuates after checkpoint 400 unlike figure 5-9(a). More

importantly, we do not see the rapid movement to 0 and 1 in the resource budget plot

of figure 5-13. The agents' resource budgets continue to fluctuate after the market

shock, maintaining adaptability. Moreover, the movement to the new stable regime

seems to occur by checkpoint 420, which is a relatively quick adaptation to the new

market condition.

With the current system, we suspect that the greedy market clearance algorithm is

much less robust than the brute force version (not taking into account its cormbinato-

58

runtime handler throughput
static 0.439410
dynamic 0.849490
market (OFFSET=.2, OFFSETSCALE=.25) 0.78134

Throgputw Th.
1.4 Put hig~

12

0.4

0.2

0 50 1000 1600 mo00 so
Cha oint Numw

(a) market (brute force)

ThgWhpd . Tim

1-2

2.6

M4

O2

1.2

1

IL6

(24

C2

0 200 400 600 800 1000 100 1400 1600 1800 20
Chedqxwt Nuffi

(b) static (brute force)

Thro40hpA vs "ow

S 06 1000 1500
Chck id Nuter

(c) dynamic (brute force)

10

2000 200

Figure 5-12: Throughput plots for the different runtime handlers responding to sin-

gular load change

59

TOW MTf

Kh~Pi hz

cOOdIPOIOI ThowgilpaA

.7.

Resource Budget Percent of Revenue ateach Checkpoint

1V

0.9 -............... - .. 4 ---- -
V 2

V3

0.8 --------

0.6

"a.

0.3 -.. -...

0.2

0.1
0 500 1000 1500 2000 2500

Checkpoint Number

Figure 5-13: Resource budget percentage of revenue for market runtime handler with
singular load change

60

rial overhead time). It just so happened that with our original processor speeds tested

in section 5.2, the greedy market clearance algorithm was able to provide fairness.

However, the speeds which resulted after the shock did not allow for this.

61

62

Chapter 6

Future Work

There still exist multiple facets of this research which we wish to explore further.

First of all, we would like to make sure that our StreamIt simulation tool truly

simulates StreamIt cluster computations accurately. One way to accomplish this is

to run an actual computation on a cluster, prepare the corresponding stream graph

and cluster graphs, and run the simulation. If the results are not satisfactory, we have

outlined several possible reasons in section 4.1.3. We foresee the most significant of

these to be ignoring overhead, network latency, and instruction-level effects. Network

latency will be the easiest of the three to include in the simulation. This will simply

involve setting up latency models analogous to processor load models, and including

these effects when filters fire. If we can construct Java models of overhead-related

calculations, and a unified method for estimating running times of the Java code,

then we should be able to include overhead effects seamlessly with the rest of the

simulation. Finer-grained simulation may also improve accuracy. Such additions

could include a cache-model, or a more complete and accurate model of the operating

system's process scheduler. Currently, we use a very simple round-robin scheduler

estimate in our simulation.

There also exists significant latitude in changing the market structure of the dy-

namic load balancer. Currently, we only use one market agent algorithm at a time.

We could certainly add heterogeneity to the system by including agents with differ-

ent parameters at the same time. Moreover, we should explore different classes of

63

agents entirely. These agent may be more complex in various ways. Firstly, they may

use more variables than the current agents in determining how to distribute revenue.

These agents may actually evolve in response to their own performance and the be-

haviors of others. Agents that perform poorly can be removed from the system in

order to try out newer, possibly better policies. Another idea is to let agents store

memories of their and other agents' past actions, and use this history information in

making decisions.

A rather arbitrary constraint in the current system is that the agents must di-

vide their leftover revenue (after deducting the resource budget) equally among its

upstream neighbors. However, this seems like a poor decision if one of the upstream

branches requires little computation compared to the other. One way to possibly

change this policy would be to calculate the percentage of inputs which come from the

different upstream neighbors. The agent could allot greater funds to those branches

which provide fewer inputs, thus allowing this weaker branch to gain greater compu-

tational resources and produce data elements faster.

Another possible future avenue of research would involve changing the market

clearance mechanism There are probably many different ways of doing it than the

way we have done. Moreover, we could foresee changing the market structure entirely.

The current system is highly simplistic. Agents do not maintain currency or make any

sort of trades among themselves, nor do we allow for explicit communication among

them. Adding such features would certainly add interesting facets of complexity to

the system.

Finally, the efficacy of this dynamic load-balancing mechanism will not be truly

confirmed until it is actually implemented and tested on an actual StreamIt cluster

computation. Such work would involve modifying the current cluster runtime libraries

of StreamIt effectively adding a market layer on top of the current implementation.

64

Chapter 7

Conclusion

Throughout this paper, we have outlined a significant body of work on improving

the runtime efficiency of StreamIt cluster computations while processing nodes are

loaded to varying degrees. In order to easily study such runtime mechanisms, we

have implemented a simulator for StreamIt which includes several different runtime

handlers. We have built a graphical interface on top of this simulator to visually

study the effects of the different runtime handling.

We have designed and implemented a market-like structure, modeling filters as

agents which distribute revenue based on local metrics. These agents work together

to adaptively configure the resource allocations. This market outperforms a static

load-balancing technique which does not adapt to changes in load. It underperforms

a more powerful technique, although we suspect markets to have lower overhead than

such techniques in the real world.

In [5], the authors mention that dynamic load-balancing is an exciting area for

future research. While their focus is more on using StreamIt for graphics processing,

we nonetheless hope that this work provides at least a proof of concept for the utility

of dynamic load-balancing.

While the work done in this thesis is specific to the StreamIt language, our hope

is that it also provides an interesting case study in the more general field of complex

adaptive systems. Our market-like system includes multiple agents acting (mostly)

on their own behalf, with incomplete knowledge of the entire system, yet they are able

65

to interact in such a way that the entire system performs more efficiently. Because

each filter's throughput performance depends on the performance of the other filters,

agents must cooperate. They must balance the desire for local optimization with the

needs of the other agents.

66

Appendix

StreamIt Simulator Javadocs

67

A

A.1 Package runtime.market

Package Contents Page

Interfaces
A g e n t ... 6 8

Agent is the interface for all types of Agents

MarketRuntimeHandler.AgentFunction 69
An AgentFunction takes in an agent and returns a T.

Classes
A dapt iveF ilterA gent...69

AdaptiveFilterAgent is a FilterAgent which makes distribution decisions
based on how it has done in the past.

F ilterA gen t 71
The FilterAgent class represents agents acting on behalf of the various filters
in the Streamlt computation.

M arketR untim eH andler ... 77
The MarketRuntimeHandler implements RuntimeHandler.

MarketRuntimeHandler.AgentData.............. 83
Inner class which helps collect agent data for plots at each checkpoint

R esourceA gent ... 84
A ResourceAgent represents a processor in the marketplace.

A.1.1 Interface Agent

Agent is the interface for all types of Agents

Declaration

public interface Agent

All known subinterfaces

FilterAgent (in A.1.4, page 71), ResourceAgent (in A.1.7, page 84), AdaptiveFilterAgent
(in A.1.3, page 69)

All classes known to implement interface

FilterAgent (in A.1.4, page 71), ResourceAgent (in A.1.7, page 84)

Method summary

notifyCheckpoint (double)

Methods

* notifyCheckpoint
void notifyCheckpoint(double t)

68

A.1.2 Interface MarketRunt imeHandler.AgentFunct ion

An AgentFunction takes in an agent and returns a T.

Declaration

private static interface MarketRuntimeHandler.AgentFunction

Method summary

getValue(FilterAgent)

Methods

* getValue
java.lang.Object getValue(FilterAgent a)

A.1.3 Class AdaptiveFilterAgent

AdaptiveFilterAgent is a FilterAgent which makes distribution decisions based on how it
has done in the past. A Filter F is in one of 3 states: 1. Working (t = W) 2. Waiting for
input (t = dW) 3. Waiting for downstream buffers (t = bW) Let T be the duration of the
previous checkpoint, then: idleTime = T - W If idleTime is very low, spend less on proc
Otherwise: If dW is high, spend less on proc (give more money to upstream) If bW is high,
spend less on proc

Declaration

public class AdaptiveFilterAgent
extends runtime.market.FilterAgent (in A.1.4, page 71)

Field summary

OFFSET
OFFSET-SCALE

Constructor summary

AdaptiveFilterAgent (MarketRuntimeHandler, FilterVertex, double,
double) Construct the AdaptiveFilterAgent

Method summary

distributeRevenue() This method represents implementation of the strategy
of the agent.

69

Fields

* private final double OFFSET

* private final double OFFSETSCALE

Constructors

* AdaptiveFilterAgent
public AdaptiveFilterAgent(MarketRuntimeHandler h, sim.FilterVertex fv,
double offset, double offset-scale)

- Description

Construct the AdaptiveFilterAgent

Methods

* distributeRevenue
protected void distributeRevenue()

- Description

This method represents implementation of the strategy of the agent. It allocates
the agent's revenue among who it buys resources from.

Members inherited from class runtime .market .FilterAgent (in A.1.4, page 71)
9 public static void calcDataPrice(FilterAgent fav)
9 private void calcPrices()
* private boolean checkChildren()
* protected checkpointTime
* private childrenCalc
* private void clearCheckpointVars()
* private dataCost
* protected dataPrices
* private dataRev
9 protected dataWaitTime
0 protected abstract void distributeRevenue()
* private static void doSale(FilterAgent firer, FilterAgent buyer)
* protected final filterVertex
9 protected FilterAgent getAgent(sim.FilterVertex firer)
9 public double getBudgetPct()
* public double getCheckpointTime()
* private double getDataPrice(FilterAgent firer)
* public Map getDataPrices()
& public double getDataWaitTime()
9 public FilterVertex getFilterVertex()
* public double getIdleTime()
e public double getNumberPushed()

70

" public double getResourceBudget()

" protected double getRevenue()

" private lastCheckpointTime

" private lastDataWaitTime

" private lastPush

" private lastWorkTime

* public void notifyCheckpoint(double t)

" public void notifyDataWait(double time)

" public void notifyDoneCheckpoint()

" public void notifyFire(double time)

" public void notifyInject(sim.FilterVertex firer)

" private numInjected

" private numPush

" protected oldDataPrices

" protected oldResourceMoney

" private resourceMoney

" private final runtime

" private void saveCheckpointVars()

" public String toString()

" protected workTime

A.1.4 Class FilterAgent

The FilterAgent class represents agents acting on behalf of the various filters in the Streamlt

computation. Each of these agents decides how to allocate its revenue among incoming data

elements and resource costs.

