
Simulation of Tandem and Re-Entrant Manufacturing Lines

by

Christina C. Royce

SUBMITTED TO THE DEPARTMENT OF MECHANICAL
ENGINEERING IN PARTIAL COMPLETION OF THE

REQUIREMENTS FOR THE DEGREE OF

BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING
AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

JUNE 2006

©2006 Christina C. Royce. All rights reserved.

The author hereby grants to MIT the ability to reproduce
and to distribute publicly in paper or electronic

copies of this thesis document in whole or in part
in any medium now known or hereafter created.

MASSACHUSETS INSTITTE
OF TECHNOLOGY

AUG 0 2 2006

I IDADIrCo

Signature of Author: C . A... L- -
Department of Mechanical Engineering
Ad" ,c h / May 12, 2006

Certified by: -'

J Dr. Stanley B. Gershwin
Senior Research Scientist

Department of Mechanical Engineering
Thesis Supervisor

Accepted by:
Accepte by 'Ku '~C.hn H. Lienhard V

Proessor of Mechanical Engineering
Chairman, Undergraduate Thesis Committee

ARCHIVES

1

I

l

Simulation of Tandem and Re-Entrant Manufacturing Lines

by

Christina C. Royce

Submitted to the Department of Mechanical Engineering

on May 12, 2006 in Partial Fulfillment of the

Requirements for the Degree of Bachelor of Science in

Mechanical Engineering

ABSTRACT

Modeling manufacturing systems is a necessary tool in the process of finding a way to
analyze and improve design. Increasingly complex systems are now being modeled, and
two such systems are the focus of this report. The Tandem and Re-Entrant systems allow
for multiple part types to be sent through a single line of processing machines. The parts
have different priorities which determine the order in which they are produced. The Re-
Entrant system is unique because it produces a single part that is processed through the
same machine line multiple times. As the part travels through the processing line, it
loops back to the beginning at the end of every run as a higher priority part. These
simulations were tested for their validity by running with different input parameters to
see how the system reacted. These programs can be used in the future with more
complex systems and the knowledge gained from the results of these simulations can be
applied to improving these systems and maximizing their efficiency.

Thesis Supervisor: Dr. Stanley B. Gershwin
Title: Senior Research Scientist, Department of Mechanical Engineering

2

CONTENTS

1. Introduction ... 4

2. Background ... 5

3. Algorithm 7

4. Program Verification 10

5. Conclusions 12

Appendices (code)

A. User Guide 13
B. Programmer's Manual .. 20
C. Tandem Program Code .. 24
D. Re-Entrant Program Code 36
E. Input and Output Files 49......... 49

References 52......... 52

3

1. Introduction

A manufacturing system is a set of machines, transportation elements, computers,

storage buffers and other items that are used together for manufacturing (Gershwin,

1994). They are complex dynamic systems that we rely on every day to process and

produce all types of goods ranging from toys to automobiles and beyond.

Surprisingly, as central as manufacturing systems are, they are still not completely

understood. A new and growing field is Manufacturing System Analysis which studies a

way in which to model these systems to build and analyze them effectively.

Due to the complexity of manufacturing systems, to precisely calculate their

performance over time takes too long in some cases, and is impossible in others. So

instead, these systems are represented by approximations. In order to build

approximations that accurately reflect the manufacturing systems, the equations used are

equally intricate and require verification via simulation. The mathematical approximation

is applied to a range of initial parameters of the system, and the simulation runs using

these same parameters. The degree to which the approximation can accurately predict the

behavior of the simulation is the ultimate measurement of its success.

The work in this thesis focuses on a particular type of manufacturing system in

which the machine line allows for part re-entry. This means that once a part has gone

from one end of the machine line to the other, it comes through again. Therefore multiple

part types, where type is defined by the number of times the part has gone through the

system, are all run through the same set of machines. This situation is often seen in the

production of silicon wafers where a part has to go through the machine line several

4

times before it is finished. My work has to do with building the simulation and using it to

test for interesting phenomenon when different input values are varied.

2. Background

The study of manufacturing systems is gaining a depth in literature that defines

the building blocks of the field. Studying these systems has begun with looking at the

simplest possible types of machine lines and building up to being able to map more

complex systems.

The basic background in this field begins with the definition of some of the major

terms used to describe manufacturing systems. In Figure 1 below is a simplified depiction

of the system which I will be working with for my thesis. Every box that has an 'M' inside

represents a machine in the line, and the arrows show the direction in which parts are

moved from one part of the system to the next. Since there are often periods of time that a

part waits between machines, this is shown here as a buffer, which holds a limited

amount of parts as they wait between machines. The buffers are the circles with a 'B'

inside that are situated between machines.

Each machine has a rate at which it produces parts and each buffer has a

maximum capacity. In addition there is a probability attached to every machine

representing how often it will break down, and a probability of repair once the machine is

down. The way we represent a machine's status is either as 'up' when it can work on parts

or 'down' when it is broken and needs repair.

5

The basic elements of a machine and buffer have been modeled successfully, so

building off of these, the Tandem and Re-Entrant systems are more complex for several

reasons. Both systems allow for multiple part types that the machine line processes where

each part type has a different priority level. This priority determines when it is processed

by the machines, because a higher priority part when possible will always be chosen over

a lower priority part. In that way the machine must know not only whether it can process

a part, but must know which part it should process when given the choice. A depiction of

this system is below in Figure 1.

Figure 1: Multi-Part Tandem Machine Line

The Re-Entrant system has the added complexity of re-entry into the system.

Looking at Figure 2, Machine 3, which is in the lower right hand of the diagram

represented by a box labeled 'M3 ' produces a part which does not leave the system, but

instead returns to be machined again by Machine 2, labeled 'M2' at the center of the

diagram. This is the definition of re-entry because a part having gone through the system

once is looped back to go through it again.

6

Figure 2: Two-Part Re-Entry Machine Line

The multi-part re-entry machine line is building on the work done already to study

multi-part lines as with the Tandem system. Combining these features into a significantly

more complex system has drawn from the methods used to define the simpler systems,

and the simulation builds from those of the simple systems.

3. Algorithm

The Tandem and Re-entrant systems described above are simply designed, yet

simulating their process of part production is a challenging task. Of the two models

presented here, the Tandem model was developed first and then modified to allow for re-

entrance. This section will describe the step by step process or basic algorithm for these

programs. The basic program structure consists of taking in data, initializing core

variables, running a certain length of simulation steps over which machines' status and

buffer sizes are constantly calculated, and finally finding average values for machine

productivity and buffer size.

The simulation is built as a Java program that is aimed at simulating the two-part

machine line with re-entry. The duration of the simulation is defined by the transient

7

period and steady state period length declared as global variables at the beginning of the

program. The transient period is the number of steps taken by the simulation before it is

considered to be stable, and the steady state period is how many steps are taken while in

this steady state condition that will be used to evaluate the system's behavior.

The program begins by taking in basic data from the user about the setup and

characteristics of the machines and buffers. Information on the buffer size, machine

repair and failure probabilities, as well as the number of processing machines and part

types are all entered by the user through a text file. This text file must be organized in a

specific structure which is described at length in Appendix A: User Guide. If the text

follows the right format all the required information will be taken in by the simulation.

Once the program has taken in all of the facts about the machine line it needs, the

next step is to begin the simulation. There are certain base line facts that the simulation

assumes and runs on. First, all machines in the line begin 'up' or operational and second,

all buffers in the system start with one part each. Once these initial values are set, the

simulation is ready to run.

