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Abstract
JCilk extends the Java language to provide call-return semantics for multithreading,
much as Cilk does for C. Java's built-in thread model does not support the passing
of exceptions or return values from one thread back to the "parent" thread that
created it. JCilk imports Cilk's fork-join primitives spawn and sync into Java to
provide procedure-call semantics for concurrent subcomputations. It also introduces
exceptions into that fork-join structure, leading to some some surprising semantic
synergies.

In particular, JCilk extends Java's exception semantics to allow exceptions to
be passed from a spawned method to its parent in a natural way that obviates the
need for Cilk's inlet and abort constructs. When executing in parallel, an exception
thrown by a JCilk computation signals its "side computations" to abort, which yields
a clean semantics in which only a single exception from the enclosing try block is
handled. Because JCilk uses Java's normal exception mechanism to propagate an
abort throughout the side computations, the programmer can handle clean-up by
simply catching a thrown CilkAbort exception. JCilk supports these features by
introducing the concept of a "catchlet" as a mechanism for handling exceptions in a
concurrent context.

In my work, I have implented a runtime system for JCilk which uses a tree struc-
ture to track the dynamic state of nested try blocks. Using this tree, the runtime
system is able to signal aborts to the proper side computations and determine when
the catch block is able to run. The result is an efficient implementation of the JCilk
specification.

Thesis Supervisor: Charles E. Leiserson
Title: Professor
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Chapter 1

Introduction

With such recent innovations as multiprocessor machines, multicore processors, and

hyperthreading, more and more desktop machines have some ability to execute par-

allel programs. Writing programs to take advantage of that available parallelism

remains, however, a difficult task. New programming paradigms, developed over the

past few decades to make large-scale programming easier, tend not to give much aid

to the parallel programmer. In this thesis, I explain how two particular languages,

Java [13] and Cilk [11], can be fused into a new language called JCilk (pronounced

"jay-silk") which simplifies parallel programming by incorporating both Java's mod-

ern language features and Cilk's simple parallel semantics.

Over the past year, I and the rest of the JCilk design team have collectively

hammered out the multitude of semantic questions to produce the JCilk-1 semantics

described in Chapter 2 of this thesis. We have also developed a system for compiling

and running JCilk programs. As part of that development, I have implemented the

JCilk-1 Runtime System, which is the main focus of this thesis. My collaborator,

Angelina Lee, has implemented the complementary portion of the system, the JCilk-

1 Compiler. That work is described in her upcoming thesis [22].

Before I explain in detail how JCilk combines Cilk and Java, it is important to

understand what makes each of the two languages independently valuable. In this

chapter, I give an overview of what JCilk takes from the two languages. Java gives

several significant features that make programming easier, including portability, auto-

13



Figure 1-1: The ancestors of JCilk. Java extends C with many modern language features.
Cilk extends C with parallel language features. JCilk does for Java what Cilk does for C,
and at the same does for Cilk what Java does for C.

mated memory management, and exceptions. Cilk offers a provably-good threading

mechanism and speculative execution. These features mesh together to give JCilk

the combined power of both languages, though some don't interact in a completely

straightforward manner. In particular, letting exceptions occur in a parallel environ-

ment introduces new complications and raises new questions. JCilk answers those

questions with a novel and powerful exception mechanism, in which exceptions are

used to support speculative execution. I conclude the chapter by explaining this new

mechanism and giving an outline of the thesis.

1.1 Java

The Java language was itself derived from an earlier language, C, which is described

in [20]. Java inherits its basic syntax from C, but adds to it many features designed to

make programming easier: portability, automatic garbage collection, object orienta-

tion, exceptions, threading, and so on. This section describes some of those features,

including Java's version of parallelism built on static threads.

Portability

Portability was one of the major design goals of the Java language [13, p.2 19]. Rather

than compiling to a native binary, the Java compiler outputs a program in an interme-

14
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diate language called Java bytecode. This language is then interpreted by the Java

Virtual Machine (JVM) [23]. Since this process precludes any platform-dependent

code, implementing the JVM on a machine platform once suffices to be able to later

run any Java program on that platform. Since at least one implementation of the

JVM already exists for most major and minor platforms, a language based on Java

can run basically anywhere.

Automatic Garbage Collection

The JVM is specified to contain an automatic garbage collector [23, Sec. 3.5.3]. In

other languages such as C, every pointer must be meticulously tracked and eventually

deallocated in order to avoid memory leaks. Java, on the other hand, restricts what

pointers a programmer can access, always keeps an eye on what memory is being used,

and efficiently deallocates memory when it has been abandoned. This automation

simplifies reasoning about the safety of memory accesses and the total amount of

memory being used, and it eliminates any need to deallocate memory.

Object Orientation

Although portability and automatic garbage collection are important properties of the

language, Java's most visible feature is that it is completely object-oriented. Aside

from a few primitive types, every piece of data in a Java program is represented by

an object. Every procedure in a Java program is expressed as a method belonging

to a particular class. The object-oriented paradigm eases the writing of modular

code, by making a clear division between the work associated with different kinds of

data. It also encourages code reuse by allowing one class to extend another class (its

"superclass") and inherit methods from it without reimplementing them.

Exceptions

Exceptions give a way to indicate an unusual or abnormal situation and allow the

situation to be handled outside the normal control flow of the program. When a Java

program encounters an unusual situation, it can "throw" an exception rather than

15



trying to correct the problem locally. That exception is then "caught" by a handler

at some other point in the code. Java implements the termination model of exception

handling [7], under which all work intervening between the throw and the catch is

terminated.

Static Threading

Java also contains some built-in support for multithreaded programs. This support

takes the form of static threads, Thread objects which are constructed with a

method that they should execute. Once a method begins on one thread, it always

completes on the same thread. This style of threading is especially suited to any

environment with persistent concurrent tasks: displaying multiple independent ani-

mations, processing input while doing background computation, and so on.

1.2 Cilk

The Cilk language also extends C, but in mostly perpendicular directions. Its main

goal is to support "dynamic threading," an alternative threading model which gives

more flexibility to the runtime scheduler in order to obtain provably good perfor-

mance. This section introduces Cilk's expression of this idea. Cilk also contains

several supporting features that are necessary to make dynamic parallelism practical.

This section touches on two of those: thread atomicity, which enables reasoning about

execution of procedures despite the potential for nondeterminism; and speculative ex-

ecution, which allows extraneous work to be aborted.

Dynamic Threading

Static threading is inconvenient for expressing large computations involving an arbi-

trary number of processors. To see why, imagine that you have a large computation

to complete and have several processors at your disposal. You don't care how the

work is divided up, but you want it all to get done eventually. Any division you might

make at compile-time to divide the work up among processors would be arbitrary. To

16



Figure 1-2: A Cilk computation DAG. A thread precedes all threads which it points to.
This particular DAG shows the execution of the program in Figure 1-3.

create one thread explicitly for every small subcomponent of the task would drown

your work in the overhead of scheduling all the low-level thread objects, but to leave

all of the work in a single thread would squander the resources available on your

computer.

To work around this problem, the dynamic threading model instead divides the

work up into many small "logical threads," which may execute in parallel at the

scheduler's discretion. It does not, however, create a heavyweight low-level thread

objects for each of them. Instead, the threads are dynamically distributed by the

scheduler across a small number of heavyweight threads, which the scheduler can do

at runtime when full information about processor load is available.

Cilk implements dynamic parallelism with a fork-join model, using the spawn and

sync keywords. As the program runs, its threads are connected by a dependency

DAG, such as the one shown in figure Figure 1-2. A thread does not begin to execute

until all of the threads which logically precede it have completed. The logical threads

in a Cilk program are Cilk threads, pieces of code which execute serially, that is,

maximal sequences of executed statements that do not contain one of the parallel

keywords.

In a Cilk program, a statement can be preceded by the keyword spawn, as in

line 7 of Figure 1-3. This keyword indicates that the procedure being spawned, here

fib(n-l), can execute in parallel with the remainder of the procedure spawning it,

17



1 cilk int fib(int n) {

2 int x, y;

3 if(n < 2) {

4 return n;

5 }

6 /* thread 0 */
7 x = spawn fib(n-1);

8 /* thread 1 */

9 y = spawn fib(n-2);

10 /* thread 2 */

11 sync;

12 /* thread 3 */

13 return x + y;

14 }

Figure 1-3: A recursive Cilk procedure to find Fibonacci numbers, according to the formula
fib(n) = fib(n - 1) + fib(n - 2).

here fib(n). For brevity, we often refer to spawned method as the child, and the

spawning method as the parent.

Only after a sync statement, such as the one in line 11, can the program be assured

of seeing the state after the spawned procedures complete. The sync statement acts

as a join; execution does not proceed in fib (n) until all of the procedures spawned

from fib (n) (that is, all the children of fib (n)) have completed execution and their

return values have been received.

This style of parallelism works well for computations with a large but fixed amount

of work. A method to recursively compute the Fibonacci numbers or to compute

matrix products ( [32]) would fall into this category. This easily-achievable parallelism

is the fundamental power that JCilk intends to carry over into Java.

Provably Good Scheduler

Cilk takes advantage of its dynamic parallelism to implement a scheduler which is

provably good. That is to say, the Cilk designers have proven (in [11]) that a program

running under the Cilk scheduler on an arbitrary number of processors will complete

18



c d e

Figure 1-4: A parallel search tree. Every node represents a procedure called in the parallel
search, and the edges, represent those calls. The nodes labeled a through e are executing
simultaneously.

in time within a constant factor of the optimal time the program would have taken

if it were being run by an omniscient scheduler. The implementation details of Cilk's

scheduler can be found in [11]. Chapter 3 shows how I have adapted it into JCilk.

Thread Atomicity

In order to simplify reasoning about the interactions among threads, Cilk implements

atomicity between threads belonging to the same procedure. Two threads in the same

procedure never run simultaneously or interleave; execution always proceeds according

to some sequential order of threads. This constraint lets the programmer reason about

a Cilk program's local execution without having to worry about data races, although

it makes no guarantees about data races between two different procedures.

Speculative Computation

A major gap in the dynamic parallelism model, as I have described it so far, is the

lack of support for speculative computation. This facility is important for parallelizing

programs such as branch-and-bound or heuristic search [9], in which some computa-

tions likely to contribute to a solution might turn out to be unnecessary or redundant

after they have been spawned. Once the program learns that a subcomputation is

unnecessary, it should abort that subcomputation to avoid wasting processor time.

19

a



As an example, consider the search tree in Figure 1-4, which shows five processors

concurrently working pieces of a parallel search. Imagine that the processor node a

finds a solution that is better than any solution that could possibly exist at node b;

in this case, the processor working at node b might as well give up. Similarly, if a

processor were to find a solution it knows to be the global optimal, than all of the

other processors should stop their work.

Cilk supports speculative computation by extending what can be done with the

result of a spawned procedure. Specifically procedure f can be called with an inlet:

a local procedure that executes when f returns. In the inlet, the program has the

opportunity to examine the return value and take any appropriate action, including

aborting any remaining subcomputations.

The abort statement (which is generally executed in an inlet) initiates the abort

process. This process is essentially opaque from the programmer's point of view. It

traces the spawn tree, recursively aborting all children of the procedure which initiated

the abort, and all of its children's children, and so on. An aborted procedure has no

chance to clean up; it simply halts and vanishes from the program's perspective.

The only procedures to be aborted are those that were previously spawned and not

completed, and the programmer must take explicitly care not to later spawn more

side procedures.

Compared to the elegance and simplicity of the spawn/sync mechanism, this abort

protocol is complex, awkward, and opaque, making it a prime target for improvement

in JCilk.

1.3 JCilk

This thesis describes how JCilk extends Java to include support for dynamic paral-

lelism via the spawn and sync statements, along with all of the other features of Cilk.

This extension is, in fact, a faithful extension: eliding the parallel keywords from

a JCilk program leaves a correct serial Java program (the "serial elision"), and the

JCilk program running on one processor gives the same behavior as the serial elision

20



would.1 In general, the two languages peacefully coexist in JCilk, but there are some

conflicts between the two sides. One example, discussed first in this section, is static

versus dynamic threading, which is resolved in favor of Cilk's mechanism. Exceptions

present a more interesting picture, giving a new way to handle speculative execution.

I conclude the section by giving an outline of the remainder of the thesis.

Threading

Since the motivation behind JCilk is to add dynamic threading to Java, JCilk natu-

rally uses Cilk's dynamic threading as its primary threading mechanism. What does

that imply about JCilk's ability to support static threading as well? At the moment,

that remains an open question. The JCilk-1 implementation simply disallows any use

of Java's built-in threading mechanism in a JCilk program, but in Section 7.1 I give

some thoughts on how the two styles of threading could interact in future versions of

JCilk.

Exceptions and Aborting

It's not immediately clear how exceptions should behave under dynamic threading.

In particular, when a method throws an exception to its parent, how should it be

handled? It turns out that, using the semantics proposed for JCilk, exceptions provide

the key to crack the abort dilemma. To see how, let's reconsider the goals of the abort

mechanism.

First, we want a way to signal that the remaining children of a method are no

longer necessary. Any which have already been spawned but have not completed

should be halted, and any which have not yet been spawned should be skipped.