Declaration

public abstract class FilterAgent

extends java.lang.Object

implements Agent, sim.FilterListener

All known subclasses

AdaptiveFilterAgent (in A.1.3, page 69)

71

Field summary

checkpointTime
childrenCalc Number of children calculated already in this price calculation
dataCost
dataPrices Maps incoming vertices' agents into prices
dataRev
dataWaitTime Time waiting for input during checkpoint
filterVertex The vertex this agent represents
lastCheckpointTime
lastDataWaitTime
lastPush
lastWorkTime
numInjected Number of elements injected into this filter during checkpoint
numPush Number of elements pushed during checkpoint
oldDataPrices The old value of dataPrices (previous checkpoint)
oldResourceMoney The old value of resourceMoney (previous checkpoint)
resourceMoney How much to allocate to processor
runtime The global market
workTime Time worked during checkpoint

Constructor summary

FilterAgent (MarketRuntimeHandler, FilterVertex) Construct a Filter-
Agent

Method summary

calcDataPrice(FilterAgent) Calculate the data prices for this economy
calcPrices() Recursively calculate data prices for the different transactions.
checkChildren() Check to see if children's data prices have been calculated

yet
clearCheckpointVars() Clear variables which accumulate during each check-

point
distributeRevenue() This method represents implementation of the strategy

of the agent.
doSale(FilterAgent, FilterAgent)
getAgent(FilterVertex) Return the agent working on behalf of the given

FilterVertex in this economy
getBudgetPct() Return what percentage of this agent's income goes to pro-

cessing power
getCheckpointTime()
getDataPrice(FilterAgent) Return the price this agent has set for the data

from firer
getDataPrices() Return aAn unmodifiable view of the data prices for this

agent's children
getDataWaitTime() Return how long this filter was waiting for input during

the last checkpoint
getFilterVertex() Return the FilterVertex this agent works for

72

getIdleTimeo Return how long this filter was idle during the last checkpoint
getNumberPushed() Return how many elements this filter pushed out dur-

ing the last checkpoint
getResourceBudget() Return how much this agent will spend on processing

power
getRevenue() Get average revenue per firing of the filter.
notifyCheckpoint (double)
notifyDataWait (double) Increment dataWaitTime
notifyDoneCheckpoint()
notifyFire(double) Increment numPush and workTime at each firing
notifyInject(FilterVertex) Increment numInjected
saveCheckpointVars() Copy previous checkpoint values to "old" variables
toStringo

Fields

" private final MarketRuntimeHandler runtime

- The global market

" protected final sim.FilterVertex filterVertex

- The vertex this agent represents

" protected java.util.Map dataPrices

- Maps incoming vertices' agents into prices

" protected java.util.Map oldDataPrices

- The old value of dataPrices (previous checkpoint)

" protected double oldResourceMoney

- The old value of resourceMoney (previous checkpoint)

" private int childrenCalc

- Number of children calculated already in this price calculation

" private double resourceMoney

- How much to allocate to processor

" private int numPush

- Number of elements pushed during checkpoint

" private int numInjected

- Number of elements injected into this filter during checkpoint

" protected double workTime

- Time worked during checkpoint

" protected double dataWaitTime

73

- Time waiting for input during checkpoint

" private double dataRev

* private double dataCost

" protected double checkpointTime

* private double lastCheckpointTime

" private double lastWorkTime

" private double lastDataWaitTime

" private int lastPush

Constructors

* FilterAgent
public FilterAgent(MarketRuntimeHandler h, sim.FilterVertex fv)

- Description

Construct a FilterAgent

- Parameters

* h - The market handling the resource management

* fv - The FilterVertex this agent works for

Methods

* calcDataPrice
public static void calcDataPrice(FilterAgent fav)

- Description

Calculate the data prices for this economy

" calcPrices
private void calcPrices()

- Description

Recursively calculate data prices for the different transactions. Sets the dat-
aPrices and resourceMoney fields of each filter agent.

" checkChildren
private boolean checkChildren()

- Description

Check to see if children's data prices have been calculated yet

* clearCheckpointVars
private void clearCheckpointVars()

74

- Description

Clear variables which accumulate during each checkpoint

" distributeRevenue
protected abstract void distributeRevenue()

- Description

This method represents implementation of the strategy of the agent. It allocates
the agent's revenue among who it buys resources from.

" doSale
private static void doSale(FilterAgent firer, FilterAgent buyer)

" getAgent
protected FilterAgent getAgent(sim.FilterVertex firer)

- Description

Return the agent working on behalf of the given FilterVertex in this economy

" getBudgetPct
public double getBudgetPct()

- Description

Return what percentage of this agent's income goes to processing power

" getCheckpointTime
public double getCheckpointTime()

" getDataPrice
private double getDataPrice(FilterAgent firer)

- Description

Return the price this agent has set for the data from firer

" getDataPrices
public java.util.Map getDataPrices()

- Description

Return aAn unmodifiable view of the data prices for this agent's children

" getDataWaitTime
public double getDataWaitTime()

- Description

Return how long this filter was waiting for input during the last checkpoint

" getFilterVertex
public sim.FilterVertex getFilterVertex()

- Description

Return the FilterVertex this agent works for

75

" getldleTime

public double getIdleTime()

- Description

Return how long this filter was idle during the last checkpoint

" getNumberPushed

public double getNumberPushed()

- Description

Return how many elements this filter pushed out during the last checkpoint

" getResourceBudget

public double getResourceBudget()

- Description

Return how much this agent will spend on processing power

" getRevenue

protected double getRevenue()

- Description

Get average revenue per firing of the filter. This calculation depends on the

data prices set by the downstream filters, and this filter's push value.

" notifyCheckpoint

void notifyCheckpoint (double t)

" notifyDataWait

public void notifyDataWait(double time)

- Description

Increment dataWaitTime

" notifyDoneCheckpoint
public void notifyDoneCheckpoint ()

" notifyFire

public void notifyFire(double time)

- Description

Increment numPush and workTime at each firing

" notifyInject
public void notifylnject(sim.FilterVertex firer)

- Description

Increment numInjected

" saveCheckpointVars

private void saveCheckpointVars()

76

- Description

Copy previous checkpoint values to "old" variables

* toString
public java.lang.String toString()

A.1.5 Class MarketRuntimeHandler

The MarketRuntimeHandler implements RuntimeHandler. It works by taking the resource
budgets of the individual filter agents, and clearing the market for global efficiency.

Declaration

public class MarketRuntimeHandler
extends java.lang.Object
implements runtime.RuntimeHandler

Field summary

checkpointNum
checkpointNums
checkpointThroughputHistory
desc The computation descriptor
filterAgents The agents for filters
genericAgentDataHistory
lastOutputs
lastOutputTime
loadHistory
OFFSET Offset param for adaptive filter agents
OFFSETSCALE Offset-scale param for adaptive filter agents
outFile
plotter
resourceAgents The agents for the resources (not currently used)
resourceCostHistory
resourceMap The current resource allocation
rht
sim The Simulator
throughputHistory
WINDOW

Constructor summary

MarketRuntimeHandler(Simulator, StreamItComputationDescriptor,
double, double, Simulator.rhType) Creates the runtime handler for the
given computation

77

Method summary

appendDataFile(double)
checkpoint(double) Clears the market, setting up the resource mapping
clearMarket(double) Use the resource allotment of each filter agent to create

the resource mapping
createAgents() Allocate private the resource maps
doPlots() Actually write the appropriate octave scripts to plot to the file
evaluateMapping(Map, double) A heuristic evaluation of a mapping based

on market balancing balancing.
evaluateMappingBruteForce (Map, double) A heuristic evaluation of a

mapping based on market balancing balancing.
finished() Write the plots and close the file
genericDataUpdate(double) Call at each checkpoint to update data for

plots
getAvg(int)
getBestMap(double) Get the best mapping based on the one which evaluates

to the lowest score
getBestMapBruteForce(double) Get the best mapping based on the one

which evaluates to the lowest score (brute force)
getBestPCV(double, FilterVertex, Map)
getFilterAgent(FilterVertex) Get the FilterAgent associated with firer in

this market
getFilterAgentso Get all FilterAgents in the market
getMappingso Return a set of all possible resource mappings
getSpeedInMap(Map, FilterAgent, double) Get the predicted speed of

the FilterAgent in the given at the given time
loadHistory(double) Update load history
notifyCheckpoint(double) Notify the agents of a checkpoint
notifyDoneCheckpoint 0
orderAgentso Order the vertices in descending order of resource budget for

their associated agent
resourceCostHistory(double) Update resource cost history
runMarket (double) Runs the market clearing mechanism at the given time
throughputHistory(double)
writeSummary(PrintStream, int) Write octave code to display a through-

put summary across repititions of the simulation

Fields

" private final sim.desc.StreamItComputationDescriptor desc

- The computation descriptor

" private final sim.Simulator sim

- The Simulator

" private java.util.Map resourceMap

- The current resource allocation

78

" private final java.util.Map filterAgents

- The agents for filters

" private final java.util.Map resourceAgents

- The agents for the resources (not currently used)

" private final runtime.Plotter plotter

" private final java.io.PrintWriter outFile

" private final java.util.List checkpointNums

" private final java.util.List throughputHistory

" private final java.util.List checkpointThroughputHistory

" private final java.util.Map resourceCostHistory

" private final java.util.Map loadHistory

" private final java.util.Set genericAgentDataHistory

" private final double OFFSET

- Offset param for adaptive filter agents

" private final double OFFSETSCALE

- Offset-scale param for adaptive filter agents

" private final sim.Simulator.rhType rht

" private int checkpointNum

" private long lastOutputs

" private double lastOutputTime

" private static int WINDOW

Constructors

* MarketRuntimeHandler

public MarketRuntimeHandler(sim.Simulator theSim, sim.desc.StreamItComputationDesi

theDesc, double offset, double offset-scale, sim.Simulator.rhType rht)

- Description

Creates the runtime handler for the given computation

- Parameters

* descriptor - The computation descriptor

79

Methods

" appendDataFile
private void appendDataFile(double t)

" checkpoint
public java.util.Map checkpoint(double time)

- Description

Clears the market, setting up the resource mapping

* clearMarket
private void clearMarket(double t)

- Description

Use the resource allotment of each filter agent to create the resource mapping

" createAgents
private void createAgents()

- Description

Allocate private the resource maps

" doPlots
private void doPlots()

- Description

Actually write the appropriate octave scripts to plot to the file

* evaluateMapping
private double evaluateMapping(java.util.Map map, double t)

- Description

A heuristic evaluation of a mapping based on market balancing balancing.

- Parameters

* map - The mapping of filter to resource

- Returns - a score of how good the mapping is (the lower, the better)

" evaluateMappingBruteForce
private double evaluateMappingBruteForce(java.util.Map map, double t
)

- Description

A heuristic evaluation of a mapping based on market balancing balancing.

- Parameters

* map - The mapping of filter to resource

- Returns - a score of how good the mapping is (the lower, the better)

" finished
public void finished()

80

- Description

Write the plots and close the file

* genericDataUpdate
private void genericDataUpdate(double t)

- Description

Call at each checkpoint to update data for plots

- Parameters

* t - The time

" getAvg
private double getAvg(int window)

" getBestMap
private java.util.Map getBestMap(double t)

- Description

Get the best mapping based on the one which evaluates to the lowest score

" getBestMapBruteForce
private java.util.Map getBestMapBruteForce(double t)

- Description

Get the best mapping based on the one which evaluates to the lowest score
(brute force)

" getBestPCV
private sim.PCVertex getBestPCV(double t, sim.FilterVertex fN, java.util.Map
startMap)

" getFilterAgent
public FilterAgent getFilterAgent(sim.FilterVertex firer)

- Description

Get the FilterAgent associated with firer in this market

" getFilterAgents
public java.util.Collection getFilterAgents()

- Description

Get all FilterAgents in the market

" getMappings
private java.util.Set getMappings()

- Description

Return a set of all possible resource mappings

- Returns -

81

* getSpeedInMap
private double getSpeedInMap(java.util.Map map, FilterAgent a, double

t)

- Description

Get the predicted speed of the FilterAgent in the given at the given time

- Parameters

* map - The resource map

* a - The agent

* t - The time (used to look at processor load)

- Returns - the predicted time

" loadHistory
private void loadHistory(double t)

- Description

Update load history

- Parameters

* t - The time

" notifyCheckpoint
private void notifyCheckpoint(double t)

- Description

Notify the agents of a checkpoint

" notifyDoneCheckpoint
private void notifyDoneCheckpoint()

" orderAgents
private java.util.List orderAgents()

- Description

Order the vertices in descending order of resource budget for their associated

agent

" resourceCostHistory
private void resourceCostHistory(double t)

- Description

Update resource cost history

- Parameters

* t - The time

" runMarket
private void runMarket (double time)

82

- Description

Runs the market clearing mechanism at the given time

- Parameters

* time - The time we are clearing the market

" throughputHistory

private void throughputHistory(double t)

" writeSummary

public void writeSummary(java.io.PrintStream file, int rep)

- Description

Write octave code to display a throughput summary across repititions of the

simulation

A.1.6 Class MarketRuntimeHandler.AgentData

Inner class which helps collect agent data for plots at each checkpoint

Declaration

private class MarketRuntimeHandler.AgentData

extends java.lang.Object

Field summary

dataMap All the data

func The AgentFunction which gets the data

name
yAxis

Constructor summary

MarketRuntimeHandler.AgentData(String, String, MarketRuntime-
Handler.AgentFunction) Construct an AgentData object

Method summary

getData() Return an unmodifiable view of the data

getName()
getYAxis()
update() Call at each checkpoint to update the data

Fields

" private final java.lang.String name

" private final java.lang.String yAxis

83

* private final MarketRuntimeHandler.AgentFunction func

- The AgentFunction which gets the data

" private final java.util.Map dataMap

- All the data

Constructors

* MarketRuntimeHandler.AgentData
public MarketRuntimeHandler.AgentData(java. lang. String name, java. lang. String
yAxis, MarketRunt imeHandler. AgentFunct ion function)

- Description

Construct an AgentData object

- Parameters

* name - Name of the plot

* yAxis - Text for the y axis label

* function - The AgentFunction

Methods

" getData
public java.util.Map getData()

- Description

Return an unmodifiable view of the data

" getName
public java.lang.String getName()

" getYAxis
public java.lang.String getYAxis()

" update
public void update()

- Description

Call at each checkpoint to update the data

A.1.7 Class ResourceAgent

A ResourceAgent represents a processor in the marketplace. Currently, it does nothing.