Only the steady state period is counted toward production rates and average buffer

sizes, and the transient period is excluded to make sure that any transient properties of the

system start-up do not impact the final results. In each time step several sub steps are

taken by the simulation. The status for all machines is checked, beginning with supply

machines, then going on to processing machines and finally demand machines.

8

Each machine is checked to see whether it changes its status as either up or down,

using the probabilities of failure and repair. Then based on this information, if a machine

is operating, the buffers before and after it are examined to see whether the machine can

process a part. If the buffer after a machine is full, the machine will not start processing a

part because it has nowhere to place it when complete. This condition is known as the

machine being blocked. If the buffer before the machine is empty, the machine is starved

because it has no part to work on. If the machine is neither blocked nor starved, and is

currently up, it can process the part.

The Tandem and Re-Entrant machine lines allow for several part types to be

processed by one machine. In order for this to occur there must be a method of

determining which part the machine should work on next, if there are several options.

The way in which the next part is chosen is based on its priority in the line. The machine

will attempt to process parts of higher priority first unless it is blocked or starved for that

part. The processing machine will only move on to lower priority parts if it cannot

process the higher priority part.

A part moving through the machine is tracked in two ways. A matrix of part

production is updated to keep count of when each machine is working on each part.

Also, when a part goes through the machine, buffers on either side for that part are

incremented or decremented as necessary.

Finally, once the simulation has run through the total set of steps, two main pieces

of information are calculated. Based on the buffer sizes throughout the steady state

period, the average size of each buffer is reported. Secondly, the rate at which each

9

machine is producing each part type is also calculated, by finding the probability that at

any given time the machine is working on that part.

The two simulations in general take the same approach, but there is a major area

of divergence, and that comes in the re-entrance of parts. The Re-Entrant program cycles

parts back through the system, by linking the last buffer for each part type to the supply

machine of the next higher part type. Examples of both the input and output code can by

found in Appendix A: User's Guide.

4. Program Verification

In order to test the validity of the new simulations, the results of the Tandem

program were compared against those of a similar multi-part simulation with an different

algorithm. A set of 300 input files were run through both simulations to compare the

outputs over a range of input parameters.

This particular input file was for a two-part system with five processing machines.

A depiction of the system is below if Figure 3.

Figure 3: Example Tandem System Tested

10

The machine repair and failure rates and the buffer sizes are listed in the input file

in Appendix E. When run through the system this input gave the following results:

Output Value Tandem Program Comparison Simulation
Buffer 1 Avg Level 8.665 8.127
Buffer 2 Avg Level 24.847 27.481
Buffer 3 Avg Level 25.410 26.731
Buffer 4 Avg Level 25.916 27.204
Buffer 5 Avg Level 26.620 27.920
Buffer 6 Avg Level 26.498 27.312
Buffer 7 Avg Level 10.596 10.322
Buffer 8 Avg Level 35.935 39.146
Buffer 9 Avg Level 17.558 15.970

Buffer 10 Avg Level 15.647 14.179
Buffer 11 Avg Level 14.450 15.458
Buffer 12 Avg Level 2.674 3.356
Part 1 Avg Prod Rate 0.562 0.560
Part 2 Avg Prod Rate 0.229 0.249

Table 1: Program Verification Results

To examine how the Tandem system works a basic input parameter set was run to

verify the simulation's results. First, a system in which all the machines are perfectly

reliable was run with five machines in one line with buffers of size 10 between them.

The results as given by the Tandem Program were buffers of average level 1.0 and

production rates of 1.0. For a more detailed look at the input and output files, please see

Appendix E. These results are exactly what is expected because if the machines never

break down, at every step one part moves into and out of every buffer. That process

leaves the buffers at the equilibrium level of one part, and every machine is always

working on a part and therefore has a production rate of 1.0.

11

5. Conclusions

Simulating manufacturing systems is a way in which scientists can analyze and

optimize the complex web of interactions that determine a machine line. In this work two

such simulations were created to work with multi-part lines on one hand and even more

complicated re-entrant lines on the other. Verifying this work by comparing it to

previously accepted simulations of multi-part systems enables the programs to be applied

over a range of input parameters. The results of using these different sets of inputs will

uncover information about the way these multi-part systems function.

Further work beyond this thesis should focus on using the new dimensions of

flexibility that the programs provide. Adjusting the relative rates of production for the

machines and using a variable number of parts and processing machines, broadens the

spectrum of machines lines that can be simulated. These more complex systems can now

be studied in order to find how their most efficient and effective compositions.

12

APPENDIX A: User Guide

Preface

This User Guide is intended to provide users of the Tandem and Re-Entrant programs the
information necessary to successfully use these programs to their fullest capacity. Any
questions not addressed in this User's Guide, may be answered in the Programmer's
Manual.

Contents

Section 1: Purpose of Program

Section 2: Program Capabilities

Section 3: Tandem Program

3.1: Description

3.2: How to create an input file

3.3: Program prompts

Section 4: Re-Entrant Program

4.1: Description

4.2: How to create an input file

4.3: Program prompts

Section 5: Input/Output File Examples

5.1: Diagrams and Input File Examples

Section 5.1.1: Tandem Program

Section 5.1.2: Re-Entrant Program

5.2: Output File and Interpretation

Section 6: Trouble Shooting

6.1: File Reading Errors

6.1.1: Does File exist?

6.1.2: Is input in correct format?

6.1.3: Are input values right?

6.2: File Writing Errors

6.2.1: Does output file already exist in read-only form?

13

Section 1: Purpose of Program

The Tandem and Re-Entrant programs were written to enable users to run
simulations of these two types of systems with several levels of flexibility. These
programs take in and export data through text files and depending on the settings used
can adjust to the user's specific goals.

Section 2: Tandem Program

Section 2.1: Description

The Tandem Program simulates a simple system in which parts flow from the
Supply Machine through Processing Machines to the Demand Machines. There is a
Supply Machine for each part type as well as a Demand Machine for each part type. The
Processing Machines are used for all part types and prioritize the parts in the order in
which they are numbered.

Section 2.2: How to create an input file

The input file should be in the following format:

< Number of Part Types >
< Number of Processing Machines >
< Supply Machine Repair Rate > < Supply Machine Failure Rate > < Supply Buffer >
< Supply Machine Repair Rate > < Supply Machine Failure Rate > < Supply Buffer >

< Processing Machine Repair Rate > < Processing Machine Failure Rate >
< Buffer Part 1 > < Buffer Part 2 > < ... >

< Processing Machine Repair Rate > < Processing Machine Failure Rate >
< Buffer Part 1 > < Buffer Part 2 > < ... >

<Demand Machine Repair Rate> <Demand Machine Failure Rate.
< Demand Machine Repair Rate > < Demand Machine Failure Rate >

For an example of this please see Section 5.1.1

Section 2.3: Program prompts

The program has two prompts regarding reading files and writing to files. Once
the programming welcomes you, it will ask you for an input file name. This file name
can be entered as either just the name when the file is in the same directory as the
program, or as the full directory address.

The second prompt once the simulation has been completed is for a file in which
to store the results. This file can either be a new file name, which will then be created, or

14

can be an old file that will be rewritten. If the file entered is a read-only file you will
receive an error because the information cannot be written on that file.