That sounds remarkably like what would an exception does by terminating blocks

between its throw-point and its handler, skipping all subsequent statements. The

abort mechanism also needs to retroactively "skip" procedure calls still in progress

1This claim isn't strictly true in all cases, because the shortcut assignment operators (such as +=)
follow must slightly different semantics to allow them to interact correctly with spawn statements.
The serial elision of the statement x += spawn f (), for example, should be x = spawn f () + x.

21



by aborting them; this idea gives some hints of what exceptions should mean in a

parallel context.

Second, we want a way for a parent to signal all of its descendants that they should

abort. Exceptions don't help with getting the abort signal to the children in the first

place, but they do help to add transparency once it gets there. After all, sudden

and inexplicable failure (as appears to occur at an abort in Cilk) is exactly the kind

of situation that exceptions are intended to avoid. Thus in JCilk, once the parent

has traced down the spawn tree to each outstanding spawned procedure, instead of

halting execution immediately, it merely causes an exception (a CilkAbort, to be

precise) to be thrown in those procedures.

This thesis argues that an exception-based abort mechanism is much more organic

and elegant than an inlet-based one. Modifying Cilk to support this functionality is

a natural next step in the evolution of the language. Adding exceptions directly into

Cilk is unreasonable, however, since the C language contains no concept of exceptions.

Thus, we are back to where we started: at Java, which does support exceptions. By

adding the Cilk parallel language features into Java, we create a new language JCilk

which gives exceptions to Cilk and gives dynamic threading to Java-improving on

both languages.

Structure of this Thesis

This thesis begins by going into more detail about the JCilk language. Chapter 2 gives

a more through discussion of JCilk's new exception-handling semantics in particular,

including a formal expression of those semantics.

The remainder of this thesis focuses on the implementation of JCilk and, in par-

ticular, the implementation of the JCilk Runtime System. Chapter 3 describes the

underlying work-stealing model, which was ported over from C to Java essentially

intact but with several implementation details changed. Chapter 4 dives into the

runtime system modifications to support JCilk's exception-handling semantics, and I

explain my implementation of them.

Certain aspects of the JVM make an efficient implementation of the runtime

22



system difficult. In Chapter 5, I explain how these affect JCilk's performance and

attempt to improve that performance. In Chapter 6, I discuss how JCilk fits into

the family of parallel languages. Finally, in Chapter 8, I suggest future directions in

which JCilk might go.

Much of this thesis represents collaborative work with Angelina Lee and Charles

E. Leiserson. Chapter 2, in particular, was based on our joint written work.
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Chapter 2

JCilk Semantics1

What actually happens when an exception is thrown? How can a programmer tell

what will be aborted an what won't? All of these questions require a full specification

of the semantics of the JCilk language, which this chapter provides. In cases where

there are no parallel interactions, JCilk's semantics are the same as those of Java. An

additional part of the semantics, covered in Section 2.1, is inherited from Cilk: the

behavior at spawn and sync statements and the meaning of the cilk keyword.

The new exception semantics, in which parallel "side computations" can be aborted,

are entirely unique to JCilk, although JCilk does maintain Java's exception syntax

and is consistent with Java's semantics for serial executions. Section 2.2 describes

how Java exceptions work and gives the baseline for understanding JCilk exception

behavior. JCilk provides "semisynchronous" aborts to simplify the reasoning about

program behavior when an abort occurs. JCilk also allows aborts themselves to be

caught by defining a new subclass of Throwable, called CilkAbort, thereby allowing

programmers to clean up an aborted subcomputation. The last two sections of this

chapter explain those ideas.

1This chapter describes joint work with Angelina Lee and Charles E. Leiserson.
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1 public class Fib {
2 public static cilk void fib(int n) {
3 int x, y;

4 if(n < 2) {

5 return n;
6 }

7 x = spawn fib(n-1);

8 y = spawn fib(n-2);

9 sync;

10 return x + y;

11 }

12

Figure 2-1: A simple JCilk procedure. Compare to Figure 1-3

2.1 Basic JCilk Semantics

In JCilk, as in Cilk, a program expresses its parallelism through the spawn and sync

statements described in Section 1.2. This section describes these keywords and their

ramifications. First I give more complex usages of the spawn keyword which require

new threads called inlets to execute. Then I explain the cilk keyword, which indicates

parallel code, and the concept of the locus of control, which can be used to describe

a JCilk program's execution.

Spawn and Sync

The examples of Cilk procedures given in Section 1.2 transfer to JCilk essentially

without modification. For example, the sample procedure given in Figure 1-3 can be

adapted into the JCilk method in Figure 2-2 with minimal modifications: only the

trappings of Java's object-orientation must be added.

As in Cilk, the spawn keyword also appears in slightly more complex contexts not

discussed in Section 1.2. Lines 5-7 of Figure 2-2 show alternative ways to spawn a

procedure when the procedure being spawned returns a value. The calls to B and

C, because they are spawned, are logically in parallel with the remainder of main.
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1 public class Demo {

2 public static void main(String[] argv) {

3 int x = O, y = 0;

4 spawn A);

5 x = spawn B(2);

6 y += spawn C(4, 5);

7 y += spawn C(6, 7);

8 System.out.println(x + " + y);

9 sync;

10 System.out.println(x + " "+ y);

11 }
12 }

Figure 2-2: More complex spawns in JCilk.

The result of the call to B(2) is stored into x after the call completes. Similarly, y is

increased by C(4, 5) after that call completes. Because line 8 is logically in parallel

with the execution of B and C, the output that appears from line 8 is nondeterministic;

it could see the old values, the new values, or any combination thereof.

Inlets

Although JCilk does not allow an arbitrary inlet method to be executed when a

spawned method completes.2 , the concept of an inlet remains to support the assign-

ment operators. For every assignment of the form x = spawn f () or x += spawn

f () the operation (if any) and the assignment for the spawn statement are implicitly

performed as an inlet. The inlet counts as its own thread, so that it can execute long

after the original spawn statement it is a part of has finished. It is also considered

part of the parent method, so it executes atomically with respect to the other threads

in the parent method. Without the atomicity guarantee, the two += statements in

lines 6 and 7 could read y before either writes, rendering the += idiom useless when

dealing with spawn statements.

2 Similar behavior can, however, be obtained through the catchlet and finallet mechanisms de-
scribed in Section 2.4.
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The Cilk Keyword

JCilk inherits from Cilk one other keyword related to parallelism: the cilk keyword

itself. Every method that is used as a "cilk method," (that is, every method that can

be spawned and can spawn other methods) must be declared with the cilk modifier.

This keyword indicates that the method could be run in parallel with other methods,

and lets the programmer now and that he or she should carefully consider parallel

effects accordingly. A non-cilk method cannot call or spawn a cilk method, but cilk

methods can call non-cilk methods (such as those in the Java APIs).

The Locus of Control

To follow along with a particular execution of a Cilk or JCilk program, we often de-

scribe a locus of control, a point at which execution can occur, similar to the con-

cept of a program counter in an assembly-language program. Every spawn statement

creates a new locus of control belonging to the child method, called that method's

primary locus of control. That locus of control moves through the child until that

method completes. It then returns to the parent method to execute the inlet (if any)

and finally disappears. We can thus express thread atomicity by saying that only one

locus of control at a time can execute in one method at a time. Any locus of control

executing an inlet in a method is considered a secondary locus of control in that

method.

2.2 Exceptions in Java

Java contains an object-based exception mechanism which gives an alternate way for

a block of code to conclude. Rather than exiting the block normally (or returning a

value, if the block is a method), the block can throw an exception: an object, and

in particular, an instance of some subclass of Throwable. An exception is gener-

ally thrown to indicate that an abnormal or illegal event has occurred and that the

method which is throwing the exception has not completed normally. (Indeed, such a
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1

2
3
4
5
6
7

int read(int n) throws IOException {

if(n < 0 II n > 5) {

throw new IndexOutOfBoundsException();

}

data[n] = System.in.readln(); // throws IOException

return data[n];

}

8 public static void main(String argv[]) {

9 try {
10 int x = read(n);

11 System.out.println("Read " + x);
12 } catch(IOException e) {

13 // Handle bad file, etc.

14

15

16

17

} catch(IndexOutOfBoundsException e) {

// Handle bad user input of n.

}
// Continue execution

18 }

Figure 2-3: Two simple Java methods. Method read takes an integer. If that integer is
out of range, it throws an exception. Otherwise, it attempts to read from standard input,
which could itself throw an exception. Method main calls read and handles both kinds of
exceptions.

method is formally described as having completed abruptly [13].) try-catch-finally

statements are used for exception-handling in JCilk, just as they are in Java.

Figure 2-3 gives an example of a Java program utilizing exceptions. In this pro-

gram, there are two ways for method read to complete.

In a "normal" completion, the return statement in line 6 executes. The return

value is stored into x in line 10, and is printed in line 11. Since exception is thrown, the

two catch clauses do not execute. After the try block is done, execution immediately

skips to after the end of the try-catch statement, that is, to line 17.
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Sometimes, however, something will go wrong somewhere, causing the method to

complete "abruptly." Rather than failing outright, the method throws an exception

to allow another part of the program (which may be better equipped to understand

the failure) to handle the failure. In this case, method read could either throw an

exception directly (as in line 3) or propagate an exception that it cannot handle itself

(if the call to readln in line 5 throws an exception). In both cases, that exception is

passed back to main.

When main receives an exception from read, it does not store any value into x.

Instead, execution in main immediately leaves the try block and enters one of its

catch clauses. Notice that since execution leaves the try block, line 11 is skipped

and the try block's output is not printed. Instead, the body of the catch clause

executes.

In general, when an exception is thrown, the Java Language Specification [13]

states:

When an exception is thrown, control is transferred from the code that

caused the exception to the nearest dynamically-enclosing catch clause of

a try statement (§14.19) that handles the exception.

A statement or expression is dynamically enclosed by a catch clause if it

appears within the try block of the try statement of which the catch clause

is a part, or if the caller of the statement or expression is dynamically

enclosed by the catch clause...

The control transfer that occurs when an exception is thrown causes

abrupt completion of expressions (§15.6) and statements (§14.1) until a

catch clause is encountered that can handle the exception; execution then

continues by executing the block of that catch clause. The code that

caused the exception is never resumed.
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1 cilk try {

2 spawn f();
3 } catch(Exception e) {

4 }

5 sync;

Figure 2-4: The simplest way to catch an exception in JCilk.

1 cilk int f() throws Exception {
2 int w = spawn A);

3 int x = B();

4 int y = spawn C);

5 int z = D();

6 sync;

7 return w + x + y + z;

8 }

Figure 2-5: A simple JCilk program using exceptions.

2.3 Exceptions in JCilk

JCilk retains Java's exception syntax and its general exception behavior, and extends

them to encompass the cases where exceptions are thrown while code is executing in

parallel. This philosophy means that an exception thrown in JCilk will act exactly like

one thrown in Java. This section begins by exploring this idea. The main new feature

introduced to the language is the concept of aborting, represented by the CilkAbort

exception. These simple cases can be understood without even having to worry about

how the exception is caught. For this section, I assume that every exception thrown

in the JCilk program is caught using a cilk try block as in Figure 2-4. In Section 2.4

I cover more complex cases.

Philosophy

The design of JCilk strives to preserve Java's exception semantics while extending

them to cope gracefully with the parallelism provided by the Cilk primitives. In

particular JCilk extends the notion of "abruptly completes" to encompass the implicit

aborting of any side computations that have been spawned off and on which the
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"abrupt completion" semantics of the Java exception-handling mechanism depends.

Thus, for example, in Figure 2-5, if A and/or C is still executing when D throws an

exception, then they are aborted.

A little thought reveals that the decision to implicitly abort side computations

opens a Pandora's box of subsidiary linguistic problems to be resolved. Aborting

might cause a computation to be interrupted asynchronously [13, Sec. 11.3.2], causing

havoc in programmer understanding of code behavior. What exactly gets aborted

when an exception is thrown? Can the abort itself be caught so that a spawned

method can clean up? Can the mechanism be implemented efficiently?

The CilkAbort exception

Because of the havoc that can be caused by aborting computations asynchronously,

JCilk leverages the notion of implicit atomicity by ensuring that aborts occur semisyn-

chronously. That is, when a method is aborted, all its loci of control reside at

thread boundaries. JCilk provides a built-in exception3 class CilkAbort, which in-

herits directly from Throwable, as do the built-in Java exception classes Exception

and Error. When JCilk determines that a method must be aborted, it causes a

CilkAbort to be thrown in the method. The programmer can choose to catch a

CilkAbort if clean-up is desired, but the exception always appears to have been

thrown semisynchronously.

