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Chapter 1

Introduction

GSM/GPRS (Global System for Mobile Communications/General Packet Radio Ser-

vice) is a popular cellular digital communication standard used for the mobile phones.

In a GSM/GPRS network, physical areas are divided into cells with radius ranging

from several hundred meters to 30km. As illustrated in Figure 1-1, each cell has a

fixed transceiver, called the base transceiver station, responsible for transmitting and

receiving voice and data packets to and from all the mobile stations (e.g. cell phones)

within the cell. The transmission paths from the base transceiver station to all the

mobile stations are called the downlinks, while the reverse transmission paths from

each mobile station to the base station are called the uplink.

The base transceiver station can transmit simultaneously with any mobile station

signals without interfering each other because the uplink and downlink are frequency

division duplexed over two different frequency bands. For example, the 880-915MHz

and 925-960MHz bands are allocated for downlink and uplink respectively in the

GSM900 standard. These two frequency bands are each subdivided into consecu-

tive 200kHz bands called the physical channels, each of which is allocated for the

transmission of a narrow-band signal at the symbol rate y = 270.83kilo-symbols/s.

To avoid interference within each cell, the uplink and downlink physical channels

are shared among the mobile stations according to a time division scheme, whereby

all channels are divided into 0.577ms time slots. Each mobile station synchronizes to

the base transceiver station in order to transmit and receive its data in the designated

11
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Figure 1-1: Adjacent and co-channel interference at mobile station

time slots over the downlink and uplink physical channels respectively.

In the asynchronous GSM/GPRS networks, the time division scheme is employed

within each cell but not among different cells because the base transceiver stations

are asynchronous. Thus, interference may occur if the same channel or overlapping

adjacent channels are used simultaneously in near-by cells, causing co-channel in-

terference and adjacent channel interference respectively. This is illustrated by the

overlapping spectrograms of the downlink received signals in Figure 1-1.

To increase the downlink capacity, each base transceiver station has to trans-

mit more frequently over a larger set of physical channels. As a consequence, there

must be a decrease in the maximum distance (in the number cells) between two

12



base transceiver stations simultaneously transmitting over the same channel. The

dominant co-channel interferer, thus, becomes stronger for every base station. To

optimize the trade-off between the downlink capacity and interference level with just

one receive antenna, the mobile station has to exploit the special property of the in-

terferers in demodulation and decoding. Many such techniques have been developed

and are commonly called the Single Antenna Interference Cancellation (SAIC). In

this project, a decorrelator-based SAIC algorithm is implemented and tested in the

computer simulation for the downlink receiver of the asynchronous GSM/GPRS net-

works under the set of test scenarios and performance requirements called the DARP

(Downlink Advanced Receiver Performance). Since the algorithm reuses and extends

on the key components in the conventional receiver without SAIC, the following two

chapters (Chapter 2 and 3) will be devoted to the mathematical models involved in

the GSM signal transmission and the conventional signal detection already developed

at Qualcomm. In Chapter 4, the single co-channel interference model derived based

on these models are used to analyze the SAIC algorithm. Finally, The DARP and

the computer simulation results will be stated in 5.

13
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Chapter 2

Background on GSM Transmission

This chapter and the following one will introduce the basics of GSM transmission

and reception necessary in understanding the SAIC algorithm. The major part of

the result presented here is based on the studies of the GSM simulation and system

design document developed by many system engineers at Qualcomm. The other part

describes the general GSM standards written by the European Telecommunication

Standards Institutes. For conciseness, some implementational or mathematical details

will be skipped. Interested readers may refer to the references or appendices for

details.

2.1 GSM Normal Burst

In GSM, the base station communicates with different mobile stations in different

time slots. The message intended for each mobile station is transmitted in one of the

eight slots in every frame. Each frame, therefore, contains messages for at most eight

mobile stations. In every slot, a structured data sequence is Gaussian Minimum Shift

Keying (GMSK) modulated on the carrier. The structured data sequence is called a

burst. Different logical channels, which are the communication paths defined by the

content of the data rather than the physical transmission settings, may have different

bursts structures and channel coding schema to adapt to their functions. However, we

will only consider the normal burst structure[3] shown in Figure 2-1 as it is typically

15



used for the logical channels on which the SAIC algorithm is primarily designed for.

time

0.577ms

tail bits left burst TSC right burst tail bits guard period

3 58 26 58 3 8.25

148 bits

Figure 2-1: Normal burst structure

The normal burst consists of a known 26-bit training sequence code in the middle

of the two unknown 58-bit data sequences, called the left burst and right burst. The

two tails of the sequence consist of 3 bits of 0, called the tail bits. The guard period

is not a data sequence but rather a time interval over which the transmitter must

ramp down in power to avoid interfering the signal in the next time slot. It is also

the interval for the transmitter to ramp up in power[4] to prepare transmission in the

next time slot. If the base station need to transmit over adjacent time slots, then

power ramp down is unnecessary.

The design of the burst structure allows a simple decoding scheme that will be

outlined here and describe in greater detail later. After the receiver receive the

signal in the normal burst structure, it can learn the channel from the observation

corresponding to the training sequence code, and then decode the left and right burst

assuming that the channel is approximately constant over one burst.

2.2 Channel Coding for Traffic Channels

While channel coding is not the main focus of the design of the proposed SAIC

algorithm, it is important in understanding the performance metrics such as the

frame error rate, Class lb residual bit error rate, and Class 2 residual bit error rate.

These metrics will be described through the full-rate traffic channel coding scheme [2],

which is representative of other channel coding schema.

16



The full-rate traffic channel is a logical channel for encoded speech data. A fixed-

length block encoder, called the vocoder, encodes a speech segment into three major

classes of bits: Class la, lb and 2 bits. These three classes differ by their importance

in speech recovery: The Class la bits, which occupies about 20% of each source

codeword, are the most important. They are the only bits that are protected by

the cyclic redundancy code (CRC); The Class lb bits are the next important bits.

Together with the Class la bits, they are called the Class 1 bits, which occupies

exactly 70% of the source codeword. Both the CRC-protected Class la bits and the

Class lb bits are convolutionally encoded; the least important class is the Class 2

bits, which occupies the remaining 30% of the source codeword. There is almost no

channel coding over that class, except that they are interleaved over different bursts

together with the Class 1 bits. In Appendix A.1, the channel code will be described

in greater details for any interested readers.

Knowing how the encoded speech data is channel coded allows us to understand

the performance metrics of the receiver. The frame error rate indicates how frequently

an error occurs in the transmitted Class la bits. This is not an entirely correct

statement because the frame error measured is indeed the error on the Class la

bits detected by the three parity bits from the CRC. Thus, errors not detected by

the CRC are not reflected in the frame error rate measurement. The purpose of

detecting the frame error is such that the receiver can choose to throw away the

entire frame with frame error because any errors on the Class la bits would render

the speech unrecoverable. This is why the frame error is detected but not calculated

by comparing the decoded Class la bits with the correct Class la bits, which are not

known at the receiver. The residual bit errors, whether it is on Class lb or Class

2 bits, indicates how frequency a bit error occurs in a frame that is detected to be

correct by the CRC. This is because the frame detected with frame error is discarded

in the receiver. It is, therefore, not very meaningful to measure the bit error rates

over those discarded frames, which are never decoded. There is a separate bit error

rate measurement on Class lb and Class 2 bits because the two classes differ in their

importance in speech recovery and thus have different levels of the maximum tolerable
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error rate. Since they are not CRC-protected, the bit error cannot be detected at the

receiver. Hence, bit error rate measurement is computed by comparing the decoded

bits with the actual transmitted data, and it is not available to the receiver.

2.3 GMSK Modulation

Let {an}".nf be the data sequence assigned to one normal burst. Before it gets trans-

mitted in one time slot, it is differentially decoded to another equal length sequence

{dn}nfn, according to the following formula,

an if n = ni
dn = (2.1)

anE an_1 otherwise

where E denotes the mod-2 addition. It is interesting that this decoding step is

performed even before the signal is modulated and transmitted. As will be clear

in Section 3.1, it has the effect of undoing the differential coding in the Differential

Binary Phase Shift Keying approximation to GMSK (see Section 2.4).

Each element of the differentially decoded sequence is mapped to +1 by the func-

tion a - (-1)a. The resultant sequence is called the Euclidean image of the binary

sequence {dn}"nn and is denoted as {bn}nf. Note that the original data sequence

{n can be recovered from {b}" , More precisely, let {sn}fLn. be the sequence

such that

differential encoding
n n 00 __ __

s 1  fJ bk= (_-)dn= (-dn.I®---dn
k=ni k=ni

= (-1)an by (2.1) (2.2)

which is indeed the Euclidean image of the original data sequence {an}"Ln. and so

{n} can be recovered by the inverse map s F-f .

The Euclidean image of the differentially encoded data sequence {dn}"Lnf is GMSK

modulated[8] on the carrier waveform as shown in Figure 2-2. Roughly speaking,

18
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:. : Gaussian Filter FMM datr:

jbn1Rate: I/T 3dB Bandwidth: B S gt)

YX bnfNRZ(t - nT) En bng(t - nT) exp(ji- Et o En bng(r - nT) dr)

Figure 2-2: GMSK modulation

the sequence first amplitude modulates a train of rectangular pulses, which is then

smoothed out by the Gaussian filter. Finally, the smoothed pulse train drives the

frequency of a constant-envelope complex waveform to be transmitted over its spec-

ified frequency band. In the following, we will derive the mathematical expression

of the continuous-time transmitted signal, from which a DT measurement model is

obtained for the analysis of the SAIC algorithm.

Let S(t) be the continuous-time transmitted signal, fG(t) be the unit-area Gaus-

sian filter with 3 dB bandwidth B, and fNRZ(t) T I be the rectangular
0 otherwise

pulse. The expression for the Gaussian filter can be obtained by choosing the vari-
t

2

ance of the general Gaussian probability density function e 2, so that its Fourier

transform e-2, 2 (f) 2 has a -3 dB power gain at f = B.