Section 3: Re-Entrant Program

Section 3.1: Description

The Re-Entrant Program simulates a system in which parts begin at the lowest
priority and flow through the Processing Machines, and then return to the beginning of
the system now as a part type one level higher in priority. Once the part has reached the
highest priority it is processed for the last time and exits through the single Demand
Machine. There is a Supply Machine for each part type and only one Demand Machine.
The Processing Machines are used for all part types and prioritize the parts in the order in
which they are numbered which coincides with the length of time they have been in the
system.

Section 3.2: How to create an inputfile

The input file should be in the following format:

< Number of Part Types >
< Number of Processing Machines >
< Supply Machine Repair Rate > < Supply Machine Failure Rate > < Supply Buffer >
< Supply Machine Repair Rate > < Supply Machine Failure Rate > < Supply Buffer >

< Processing Machine Repair Rate > < Processing Machine Failure Rate >
< Buffer Part 1 > < Buffer Part 2 > < ... >

< Demand Machine Repair Rate > < Demand Machine Failure Rate >

For an example of this please see Section 5.1.2

Section 3.3: Program prompts

The program has two prompts regarding reading files and writing to files. Once
the programming welcomes you, it will ask you for an input file name. This file name
can be entered as either just the name when the file is in the same directory as the
program, or as the full directory address.

The second prompt once the simulation has been completed is for a file in which
to store the results. This file can either be a new file name, which will then be created, or
can be an old file that will be rewritten. If the file entered is a read-only file you will
receive an error because the information cannot be written on that file.

Section 4: Program Capabilities

15

The Tandem and Re-Entrant programs allow users to simulate machine lines with
several different dimensions of variability. The first two dimensions are in the number of
processing machines and the number of part types. The user specifies both of these
variables through the input file. The third dimension is the relative speed at which the
three different groups of machines (demand, processing and supply) produce parts. The
user can specify any integer ratio of these processing times. In order to adjust these
times, see the Programmer's Manual under 'How to Modify Program.'

Section 5: Input/Output File Examples

Section 5.1: Diagrams and Input File Examples

Section 5.1.1: Tandem Program

In the diagram below is a simple Tandem Machine Line. This particular line has
two Processing Machines (M3 and M4) and two types of parts. An example of input
code to represent this setup is after the diagram.

Figure : Tandem Machine Line

Assuming the above system has the following parameters, where r is the repair
rate and p is the probability of failure:

M1:
M2:
M3:
M4:
M5:
M6:

r=0.1,
r = 0.2,
r=0.3,
r = 0.4,
r = 0.5,
r = 0.6,

p = 0.01
p = 0.02

p = 0.0 3

p =0. 04

p = 0.05
p =0. 06

B1:
B2:
B3:
B4:
B5:
B6:

10

20
30
40
50
60

InputFile.txt

2
2
0.1 0.01 10
0.2 0.02 40

16

0.3
0.4
0.5
0.6

0.03
0.04
0.05
0.06

20
30

50
60

Section 5.1.2: Re-Entrant Program

Figure 2: Re-Entrant Machine Line

Assuming the above system has
is the probability of failure:

M1:
M2:
M3:
M4:
M5:
M6:

r = 0.1, p
r = 0.2, p
r = 0.3, p
r = 0.4, p
r = 0.5, p
r = 0.6, p

=0.01
= 0.02
= 0.03
= 0.04
= 0.05
= 0.06

the following parameters, where r is the repair rate and p

B1:
B2:
B3:
B4:
B5:
B6:

10

20
30
40
50
60

Example: InputFile.txt

2
2
0.1

0.2
0.3
0.4
0.5

0.01 10
0.02 40
0.03 20
0.04 30
0.05

50
60

17

Section 5.2: Output File and Interpretation

Example OutputFile.txt

Buffer
Buffer
Buffer
Buffer
Buffer
Buffer
Buffer
Buffer
Buffer
Buffer
Buffer
Buffer

1

2
3
4
5
6
7
8

9

has average size:
has average size:
has average size:
has average size:
has average size:
has average size:
has average size:
has average size:
has average size:

8.214408396946565
23.998320610687024
24.4024427480916
24.910152671755725
25.607480916030536
25.06973282442748
10.093702290076337
34.32675572519084
15.847003816793894

10 has average size: 13.808473282442748
11 has average size: 14.663091603053434
12 has average size: 2.8237213740458014

The probability
The probability
The probability
The probability
The probability
The probability
The probability
The probability
The probability
The probability
The probability

that M1
that Ml
that M2
that M2
that M3
that M3
that M4
that M4
that M5
that M5
that M6

The probability that M6
The probability that M7
The probability that M7
The probability that M8
The probability that M8
The probability that M9
The probability that M9

is working on Part 1 is:
is working on Part 2 is:
is working on Part 1 is:
is working on Part 2 is:
is working on Part 1 is:
is working on Part 2 is:
is working on Part 1 is:
is working on Part 2 is:
is working on Part 1 is:
is working on Part 2 is:
is working on Part 1 is:
is working on Part 2 is:
is working on Part 1 is:
is working on Part 2 is:
is working on Part 1 is:
is working on Part 2 is:
is working on Part 1 is:
is working on Part 2 is:

0.5278625954198474
0.0
0.0
0.22853053435114504
0.527881679389313
0.22853053435114504
0.5283396946564886
0.2285496183206107
0.5281488549618321
0.22824427480916032
0.5281106870229008
0.22790076335877862
0.5281297709923665
0.22786259541984732
0.5281488549618321
0.0
0.0
0.22790076335877862

The output file above provides two types of information. First it reports the
average load for all the buffers in the system. Second, it calculates the rate at which each
machine produces each part type. Keep in mind that not every machine works on every
part type. Specifically the demand and supply machines only work on one part type each.
Please refer to Figure 1 above for the pattern in which machines and buffers are
numbered.

Section 6: Trouble Shooting

The most likely error the user could run into while using these programs is related
to the use of files in the input and output.

18

Section 6.1: File Reading Errors

Section 6.1.1: Does File exist?

Make sure that the file referred to in the program does exist and that its name was
correctly entered. The file can be located either in the same directory as the program
code and referred to by just its name, or it could be in another directory as long as its
fully address is used.

Section 6.1.2: Is input in correct format?

The program may return an error if the input file does not provide complete
information or the information is not correctly formatted. Please refer to Sections 2.2 and
5.1 for how to create the input file.

Section 6.1.3: Are input values right?

The input values for the Tandem and Re-Entrant programs must meet certain
expectations for a machine line. These expectations are as follows:

Machine Repair Rate (r): 0 <= r <= 1

Machine Failure Rate (p): 0 <= p <= 1

Buffer Size >= 1

Number of Part Types >= 1

Number of Processing Machines >= 1

Section 6.2: File Writing Errors

Section 6.2.1: Does File already exist in read-only form?

If an error occurs when writing to a file it is most likely because the file already
exists and is in read-only form. The program can not write to this type of file and will
return an error.

19

APPENDIX B: Programmer's Manual

Preface

This Programmer's Manual is intended for those users who want to understand
the basic algorithm used in the Tandem and Re-Entrant Programs and to make more in
depth modifications to the program. Any questions not addressed here may be answered
in the general User's Guide found in Appendix A.

Contents

Section 1: Purpose of Program

Section 2: Basic Algorithm

Section 3: Program Capabilities

Section 3.1: What can I change using the input file?

Section 3.2: What can I change within the code?