Declaration

public class ResourceAgent
extends java.lang.Object
implements Agent

84

Field summary

PCVertex

Constructor summary

ResourceAgent(PCVertex)

Method summary

notifyCheckpoint (double)

Fields

* private final sim.PCVertex PCVertex

Constructors

* ResourceAgent
public ResourceAgent(sim.PCVertex pcv)

Methods

e notifyCheckpoint
void notifyCheckpoint (double t)

A.2 Package runtime

Package Contents

Interfaces
RuntimeHandler

The RuntimeHandler determines the mapping of
the cluster

...........................
StreamIt filters to PCs in

Classes
D ynam icLoadB alancer .. 86

Finds the near-optimal resource allocation.

P lo tter .. 88
The Plotter class is useful for writing octave scripts from java data structures.

StaticLoadBalancer .. 90
Finds the near-optimal static resource allocation.

StaticRuntim eHandler ... 92
A simple RuntimeHandler.

A.2.1 Interface RuntimeHandler

The RuntimeHandler determines the mapping of StreamIt filters to PCs in the cluster

85

Page

...85

Declaration

public interface RuntimeHandler

All known subinterfaces

MarketRuntimeHandler (in A.1.5, page 77), StaticLoadBalancer (in A.2.4, page 90), Stati-
cRuntimeHandler (in A.2.5, page 92), DynamicLoadBalancer (in A.2.2, page 86)

All classes known to implement interface

MarketRuntimeHandler (in A.1.5, page 77), StaticLoadBalancer (in A.2.4, page 90), Stati-
cRuntimeHandler (in A.2.5, page 92), DynamicLoadBalancer (in A.2.2, page 86)

Method summary

checkpoint (double) Creates the initial resource allocation mapping
finishedo
writeSummary(PrintStream, int)

Methods

" checkpoint
java.util.Map checkpoint(double time)

- Description

Creates the initial resource allocation mapping

- Parameters

* computation - The Streamlt computation description

- Returns -

" finished
void finished()

" writeSummary
void writeSummary(java.io.PrintStream file, int rep)

A.2.2 Class DynamicLoadBalancer

Finds the near-optimal resource allocation.

Declaration

public class DynamicLoadBalancer
extends java.lang.Object
implements RuntimeHandler

86

Field summary

bestMapping The resource map that is most statically load-balanced
desc The Streamlt computation descriptor

Constructor summary

DynamicLoadBalancer(StreamItComputationDescriptor)

Method summary

checkpoint (double)
evaluateMapping(Map, double) A heuristic evaluation of a mapping based

on load balancing.
finishedo
getBestMap(double) Get the best mapping based on the one which evaluates

to the lowest score
getBestPCV(FilterVertex, Map, double)
getMappings() Return all possible resource mappings
getTotalWork(Map, PCVertex) Get total work needed in the given re-

source mapping at the given processor
orderFiltersO Order the vertices in descending order of work
writeSummary(PrintStream, int)

Fields

" private final sim.desc.StreamItComputationDescriptor desc

- The StreamIt computation descriptor

" private java.util.Map bestMapping

- The resource map that is most statically load-balanced

Constructors

e DynamicLoadBalancer
public DynamicLoadBalancer(sim.desc.StreamItComputationDescriptor desc
)

Methods

e checkpoint
java.util.Map checkpoint(double time)

- Description copied from RuntimeHandler (in A.2.1, page 85)
Creates the initial resource allocation mapping

- Parameters

* computation - The Streamlt computation description

- Returns -

87

" evaluateMapping

private double evaluateMapping(java.util.Map map, double t)

- Description

A heuristic evaluation of a mapping based on load balancing.

- Parameters

* map - The mapping of filter to resource

- Returns - a score of how good the mapping is (the lower, the better)

" finished
void finished()

" getBestMap
private java.util.Map getBestMap(double t)

- Description

Get the best mapping based on the one which evaluates to the lowest score

" getBestPCV

private sim.PCVertex getBestPCV(sim.FilterVertex fv, java.util.Map startMap,
double t)

" getMappings

private java.util.Set getMappings()

- Description

Return all possible resource mappings

" getTotalWork
private double getTotalWork(java.util.Map map, sim.PCVertex v)

- Description

Get total work needed in the given resource mapping at the given processor

" orderFilters
private java.util.List orderFilters()

- Description

Order the vertices in descending order of work

* writeSummary

void writeSummary(java.io.PrintStream file, int rep)

A.2.3 Class Plotter

The Plotter class is useful for writing octave scripts from java data structures. When
executing the octave script, the output is plots.

88

Declaration

public class Plotter
extends java.lang.Object

Field summary

fileName Name of the file to output the plot to
out The output stream

Constructor summary

Plotter(PrintWriter, String) Construct a Plotter

Method summary

octaveVector(List) Produce a vector in octave format given a list of data
writePlot(String, String, String, List, Map) Write a plotting script

Fields

" private final java.io.PrintWriter out

- The output stream

" private final java.lang.String fileName

- Name of the file to output the plot to

Constructors

* Plotter
public Plotter(java.io.PrintWriter writer, java.lang.String Name)

- Description

Construct a Plotter

- Parameters

* writer - The stream to write the script to

* Name - File the script creates when executed

Methods

" octaveVector
private static java.lang.String octaveVector(java.util.List data)

- Description

Produce a vector in octave format given a list of data

" writePlot
public void writePlot(java. lang. String plotName, java. lang. String xAxis,
java.lang.String yAxis, java.util.List xData, java.util.Map yData)

89

- Description

Write a plotting script

- Parameters

* plotName - Name of the plot

* xAxis - Label for x axis

* yAxis - Label for y axis

* xData - Data points on the x axis

* yData - Mapping which contains a collection of y axis data points in the

values. The key is used for the legend

A.2.4 Class StaticLoadBalancer

Finds the near-optimal static resource allocation. Models what the StreamIt compiler will

do to optimize the cluster computation.

Declaration

public class StaticLoadBalancer

extends java.lang. Object
implements RuntimeHandler

Field summary

bestMapping The resource map that is most statically load-balanced

desc The StreamIt computation descriptor

Constructor summary

StaticLoadBalancer(StreamItComputationDescriptor)

Method summary

checkpoint(double)
evaluateMapping(Map) A heuristic evaluation of a mapping based on load

balancing.
finished()
getBestMap(Get the best mapping based on the one which evaluates to the

lowest score

getBestMapBruteForce() Search through all possible mappings to find the

best one, according to the evaluation function

getBestPCV(FilterVertex, Map)

getMappings() Return all possible resource mappings

getTotalWork(Map, PCVertex) Get total work needed in the given re-

source mapping at the given processor

orderFiltersO Order the vertices in descending order of work

writeSummary(PrintStream, int)

90

Fields

" private final sim.desc.StreamItComputationDescriptor desc

- The StreamIt computation descriptor

" private java.util.Map bestMapping

- The resource map that is most statically load-balanced

Constructors

e StaticLoadBalancer
public StaticLoadBalancer(sim.desc.StreamItComputationDescriptor desc

)

Methods

" checkpoint
java.util.Map checkpoint(double time)

- Description copied from RuntimeHandler (in A.2.1, page 85)
Creates the initial resource allocation mapping

- Parameters

* computation - The StreamIt computation description

- Returns -

" evaluateMapping
private double evaluateMapping(java.util.Map map)

- Description

A heuristic evaluation of a mapping based on load balancing.

- Parameters

* map - The mapping of filter to resource

- Returns - a score of how good the mapping is (the lower, the better)

" finished
void finished()

" getBestMap
private java.util.Map getBestMap()

- Description

Get the best mapping based on the one which evaluates to the lowest score

" getBestMapBruteForce
private java.util.Map getBestMapBruteForce()

- Description

Search through all possible mappings to find the best one, according to the
evaluation function

91

" getBestPCV
private sim.PCVertex getBestPCV(sim.FilterVertex fv, java.util.Map startMap
)

" getMappings
private java.util.Set getMappings()

- Description

Return all possible resource mappings

* getTotalWork
private double getTotalWork(java.util.Map map, sim.PCVertex v)

- Description

Get total work needed in the given resource mapping at the given processor

" orderFilters
private java.util.List orderFilters()

- Description

Order the vertices in descending order of work

" writeSummary
void writeSummary(java.io.PrintStream file, int rep)

A.2.5 Class StaticRuntimeHandler

A simple Runtimeflandler. Choose the mapping arbitrarily.

Declaration

public class StaticRuntimeHandler
extends java.lang.Object
implements RuntimeHandler

Field summary

desc

Constructor summary

StaticRuntimeHandler(StreamItComputationDescriptor)

Method summary

checkpoint (double)
finished()
writeSummary(PrintStream, int)

92

Fields

* private final sim.desc.StreamItComputationDescriptor desc

Constructors

9 StaticRuntimeHandler
public StaticRuntimeHandler(sim.desc.StreamItComputationDescriptor de-
scriptor)

Methods

" checkpoint
java.util.Map checkpoint(double time)

- Description copied from RuntimeHandler (in A.2.1, page 85)

Creates the initial resource allocation mapping

- Parameters

* computation - The StreamIt computation description

- Returns -

" finished
void finished()

" writeSummary
void writeSummary(java.io.PrintStream file, int rep)

A.3 Package gui

Package Contents Page

Classes
Sim ulatorG U I .. 93

SimulatorGUI is responsible for visually displaying the StreamIt simulation.

Sim ulatorG U I.ToolTip .. 95
Inner class to display tooltip info about vertices.

A.3.1 Class SimulatorGUI

SimulatorGUI is responsible for visually displaying the StreamIt simulation. Uses Visu-
alizationViewer from the JUNG library to display graphs. Code based off of the Swing
Tutorial

Declaration

public class SimulatorGUI
extends java.lang.Object
implements sim.SimulationListener

93

Field summary

frame The main frame in the GUI
LOOKANDFEEL
OFFSET
sim The simulation
throughputLabel The textual throughput display
vv View of the graph

Constructor summary

SimulatorGUI(Simulator)

Method summary

createAndShowGUI() Create the GUI and show it.
createComponents() Creates a pane with the VisualizationViewer inside
initLookAndFeel()
invoke(Runnable)
invokeLater(Runnable)
notifyExito
notifyOutput (long, double)
notifyRun()
setupLayout (Layout, Dimension)

Fields

" private final sim.Simulator sim

- The simulation

* private javax.swing.JFrame frame

- The main frame in the GUI

" private edu. uci. ics.jung. visualization. VisualizationViewer vv

- View of the graph

" private javax.swing.JLabel throughputLabel

- The textual throughput display

" static final java.lang.String LOOKANDFEEL

" private static final int OFFSET

Constructors

* SimulatorGUI
public SimulatorGUI(sim.Simulator sim)

94

Methods

" createAndShowGUI
private void createAndShowGUI()

- Description

Create the GUI and show it. For thread safety, this method should be invoked
from the event-dispatching thread.