-2,2(7,B)22 1 V'1n 2
Setting e > 1 2 B

'/r 2  -B Bt)2
fG (t)- 22

The system response of the first two components in the GMSK demodulator can be

characterized by the convolution,

g(t) A (fG*fNRZ)(t erfc ( 2
2 7rB t - erfc ( T 1

1 rB t +

where erfc(t) A 2 e_- 2dr. It is called the frequency pulse shape because the

input to the FM modulator in Figure 2-2 is a train of the time-shifted g(t - nT)

19



(kHz)

200

150 -

100

I I

-2 -1

g(kT)

0

Figure 2-3: Frequency pulse of the GMSK modulator

modulated by the symbol be, and this train of ±g(t) drives the frequency of the

signal to be transmitted. The phase of the signal is the integral of the frequency

pulse train, which yields a train of time-shifted phase variation q(t - nT) modulated

by bn. This characteristic phase variation can be obtained by integrating frequency

pulse shape as follows,

q(t) = g(T )dr

l/n 2
+ 2BT

2,7rBTV2
G( l B t -2-)) G F B (t + -)

ln2 2 ln 2 2

where

G(x) A Jerfc(x)dx

12
= x erfc(x) - e~X 2

\/7F

For GSM, the bandwidth-time product BT is 0.3. Thus, g(t) is approximately

zero outside the interval [-1.5T, 1.5T) as shown in Figure 2-3. We can, therefore,

approximate the phase variation by integrating a function that is identical to g(t) but

with the tails outside the time interval [-1.5T, 1.5T] trimmed off. More precisely, we

define <bo(t) to be the scaled and time-shifted phase variation based on the frequency

20
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pulse shape that is tail-trimmed to [-LT/2, LT/2] as follows,

0 t < 0

#0(t ) A 17 q(t- T)--(-LT) 0%t<L
2T

T <t

L is the length of the tail-trimmed frequency pulse shape [per unit T] and so it is also

the length in T over which the phase varies. With L = 3 and 0,q(t) 4 #o(t - nT), the

overall GMSK modulated signal S(t) can be approximated as,

S(t) ~~- exp j 1:bn 0,(t) (2.3)
\ n=ni

2.4 Approximating GMSK with DBPSK

The purpose of approximating GMSK with Differential Binary Phase Shift Keying

(DBPSK) modulation is twofold: first, it suggests the use of the common receiver

front-end with matched filtering, which converts the continuous-time received signal

to discrete-time received samples ; second, as the consequence of using the matched

filtering front-end, a concrete discrete-time measurement model can be obtained for

the mathematical analysis in the subsequent demodulation and decoding algorithms.

In the previous section, the GMSK modulation was shown to be approximately

the phase modulation with a continuous phase variation 0o(t) modulated by {+1, -1}

symbol sequence. Laurent[9] showed that any such continuous bi-phase modulation

with a finite-length frequency pulse shape can be decomposed into a sum of ampli-

tude modulated signals if we extend the transmission time to ±oo by zero padding

the data sequence n at the two ends so that its Euclidean image becomes a

bi-infinite sequence {bn}__,. In other words, the GMSK signal S(t) can be ex-

pressed as E _-{LI= __ AK,NCK(t - NT) where N>__ AK,NCK(t - NT) is the

21
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Figure 2-4: Logarithmic plot of the amplitude modulated pulses for GMSK

K-th amplitude modulated signal with pulse shape CK(t - NT) modulated by the

transformed symbol AK,N that depends on the original symbol sequence. The number

M of different decomposed pulses and the maximum pulse length grows exponentially

and linearly respectively with the length L of the frequency pulse shape. For the in-

terested readers, Appendix A.2 gives the proof and a more precise expression of the

amplitude modulation decomposition.

Figure 2-4 shows the logarithmic plot of the M = 4 different pulses for the GMSK

signal approximated by (2.3) with L = 3. Since Co(t) contains the most signal energy,

we ignore the components of other pulses to approximate the GMSK signal as one

amplitude modulated signal as follows,

00

S(t) ~ Ao,NCo(t - NT) (2.4)
N=-oo

00 N

= E Co(t - NT) ]J jbn
N=-oo n=-oo

The last expression is indeed equivalent to the DBPSK with signal points jbn C

{+j, -j}. This simplified continuous-time expression for the transmitted signal will

enable us to obtain a simple discrete-time measurement model (3.3) of the received

signal from a particular implementation of the GMSK demodulator. The measure-

ment model will then become the base of the mathematical analysis on the SAIC

algorithm.

22
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Chapter 3

Background on GSM Signal

Reception

3.1 Discrete-time Measurement Model without In-

terference

So far, the signal S(t) is regarded as deterministic because the data sequence {an}n'o,

is known to the transmitter. In the perspectives of the receiver, however, the data

sequence is unknown and often modeled as a sequence of independent and identically

distributed random variables each of which is equiprobable over the sample space

{0, 1}. To distinguish the random sequence from the deterministic sequence, we will

represent all random variables in a sans serif font. For example, {bn} and S(t)

are the random symbol sequence and the transmitted signal respectively derived from

the random data sequence {an} _= whose Euclidean image is {sn} . Figure 3-1

illustrates, in the perspectives of the receiver, a probabilistic model of how the random

process S(t) can be constructed using the DBPSK approximation to GMSK in (2.4)

and a random number generator that generates {a},*__oo.

The signal S(t) gets partially corrupted in the wireless media before it reaches

the receiver. Thus, the received signal X(t) is not in general identical to S(t). The

typical corruptions other than the additive white Gaussian noise are: 1) the multipath

23



Random number {a 11_ {IN ,n - PAEoult= s >

generator 
=-oo N _ AO,NCO(t -NT)

Figure 3-1: Probabilistic model of the GMSK signal

effect or the frequency-selective fading, which is due to the reception of the signal from

different paths with possibly different attenuation and delay; 2) the Doppler spread or

the time-selective fading, which is caused by the relative motion between the receiver

and transmitter or any reflectors in the path; 3) the co-channel interference and

adjacent channel interference, which are caused respectively by other GSM signal

in the same and adjacent frequency bands. In this section, the channel model will

incorporate the multipath fading and white noise. Single co-channel interference will

be incorporated in the model later in Section 4.2. For simplicity of the subsequent

mathematical analysis on the SAIC algorithm, some types of degradation are not

incorporated in the measurement model. In particular, the Doppler spread is ignored

by assuming that the transmission time of the normal burst is short enough that the

relative motion between the transmitter and the receiver is negligible. The adjacent

channel interference is also left out by assuming that the anti-aliasing filter in the

receiver front-end effectively eliminates the out-of-band interference. However, in the

computer simulation, both the Doppler spread and the adjacent channel interference

will be taken into account according to Section C.3 in [4].

White noise N (t)

S(t) Multipath T X(t)

H (t)

Figure 3-2: Probabilistic channel model without co-channel interference

Figure 3-2 illustrates the interference-free channel as a two-step process. To gener-

ate the multipath effect, the signal is first filtered by the complex linear time-invariant

filter H(t), called the channel impulse response. The complex white Gaussian ran-

dom noise process N with one-sided power spectral density o,, is then added to the

24



multipath signal to yield the complex received random process X(t). That is,

X(t) = (H * S)(t) + N(t)

(H * Co) (t - mT) 1jbn + N(t) (3.1)
m=-oo n=-oo

The continuous-time channel model (3.1) can be turned into the discrete-time model

by filtering X(t) with the perfect anti-aliasing filter ' sinc(' (t)) followed by sampling

at every T. More precisely, let Xk A j-k (X(t), I sinc(! (t - kT))) be the discrete-time

received signals, nk A (N(t), I sinc(t - kT)) be the white noise sequence. Assuming

that (H * Co) is perfectly band limited to 1/2T,

xk -~k 1 (H*Co)(iT-m'T) ( j an +nk
M'=-OO (n=-oo ) n=-oo

00 -M

(H * Co)(mT) Q j sk-m + nk by (2.2)
M=-o0 (n=-oo)

Let hm A (H * Co)(mT) (~1-"m j) be the discrete-time channel impulse response'.

00

Xk = hmSk-m + nk (3.2)
m=-oo

which is the desired discrete-time measurement model. Note that {nflkk =_ is a

sequence of complex white Gaussian random variable with variance o. {Sk}g 0_. is

a sequence of independent and identically distributed random variables each of which

is equiprobable over the sample space { -1, + 1}. It is the only real-valued sequence

in (3.2) while Xk, hm and nk are all complex.

The discrete-time channel impulse response {hm} usually has most of its energy

within a few consecutive samples because the delay spread (per unit T) is often

concentrated over a short interval. It is, therefore, approximately a finite-length

sequence. Without loss of generality, let h = [ho ... h,] be the v + 1-tap channel

_'-00 j) does not converge. The intended meaning is (fi[m j) where ni is small but finite.
(See Remark A.2.2)
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impulse response where v is the memory length. The discrete-time measurement

model becomes,

V

Xk = hmSk-m + nk (3.3)
m=O

Since the signal detection is usually performed block-by-block in GSM, it will come

in handy to re-organize the variables in (3.3) in vector/matrix form, and express

the measurement model in matrix form by replacing the convolution with matrix

multiplication. Let p + 1 be the observation time (in samples). By defining the

following matrices as,

X [ (Xk) .. R(xk+,) 1 [ (hk) ... -(hk__)

[ Sk ... 1Z'Xkp _~ k . Q(k
Sk Sk+ (n) .. (3.4)

I (nk) ... Z%(k+p)

Sk- ..- Sk+p--

the measurement model in matrix form becomes,

X=HS+N (3.5)

The column vectors s, x and n can conveniently represent the sequences of the symbol

{si}f,, received signal {xi}4+ and white noise {n}ki respectively without spec-

ifying the indices. Note that all vectors and matrices are represented in bold-faced

capital lowercase and uppercase characters respectively. Furthermore, all the matri-

ces defined are real matrices while the vectors may be complex. This is because the

proposed SAIC algorithm will be expressed in terms of the real matrix arithmetic,

which regards the real and imaginary observations as virtual spatial dimensions.

3.2 Multistage Joint Channel-Data Estimation

In the previous section, we described how the receiver turns the continuous-time

observation X(t) into discrete-time samples that can be represented by the vector x.