Section 4: How to Modify Program

Section 4.1: Increasing Processing Machine Speed

Section 4.2: Running Multiple Files

20

Section 1: Purpose of Program

The Tandem and Re-Entrant programs were written to enable users to run
simulations of these two types of systems with several levels of flexibility. These
programs take in and export data through text files and depending on the settings used
can adjust to the user's specific goals.

Section 2: Basic Algorithm

The basic structure of the Tandem and Re-Entrant programs consists of taking in
data, initializing core variables, running a certain length of simulation steps over which
machines' status and buffer sizes are repeatedly calculated, and finally finding average
values for machine productivity and buffer size.

The simulation is built as a Java program that is aimed at simulating the two-part
machine line with re-entry. The duration of the simulation is defined by the transient
period and steady state period length declared as global variables at the beginning of the
program. The transient period is the number of steps taken by the simulation before it is
considered to be stable, and the steady state period is how many steps are taken while in
this steady state condition that will be used to define the system's behavior.

The program prompts the user for an input file, from which it reads in basic data
about the setup and characteristics of the machines and buffers. Specifically this
information is the buffer size, machine repair and failure rates, as well as the number of
processing machines and part types. The input text file must be organized in a specific
structure which is described in Appendix A: User Guide. If the text follows the right
format all the required information will be taken in by the simulation.

Once the program has taken in all of the facts about the machine line it needs, the
next step is to begin the simulation. The program initializes several values using the
following assumptions: all machines in the line begin 'up' or operational and all buffers
in the system start with one part each. Once these initial values are set, the simulation
begins to run through steps

Only the steady state period is counted toward production rates and average buffer
sizes, and the transient period is excluded to make sure that any transient properties of the
system start-up do not impact the final results. In each time step several sub steps are
taken by the simulation. The status for all machines is checked, beginning with supply
machines, then going on to processing machines and finally demand machines.

Each machine is checked to see whether it changes its status as either up or down,
using the probabilities of failure and repair. Then based on this information, if a machine
is operating, the buffers before and after it are examined to see whether the machine can
process a part. If the buffer after a machine is full, the machine will not start processing a
part because it has nowhere to place it when complete. This condition is known as the
machine being blocked. If the buffer before the machine is empty, the machine is starved

21

because it has no part of work on. If the machine is neither blocked nor starved, and is
currently up, it can process the part.

Each time step goes through first the Supply Machines, then the Processing
Machines and finally the Demand Machines. The status of the machine is adjusted along
with the neighboring buffer sizes for each machine of that type before moving on to the
next type.

A part moving through the machine is tracked in two ways. A matrix of part
production is updated to keep count of when each machine is working on each part.
Also, when a part goes through the machine, buffers on either side for that part are
incremented or decremented as necessary.

Finally, once the simulation has run through the total set of steps, two main pieces
of information are calculated. Based on the buffer sizes throughout the steady state
period, the average size of each buffer is reported. Secondly, the rate at which each
machine is producing each part type is also calculated, by finding the probability that at
any given time the machine is working on that part.

The two simulations in general take the same approach, but there is a major area
of divergence, and that comes in the re-entrance of parts. The Re-Entrant program cycles
parts back through the system, by linking the last buffer for each part type to the supply
machine of the next higher part type. Examples of both the input and output code can by
found in Appendix A: User's Guide.

Section 3: Program Capabilities

There are several degrees of freedom allowed in this program and split into two
categories. The first set you can adjust by manipulating the input file, and the second
require adjusting the code.

Section 3.1: What can I change using the inputfile?

The input file adjusts the major machine parameters of number of parts, number
of processing machines, repair and failure rates of all these machines and buffer sizes. In
order to create an input file, please see the User's Manual Section 5: Input/Output File
Examples.

Section 3.2: What can I change within the code?

The code has separate blocks for the operation of the Supply, Processing and
Demand Machines. This separation was done intentionally to allow users to run these
machines at different speeds. The user can create loops around the blocks for each type
of machine separately to allow them to run a different number of times each step. For
example a loop around the Processing Machines can specify that these machines run five
times each step, so that the simulation represents a system where the Processing Machine

22

is five times faster than the Supply and Demand machines. For more details see Section
4.1 below.

Section 4: How to Modify Program

Section 4.1: Increasing Processing Machine Speed

As mentioned in the sections above, the code allows for the separate functioning
of Supply, Processing and Demand Machines during each time step. To increase the
Processing Machine speed there is one simple loop that needs to be added to the code.
Around the block of code that updates the Processing Machine Status, place a loop that
will repeat x times, where x is the number of times faster the Processing Machine is.

Section 4.2: Running Multiple Files

In order to run a string of input files quickly the program can automate the
reading and creation of text files. The user can create a loop around the entire block of
code inside the Tandem or Re-Entrant class to run through however many files as
desired. Then the user must adjust the name of the file to be read in such a way that all
intended input files are looped through.

For example if there are 400 input files the user wants to process that are named
systematically "inputl" through "input400", then create a loop that goes through the
program 400 times. Allow the counter variable to be called fileNum, and replace this
code:

Scanner console = new Scanner (System. in);
System. out.print("Input file: ");
String inputFileName = console.next();

with this code:

String inputFileName = "input" + fileNum;

This will read in the data files of all 400 cases. To create the outputs with the file
name "output l" through "output400" for instance, replace this code:

System.out.print("Output file: ");
String outputFileName = console.next();

with this code:

String outputFileName = "output" + fileNum;

This should allow the user to more quickly and easily run many sets of input files
and use the code for experiments and analysis.

23

APPENDIX C: Tandem Program Code

import java.util.*;
import java.io.FileReader;
import java.io.IOException;
import java.io.PrintWriter;
import java.util.Scanner;

public class LINEAR

public static void main(String[] args)

{

I/ Initialize Variables

HI steadyStatePeriod is the number of time steps in the actual simulation
int steadyStatePeriod = 5000;

// transientPeriod is the number of time steps to warm up the system
HI These time steps will not be counted when finding average buffer size and

productivity
int transientPeriod = 2400;

// periodLength is the total number of time steps simulated
HI periodLength is simply the sum of the warm-up and simulation time
int periodLength = transientPeriod + steadyStatePeriod;

System.out.println("WELCOME TO A SIMPLE LINEAR MANUFACTURING
SYSTEM SIMULATION!");

// A Scanner is created to communicated with the Console
Scanner console = new Scanner (System.in);

// The user is prompted to enter the file name in which the simulation details are
given

System.out.print("Input file: ");
String inputFileName = console.next();

// S = number of supply machines
int S = 0;

// K = number of processing machines
int K = 0;

try

24

// A FileReader is created to take in information from the input file
FileReader reader = new FileReader (inputFileName);

H/ Scanner 'in' is created to read the information taken in from the input file
Scanner in = new Scanner(reader);

// Assign number of parts (or number of supply machines)
S = in.nextInt();

/1 Assign number of processing machines
K = in.nextInt();

// Close the input file
in.close();

// In case an exception is thrown, let user know there is a problem with the file
catch (IOException exception)

System.out.println("Error processing file: " + exception);

1/ Create array of machine repair rates
double[] r = new double[2*S + K + 1];

HI Create array of machine failure rates
double[] p = new double[2*S + K + 1];

// Create array of buffer sizes
int[] N = new int[S*(K+1) + 1];