" createComponents
public java.awt.Component createComponents()

- Description

Creates a pane with the VisualizationViewer inside

" initLookAndFeel
private static void initLookAndFeel()

" invoke
private static void invoke(java.lang.Runnable run)

" invokeLater
private static void invokeLater(java.lang.Runnable run)

" notifyExit
void notifyExit()

- Description copied from sim.SimulationListener (in A.6.2, page 117)

Called when the simulation exits

" notifyOutput
void notifyOutput(long outputs, double lastOutputTime)

- Description copied from sim.SimulationListener (in A.6.2, page 117)

Called when the simulation produces more outputs (the final node pushed data
out)

" notifyRun
void notifyRun()

- Description copied from sim.SimulationListener (in A.6.2, page 117)

Called when the simulation begins

" setupLayout
private void setupLayout(edu.uci.ics.jung.visualization.Layout 1, java.awt.Dimension
d)

A.3.2 Class SimulatorGUI.ToolTip

Inner class to display tooltip info about vertices.

95

Declaration

private class SimulatorGUI.ToolTip
extends java.lang.Object
implements edu. uci. ics.jung. graph. decorators.ToolTip~unction

Constructor summary

SimulatorGUI.ToolTip()

Method summary

getToolTipText (Edge)
getToolTipText (MouseEvent)
getToolTipText (Vertex)

Constructors

* SimulatorGUI.ToolTip
private SimulatorGUI.ToolTip()

Methods

" getToolTipText
java.lang.String getToolTipText(edu.uci. ics.jung.graph.Edge argO)

* getToolTipText
public java. lang. String getToolTipText(java. awt. event. MouseEvent event
)

" getToolTipText
java.lang.String getToolTipText(edu.uci.ics.jung.graph.Vertex argO)

A.4 Package sim.parse

Package Contents Page

Classes
Sim ulatorO ptionsP arser ... 96

JCommando generated parser class.

A.4.1 Class SimulatorOptionsParser

JCommando generated parser class.

Declaration

public abstract class SimulatorOptionsParser
extends org jcommando. JCommandParser

96

All known subclasses

Simulator.SimulatorOptions (in A.6.8, page 133)

Constructor summary

SimulatorOptionsParser() JCommando generated constructor.

Method summary

createExecuteGrouping(Generate the grouping for the 'execute' command.
doExecute() Called by parser to perform the 'execute' command.
setCli() Called by parser to set the 'cli' property.
set Cluster-file(String) Called by parser to set the 'cluster-file' property.
setGui-delay(long) Called by parser to set the 'gui-delay' property.
setGuiO Called by parser to set the 'gui' property.
setHelpo Called by parser to set the 'help' property.
setNumber-firings(long) Called by parser to set the 'number-firings' prop-

erty.
setOffset-scale(String) Called by parser to set the 'offset-scale' property.
setOffset(String) Called by parser to set the 'offset' property.
setOut-file(String) Called by parser to set the 'out-file' property.
setRep(long) Called by parser to set the 'rep' property.
setRuntime-handler(String) Called by parser to set the 'runtime-handler'

property.
setStream-file(String) Called by parser to set the 'stream-file' property.

Constructors

* SimulatorOptionsParser
public SimulatorOptionsParser()

- Description

JCommando generated constructor.

Methods

" createExecuteGrouping
private org. j commando. Grouping createExecuteGrouping()

- Description

Generate the grouping for the 'execute' command.

" doExecute
public abstract void doExecute()

- Description

Called by parser to perform the 'execute' command.

" setCli
public abstract void setCli()

97

- Description

Called by parser to set the 'cli' property.

* setCluster-file

public abstract void setCluster-file(java.lang.String cluster-file)

- Description

Called by parser to set the 'cluster-file' property.

- Parameters

* cluster-f ile - the value to set.

" setGui-delay

public abstract void setGui-delay(long gui-delay)

- Description

Called by parser to set the 'gui-delay' property.

- Parameters

* gui-delay - the value to set.

" setGui

public abstract void setGui()

- Description

Called by parser to set the 'gui' property.

" setHelp
public abstract void setHelp()

- Description

Called by parser to set the 'help' property.

" setNumber-firings
public abstract void setNumber-firings(long number-firings)

- Description

Called by parser to set the 'number-firings' property.

- Parameters

* number-f irings - the value to set.

" setOffset-scale
public abstract void setOffset-scale(java.lang.String offset-scale)

- Description

Called by parser to set the 'offset-scale' property.

- Parameters

* of fset-scale - the value to set.

98

" setOffset
public abstract void setOffset(java.lang.String offset)

- Description

Called by parser to set the 'offset' property.

- Parameters

* of f set - the value to set.

" setOut-file
public abstract void setOutfile(java.lang.String out-file)

- Description

Called by parser to set the 'out-file' property.

- Parameters

* out-f ile - the value to set.

" setRep
public abstract void setRep(long rep)

- Description

Called by parser to set the 'rep' property.

- Parameters

* rep - the value to set.

" setRuntime-handler
public abstract void setRuntime-handler(java. lang. String runtime-handler
)

- Description

Called by parser to set the 'runtimelhandler' property.

- Parameters

* runtimejiandler - the value to set.

" setStream-file
public abstract void setStream-file(java.lang.String stream-file)

- Description

Called by parser to set the 'stream-file' property.

- Parameters

* streamf ile - the value to set.

99

Members inherited from class org. j commando. JCommandParser

" protected void addCommand(Command argO)

" protected void addOption(Option argO)

" private void checkOptions()

" private classArgArray

" private className

" protected commands

" protected commandsById

* private void executeCommands()

" private void executeSetters()

" String getClassName()

" Command getCommandById(java.lang.String argO)

" LinkedHashMap getCommands()

* public Option getOptionByld(java.lang.String argO)

* String getPackageName()

" void init()

" private numericParseMessages

" protected optionsById

" protected optionsByLong

" protected optionsByShort

" private packageName

" public void parse(java.lang.String H argO)

" private void parseCommand(Command argO, java.lang.String argi)

" private parsedCommand

* private parsedOptions

" private boolean parseOption(Option argO, java.lang.String argi, java.lang.String
arg2)

" private Object parseOptionArgument(Option argO, java.lang.String argi
)

* public void printUsage()

" void setClassName(java.lang.String argO)

" void setPackageName(java.lang.String argO)

" private Class toClassArray(java.lang.Class argO)

" private String toJavaCase(java.lang.String argO)

* private unparsedArguments

100

A.5 Package sim.desc

Package Contents Page

Classes
C lusterD escriptor...101

The ClusterDescriptor represents the cluster as an undirected graph

FilterDescriptor..102
The FilterDescriptor provides static information about a filter

In p u tB u ffer .. 103
The InputBuffer represents the data storage area for a filter

InputBuffer.BufferElem ent .. 106
Each BufferElement has an associated timestamp

P C D escriptor ... 107
Describes a PC in a cluster

P ip eD escriptor .. 108
Describes connections between PCs in a cluster Not currently used.

R andom P rocP C .. 109
RandomProcPc objects are processors which go through stages of being
loaded and not loaded.

S taticP C ... 110

StreamItComputationDescriptor..111
The "highest-level" descriptor, the StreamItComputationDescriptor con-
tains the StreamIt graph, the cluster information, as well as the Runtime-
Handler.

A.5.1 Class ClusterDescriptor

The ClusterDescriptor represents the cluster as an undirected graph

Declaration

public class ClusterDescriptor
extends java.lang. Object

Field summary

theCluster

Constructor summary

ClusterDescriptor(String) Construct the cluster descriptor from the given
xml file

Method summary

constructClusterGraph(String) Create the graph by transforming a graph
into one with PCVertex vertices.

101

getPCDesc(Vertex) Create a PCDescriptor from tags in the xml (seen as
UserDatum attributes)

getTheGraph()

Fields

* private final edu.uci.ics.jung.graph.UndirectedGraph theCluster

Constructors

* ClusterDescriptor
public ClusterDescriptor(java.lang. String graphFile)

- Description

Construct the cluster descriptor from the given xml file

Methods

" constructClusterGraph
private edu.uci.ics.jung.graph.UndirectedGraph constructClusterGraph(java.lang.Strin
graphFile)

- Description

Create the graph by transforming a graph into one with PCVertex vertices.

* getPCDesc
private PCDescriptor getPCDesc(edu.uci.ics.jung.graph.Vertex v)

- Description

Create a PCDescriptor from tags in the xml (seen as UserDatum attributes)

" getTheGraph
public edu.uci. ics.jung.graph.UndirectedGraph getTheGraph()

A.5.2 Class FilterDescriptor

The FilterDescriptor provides static information about a filter

Declaration

public class FilterDescriptor
extends java.lang.Object

Field summary

peek Number of data elements needed for each firing
pop Number of data elements removed at each firing
push Number of data elements produced at each firing
work Computation needed for each firing

102

Constructor summary

FilterDescriptor(int, int, int, double) Construct a FilterDescriptor

Method summary

getPeek()
getPop()
getPush()
getWork()

Fields

" private final int pop

- Number of data elements removed at each firing

" private final int peek

- Number of data elements needed for each firing

" private final int push

- Number of data elements produced at each firing

" private final double work

- Computation needed for each firing

Constructors

9 FilterDescriptor
public FilterDescriptor(int push, int pop, int peek, double work)

- Description

Construct a FilterDescriptor

Methods

" getPeek
public int getPeek()

" getPop
public int getPop()

* getPush
public int getPush()

* getWork
public double getWork()

A.5.3 Class InputBuffer

The InputBuffer represents the data storage area for a filter

103

Declaration

public class InputBuffer
extends java.lang.Object

Field summary

elements The BufferElements
lastUsed
maxSize Maximum number of elements in the buffer at any time

Constructor summary

InputBuffer(int) Construct the InputBuffer

Method summary

ensureEnough(int, double) Used on the input to the stream graph to ensure
the first filter can always fire

flush() Remove all elements from the buffer
getFilledPercent()
getFreeSpace() Return the number of elements which could be added to this

buffer
getLastUsedTime()
getMaxSizeo
getMaxTime(
getTimeAt(int) Get the insertion time of the ith oldest element (0-based) in

the buffer
instertData(InputBuffer.BufferElement) Inserts an element into the buffer
isFull()
isSortedo
remove(int) Remove the n oldest elements from the buffer
size()
toString(

Fields

" private final int maxSize

- Maximum number of elements in the buffer at any time

" protected java.util.List elements

- The BufferElements

" private double lastUsed

Constructors

9 InputBuffer
public InputBuffer(int max)

104

- Description

Construct the InputBuffer

Methods

* ensureEnough
public void ensureEnough(int peek, double time)

- Description

Used on the input to the stream graph to ensure the first filter can always fire

- Parameters

* peek -

* time -

" flush
public void flush()

- Description

Remove all elements from the buffer

" getFilledPercent
public double getFilledPercent ()

" getFreeSpace
public int getFreeSpace()

- Description

Return the number of elements which could be added to this buffer

" getLastUsedTime
public double getLastUsedTime()

* getMaxSize
public int getMaxSize()

" getMaxTime
public double getMaxTime()

" getTimeAt
public double getTimeAt(int i)

- Description

Get the insertion time of the ith oldest element (0-based) in the buffer

" instertData
public void instertData(InputBuffer.BufferElement element)

- Description

Inserts an element into the buffer

- Parameters

105

* element

" isFull
public boolean isFull()

" isSorted
private boolean isSorted()

" remove

public void remove(int n)

- Description

Remove the n oldest elements from the buffer

- Parameters

* n - Number of elements to remove

" size

public int size()

" toString
public java.lang.String toString()

A.5.4 Class InputBuffer.BufferElement

Each BufferElement has an associated timestamp

Declaration

public static class InputBuffer.BufferElement
extends java.lang. Object
implements java.lang. Comparable

Field summary

time

Constructor summary

InputBuffer.BufferElement(double)

Method summary

compareTo(InputBuffer.BufferElement)

getTime()
toString()

Fields

* private final double time

106

Constructors

* InputBuffer.BufferElement
public InputBuffer.BufferElement (double t)

Methods

" compareTo
public int compareTo(InputBuffer.BufferElement o)

" getTime
public double getTime()

* toString
public java.lang.String toString()

A.5.5 Class PCDescriptor

Describes a PC in a cluster

Declaration

public abstract class PCDescriptor
extends java.lang.Object

All known subclasses

RandomProcPC (in A.5.7, page 109), StaticPC (in A.5.8, page 110)

Field summary

stdSpeed Raw speed of the processor

Constructor summary

PCDescriptor(double) Construct the PCDescriptor

Method summary

getBackgroundProcs(double)
getRawSpeed()
getSpeed(double, int)
getSpeed(double, int, double) Get the speed of the PC at the given time.
getSpeed(int) Get the processor speed given it has numFilters processes run-

ning
isLoaded() Return true iff this processor is heavily loaded

107

Fields

* private final double stdSpeed

- Raw speed of the processor

Constructors

* PCDescriptor
public PCDescriptor(double speed)

- Description

Construct the PCDescriptor

Methods

* getBackgroundProcs
protected abstract int getBackgroundProcs(double time)

" getRawSpeed
public double getRawSpeed()

" getSpeed
public double getSpeed(double t, int numFilters)

" getSpeed
public double getSpeed(double time, int numFilters, double filterLoad
)

- Description

Get the speed of the PC at the given time. Currently does not use filterLoad,
which would require too much of a fine-grained analysis.

