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Abstract

Dislocations are the singly most important material defects in crystal plasticity, and
although dislocation mechanics has long been understood as the underlying physical
basis for continuum crystal plasticity formulations, explicit consideration of crystallo-
graphic dislocation mechanics has been largely absent in working constitutive models.
In light of recent theoretical developments in dislocation dynamics, and the introduc-
tion of geometrically necessary dislocation (GND) density in continuum formulations
through plastic strain gradients, a single crystal plasticity model based on dislocation
density state variables is developed. The density state variables evolve from initial
conditions according to equations based on fundamental concepts in dislocation me-
chanics such as the conservation of Burgers vector in multiplication and annihilation
processes. Along with those processes that account for bulk statistical dislocation
evolution, the evolving polarity due to dislocation species flux divergences may be in-
cluded to detail the length-scale dependence of mechanical properties on the micron
level. The full dislocation density description of plasticity allows a simple evaluation
of the role of GND density in non-homogeneously deforming bodies.

A local version of the constitutive model, which captures the bulk processes of
dislocation multiplication and annihilation during plastic deformation, is implemented
within a finite element framework to investigate the poly-slip behavior of aluminum
single crystals under tension. A non-local version of the constitutive model using an
idealized planar double slip system geometry is implemented within a finite element
framework to investigate the length-scale dependence observed in the bending of
thin single crystal beams. The results not only capture the mechanical stress/strain
response of the material, but also detail the development of underlying dislocation
structure responsible for the plastic behavior of the crystal.

Thesis Supervisor: David M. Parks
Title: Professor of Mechanical Engineering
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Chapter 1

Introduction

1.1 Physics of Crystal Plasticity

Crystalline materials are distinguished from other materials by the arrangement of

atoms into a periodic lattice. The ideal shear strength of a perfect crystal is theo-

rized to be one thirtieth of the shear modulus of the material. Such high levels of

strength are rarely seen in engineering materials, with the exception of thin crys-

talline whiskers. The observed yield strength of crystalline solids is usually two to

four orders of magnitude below this theoretical level. The conflict between observed

behavior and theoretical predictions was resolved with the concept that dislocations,

line defects in the crystal lattice, were responsible for the discrepancy.

The mathematical description of a dislocation was developed at the beginning of

the twentieth century (Volterra, 1907), but it wasn't until the 1930's that the dislo-

cations were theorized to exist in crystalline solids, in explaining the yield strength

discrepancy (Orowan, 1934; Polanyi, 1934; Taylor, 1934; Taylor, 1938). Dislocations

are line defects in the crystal lattice of a material where there is a local misregistra-

tion. The strength of the defect is contained in the Burgers vector, a lattice vector

that quantifies both the direction and magnitude of the misregistration. The ideal

strength of the crystal was calculated by assuming that all of the atoms in a shear

plane move together to accommodate a given plastic deformation. The dislocations

in the lattice enable only sections of the slip planes to shear, leaving other parts in

14



their original configurations, and the dislocation line itself can be considered as the

shear front. Dislocations are the carriers of plasticity due to slip, and relationships

have been developed between the motion of dislocation densities and the resulting

crystallographic shear observed macroscopically (Orowan, 1940).

Dislocations remained theoretical constructs until the 1950's. In that time, their

existence in crystals became widely accepted, and a theory of dislocations and their

properties became established (Hirth and Lothe, 1982). It was no surprise when

direct evidence of their existence was first found in crystal growth and etch pit exper-

iments. With the invention of transmission electron microscopy, images of individual

dislocations could be seen in thin crystalline foils (Amelinckx, 1964). Today, there

are countless publications on the experimental observation of dislocations, and new

techniques such as Orientation Imaging Microscopy are being developed to probe the

geometric aspects of dislocation densities (Adams et al.. 1993; Sun et al., 2000).

Along with the role that dislocations play in accommodating plastic deformation

in crystalline materials, their evolution with plastic deformation and the interactions

between dislocations have been used to explain work hardening. During plastic de-

formation, dislocations multiply from initial densities, defined as line length per unit

volume, of p < 1012 m- 2 for annealed crystals to saturation levels of p ~ 1016 m- 2,

spanning four orders of magnitude (Basinski and Basinski, 1979). At the saturation

values, density recovery mechanisms become more prominent as the likelihood of an-

nihilation increases as the distance between dislocations decreases. The evolution of

density has been used to describe to the physical processes responsible for the four

stages of hardening in single crystals (Argon, 1996).

Dislocation interactions are responsible for much of the intrinsic strength in crys-

talline solids. The evolving density impedes the motion of gliding dislocations, leading

to strain hardening with plastic deformation. Certain dislocations reactions are antic-

ipated to lead to either strong junctions like the famous Lomer-Cotrell lock (Lomer,

1951), or weaker junctions such as the Hirth lock (Hirth. 1961), depending on the

geometry of the interacting dislocations. The rates of production of such junctions

and other dislocation forest interactions affect the work hardening of crystalline mate-
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rials. In polycrystalline materials, the kinematic constraints that neighboring grains

impose on the deformation in each crystal require that many slip systems activate. In

polycrystals, the hardening rate is composed of the rates of production of all of the

different junctions, and the influence of one specific junction cannot be distinguished

from the others. In single crystals, the deformation is not as constrained as in the

polycrystalline case; therefore, the effects of each different dislocation interaction can

be considered individually. In developing a predictive model for single crystals, the

influence of particular dislocation interactions must be considered when investigating

the orientation-dependence of the stress/strain evolution.

1.2 Dislocation Dynamics

Over the past decade, dislocation dynamics has emerged as a powerful simulation

tool in investigating the evolution of dislocation density on the micron scale. The

technique tracks the motion and evolution of discrete dislocation lines in response

to local stresses from the externally applied loads and the elastic interactions of the

rest of the density. Depending of the level of detail that is carried in the simulation,

different aspects of dislocation interactions may be investigated.

The most highly resolved simulations have been conducted by Shenoy et al. (2000).