26



Although the conversion is not information lossless in general, it allows the subsequent

signal detection procedure to be performed in the digital rather than the analog

domain that is usually more costly and complex. Similarly, to reduce complexity, the

signal detection is divided into two stages- demodulation and decoding. Decoding

refers to the process of recovering the source code from the channel code described in

Section 2.2 and Appendix A.1. Since the proposed SAIC algorithm modifies on the

demodulation but not the decoding step, the demodulation rather than the decoding

technique will be the main focus of this project. In this section, we will derive

the conventional demodulation technique (without SAIC) called the multistage joint

channel-data estimation from the fundamental optimality criterion of minimizing the

probability of error.

The goal of the demodulator is to choose the data sequence estimate A that min-

imizes the probability of error (MPE) based on the received signal, or equivalently,

maximizes the a posteriori probability (MAP).

MAP/MPE: . = argmaxp(slx)
S

= arg max p(sjx, h)dh
8 Jx(h)

where p(sIx, h) denotes the probability density function Psx,h(sIx, h) and X(h) is the

support set of h. p(sjx, h) can be computed based on the measurement model (3.3),

assuming some a priori probability for h. However, to avoid evaluating the integral

over is X(h), the optimality criterion is usually changed to the suboptimal joint MAP

as follows,

JMAP: [h .] = argmaxp(s, hix)
[h s]

The joint optimization can be broken into two steps: 1) solve for the optimal channel

as a function of the signal sequence; 2) substitute the solution from Step 1 into the
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JMAP criterion and solve for the optimal signal sequence. That is,

= arg max p(s, h(s)lx) I h(s) = arg maxp(s, h(s)Ix)

= arg max P (s)x) I h(s) = arg max p(h(s)Ix, s)
8 h(s)

In the last equality, p(s, hix) is replaced by p(hlx, s) because p(s, hix) can be written

as p(hlx, s)p(six) where p(slx) is a non-negative quantity that does not depend on

h, the variable over which we optimize. Hence, p(slx) can be eliminated from the

optimization criterion.

To simplify the joint maximization further, we may adopt another suboptimal

technique called the iterative approximation. i.e. The optimal channel estimate i 1 is

calculated given an initial data sequence estimate s-. Given this channel estimate hl,

the optimal data sequence estimate Ai is calculated. And given this data sequence

estimate, we can refine the channel estimate h2 , and so forth. i.e.

Multistage: hi = arg maxp(h~x, Ai1)
h

.i = arg max p(sIx, I1)

The last equality again uses the fact that p(s, hIlx) = p(hfix)p(sIx, hI) and that

p(hinx) does not depend on s. In GSM, the training sequence can be used as the

initial data sequence estimate to start off the iteration. Once the channel is esti-

mated, the entire data sequence over which the channel is relatively constant can be

estimated in the second iteration. The process can terminate when the solution or op-

timality criterion converges. Figure 3-3 illustrates this multistage joint channel-data

estimation procedure.

If the iterative approximation is unstable, the error at every estimation stage will

accumulates and propagates to the subsequent stages. Hence, in practice, the training

sequence code is used to improve the initial estimates so that the iteration needs to be
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si-i
arg maxh p(hx, s~i_) o hi

z- 1

Ai 0--_ argmax p(sX,_i)

Figure 3-3: Multistage joint channel-data estimation

run only once or twice. Furthermore, since the data sequence is uniformly distributed,

the MAP estimate is equivalent to the maximum likelihood (ML) estimate because

arg max p(sIx, hi) = arg max p(x s, hi)p(sIhi)
8 S

= arg maxp(xjs, hi)p(s) . s is independent of h
S

=argmaxp(xJshi) -.'p(s) is constant
8

The ML estimate for the data sequence can be efficiently computed by the soft output

maximum likelihood sequence estimation (SO-MLSE) in Section 3.2.2. To estimate

the channel, we also change the MAP criterion to the ML criterion because the ML

probability can be readily computed without knowing the a priori distribution of

h. In this additive white Gaussian noise model, the ML criterion can be simplified

to the minimum distance or the least squares (LS) estimation rule. The training se-

quence codes of the GSM system possess the constant amplitude zero auto-correlation

property, which leads to the simpler but suboptimal CAZAC channel estimation in

Section 3.2.1. Figure 3-4 illustrates this joint channel-data estimation implemented

in practice in the conventional receiver.

3.2.1 First-Stage LS Channel Estimation with Known Data

The receiver estimates the discrete-time channel impulse response in (3.3) from the

observation that corresponds to the training sequence code in a normal burst. The
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training sequence symbols
CAZAC estimator o h

C :SO-MLSE equalizer

Figure 3-4: Multistage joint channel-data estimation in conventional receiver

measurement model becomes,

X= HS + N (3.6)

R(xo) --- R(X2 5-) R(ho) .. R(h) 0 -- S2-v + R(no) ... R(n25- )

L Z(XO) ... Qr(X25-,) I L (ho) ... LZ(V + [ (no) .. r~2-)
LS-v -

8
25-2vj

which is obtained by substituting k = 0 and p = 25- v in (3.4) and (3.5) without loss

of generality. Note that S (not in san serif font) is a deterministic matrix because

the underlying data sequence {ai}2-v is the known training sequence code.

Using the Gaussian probability density function, the ML estimate is shown as

follows to be equivalent to the LS estimate, which minimizes the Euclidean distance

between the observation X and the a priori estimate HS,

Proof. ML estimate for H is equivalent to the LS estimate

ML 1 1X -
H = arg max exp --

H (7TU- p+l 0-2

= ar g min||JX - H S112 ( 3.7)
HF

where |1Y1IF v/trace(YY') and Y' denotes the Frobenius norm and the Hermitian

respectively. 0

Note that the ML estimate exists but may not be unique. If we let St be the

generalized pseudoinverse of S, it can be shown that XSt is a particular solution

with minimum energy (i.e. minimum 1IHI12) and it exists even when S does not have
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TSCO 00100101110000100010 1011i

TSC1 0010110111011110001 10111
TSC2 :010000111d1110160100(01110
TSC3 01000111101101000100C11110
TSC4 :00011010111OO10Q000110100
TSC5 |01001110161100060100111010

TSC6 101001111101100 0:10 11111

TSC7 |111011110 01001d1IO0111100

{ ail %151 {a I}I 50 {i 4=0

Figure 3-5: Structure of training sequence codes for GSM

full row or column rank. (See Appendix A.3) We will, therefore, always impose the

minimum energy constraint so that the ML and LS channel estimates can be uniquely

computed as,

-ML ~-LS
H L1 = XSt (3.8)

The pseudoinverse St can be precomputed, stored in memory so that the com-

putational complexity depends only on the matrix multiplication XSt but not the

pseudoinverse.

In the conventional receiver, a suboptimal channel estimation technique is adopted

to further simplify the matrix multiplication into the convolution (3.17) by exploit-

ing the special structure of the training sequences shown in Figure 3-5. The eight

different 26-bit training sequence codes in GSM are derived from a 16-bit sequence

{41 0, called the midamble code, whose Euclidean image has the following constant

amplitude zero auto-correlation property,

15

[(-1) ® (-1)-i] -i=m (-1) (_1)i+m> mod 16 (3.9)
i=0

16 ifm=0
(3.10)

0 otherwise

where & denotes the 16-point circular convolution.
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As shown in Figure 3-5, the training sequence is a 26-point window of the periodic

sequence generated from replicating the midamble code {5 . i.e.

aiv = a(i- 5) mod 16 0 < i < 25 (3.11)

Combining (3.10) and (3.11), we obtain a useful correlation function,

15

p(M) _I , (-1)"5-v+,n+i(_J3d
i=O

1 if m= 0
(3.12)

0 otherwise

Suppose v < 5, let

Sj= [OIX(5-v+j) gT 01x(5-n ]

[ s .- ] 1 (3.13)
16

where ' is the column vector form of the Euclidean image of the midamble code

{a }=O. Then, S decouples the channel taps in (3.6) because,

(-l)ao --- (-1)a25-v

S = :o ... g] (3.14)
16

(-1)a-v ... ( )a25-2v

p(O) .. p(v) 1 SI by (3.12)
-p(-v) ... P(O) I

.. XS= H + NS (3.15)

Since S is a non-symmetric Toeplitz matrix with each column containing the Eu-

clidean image of the same midamble code, 16S S is approximately an identity matrix

by the constant amplitude zero auto-correlation property in (3.10). In other words,

NS is approximately white, and this approximation becomes more accurate for longer

midamble codes. If we indeed approximate NS in (3.15) as white Gaussian noise, the

ML/LS channel estimate is identical to the mean E[XS I H] = XS, which simplifies
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to the following convolution,

HCAZAC A (3.16)

16
16

jCAZACm -16(~*~)i=5 -v+m Vm E {O, . . . , v} (3.17)
15

E Xi+(5-v+m) Si

i=0

The last expression is the cross-correlation between the observation sequence {rx}=V
SCAZAC

and the Euclidean image of the midamble code {& }15 scaled by j. H is called

the CAZAC channel estimate.

Note that the difference between the CAZAC estimate and the ML estimate is

purely the zero mean jointly Gaussian noise, i.e.

HAA -HL = XS _XSt

=N(S-St)

- CAZAC -LS
In other words, how closely h matches h on average is described by the co-

variance matrix of N ( - Sf),

Var[6AZAC 
LS

which is proportional to the noise variance Oc2 and the difference between St and
W -~ CAZAC

5, as expected. We can also show the degradation of H in the mean squared

distance E[IX - ASI2], which is the expectation of the optimality criterion in (3.7)

of the LS estimate. For interested readers, this analysis is carried out for the training

sequence code TSCO in Appendix A.4.

Although the CAZAC estimate is strictly suboptimal to the LS estimate and is

limited to v < 5, it is simpler to implement as we only need to store the midamble code

and perform convolution rather than to store the pseudoinverse matrix and perform

matrix multiplication in the LS estimation case. More importantly, however, the
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notion of cross-correlation allows channel estimation without precise time tracking.