* getSpeed
public double getSpeed(int numFilters)

- Description

Get the processor speed given it has numFilters processes running

* isLoaded
public boolean isLoaded()

- Description

Return true iff this processor is heavily loaded

A.5.6 Class PipeDescriptor

Describes connections between PCs in a cluster Not currently used.

108

Declaration

public class PipeDescriptor
extends java.lang.Object

Constructor summary

PipeDescriptor()

Constructors

* PipeDescriptor
public PipeDescriptor()

A.5.7 Class RandomProcPC

RandomProcPc objects are processors which go through stages of being loaded and not
loaded. Loaded processors tend to have many more processes running at any given time
compared to processors which are not loaded.

Declaration

public class RandomProcPC
extends sim.desc.PCDescriptor (in A.5.5, page 107)

Field summary

hoseDone
isHosed Whether the processor is loaded
lastTime
rand
unHosedDone

Constructor summary

RandomProcPC(double) Construct the RandomProcPC

Method summary

getBackgroundProcs(double)
isLoaded()

Fields

" private boolean isHosed

- Whether the processor is loaded

" private double hoseDone

* private double unHosedDone

109

* private static final java.util.Random rand

* private double lastTime

Constructors

9 RandomProcPC
public RandomProcPC(double speed)

- Description

Construct the RandomProcPC

Methods

* getBackgroundProcs
protected abstract int getBackgroundProcs(double time)

* isLoaded
public boolean isLoaded()

- Description copied from PCDescriptor (in A.5.5, page 107)

Return true iff this processor is heavily loaded

Members inherited from class sim. desc. PCDescriptor (in A.5.5, page 107)
" protected abstract int getBackgroundProcs (double time)

" public double getRawSpeed()

" public double getSpeed(double t, int numFilters)
" public double getSpeed(double time, int numFilters, double filterLoad

)
" public double getSpeed(int numFilters)

" public boolean isLoaded()

" private final stdSpeed

A.5.8 Class StaticPC

Declaration

public class StaticPC
extends sim.desc.PCDescriptor (in A.5.5, page 107)

Constructor summary

StaticPC(double)

Method summary

getBackgroundProcs(double)

110

Constructors

* StaticPC
public StaticPC(double speed)

Methods

* getBackgroundProcs

protected abstract int getBackgroundProcs(double time)

Members inherited from class sim.desc.PCDescriptor (in A.5.5, page 107)
* protected abstract int getBackgroundProcs(double time)

" public double getRawSpeed()

" public double getSpeed(double t, int numFilters)

" public double getSpeed(double time, int numFilters, double filterLoad

)
" public double getSpeed(int numFilters)
" public boolean isLoaded()
" private final stdSpeed

A.5.9 Class StreamItComputationDescriptor

The "highest-level" descriptor, the StreamItComputationDescriptor contains the StreamIt
graph, the cluster information, as well as the RuntimeHandler.

Declaration

public class StreamItComputationDescriptor
extends java.lang. Object

Field summary

finalVertex The final vertex in the stream graph
firingsSinceCheckPoint
firstVertex The first vertex in the stream graph
headToTailDist Distance in stream graph from start node to final node
lastCheckpointTime
lastOutputTime
lastRunTime
output The buffer which the final node outputs to
outputsSinceCheckpoint Whether we are using the market runtime handler

or not
resourceMap Current resource map
runtimeHandler The runtime handler
streamItGraph The stream graph
theCluster The cluster
waitForCheckpoint If we are currently "flushing" data out to get to a check-

point

111

Constructor summary

StreamItComputationDescriptor(String, String, Simulator, double,
double, Simulator.rhType) Construct the StreamItComputationDescrip-

tor

Method summary

checkForCheckpoint() Determine whether we should start flushing data in
order to reach checkpoint.

constructStreamGraph(String) Constructs the StreamIt graph, noting the
first and last filters in the graph

doCheckpoint(double) Actually run the runtime handler and update the
PCs with their new filter sets.

finishedo
fire(FilterVertex) Fires the given filter
getEndVertex()
getFilterDescriptor(Vertex) Create a FilterDescriptor from user datum tags

in the xml file
getFilterLocation(FilterVertex)
getFirstLast (DirectedGraph)
getOutput()
getStartVertex()
getStreamItGraph()
getTheCluster()
nextToRun() Returns the next filter which is able to perform some action(fire,

inject).
pushOutput(FilterVertex) Have the given filter push its output.
runFilter(FilterVertex) Run the filter.
totalDataElements()
updatePCs() Notify the PCs to their load from filters
writeSummary(PrintStream, int)

Fields

" private final ClusterDescriptor theCluster

- The cluster

" private final edu.uci.ics.jung.graph.DirectedGraph streamItGraph

- The stream graph

" private final runtime.RuntimeHandler runtimeHandler

- The runtime handler

" private final InputBuffer output

- The buffer which the final node outputs to

* private java.util.Map resourceMap

112

- Current resource map

* private sim.FilterVertex finalVertex

- The final vertex in the stream graph

" private sim.FilterVertex firstVertex

- The first vertex in the stream graph

" private final int headToTailDist

- Distance in stream graph from start node to final node

" private boolean waitForCheckpoint

- If we are currently "flushing" data out to get to a checkpoint

" private double lastCheckpointTime

* private double lastOutputTime

* private int outputsSinceCheckpoint

- Whether we are using the market runtime handler or not

" private double lastRunTime

" private int firingsSinceCheckPoint

Constructors

* StreamItComputationDescriptor
public StreamItComputationDescriptor(java. lang. String streamitGraph-
File, java.lang.String clusterGraphFile, sim.Simulator sim, double offset,
double offset-scale, sim.Simulator.rhType rht)

- Description

Construct the StreamItComputationDescriptor

Methods

" checkForCheckpoint
private void checkForCheckpoint ()

- Description

Determine whether we should start flushing data in order to reach checkpoint.

" construct StreamGraph
private edu.uci. ics. jung.graph.DirectedGraph constructStreamGraph(java. lang.String

graphFile)

- Description

Constructs the StreamIt graph, noting the first and last filters in the graph

113

" doCheckpoint
private void doCheckpoint(double time)

- Description

Actually run the runtime handler and update the PCs with their new filter sets.

" finished
public void finished()

" fire
private void fire(sim.FilterVertex firer)

- Description

Fires the given filter

- Parameters

* f irer - Which filter to fire

" getEndVertex
public sim.FilterVertex getEndVertex()

" getFilterDescriptor
private static FilterDescriptor getFilterDescriptor(edu.uci. ics. jung.graph.Vertex
v)

- Description

Create a FilterDescriptor from user datum tags in the xml file

* getFilterLocation
public sim.PCVertex getFilterLocation(sim.FilterVertex fv)

" getFirstLast
private void getFirstLast(edu.uci .ics .jung.graph.DirectedGraph theGraph
)

" getOutput
public InputBuffer getOutput()

" getStartVertex
public sim.FilterVertex getStartVertex()

" getStreamItGraph
public edu.uci.ics. jung.graph.DirectedGraph getStreamItGraph()

* getTheCluster
public ClusterDescriptor getTheCluster()

" nextToRun
public sim.FilterVertex nextToRun()

114

- Description

Returns the next filter which is able to perform some action(fire, inject). Re-
solves ties arbitrarily. Because the initial input buffer is set to always have
enough data elements, there should always be a valid FilterVertex to return
(the "head" of the graph).

* pushOutput
private void pushOutput(sim.FilterVertex firer)

- Description

Have the given filter push its output.

" runFilter
public void runFilter(sim.FilterVertex firer)

- Description

Run the filter. The filter will either fire or push output depending on its state.

" totalDataElements
public int totalDataElements()

" updatePCs
private void updatePCs()

- Description

Notify the PCs to their load from filters

" writeSummary
public void writeSummary(java.io.PrintStream file, int rep)

A.6 Package sim

Package Contents Page

Interfaces
F ilterL istener 116

FilterListener is an interface for classes which need to listen for events from
FilterVertex objects.

Sim ulationListener..117
A SimulationListener "listens" to Streamlt simulation for various messages

Classes
F ilterV ertex ... 118

All vertices in the StreamltGraph are of this type.
P C V ertex .. 125

The PCVertex represents a vertex in the cluster graph.
S im u lato r .. 129

The main class and entry point of the Streamlt simulation
Simulator.ConsoleUl .. 131

ConsoleUl displays throughput information to the console

115

Sim ulator.rhT yp e ... 132

Sim ulator.Sim ulatorO ptions ... 133
Handles command line options and defaults

U t il... 14 0
The Util class provides static utility methods.

Exceptions

FilterVertex.SourceException ... 142

z
A.6.1 Interface FilterListener

FilterListener is an interface for classes which need to listen for events from FilterVertex
objects.

Declaration

public interface FilterListener

All known subinterfaces

FilterAgent (in A.1.4, page 71), AdaptiveFilterAgent (in A.1.3, page 69)

All classes known to implement interface

FilterAgent (in A.1.4, page 71)

Method summary

notifyDataWait (double) Notify when filter waits for downstream buffers
notifyFire(double) Notify when filter fires
notifyInject(FilterVertex) Notify when filter receives new input

Methods

* notifyDataWait

void notifyDataWait(double time)

- Description

Notify when filter waits for downstream buffers

9 notifyFire

void notifyFire(double time)

- Description

Notify when filter fires

* notifyInject

void notifylnject(FilterVertex firer)

116

- Description

Notify when filter receives new input

A.6.2 Interface SimulationListener

A SimulationListener "listens" to StreamIt simulation for various messages

Declaration

public interface SimulationListener

All known subinterfaces

SimulatorGUI (in A.3.1, page 93), Simulator.ConsoleUI (in A.6.6, page 131)

All classes known to implement interface

SimulatorGUI (in A.3.1, page 93), Simulator.ConsoleUI (in A.6.6, page 131)

Method summary

notifyExito Called when the simulation exits
notifyOutput(long, double) Called when the simulation produces more out-

puts (the final node pushed data out)
notifyRun() Called when the simulation begins

Methods

* notifyExit
void notifyExit()

- Description

Called when the simulation exits

* notifyOutput
void notifyOutput(long outputs, double lastOutputTime)

- Description

Called when the simulation produces more outputs (the final node pushed data
out)

9 notifyRun
void notifyRun()

- Description

Called when the simulation begins

117

A.6.3 Class FilterVertex

All vertices in the StreamItGraph are of this type. The FilterVertex includes both static
(the FilterDescriptor) and dynamic (computation times, input buffer) information about
the filter and its computations.