They allow for the separation of perfect dislocations into partial dislocations sepa-

rated by a stacking fault. Using the technique, they have investigated the interaction

of these dissociated dislocations in forming strong dislocation junctions. Due to the

high resolution used, no more than a few dislocations may be considered in a single

simulation. Less resolved simulations have been conducted by Schwarz (1999) that

discretize perfect, undissociated, dislocation lines by a series of nodes, and then cal-

culate the forces on the nodes and corresponding reaction of the line. The technique

has been used to investigate the multiplication of dislocations in Frank-Read sources,

and short-range dislocation interactions (Wickham et al., 1999). The two techniques

both discretize the dislocation lines into a series of nodes with differing levels of res-

olution. The increased resolution has a computational cost associated with it, and
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fewer dislocation lines may be represented.

Two other groups have modeled dislocation lines as collections of interconnected

straight dislocation line segments. Zbib et al. (1998) have discretized lines into

short segments and calculated the forces and moments on the segments to determine

their motion. In their discretization, the dislocation segments may have any tangent

direction. The coarsest dislocation dynamics technique discretizes dislocation lines

into short segments of pure edge and pure screw dislocations (Kubin et al., 1992;

Kubin et al., 1998). These coarser representations of the discrete dislocations can

simulate greater densities of dislocations, p a 1014 m 2 and may reach plastic strains

of E - 10'. The density levels in the coarsest simulations are roughly two orders

of magnitude below dislocation densities that are typically found in work hardened

crystals (Basinski and Basinski, 1979), and the strain level is between one and two or-

ders of magnitude below typical experimentally-applied strains. A better description

of the scale of dislocation dynamics simulations in comparison to engineering length

scales is to use the total dislocation line length in a simulation, since the simulation

cell size can be changed to arbitrarily set the dislocation density level. The total

dislocation line length in the most refined calculations of Shenoy et al. (2000) is on

the order of 100 nm. The total dislocation line length that can be achieved by the

coarsest calculations of Kubin et al. (1998) are on the order of 10 cm, while the length

of dislocation line in engineering structures that have been plastically worked may

reach 1 x 10" m. Furthermore, dislocation dynamics simulations thus far have been

limited to simple boundary conditions (periodic and mirror symmetric) and single

crystals. Grain boundaries have not been successfully modeled with the technique.

Despite all of the shortcomings and limitations of the dislocation dynamics, it

remains a powerful tool in investigating the multiplication and generation of dislo-

cations, the annihilation of dislocations, the reactions between different dislocations,

and the evolution of organized dislocation structures. A main focus of the disloca-

tion dynamics community in general has been to capture the stress/strain curve of

the simulated material. The statistical results available from many-body dislocation

dynamics simulations have largely been under-exploited in terms of the evolution of
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the dislocation density, the mean mobility of the density, and the mean properties

of the dislocation population over the history of deformation. Furthermore, it is not

clear how such information, even if extracted, could be incorporated into strength-

based constitutive models of continuum crystal plasticity, and virtually none of the

advances in dislocation dynamics have translated into continuum crystal plasticity

formulations that reflect the results obtained by the discrete simulations. A dislo-

cation density internal state variable model has the potential to connect the results

of the discrete simulations to continuum plasticity by capturing the evolution of the

density and its mean properties. The continuum models would be able to simulate

the levels of dislocation density and plastic strain in laboratory experiments, which

is not yet possible with dislocation dynamics.

1.3 Geometrically-Necessary Dislocations

and Scale-Dependent Material Behavior

In his landmark paper, Ashby considered a general dislocation density state of a crys-

talline material to be composed of two different populations of densities (Ashby, 1970).

I will focus this discussion around that article because it has served as the inspiration

behind many of the physical arguments in length-scale-dependent plasticity theories.

Statistically-stored dislocations (SSD's) were dislocations that were generated during

the homogeneous plastic deformation of crystals due to random trapping processes.

These were the dislocations associated with bulk deformation processes that resulted

in work hardening. Another class was named geometrically-necessary dislocations

(GND's) which resulted from local non-homogeneous plastic deformation. The mag-

nitude of the GND population could be related to plastic strain gradients from the

work of Kr6ner (Krdner, 1962) and resulted in curvature of the crystal lattice (Nye,

1953). This dislocation population was indeed "necessary" because it was required

to maintain lattice continuity.

The role of SSD's in work hardening was already established from years of analysis
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of stress/strain curves for different crystalline materials and corresponding disloca-

tion density images at different stages of deformation. Statistically-stored dislocations

acted as forest obstacles to mobile dislocations. Ashby argued that the GND pop-

ulation would act in the same manner as the SSD population. In a homogeneously

deforming body, there were no plastic strain gradients, and therefore no GND density.

In a non-homogeneously deforming body, all of the dislocation density associated with

the homogeneous deformation would still be present, but along with those disloca-

tions, additional dislocations in the form of GND's would exist due to the geometric

constraints. The additional geometric density would act in the same manner as the

SSD density in creating forest obstacles to dislocation motion and increase the slip

resistance as compared to the homogeneously deforming body. The dislocation pop-

ulation, SSD or GND, that numerically dominated the total dislocation density level

controlled the stress/strain curve of the material.

The argument for treating the GND's as forest obstacles is subtle in nature. On

the individual dislocation level, every dislocation line can be viewed as geometrically

necessary. Each dislocation locally accommodates a plastic strain gradient and leads

to local lattice curvature, but the SSD and GND measures are really based on the

properties of a population of dislocations within a certain volume. If a very small

volume (V = 1 x 10-25 M3 ) is considered, it is likely that every dislocation within it

will be geometrically necessary. If a very large volume (V = 1 x 10-12 M 3 ) is con-

sidered, it is likely that the overwhelming majority of the density will be statistical

in nature. The volume in which these densities are defined is important. Since the

two measures apply to populations of dislocations rather than to individual disloca-

tions, it is impossible to determine in which group any one dislocation within a given

volume belongs. A gliding dislocation would definitely not be able to distinguish an

encountered individual dislocation from the two populations; therefore, the GND and

SSD populations would both act as forest obstacles to dislocation motion.