That is, even if we do not have the precise location of the desired observation sequence

{x,}2 _, 2 needed to compute the CAZAC estimate, we may compute the correlation

in (3.17) with a long enough observation sequence, say {Xi}%±k, so that the unknown

interval [ki, k2 ] is likely to contain the desired interval [5 - v, 20]. The resulting

sequence, say {im},2-' 1 4 , will contain the desired CAZAC channel estimate h AZAC
M=MG

if {Xi} indeed contains {xi} _,R5 . We can take the v + 1-tap subsequence h

in h that has the maximum sum of energy to be the maximum correlation channel

estimate hC. i.e.

hMC - [MCO ... MC T where

iim' = (xi * s~i)Ii-k+m, Vm' E [0, k 2 - k1 - 14]

j+V 2 (3.18)
j* =arg max Vj E [0,k2 - ki - 14 - v]

hMC,m = +j Vm E [0, v]

-MC CAZAC
h can be equal to h exactly if the maximum energy interval is the desired

interval [5 - v, 20], which happens if the observations outside [5 - v, 20] does not

correlate well with the midamble and the noise does not degrade the correlation

property too much.

Figure 3-6 illustrates the idea of channel estimation without precise time tracking.

The system diagram on the left describes the channel model and the computation

of the maximum correlation channel estimate h , while the diagram on the right

is the corresponding element-by-element description with v = 4 used in the actual

implementation and [ki, k2 ] = [-5, 24] that is unknown to the receiver.

2If v < 5, the sequences {X}i-~' and {X} 5 are indeed wasted (not used) in the CAZAC
estimate even though they depends on the training sequence code but not any unknown data.
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Euclidean image of training sequence code

Euclidean image of midamble code

Ik2 V1

fxili~~~kl IEL 111 1111 1 11 7 T

~ CAZAC Dscope of training sequence code

initial index Eh scope of ACAZAC
max energy interval

{ 1 ,M~m~...............................

Figure 3-6: Maximum correlation and constant amplitude zero auto-correlation chan-
nel estimation

3.2.2 Second-Stage SO-MLSE of Data Burst with Known

Channel

The channel estimate h obtained in the first stage is used to estimate the data s

according to the following model,

xk = > mSk-m +i nk (3.19)
m=O

which is obtained by setting h = Ih in (3.3). The unknown data resides in the left

and right bursts of the normal burst shown in Figure 2-1. Since the two semi-bursts

are separated by the training sequence code, we can estimate them independently.

Furthermore, the bi-lateral symmetry of the normal burst suggests that the same

estimation technique on the right burst can be applied to the left burst in the time-
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reversed fashion'. Thus, we consider Sk in (3.19) on the time interval [ki - v, kf] that

covers only the last v training sequence bits, the entire right burst and the following

min(v, 3) tail bits. Some known symbols are included in s because the first and final

observation that depends on the unknown data in the right burst also depends on

those known symbols due to the channel memory.

With the specified time interval [ki, kf], (3.19) can be expressed in matrix form

(different from (3.5)),

H(kf-ki+1) X(kf-ki+v+1)

Xki - 0 o ... h 0 ... - _Sk v - - nki -

= ... ... ... I + (3.20)
xk -. 0 ... ho ... hV . . Skf .. nk .

Let S = {±l}k-ki+v+1 be the set of symbol sequences, and Sc C S be Euclidean

image of the set of channel codewords4 . The ML symbol sequence estimate sML,SC is

obtained by maximizing the Gaussian distribution function p(s x, h) as follows,

8ML,Sc - arg maxp(x s, h)
SESc

kf I k -h sk
- arg max U2 exp - 2BESc k(k

branch metric -Yk (sk)
kf -

T2
=arg min Z k - h s2 (3.21)

sGck=ki

path metric r(s)

Unlike the ML channel estimate in (3.8), there is no closed form expression for the ML

symbol sequence estimate because of the constraint s E Sc. An exhaustive search

through the entire codeword is also impractical because of the exponential growth

of time and memory requirement with respective to the length of the codeword.

3 Although channel coding introduces correlation between the left and the right bursts, the cor-
relation can be handled separately by the use of soft decisions.

4 As described in Section 2.2, the channel code indeed covers multiple bursts rather than just the
right burst. Here, we suppose that the channel code is only over the right burst to simplify analysis
without loss of generality.
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However, if we relax the constraint of s E Sc to s E S, the minimization in (3.21)

can be broken down into multiple optimization stages using dynamic programming.

More precisely, let sk = [sk ... Sk-v ]T be the signal state at time k. The minimum cost

in (3.21) can be computed by optimizing recursively the path metric generated from

the branch metric, define as follows,

0 if p(sk) = 1

branch metric: -yk(sk) A 00 if p(sk) = 0

_ T 2

k t sk otherwise

optimal path metric: Fk(sk) A ((sk) if k = kio+hv

minSk)_-_ rk1(sk_1) -Yk(sk) otherwise

policy: Wrkl(Sk) - arg min Ik_1(sk-1) + -Yk(Sk)
Sk-v-1

The ML estimate 8ML,S E S can then be obtained by tracing back the policies for

the sequence of states that minimizes the overall path metrics ]Fk,(sk). This method

of calculating the maximum likelihood symbol sequence estimate is called the MLSE

equalization [5], and the recursive computation is called the Viterbi algorithm.

Since we relaxed the constraint of SML,S being a valid channel code, the channel

decoder need to make changes on some of the symbol decisions with the minimal in-

crease in the path metrics to obtain the final estimate SML,Sc that is a valid codeword.

The conventional channel decoder, however, has been developed assuming additive

white Gaussian noise model without the intersymbol interference described by h. As

a result, rather than minimizing the path metrics, which is the distance in the space

of Hs to x, the decoder is given an observed codeword sequence 8r and chooses a

valid codeword s E Sc that minimizes the distance between s to that observed code-

word 8 . In order to use the conventional channel decoder optimally on channel with

intersymbol interference, we need to choose the observed codeword sequence 8r to be

a sequence, denotes as Sr C Rkf-i+v+1, which has the property that the codeword

s C Sc that closest to sr minimizes the path metrics. This idea is illustrated in Fig-
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ure 3-7. The higher dimensional spaces are represented by two-dimensional circles,

while the subset relationship is shown by having circles within circles. The points,

which represent a codeword, an a priori estimate or an observation sequence, are

positioned such that the length of their outgoing arrows towards x or a codeword

corresponds the square root of the path metric or codeword distance respectively.

Note from the figure that not only does sr exist, there are infinitely many possible se-

quence for sr (lying on the cyan dotted line) including the optimal channel codeword

estimate itself sML,Sc

H~s space

s space

SML,S a L r

HNr LMLc

HS S

Figure 3-7: Correspondence of path metric in Hs space to codeword distance to 8 r

An approximate value for 8 r can be derived by assuming that the optimal codeword

sML,Sc is close to sML,S. More precisely, since the path metric is minimum at s ML,S

in the set S, its gradient at sML,S is small. In other words, a few symbol changes in

sML,S does not increase the path metric significantly. The path metric is therefore

approximately linear about sML,S ~ ML,Se is close to sML,S, the path metric of sML,Sc

can be approximated by the linear interpolation over the path metrics of symbol

sequences in S closest to sML,S (i.e. the symbol sequences that differ by exactly one

symbol from sMLS). To formalize this idea mathematically, let 3% be the location

indicator [Oixi-ki+v 1 0 lxf-i Tf which is one only at the position of the element s2 in 8.

Furthermore, let e be the codeword difference s - M which can be expressed in
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terms of the orthonormal vectors 6i as follows,

(3.22)
kf

E A (i -sML,S)63
i=ki

Note that si = sML,S for i E [ki - v, ki - 1] they are part of the training sequence code.

If we also constraint s to be in S, each non-zero element of E must have magnitudes

equal to 2, and the same sign as the corresponding element in s. i.e.

0

-2s ML,S

if si = s ML,S

otherwise

The linear approximation is stated as follows using the approximate linearity of F

about qML,S

kf

((MLS +MLS) = p(AMLS + S
i=ki

kf

6,6i~) _ FMLS) by (3.23)

(3.24)
~ (f(gMLS + 6,6) - pMLS))
i=ki

Combining (3.22), (3.23) and (3.24), we have,

kf

1 p(s) - (MLS) ( ( (MLS + E6) _ (.MLS))

i=ki

riA

k __. - ML,S

F(LML, _ L,S i MLS Si Si

i=ki

where ri is called the Ono reliability information, and can be derived using the defi-

nition of the path metric F in (3.21),

ri = 4 Ih,

\M=0

+ i R h,(x,+,i - Z -h+0)]
1=0 3.=0 .
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where h. denotes the complex conjugate of h.. In words, the reliability of the i-th

symbol is the change in the path metrics associated with changing only the decision

of the i-th symbol.

Let r, be an arbitrary positive real number. If we set gr = 1 ML,Sri, we can obtain,

in the following, an approximate correspondence between the path metric of s and

the codeword distance from s to this infinitely many choices of Ar that differs by the

positive scaling ,,

F(s) - F(MLS)
kf 1ML,S

i=ki

kf _ML,Sj l _MLS 12

I E)ri(1 sisML,S)2
2 ~ML,S

k =1-sisL,

E ((si - riLs)2 rri2 Vr, E R+
i=ki

kf

4 11js - 2- (1 - Kri)2

i=ki
(3.26)

Hence, the codeword that minimizes the path metrics also approximately minimizes
ML,S

the distance to s1 = KrisL as desired, and vice vera,

sr arg min F(s)
sSC

.rgm r(gMLS) + 118 ( 11 -f s~~- -r)2)~arg min >~M, s( - sr 2
SCS 4 r

kf

arg min ||s - sr 2

sESc i=ki

The overall process of calculating the hard decisions . = gMLs and the reliability

metric ri is called the SO-MLSE algorithm proposed by Ono[11].
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Chapter 4

SAIC algorithm design

As described in Chapter 1, downlink co-channel and adjacent channel interference

occurs at the mobile station because the base transceiver stations at near-by cells uses

the same or adjacent physical channels. The effect of the interference is visualized, in

Figure 1-1, as the size of the overlap in spectrograms between the desired signal and

the interferer. The objective of the SAIC algorithm is to improve the conventional

receiver by exploiting the fact that the interferer is an attenuated GSM signal.

In the following sections, we will follow the same approach in Chapter 3 to derive

an approximate discrete-time measurement model with interference. The SAIC algo-

rithm developed by Raghu Challa at Qualcomm based on [10] will be introduced and

analyzed based on the further simplified single interferer model.