// Once the number of machines and part types are known, can take in machine
information

try

{

/ A FileReader is created to take in machine information from the input file
FileReader reader = new FileReader (inputFileName);

// Scanner 'in' is created to read the machine information taken in from the input
file

Scanner in = new Scanner(reader);

/1 Skip past first two integers representing number of part types and processing
machines

25

int junk = in.nextlnt();
junk = in.nextInt();

// Get information for Supply Machines
for (int z = 1; z<=S; z++)

{

1/ Read in repair rate
r[z] = in.nextDouble();

// Read in failure rate
p[z] = in.nextDouble();

// Read in next buffer size
N[(z-1)*(K+1)+1] = in.nextInt();

// Get information for Process Machines
for (int z = 1; z <= K; z++)

{

// Read in repair rate
r[S+z] = in.nextDouble();

// Read in failure rate
p[S+z] = in.nextDouble();

/ Read in buffer sizes for all buffers after machine
for (int y = 1; y <= S; y++)
{

N[(y-l)*(K+I) + z + 1] = in.nextInt();
I

/ Get information for Demand Machines
for (int z = 1; z <= S; z++)

// Read in repair rate
r[S+K+z] = in.nextDouble();

H/ Read in failure rate
p[S+K+z] = in.nextDouble();

HI Close the input file
in.close();

)

26

// If an exception is thrown, let the user know there was an error with the file
catch (IOException exception)
{

System.out.println("Error processing file: "+ exception);
}

II Create running tally variables

// Initialize numBuffers and numMachines
int numMachines = 2*S + K;
int numBuffers = S*(K+1);

11 Initialize counter variables
int i = 0;
int y = 0;

//All machines begin 'up', alpha = 1
int[][] alpha = new int[periodLength][numMachines+l];
for (i=l; i<=numMachines; i++)

alpha[0][i] = 1;

//All buffers begin with one part in them
int[][] B = new int[pcriodLength][numBuffers+l];
for (i=l; i<=numBuffers; i++)

B[0][il = 1;

//Matrix of number of parts being worked on during the simulation
int[] [[] prod = new int[periodLength][numMachines+l][S+I];
for (i=O; i<periodLength; i++)

for(int j=O; j<=numMachines; j++)
for(int k=O; k<=S; k++)

prod[i][j][k] = 0;

I Create a random number generator
Random generator = new Random();

/1 Run through simulation for 'periodLength' steps
for (i=1; i<periodLength; i++)
I

// Initially set all buffers in time i to what they were in time i-i
for(int count = 1; count<=numBuffers; count++)

B[i][count] = B[i-ll][count];
}

27

// FIND STATUS FOR ALL MACHINES

1/ Find Supply Machines' Status

// For all supply machines 1 through S
for(y=l; y<=S; y++)
{

I if (Supply Buffer is full -> Supply Machine is blocked)
if (B[i-1][(y-l)*(K+1)+1] == N[(y-1)*(K+I)+1])
{

/ Supply Machine is blocked -> not operating -> can't break down
alpha[i][y] = 1;

}

else

{

/ if Supply Machine is 'up' in last step
if(alpha[i-1][y] == 1)

/I Check to see if Supply Machine fails now

/I Generate random number between 0 and 1
double x = generator.nextDouble();

// if random number is less than probability of failure
if (x<p[y])
{

// Supply Machine fails
alpha[i][y] = 0;

else

/I Supply Machine is still running
alpha[i][y] = 1;

/I Process part type y through machine
// Increase buffer after Supply Machine

B[i][(y-l)*(K+1)+1] = B[i][(y-l)*(K+1)+1] + 1;

/I Fill production matrix, Machine y is working on Part y
prod[i][y][y] = 1;

// if Supply Machine was 'down' in last step
else
{

28

//I Check to see if Supply Machine is repaired now

I Generate random number between 0 and 1
double x = generator.nextDouble();

// if random number is less than probability of repair
if (x<r[y])
{

II Supply Machine is fixed
alpha[i][y] = 1;

HI Process part type y through machine
I Increase buffer after Supply Machine
B[i][(y-l)*(K+1)+1] = B[i][(y-1)*(K+1)+1] + 1;

HI Fill production matrix, Machine y is working on Part y
prod[i][y][y] = 1;

}

else

H/ Supply Machine is still down
alpha[i][y] = 0;

}

1/ Find Processing Machines' Status

// For all processing machines from 1 through K
for(int x = 1; x <= K; x++)

{

I Initialize variable 'yfit' to hold the Part Type that will be processed
I/ 'yfit' will remain 0 until a Part Type to be processed has been chosen
int yfit = 0;

I Initialize Part Type counter
y=l;

// While Part Type counter has not reached last part type
I/ and Part Type to be processed has not been selected
while(y<=S && yfit == 0)

{

/ if the buffer for Part Type y before Machine x is empty
if(B[i-l][(y-l)*(K+l)+x] <= 0)
{

29

HI Machine x is starved for Part Type y
y++;

1

/I else if the buffer for Part Type y after Machine x is full
else if(B[i-ll][(y-l)*(K+1) + (x+l)] >= N[(y-l)*(K+l)+(x+l)])
{

HI Machine x is starved for Part Type y
y++;

}

1/ else the Part Type to be processed has been found
else
{

HI set yfit to the Part Type to be processed
yfit = y;

}

I if yfit does not equal 0, a Part Type to be processed has been found
// otherwise the Machine is starved and/or blocked for every Part Type
if(yfit!=0)
{

HI Set y to be the Part Type to be processed
y = yfit;

I/ if Machine S+x (Processing Machine x) was 'up' last step

if(alpha[i-1][S+x] == 1)
{

II Check to see if Processing Machine fails now

II Generate random number between 0 and 1
double m = generator.nextDouble();

I if random number is below probability of failure
if (m < p[S+x])

II Processing Machine now fails
alpha[i][S+x] = 0;

else

HI Processing Machine is still running
alpha[i][S+x] = 1;

30

II Part y goes through Processing Machine
// Decrease buffer for Part y before Processing Machine
B[i[(y-l)*(K+l)+x] = B[i][(y-1)*(K+l)+x] - 1;
// Increase buffer for Part y after Processing Machine
B[i][(y-l)*(K+l)+x+l] = B[i][(y-l)*(K+l)+x+l] + 1;

/1 Fill production matrix, Machine S+x working on Part y
prod[i][S+x][y] = 1;

// if Machine S+x (Processing Machine x) was 'down' last step
else
{

I Check to see if Supply Machine is repaired now
I Generate random number between 0 and 1

double m = generator.nextDouble();

I if random number is below probability of repair
if (m < r[S+x])

HI Processing Machine is fixed
alpha[i][S+x] = 1;

// Part y goes through Processing Machine
I Decrease buffer for Part y before Processing Machine
B[i][(y-l)*(K+l)+x] = B[i][(y-1)*(K+l)+x] - 1;
// Increase buffer for Part y after Processing Machine
B[i][(y-l)*(K+l)+x+l] = B[i][(y-1)*(K+l)+x+l] + 1;

// Fill production matrix, Machine S+x on Part y
prod[i][S+x][y] = 1;

else

{

I Processing Machine is still down
alpha[i][S+x] = 0;

}

I Find Demand Machines' Status

// For Demand Machines for Parts 1 through S

31

for (y=l; y<=S; y++)

I if (Demand Buffer is empty -> Demand Machine is starved)
11 Demand Machine can not fail if it is blocked or starved
if (B[i-l1][y*(K+1)] == 0)