A competing theory on the role of the GND's in non-homogeneously deforming

crystals is that the GND's pile up and create internal stresses within the material that

resist further plastic deformation (Hall, 1951; Petch, 1953; Cottrell, 1958; Nakanishi
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and Suzuki, 1974; Weertman, 1996). The arguments are based on the fact that GND's

consist of a population of dislocations with the same Burgers vector and tangent line

direction. The behavior of such dislocations is analogous to the behavior of charged

species. Like charges within a population repel each other, and an electrostatic force

must be applied to keep a density of them together. Likewise, dislocations of the

same type repel each other, unless they form certain minimum energy structures,

and stresses are needed to keep them together. The GND density may organize by

piling-up to establish internal stresses that oppose the applied stress and increase the

resistance to dislocation motion.

Both theories associate an increase in the resistance to dislocation motion associ-

ated with the presence of GND's, but the ideology driving their arguments is quite

different. The work-hardening arguments consider GND's to be additive to the back-

ground SSD population, and therefore to increase the total dislocation resistance by

acting as additional obstacles. The pile-up arguments attribute to the GND's a dif-

ferent behavior than the SSD's, in that the GND's are assumed to create internal

stresses that resist the applied stress, instead of behaving just like forest obstacles.

The debate about how the GND density affects the plastic behavior is ongoing. In

strength-based internal state variables models of crystal plasticity, the influence of

the GND population is assumed to either add to obstacle density or to lead to inter-

nal stresses within the framework of the model. By developing a dislocation density

based internal state variable model for crystal plasticity, one could investigate the

question directly by considering the co-evolution of SSD and GND density and the

latter's internal stresses.

The effects of a polar dislocation population, a dislocation distribution with net

lattice-geometric consequences, have been investigated in several experiments con-

ducted on the micron scale. The classic example of scale-dependent material be-

havior and its association to polar density is the grain size dependence of yield in

polycrystals. The yield strength is observed to increase as the grain size decreases

(Hall, 1951; Petch, 1953). The polar density is needed to accommodate the plastic

strain incompatibility between neighboring grains, and the magnitude of the polar
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density per unit volume increases as the grain dimension decreases, leading to the

observed phenomenon (Dai, 1997). Micro-indentation experiments have shown a

similar length-scale-dependence in the plastic response of crystalline materials. The

measured hardness of a crystal is observed to increase as the indentation depth de-

creases (Stelmashenko et al., 1993; Ma and Clarke, 1995; Nix and Gao, 1998). Again,

the steeper plastic strain gradients are associated with the shallower indentations,

and the polar density scales proportionally with the strain gradient, leading to the

length-scale-dependent phenomenon observed. Similar results have been observed in

the torsion of thin wires (d = 12 Am - 170 Am) and in the bending of thin beams

(h = 12 Am - 50 um) (Fleck et al., 1994; Stdlken and Evans, 1998). The normalized

torsional strength is observed to increase as the radius of the wire decreases, and

the normalized bending moment is greater in the thinner beams than in the thicker

beams. In each case the normalization is applied such that if no scale dependence

was observed, the nominal stress/strain curves would fall on the same line. In the

torsion experiments, the GND density scales with the plastic strain gradient from the

center of the wire to the surface, and in the bending experiments, the GND density

scales with the radius of curvature of the beam. For a given amount of surface strain,

the gradients increase in both cases for smaller geometries, and as a result, greater

densities of polar dislocations are anticipated in those geometries. The general trend

from all of the phenomena is that smaller is stronger due to the presence of greater

GND density, and in all of the experiments, the scale of interest is on the order of

tens of microns and below.

1.4 Continuum Crystal Plasticity Theories

Although the physical basis for all crystal plasticity formulations is rooted in dislo-

cation mechanics, dislocations, in the form of densities, rarely appear explicitly in

working continuum models. The most powerful class of continuum crystal plastic-

ity constitutive models is commonly found in the form of an internal state variable

model, where the material "state" is represented by a set of variables which deter-
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mine the current plastic response of the material subject to applied loading. In crystal

plasticity, material state is most often described by a set of parameters representing

slip-system-based deformation resistance (strength), rather than by dislocation den-

sity (structure). Currently there are two classes of continuum theories for crystal

plasticity: local theories and non-local theories. The local theories have been used to

simulate the macroscopic deformation of single crystals and polycrystals, and have no

material length scale dependence in their formulations. The non-local theories have

been developed in the past decade to incorporate the influence of GND's at micro-

scopic length scales to simulate the material length-scale-dependence observed in the

experiments described in the previous section.

1.4.1 Local Macroscopic Theories

The vast majority of continuum crystal plasticity models evolve strength-based in-

ternal state variables according to phenomenological hardening rules. Much of crys-

tal plasticity research has focused on developing better phenomenological hardening

rules to describe the plastic behavior of crystals (Franciosi and Zaoui, 1982; Follans-

bee and Kocks, 1988; Bassani and Wu, 1991; Qin and Bassani, 1992; Kothari and

Anand, 1998; Marin and Dawson, 1998; Nemat-Nasser et al., 1998a; Nemat-Nasser

et al., 1998b; Balasubramanian and Anand, 2000). All of the models increment the

crystallographic strengths with an equation of the form:

a Zha , (1.1)

b

where sa is the strength on slip system a, hab is a hardening matrix, and A b are the

crystallographic plastic shearing rates on all of the slip systems. The hardening ma-

trix hab is typically taken to be a function of the current strength state and material

constants. The crystallographic plastic shearing rate on each slip system is typically

a function of the local stress state and the strength of the slip system. Given the com-

plex non-linear relations between dislocation structure and deformation resistance, it

is not surprising that the successes of traditional approaches to the development of
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phenomenological relations describing the evolution of deformation resistances have

been circumscribed.