Semisynchronous aborts ease the programmer's task of understanding what hap-

pens when the computation is aborted, limiting the reasoning to those points where

parallel control must be understood anyway. For example, in Figure 2-5 if C throws

an exception when D is executing, then the thread running D will return from D and

run to the sync in line 6 of f 1 before possibly being aborted. Since aborts are by their

nature nondeterministic, JCilk cannot guarantee that when an exception is thrown,

a computation always immediately aborts when its primary locus of control reaches

the next thread boundary. What it promises is only that when an abort occurs, the

3In keeping with the usage in [13], when I refer to an exception, I mean any instance of the class
Throwable or its subclasses.
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1 cilk void f2() {

2 cilk try {
3 spawn A()

4 } catch(CilkAbort e) {

5 cleanupA();

6 }

7 cilk try {
8 spawn B()

9 } catch(CilkAbort e) {

10 cleanupB();

11 }

12 cilk try {

13 spawn C()

14 } catch(CilkAbort e) {
15 cleanupC();

16 }

17 sync;

18 }

Figure 2-6: Catching a CilkAbort.

primary locus of control resides at some thread boundary, and likewise for secondary

loci of control.

Handling aborts

JCilk also give the programmer more flexibility in reacting to an abort. In the original

Cilk language, when a side computation is aborted, it just halts and vanishes without

giving the programmer any opportunity to clean up partially completed work. In

contrast, when JCilk's exception mechanism signals a method in a side computation

to abort, it causes a CilkAbort to be thrown semisynchronously within the method.

JCilk exploits Java's exception semantics to provide a natural way for program-

mers to handle CilkAbort exceptions. A program can catch the CilkAbort exception

and restore any modified data structures to a consistent state. The code in Figure 2-6

shows how CilkAbort exceptions can be caught. If any of A, B, or C throws an ex-

ception while others are still executing, then those others are aborted. Any spawned

methods that abort have their corresponding catch blocks executed and, in this case,

their cleanup methods called.
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2.4 Advanced JCilk Exceptions

Exceptions can be thrown into more complex contexts than the one given in Figure 2-

4. In particular, the cilk try statement might not be immediately followed by a

sync statement, in which case the following statements might be executed before

an exception is thrown. For these cases, the concept of an inlet must be extended

to support a thrown exception. A cilk try block that contains multiple spawn

statements also complicates the question of what, exactly, should be aborted. This

complication extends even further when the CilkAbort exception itself is being caught

as well. In this section I confront all of these questions and give the final pieces of

the JCilk exception semantics.

The cilk try statement

Figure 2-7 shows an example of how the cilk try statement interacts with the spawn-

ing of subcomputations. The parent method f3 spawns off the child cilk method A

in line 4, but its primary locus of control continues within the parent, proceeding to

spawn off another child B in line 9. As before, the primary locus of control continues

in f3 until it hits the sync in line 13, at which point f3 is suspended until the two

children complete.

Observe that f3's primary locus of control can continue on beyond the scope of

the cilk try statements even though A and B may yet throw exceptions. If this

ability were not present and the primary locus of control were held up at the end of

every cilk try block, then writing a catch clause would always preclude parallelism.

In the code from the figure, if one of the children throws an exception, it is caught

by the corresponding catch clause. The catch clause may execute long after the

primary locus of control has left the cilk try block, however. As with the example

of an inlet updating a local variable in Figure 2-2, if method A signals an exception,

A's locus of control must operate on f3 to execute the catch clause in lines 5-7. This

functionality is provided by a catchlet, which is an inlet that runs on the parent

(in this case f3) of the method (in this case A) that threw the exception. As with
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1 cilk int f3() {

2 int x, y;

3 cilk try {
4 x = spawn A);

5 } catch(Exception e) {

6 x = 0;

7 }

8 cilk try {

9 y = spawn B();

10 } catch(Exception e) {

11 y = 0;
12 }

13 sync;

14 return x + y;

15 }

Figure 2-7: Handling exceptions with cilk try when aborting is unnecessary.

ordinary inlets, JCilk guarantees that the catchlet runs atomically with respect to

other loci of control running on f3.

Similar to a catchlet, a finallet runs atomically with respect to other loci of

control if the cilk try statement contains a finally clause.

Aborting side computations

We are now ready to tackle the full semantics of cilk try, which includes the abort-

ing of side computations when an exception is thrown. We refer back to one key

concept in the Java language specification [13, Sec. 11.3]: "A statement or expression

is dynamically enclosed by a catch clause if it appears within the try block of

the try statement of which the catch clause is a part, or if the caller of the statement

or expression is dynamically enclosed by the catch clause." In Java code, when an

exception is thrown, control is transferred from the code that caused the exception

to the nearest catch clause of a dynamically enclosing try statement that handles

the exception.

JCilk faithfully extends these semantics, using the notion of "dynamically enclos-

ing" to determine, in a manner consistent with Java's notion of "abrupt completion,"

what method instances should be aborted. (See the quotation in Chapter 1.) Specif-
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1 cilk int f4() {

2 int x, y, z;

3 cilk try {

4 x = spawn A);

5 y = spawn B();

6 } catch(Exception e) {

7 x=y=0;
8 handle(e);

9 }

10 z = spawn C();

11 sync;

12 return x + y + z;

13 }

Figure 2-8: Handling exceptions with cilk try when aborting might be necessary.

ically, when an exception is thrown, JCilk delivers a CilkAbort exception semisyn-

chronously to the side computations of the exception. The side computations

include all methods that are also dynamically enclosed by the catch clause of the

cilk try statement that handles the exception. The side computations also include

the primary locus of control of the method containing that cilk try statement if

that locus of control still resides in the cilk try statement. JCilk thus throws a

CilkAbort exception at the point of the primary locus of control in that case. More-

over, no CilkAbort is caught in a to-be-aborted cilk block until all that block's

children have completed, allowing the side computation to be "unwound" in a struc-

tured way from the leaves up.

Figure 2-8 shows a cilk try statement. If method A throws an exception that is

caught by the catch clause beginning in line 6, the side computation that is signaled

to be aborted includes B and any of its descendants, if it has been spawned but hasn't

returned. The side computation also includes the primary locus of control for f4,

unless it has already exited the cilk try statement. It does not include C, which is

not dynamically enclosed by the cilk try block.

JCilk makes no guarantees that the CilkAbort is thrown quickly (or even at all)

after it signals an exception's side computation to abort. It simply offers a best-effort

attempt to do so. In fact, it would be correct for the signaling of a side computation
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to abort to be implemented as a no-op. Linguistically, the side computations are

executed speculatively, and the overall correctness of a programmer's code must not

depend on whether the "aborted" methods complete normally or abruptly. As we

shall see in Chapter 4, however, JCilk does have a particularly efficient mechanism

for signaling side computations to abort.

The semantics of cilk try

When an exception is thrown, when and how is it handled? Exception handling into

six actions:

1. An exception is selected to be handled by the catch clause of the nearest dy-

namically enclosing cilk try statement that handles the exception.

2. Its side computation is signaled to be aborted.

3. All dynamically enclosed spawned methods complete, either normally or abruptly

by dint of Action 2.

4. The primary locus of control for the method exits the cilk try block, either

normally or by dint of Action 2.

5. The catchlet associated with the selected exception is run.

6. If the cilk try contains a finally clause, the associated finallet is run.

These actions operate as follows. If one or more exceptions are thrown, Action 1

selects one of them. Mirroring Java's cascading abrupt completion, all dynamically

enclosed cilk try statements between the point where the exception is thrown and

where it is caught also select the same exception, even though they do not handle

it. Action 2 is then initiated to signal the side computation to abort. Action 5 is

initiated by Action 1, but it does not run until Actions 3 and 4 complete. Finally,

Action 6 is run. If no exception is thrown, Actions 1, 2, and 5 are not run. The only

dependency is that Action 6 runs after both Actions 3 and 4 complete.

If multiple concurrent exceptions are thrown to the same cilk block in JCilk,

only one is selected to be handled. The rationale is that the other exceptions come

from side computations, which will be aborted anyway. This decision is consistent
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with ordinary Java semantics, and it fits in well with the idea of implicit aborting.

The decision to allow the primary locus of control possibly to exit a cilk try block

with a finally clause before the finallet is run reflects the notion that finally is

generally used to clean up [13, Ch. 11], not to establish a precondition for subsequent

execution. Moreover, JCilk does provide a mechanism to ensure that a finally clause

is executed before the code following the cilk try statement: simply place a sync

statement immediately after the finally clause.

2.5 The Queens problem

To demonstrate some of the JCilk extensions to Java, this section illustrates how

the so-called "Queens" puzzle can be programmed. The goal of the puzzle is to find

a configuration of n queens on an n-by-n chessboard such that no queen attacks

another, that is, no two queens occupy the same row, column, or diagonal. Figure 2-9

shows how a solution to the queens puzzle can be implemented in JCilk. The program

would be an ordinary Java program if the three keywords cilk, spawn, and sync were

elided, but the JCilk semantics make this program highly parallel.

The program uses a speculative parallel search. It spawns many branches in the

hopes of finding a "safe" configuration of the n queens, and when one branch discovers

such a configuration, the others are aborted. JCilk's exception mechanism makes this

strategy easy to implement.

The Queens program works as follows. When the program starts, the main method

constructs a new instance of the class Queens with user input n and spawns off its

q method to search for a safe configuration. Method q takes in two arguments: cfg,

which contains the current configuration of queens on the board, and row, which

contains the current row to be searched. It loops through all columns in the current

row to find safe positions to place a queen in the current row. The regular Java

method safe, whose definition we omit for simplicity, determines whether placing a

queen in row row and column col conflicts with other queens already placed on the

board. If there is no conflict, another q method is spawned to perform the subsearch
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1 public class Queens {

2 private int n;

private cilk void q(int[] cfg, int row) throws Result {
if(row == n) {

throw new Result(cfg);

}

for(int col = 0; col < n; col++) {

int[] ncfg = new int[n];

System.arraycopy(cfg, 0, ncfg, 0, n);

ncfg[row] = col;

if(safe(row, col, ncfg))

spawn q(ncfg, row+1);

}
}
sync;

{

}

17 public static cilk void main(String argv[]) {

18 int n = Integer.parseInt(argv[0]);

19 int[] cfg = new int[n];

20 int[] ans = null;

21 cilk try {

22 spawn (new Queens(n)).q(cfg, 0);

23 } catch(Result e) {

24 ans = (int[]) e.getValue();

25 }

26 sync;

27 // At this point, the answer is in ans.

}

}

Figure 2-9: The Queens problem coded in JCilk. The program searches in parallel for a
single solution to the problem of placing n queens on an n-by-n chessboard so that none
attacks another. The search quits when any of its parallel branches finds a safe placement.
The method safe determines whether it is possible to place a new queen on the board in a
particular square. The Result exception (which inherits from class Exception) is used to
notify the main method when a result is found.
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with the new queen placed in the position (row, col).

Note that the newly spawned subsearch runs in parallel with all other subsearches

spawned so far. The parallel search continues until the every row contains a queen,

at which point cfg contains a legal placement of all n queens. The successful q

method throws the user defined exception Result (whose definition is not shown for

simplicity) to signal that it has found a solution. That exception is used as a means

of communication between the q and the main methods.

The program exploits JCilk's implicit abort semantics to avoid extraneous compu-

tation. When one legal placement is found, some outstanding q methods might still be

executing; those subsearches are now redundant and should be aborted. The implicit

abort mechanism does exactly what we desire when a side computation throws an

exception: it automatically aborts all sibling computations and their children dynam-

ically enclosed in the catching cilk try statement. In this example, since the Result

exception propagates all the way up to the main method, all outstanding q methods

are aborted automatically. Notice that there is a sync statement in the main method

before it proceeds to print out the solution to ensure that all side computations have

terminated.
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Chapter 3

The Work-Stealing Scheduler

The implementation of JCilk is, following the example set by Cilk [11], divided into

two major components: the Compiler and the Runtime System. Although a fully-

featured JCilk compiler certainly could be written to produce a Java bytecode output,

with all of the JCilk scheduler features directly inserted into that bytecode, that

implementation would be needlessly complicated. Instead, most of the scheduler

is implemented as methods in the runtime system, and the compiler (as one of its

tasks) adds the appropriate runtime system calls into the compiled code. Section 3.1

discusses this process and gives an example of its results. The scheduler itself uses a

work-stealing algorithm in which each processor steals work from another processor

whenever it completes its own work. The runtime system is implemented with three

major classes, described in the remainder of this chapter: Workers, which provide

an interface to the runtime system and which manage the process of work-stealing;

Frames, which maintain a shadow of the call stack to allow stealing to occur; and

Closures, which represent frames that has been stolen and allow children to return

their values to their parents.

3.1 The Compiler

A JCilk program is compiled in two stages: first, from JCilk to an intermediate

language GoJava, and second, from GoJava into Java bytecode. For the purposes
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1 private cilk int fib(int n) {
2 int x, y;

3 if(n < 2) {

4 return n;

5 }

6 x = spawn fib(n-1);

7 y = spawn fib(n-2);

8 sync;

9 return x + y;

10 }

Figure 3-1: A JCilk method to compute the nth Fibonacci number.

of this thesis, only the first stage is significant; the main feature of the compiler

is that it creates the interface between the user code and the runtime system. To

start things off, it creates a main method which initializes the runtime system. It

replaces parallel keywords with calls into the runtime system, allowing the program

to inform the scheduler of its current status and to find out the scheduler's current

status. The compiler also uses static analyis to create the helper procedures and

lookup tables, which are used whenever the runtime system needs to call a method in

the user's program or find out information about the structure of the user's program.