{

/1 Demand Machine is starved -> not operating -> can't break down
alpha[il[S + K + y] = 1;

}

else

1/ Demand Machine was 'up' last time step
if(alpha[i-1][S + K + y] == 1)

/ Check to see if Demand Machine fails now
// Generate random number between 0 and 1
double m = generator.nextDouble(); / Generate random number between

0 and 1

I if random number is below probability of failure
if (m<p[S + K + y])
{

// Demand Machine now fails
alpha[i][S + K + y] = 0;

else

{

H/ Demand Machine is still working
alpha[i][S + K + y] = 1;

// Process Part Type y through Demand Machine
// Decrease buffer for Part y before Demand Machine
B[i][y*(K+1)] = B[i][y*(K+1)] - 1;

// Fill Production Matrix, Demand Machine working on Part Type y
prod[i][S+K+y][y] = 1;

// Demand Machine was 'down' last time step
else

{

/ Check to see if Demand Machine is repaired now
/1 Generate random number between 0 and 1

32

double m = generator.nextDouble();

I if random number is below probability of repair
if (m<r[S + K + y])
I

// Demand Machine is fixed
alpha[i][S + K + y] = 1;

11 Process Part Type y through Demand Machine
11 Buffer for Part Type y before Demand Machine decreased
B[i][y*(K+1)] = B[i][y*(K+1)] - 1;

HI Fill Production Matrix, Demand Machine working on Part Type y
prod[i][S+K+y][y] = 1;

}

else

1/ Demand Machine is still down
alpha[i[S + K + y] = 0;

}

}

1/ Create array of counters to sum and average buffer size
double[] bufferSizes = new double[numBuffers+1];

1/ Loop through all buffers
for (int z = 1; z<= numBuffers; z++)
{

// Initialize all buffers to be 0
bufferSizes[z] = 0;

1/ Loop through all the time steps in steadyStatePeriod
for(i=transientPeriod; i<periodLength; i++)

// Add the buffer size in period i for buffer z to sum
bufferSizes[z] += B[i][z];

}

/! Calculate average buffer size by dividing sum by number of steadyStatePeriod
time steps

bufferSizes[z] = bufferSizes[z]/steadyStatePeriod;

33

HI Create array of counters to sum and average production rate
double[][] work = new double[numMachines+l][S+1];

I Initialize all counters to be zero
HI Loop through all the machines
for(int step = 1; step<=numMachines; step++)
{

// Loop through all the Part Types
for(int count = 1; count<=S; count++)
{

// Initialize all counters to 0
work[step][count] = 0;

}

HI Create outpute file to store results
System.out.print("Output file: ");
String outputFileName = console.next();

try

HI Create PrintWriter 'out' to send data to output file
PrintWriter out = new PrintWriter(outputFileName);

// Loop through all buffers
for(int z=1; z<=numBuffers; z++)

// Print out average buffer size to output file
out.println("Buffer" + z + " has average size: "+ bufferSizes[z]);

}

// Loop through all machines
for(int k=1; k<=numMachines; k++)

/I Loop through all parts
for(int count=1; count<=S; count++)

HI Loop through the steadyStatePeriod
for (int step = transientPeriod; step<periodLength; step++)
{

HI Sum the number of times Machine 'k' worked on part 'count'
work[k][count] = work[k][count] + prod[step][k][count];

}

HI Print out production rate of Part Type 'count' through Machine 'k'
out.println("The probability that M" + k + " is working on Part " + count +"

34

is: "+ (work[k][count]/periodLength));

I

// Close output file
out.close ();

}

/! if an exception is thrown, let user know there is an error with the file

catch(IOException exception)

{
System.out.println("Error Processing File");

H MI ->B1
// -> M3 ->
HI M2-> B3

B2 -> M4

B4 -> M5

}

}

35

APPENDIX D: Re-Entrant Program Code

import java.util.*;
import java.io.FileReader;
import java.io.IOException;
import java.io.PrintWriter;
import java.util.Scanner;

public class REENTRANT

public static void main(String[] args)

{

I Initialize Variables

// steadyStatePeriod is the number of time steps in the actual simulation
int steadyStatePeriod = 5000;

// transientPeriod is the number of time steps to warm up the system
HI These time steps will not be counted when finding average buffer size and

productivity
int transientPeriod = 2400;

// periodLength is the total number of time steps simulated
// periodLength is simply the sum of the warm-up and simulation time
int periodLength = transientPeriod + steadyStatePeriod;

System.out.println("WELCOME TO A RE-ENTRANT MANUFACTURING
SYSTEM SIMULATION!");

// A Scanner is created to communicated with the Console
Scanner console = new Scanner (System.in);

// The user is prompted to enter the file name in which the simulation details are
given

System.out.print("Input file: ");
String inputFileName = console.next();

// S = number of supply machines
int S = 0;

HI K = number of processing machines
int K = 0;

try

36

1/ A FileReader is created to take in information from the input file
FileReader reader = new FileReader (inputFileName);

HI Scanner 'in' is created to read the information taken in from the input file
Scanner in = new Scanner(reader);

// Assign number of parts (or number of supply machines)
S = in.nextInt();

// Assign number of processing machines
K = in.nextInt();

/I Close the input file
in.close();

11 In case an exception is thrown, let user know there is a problem with the file
catch (IOException exception)
{

System.out.println("Error processing file: "+ exception);

/1 Create array of machine repair rates
double[] r = new double[S + K + 1];

/I Create array of machine failure rates
double[] p = new double[S + K + 1];

// Create array of buffer sizes
int[] N = new int[S*(K+l) + 1];

// Once the number of machines and part types are known, can take in machine
information

try

// A FileReader is created to take in machine information from the input file
FileReader reader = new FileReader (inputFileName);

// Scanner 'in' is created to read the machine information taken in from the input
file

Scanner in = new Scanner(reader);

// Skip past first two integers representing number of part types and processing
machines

37

int junk = in.nextInt();
junk = in.nextInt();

ii Get information for Supply Machines
for (int z = 1; z<=S; z++)

{

/I Read in repair rate
r[z] = in.nextDouble();

II Read in failure rate
p[z] = in.nextDouble();

II Read in next buffer size
N[(z-l)*(K+1)+1] = in.nextInt();

I/ Get information for Process Machines
for (int z = 1; z <= K; z++)

/I Read in repair rate
r[S+z] = in.nextDouble();

I/ Read in failure rate
p[S+z] = in.nextDouble();

11 Read in buffer sizes for all buffers after machine
for (int y = 1; y <= S; y++)

N[(y-1)*(K+1) + z + 1] = in.nextInt();

}

HI Get information for Demand Machine

HI Read in repair rate
r[2*S + K] = in.nextDouble();

HI Read in failure rate
p[2 *S + K] = in.nextDouble();

HI Close the input file
in.close();

1/ If an exception is thrown, let the user know there was an error with the file

38

catch (IOException exception)
{

System.out.println("Error processing file: "+ exception);
}

I Create running tally variables

/ Initialize numBuffers and numMachines
int numMachines = 2*S + K;
int numBuffers = S*(K+1);

I Initialize counter variables
int i =0;
int y =0;

//All machines begin 'up', alpha = 1
int[][] alpha = new int[periodLength][numMachines+l];
for (i=l; i<=numMachines; i++)

alpha[0][i] = 1;