Declaration

public class FilterVertex
extends edu.uci.ics.jung.graph.impl.SimpleDirectedSparseVertex

Field summary

blocked True when waiting to inject elements
buffer Data input buffer to this filter
currentPipe Which output we are ready to send data to (always 0 for pipeline

filters)
doneCompTime Time at the end of the last firing of this filter
filterDesc Static information about the filter
last Checkpoint Time Time of last checkpoint
lastPushTime
listeners The Set of FilterListeners listening to this filter
name
nextPushTime Keeps track of when we can push output to downstream buffer

next
numPushedSinceFire Number of elements pushed since last firing
waitForRoom True when we're waiting for a downstream buffer to have space

Constructor summary

FilterVertex(FilterDescriptor, String) Construct a FilterVertex

Method summary

addListener(FilterListener)
canPushNextOutput() Return true iff the next output can be successfully

injected into the corresponding downstream filter.
downStreamDoneCompTime(Time when "current" downstream filter will

finish its computation.
estimateWorkTime(double, PCVertex) Estimate the amount of work this

filter must do given it's computing on the given PC
fire(PCVertex) Fire this filter.
getBuffer()
getFilledPercent() How filled the input buffer is
getFilter()
getLastDoneCompTimeo
getLastlnjectTime()
getMultiplicity() The number of times this filter must fire in order for its

downstream neighbors to all fire, based on their pop values

118

getName()
getOutgoing()
isBlockedO Return true iff this filter is currently waiting to push output into

downstream filter(s).
isFinalVertex() Return true iff this is the final vertex in the StreamIt graph.
notifyCheckPoint (double)
notifyDataWait() Tell listeners when we are stuck waiting for downstream

buffers to get space.
notifyFire(double)
notifyInject(FilterVertex)
pushOutput(InputBuffer) Push the next output of this filter downstream
timeToRun(boolean, boolean) Returns the time at which this filter can

next begin firing or injecting, based on its input buffer and current compu-
tation.

timeToRunlnternal(boolean, boolean) Returns the time at which this fil-
ter can next begin firing or injecting, based on its input buffer and current
computation.

toString()

Fields

" private final dese.FilterDescriptor filterDesc

- Static information about the filter

" private final desc.InputBuffer buffer

- Data input buffer to this filter

" private int currentPipe

- Which output we are ready to send data to (always 0 for pipeline filters)

" private double doneCompTime

- Time at the end of the last firing of this filter

" private final java.util.Set listeners

- The Set of FilterListeners listening to this filter

" private boolean blocked

- True when waiting to inject elements

" private int numPushedSinceFire

- Number of elements pushed since last firing

" public double nextPushTime

- Keeps track of when we can push output to downstream buffer next

" private double lastCheckpointTime

- Time of last checkpoint

119

* private final java.lang.String name

" private double lastPushTime

" private boolean waitForRoom

- True when we're waiting for a downstream buffer to have space

Constructors

* FilterVertex
public FilterVertex(desc.FilterDescriptor descriptor, java.lang.String
n)

- Description

Construct a FilterVertex

Methods

" addListener
public void addListener(FilterListener 1)

" canPushNextOutput
private boolean canPushNextOutput()

- Description

Return true iff the next output can be successfully injected into the correspond-
ing downstream filter.

* downStreamDoneCompTime
private double downStreamDoneCompTime()

- Description

Time when "current" downstream filter will finish its computation.

" estimateWorkTime
private double estimateWorkTime(double time, PCVertex pc)

- Description

Estimate the amount of work this filter must do given it's computing on the
given PC

- Parameters

* time - The time at which the computation begins

* pc - Where the computation is done

- Returns - work time estimate

" fire

public void fire(PCVertex pc)

120

- Description

Fire this filter. Removes appropriate number of inputs from the buffer, and
injects appropriate number of outputs to its downstream neighbors.

* getBuffer
public desc.InputBuffer getBuffer()

" getFilledPercent
public double getFilledPercent ()

- Description

How filled the input buffer is

- Returns -

" getFilter
public desc.FilterDescriptor getFilter()

" getLastDoneCompTime
public double getLastDoneCompTime()

" getLastInject Time
public double getLastlnjectTime()

" getMultiplicity
public double getMultiplicity ()

- Description

The number of times this filter must fire in order for its downstream neighbors
to all fire, based on their pop values

" getName
public java.lang.String getName()

" getOutgoing
private java.util.List getOutgoing()

" isBIocked
public boolean isBlocked()

- Description

Return true iff this filter is currently waiting to push output into downstream
filter(s).

* isFinalVertex
public boolean isFinalVertex()

- Description

Return true iff this is the final vertex in the StreamIt graph.

" notifyCheckPoint
public void notifyCheckPoint(double time)

121

" notifyDataWait
private void notifyDataWait()

- Description

Tell listeners when we are stuck waiting for downstream buffers to get space.

" notifyFire
private void notifyFire(double t)

" notifyInject
private void notifyInject(FilterVertex firer)

" pushOutput
public void pushOutput(desc.InputBuffer output)

- Description

Push the next output of this filter downstream

- Parameters

* output - The output of the entire stream computation

* time - when the computation finished

" timeToRun
public double timeToRun(boolean waitForCheckpoint, boolean runSource
) throws sim.FilterVertex.SourceException

- Description

Returns the time at which this filter can next begin firing or injecting, based
on its input buffer and current computation. Returns a negative number if it
is unknown when the next time it will fire (possibly because there not enough
data elements in its input buffer).

" timeToRunlnternal
public double timeToRunInternal(boolean waitForCheckpoint, boolean run-
Source) throws sim.FilterVertex.SourceException

- Description

Returns the time at which this filter can next begin firing or injecting, based
on its input buffer and current computation. Returns a negative number if it
is unknown when the next time it will fire (possibly because there not enough
data elements in its input buffer).

" toString
public java.lang.String toString()

Members inherited from class edu. uci. ics . jung. graph. impl. SimpleDirectedSparseVertex

" protected void addNeighbor-internal(edu.uci.ics.jung.graph.Edge argO,
edu.uci.ics.jung.graph.Vertex argl)

" public Edge findEdge(edu.uci.ics.jung.graph.Vertex argO)

122

" public Set findEdgeSet(edu.uci.ics.jung.graph.Vertex argO)

* protected Collection getEdges-internal()

" public Set getInEdges()

* protected Collection getNeighbors-internal()

* public Set getOutEdges()

* public Set getPredecessors()

" protected Map getPredsToInEdges()

" public Set getSuccessors()

* protected Map getSuccsToOutEdges()

" public int inDegree()

" protected void initialize()

" public boolean isDest(edu.uci.ics.jung.graph.Edge argO)

" public boolean isPredecessorOf(edu.uci.ics.jung.graph.Vertex argO)

" public boolean isSource(edu.uci.ics.jung.graph.Edge argO)

" public boolean isSuccessorOf(edu.uci.ics.jung.graph.Vertex argO)

" private mPredsTolnEdges

" private mSuccsToOutEdges

" public int numPredecessors()

" public int numSuccessors()

" public int outDegree()

" protected void removeNeighbor-internal(edu.uci. ics. jung.graph.Edge argO,
edu.uci.ics.jung.graph.Vertex argl)

* protected void setPredsToInEdges(java.util.Map argO)

" protected void setSuccsToOutEdges(java.util.Map argO)

Members inherited from class edu.uci. ics. jung. graph. impl. AbstractSparseVertex

" static void ()

" protected abstract void addNeighbor-internal(edu.uci. ics. jung.graph.Edge
argO, edu.uci.ics.jung.graph.Vertex argi)

" public ArchetypeVertex copy(edu.uci.ics.jung.graph.ArchetypeGraph argO

)

" public ArchetypeEdge findEdge(edu.uci. ics. jung.graph.ArchetypeVertex argO
)

* public Edge findEdge(edu.uci.ics.jung.graph.Vertex argO)

* public Set findEdgeSet(edu.uci.ics.jung.graph.ArchetypeVertex argO)
* public Set findEdgeSet(edu.uci.ics.jung.graph.Vertex argO)

" private static nextGlobalVertexID

" protected abstract void removeNeighbor-internal(edu.uci. ics.jung.graph.Edge

argO, edu.uci.ics.jung.graph.Vertex argl)

" public String toString()

123

Members inherited from class edu. uci. ics .jung. graph. impl. AbstractArchetypeVertex

" public ArchetypeVertex copy(edu.uci.ics.jung.graph.ArchetypeGraph argO

)

" public int degree()

" public boolean equals(java.lang.Object argO)

" public ArchetypeEdge findEdge(edu.uci. ics. jung.graph.ArchetypeVertex argO
)

" public Set findEdgeSet(edu.uci.ics.jung.graph.ArchetypeVertex argO)

* protected abstract Collection getEdges-internal()

" public ArchetypeVertex getEqualVertex(edu.uci. ics. jung.graph.ArchetypeGraph
argO)

" public ArchetypeVertex getEquivalentVertex(edu.uci. ics. jung. graph.ArchetypeGraph
argO)

" public Set getIncidentEdges()

" public Set getIncidentElements()

* protected abstract Collection getNeighbors-internal()

" public Set getNeighbors()

" public boolean isIncident(edu.uci.ics.jung.graph.ArchetypeEdge argO)

" public boolean isNeighborOf(edu.uci.ics.jung.graph.ArchetypeVertex argo

)

" public int numNeighbors()

Members inherited from class edu. uci. ics . jung .graph. impl .AbstractElement

" protected void addGraph-internal(AbstractArchetypeGraph argO)

" void checkIDs(java.util.Map argO)

" public ArchetypeGraph getGraph()

" int getID ()
" public int hashCode()

" protected id

" protected void initialize()

" protected mGraph

" protected void removeGraph-internal()

Members inherited from class edu.uci.ics.jung.utils.UserDataDelegate
" static void ()

" public void addUserDatum(java.lang.Object argO, java.lang.Object argl,
UserDataContainer.CopyAction arg2)

" public Object clone() throws java.lang.CloneNotSupportedException

" public boolean containsUserDatumKey(java.lang.Object argO)

* protected static factory

" public Object getUserDatum(java.lang.Object argO)

124

" public UserDataContainer. CopyAction getUserDatumCopyAction(java. lang. Object

argO)

* public Iterator getUserDatumKeylterator ()

* public void importUserData(UserDataContainer argO)

" public Object removeUserDatum(java.lang.Object argO)

" public static void setUserDataFactory(UserDataFactory argO)

" public void setUserDatum(java.lang.Object argO, java.lang.Object argi,

UserDataContainer.CopyAction arg2)

* protected udc-delegate

A.6.4 Class PCVertex

The PCVertex represents a vertex in the cluster graph. It uses the set of filters currently

on it to determine effective speed of its associated PC.

Declaration

public class PCVertex
extends edu.uci.ics.jung.graph.impl.SimpleUndirectedSparseVertex

Field summary

filters The filters running on this resource

myNum
name

num

pcDesc The actual PCDescriptor info

Constructor summary

PCVertex(PCDescriptor, String) Create a PCVertex

Method summary

getDesriptor()

getFilterLoad() Get the total load on this resource from the filters

getNum()

getNumFilters() Number of filters currently on this resource

getSpeed(double) Get the speed of this resource at the given time.

setFilters(Set)

toStringo

Fields

" private final desc.PCDescriptor pcDesc

- The actual PCDescriptor info

" private java.util.Set filters

125

- The filters running on this resource

" private static int num

" private final int myNum

" private final java.lang.String name

Constructors

9 PCVertex
public PCVertex(desc.PCDescriptor descriptor, java.lang.String n)

- Description

Create a PCVertex

Methods

" getDesriptor
public desc.PCDescriptor getDesriptor()

" getFilterLoad
public double getFilterLoad()

- Description

Get the total load on this resource from the filters

- Returns - amount of total work

" getNum
public int getNum()

" getNumFilters
public int getNumFilters()

- Description

Number of filters currently on this resource

" getSpeed
public double getSpeed(double time)

- Description

Get the speed of this resource at the given time.