Finally, the compiler maintains more complex information about variable usage which

is beyond the scope of this thesis; see the forthcoming thesis of Angelina Lee for more

information.

The first phase of the compilation process is a source-to-source compilation, from

JCilk to an intermediate language called GoJava. This language is, in itself, an

extension of Java. It adds to Java very limited use of the goto keyword, which is a

reserved keyword in Java but is never used. Such support for goto is necessary to

include a low-overhead continuation mechanism into Java, which in turn is necessary

for the thread migration mechanism described in Section 3.2.

The runtime system and the compiled code share a narrow interface. Compiled-in

method calls like the ones in Figure 3-2, provide the main part of the interface. At
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1 private int fib(Worker worker, int n, int returnEntry) {
2 int x, y;

3 Fib_fib_frame thisFrame = new Fib_fibframe(n, 0, returnEntry);

4 worker.pushFrame(thisFrame);

5 if( n < 2 ) {

6 return n;

7 }

8 x = this.fib(worker, n-i, 1);

9 if(worker.popFrameCheck(new Integer(x))) {

.0 return 0;

.1 }

.2 thisFrame._x = x;

.3 y = this.fib(worker, n-2, 2);

.4 if(worker.popFrameCheck(new Integer(y))) {

.5 return 0;

.6

17

18

}

return x + y;

}

Figure 3-2: A simplified version of the "fast clone" of the compiled Fibonacci method.
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the other end, the runtime makes a single initial call into the user code's main method

to get the program started. These are the only places where the compiled code and

the runtime system interact. The user's compiled code doesn't need to worry about

scheduling; it simply needs to call into the runtime system every so often to make

sure that everything is in order.

For every method, the compiler also outputs several helper methods which are

used by the runtime system. These belong to the Frame class (see Section 3.3)

corresponding to the method they are annotating. The most commonly used such

method is cilkRun, which calls the user method that the frame belongs to. This extra

level of procedural indirection allows the runtime system to call any user method

without having to explicitly use reflection to look up its name.

The Two Clones

Again following the example set by Cilk, each method in a JCilk program is compiled

into two different copies (or "clones") of that method. One, the fast clone, is

streamlined. It is the clone that is intended to be executed most of the time, and is

in fact the only clone which is ever directly called by the compiled GoJava program.

It contains only the bare minimum of parallel support, as can be seen in Figure 3-2.

The slow clone contains much more support for parallel execution, as shown in

Figure 3-3. It accesses all of its local variables through the frame to ensure that it

always has the most up-to-date versions of those variables. In more complex methods

(like those we consider in Chapter 4), other overheads are also be added to the slow

clone.

The main feature of the slow clone, though, is its continuation support. It is only

called by a thief which has stolen the method and is now continuing it. It takes a

special frame argument that the thief passes in, which contains the saved local state

from the previous execution of the method on the victim. It also contains a program

counter (PC) which determines the point at which execution should continue. A

switch statement (like the one in line 5) branches to the appropriate label in the

method.
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1 private void fibSlow(Worker worker, CilkFrame frame) {
2 int tmp;

3 Fib_fib_frame thisFrame = (Fibfibframe)frame;
4
5 switch(thisFrame._pc) {

6 case 1:

7 goto _cilksyncl;

8 case 2:

9 goto _cilk_sync2;

10 case 3:

11 goto _cilksync3;

12 }

13 _cilk_syncl:

14 thisFrame._pc = 2;

15 tmp = this.fib(worker, thisFrame._n-2, 2);

16 if(worker.popFrameCheck(new Integer(y));

17 return;

18 } else {

19 thisFrame._y = tmp;

20 }

21 _cilksync2: ;

22 thisFrame._pc = 3;

23 if(!worker.sync()) {
24 return;

25 }
26 _cilk_sync3:

27 retVal = x + y;

28 worker.setReturnResult(new Integer(retVal));

29 return;

30 }

Figure 3-3: A simplified version of the "slow clone" of the compiled Fibonacci method.
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Notice that the slow clone contains goto statements, which are not valid state-

ments in Java. Although the Java language supports many goto-like idioms, such

as breaking out of a named loop, it provides no way to jump into a loop. This is

where GoJava comes in. GoJava contains (by design) support for goto statements in

exactly the ways that the continuation mechanism needs [22].

3.2 Workers

The JCilk implementation contains a provably good scheduler built on top of a work-

stealing algorithm. (For more details on Cilk's implementation, from which the JCilk

implementation is adapted, see [11].) At its lowest level, the JCilk runtime system

is composed of a number of Java Thread objects, known as the workers, which are

described in this section. Each worker represents one processor on which the program

is running. The code statically assigned to each worker Thread is a simple loop: find

work to do, do it, repeat.

Where does this work come from? Initially, it is passed in by the main method

generated by the compiler that the compiler generates; this first piece of work repre-

sents the main method of the user code. One worker begins by executing that method

from top to bottom. Whenever it encounters a spawn statement, it first executes the

child method, then returns normally and continues the parent method, exactly as in

the serial execution. If there is only one worker, the runtime system doesn't have to

do anything else. Eventually the worker reaches the end of the JCilk program's main

method and the program terminates.

On multiple workers, the story gets more complicated. The workers beyond the

first have no initial method to execute, and instead attempt to steal work. When

a worker W (the thief) attempts to steal work, it first randomly chooses another

worker V to be its victim and queries that worker to see if it has any work available

to steal. If V is currently in the middle of executing some spawned method B, as it is

in Figure 3-4, then that method's parent A is available to be stolen. Worker W then

continues executing the user's code for A from where V left off, that is, immediately

46



V W V W

A / - A
B B

(a) (b)

Figure 3-4: An example of work-stealing. In (a), before the steal occurs, A and B are on
worker V's call stack, while worker W has no work. In (b), W has stolen A.

after the spawn statement which spawned A. (Recall that a spawn statement indicates

that the child method B can run in parallel with the remainder of its parent A, which

is exactly what happens here.) This theft introduces two ways for a worker to run

out of work and regress to stealing.

First, as W executes its new method A, it might encounter a sync statement. If

encounters a sync statement before V finishes executing B, then we say that A still

has an outstanding child. The sync fails and A has to be suspended until B finally

finishes. In this case, W is left with no work to do, so it goes stealing.

On the other hand, V might also finish B before W reaches a sync statement. In

this case, V cannot follow its normal control flow and return to executing A, because

A is already being executed by W. Instead, V attempts to steal work from another

worker.

Notice that in all of these cases, any given JCilk thread executes from start to

finish on a single worker. Only at the boundaries between threads can the method

be migrated or stopped.

The worker also serves another purpose. Every cilk method is called with the

worker object which is currently executing that method. That worker argument gives

the compiled user program its only interface the compiled user's code has to the

runtime system; every call to the runtime system goes through the worker.
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3.3 Frames

The discussion in Section 3.2 takes a lot for granted. In particular, the thief needs

some way to access the local state of the method it is trying to steal. That means

that the method must already have stored a copy of its local state before it spawned

its child. To support this extra storage requirement, every spawn statement in the

original JCilk program must expand into several statements in the compiled program

to save the program state, call the spawned method, and then confirm that a steal

hasn't occurred. This section describes that expansion. In particular, it explains

how the saved state goes on the "ready deque," which presents an interface to allow

stealing to occur.

Spawning and Continuations

To allow a method which was begun on one worker to be continued by another worker

after a spawn statement, the compiler (like the Cilk compiler) expands that statement

into four stages:

1. Save all local state into public data structure, so that the thief can access the

correct values for all local variables. (Line 12 in Figure 3-2.)

2. Call the child method. (Lines 8 and 13.)

3. Confirm that the parent method was not stolen while the child was running.

If it was, halt execution and pass the child's return value (if any) to the runtime

system. (Lines 9 and 14.)

4. Continuation: present a label so that another worker can continue from im-

mediately after the spawn. (In lines 13, 21, and 26 of Figure 3-3.)

The Confirm stage of a spawn highlights the difference between the logical execu-

tion of the JCilk program and the actual execution of the Java method. Java itself

clearly doesn't support method migration; When a method like A is stolen, it still

remains on the victim Thread's Java call stack, and the victim returns to it when it

finishes executing B. Only with the explicit call into the runtime system does A learn
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from the worker that it has been stolen. Once it finds out that it has been stolen, it

immediately halts by returning 0 as in lines 10 and 15.

The Ready Deque

The Save and Confirm stages interact with the worker's ready deque, another con-

cept borrowed from Cilk, which is a deque of the frames belonging to that worker.

Each individual frame is an instance of some subclass of the CilkFrame class. When-

ever a cilk method is compiled, the compiler also produces a corresponding subclass of

CilkFrame containing, as instance fields, a shadow copy of each of that method's local

variables. The subclass also overrides the abstract cilkRun method of CilkFrame to

call its corresponding method, allowing a thief to call CilkFrame.run() to execute

the stolen method. (The CilkFrame class also contains several other methods, which

are discussed further in Chapter 4.)

Naturally, the ready deque grows and shrinks as the JCilk program executed.

It initially acts as a "shadow stack," perfectly mirroring Java's internal call stack.

It is necessary because Java provides no mechanism for accessing the information

about the call stack that a thief needs to know. When a method is first spawned,

it instantiates its own particular frame and pushes that frame onto the ready deque.

Whenever it spawns a child, the Save stage of the spawn ensures that its frame on

the deque is up to date with the current values of all its local variables. When the

method finally returns, its is popped off of the deque.

Of course, the ready deque wouldn't be much of a deque if it were only accessed

at one end. The common case for accesses to the deque is indeed the case already

described: spawns and returns pushing and popping at the "working end." A thief,

however, tries to access the other end of the deque: the "stealing end."

As it steals, the thief first examines the victim's deque to ensure that it contains

enough frames for one to be stolen. If each method pushes its own frame when it

begins executing, the examination requires at least two frames must be on the deque:

one for the method the thief is taking (A in the original example), and one for the

method the victim will still be executing (B in the example). If there are enough
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frames, the thief removes the first frame from the stealing end of its victim's deque

and initialize its own deque to contain that frame. Otherwise, it fails and moves on

to a different victim.

Needless to say, this interaction requires a synchronization protocol to ensure that

a thief and its victim don't simultaneously remove the same frame from the deque.

One simple protocol is mutual exclusion, using Java's built-in synchronized keyword.

Unfortunately, mutual exclusion is rather inefficient. In Chapter 5 I present a few

more protocols and discuss their performance implications.

3.4 Closures

Migrating a method to a new worker is only half of the problem. If the migrated

method returns a value, that method must be able to send its value back to its

parent. Although the concept of frames is sufficient for keeping track of the local

state of a single method, returning requires a pointer back to the parent frame as

well. Similarly, the parent method needs to know whether or not it has outstanding

children, so it knows how to behave at a sync statement. For methods which need this

information, the JCilk runtime system creates a Closure object, which is described

in this section. Although Closures were present in Cilk, they take a much more

prominent place in the JCilk implementation. This section also shows how JCilk co-

opts the inlet mechanism used by Cilk l , using it to convert these returns from another

worker from asynchronous events into synchronous events. Thread atomicity is also

implemented at the closure level, by a protocol explained at the end of this section.

Returning

Every worker (except when it has run out of work) always has exactly one closure,

representing the first frame at the stealing end of its deque. When a thief performs a

steal, it always takes from the stealing end of its victim's deque, so it always takes its

victim's closure C. To maintain the invariant of one closure per worker, it creates a

1Recall, however, that JCilk does not allow explicit inlets to be written by the user.
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1 public void setInletReturn(int retEntry, Object retVal) {

2 switch(retEntry) {

3 case 1:

4 x = ((Integer)retVal).intValue();

5 break;

6 case 2:

7 y = ((Integer)retVal).intValue();

8 break;

9 }

10 }

Figure 3-5: The method in the Frame to execute inlets for the compiled fib method of
Figures 3-2 and 3-3. Depending on which inlet is being executed, one of the frame's instance
variables, x or y, will be updated.

new closure D to belong to the victim by "promoting" the frame at the new stealing

end of the victim's deque.

After the steal, closure D has a parent pointer pointing back to C, to indicate

that the method corresponding to D should return its result back to C when it

finishes. In closure C, a corresponding entry is added to indicate that it has D as

a child, along with the value of C's PC before the steal. This entry allows C to

remember exactly where D's value should be returned back to, that is, which inlet to

execute when D returns. It also acts as a "join counter," telling C's worker that it

has an outstanding child in case C's method encounters a sync statement.