Strength-based constitutive models have been successful in predicting the stress/

strain response and the texture evolution of polycrystals for a wide range of strain

rates and temperatures (Mathur and Dawson, 1989; Bronkhorst et al., 1992; Beaudoin

et al., 1994; Nemat-Nasser et al., 1998a; Nemat-Nasser et al., 1998b; Kumar and

Dawson, 1998). However, in detailed inspections of simulation results, the predictions

of the strength-based crystal plasticity models have failed to capture the local plastic

response of crystalline materials (Becker and Panchanadeeswaran, 1995). They have

been mostly unsuccessful in capturing the orientation dependence of the stress/strain

behavior of single crystals (Kumar and Yang, 1999). Also, the material state as

quantified by crystallographic strengths cannot be directly observed, and it has been

difficult to reconcile with experimental observations, often requiring experimental

data that is difficult to obtain (Kocks and Brown, 1966; Bassani and Wu, 1991).

Beneath all of the phenomenology associated with the strength-based internal

state variable models there are dislocation processes that govern the evolution of the

strength variables. The crystallographic strengths quantify the resistance that glid-

ing dislocations encounter due to their local and non-local interactions with the rest

of the dislocation density and other barriers as they move across slip planes. The

evolution of this resistance is determined by the net generation and annihilation of

dislocation density during plastic deformation. A few constitutive models have been

proposed which use dislocation densities as internal state variables (Cuitifno and Or-

tiz, 1992; Cuitifio and Ortiz, 1993). These models have successfully captured the

orientation-dependence of the stress/strain behavior in copper and L1 2 intermetallic

single crystals; however, the evolution of the dislocation state variables again follows

phenomenological constitutive laws similar to those developed for strength-based in-

ternal state variable formulations. Furthermore, only one scalar density is quantified

for each slip system, and the geometric aspects of the dislocation density on that

system are not captured.
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1.4.2 Non-Local Microscopic Theories

Experiments performed over the past decade investigating the scale dependence of

crystal plasticity have inspired a variety of non-local crystal plasticity theories that

can incorporate an internal material length scale. The theories, as a group, have

been referred to as strain-gradient plasticity theory because the material length-scale-

dependence is usually incorporated by a constitutive response that is a function of

gradients in the plastic strain of a material. Ideologically, "strain-gradient plasticity"

does not fit properly within the internal state variable framework. The plastic strain

of a material does not quantify the state of a material because it can not be determined

without knowing the processing history of a material. Furthermore, plastic strain does

not contain any information about the current (dislocation) structure of the crystal.

Likewise, the strain gradients in a material do not quantify the material state for the

same reasons. More appropriate descriptions have been suggested such as "lattice-

incompatibility plasticity" or "strain-incompatibility plasticity"; these alternatives try

to capture the underlying idea that the dislocation structure is responsible for the

length-scale-dependent material behavior.

The first non-local theories were constructed and implemented to model the size

of shear bands formed during the deformation of polycrystalline specimens (Zbib

and Aifantis, 1989; Miihlhaus and Aifantis, 1991). Conventional local theories could

not specify a finite shear band width, and finite element implementations of the those

theories would predict shear bands that were dependent on the element size and mesh

geometry. The non-local models that were developed could predict a finite width of

shear bands by associating a strain energy with the second gradient of deformation,

but the models were not crystallographic in nature and made no attempt to relate

the behavior to the presence of GND's.

Fleck and Hutchinson (1993, 1997) (Fleck et al., 1994) developed a phenomeno-

logical theory that incorporated higher order strain gradients and couple stresses to

predict the strain gradient dependence of strength. Along with the couple stresses,

higher-order boundary conditions needed to be specified to complete the formalism.
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The theory was inspired by concepts in dislocation mechanics, but the formal theory

developed phenomenological relationships between the strength of a material and the

invariants of the strain gradients without any direct dislocation or lattice considera-

tions. Initially, the theory was isotropic and did not carry the crystalline geometry,

but the theory has been refined recently to extend the formalism to crystallographic

systems (Shu and Fleck, 1998; Shu and Fleck, 1999). Also, new theories have been

developed within the Fleck and Hutchinson framework that attempt to tie the phe-

nomenological theory to its dislocation underpinnings (Nix and Gao, 1998; Gao et al.,

1999; Huang et al., 2000). These models have been used to investigate the grain size

dependence of yield in polycrystals (Smyshlyaev and Fleck, 1996), torsion of thin

wires (Fleck et al., 1994), micro-indentation (Nix and Gao, 1998; Shu and Fleck,

1998), and bi-crystal interfaces (Shu and Fleck, 1999). The original theory and all of

its extensions have used the small strain assumptions in their deformation kinematics.

To my knowledge, a finite deformation constitutive theory following the Fleck

and Hutchinson framework has never been developed. New frameworks for scale

dependent plasticity have been suggested that associate an internal energy with the

lattice incompatibility (Gurtin, 2000; Menzel and Steinmann, 2000). They are similar

in structure to the Fleck and Hutchinson approach in that they also add higher-

order boundary conditions. Menzel and Steinmann's framework still carries the small

strain assumption while Gurtin's framework is established for finite deformations, but

neither of the models develop constitutive equations.

Another set of theories has been developed for finite deformations that attempt

to establish more direct connections to the underlying dislocation structure. The

multiplicative decomposition of the total deformation gradient into its plastic and

elastic parts is exploited to evaluate the lattice-incompatibility associated with non-

homogeneous plastic deformation. The measure can be directly related to certain

aspects of the underlying dislocation structure in the material. This measure yields a

second-order dislocation tensor that is then incorporated into existing local strength-

based internal variable models forming strength dislocation hybrid models that can

capture the length scale dependence in the mechanical behavior observed. Some
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models have been developed whereby the dislocation tensor is directly incorporated

into the constitutive behavior (Acharya and Bassani, 2000; Acharya and Beaudoin,

2000). Models have also been developed which quantify the polar dislocation den-

sity crystallographically that add to the total dislocation density in the crystal (Dai,

1997; Arsenlis and Parks, 2000). These methods are computationally simpler than

the Fleck and Hutchinson forms because they do not add higher order boundary

conditions and do not employ couple stresses, and they are based on proper state

variables of strength and dislocation density rather than relying on strain and strain

gradients. The drawback of the hybrid models is that the nature of the GND pop-

ulations calculated through the lattice incompatibility is assumed to be additive to

that of the SSD population, sessile, and the interaction of the GND population with

the strength-based state variables must be prescribed.