- Parameters

* time - Current time

- Returns -

* setFilters
public void setFilters(java.util.Set newFilters)

" toString
public java.lang.String toString()

126

Members inherited from class edu.uci.ics . jung. graph. impl. SimpleUndirectedSparseVertex

" protected void addNeighbor-internal(edu.uci.ics.jung.graph.Edge argO,
edu.uci.ics.jung.graph.Vertex argi)

" public Edge findEdge(edu.uci.ics. jung.graph.Vertex argO)

* public Set findEdgeSet(edu.uci.ics.jung.graph.Vertex argO)

" protected Collection getEdges-internal()
" public Set getInEdges()

" protected Collection getNeighbors-internal()

" protected Map getNeighborsToEdges()

" public Set getOutEdges()
" public Set getPredecessors()

" public Set getSuccessors()

" public int inDegree()
" protected void initialize()

" public boolean isDest(edu.uci.ics.jung.graph.Edge argO)

" public boolean isPredecessorOf(edu.uci.ics.jung.graph.Vertex argO)

" public boolean isSource(edu.uci.ics.jung.graph.Edge argO)

" public boolean isSuccessorOf(edu.uci. ics. jung.graph.Vertex argO)

" private mNeighborsToEdges

" public int nurnPredecessors()

" public int numSuccessors()
" public int outDegree()
" protected void removeNeighbor-internal(edu.uci.ics.jung.graph.Edge argO,

edu.uci.ics.3ung.graph.Vertex argi)
* protected void setNeighborsToEdges(java.util.Map argO)

Members inherited from class edu. uci. ics . jung . graph. impl. AbstractSparseVertex

* static void ()
* protected abstract void addNeighbor-internal(edu.uci. ics. jung.graph .Edge

argO, edu.uci.ics.jung.graph.Vertex argi)
* public ArchetypeVertex copy(edu.uci.ics.jung.graph.ArchetypeGraph argO
)

* public ArchetypeEdge findEdge(edu.uci. ics. jung.graph .ArchetypeVertex argO
)

9 public Edge findEdge(edu.uci.ics. jung.graph.Vertex argO)
* public Set findEdgeSet (edu.uci .ics .jung.graph.ArchetypeVertex argO)

* public Set findEdgeSet(edu.uci.ics.jung.graph.Vertex argO)
9 private static nextGlobalVertexID

* protected abstract void removeNeighbor-internal(edu.uci. ics. jung. graph. Edge

argO, edu.uci.ics.jung.graph.Vertex argl)

* public String toString()

127

Members inherited from class edu. uci. ics . jung. graph. impl. AbstractArchetypeVertex

" public ArchetypeVertex copy(edu.uci.ics.jung.graph.ArchetypeGraph argO
)

* public int degree()

" public boolean equals(java.lang.Object argO)

" public ArchetypeEdge findEdge(edu.uci. ics. jung.graph.ArchetypeVertex argO
)

* public Set findEdgeSet(edu.uci.ics.jung.graph.ArchetypeVertex argO)
" protected abstract Collection getEdges-internal()
" public ArchetypeVertex getEqualVertex(edu.uci. ics. jung. graph.ArchetypeGraph

argO)

" public ArchetypeVertex getEquivalentVertex(edu.uci. ics. jung.graph.ArchetypeGraph
argO)

* public Set getIncidentEdges()

" public Set getIncidentElernents()
" protected abstract Collection getNeighbors.internal()
" public Set getNeighbors()
" public boolean isIncident(edu.uci.ics.jung.graph.ArchetypeEdge argO)
" public boolean isNeighborOf(edu.uci. ics. jung. graph.ArchetypeVertex argO

)
" public int numNeighbors()

Members inherited from class edu. uci. ics . jung. graph. impl. AbstractElement

* protected void addGraph-internal(AbstractArchetypeGraph argO)
" void checkIDs(java.util.Map argO)

" public ArchetypeGraph getGraph()

* int getID()
" public int hashCode()

" protected id

" protected void initialize()

* protected mGraph

* protected void removeGraph-internal()

Members inherited from class edu.uci. ics. jung.utils.UserDataDelegate
* static void ()

* public void addUserDatum(java.lang.Object argO, java.lang.Object argl,
UserDataContainer.CopyAction arg2)

" public Object clone() throws java.lang.CloneNotSupportedException

" public boolean containsUserDatumKey(java.lang.Object argO)
* protected static factory

" public Object getUserDatum(java.lang.Object argO)

128

" public UserDataContainer. CopyAction getUserDatumCopyAction(java. lang. Object
argO)

" public Iterator getUserDatumKeylterator()

" public void importUserData(UserDataContainer argO)

" public Object removeUserDatum(java.lang.Object argO)

" public static void setUserDataFactory(UserDataFactory argO)

" public void setUserDatum(java.lang.Object argO, java.lang.Object argi,

UserDataContainer.CopyAction arg2)

" protected udcdelegate

A.6.5 Class Simulator

The main class and entry point of the Streamlt simulation

Declaration

public class Simulator
extends java.lang.Object

Field summary

computation The computation

lastOutputTime Last time we incremented outputs

listeners The listeners

options Command-line options

outputs Total outputs

Constructor summary

Simulator(Simulator.SimulatorOptions) Constructs a Simulator

Method summary

addListener(SimulationListener)

getLastOutputTime()
getOutputs()

getStreamIt()
getStreamItGraph()

main(String[]) Creates a Simulator object.

notifyFire()
notifyOutput()
simulate(long) Simulates the Streamlt computation, notifying listeners of

pertinent events.
sleepSafe(long)
writeFooter(PrintStream) Write footer information to the octave script
writeSummary(PrintStream, int) Write summary information to the oc-

tave script

129

#1

Fields

" private desc.StreamltComputationDescriptor computation

- The computation

" private java.util.Set listeners

- The listeners

" private final Simulator. SimulatorOptions options

- Command-line options

" private long outputs

- Total outputs

" private double lastOutputTime

- Last time we incremented outputs

Constructors

9 Simulator
public Simulator(Simulator. SimulatorOptions opts)

- Description

Constructs a Simulator

Methods

" addListener
private void addListener(SimulationListener listener)

" getLastOutputTime
public double getLastOutputTime()

" getOutputs
public long getOutputs()

" getStreamIt
public des c . StreamItComputationDescript or getStreamIt ()

" getStreamItGraph
public edu.uci. ics.jung.graph.Graph getStreamItGraph()

" main
public static void main(java.lang.String[] args)

- Description

Creates a Simulator object. Run the simulation the given number of times.

" notifyFire
private void notifyFire()

130

" notifyOutput
private void notifyOutput()

* simulate
public void simulate(long rep)

- Description

Simulates the StreamIt computation, notifying listeners of pertinent events.

" sleepSafe

private void sleepSafe(long time)

" writeFooter

private static void writeFooter(java.io.PrintStream file)

- Description

Write footer information to the octave script

" writeSummary
private void writeSummary(java.io.PrintStream file, int rep)

- Description

Write summary information to the octave script

A.6.6 Class Simulator.ConsoleUl

ConsoleUI displays throughput information to the console

Declaration

private static class Simulator.ConsoleUl

extends java.lang.Object
implements SimulationListener

Field summary

numOut

Constructor summary

Simulator.ConsoleUI(

Method summary

notifyExit()
notifyOutput (long, double)

notifyRun()

Fields

* private int numOut

131

Constructors

* Simulator.ConsoleUl
private Simulator.ConsoleUl()

Methods

" notifyExit
void notifyExit()

- Description copied from SimulationListener (in A.6.2, page 117)

Called when the simulation exits

" notifyOutput
void notifyOutput(long outputs, double lastOutputTime)

- Description copied from SimulationListener (in A.6.2, page 117)

Called when the simulation produces more outputs (the final node pushed data
out)

" notifyRun
void notifyRun()

- Description copied from SimulationListener (in A.6.2, page 117)
Called when the simulation begins

A.6.7 Class Simulator.rhType

Declaration

public static final class Simulator.rhType
extends java.lang.Enum

Field summary

dynamicRH
marketRH
staticRH

Constructor summary

Simulator. rhType 0

Method summary

valueOf(String)
values()

132

Fields

" public static final Simulator.rhType marketRH

" public static final Simulator.rhType staticRH

" public static final Simulator.rhType dynamicRH

Constructors

* Simulator.rhType
private Simulator.rhType()

Methods

" valueOf
public static Simulator.rhType valueOf(java.lang.String name)

" values
public static final Simulator.rhType[] values()

Members inherited from class java.lang.Enum

" protected final Object clone() throws CloneNotSupportedException

" public final int compareTo(Enum argO)

* public final boolean equals(Object argO)

" public final Class getDeclaringClass()

* public final int hashCode()

* private final name

* public final String name()

" private final ordinal

" public final int ordinal()

" public String toString()

" public static Enum valueOf(Class argo, String argi)

A.6.8 Class Simulator.SimulatorOptions

Handles command line options and defaults

Declaration

public static class Simulator.SimulatorOptions
extends sim.parse.SimulatorOptionsParser (in A.4.1, page 96)

133

Field summary

clusterFile
dataOut
doCLI
doGUI
guiDelay
numFirings
offset
offset-scale
outFile
reps
rh
streamFile
validArgs

Constructor summary

Simulator.SimulatorOptions()

Method summary

comment(String, Object[])
doCLI()
doExecute()
doGUI()
experimentName()
getClusterFile()
getDelay()
getFile()
getNumFirings()
getOffset()
getOffsetScale()
getReps()
getRuntimeHandlero
getStreamFile()
setCli(
setCluster-file(String)
setGui.delay(long)
setGui()
setHelp()
setNumber-firings(long)
setOffset-scale(String)
set Offset (String)
setOut-file(String)
setRep(long)
setRuntime-handler(String)
setStream-file(String)
validArgs()

134

writeHeaderInfo()

Fields

" private java.io.PrintStream dataOut

* private java.lang.String streamFile

" private java.lang.String clusterFile

" private java.lang.String rh

" private long numFirings

" private long reps

" private long guiDelay

" private boolean doCLI

* private boolean doGUI

" private java.lang.String outFile

" private double offset

" private double offset-scale

" private boolean validArgs

Constructors

* Simulator.SimulatorOptions
public Simulator.SimulatorOptions()

Methods

* comment
private void comment(java.lang.String com, java.lang.Object U args)

* doCLI
public boolean doCLI()

* doExecute
public abstract void doExecute()

- Description copied from parse.SimulatorOptionsParser (in A.4.1, page
96)

Called by parser to perform the 'execute' command.

* doGUI
public boolean doGUI()

135

" experimentName
private java.lang.String experimentName()

" getClusterFile
public java.lang.String getClusterFile()

* getDelay
public long getDelay()

" getFile
public java.io.PrintStream getFile()

" getNumFirings
public long getNumFirings()

" getOffset
public double getOffset()

" getOffsetScale
public double getOffsetScale()

" getReps
public long getReps()

" getRuntimeHandler
public java.lang. String getRuntimeHandler()

" getStreamFile
public java.lang.String getStreamFile()

" setCli
public abstract void setCli()

- Description copied from parse.SimulatorOptionsParser (in A.4.1, page
96)

Called by parser to set the 'cli' property.

* setClusterdfile
public abstract void setCluster-file(java.lang.String cluster-file)

- Description copied from parse.SimulatorOptionsParser (in A.4.1, page
96)

Called by parser to set the 'cluster-file' property.

- Parameters

* clusterf ile - the value to set.

" setGui-delay
public abstract void setGui-delay(long gui-delay)

- Description copied from parse.SimulatorOptionsParser (in A.4.1, page
96)

Called by parser to set the 'gui-delay' property.

136

- Parameters

* gui-delay - the value to set.

" setGui
public abstract void setGui()

- Description copied from parse.SimulatorOptionsParser (in A.4.1, page
96)

Called by parser to set the 'gui' property.

" setHelp
public abstract void setHelp()

- Description copied from parse.SimulatorOptionsParser (in A.4.1, page
96)

Called by parser to set the 'help' property.

" setNumber-firings
public abstract void setNumber-firings(long number-firings)

- Description copied from parse.SimulatorOptionsParser (in A.4.1, page
96)

Called by parser to set the 'number-firings' property.

- Parameters

* numberf irings - the value to set.

* setOffset-scale
public abstract void setOffset -scale(java.lang.String offset-scale)

- Description copied from parse.SimulatorOptionsParser (in A.4.1, page
96)

Called by parser to set the 'offset-scale' property.

- Parameters

* of f set-scale - the value to set.

" setOffset
public abstract void setOffset(java.lang.String offset)

- Description copied from parse.SimulatorOptionsParser (in A.4.1, page
96)

Called by parser to set the 'offset' property.

- Parameters

* of f set - the value to set.

" setOut-file
public abstract void setOutfile(java.lang.String out-file)

137

- Description copied from parse.SimulatorOptionsParser (in A.4.1, page
96)

Called by parser to set the 'out-file' property.

- Parameters

* out-f ile - the value to set.