The inlet is tailored to the particular spawn statement so that the return re-

sult is always handled as the user specifies. This specialization is implemented by

a general-purpose method such as the one in Figure 3-5, which dispatches to the

correct inlet based on its arguments. For example, the original spawn statement x

= spawn fib(n-1) creates an inlet whose body performs frame.x = val. Similarly,

the statement o. y += spawn f () compiles into code to store o into frame.lhs be-

fore the method is called, and creates an inlet to perform frame. lhs.y += val. A

part of the left-hand side of the original expression is stored in the frame before the

child method is spawned to support idioms in which the left-hand side changes, for
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State Decription Successors
1. READY Not running, but can immediately begin/resume. 2
2. RUNNING Currently running. 1, 3, 5
3. RETURNING Preparing to pass its return value to its parent. 4
4. DONE Has returned its value to its parent.
5. SUSPENDED Waiting on a child at a sync statement. 2, 6
6. INLETS Running an inlet while waiting on a child. 5

Table 3.1: The states of a Closure.

example if o is an element repeatedly drawn from an Iterator. 2

When the Confirm stage spawning a method B fails due to a theft, the return value

from B is passed into the runtime system. Following the parent pointer, the runtime

system can determine which worker is currently executing the stolen parent method

A. It asynchronously notifies A's worker by setting a flag that an inlet is available to

run, and stores the return value in a public place.

To maintain thread atomicity (not to mention efficiency), each worker only checks

for available return values when it encounters a thread boundary of its own. At that

point (at the Confirm stage of a spawn, for example), it notices the waiting inlet and

run it. Method B's return value is handled as appropriate.

Implementing Thread Atomicity

Ensuring that thread atomicity is followed means making sure that no two workers

ever try to operate on the same method simultaneously. Since only closures can be

stolen, and only closures can have inlets run in them, controlling access to the closures

is sufficient. My implementation uses a protocol based on the state field of the closure.

The six states available to a closure are shown in Table 3.1. When the first closure

is created when the program begins, it is in state READY. A closure being stolen

also its status set to READY. (The only other way a closure's status can be set back

to READY is discussed in Chapter 4.) In general, a closure with status READY is

one which is available to begin executing, but is not currently being executed on any

2 This interpretation technically goes against the Java Language Specification [13], which requires
that both the left-hand-side's location and its value be looked up before the right-hand-side is
evaluated. To obey Java's semantics, the serial elision of x += spawn f () should be considered to
bex = f() + x.
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Worker.

Once a worker claims a closure, it sets its status to RUNNING and begins exe-

cuting it. A closure spends the majority of its time in this state; only a RUNNING

closure can be stolen. A RUNNING closure executes inlets only when its execution

is at a thread boundary, to ensure that thread atomicity is maintained.

Eventually, the method represented by the closure finishes executing on some

worker. At that point, the closure stores that return value and changes its status

to RETURNING. Then it sends its return value to its parent, and its status finally

becomes DONE.

An alternate possibility is that the closure executes a sync statement in its method

while it has outstanding children on other workers. In this case, it cannot proceed

further. Rather than blocking the worker, the closure's status is set to SUSPENDED

and it is set aside. Its worker attempts to steal new work.

The SUSPENDED closure is now left with no worker executing it, but that's to be

expected since it has no work to do itself. Its children, however, continue to execute on

other workers. When a child D finishes while its parent C is SUSPENDED, something

a little different happens. Simply passing the result to D won't accomplish anything,

since C has no worker to poll its inlets. Instead, the worker which just finished D

takes ownership of D in the INLETS state. It executes any waiting inlets (more may

have appeared from other children simultaneously), and then checks again to see if

there are still outstanding children. If there are, the closure is re-SUSPENDED. If

not, then the closure stays on the same worker but becomes RUNNING again.
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Chapter 4

Exception Implementation

On some level, an exception is just another kind of return value, and the JCilk runtime

system treats it accordingly. Unlike a returned value, however, a thrown exception

could be passed to one of many locations (catch clauses) depending on what kind

of an exception it is. Returning to the correct location requires a more complex

data structure called a "try tree," introduced in this chapter. This data structure,

unique to JCilk, shadows the dynamic hierarchy of cilk try statements much like

the Frame Deque shadows the Java call stack. The try tree is updated every time a

cilk try block is entered or exited, as described in Section 4.1. It can then be used to

determine which methods to abort and which catchlets to execute, a process detailed

in Section 4.2. On the other side of the abort, a CilkAbort exception appears in the

aborted methods, by the technique in Section 4.3.

4.1 Writing to the Try Tree

The try tree is a way of tracking every cilk block (cilk methods and cilk try

blocks) containing the locus of control. Maintaining it is simple. The only time its

state can change is when the locus of control enters or exits a try block, at which

point the obvious update can be made. This section begins by explaining exactly

how that happens. The try tree also stores values and exceptions passed back from

the method's children; those updates require slightly more complex procedures, also
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1 cilk void threeWay() throws ExceptionThree {

2 spawn A);

3 cilk try {

4 spawn B();

5 cilk try {

6 spawn C(); //throws exception.

7 } catch(ExceptionOne e) {

8 cleanupC();

9 }

10 } catch(ExceptionTwo e) {

11 cleanupB();

12 }

13 D();

14 sync;

15 }

Figure 4-1: A method containing nested cilk blocks, each containing a spawn statement.

described in this section.

Example context

First, as an example of a complex context into which an exception might be thrown,

consider the method in Figure 4-1. Depending on what kind of exception the call

to C() throws, different sets of spawned methods might need to be aborted. If C

throws a RuntimeException, for example, then B could be aborted (assuming it was

still running), but A must continue normally. In order to determine which spawned

child methods should be aborted, the worker must keep track of where in the parent

method each was originally spawned from and, in particular, what the most directly

containing cilk block of each is.

Maintaining the try tree

For efficiency, and because only a method running in a slow clone can have children

running on other workers, the try tree is maintained only in the slow clone. Since the

vast majority of the work is done deeper in the ready deque, maintaining the try tree

does not add significant overhead. (See Chapter 5 for a more thorough discussion of

the performance implications of exceptions.)
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(a) (b)

Figure 4-2: The try tree corresponding to an execution of threeWay (Figure 4-1). Node
u represents the method itself, node v represents the outer cilk try block, and node c
represents the inner one, where the cursor is. In (a), methods A and B are executing on
different workers from threeWay. In (b), threeWay has been stolen again, creating a new
node in the tree for C.

The try tree contains three different kinds of nodes, as shown in Figure 4-2. In-

ternal nodes like u and v each represent a cilk block. A node's parent represents

the cilk block most directly containing that node's block. Most leaves, like A and B,

represent spawned calls that are currently executing on different workers; each leaf's

parent node corresponds to the block from which the method was spawned. At most

one leaf, here c, might also correspond to the cursor, which tracks the cilk block

containing the worker's current locus of control. In certain circumstances, a leaf might

also be added in order to direct that a CilkAbort exception should be thrown at a

certain point.

When a frame is promoted into a closure (as its parent is being stolen), a new

try tree is created for that frame's method. Conceptually, the new tree consists of

one branch from root to the cursor, corresponding to the method itself (the root) and

every cilk try block containing the current locus of control (the other nodes). In

practice, the tree is initialized to only contain a single node, where the cursor is. The

later tree grows upwards to contain the other nodes.

Maintaining the try tree is straightforward. Whenever a slow clone enters a cilk

try statement, the cursor moves down to a new node created as a child of the previous
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cursor node. Whenever a slow clone method leaves a cilk try statement normally,

the cursor moves up a level. (If it leaves the cilk try as a result of a thrown exception,

the cursor doesn't move, allowing the runtime system to track down the point where

the exception was thrown.) Whenever the tree's closure is stolen, the try tree is

updated to include a pointer to the new child closure as a child of the current cursor

node. The tree thus adds structure to the list of children discussed in Section 3.4.

Confirming at an exception

Recall that whenever a method returns after it's been spawned, the first thing it

does is confirm that its parent method was not stolen. The worker must make this

confirmation after every spawn completes, even when the spawned method throws

an exception. The confirm mechanism won't work as described previously, however,

since if an exception has been thrown, the code immediately following the spawn

statement won't be executed. Instead, every spawn statement must be wrapped in a

try-catch statement, as in lines 5-11 of Figure 4-3.

This new confirmation calls a new method, popFrameCheckException, so the

runtime system knows that the exception was thrown and not returned. If it turns

out that the parent method has been stolen, then the worker treats the exception

differently from a return value. The question is, what should the worker do with the

exception? Where should it put it?

Returning into the try tree

When a child method returns a value, the first step it takes is to find the leaf in the

try tree which corresponded to the child method which threw the exception. Once

the leaf is found, the returned value is inserted into the return field of that leaf, along

with a bit to tell whether the value was returned normally or thrown. Finally, as

with the implementation in Chapter 3, the worker who currently owns the closure is

flagged that it has a return value.

A returned value from a child is the most common way for values to get into the

try tree. There are also four less-common situations when an exception might be
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1 private int fib(Worker worker, int n, int returnEntry) {

2 try {

3 try {

4 _tmp = this.fib(worker, n-l, 1);

5 } catch(RuntimeException e) {

6 if(worker.popFrameCheckException(e) == worker. STOLEN) {

7 return;

8 } else {

9 throw e;

0 }

1 }

2 } finally {

3 worker.checkAbort();

4 }

5 if(worker.popFrameCheck(new Integer(x))) {

6 return 0;

7 }

8 x = _tmp;

9 return x + y;

20 }

Figure 4-3: The "fast clone" of the compiled Fibonacci method, with support for excep-
tions
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added directly into the try tree, without being associated with any previous spawned

method. After they are added, they are treated exactly as if a method had been

spawned which threw that exception. The five times when a value or exception will

be written into a try tree are:

1. A value is returned or an exception is thrown from a child on another worker.

2. An exception is thrown on the same worker as the closure and is uncaught.

3. An exception is thrown on the same worker as the closure and is caught, but

the cilk try block still has outstanding children.

4. An exception is thrown from a catchlet or finallet.

5. A CilkAbort needs to be thrown due to an abort.

Case 2 occurs when an exception is thrown on the same worker owning the closure

but is not caught at all, and it propagates all the way up through the slow clone and

into the worker code which initially called the slow clone. When the worker receives

the exception, it inserts it directly the try tree at the cursor (which did not move

after the exception was thrown). Note that this exception might have been thrown

either from inside the method itself, or from a child method executing on the same

worker.

Case 3 occurs when the exception is caught at some cilk try statement, but there

are still outstanding children spawned from inside that cilk try statement. In this

case, the exception is similarly added at the cursor's location.

Cases 4 and 5 are discussed in more detail in Section 4.2.

Adding finallet numbers

The runtime system also needs to write to the try tree to support the execution

of finallets. Unlike a catchlet, which takes an exception as an argument, a finallet

takes no arguments. Thus, there is no need to write an additional value into the try

tree node corresponding to the finallet's cilk try block. The runtime system does,

however, still needs to determine whether a finallet needs to execute and, if so, which

finallet.
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Only minor additions are needed to support the finallet mechanism. The lookup

methods which determine where an exception is caught must also be able to tell

where a finally clause will be executed. More significantly, each try tree node has

an additional field: its finallet number. Once all of that node's children are complete

and the cursor has left the node, the runtime system examines the finallet number

and, if that number has been set, executes the indicated finallet.

The finallet number must have been set at some point before the finallet executes.

Notice that the locus of control must leave the cilk try block before that block's

finallet executes. In Java, whenever a locus of control leaves a try block, the finally

clause of that try block executes. Taken together, these imply that Java always

executes a finally clause in the slow clone before the runtime system needs to

execute its corresponding finallet. This fact makes the finally block the ideal place

to set the finallet number. It also means that if there are no outstanding children

from within the cilk try block, the slow clone can execute the original finally

block directly instead of creating a finallet.

The slow-clone finally clause can also execute at other times besides when the

locus of control leaves the try block. For example, when the slow clone discovers that

it has been stolen, it immediately returns. Ordinarily, that return prevents all other

execution in the slow clone, but it cannot prevent the finally block from executing.

The same problem occurs when a sync statement fails. Before it sets the finallet

number, the slow clone must check that no unusual cases have occurred, and the

locus of control is genuinely leaving the cilk try block.

Handling an Error exception

The implementation I've described generally prevents the worker thread from ever

catching any exceptions thrown in the user code. While this behavior is desired for

typical cases (since a user program's deliberately thrown exception should not affect

a worker), a thrown Error exception is handled differently. It does still propagate

back up to parent methods, just as any exception would. Because it also describes

a fatal condition which the worker itself needs to know about, however, the Error
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is also rethrown at the worker level. It then propagates all the way up through the

worker thread, ultimately terminating the worker itself.

4.2 Reading from try tree

The information maintained in the try tree is put into use after an exception is thrown.

If the worker finds any exceptions stored in the try tree, it uses the helper methods

generated by the compiler to determine where in the tree the exception is caught.

The worker then uses the tree to determine which children to abort. The tree also

determines whether its method throws an exception to its own parent. This section

describes these three ways in which the tree is used.

Polling the try tree

Once a return value has been added into a worker's try tree, it is that worker's

responsibility to take the next step. The next time it checks its return flag (either

in the Confirm stage of a spawn statement, or else at a sync statement), the worker

searches its try tree looking for completed children. When it finds a returned value

at a leaf, it immediately executes the inlet corresponding to that leaf, passing it in

the returned value as an argument.