A non-local theory of plasticity has been developed where the material state is

entirely described by dislocation densities (Sluys and Estrin, 2000). The dislocation

density model is based on the local dislocation model of Cuitifio and Ortiz (1992), and

non-local features are included through the addition of diffusion-like equations for the

evolution of dislocation density. As in the Cuitifno and Ortiz model, the density has

no geometric character associated with it other than the slip-system on which they

reside. Moreover, the non-local model doesn't track the GND population, and all of

the dislocations are considered statistical in nature. This model is distinct from the

other models described above in that it is able to simulate the material length-scale-

dependence in shear banding without relying on any notion of polar dislocations and

strain gradients. It is not clear whether it would be successful in predicting the length-

scale dependencies found in the other observed phenomena where the behavior has

been shown to be strongly dependent on the magnitude of the plastic strain gradients.

1.5 Outline of Thesis

This work will focus on the role of dislocations, in the form of densities, in the evolu-

tion of the mechanical behavior of crystalline materials. The evolution of the material
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(dislocation density) state and that state's response to applied loads will be the bases

for understanding the behavior observed during deformation processes. Chapter 2

will focus on the geometry of dislocation densities by investigating the properties

of the GND and SSD densities on a crystallographic basis. The geometry of each

crystallographic dislocation density will be quantified by its line length per unit

volume, p; its Burgers vector, b ; and its tangent line direction, t . The following

question is considered: If all that is known about the dislocation density state is

the Nye tensor, A, what, if anything, can be said about the crystallographic dislo-

cation density state? The geometrical analysis will show that the two categories of

dislocation density (SSD and GND) can be described through arrangements of crys-

tallographic dislocation densities. Certain arrangements of crystallographic density

will pierce surface of the volume in which they are contained and have a net Burgers

vector and tangent line direction. These -arrangements will be referred to as GND

densities. Other arrangements do not pierce the surface of the volume, but instead

self-terminate, forming complex loop structures. These arrangements will be referred

to as SSD densities. If Nye's tensor is known, then the space of crystallographic

dislocation densities is restricted so that the lattice incompatibility as quantified by

Nye's tensor is accommodated by the crystallographic density.

Armed with geometric properties of crystallographic dislocation densities consid-

ered in Chapter 2, the evolution of crystallographic dislocation density in a plasti-

cally deforming crystal will be the focus of Chapter 3. The polar accumulation/loss

of crystallographic density associated with the non-homogeneous plastic deformation

leading to Nye's tensor will depend on the flux divergence of crystallographic disloca-

tion densities. The kinematics associated with this process quantifies the change in

the polarity of the crystallographic density completely, and no constitutive equations

need to be developed. The evolution of the statistical density is not as easily quan-

tified; however, the general closed-loop structure of the SSD's provides a principal

upon which to build a consistent set of evolution equations. On the individual dislo-

cation level, the conservation of Burgers vector requires that moving dislocation lines

be connected. On the density level, the conservation of Nye's tensor acts in a similar
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fashion. A mobile edge dislocation density must create a trail of screw density, and a

mobile screw density must leave a trail of edge density because all of line dislocation

lines in the density must be connected through a nodal network that conserves Nye's

tensor, as was discovered in Chapter 2. The edge and screw density trails come in the

form of dipole pairs that increase the total dislocation density level without affecting

Nye's tensor. Pair-wise annihilation reactions act to eliminate statistical dislocation

density. The frequency of reaction is based on the frequency that a given crystallo-

graphic species comes within a critical distance of its polar opposite. Again, density

is removed in dipole pairs without affecting Nye's tensor. The kinematics of density

generation by loop expansion and of density reduction by pair-wise annihilation in-

troduce three internal constitutive functions that must be described to complete the

model: the average dislocation segment length, the capture radius of annihilation,

and the average dislocation velocity for each crystallographic density considered.

In Chapter 4, a "local" version of the model will be implemented into a finite ele-

ment algorithm to investigate the orientation dependence of the stress/strain behavior

of aluminum single crystals under simple tension. The local version will consider only

the evolution of the dipole density, but not the accumulation/loss of density due to

species flux divergence. A set of constitutive functions will be developed based on

the activated slip theory of Kocks et al. (1975) and simple scaling arguments. The

ability of aluminum to cross-slip will be handled by including two different types

of dislocation densities in the model: Screw dislocation density that will be free to

cross-slip on two slip planes, and edge dislocation density that will not be able to

do so. Based on the results of the simulations performed on aluminum, explanations

for the differences in the experimentally observed mechanical behaviors of aluminum

and copper will be offered based on observations of dislocation density evolution in

the aluminum simulations. Also, the importance of the Hirth-lock in controlling the

deformation of aluminum in the < 100 >-orientation will be discussed.

In Chapter 5, a "non-local" version of the model will be implemented on an ideal-

ized two dimensional double slip geometry. Unlike the "local" model, the "non-local"

model will include the polar accumulation/loss equations in the total evolution of
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the crystallographic dislocation density. A deeper analysis of the crystallographic

dislocation density evolution equations than the analysis conducted in Chapter 3 will

show that the length-scale-dependence observed in crystal plasticity is most likely

due to internal stresses related to the polar density, and not due to any polar den-

sity effects on forest obstacle mechanisms. Simulations of thin beam bending will

show that the polarity of the dislocation density increases as the beam thickness

decreases at the same level of total strain, but that the total dislocation density re-

mains mostly unchanged as the beam thickness decreases at the same level of total

strain. Furthermore, the polar dislocation density will only account for 1% of the

total density, but the stresses associated with the polarity will lead to a 16% increase

in strength. The relatively large affect by a relatively small fraction of the polarized

density is supported by experimental evidence and could not be credibly accounted

for by obstacle-based theories of length-scale-dependence.