//All buffers begin with one part in them
int[][] B = new int[periodLength][numBuffers+l];
for (i=l; i<=numBuffers; i++)

B[O][i] = 1;

//Matrix of number of parts being worked on during the simulation
int[][][] prod = new int[periodLength][numMachines +1][S+1];
for (i=O; i<periodLength; i++)

for(int j=O; j<=numMachines; j++)
for(int k=0; k<=S; k++)

prod[i][j][k] = 0;

I Create a random number generator
Random generator = new Random();

/I Run through simulation for'periodLength' steps
for (i=l; i<periodLength; i++)
{

/ Initially set all buffers in time i to what they were in time i-i
for(int count = 1; count<=numBuffers; count++)
{

B[i][count] = B[i-1][count];

II FIND STATUS FOR ALL MACHINES

39

// Find Supply Machines' Status

// For all supply machines 1 through S-1
for(y=1; y<S; y++)

// if Supply Buffer is full -> Supply Machine is blocked
// if Buffer at end of last Part Type is empty -> Supply Machine is starved
if ((B[i-1][(y-1)*(K+1)+l] == N[(y-1)*(K+1)+1]) B[i-l][(y+l)*(K+1)] == 0)
{

// Supply Machine is blocked or starved -> not operating -> can't break down
alpha[i][y] = 1;

else

I if Supply Machine is 'up' in last step
if(alpha[i-1][y] == 1)

// Check to see if Supply Machine fails now

// Generate random number between 0 and 1
double x = generator.nextDouble();

I if random number is less than probability of failure
if (x<p[y])
{

II Supply Machine fails
alpha[i][y] = 0;

else
{

II Supply Machine is still running
alpha[i][y] = 1;

II Process part type y through machine
I Increase buffer after Supply Machine
B[i][(y-l)*(K+1)+1] = B[i][(y-1)*(K+1)+1] + 1;

II Fill production matrix, Machine y is working on Part y
prod[i][y][y] = 1;

I if Supply Machine was 'down' in last step
else

{

40

I Check to see if Supply Machine is repaired now

I Generate random number between 0 and 1
double x = generator.nextDouble();

I if random number is less than probability of repair
if (x<r[y])

/I Supply Machine is fixed
alpha[i][y] = 1;

HI Process part type y through machine
// Increase buffer after Supply Machine
B[i][(y-1)*(K+1)+1] = B[i][(y-1)*(K+1)+l] + 1;

// Fill production matrix, Machine y is working on Part y
prod[i][y][y] = 1;

}

else

I/ Supply Machine is still down
alpha[i][y] = 0;

}

}

// Lowest Priority Supply Machine S
I if Supply Buffer is full -> Supply Machine is blocked
if ((B[i-l][(S-I)*(K+1)+1] == N[(S-1)*(K+1)+1]))
{

I Supply Machine is blocked or starved -> not operating -> can't break down
alpha[i][S] = 1;

}
else

I if Supply Machine is 'up' in last step
if(alpha[i-1][S] == 1)

1/ Check to see if Supply Machine fails now

i Generate random number between 0 and 1
double x = generator.nextDouble();

// if random number is less than probability of failure
if (x<p[S])

41

// Supply Machine fails
alpha[i][S] = 0;

else

HI Supply Machine is still running
alpha[i][S] = 1;

HI Process part type S through machine
I Increase buffer after Supply Machine
B[i][(S-1)*(K+I)+1] = B[i][(S-1)*(K+I)+1] + 1;

/I Fill production matrix, Machine S is working on Part S
prod[i][S][S] = 1;

I if Supply Machine was 'down' in last step
else

{

// Check to see if Supply Machine is repaired now

/I Generate random number between 0 and I
double x = generator.nextDouble();

I if random number is less than probability of repair
if (x<r[S])
{

HI Supply Machine is fixed
alpha[i][S] = 1;

HI Process Part Type S through machine
I Increase buffer after Supply Machine
B[i][(S-I)*(K+I)+I] = B[i][(S-I)*(K+I)+I] + 1;

HI Fill production matrix, Machine S is working on Part S
prod[i][S][S] = 1;

else

HI Supply Machine is still down
alpha[i][S] = 0;

42

// Find Processing Machines' Status

// For all processing machines from 1 through K
for(int x = 1; x <= K; x++)

I

// Initialize variable 'yfit' to hold the Part Type that will be processed
// 'yfit' will remain 0 until a Part Type to be processed has been chosen
int yfit = 0;

I Initialize Part Type counter
y=l;

// While Part Type counter has not reached last part type
// and Part Type to be processed has not been selected
while(y<=S && yfit == 0)

/ if the buffer for Part Type y before Machine x is empty
if(B[i-1][(y-1)*(K+l)+x] <= 0)

HI Machine x is starved for Part Type y
y++;

// else if the buffer for Part Type y after Machine x is full
else if(B[i-l1][(y-1)*(K+l) + (x+l)] >= N[(y-l)*(K+l)+(x+l)])

/1 Machine x is starved for Part Type y
y++;

// else the Part Type to be processed has been found
else

// set yfit to the Part Type to be processed
yfit = y;

}

// if yfit does not equal 0, a Part Type to be processed has been found
// otherwise the Machine is starved and/or blocked for every Part Type
if(yfit!=0)
I

1/ Set y to be the Part Type to be processed

43

y = yfit;

h' if Machine S+x (Processing Machine x) was 'up' last step

if(alpha[i-1][S+x] == 1)

I Check to see if Processing Machine fails now

I Generate random number between 0 and 1
double m = generator.nextDouble();

I if random number is below probability of failure
if (m < p[S+x])
I

HI Processing Machine now fails
alpha[i][S+x] = 0;

}

else

HI Processing Machine is still running
alpha[i][S+x] = 1;

// Part y goes through Processing Machine
HI Decrease buffer for Part y before Processing Machine
B[i][(y-1)*(K+1)+x] = B[i][(y-1)*(K+l)+x] - 1;
// Increase buffer for Part y after Processing Machine
B[i][(y-1)*(K+l)+x+l] = B[i][(y-1)*(K+l)+x+l] + 1;

HI Fill production matrix, Machine S+x working on Part y
prod[i][S+x][y] = 1;

// if Machine S+x (Processing Machine x) was 'down' last step
else

I Check to see if Supply Machine is repaired now
I Generate random number between 0 and 1

double m = generator.nextDouble();

/ if random number is below probability of repair
if (m < r[S+x])
I

// Processing Machine is fixed
alpha[i][S+x] = 1;

44

// Part y goes through Processing Machine
// Decrease buffer for Part y before Processing Machine
B[i][(y-1)*(K+l)+x] = B[i][(y-1)*(K+l)+x] - 1;
// Increase buffer for Part y after Processing Machine
B[i][(y-1)*(K+l)+x+l] = B[i][(y-1)*(K+l)+x+l] + 1;

// Fill production matrix, Machine S+x on Part y
prod[i][S+x][y] = 1;

else

// Processing Machine is still down
alpha[i][S+x] = 0;

}

}

// Find Demand Machine's Status
// if (Demand Buffer is empty -> Demand Machine is starved)
/I Demand Machine can not fail if it is blocked or starved
if (B[i-1][K+1] == 0)
{

// Demand Machine is starved -> not operating -> can't break down
alpha[i][S + K + 1] = 1;

else

// Demand Machine was 'up' last time step
if(alpha[i-l][S + K + 1] == 1)