When it finds an exception, the worker's job is more complicated. Its first task

is to determine where in the try tree that exception is caught. For this purpose,

the compiler has produced (via static analysis) a lookup table like the one shown

in Figure 4-4. It passes in the "return entry", the PC value specifying a particular

thread boundary in the code (corresponding to the point from which the exception was

thrown ), and the exception which has occurred. Based on the type of the exception,

the method returns how far up the try tree the exception should propagate to reach

the node that catches it' A return value of -1 means the exception is not caught;

the try tree treats a value of -1 as being caught at the root of the try tree, which

1For the purposes of the try tree, a finally block is treated as catching all exceptions. This
special case is necessary because the body of a f inally block could "intercept" an exception by
throwing a new, different exception.
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public int getCatchletAltitude(int retEntry, Exception retVal) {

switch(retEntry) {

case 1:

case 6:

return -1;

case 2:

case 5:

if(retVal

return

} else {

return

instanceof ExceptionTwo) {

1;

-1;

}

case 3:

case 4:

if(retVal instanceof ExceptionOne) {
return 1;

} else if(retVal instanceof ExceptionTwo) 

return 2;

} else 
return -1;

}

)

24 }

Figure 4-4: The lookup table method which determines where an exception thrown in
threeWay (see Figure 4-1) will be caught.
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corresponds to the cilk method block itself.

Armed with this information, the runtime system climbs the specified number

of steps up the try tree. At each node on its way, the runtime system attempts to

"choose" the current exception as the unique exception that node will handle. The

specification states that every cilk block can handle at most one exception; this

process of choosing is a concrete representation of that idea. If the choosing fails

because another exception has already been chosen for a given node, then the current

exception is discarded and climbs any further up the tree. Once the runtime system

has climbed the correct number of steps, we say it is at the "catching node." One

more time, it attempts to choose the current exception. If it succeeds, then it moves

on to aborting any outstanding children.

Aborting with the try tree

The children which should be aborted are those that were spawned from a statement

contained in the cilk try block catching the exception2 . These children exactly

correspond to the ones whose nodes in the try tree are below the catching node.

That is, every leaf in the subtree rooted at the catching node should be signaled to

abort. For now, we assume that the cursor is not in that subtree.

The worker initiating the abort traces the tree to find these leaves. The closure

pointed to by each leaf gets its abort flag set. The abort flag is set asynchronously

from the perspective of the workers being aborted; Section 4.3 describes the other

half of the two-phase process, similar to the way a value is returned to a parent, by

which the abort is converted to a synchronous event.

The worker initiating the abort also traces the try trees of the children it aborts,

looking for any outstanding children they might have. These grandchildren should

also have their abort flags set since they, too, are dynamically contained in the try

block catching the exception. The worker continues to recursively signal descendants

to abort until it has signaled them all.

2We can ignore the "dynamically" part of "dynamically enclosed" because only one method is in
question, so the static and dynamic states are identical.
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It is important to ensure that this process of abortion eventually terminates. One

could imagine a case where a method recursively spawns off children which are stolen

faster than they can be aborted. The current implementation solves this problem

by prohibiting a worker from stealing if its previous closure was aborted, but all of

that closure's children have not yet been aborted. Thus aborting all the children of

a single method requires signaling at most one closure per worker, putting an upper

bound on the amount of work the abort requires. Since closures3 , not methods, are

signaled to abort, the amount of work required to signal a method's children to abort

is dependent only on the number of different workers those children are running on,

and not the depth of the ready deques on those workers.

After the abort

Recall from Chapter 2 that the catch and finally clauses of a cilk try block only

execute after all of the children spawned from that method have completed. In terms

of the try tree, we know that a method has completed when the node representing

that cilk try block has no children.

Nodes are removed from the try tree when they are no longer necessary. As the

worker traces the try tree, whenever it handles a returned value stored in a leaf

node, it removes that node from the tree to indicate that the closure it represents

has completed. Similarly, whenever the cursor moves up from a node which has no

children, that extraneous cursor node is deleted. This deletion maintains an invariant

that every leaf in the try tree represents work currently being performed.

When the last child of some internal node u is removed, it is time for the catch

and finally clauses for that node's cilk try block to run. If the last child was the

cursor and u has not chosen an exception, then the finally clause executes following

the normal Java control flow. Otherwise, special steps must be taken to run those

clauses.

First, if u has chosen an exception to handle, a catchlet runs to handle that

exception. The catchlet is implemented by a method (much like an inlet) which takes

3or, equivalently, workers
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in the exception as a parameter, and whose body performs the work that would have

been performed by the catch clause on u's cilk try block. After that, if there is a

finally clause in u's cilk try block, then it is similarly run as a finallet.

The catchlet or finallet might itself throw an exception. It is, in fact, a common

idiom for a catch clause to re-throw either the exception that it caught or a more

generic related exception. These thrown exceptions are immediately added in to the

try tree as a sibling of u. (This addition into the try tree is Case 4 in the list above.)

Note that all of the work to handle inlets, catchlets, and finallets takes place as

the worker is polling the try tree. Only the worker owning a method can poll that

method's try tree, and it only does it when that method is at a thread boundary 4 .

The tree is traced serially, so at most one inlet, catchlet, or finallet is running at a

time. Taken together, these behaviors guarantee ensure that thread atomicity holds.

Throwing an exception to the parent

How does an exception get passed to its parent in the first place? The answer is an

extra check added into the work that a closure performs when it is in its RETURNING

state. Instead of only looking at its stored return value, the closure also looks at

whether the root of the try tree has chosen an exception. The root of the try tree

represents the cilk method block itself, so any exception being "handled" by that

block is really being passed up to the method's parent. The closure cooperates by

designating that exception as the method's "return value."

4.3 Being aborted

The chapter up to this point has completely described one side of the abort imple-

mentation: the how the method that catches the exception begins the abort process.

On the other side, the method being aborted must first receive a signal to abort. It

then must throw a CilkAbort to enable the user code to do any cleanup necessary as

4In fact, it only does it when every method on that worker's deque is at a thread boundary, but
that's less important.
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the work is aborted. This section describes the entire process from the perspective of

the closure that is being aborted, and in particular the way the abort begins.

Observing the abort signal

As I described in Chapter 2, aborts occur semi-synchronously from the perspective

of the method being aborted. Thus, the check for the abort flag also occurs only at

thread boundaries, primarily in the Confirm stage of spawn statements and at sync

statements 5 .

To be more precise, the compiled code makes a call into the runtime system

(through the popFrameCheck method) at those particular points. The runtime system

checks the abort flag. If it is set, then the runtime system immediately throws a new

CilkAbort exception.

Aborting

Looking back at Figure 4-3, we see that the immediate effect of this exception is that

the return value from the spawned method never gets stored into its destination x.

Instead, the CilkAbort abruptly completes the block containing that store, skipping

line 18. The CilkAbort propagates up the Java call stack from there, and the user's

code can catch it on the way in order to perform any necessary cleanup.

Ideally, this propagation would be enough to ensure that every Cilk block on the

signaled worker would receive the CilkAbort, as the specification requires. Unfor-

tunately, the user code might catch the CilkAbort without re-throwing it. To work

around this problem, the compiler adds its own try-finally block as a wrapper

around every cilk try block. This new finally block asks the runtime system to

throw a new CilkAbort if the method is being aborted. Since that call is in a finally

block, it executes regardless of what the user's own catch or finally block might

do when a CilkAbort is thrown. Code implementing this behavior can be seen in

line 13 of Figure 4-3.

5In this case, it is important that these statements are thread boundaries for every method on
the worker's deque, because all of those methods are being aborted from the bottom up. Contrast
with the inlet case, where an inlet was running only in the top frame on the deque.
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Because a CilkAbort is an exception, it is handled by JCilk exactly as any other

exception. In particular, a node of the try tree can choose to handle a CilkAbort

(and it often does). On the other hand, if a node has already chosen an exception,

it does not choose the CilkAbort. The catching node which initiated the spawn in

the first place always has already chosen an exception, so the CilkAbort exception

cannot propagate up past the start of the work being aborted.

Even after a child method has been signaled to abort, it may still return an

ordinary return value or a non-CilkAbort exception. These values are replaced with

CilkAbort exceptions before they are stored into the try tree, to ensure that every

Cilk block being aborted will receive a CilkAbort exception.

Spinning off work at an abort

There is still one more critical case to consider. When some method A catches an

exception, it's possible that A's primary locus of control might still be contained in the

cilk block being aborted. If that block has spawned methods which are still executing

on the same worker, then those methods should be aborted, just as they would be if

they were running on other workers. Doing so causes a particular problem, however,

when the exception is caught in A and only a portion of A needs to be aborted.

When the runtime system detects that the try tree node containing the cursor

needs to abort, it "spins off" the first child method B, exactly as if the closure were

being stolen. In this way, the runtime system creates a new closure for B, which is

immediately signaled to abort. The worker then abandons A's closure; from here on

out, it acts exactly as if A had been stolen, was executing on another worker and has

just signaled B to abort.

Moving the locus of control

Something must also be done with the method being spun off to ensure that it behaves

correctly. Since the end of a cilk try block is not in any way, shape, or form like a

sync statement, execution in A should be allowed to continue, starting from after the

end of that cilk try block, without waiting for the catch clause to execute. Before
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it abandons that closure, its previous worker (now working on B) sets its status to

READY to signify that work can, in fact, be done on A.

Of course, the default behavior for whichever worker next executes in A is to

continue from where it was previously left off-in the middle of the cilk try block

that caused all the trouble in the first place. This behavior is clearly incorrect. To

rectify the situation, the pc field of A's frame is advanced to a continuation point

immediately after the end of the cilk try statement. The worker looks up where

to place the pc in another lookup table produced by the compiler, which takes the

previous pc and an exception and returns the new pc. The cursor is similarly moved

up to the level above the catching node in the try tree.

In some rare cases, when the locus of control is at a sync statement and there

are no outstanding children, a CilkAbort is added into the tree at the cursor's old

position. Adding a CilkAbort in those places (as Case 5) ensures that the cilk try

blocks containing that sync statement get the chance to catch a CilkAbort even

though there are no children to throw one.
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Chapter 5

Performance

In this chapter, I discuss the performance of compiled JCilk programs. The designers

of Cilk-5 were able to show that the overhead of adding spawn statements to C cost

a factor of 2 to 6 over using function calls [11]. The performance of JCilk is unfortu-

nately not quite that good, due to a number of factors in the Java Virtual Machine

(JVM) which make good parallel performance difficult. In particular, it turns out that

object allocation can be grossly inefficient on a parallel machine. Additionally, there

is no efficient way to perform the necessary synchronization between workers to allow

correct performance of a steal. In this chapter I begin by discussing the work-first

principle, which enabled me to find those sources of overhead and, then I move on to

examine the particular performance problems I have found. I conclude by proposing

a few alternate implementations which attempt to get around these problems, by

using more efficient synchronization or by completely avoiding synchronization in the

common case.

5.1 Measurements

Two primary metrics can be used to rate the performance of JCilk programs. The first

is the overhead: how much slower does a JCilk program run than its serial elision?

The second is the speedup: how well does the JCilk program take advantage of the

processors it is allocated? I use two benchmark programs, Fib and All-Queens, to
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obtain the performance measurements described in this section.

The first program is Fib, a program to recursively compute Fibonacci numbers,

using the method given in Figure 3-1. This benchmark gives the worst-case bound

on the overhead. Since its only computation is to perform spawn after spawn, Fib

reveals the true overhead of a spawn statement.

The other program is All-Queens, a modified n-Queens program which searches for

every possible configuration instead of only one. (The original program would have

been too nondeterministic to give reliable timings, since its runtime would depend on

the random choices of the scheduler.) This program is a more realistic benchmark,

since it performs significant computation and memory allocation of its own.

The measured running times of those programs (using three different JVMs and

both the original synchronized ready deque and the atomic-variable ready deque de-

scribed in Section 5.4) are given in Table 5.1. Notice that in general, the overhead

of spawning overwhelms any speedup on Fib, but All-Queens achieves significant

speedup as it runs on more processors. It appears from the All-Queens data that the

Sun Java 1.5 JVM is the most well suited to running JCilk programs.

From these results, we can derive the relative speedup obtained by JCilk. Those

results are given in Table 5.2. Notice, in particular, that the All-Queens program

obtains approximately linear speedup: the running time on P processors scales pro-

portionally to 1/P. This performance is the upper bound on the possible speedup, so

matching it is a significant accomplishment. The performance of Fibs does not reach

linear speedup, but it too has some noticable speedul.

5.2 Sources of Overhead

The philosophy behind the design of both the JCilk scheduler and the original Cilk

scheduler is the work-first principle. This idea is discussed more thoroughly in [11]

and summarized in this section, shows that the only overhead to worry about is what

is added to the fast clone. In this section I also show that the overhead in the fast

clone boils down to two major components: the cost to allocate a new frame and the
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Table 5.1: The running times of two serial Java programs and the JCilk equivalents of
those programs on various numbers of workers. Fib was run with n = 40, and All-Queens
was run with n = 14. The first three columns represent the same Java bytecode running
under three different JVM implementations: those distributed with Sun's 1.4 and 1.5 JDKs,
and that distributed with IBM's 1.4 SDK. The fourth column also uses the Sun 1.5 JVM
but with atomic variables, rather than synchronized blocks, used to implement the ready
deque. All times are clock time, measured in seconds. Averages were taken for a few cases
with varying run times.