In Chapter 6, the results of the thesis will be reviewed, and directions for future

inquiry will be proposed. In its current state, the "non-locality" of the model ap-

pears only in the evolution of density. There are no non-local forces in the model.

Incorporation of non-local dependencies in the constitutive functions of the model is

potentially the most promising generalization for developing a system of equations

with enough complexity to capture the organization of dislocation density into cellu-

lar structures. A list of mathematical symbols commonly found in the thesis is given

in Table 1.1
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Table 1.1: Commonly used symbols.
F Total Deformation Gradient (ax/aX)

Fe Elastic Deformation Gradient

FP Plastic Deformation Gradient

LP Plastic Flow Rate (FPFP 1 )

T Cauchy Stress Tensor

T Second Piola-Kirchhoff Stress Tensor w.r.t the isoclinic configuration

Ee Cauchy-Green Elastic Strain w.r.t. the isoclinic configuration

C Anisotropic Elastic Stiffness Tensor

A Shear modulus

7 Poisson's Ratio

a Nye's Dislocation Tensor (small strains)

A Nye's Dislocation Tensor (large strains)
V Gradient Operator (/aX)
44 Plastic Strain Rate on Slip-System a

Ta Resolved Shear Stress on Slip-System a

mg Slip Direction of Slip-System a in the reference configuration

n0 Slip Plane Normal of Slip-System a in the reference configuration

pa In-Plane Normal Direction of Slip-System a in the reference configuration

p Crystallographic Dislocation Density of Index (

b Burgers Vector of Density Index in the reference configuration

t0 Tangent Line Direction of Density Index in the reference configuration

V Average Velocity of Density Index

l Average Segment Length of Density Index (

G C Forest Strength Interaction Matrix

H C Average Segment Length Interaction Matrix

p Positive Edge Dislocation Density on Slip-System a

pa Negative Edge Dislocation Density on Slip-System a

pa+ Positive Screw Dislocation Density on Slip-System a

PS- Negative Screw Dislocation Density on Slip-System a

pa Mean Density of Edge Dislocations on Slip-System a

a6 Mean Density of Screw Dislocations on Slip-System a

pa Polarity of Edge Dislocation Density on Slip-System a

p8 Polarity of Screw Dislocation Density on Slip-System a

Re, Rs Edge and Screw Capture Radii of Annihilation, respectively
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Chapter 2

Crystallographic Aspects

of Geometrically-Necessary

and Statistically-Stored

Dislocation Density

2.1 Crystallographic Dislocations from

Strain Gradients

Gradients in the plastic strain within crystalline materials give rise to dislocations

in order to maintain continuity in the crystal. Furthermore, with knowledge of the

crystalline orientation in relation to the strain gradient, the type of dislocation needed

to maintain lattice continuity is also specified. The graphical arguments for the exis-

tence of these dislocations presented in this section are based on the two-dimensional

constructs of Ashby (Ashby, 1970), but have been extended to three-dimensions.

Consider the schematic in Figure 2-1 (a-e) of a simple crystal undergoing single slip

on slip system "a". The coordinate reference frame is set such that ma is a unit vector

in the slip direction, n a is the slip-plane unit normal, and p' = ma x n'. Imagine that

the material can be separated into three sections, and each section can be deformed
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independently of the others. Through expanding dislocation loops, the respective

sections are plastically deformed such that the plastic strain increases linearly in the

slip direction. When the dislocation loops reach the boundaries of each section, the

screw portions reach free boundaries and exit the material, but the edge portions of

the loops encounter fictitious internal boundaries and remain as dipoles spread to

either side of each section. The sections are then forced back together, and there

are negative edge dislocations which do not annihilate, but remain in the material,

leading to lattice curvature.

Mathematically, the relationship between the plastic strain gradient V7' on a slip

system a and the edge dislocation density takes the following form:

PGN(e)bI = - ma = km (2.1)

where pGN(e) is the geometrically-necessary positive edge dislocation density and b is

the Burgers vector.

A similar construction can be created to illustrate the presence of screw disloca-

tions due to strain gradients. The schematic in Figure 2-2(a-e) shows the same single

slip system material as in Figure 2-1(a-e). In this figure, the material is again sep-

arated into three sections, and each section is deformed independently of the other.

Through expanding dislocation loops, the sections are plastically deformed such that

the plastic strain increases linearly in the pa-direction. When the dislocation loops

reach the boundaries of each section, the edge portions reach free boundaries and exit

the material, but the screw segments encounter fictitious internal boundaries and

remain as dipoles spread to either side of each section. In the figure shown, the nega-

tive screw dislocations are illustrated, but there are also an equal number of positive

screw dislocations, not shown, on the back (hidden) side of each section. When the

sections are forced back together, there are positive screw dislocations which do not

annihilate, remaining in the material and causing the lattice to warp.

The relationship between the plastic strain gradient Vya on a slip system a and
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the screw dislocation density takes the following form:

PGN(s) lbl pa V- kk (2.2)

where PGN(s) is the geometrically-necessary positive screw dislocation density and b

is the Burgers vector.

These developments clearly show that gradients of plastic strain lead to the pres-

ence of dislocations with same polarity. Furthermore, depending on the direction of

the gradients in relation to the crystalline geometry, the type of dislocations needed

to maintain lattice continuity can be specified, independent of the mechanism which

caused the strain gradient. The plastic deformation in each example was accomplished

through expanding dislocation loops, but the gradients of the plastic deformation were

in different directions, leading to the accumulation of either geometrically-necessary

edge or screw dislocations. The existence of the dislocations was necessary to main-

tain lattice continuity, and led to distortions of the the crystal lattice. Generally,

the dislocation state associated with lattice distortion can be described in terms of a

second-order tensor, to be discussed in the next section.