4.1 Discrete-time Measurement Model with Inter-

ference

In the perspectives of the receiver, the co-channel and adjacent channel interferers

are just independent GMSK signals carrying random data. The data sequences of the

z-th co-channel and J-th adjacent channel interferers can be considered as indepen-

dent and identically distributed equiprobable sequences of ±, denoted as { _},_ and

{a,}respectively. The probabilistic model in Figure 3-1 can be used to describe
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how the transmitted interferers Z'(t) and ZI(t) can be constructed from the DBPSK

approximation to GMSK in (2.4) and the Euclidean image {b} _ and {b2 }f__ of

the differentially decoded sequences {d'} . and {di}-i,, (see (2.1) for differential

decoding) of the data sequences { }lf_ and { } respectively. Each interferer

is corrupted by an independent multipath effect, modeled as the convolution with the

channel impulse responses Z' and Z3. The received signal X(t) becomes the superpo-

sition of the signal, multipath faded interferers and the white Gaussian noise process.

That is,

Nz N3

X(t) = (H * S)(t) + E(C' * Z')(t) + Z(3 * Z)(t) + N(t)

00 m

= E (H * Co)(t - mT) J jbn
m=-oo n=-oo

+ (C*Co) (t - mT) ]1 jb'z+ (4.1)
%= M=-00 n=-oo

-300 flM

+ (* Co) (t - mT) JJ jbn + N(t)
3=0 m=-CO n=-o

where N' and N3 are the numbers of the co-channel and adjacent channel interferers.

Using the same simplification in (2.2) and the finite channel memory approxi-

mation in (3.3) (i.e. let c' = [So... - ] and ci = [S0 --- £',a] be the channel impulse

responses of the t-th co-channel and 3-th adjacent channel interferers respectively),

the discrete-time observation sample generated by the receiver front-end at time k

becomes,

V Nz UZ N3 u3'

Xk =J5 hmSk-m + 5 92m4m + ~ S Cmr4-m + nk (4.2)
m=0 Z=O m=0 3=0 m=O

where z. and z- are defined as the Euclidean image of the data bit 4' and ae for

k E [n!, nf] and [ni, ni] respectively and 0 otherwise. (4.2) is, therefore, the discrete-

time measurement model with interference.
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4.2 Single Interferer Model

While the continuous-time and discrete-time measurement models in (4.1) and (4.2)

are general enough to model a variety of interference scenarios, they are too complex

for analysis. In reality, it is common to have one dominant co-channel interferer, the

cancellation of which lead to most of the improvement gain. Thus, most of the SAIC

algorithms including the one proposed here are designed and analyzed based on a

simpler model of one co-channel interferer, which is assumed to be present at all time

to avoid the effect of power ramp-up or ramp-down. More precisely, let Zk be the

symbol, which is non-zero at any time k, of the dominant co-channel interferer, and

C = [ Co ... cu ]T be its channel impulse response with finite memory u. From (4.2), the

discrete-time single interferer model is,

V U

Xk = hmSk-m + CmZk-m + nk (4.3)
m=O m=O

In matrix form, the model becomes,

X = HS + CZ + N (4.4)

where Zk ..Zk+p

CA FR(ck) ... R(ck-u) Z Z k- : (4.5)
C Z1(Ck) ... Qr(Ch-u)II (45

-Zk-v ... Zk+p-u.

Various SAIC algorithms developed based on this single interferer model have

three common types of additional model assumptions, described as blind, semi-blind,

and training sequence code based. We will adopt the semi-blind model, which as-

sumes that the receiver knows the training sequence code of the desired signal but not

the dominant interferer. In other words, there is no known data in the interferer to

estimate its channel using the conventional second stage channel estimation described

in Section 3.2.1. This is the most realistic model for the GSM/GPRS asynchronous

network because the random misalignment makes it costly to track and use the train-

ing sequence of the interferer, even if the sequence is known. In Appendix A.5, each
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soft/hard decision feedback

decorrelator Equalizer/ decoder
demodulator

Conventional Receiver Architecture

Figure 4-1: Overall SAIC receiver structure

model assumption is briefly described with some SAIC algorithms developed based

on those assumptions.

4.3 Proposed Decorrelator-based SAIC Algorithm

The motivation for the proposed SAIC algorithm is to eliminate the observation

mostly corrupted by interference so that the remaining observation is approximately

interference-free. The conventional signal detection techniques in Section 3.2 can

then be applied on the decorrelated observation. Figure 4-1 illustrates the basic SAIC

receiver structure. Before getting into the details of the algorithm in the next section,

we will introduce three measurement models, called the extended, decorrelated and

the optimal decorrelated single interferer models. They reorganize the observation and

data in a way convenient for us to describe the decorrelation as matrix multiplication.

4.3.1 Matrix Representation of Decorrelation

The receiver indeed uses two streams of complex-valued observation to compute the

decorrelator weight. They are the sequences of odd and even samples obtained from

the doubly oversampled continuous-time received signal X(t). They will be denoted

by x1 and x 2 in complex vector form, and X1 and X 2 in real matrix form according

to (3.4). The single interferer model in (3.5) becomes,

X I H'1s±C N
X = S + H2 C]z+[N (4.6)
X2 H2 C2 N2
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where N1 and N2 are modeled as jointly Gaussian noise that corrupts each subsample

sequence.

A simple linear time-invariant decorrelator can be described as a set of space-time

finite-impulse-response filter, where the spatial dimension corresponds to the real

and imaginary parts of the two consecutive subsamples. To simplify its mathematical

representation, we introduce the following extended single interferer model, by simply

stacking up the 1 delayed observation subsamples in the vertical dimension of (4.6),

X4(1+1) x(P+1) A

k k+p
ZRxi ... x+! iX .. H4I (1+1) x(v+1+1) A

k k+PS(v+1+1)X (P+I)A
k ' 01 2x1 1

xk ... xH
2  

0 2xI sk ... Sk+p

Rx ... RxI -op2xI H1 [sk_,_t ... sk.-V-I+p-

Zx ... 1 Lx_, . 0 2xI H2

k I xk-i+p

C1 0 2xl 1
+ 2 2xI zk ... Zk+p

02xi C1 [zk--I Zk--U-++P ,
0 2xi 02 . ZO_~

.So22 C(u+ + x (p+l)A

C4(1+1) x (u++1)A ~

knj ... Rnk+p
Qrni ... Qrnip

Enk ... Rn,+p

ki . Qnk+p

Rn - Rnby
k _ k.-l+p
S  

... n-l+p

n _ .. ank -I+p .

N 4
(1+1) x (p+l) A

(4.7)

The decorrelation is now equivalent to pre-multiplying the observed X by the

decorrelator matrix W 2 x(4 (1+1)). The decorrelated observation XW, which contain

the two rows of observation sequences used as the input to the conventional signal

detection, can be described by the decorrelator single interferer model below,

WX = WHS + WCZ + WN (4.8)

The objective is to choose the decorrelator weights in W such that (4.8) is approxi-
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mately an interference-free additive white Gaussian noise model like (3.5). In other

words, the optimal choice of W will bring (4.8) close to the following,

WX ~ HwS+ Nw (4.9)

where NW is white Gaussian noise independent of S, the signal-to-noise ratio re-

mains unchanged compared with (4.7), the interferer is completely eliminated and

the channel memory remains as v (i.e. HW is a 2-by-v matrix). We will called this

the optimal decorrelated single interferer model because it expresses a set of desired

criteria to achieve by optimizing W.

4.3.2 Joint Decorrelator-channel-data Estimation

The set of criteria in (4.9) is often conflicting. For instance, eliminating the interferer

completely may reduce the signal-to-noise ratio because it also eliminate the signal

that is indistinguishable from the interferer (e.g. consider H = C as an extreme

case). It appears, therefore, that optimizing one particular criterion may worsen the

other criteria too much that the overall optimality is hampered. While the overall

optimality criterion is to improve signal detection or, in other words, to minimizes

the probability of error decoding the transmitted messages, it is rather difficult to

express this simple overall criterion precisely in terms of W, let alone optimizing W

for it. To avoid this difficulty, we will adopt the multistage optimization approach in

Section 3.2 and use the least squares optimality criteria for W. The overall multistage

algorithm will be described in this section while the details on the LS decorrelator

optimization will be described in the next section.

Suppose an optimal W exists such that the approximation in (4.9) holds. i.e.

WX= HS+N (4.10)

where the superscript W on the channel and noise is removed for notational simplicity.

We can describe the entire decorrelater-based SAIC algorithm as a joint optimization
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over the parameter W, the channel H and the symbol matrix S, for a given extended

observation matrix X. Using the same multistage estimation approach described in

Section 3.2, we can break down this joint optimization into the following three stages

with two types of iterations called the inner loop and the outer loop:

1. In the first stage, we obtain the CAZAC channel estimate in (3.17) using the

known training sequence code and assuming the interference free model in (3.6).

[ In the subsequent outer loop iterations (to be described with Stage 3), LS

channel estimate in (3.8) is used assuming the model (4.10). ]

2. In the second stage, we calculate the optimal parameter W by (4.11) in the least

squares sense given the CAZAC channel estimate and the known training se-

quence code. The first two stages may be iterated several times for convergence

and this iteration is called the inner loop.

3. In the third stage, the channel estimate and the decorrelated observation WX

obtained previously can be used to generate the soft decisions for the unknown

symbol sequence by the SO-MLSE algorithm described in Section 3.2.2. Again,

for convergence, the entire estimation process can be iterated several times by

feeding back the ML symbol sequence. We will call this iteration the outer loop,

which contains the inner loop.

Each iteration of the outer loop is costly, mainly because of the computation

of the pseudoinverse. Thus, only the reliable symbol estimates selected based

on the Ono's reliability information are fed back. Since this feedback symbol

sequence does not have the constant amplitude zero-autocorrelation property

in (3.10), the LS channel estimate instead of the CAZAC channel estimate need

to used in the first stage.