Ts/T T1/T2 T1 /T3 T 1/T4
Fib 0.032 1.56 1.43 2.03
Queens 0.867 1.99 2.88 3.66

Table 5.2: The Speedup of JCilk programs, using the Sun Java 1.5 JVM and atomic
variables. Ts is the time taken by serial Java program, and T is the time taken by the
JCilk program on n workers. The first column shows the efficiency of the JCilk program,
and the others show the speedup obtained on multiple processors.
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JVM implementation Sun 1.4 IBM 1.4 Sun 1.5 Sun 1.5, atomics
Fib in Java 3.2 2.1 1.9 1.9
Fib in JCilk, 1 worker 88.0 89.8 71.2 58.9
Fib in JCilk, 2 workers 165.2 53.1 57.7 37.8
Fib in JCilk, 3 workers 153.0 41.3 54.6 41.1
Fib in JCilk, 4 workers 154.5 39.7 64.2 29.0
All-Queens in Java 100.7 121.8 60.3 60.3
All-Queens in JCilk, 1 worker 109.1 121.1 76.4 69.6
All-Queens in JCilk, 2 workers 174.4 70.8 39.3 34.9
All-Queens in JCilk, 3 workers 172.3 54.7 24.6 24.2
All-Queens in JCilk, 4 workers 176.2 53.5 18.5 19.0



Modification Add'l time Cum. Time
Serial Fibonacci 1.01 1.01
Runtime startup overhead 0.11 1.12
Frame allocation 25.7 26.8
Frame deque usage 13.4 40.2

Table 5.3: Performance running Fib with one worker on a multiprocessor machine. All
times are in seconds.

cost to synchronize with the ready deque.

The idea for the work-first principle comes from two measures of the length of time

a program takes to execute. One measure, the work T1 of the computation, describes

how much total computation must be done. The work can also be interpreted as the

time the program takes to run on a single processor. Ideally, a program running on P

processors takes time T 1 /P to execute. The other metric is the critical path length

To, which describes the longest chain of dependencies between dependencies in the

computation. No matter how many processors the computation runs on, it never

finishes in time less than To.

The work-first principle states that the performance of a JCilk program is deter-

mined only by its work, and not by its critical path length. Whenever it's possible

to lower the total work by lengthening the critical path, the JCilk design makes that

choice. In terms of the runtime system, this principle means it is best to add overhead

to a steal in exchange for lowering overhead in the normal case, since we can show

that every steal corresponds to making progress on the critical path.

Based on this argument, we can determine where to look for overhead and what

to try to optimize to improve the overall performance of the system. Any overhead

added to the stealing process, or to the initialization of the runtime system itself, can

be (assuming it is not inordinately large). Even overhead which is added into the

slow clone can generally be lumped in with the steal that caused the slow clone to be

called, and thus it can be ignored. Only the fast clone is a truly significant source of

overhead.

The fast clone contains only two significant sources of overhead, which are shown

in Table 5.3. The first, as might be predicted, is the cost to create a new frame, which
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is incurred once per spawn. The second is the cost of accessing the frame deque, both

to push a new frame on the stack, and to check for a steal and pop the frame off of

the stack if necessary. There is also a small amount of overhead to checking for aborts

at the end of cilk try blocks, although that overhead is insignificant compared to

the costs of the spawn statements in those blocks.

5.3 Difficulties with Java

In several ways, Java shows itself to be less-well suited to a JCilk-type runtime system

than C was. The implementations of the memory allocator in the JVM behave poorly

in a parallel context. The memory model is also inflexible and depends on frequent

high-cost synchronizations. This section discusses these problems.

Memory Allocation

The parallelism of a JCilk program is squandered if it is run only on a single processor.

Only a performance metric from a multiprocessor machine are significant. As a first

example, I describe the general process I used to detect these (and other) inefficiencies

in the JCilk runtime system.

Unfortunately, the JVM which Sun distributed with its Java 1.4 JDK functions

poorly on multiprocessor kernels. It's not a question of lock contention; even with

only a single thread running, the performance discrepancy between a two-processor

machine and a single-processor machine was astonishingly large. Timings on one

particular machine, as different parts of the runtime system were included, are given

in Table 5.3. The numbers vary among machines and JVMs, but the general pattern

of unacceptable overhead holds.

I was able to informally trace much of the performance hit to the allocator. Ex-

amination of the output from the Sun's JVM profiler revealed that the major delay

occurs in the statements which were allocating new objects. A little further investi-

gation, by taking snapshot stack traces, gave even more information. In each trace, it

was likely that the thread was waiting to synchronize on a Reference$Lock object.
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Apparently, allocating an object on a multiprocessor system goes through a common

memory pool, for which a lock is required.

The Java Memory Model

The Java Memory Model was completely revamped for the Java 5.0 release in Septem-

ber of 2004. The previous memory model was so riddled with holes and unexpected

outcomes that the specification was often not even implemented [31], so my work is

based on the assumptions of the new memory model, as described in [24, 30].

In general terms, the memory model specifies that "correctly synchronized code"

functions according to sequential consistency. Unfortunately, ensuring that code is

correctly synchronized is expensive. It requires synchronized blocks and/or volatile

variables, both of which can be major sources of overhead, even without contention.

When code is not correctly synchronized, only minimal guarantees are made about its

behavior, and those guarantees are not sufficient for the JCilk scheduler's purposes.

All of this synchronization work is necessary because every Java Thread is per-

mitted to keep its own cached copies of every variable. That's why incorrectly syn-

chronized code can behave unpredictably. Even on a single-processor machine, Java

makes no guarantee that a Thread sees the most recent value of a variable if the

program is not properly synchronized.

A synchronized block takes an object as an argument and performs mutual

exclusion using a "monitor" associated with that object. Using a synchronized block

is the most common way to synchronize a Java program. Leaving the synchronized

block forces local data to be flushed to main memory. This flushing is the basis

of the Java Memory Model's guarantee that when blocks on two different threads

synchronize on the same object, every write which occurs before the first thread's

block ends must be seen by every read after the second thread enters the block. A

read or write on the same volatile variable on two threads behaves similarly [30].
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Memory barriers

Java's memory model eliminates the usefulness of the THE protocol used in Cilk-5

and described in [11]. That protocol took advantage of the cheapness of a memory

barrier to avoid having to obtain a lock in the common case. In Java, locks and

synchronization are inseparable. The bond between the two ideas is especially prob-

lematic because synchronization is only useful when it is performed by both sides of

a protocol. There is no way for one thread to ensure it has the most recent values

from another thread, unless that thread has also performed synchronization. Thus

guaranteeing that a thief sees the most recent value of a frame requires both the pop

and the push of that frame to be synchronized, even when the push occurs in a fast

clone.

5.4 Alternative Implementations

One solution to Java's faults is simply to improve on the built-in Java mechanisms.

In Cilk development, a lot of work went into improving on the C libraries for these

same two problems, memory allocation (for example, the Hoard Memory Allocator

of [5]) and synchronization costs (for example the THE method of [11]).

In this section, I present a simpler path: two alternatives which allow the synchro-

nization in the ready deque to be pushed out of the work and into the critical path.

First I consider atomic variables, a new feature in Java 5.0 designed to allow efficient

access to hardware synchronization primitives. Then I consider an acknowledgment-

based stealing protocol, in which synchronization is not necessary at all but a worker

may block for arbitrarily long while it attempts to steal.

Atomic variables

Starting in Java 5.0, the new j ava.util. concurrent. atomic package contains sev-

eral classes which represent atomic variables. These classes support the standard

non-blocking compare-and-set operations, using hardware support for those opera-

tions rather than relying on Java's memory model. Using atomic variables is one
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possible back door out of Java's linking mutual-exclusion to synchronization.

Atomic variables don't go very far, though. For example, imagine that the ready

deque is being implemented as an array. Atomic counters can point to the head and

the tail of the deque, and the array itself can be implemented as an atomic array,

all of whose references are guaranteed to be atomic. This ensures that an access to

the deque always returns a reference to the correct frame. There is still the problem

that the array elements themselves aren't atomic; writes that occur after the frame

is added to the deque may not be propagated to other workers. Without adding the

overhead of atomic variables to every frame object, there is still no guarantee that

once the runtime system gets the right frame, it can read the correct values.

The solution is to treat frames as immutable until they are stolen for the first time.

One feature of the memory model is that atomic variables act as synchronization

points: every read after a read of an atomic variable must see all writes that occurred

before the previous write of the same variable. Given this, rather than creating a

frame at the beginning of the fast clone and then modifying it in the Save stage of

each spawn, why not just push a new frame in each Save stage? Exactly one frame

is still pushed on the deque at each spawn, so this new frame protocol adds no extra

memory overhead.

Of course, the slow clone must still be able to update the variables in the same

frame as it started with, so that inlets (for example) have a single consistent frame

to return back to. The slow clone is on the critical path, though, so it can do as

much synchronization as it wants; we aren't concerned with its overhead. A potential

thief can then perform a synchronization protocol to ensure that it will correctly steal

either an original frame or a modified one.

The results of implementing this idea can be seen in the last column of Table 5.1.

A deque based on atomic variables eliminates much of the synchronization overhead

of Fib, revealing a significant speedup. On All-Queens, on the other hand, the atomic

variables appear to introduce their own slight overhead. It remains to be seen whether

the atomic variables do more harm or good to performance on a wider range of

programs.
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Acknowledgment-based stealing

Another alternative stealing protocol is based on requiring acknowledgment from the

victim before the thief can proceed. In the original stealing protocol, every worker

must synchronize all of its writes to all of its frames at every spawn, in case those

frames are stolen. Eliminating the possibility of a thief sneaking in unannounced,

allows the runtime system to also eliminate the synchronization from the fast clone.

In the acknowledgment protocol, rather than a thief accessing its victim's deque

directly, it merely notifies its victim that it would like to steal from it. The thief

then goes to sleep while it waits for a response. At some point, the victim notices the

thief's notification. So that this protocol doesn't add more work into the fast clone,

the victim only checks for a steal notification when it is already checking all of its

other flags, i.e. at thread boundaries. Once it sees a notification, the victim examines

its own deque to see if it has a frame available to be stolen. If it does, it synchronizes

on that frame and releases it to the thief. Then it wakes the worker up.

If there was a frame to steal, the reawakened thief also synchronizes on that frame,

ensuring that it will see the most recent values written by its previous owner. From

here, it proceeds exactly as described in Chapter 3: it begins working if it successfully

stole a frame, and re-attempts a steal from some other worker otherwise.

The advantage of this protocol is that it eliminates all deque synchronization from

the fast clone. Every synchronization that is actually performed can be associated

with a steal, so all of the synchronization effort can be lumped into the critical path.

This is a big gain.

The downside is that, since a worker only checks for would-be thieves at its thread

boundaries, a thief could have an unbounded wait an before it receives an acknowl-

edgment from its victim. Depending on the program, this trade-off may or may not

be acceptable. In Fib, for example, practically every statement is a spawn-the sav-

ings are huge, and the downside is minimal. In a program with more calculation and

fewer spawns, on the other hand, this could result in processors being wasted waiting.
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Chapter 6

Related Work

In general, other parallel languages tend not to treat exceptions with the same im-

portance that JCilk does. Many, in fact, do not consider them at all. Of the ones

which do consider exceptions, all that I am aware of are based on a message-passing

structure, and because they follow a different style of parallelism, they focus on dif-

ferent aspects of exception-handling. The cooperation model [19], for example, allows

an exception to propagate from one processor to any other processor which attempts

to communicate with it. The model used in DOOCE [35] is more similar to JCilk,

and even presents the option to abort its equivalent of side computations, but does

so in a very different environment from JCilk. Both of these languages also include

extensive support for multiple simultaneous exceptions. Neither, however, can be

viewed as a faithful extension of the semantics of a serial exception mechanism, as

JCilk is. In this chapter I discuss first languages which do not address exceptions,

and then present the cooperation model and DOOCE.

Exception-oblivious parallel languages1

Most parallel languages do not provide an exception-handling mechanism. For ex-

ample, none of the parallel functional languages VAL [1], SISAL [12], Id [28], parallel

Haskell [3, 27], MultiLisp [15], and NESL [6] and none of the parallel imperative lan-

1This section is a joint work with Angelina Lee and Charles E. Leiserson.
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guages Fortran 90 [2], High Performance Fortran [33] [26], Declarative Ada [36,37],

C* [16], Dataparallel C [17], Split-C [8], and Cilk [34] contain exception-handling

mechanisms. The reason for this omission is simple: these languages were derived

from serial languages that lacked such linguistics.2

Other parallel languages do provide exception support because they are built upon

languages that support exception handling under serial semantics. These languages

include Mentat [14], which is based on C++; OpenMP [29], which provides a set of

compiler directives and library functions compatible with C++; and Java Fork/Join

Framework [21], which supports divide-and-conquer programming in Java. Although

these languages inherit an exception-handling mechanism, their designs do not address

exception-handling in a concurrent context.