2.2 Nye's Tensor and

Continuously-Distributed Dislocation Density

In 1953, Nye introduced a dislocation tensor quantifying the state of dislocation

of a lattice (Nye, 1953). Nye's tensor, ai, is a representation of dislocations with

Burgers vector i and line vector j. Considering continuously-distributed dislocations,

Nye's tensor quantifies a special set of dislocations whose geometric properties are not

canceled by other dislocations in the crystal. Consider the volume element shown in

Figure 2-3, which is a section of a crystal containing two edge dislocations threading

through the volume. The most rigorous manner to describe the dislocation state in the

volume would be to characterize the lines by two Dirac delta functions of strength b

in space; however, such a quantification of dislocation density becomes overwhelming
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given the densities involved in plastic deformation processes (p a 10' 6 m 2 ) (Basinski

and Basinski, 1979). Allowing such point densities to become continuously-distributed

within a volume creates a more compact way of describing dislocations in space, but

a result of this process is that the spatial correlation of the individual dislocation lines

within the volume is lost.

If the reference volume element over which dislocation properties will be continu-

ously-distributed is taken to be the entire volume in Figure 2-3, the net Nye's tensor

of the element is zero because the dislocation density, as drawn, consists of two dislo-

cations with common tangent line vector but opposite Burgers vector: these form a

dislocation dipole. When the properties of each dislocation segment are distributed

uniformly over the entire volume, the exact positions of the original dislocations

are no longer relevant. In terms of Nye's tensor, an equivalent form would be to

place the two dislocations on top of one another, allowing them to annihilate, leaving

behind no dislocation density in the element. In any continuously-distributed dislo-

cation formulation, individual dislocation dipoles, planar dislocation loops, and other

three-dimensional self-terminating dislocation structures fully contained within the

reference volume make no net contribution to Nye's tensor. The three-dimensional

self-terminating dislocation structures mentioned here will be further developed in

later sections. These redundant structures, which make no contribution to Nye's

tensor, are considered statistically-stored dislocations (SSD's), and are believed to

result from plastic deformation processes (Ashby, 1970). Once individual dislocation

segments are considered to be uniformly distributed within a reference volume, Nye's

tensor measures the non-redundant dislocation density within the volume. These

non-redundant dislocations are believed to result from plastic strain gradient fields,

as demonstrated in the previous section, and have geometric consequences on the crys-

tal lattices. As a result, they are commonly referred to as geometrically-necessary

dislocation (GND) density.

Nye's tensor can easily be calculated for a volume element by a line integral over

all dislocations within the volume. If b is the Burgers vector of a dislocation with
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local unit tangent line direction t, Nye's tensor, caij, can be defined as

aij - J bit ds , (2.3)
L

where V is the reference volume, ds in an element of arc length along the dislocation

line, and L is the total length of dislocation line within V. Nye's tensor becomes a

summation of the integrated properties of all the individual dislocation line segments

in the volume. This integral relation also has the property of averaging the dislocation

properties within the volume, thus converting clearly distinct dislocation lines into

a uniformly distributed property within the volume. If each of the dislocation line

segments is considered as a separate entity with constant Burgers vector, the definition

of Nye's tensor can be rewritten as

ai Zb /t~dsc (2.4)

where I is the length of a dislocation segment of type (. Inspection of this summation

of integrals immediately shows global properties of Nye's tensor. Consider Figure 2-4

of a dislocation threading though a reference volume element used to define Nye's

tensor. If Eq. 2.4 is used to evaluate Nye's tensor for this element, the result becomes

aij = b (xj - x) , (2.5)

where x- and x+ are the positions of the starting and stopping points of the dislo-

cation line segment, respectively. Equation 2.5 states that the only information from

each dislocation line segment needed to calculate its contribution to Nye's tensor is

its Burgers vector and two endpoints. The path that the dislocation line makes be-

tween these two points has no effect on the evaluation of Nye's tensor. Returning

to Figure 2-4, for the purpose of evaluating Nye's tensor, the curved dislocation line

could be replaced by the dashed straight dislocation line having the same geometric

properties. Equation 2.5 may be rewritten to reflect this substitution, with the result

that it is the average tangent vector, f, and the secant length, 7I, which are needed
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to calculate a 3 :

cEij V ZG iC (2.6)

where

I (4x = x ) (2.7)

and
IaN-X /(x)X+kXk) (2.8)

Using the description of dislocation density as line length in a volume, the summation

of geometric dislocation lengths, 7 , in a reference volume, V, can be replaced by a

summation of geometric dislocation density, PCGN, in the volume

=i ZPCN bita (2.9)

where

GN -G

Of course, the dislocation density described in Eq. 2.9 is not the total dislocation

density of any arbitrary dislocation line segment, but it is the portion of the total

dislocation density which has geometric consequences. The remaining density of the

total line, which has no geometric consequence, must be considered statistical in

character. For an arbitrary dislocation line segment, , with a total density in a

reference volume, V, defined by

pC jdsC ,(2.11)

the portion of the total density which has no geometric consequence, and which would

therefore be statistical in nature, would be

Pss P- PGN (212
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where the subscript SS denotes that the dislocation density is considered statistically-

stored. With this decomposition of total dislocation density, an arbitrary line thread-

ing through a reference volume element as in Figure 2-4 may be separated into that

portion of the total density which has geometric effects, PGN, and the portion of the

total density which does not, pss.

Another result of the definition of Nye's tensor which becomes immediately ap-

parent through Eq. 2.5 is that closed dislocation loops of constant Burgers vector

have no net geometric consequence; i.e.,

aij = bi tj ds = 04j .(2.13)v i

As a generalization of this property, any dislocation network structure which is topo-

logically closed and is entirely contained within the reference volume also has no net

contribution to Nye's tensor.