Algorithm 4-2 is the pseudocode that describes the above multistage optimization

more precisely. Restructure[arg] is an operator that converts arg from the format

Form 1 to the format Form 2. For convenience, the equations for the restructuring

operations are referenced in the pseudocode. Ninner and Nouter are the numbers of
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Procedure 4-2 Pseudocode for the proposed SAIC algorithm
function A' <- SAIC[{x} n.s, n}Jr",, N*"ter, Ninner, 

Require: Nouter, Ninner E Z+,77 E R+

H +- Restructure[I AZA[{ }~", {s2}5- 2-_,] {see (3.4) and (3.17)}

S e Restructure[{sn} i-v] {see (3.4)}

X +- Restructure[{xn}_-Ov] {see (4.7)}

for z <- 1 to Nouter do
for j + 1 to Ninner do

end for
X-kWX
' <-SO-MLSE[ Restructure [X],

S <-Restructure[A']

X +- Restructure[{xn}"=ni+ v1

Restructure[f]

for Ak and k equal to each column of$
if <lH kiI r7 then1H 11 2

{see Section 3.2.2 and (3.4)}

{see (3.4)}

{see (4.7)}

and X respectively do

Remove the columns sk and -04 from S and X respectively
end if

end for
end for
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inner and outer loops respectively. To reduce complexity, Ninner and N""e are chosen

to be small. More specifically, we chooses Niner = 1, and Nouter = 1 or 2 for the

computer simulation. q is the threshold for selecting the reliable symbol estimates.

Since the soft-decision is normalized, q corresponds approximately to the number of

decisions to feed back. In particular, setting q = 0 dB will most probably prune out

all symbols, while setting q = -100 dB is likely to include all symbols.

4.3.3 Least Squares Optimization of Decorrelator

In this section, we will first state the least squares criterion used to optimize the

decorrelator, and then justify the validity of the choice by its asymptotic behavior

by a close examination of the inner loop of first stage channel estimation and second

stage decorrelator optimization.

Given the symbol matrix estimate S, the channel estimate H, and the extended

observation matrix X, the LS decorrelator is defined as follows,

W = arg min ||W X - $IIw

= H$Xt (4.11)

The n-th iteration of the inner loop can be re-expressed as follows,

H[o] = Restructure[hCAZAC [ 2X}-v, {Sn}-v] (4.12a)

V[n] = ([n]fI[n - 1]$Xt (4.12b)

H[n] = W[n]XS (4.12c)

where the notation [n] indicates the optimization result of the n-th iteration, and

([n] is a normalization constant to ensure W has a fixed energy, say (.1 (4.12) can

be re-expressed as two decoupled difference equations by substituting (4.12b) into

1( [n] could have been chosen arbitrarily because it corresponds to a fixed scaling of the observation
X which neither enhance nor degrade performance
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(4.12c) and vice versa,

V[n] = ([n]V[n - l]X t SXf (4.13a)

H[n] = ([n]f[n - 1]SXtX5 t  (4.13b)

The form of each recursion is indeed equivalent to the power method[14] used to

estimate the largest eigenvalue. Each row of W (i.e. W'i and '2) and H (i.e. h

and h') converges to a real vector parallel to the maximum left eigenvector of the

corresponding system matrix,

lim Ci,[n] = lim w 2[n]
n-oo n--oo

= ni max-eigenvec X5tSXt (4.14a)

lim hi1 [n] = lim h 2 [n]
n-oo n-.oo

= i 2 max-eigenvec'5XtX$ (4.14b)

where max-eigenvec is the operation that returns the unit-length maximum eigenvec-

tor of its matrix argument. ri is arbitrary because of the arbitrary energy constraint

. 12 is not arbitrary, however, and it must satisfies (4.12c) that

r,2 max-eigenvec SXtX$§ = (ri max-eigenvec X5tgXf )X$t

Note that the Hermitian operations (.)' here are equivalent to the transposition op-

erations (-)T because all the vectors and matrices are real.

The result in (4.14) has two significant implications. The obvious one is that it

is not optimal to let n goes to infinity. This is because the two output decorrelated

observation streams j'1X and t'X collapse into one as -i1 becomes equal to t 2T.

In other words, the information of the desired signal in the direction orthogonal

to '.X = ti'X is lost. To see this loss more easily, we can consider a specific

interference free case without subsampling nor stacking in time (i.e. 1 = 1). If there

is no intersymbol interference (i.e. v = 0), it is information lossless to set i = '=
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[ho ho ] by the theorem of irrelevance for this particular additive white Gaussian

noise model, assuming that the single-tap channel impulse response ho is known. If

there is intersymbol interference (i.e. v > 0), however, having 'i4 = b'2 losses the

information in its orthogonal direction.

The second implication of the result is less obvious but the idea is that the direction

of the maximum eigenvector is special in helping us to eliminate the interferer. To

understand that, we will analyze a joint optimization (not multi-stage) over a one

dimensional decorrelator w' and the corresponding channel h, and show that the

solution is indeed the eigenvectors in (4.14) by choosing the optimality criterion as the

decorrelated-observation-to-interference-and-noise-ratio (DOINR) defined as follows,

E[I Iw'X112]
DOINR A E w'X 112] (4.15)

E[||w'X - W'S||2]

where h' and w' are functions of the extended observation matrix X. The numerator

is the expected energy of the decorrelated observation, while the denominator is the

expected energy of the noise and interference assuming that the -h'S term subtract

out the signal from the decorrelated observation. The joint optimization of DOINR

is stated as follows,

(w', h') = arg max DOINR

E[Ilw'X|l2]
= arg max

(X),h'(X)) E[||w'X - h'S112]

= arg max ~ given X = X (4.16)
(W'(XY),h'(X)) |w'X - hSI 2

The last equation can be proved by contradiction: suppose there exists at least one
IIWIX12X such that Iw'X-~'s is not minimum, DOINR can be further reduced by changing

IIW~I12
the value of w' and h' evaluated at each particular X to minimize ,-s.An

easier but less vigorous way to understand this is to consider the expectation as an

average over multiple normal burst, and X as the realization corresponding to one

normal burst. Then, optimizing the average over multiple bursts is equivalent to
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optimizing over each burst.

The joint optimization can be done in two steps, by first finding h' in terms of an

arbitrary w', and then substitute that into the DOINR again to find the optimal w'.

Knowing the optimal w', the optimal h' can then be calculated using the expression

found in the first step. The following describes the two steps in detail,

1. From the denominator of (4.16), we see that the optimal h' for any arbitrary

w' is w'XSt, as it minimizes the denominator for any w'. Hence,

h /'(X, Cv') = W'XSY (4.17)

2. Imposing the relation (4.17) on h in (4.16) reduces the joint optimization into

a single optimization as follows,

W = arIg maxIXwI SI'x) - w'XS 112
w'XX'w

= arg max ~~
W 'X(I - StS)X'W

w'XStSX'1
= arg max 1 -

W'XrStSX'w
= arg max ~

W') 'XX'

Let XX' = UE2U' be the reduced form of the singular value decomposition

[U U' 0 8] (U)'1 , where , 2 is an invertible diagonal matrix. Then,

, mW'X St SX'
W = arg max w E2UXW

W'(x> W'U W 2 U'

y' E U XSt SX'U' E- y -u Y V= arg max ~ J2~ MU y ''

W = K1U'E- 1 max-eigenvec E-UXStSX'U'E-1

= ,i max-eigenvec XStSX' (4.18)

= lim 'ib1[n] by (4.14a) (4.19)
n-*oo
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where ti is some constant scalar. The last two equations are obtained by

expanding the Hermitian matrix XStSX' into its singular value decomposition

and performing the optimization similar to the one described in Appendix A.3.

Substituting (4.19) into (4.17) gives,

h' = lim wi[n]'XS t
n-oc

= lim hi[n]' by (4.12c)
n-+oo

K2max-eigenvec .Xt X$ by (4.14b) (4.20)

(4.21)

Hence, the two step optimizations above showed that the maximum DOINR decor-

relator in (4.19) and (4.20) are identical to the LS decorrelator (4.14) as the number

of inner loop iterations goes to infinity. In other words, If we fix the decorrelated ob-

servation energy by appending an arbitrary gain, the inner loop gradually eliminates

the interference and noise energy in the model, which is therefore desired. However, in

doing so, it collapses the two decorrelated observation streams into one, which causes

information loss in the direction orthogonal to the decorrelator. With this argument,

in addition to computational complexity and simulation results, we chooses not to do

any addition inner loop iterations (i.e. Ninner = 1).

53



54



Chapter 5

Computer Simulation

The proposed decorrelator-based SAIC algorithm described in Chapter 4 was imple-

mented in the GSM/GPRS simulation based on the conventional receiver architecture

described in Chapter 3. In the following sections, we will describe the two DARP test

scenarios used to test the algorithm and states the simulation results.

The SAIC/DARP Performance Evaluation is a set of tests for the SAIC feature

in the GSM/GPRS downlink receiver. In the current revision[12] [1], there are five

proposed DARP test scenarios, which mainly differ in the number of interferers, the

assumption of the training sequence and time alignment between the interference and

the signal. The first two test scenarios, named DTS-1 and DTS-2 in Table 5.1, were

implemented and run on four different types of traffic channels that differ mainly in

the channel coding scheme. To pass the tests, the frame error rates detected by the

receiver, the residual bit error rates of Class lb and Class 2 bits, if applicable1 , need

to be small enough so that the receiver is usable. For example, the frame error rate

must be below 1% for all traffic channels. Otherwise, the transmitted speech cannot

be recovered and the entire speech frame, which covers several bursts, need to be

discarded (see Section 2.2).

Each test scenario in Table 5.1 specifies four key parameters in the interference

model. The interfering signal column specifies all types of interferer signal present in

'Two out of the five selected traffic channels, namely TCH/AFS 12.2 and 5.9, do not have Class
2 bits and so Class 2 bit error rate does not apply. Hence, Figure 5-3 does not have the plots for
those two logical channels.
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Table 5.1: SAIC/DARP reference test scenarios
Test scenario Interfering signal Interferer relative TSC Interferer delay range

power level
DTS-1 CCI1 0 dB none no delay
DTS-2 CCI1 0 dB none no delay

CCI2 -10 dB none no delay
ACIl 3 dB none no delay
AWGN -17 dB -_-

the model. CCI1 and CCI2 stands for the first (dominant) and the second co-channel

interferers respectively. ACIl stands for the adjacent channel interferer, and AWGN

stands for the additive white Gaussian noise. The interferer relative power level

column gives the ratio of the power of the specified interferer to that of the dominant

co-channel interferer CCI1. This ratio is therefore OdB for the CCI1 itself. Note

that the power is measured at the receiver but before the receiver front end. Thus,

the adjacent channel interferer in DTS-2 is even 3dB stronger than the dominant

co-channel interferer because the source of adjacent channel interferer is closer than

that of the co-channel interferer. The TSC column specifies whether the interferer

is modulated with a training sequence code. In both test scenarios, it has the value

none for all interferers, which means that no training sequence codes are used. In

other words, all the modulation bits of the interferers are randomly generated. The

interferer delay range column specifies whether there is any delay is the power profile

between the signal and the interference. In both test scenarios, however, there is no

such delay, which means that the interferer is present at all time.