I Check to see if Demand Machine fails now
II Generate random number between 0 and 1
double m = generator.nextDouble(; // Generate random number between 0

and 1

I if random number is below probability of failure
if (m<p[S + K + 1])

II Demand Machine now fails
alpha[i][S K + K + 1] = 0;

else
{

45

// Demand Machine is still working
alpha[i][S + K + 1] = 1;

// Process Part Type 1 through Demand Machine
/I Decrease buffer for Part 1 before Demand Machine
B[i][K+1] = B[i][K+I] - 1;

HI Fill Production Matrix, Demand Machine working on Part Type 1
prod[i][S+K+1][1] = 1;

/1 Demand Machine was 'down' last time step
else

/ Check to see if Demand Machine is repaired now
I Generate random number between 0 and 1

double m = generator.nextDouble();

I if random number is below probability of repair
if (m<r[S + K + 1])
{

// Demand Machine is fixed
alpha[i][S + K+ 1] = 1;

HI Process Part Type y through Demand Machine
HI Buffer for Part Type y before Demand Machine decreased
B[i][K+1] = B[i][K+1] - 1;

// Fill Production Matrix, Demand Machine working on Part Type y
prod[i][S+K+1][1] = 1;

else

// Demand Machine is still down
alpha[i][S + K + 1] = 0;

HI Create array of counters to sum and average buffer size
double[] bufferSizes = new double[numBuffers+1];

1/ Loop through all buffers

46

for (int z = 1; z<= numBuffers; z++)

I Initialize all buffers to be 0
bufferSizes[z] = 0;

HI Loop through all the time steps in steadyStatePeriod
for(i=transientPeriod; i<periodLength; i++)
{

// Add the buffer size in period i for buffer z to sum
bufferSizes[z] += B[il[z];

}

// Calculate average buffer size by dividing sum by number of steadyStatePeriod
time steps

bufferSizes[z] = bufferSizes[z]/steadyStatePeriod;
}

// Create array of counters to sum and average production rate
double[][] work = new double[numMachines+1][S+1];

I Initialize all counters to be zero
1/ Loop through all the machines
for(int step = 1; step<=numMachines; step++)

// Loop through all the Part Types
for(int count = 1; count<=S; count++)
{

I Initialize all counters to 0
work[step][count] = 0;

}

// Create outpute file to store results
System.out.print("Output file: ");
String outputFileName = console.next();

try

HI Create PrintWriter 'out' to send data to output file
PrintWriter out = new PrintWriter(outputFileName);

HI Loop through all buffers
for(int z=1; z<=numBuffers; z++)

HI Print out average buffer size to output file
out.println("Buffer " + z + " has average size: " + bufferSizes[z]);

47

I

/I Loop through all machines
for(int k=1; k<=numMachines; k++)
{

// Loop through all parts
for(int count=l; count<=S; count++)
{

// Loop through the steadyStatePeriod
for (int step = transientPeriod; step<periodLength; step++)
{

/I Sum the number of times Machine 'k' worked on part 'count'
work[k][count] = work[k][count] + prod[step][k][count];

}

1/ Print out production rate of Part Type 'count' through Machine 'k'
out.println("The probability that M" + k + " is working on Part" + count +"

is: "+ (work[k][count]/periodLength));

}

HI Close output file
out.close();
}

// if an exception is thrown, let user know there is an error with the file

catch(IOException exception)
{

System.out.println("Error Processing File");
I

/ M1-> B1 B2-> M4
/ .-> M3 ->
!! M2-> B3 B4 -> M5

}

48

APPENDIX E: Input and Output Files

Program Verification Input and Output Files

Linear System Input File:

2
5
0.09269 0.01488 11
0.09970 0.00706 11
0.08071 0.00657 32 48
0.09546 0.01493 32 32
0.098370.01043 31 31
0.10036 0.00869 31 31
0.09972 0.01448 31 31
0.10049 0.07814
0.09771 0.07856

Linear Program Output File:

Buffer 1 has average size: 8.66486
Buffer 2 has average size: 24.84678
Buffer 3 has average size: 25.41018
Buffer 4 has average size: 25.91634
Buffer 5 has average size: 26.61992
Buffer 6 has average size: 26.49766
Buffer 7 has average size: 10.5957
Buffer 8 has average size: 35.93458
Buffer 9 has average size: 17.55844
Buffer 10 has average size: 15.6468
Buffer 11 has average size: 14.44988
Buffer 12 has average size: 2.67404
The probability that MI
The probability that M1
The probability that M2
The probability that M2
The probability that M3
The probability
The probability
The probability
The probability
The probability
The probability
The probability
The probability
The probability

that M3
that M4
that
that
that
that
that

is working on
is working on
is working on
is working on
is working on
is working on
is working on

M4 is working on
M5 is working on
M5 is working on
M6 is working on
M6 is working on

that M7 is
that M7 is

Part 1 is:
Part 2 is:
Part 1 is:
Part 2 is:
Part 1 is:
Part 2 is:
Part 1 is:
Part 2 is:
Part 1 is:
Part 2 is:
Part 1 is:
Part 2 is:

working on Part I is:
working on Part 2 is:

0.56176
0.0
0.0
0.22862
0.56182
0.22862
0.5616
0.22864
0.56166
0.22892
0.56164
0.22882
0.56162
0.22866

49

The probability
The probability
The probability
The probability

that M8 is working on Part I is:
that M8 is working on Part 2 is:
that M9 is working on Part 1 is:
that M9 is working on Part 2 is:

0.5616
0.0
0.0
0.2287

Reference Multi-Part Simulation Output File:

Name: Avg: Std: 95% conf.int:

Part. 1.ProdRate 0.560099 0.001297 +/- 0.000464273
Part.2.ProdRate 0.248545 0.001477 +/- 0.000528556

Buffer. 1.1 8.127161 0.027168 +/- 0.00972181
Buffer.2.1 27.480517 0.068778 +/- 0.024612
Buffer.3.1 26.731263 0.087106 +/- 0.0311703
Buffer.4.1 27.203810 0.067049 +/- 0.0239932
Buffer.5.1 27.920136 0.055365 +/- 0.0198121
Buffer.6.1 27.312571 0.057490 +/- 0.0205727

Buffer. 1.2 10.322719 0.005149 +/- 0.00184255
Buffer.2.2 39.146440 0.165345 +/- 0.0591681
Buffer.3.2 15.969940 0.196340 +/- 0.0702595
Buffer.4.2 14.179274 0.192955 +/- 0.069048
Buffer.5.2 15.457897 0.187256 +/- 0.0670085
Buffer.6.2 3.355527 0.054975 +/- 0.0196725

Basic Simulation Input and Output Files

Input File:

1

3

0.1
0.1
0.1
0.1
0.1

0.0 10
0.0 10
0.0 10
0.0 10
0.0

50

Output File:

Buffer 1 has average size: 1.0
Buffer 2 has average size: 1.0
Buffer 3 has average size: 1.0
Buffer 4 has average size: 1.0
The probability that M1 is working on Part 1 is: 1.0
The probability that M2 is working on Part 1 is: 1.0
The probability that M3 is working on Part 1 is: 1.0
The probability that M4 is working on Part 1 is: 1.0
The probability that M5 is working on Part 1 is: 1.0

51

REFERENCES

Gershwin, Stanley. Manufacturing Systems Engineering. Eaglewood Cliffs, NJ: Prentice
Hall, 1994.

52