The cooperation model

The cooperation model in [19] also gives a way to handle exceptions in a language

which supports message-passing between threads. It is based on the principle of global

exceptions. When a process Q terminates exceptionally, it makes its status available

to other processes by publicly signaling an exception E. If another process P later

attempts to communicate with Q, then the communication causes exception E to be

thrown on process P. That exception can then be caught and handled by P in the

same way that an ordinary serial exception could be.

Unlike JCilk's model, the cooperation model fully supports multiple exceptions

being thrown simultaneously. A single operation in the cooperation model might

consist of several processes executing in parallel. If one process Q from the operation

tries to communicate with multiple others and discovers that they have terminated

exceptionally, then multiple exceptions are simultaneously thrown on Q. To handle

this case, the operation provides a resolving function which accepts a list of ex-

ceptions as parameters and returns a single "concerted" exception representing all of

2In the case of Declarative Ada, the researchers extended a subset of Ada that does not include
Ada's exception package.
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the original failures. Allowing the program to consider all of the exceptions helps it

understand what the source of the original failures may have been, especially if all

those failures are merely symptoms of some greater common failure.

A similar resolution mechanism could ultimately be included in JCilk, should it

prove to be worthwhile. Even after a Cilk block has chosen an exception to handle, it

could continue to accept exceptions while it waits for its children to return. The major

complication would be the interaction with AbortExceptions; it would be difficult

to even decide when a method being aborted should throw its own exception and

when it should throw a CilkAbort. Ultimately, I suspect that the smaller window

that JCilk gives for "simultaneous" exceptions (between when a method catches the

first exception when its children have aborted) would make concerted exceptions less

useful.

DOOCE

In [35], an exception-handling framework is introduced in the context of DOOCE,

a distributed object-oriented computing environment. It uses C++ style syntax to

create a "flat object space" in which objects belonging to different address spaces (for

example, on different computers) can pass messages amongst themselves. These mes-

sages take the form of method calls. DOOCE also adapts Java's syntax for exception

handling, including both catch clauses and finally clauses.

When one a DOOCE method call returns an exception, that exception is passed

to the calling method to be handled. At this point, there are two possible outcomes

depending on type of the try statement catching the exception. The catch clause

might wait to execute until all of the method calls from the try statement have com-

pleted by the methods' objects. In the meantime, other methods might also throw

exceptions. DOOCE, like the cooperation model, lets multiple "simultaneous" excep-

tions be handled together. The catch clause can also send a "notification message"

to each of those objects and proceed with the catch clause without waiting. JCilk

uses a combination of these protocols, both aborting children and waiting for them

83



to complete.

DOOCE's semantics also include an interesting but orthogonal feature: a resump-

tion model of exception-handling as an alternative to the termination model used by

C++ and Java. When exceptions occur and are handled by a catch clause, control

still jumps directly to the catch clause. After that, though, the catch clause has the

option to indicate that the program should either resume execution from the throw

point, or that it should retry execution from the beginning of the try block.
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Chapter 7

Future Directions

Although the JCilk-1 implementation has been completed, the JCilk project is still

very much in progress. In this chapter, I give some ideas for future directions that

JCilk might take. In particular, it could be valuable to open up an interface to allow a

Java program, compiled using an ordinary Java compiler, to access the JCilk runtime

system. I explain the need for such an interface in Section 7.1. The interface would

create an opportunity to experiment with adaptive parallelism between multiple jobs,

which I discuss in Section 7.2. Also, extending JCilk to include transactions could be

one way for JCilk programs to get around the synchronization difficulties discussed

in Chapter 5.

7.1 Connecting Java and JCilk

The JCilk language is a (largely) faithful extension of Java, and a JCilk program

compiles into Java bytecode, so it would make sense for a single program to contain

both JCilk and Java code. That's simpler said than done, however. The implementa-

tion described in Chapter 3 requires the runtime calls to be compiled into the method

being executed, which is impossible for a method that has not been compiled using

the JCilk compiler. Some new threading interfaces in Java 5 give a different way to

think about Java threads which is much closer to the JCilk model, presenting an op-

portunity to embed the JCilk runtime system into the Java language. In this section
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I explain the difficulties with a straightforward merge of Java and JCilk code, outline

the new features of Java 5, and then give my ideas for taking advantage of them to

bring Java and JCilk together.

Calling JCilk from Java

One fundamental limitation of JCilk is the inability for non-cilk methods to call cilk

methods. (Recall that a cilk method is one which can be spawned and can spawn

other cilk methods.) The original Cilk language had the same limitation, but in

JCilk it is more severe due to inheritance and polymorphism. These Java language

features make it possible for a non-cilk method to unknowingly call a cilk method,

without the compiler having any way to statically detect the problem. In fact, the

non-cilk method may not have even been passed through the JCilk compiler when it

was compiled, and yet could still attempt to call a cilk method.

For example, a programmer may wish to extend the java.util. Vector class by

overriding its index0f (Object elem) method (which returns the index of the first

appearance of the element in the Vector) with a parallelized version written in JCilk.

An instance of the new ParallelVector class could be passed as an argument to any

method taking a Vector argument, including those which call the index0f (Object)

method of that Vector. Depending on how cilk methods are defined in JCilk, this call

could result in (among other possibilities) the original Vector method being called,

the parallel method being called but executed serially, or the parallel method being

executed in parallel. Similar dilemmas could arise if non-cilk methods can override

cilk methods.

The current version of the runtime system does not allow a non-cilk method to call

a cilk method at all, and does not allow cilk methods to override non-cilk methods.

These decisions are necessary because a non-cilk method cannot be migrated. In

order for a new worker to continue a method, it must be able to jump into the middle

of that method and access the most recent version of that method's local variables.

Suppose, for example, that a cilk method A calls a non-cilk method B, which calls a

cilk method C. The first difficulty can be worked around because a non-cilk method
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cannot contain any JCilk thread boundaries, so there would be no reason to ever

continue directly into B. The method B could, for example, be "partnered up" with

either A or C, and stolen at the same time as its partner cilk method is stolen.

The difficulty accessing local variables, however, presents more complex issues.

Even if B is never directly stolen, whichever worker indirectly steals it (for example

by stealing A or C) has to eventually execute it. Since B was not compiled as a cilk

method, though, its local variables exist only in one place: on the Java call stack

of the worker on which it was originally called. Without access to those variables,

another worker cannot execute B.

Various schemes have been proposed which allow cilk methods to be stolen, even

if they call or were called by non-cilk methods, while leaving the interstitial non-cilk

methods like B fixed in place on their original workers. Such ideas might eventually

bear fruit, but the extra complexity they introduce (both into the runtime system

and the analysis of the efficiency of the work-stealing algorithm) have so far proven

daunting.

Java 5 threads

An alternative Java-JCilk interface is suggested presented by the Java 5.0 release,

which (among many other changes to the language) offers a number of improvements

(described in [25]) to Java's original threading mechanism. Although the new features

are ultimately based on Thread objects, they go in many of the same directions as

JCilk does to provide more power to the programmer.

The most significant new feature is the Executor interface, which provides a

mechanism to decouple the scheduling from execution. Rather than explicitly creating

a Thread object to execute a method, the programmer can pass that method into an

Executor which handles all of the scheduling itself. The Java API provides several

implementations of Executor, which use various strategies to schedule the methods

they are asked to execute.

The new Java platform also introduces the Callable interface. Like the Runnable

interface, it encapsulates a method which can be run at a later time (and on a different
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thread), but unlike that earlier interface, Callable allows its encapsulated method to

return a value or throw an exception. When a Callable is submitted to an Executor,

the Executor returns a Future object. The get () method of that Future object waits

for the Callable to complete, and then returns the value that the Callable's method

returned. If the Callable's method threw an exception, then Future.get() throws

a ExecutionException containing the original exception as its cause. (The Future

object also provides a non-blocking isDone () method to check whether the Callable

is already done.)

The Executor-Callable protocol is very similar to the spawning protocol pro-

vided in JCilk. Although it (like everything else in Java) uses an object-based system

rather than JCilk's linguistic system, it provides basically the same functionality, with

only a slightly more complex interface presented to the programmer. One serious flaw,

however, is that the Java Executor lacks the scheduling features which make JCilk

so valuable for recursive programs. In particular, there is no way to track a parent's

dependencies on its "child" Callables. After a new Callable object is added into

the scheduler's queue, the rest rest of the calling method proceeds to be executed.

The Callable method immediately execute on another thread if one is available, or

it might not. When the calling method reaches the get() statement, it blocks until

the Callable method is complete.

Depending on the Executor implementation, the Callable may never complete.

For example, in the extreme case of recursion on a single-thread Executor, the single

blocking method prevents the execution of all other Callables, including the one

that it is blocking on. This problem can be solved by allowing the Executor's thread

pool to grow arbitrarily large, but that introduces the significant overhead of allowing

an arbitrary number of threads, while still giving none of the scheduling guarantees

that JCilk provides.

A JCilk Executor?

Some of the difficulties with the Java 5 threading mechanism could be solved by

implementing a better scheduler in the Executor than the ones bundled with the
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language. And what better scheduler is there than the JCilk scheduler?

Suppose that the JCilk runtime system, instead of starting up only when a JCilk

program starts, could also be invoked directly through a hypothetical JCilkExecutor

interface. When the Callable method passed to the JCilkExecutor is an ordi-

nary (non-cilk) Java method, it should act as an ordinary Executor and execute the

method. When the method is a cilk method, compiled with the JCilk compiler, then

things get more interesting. The cilk method could be invoked as if it were called

directly from another cilk method, by placing it at the top of a new ready deque,

available to be executed or stolen. This solution avoids the difficulties of the other

JCilk/Java merger schemes since it never allows a non-cilk method to sit between two

cilk methods on the deque.

The idea of a JCilkExecutor has not yet been fully investigated, let alone imple-

mented, but is a promising avenue for future work.

7.2 Future Integration

Besides the JCilk features I have already discussed, several other projects from the

Supercomputing Technologies Group in MIT CSAIL also present opportunities for

integration into JCilk. In this section, I describe two of them: Dynamic Processor

Allocation, which seeks to find an efficient way to schedule multiple independent jobs

on a given number of processors, and Transactional Memory, which gives all memory

accesses the same transactional semantics traditionally associated with databases.

Adaptive Parallelism

One weakness of both Cilk and the current JCilk implementation is that although

the scheduler will distribute work optimally between its workers, it can only operate

with a fixed number of workers. This limitation is acceptable with only one program

running, since that one program can simply be alloted all of the computer's processors.

When multiple independent jobs run concurrently, however, the parallelism of those

jobs often changes as they run. It is thus better to adaptively re-allot processors
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among the jobs as their execution proceeds. What is a good algorithm for doing

these allotments? How is a "good algorithm" even defined?

Dynamic processor allocation is an area of research which focuses on answering

these questions. The JCilkExecutor, if implemented, would allow multiple JCilk

jobs to run simultaneously, providing a platform for testing implementations of some

possible answers.

Transactional memory

Transactional memory is a more orthogonal application of some of JCilk's ideas. The

basic idea behind transactional memory is that accessing memory in parallel ought to

be easy. Rather than using heavyweight locks or intricate non-blocking mechanisms,

all memory accesses should be able to use the transactional model traditionally used

by databases [4, 10,18].

One fundamental feature of transactions is that they might fail. If two concurrent

transactions conflict (for example, if they try to write to the same location in memory),

then at least one of those transactions needs to be rolled back. The transactional

memory system provides built-in support for rolling back actions which were writes

to memory. For other kinds of actions, however, it falls flat. If file I/O has occurred,

for example, there is no easy way to roll it back. Dealing with these irrevocable actions

is one problem confronting the current work on XJava, a transactional language which

extends Java.

The exception-based abort mechanism introduced in JCilk provides one possible

solution. In particular, one can imagine a TransactionAbort exception being thrown

in a method to signal that it is being aborted but will be retried. This exception would

give the program a chance to clean up in any way possible without relying on the

language to know how to roll back every kind of action. If JCilk and transactional

memory were implemented together as one combined language (XJCilk? JCilX?), it

might even be possible to use one unified Abort exception to handle all reasons that

a method might need to abort.
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Chapter 8

Conclusion

JCilk provides a simple and efficient way to write parallel programs in a language that

faithfully extends C to include the parallel semantics of Cilk. Mixing the features of

these two languages introduces interesting difficulties, but at the same time provides

novel, elegant, and powerful mechanisms to solve old problems. The concepts of ex-

ceptions and exception-handling, omnipresent in modern computing, are particularly

challenging and rewarding to confront in a parallel context.

The JCilk language specifies a semantically consistent model for handling excep-

tions in either a serial or a concurrent context. In this thesis, I have described that

model. I have also implemented the full JCilk-1 Runtime System, including all of its

work-stealing and its exception-handling features.

There's still a lot of work left to do. Although the performance of some JCilk

programs is acceptable, the JCilk runtime system introduces too much overhead.

Until the efficiency can be improved, however elegant the exception mechanism might

be, the language itself will not be useful. That will probably mean doing some serious

work on the JVM, although I hold out some hope that a more efficient synchronization

technique (or a pre-existing JVM implementation) may yet solve JCilk's problems.

Still, overall, JCilk-1 is a promising first look at a modern parallel language that

is easy to use, powerful, and provably efficient.
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