For each test scenario being run on each logical channel, the carrier-to-dominant-

interferer-ratio (CIR) is varied over a range such that we can interpolate at the C/I1

that give exactly 1% frame error rate. Note that by changing CIR, we also change the

power of all interferers and noise but their relative power are fixed according to the

interferer relative power level specified for each test scenario. At the particular CIR

at which the frame error rate is 1%, we obtain the residual Class lb bit error rate and

the residual Class2 bit error rate to compare with the required levels. For show the

gain in doing SAIC, we will express all these performance metrics (i.e. CIR, residual

Class lb and 2 bit error rates at 1% frame error) as an improvement measured in dB
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on the performance of the conventional receiver.

The simulation results are shown in Figure 5-1. Consider Figure 5-1 in particular,

there are five subplots, each corresponds to the simulation on one of the five logical

channels: full-rate speech traffic channel (TCH/FS), adaptive multirate full-rate traf-

fic channels with rates 12.2 and 5.9 (TCH/AFS 12.2 and 5.9), the adaptive multirate

half-rate traffic channels with rates 6.7 and 5.9 (TCH/AHS 6.7 and 5.9) (see [3] for

details). In each subplot, the SAIC algorithms in Algorithm 4-2 are run with three

different set of parameters as follows,

SAIC without feedback There is no decision feedback (Nouter = 1).

SAIC with feedback There is decision feedback (NUter = 2) but no pruning (i.e. 7 =

-100 dB).

SAIC with feedback & pruning There is both decision feedback (Nuter = 2) and

pruning (i.e. r = -0.1 dB).

Each of these variants of the SAIC algorithm is run for the two test scenarios, DTS-1

and DTS-2. The result is plotted as a bar chart whereby the lower blue bar and upper

red bars indicates the SAIC gain in DTS-1 and DTS-2 respectively. In addition, the

requirement on DTS1 and DTS2 are shown as the blue and red the dashed vertical

lines on the left and right respectively.

From the simulation result, we conclude the benefit of the SAIC algorithm with

pruning and decision feedback. It passes both test cases in the current SAIC/DARP

revision.
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Figure 5-1: Drop in C/11 at 1% frame error rate
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Figure 5-2: Drop in Class lb bit error rates at 1% frame error rate
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Appendix A

Background Theory

A.1 Channel Coding of Full Rate Traffic Channel

Figure A-1 illustrates the channel coding of the full-rate traffic channel. The vocoder

encodes a speech segment into a 260-bit sequence do, . . . , d2 59 represented by {dk}k=.

The first 50 Class la bits {dk }4 are CRC-protected by adding 3 parity bits {Pk}2o

computed using the generator polynomial g(D) = 1 + D 2 + D 3 . The Class 1 bits

{dk}gi are then reordered to form the sequence {Uk}) . More precisely, the 91 even

bits {d2k}a 0 gets mapped sequentially to the 91 bits of {Uk} 0 , followed by the 3

parity bits {f Uk} 9 g = {Pk}Ro. The reversed odd bits {d2k+1o 9 =Q gets mapped to

the next 91 bits {uk})= 9 4 . 4 tail bits of O's are appended to the end {Uk}= 1 8 5 .

PO -. - P2

CRC 23RodrU 18 Conv.
g(D) = 1+D2+D3 ere Encoder

do ... d4/ ao 71 d82 ... d259 CO . .. C377

Vocoder Block n

CO ... C4 55

.. 0 Z8,113

Normal Map on Interleaver
Burst Burst

Figure A-1: Channel coding of full rate traffic channel
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The reordered class 1 bits are then convolutionally encoded with the generator

polynomial matrix,

Go =1 +D 3 +D 4

G, = 1 +D +D 3 +D 4

The even and odd bits of the output {ck}137 are the output of filtering {uk}1j8 with

Go(z- 1 ) and G,(z- 1) respectively. The 78 Class 2 bits {d}9 18 2 are then appended

to the end {Ckk1378 before interleaving.

The interleaver half fills each of the eight (indexed by B E {Bo+4n, ..., Bo+4n+7})

114-bit blocks {iB,j o with the n-th 456-bit channel-coded vocoder block {Cn, k},O

as follows,

iB,j = Cn,k ,where

B=Bo+4n+(k mod8)

j = 2 ((49k) mod 57) + ((k mod 8)div4)

Finally, the B-th sequence {iB,j =O together with two stealing flags {hlB, huB}, which

are indicators of whether the left and right bursts are stolen for signaling purposes,

fills the left and right bursts of the B-th normal burst,

{eBj} o = iB,j j-h B, huB, {iB,j j57

The sequences {eBJ},S 7 and {eBj}!= 8 will be mapped to the left and right bursts

respectively in the normal burst shown in Figure 2-1.
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A.2 Amplitude Modulation Decomposition of GMSK

Signal

Theorem A.2.1. If we extend the symbol sequence {an}gnn to {a } _± in (2.3)

by zero padding the two ends, the extended GMSK signal S(t) can be approximated as

M-1 00
E E AK,NCK(t - NT)'
K=0 N=-oo

where _O- AK,NCK(t - NT) is the K-th amplitude modulated signal with pulse

shape CK(t - NT) modulated by the transformed symbol AK,N that depends only on

the original symbol sequence. The number M of different decomposed pulses and the

maximum pulse width are 2L-1 and L + 1 respectively where L is the approximated

length that contains most of the energy of the frequency pulse shape (per unit T) of

the GMSK signal.

Proof. Let PN (t) be the rectangular function which is 1 within the interval [NT, (N +

1)T and 0 otherwise. Ignoring the convergence issue related to extending the symbol

sequence, the transmitted signal from (2.3) becomes,

S (t) ~exp j E an On(t)
\ n=-oo/

00 N-L N 00

=E exp j Tan#On(t) + E an#n(t) + 1:anOn (t) PN (t)
N=-oo \ n=-oo n=N-L+1 n=N+1

00 N-L L-1

exp (4 an J exp(jaN-iN-i(t)) pN(t)
N=-oo n=-oo i=0

00 N-L L-1

= (H jan ( exp (jaN-iN-i(t)) pN(t)
N=-oo n=-oo i=0

The expansion in pN(t) allows us to focus on the time interval [NT, (N + 1)T] so

that we can ignore the future data {an I n > N} modulated after the interval and

summarizes the effect of the past data as the sum En-L an. To further simplify the
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expression, let

sin(oi ft)) 0 < t - iT < LT

f'(t) COS( pA+L (t)) LT < t - iT < 2LT

0 otherwise

The exponential term becomes,

exp (jaN-iON-i(t)) pN(t) = (cos(aN-iqNi(t)) + j sin(aN-iN-i(t) PN(t)

= (cos(O(N-i-L)+L(t)) + jaN-i sin(qN-i(t))) pN(t)

= (fN-i-L(t) + jaN-ifN-i(t)) PN(t)

Substituting back into the S(t) yields,

00 N-L L-1

S(t) 1 1( jan ( fN-i-L(t) +jaN-ifN-i(t)) PNt)
N=-oo (n=-oo i=O

00 NL-

N= 1 j(an pN(t) ( fN-i(t) + fN-i-L (t)
N=-oo (n=-oo (i=0 .( JN-i

The product term H§_-1 (fNit + a fN-i-L(t)) can be expanded into a series

of products of fN-i or fN-i-L for i E {0,... , L - 1}. In any one of these products,

fN-i is present if and only if _ fN-i-L is not present. Since there are 4 possible

values for i, there are a total of 2L products, the form of which can be represented

by an L-bit binary number, each bit of which indicates whether fN-i-L or fN-i is

present. Let &K',i E {0, 1} be the i + 1-st least signification bit of the L-bit binary

expansion of K' E {0, ... , 2" - 1}. The signal becomes,

00 N 2-1 L-1 1

S (t)~ r-_ E jan PNVt E l N- _ K'fN-i-L-aK',i W)
N=-oo n=-oo K'= i= aNi)Ki

Some of the terms present in different time intervals [NT, (N + 1)T] (i.e. different

values of N) have the same form. For instance, the terms with (N, K') = (0,0)

and (N, K') = (1, 1) have the same form except that they are non-zero at different

64



interval. Thus, they can be concatenated as follows,

(N= 0,K' =0) term=

(N= 1,K' = 1) term=

(P jan)
(=-O

(1
n r jan

0
=1 j an

n=-oo

(N = 0, K' = 0) + (N = 1, K' =
0 L-1

1) = ( jan pO(t/2) L fi(t)
fn=-oo i= )

By concatenating all the product terms with the same form over different time inter-

val, we have the final expression for S(t),

S(t)
N=-oo{2L-1-1

K=0

rN 
.

1n~-00 j an fN
i=1 {jaN-i aK,i

t
XPN (2L - maXiEO{,...,L-2}@ +

00 2L-1-1

= S S AK,NCK(t-NT)
N=-oo K=O

L ' 'K

L-2

1 N-1-i-L-aK,i Mt

,i + KOO)

NA-

A fin=-oo j an
AK,N L1 (aN -i )K,i

CK(t - NT) A PN 2L-max 0 .- (i+L-QK,i+IKOO)) fN (t) fN-1-i-L-QK,i (
i=O

0 ifK =0
IK#O{~

1 otherwise

Therefore, S(t) can be decomposed into a sum of time-shifted and amplitude-

modulated pulses. Furthermore, it can be verified that C0 (t) has the maximum pulse
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L-1

pO(t) fii(t)
i=O

L-

p1 (t)

L-1

Pi(t) I fi (t)
i=0

where

(j li 1 ' fl-i-L-alg (t)

& L 2-1



width L + 1.