" setRep
public abstract void setRep(long rep)

- Description copied from parse.SimulatorOptionsParser (in A.4.1, page
96)

Called by parser to set the 'rep' property.

- Parameters

* rep - the value to set.

" setRuntime-handler

public abstract void setRuntime-handler(java. lang. String runtimehandler

)

- Description copied from parse.SimulatorOptionsParser (in A.4.1, page
96)

Called by parser to set the 'runtimelhandler' property.

- Parameters

* runtimejhandler - the value to set.

" setStreamfile

public abstract void setStream-file(java.lang.String streamfile)

- Description copied from parse.SimulatorOptionsParser (in A.4.1, page
96)

Called by parser to set the 'stream-file' property.

- Parameters

* stream-f ile - the value to set.

" validArgs

public boolean validArgs()

" writeHeaderInfo
private void writeHeaderlnfo()

Members inherited from class sim. parse. SimulatorptionsParser (in A.4.1,
page 96)

" private Grouping createExecuteGrouping()

" public abstract void doExecute()

" public abstract void setCli()

" public abstract void setCluster-file(java.lang.String cluster-file)

138

" public abstract void setGui-delay(long gui-delay)

" public abstract void setGui()
* public abstract void setHelp()
" public abstract void setNumber-firings(long number-firings)

" public abstract void setOffset-scale(java.lang.String offset-scale)

" public abstract void setOffset(java.lang.String offset)
" public abstract void setOutifile(java.lang.String out-file)

" public abstract void setRep(long rep)

" public abstract void setRuntime-handler(java.lang.String runtime-handler

)
" public abstract void setStream-file(java.lang.String stream-file)

Members inherited from class org. j commando. JCommandParser
" protected void addCommand(Command argO)

" protected void addOption(Option argO)

" private void checkOptions()

" private classArgArray

" private className
" protected commands

" protected commandsById

" private void executeCommands()

" private void executeSetters()

" String getClassName()

* Command getCommandByld(java. lang. String argO)

" LinkedHashMap getCommands()
" public Option getOptionByld(java.lang.String argO)

" String getPackageName()

" void init ()
" private numericParseMessages

" protected optionsById

" protected optionsByLong

* protected optionsByShort

" private packageName

" public void parse(java.lang.String[I argO)

" private void parseCommand(Command argO, java.lang.String argi)
" private parsedCommand

" private parsedOptions

" private boolean parseOption(Option argO, java.lang.String argi, java.lang.String

arg2)
" private Object parseOptionArgument(Option argO, java.lang.String argi

)
" public void printUsage()

" void setClassName(java.lang.String argO)
" void setPackageName(java.lang.String argO)

" private Class toClassArray(java.lang.Class argO)

" private String toJavaCase(java.lang.String argO)

" private unparsedArguments

139

A.6.9 Class Util

The Util class provides static utility methods. It cannot be instantiated.

Declaration

public class Util
extends java.lang. Object

Constructor summary

Util()

Method summary

allMappings(Set, Set) Returns a set containing all possible mappings from
keyset to valueSet which have exactly 1 mapping per element of keySet

getDataDouble(UserDataContainer, String) Gets a double in a UserDat-
aContainer, given a key

getDatalnt(UserDataContainer, String) Gets an int in a UserDataCon-
tainer, given a key

getDistance(DirectedGraph, SimpleDirectedSparseVertex, SimpleDi-
rectedSparseVertex, int)

get GraphDist (DirectedGraph, SimpleDirectedSparseVertex, SimpleDi-
rectedSparseVertex) Distance from start node to final node along the
longest path

pow(double, int) Wrapper around Math.pow
reverseMapLookup(Map, V) Given a map and a value, returns all keys in

the map which are mapped to this value.
Sum(Collection) Returns the sum of a collection of Doubles

Constructors

* Util
private Util()

Methods

* allMappings
public static java.util.Set allMappings(java.util.Set keySet, java.util.Set
valueSet)

- Description

Returns a set containing all possible mappings from keyset to valueSet which
have exactly 1 mapping per element of keySet

- Parameters

* keySet - the set of keys

* valueSet - the set of values

140

- Returns - a Set of all possible mappings whose keysets are all identical to the
given keyset and whose value collection is a subset of the given valueSet

" getDataDouble
public static double getDataDouble(edu.uci.ics.jung.utils.UserDataContainer
v, java.lang.String key)

- Description

Gets a double in a UserDataContainer, given a key

- Parameters

* v - Data container

* key - The key

" getDataInt
public static int getDataInt(edu.uci.ics.jung.utils.UserDataContainer
v, java.lang.String key)

- Description

Gets an int in a UserDataContainer, given a key

- Parameters

* v - Data container

* key - The key

" getDistance
private static int getDistance(edu.uci.ics.jung.graph.DirectedGraph graph,
edu.uci.ics.jung.graph.impl.SimpleDirectedSparseVertex cur, edu.uci.ics.jung.graph.imp
end, int distance)

" getGraphDist
public static int getGraphDist(edu.uci.ics.jung.graph.DirectedGraph graph,
edu.uci.ics.jung.graph. impl.SimpleDirectedSparseVertex start, edu.uci.ics .jung.graph.in
end)

- Description

Distance from start node to final node along the longest path

" pow
private static double pow(double b, int e)

- Description

Wrapper around Math.pow

- Parameters

* b - base

* e - exponent

- Returns - bAe

141

" reverseMapLookup
public static java.util.Set reverseMapLookup(java.util.Map map, java.lang. Object

value)

- Description

Given a map and a value, returns all keys in the map which are mapped to this

value.

- Parameters

* map - The map

* value - The value

" Sum
public static double Sum(java.util.Collection numbers)

- Description

Returns the sum of a collection of Doubles

A.6.10 Exception FilterVertex. SourceException

Declaration

public static class FilterVertex.SourceException

extends java.lang.Exception

Constructor summary

FilterVertex.SourceException()

Constructors

* FilterVertex.SourceException
public FilterVertex.SourceException()

Members inherited from class java. lang. Exception
* static final serialVersionUID

Members inherited from class java.lang.Throwable
" private transient backtrace

" private cause

" private detailMessage

" public synchronized native Throwable fillInStackTrace()

" public Throwable getCause()

* public String getLocalizedMessage()

" public String getMessage()

" private synchronized StackTraceElement getOurStackTrace()

" public StackTraceElement getStackTrace()

142

" private native int getStackTraceDepth()
" private native StackTraceElement getStackTraceElement (int argO)
" public synchronized Throwable initCause(Throwable argO)
" public void printStackTrace()
" public void printStackTrace(java.io.PrintStream argO)

" public void printStackTrace(java.io.PrintWriter argO)

" private void printStackTraceAsCause(java.io.PrintStream argO, StackTraceElement[]
argi)

" private void printStackTraceAsCause(java.io.PrintWriter argO, StackTraceElement[]
argI)

* private static final serialVersionUID

" public void setStackTrace(StackTraceElement[] argO)
" private stackTrace

" public String toString()
* private synchronized void writeObject(java.io.ObjectOutputStream argO

) throws java.io.IOException

143

144

Bibliography

[1] Josh Aas. Understanding the linux 2.6.8.1 cpu scheduler. http://citeseer.

ist .psu. edu/aasO5understanding.html.

[2] A. AuYoung, B. Chun, A. Snoeren, and A. Vahdat. Resource allocation in feder-

ated distributed computing infrastructures. In Proceedings of the 1st Workshop

on Operating System and Architectural Support for the Ondemand IT InfraS-

tructure, October 2004.

[3] Magdalena Balazinska, Hari Balakrishnan, and Mike Stonebraker. Contract-

Based Load Management in Federated Distributed Systems. In 1st Symposium

on Networked Systems Design and Implementation (NSDI), San Francisco, CA,

March 2004.

[4] Eric B. Baum and Igor Durdanovic. Evolution of cooperative problem solving in

an artificial economy. Neural Computation, 12(12):2743-2775, 2001.

[5] Jiawen Chen, Michael I. Gordon, William Thies, Matthias Zwicker, Kari Pulli,

and Fredo Durand. A reconfigurable architecture for load-balanced rendering.

In HWWS '05: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS con-

ference on Graphics hardware, pages 71-80, New York, NY, USA, 2005. ACM

Press.

[6] Trishul M. Chilimbi and Martin Hirzel. Dynamic hot data stream prefetching

for general-purpose programs. In PLDI '02: Proceedings of the ACM SIGPLAN

2002 Conference on Programming language design and implementation, pages

199-209, New York, NY, USA, 2002. ACM Press.

145

[7] B. Chun. Market-Based Cluster Resource Management. PhD thesis, University

of California at Berkeley, 2001.

[8] Brent N. Chun, Philip Buonadonna, Alvin AuYoung, Chaki Ng, David C. Parkes,

Jeffrey Shneidman, Alex C. Snoeren, and Amin Vahdat. Mirage: A Microeco-

nomic Resource Allocation System for Sensornet Testbeds. In Proceedings of 2nd

IEEE Workshop on Embedded Networked Sensors (EmNetsII), 2005.

[9] Donald Ferguson, Yechiam Yemini, and Christos Nikolaou. Microeconomic Al-

gorithms for Load Balancing in Distributed Computer Systems. In International

Conference on Distributed Computer Systems, pages 491-499, 1988.

[10] Michael Gordon, William Thies, Michal Karczmarek, Jasper Lin, Ali S. Meli,

Christopher Leger, Andrew A. Lamb, Jeremy Wong, Henry Hoffman, David Z.

Maze, and Saman Amarasinghe. A stream compiler for communication-exposed

architectures. In International Conference on Architectural Support for Program-

ming Languages and Operating Systems, San Jose, CA USA, October 2002.

[11] Bernardo A Huberman and Tad Hogg. Distributed computation as an economic

system. Journal of Economic Perspectives, 9(1):141-52, Winter 1995. available

at http: //ideas.repec.org/a/aea/jecper/v9y1995i1p141-52.html.

[12] Jung. Jung: Java universal network/graph framework. http://jung.

sourceforge.net/.

[13] Michal Karczmarek, William Thies, and Saman Amarasinghe. Phased scheduling

of stream programs. In Languages, Compilers, and Tools for Embedded Systems,

San Diego, CA, June 2003.

[14] Bernardo A. Huberman Kevin Lai and Leslie Fine. Tycoon: A Dis-

tributed Market-based Resource Allocation System. Technical Report

arXiv:cs.DC/0404013, HP Labs, Palo Alto, CA, USA, April 2004.

[15] Blake LeBaron. Agent-based computational finance: Suggested readings and

early research. Journal of Economic Dynamics and Control, 24(5-7):679-702,

146

June 2000. available at http://ideas.repec.org/a/eee/dyncon/v24y2000i5-7p679-

702.html.

[16] Blake LeBaron. Calibrating an agent-based financial market. http: //people.

brandeis. edu/~blebaron/wps.html, 04 2002.

[17] Roger Lewin. Complexity. Life at the Edge of Chaos. Macmillan Publishing

Company, New York, 1992.

[18] Janis Sermulins, William Thies, Rodric Rabbah, and Saman Amarasinghe. Cache

aware optimization of stream programs. In LCTES'05: Proceedings of the 2005

ACM SIGPLAN/SIGBED conference on Languages, compilers, and tools for

embedded systems, pages 115-126, New York, NY, USA, 2005. ACM Press.

[19] Jeffrey Shneidman, Chaki Ng, David C. Parkes, Alvin AuYoung, Alex C. Sno-

eren, Amin Vahdat, and Brent Chun. Why markets could (but don't currently)

solve resource allocation problems in systems. In Proceedings of Tenth Workshop

on Hot Topics in Operating Systems) [HotOS-X 2005], June 2005.

[20] William Thies, Michal Karczmarek, and Saman Amarasinghe. Streamit: A lan-

guage for streaming applications. In International Conference on Compiler Con-

struction, Grenoble, France, April 2002.

[21] Carl A. Waldspurger, Tad Hogg, Bernardo A. Huberman, Jeffrey 0. Kephart,

and W. Scott Stornetta. Spawn: A distributed computational economy. Software

Engineering, 18(2):103-117, 1992.

147