Remark A.2.2. Properties of the transformed symbol AK,N

1. An undesired ramification of extending the finite data sequence to bi-infinite se-

quence is that AK,N does not converge for any N and K because the component

in=_, j in AK,N does not converge for any N. In reality, however, the data

sequence only has 3 tail bits of O's at the two ends (Figure 2-1) and the trans-

mission time is finite (0.577ms), which allow us to abuse the notation ±oo to

ignore the boundary cases without worrying about the convergence issue. Note,

however, that the decision to ignore the boundary cases, which corresponds to

the interval when the tail bits are transmitted, is strictly suboptimal in sig-

nal detection because they convey some information about the channel. Since

the tail bits are short compared to the entire normal burst, this degradation is

negligible.

2. Not all sequences of AK,N E {1, -1, j, -j} are possible because the mapping

from the sequence of {an}"&,, to H -e{AK,N}En. cannot be surjective by

comparing the cardinalities of the domain and the codomain.

A.3 Least Squares Estimation

Consider a general least squares problem in matrix form,

= arg min JG - EFII (A.1)
E

where E is an m-by-k complex matrix of elements eij where i and j are the row and

column indices; and similarly, F is a k-by-n complex matrix of elements fij; G is an

m-by-n complex matrix of elements gij.

Let d eT and gT be the i-th rows of E, E and G respectively. Then, the squared
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Probenius norm can be expressed as a sum of squared vector 2-norms,

m

E= arg min Z |gi - eT F| 2  (A.2)
i=1E

T= arg min Z |gT - eTFI 2  (A.3)

which means that each row of E can be optimized independently from other rows.

Let UEV' be the singular value decomposition (not in reduced form; i.e. U and

V are unitary matrices) of F, where E is the singular value matrix of min(k, n)

singular values a-. Then, we can further break down the optimization of & into the

optimization over each transformed element yij as follows,

eT= argmin||g - eTU V'| 2

= arg min IgV-eUIIeTI

=ar g min||| eU2| .yy
eT

= (arg min IgrV - YTE112 U' where yT A eT U

min(k,n) n

pl =argmin y +
V j1 j=(k,n)+1

arg min i I[g[V] - yijj12 j < min(k, n)

anything otherwise

where [gTV]j denotes the j-th element in the vector gTV.

If j _ min(k, n) and c-j f 0, then I[g V]j - yijo-j 2 can be minimized to 0 by

choosing yji - . If j > min(k, n) or a- = 0, however, choosing any yij is equally

optimal as they get multiplied by zero in the optimality criterion. However, choosing

yij = 0 in those cases will minimizes the magnitude of yT, or the 2-norm of eCU,

which is also the 2-norm of eT since U is unitary. Thus, the Frobenius norm of E will

be minimized, because its square is the sum of the squared 2-norm of each row eT. In

other words, we get the following unique solution by further imposing the minimum
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energy requirement on E,

ij={0 if j > min(k, n) or oj = 0

1g~V 1j otherwise

Qi =gTvEt

where Et is equal to E except that the corresponding non-zero entries are reciprocal

of each other, and

=ge VEtU'

Hence, we obtain the LS estimate of E,

F t A

E== G (VEtU')

= GFt

where the matrix VEtU' denoted by Ft is called the generalized pseudoinverse of

F.

A.4 Comparing CAZAC and LS Channel Estimates

The measurement model (3.6) with the training sequence TSCO in Figure 3-5 and

channel memory v = 4 will be used in this section to compare the CAZAC and LS

channel estimates in (3.17) and (3.8) using Var[hCAZAC - hLS] and E[IIX - ASII] as

described in Section 3.2.1,

The training sequence TSCO, its corresponding data matrix S in (3.6), the pseu-

doinverse St , and the matrix S in (3.13) are,

{ } _4 = 0, 0, 1, 0, 0,1,0, L, L, L, 0, 0, 0, 0 1, 0, 0, 0, L, 0, 0, , 0, 1 1, 1

midamble {d5;}=0
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1-1-1-1 1 1 1 1-1 1 1 1-1 1 1-1 1-
5 = - - - - - - - - -

- 0.97 0.71 -0.74 0.82 0.99 -
-0.84 0.92 0.92 -0.65 0.65

0.80 -0.74 1.07 1.02 -0.66
-0.97 0.74 -0.71 0.99 0.82
-0.80 -1.07 0.74 -0.66 1.02
-1.10 -0.89 -0.89 0.82 -0.82

1.17 -1.29 -1.29 -1.19 1.19
0.97 1.07 -1.10 -1.35 -1.18
0.94 1.25 0.89 -0.99 -1.19
0.77 1.25 1.25 1.02 -1.02

-1.00 0.92 1.28 1.35 0.82
0.97 -1.10 1.07 1.18 1.35
0.97 0.71 -0.74 0.82 0.99
1.10 0.89 0.89 -0.82 0.82

-1.17 1.29 1.29 1.19 -1.19
0.97 -1.10 1.07 1.18 1.35
0.97 0.71 -0.74 0.82 0.99

-0.84 0.92 0.92 -0.65 0.65
0.80 -0.74 1.07 1.02 -0.66

-0.97 0.74 -0.71 0.99 0.82
-0.80 -1.07 0.74 -0.66 1.02

-- 1.10 -0.89 -0.89 0.82 -0.82.

1
16

0 0 0 0 0--1 0 0 0 0
1 -1 0 0 0

-1 1 -1 0 0
-1-1 1 -1 0
-1 -1-1 -1

1 -1-1 -1 1
1 1 -1-1 -1
1 1 1 1-1
1 1 1 1 -1

-1 1 1 1 1
1-1 1 1 1
1 1-1 1 1
1 1 1 -1 1

-1 1 1 1 -1
1 -1 1 1 1
1 1 -1 1 1
0 1 1 -1 1
0 0 1 1 -1

S0 0 00 0_

Note that each column of St and S contains 21 and 16 non-zero entries respectively,

the magnitudes of which are similar and sum to 1 exactly, and the signs of which

are the same for the same pair of row and column indices. Thus, the main difference

between CAZAC estimate and LS estimate is that the CAZAC estimate does not

fully utilize the observation sequence in the estimate of each tap. More precisely, the

zero entries of the i-th column of S corresponds to those observations that are not

used in computing the estimate of the i-th channel tap. The degradation resulting

from this can be summarized by increase in the distance E[j|X - AS|2],

E[IIX - HLSS112] = E[IIHS + N - (HS + N)StSI||]

= c2 trace(I - StS)

= 17a

EIX - AHCAZACSII] = a trace((I - S)'(I - SS))

~ 18.7e > E[IIX - AHLSI

We can also compare the difference between the two estimates more directly with

the covariance matrix Var[ CAZAC - hLS] because the difference hCAZAC - hLS is indeed

the colored zero-mean jointly Gaussian noise N(S - SI), which can be summarized
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by its second-order statistics,

- 0.0147 0.0001 0.0001 -0.0048 0.0116 1
0.0001 0.0147 0.0048 -0.0001 -0.0001

Var[$CAZAC - Ls 0.0001 0.0048 0.0151 0.0004 0.0008
-0.0048 -0.0001 0.0004 0.0151 -0.0047

0.0116 -0.0001 0.0008 -0.0047 0.0163 .

from which the normalized energy different between the channel estimates can be
,2

calculated in terms of the signal-to-noise ratio SNR A 2
-E[U1hII

2]'

E[||hCAZAC - hLS 2 trace (Var[CAZAC - hLS)

E[11h112] E[11h11 2]
0.076
SNR

A.5 Different Model Assumptions on the Single

Interferer Model

The single interferer model described in Section 4.2 can further take on three different

model assumptions described as blind, Semi-blind and training Sequence code Based.

In this section, we will describe the differences between this model assumptions and

quote some examples of SAIC developed based on each model assumption.

The training sequence code based SAIC algorithms assume that the receiver knows

that training sequence code for both the desired carrier and the interferer so that

their channel impulse responses H and C can both be tracked using techniques de-

scribed in Section 3.2. The well-known Joint Maximum Likelihood Sequence Esti-

mation (JMLSE) and the Joint Maximum A posteriori Probability Signal Detection

(JMAPSD) [6] fall under this category. The idea is immediately obvious if we stack

up the interferer and the desired signal in (3.5) as follows,

X=[Hc][] +N

By incorporating the interferer as part of the signal, this reorganized matrix form has

the same structure as the interference-free model in (3.5). Thus, the joint channel-
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data estimation technique in Section 3.2 can be applied here to estimate the joint

channel [ H c ] and demodulate the joint signal and interferer [s z ]T. The technique is

called the joint demodulation. It has great performance because the training sequence

code based model assumption is the strongest among the three model assumptions

and the joint demodulation can fully exploit the fact that the interferer is a GSM

signal by actually demodulating it. The assumption is, however, unrealistic and the

demodulator is very complex computationally because the running time of the Viterbi

decoder used is exponential in the channel memory length, which is roughly doubled

in the joint channel [ H C ].

The blind model assumption is the opposite extreme of the training sequence code

based model assumption. training sequence code is not assumed for the desired signal

nor the interferer. Thus, adaptive filtering technique is usually used to continuously

track the channel, or it would be impossible to get a good channel estimate that

converges. An example is the blind JMAPSD algorithm[7]. It assumes an all-pole

channel model to reduce the search space and then uses the Kalman filter to adaptively

update the model from the received signal. Its performance depends partly on how

well the channel model reflects reality, and how fast the channel estimate converges.

The most realistic model assumption for the asynchronous GSM network is the

semi-blind model, which is in between the training sequence code based assumption

and the blind assumption. More precisely, training sequence code is assumed only

for the desired signal but not the interferer because the desired signal is assumed

to be well tracked in time, while the interferer can have a random misalignment

that causes the unknown data sequences of the interferer to overlap in time with

the training sequence code of the signal. An example is the Iterative-semi-blind

JMLSE algorithm[13], which iteratively improves the channel estimate using the least

mean square adaptive equalizer. The proposed decorrelator design in this project

also assumes the semi-blind model. However, rather than to jointly demodulate the

signal and the interference, it attempts to eliminate the component in the observation

sequence corrupted by the interference so that the conventional receiver structure can

be reused.
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