In this formulation of Nye's tensor, the size of the reference volume element over

which the density is averaged plays a crucial role in defining the tensor. Consider again

Figure 2-3 of the dislocation dipole. If the reference volume elements were taken to be

smaller than the entire volume shown, such that both dislocations did not populate

the same element, Nye's tensor within each sub-volume would change, becoming non-

zero. In the limit as the volume elements used to define the dislocation state become

differential, Nye's tensor tends toward two delta functions that exactly describe the

dislocation state. Selection of an appropriate reference volume element must take into

account the scale of the geometric effects to be captured. A volume element that is too

large with respect to the geometric constraints may miss the existence of important

geometrically-derived dislocations in one portion of the element that, when averaged

with other dislocations in the same element, create no net Nye's tensor. Conversely,

a volume element which is too small may become too computationally intensive (too

numerous) to manage, and may begin to reach length scales where dislocation density

can no longer be considered continuously-distributed, so that discrete dislocation

mechanics must be adopted.
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The definition of Nye's tensor proposed here is based on the description of dislo-

cation density as line length in a reference volume. In Nye's original formulation of

the dislocation tensor, dislocation density was described as a number density of lines

piercing a plane. He defined the tensor in the following manner

a= nbitj , (2.14)

where n was the number density of dislocation lines with Burgers vector, b, cross-

ing a unit area normal to their unit tangent line vector, t. This expression closely

resembles the definition of the tensor in Eq. 2.9. In the procedure by which Nye de-

scribed the dislocation tensor, the dislocations which constituted it were considered

to be continuously-distributed, and the tangent line vectors were implicitly constant.

The discrete case, in which a material is segmented into volume elements, was not

considered in the original formulation. The expression proposed here is a gener-

alization which can be applied to arbitrary dislocation arrangements, and the two

definitions are equivalent because the dislocations which contribute to the geometric

density in the bulk must pierce the surface that encloses the reference volume, as a

consequence of Eq. 2.13. Consider Figure 2-5a, which represents a relatively simple

dislocation arrangement containing two dislocation junctions threading through the

volume. By applying Eq. 2.3 to the system, it can be shown that a geometrically

equivalent dislocation arrangement would be a single straight dislocation segment as

shown in Figure 2-5b. This results from the property that Burgers vector is conserved

through line segments and their junctions. Applying both Eq. 2.3 and Eq. 2.14 to

the simplified structure in Figure 2-5b yields the same value for Nye's tensor. The

definitions are equivalent because of the stereological relationship between the two

descriptions of dislocation density.
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2.3 Lattice-Geometric Consequences

of Nye's Tensor

Certain plastic strain gradients necessarily lead to the existence of dislocations in

crystalline materials to maintain lattice continuity. Nye's tensor provides a measure

of these geometrically-derived dislocations, and a non-zero Nye's tensor leads to lat-

tice curvature, neglecting elastic strain gradients in the material. Introduction of

dislocations of the same type into a crystal causes the lattice to curve and generally

warp, and a tensor quantifying such lattice curvature must be closely related to Nye's

tensor. The curvature tensor, rij, is defined as a small right-handed lattice rotation

of magnitude &0 about the i-axis for a unit change of position of magnitude 6x in the

j-direction:

Mi = r 6x. (2.15)

Nye's tensor relates the GND density to lattice curvature in the following manner:

1
S= -%a + I6jiOakk , (2.16)

which is the same result that Nye derived, but with a different sign convention (Nye,

1953). There is also a contribution from elastic strain gradients to the total lattice

curvature. A complete and rigorous derivation of the relationship between strain

gradients, curvature, and the new definition of Nye's tensor is presented in this section.

The following derivation closely mirrors a previous analysis by Fleck and Hutchin-

son (Fleck and Hutchinson, 1997). The equations are developed for small deforma-

tions for simplicity to illustrate the properties of Nye's tensor. In the next chapter,

the geometry associated with large deformations will be used; however, many of the

physical insights remain the same. The displacement gradient, uij, can be additively

decomposed into the plastic slip tensor, yjj, the skew lattice rotation tensor, #ij, and

the symmetric elastic strain tensor, en, as shown in Eq. 2.17:

Ui,k = Yik + OIik + k e (2.17)
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The curl of the displacement gradient vanishes because of the symmetry of the second

gradient; this also implies that deformation occurs in such a way that the body

remains simply connected. Such a procedure, when performed on Eq. 2.17, produces:

epjuki,kj = epjkyik,j + epjkcJk,j + epjkEk, = o, , (2.18)

where epjk are the cartesian components of the alternating tensor. The components of

the lattice rotation tensor, qik, can be written in terms of the lattice rotation vector,

'01, according to

Ok = etik'I . (2.19)

Substitution of Eq. 2.19 into Eq. 2.18 gives

epjkyik,j + epjkeik 9lj + ep e,, O . (2.20)

Using the definition of rij = 7i9,j implied by Eq. 2.15, inversion of Eq. 2.20 gives

I ~ ~el (.1
I-pi = epjkik,j - 2Jpiesjk~sskj ±ekE . (2.21)

Since plastic deformation is a result of the slip on crystallographic planes, -Yij can be

written as a sum of crystallographic shears such that

' a Ma na (.2Yik = § mi k (.2
a

where ma is the slip direction and na is the slip-plane normal direction of slip-system

a on which a plastic shear, ,a, has occurred. Applying the curl operation inside the

summation yields

e-pkyjik,j = epkymaik = 1, Tym (mp, - ppm ) , (2.23)
a a

where the last step follows from the definition pa = Ma x< na Using Eq. 2.1 and
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Eq. 2.2, the right side of Eq. 2.23 can be replaced by dislocation densities:

epjkyikj = -- PGN(e) ia pP _ PGN(s) b m
a

Dislocation densities are considered to be defined as length of line in a reference

volume, which allows for a substitution of variables in Eq. 2.24, leading to

epjkyik,j = - pGN ma , (2.25)
a

where

PGN ( (2.26)

and
-a _PGN(e)?p 0GN(s) Pta~ P~NeP p NSm (2.27)

PGN

The right-hand side of Eq. 2.25 is the expression used to define Nye's tensor in Eq. 2.9

relating the gradient of plastic slip to Nye's tensor. Substitution of Eq. 2.25 into

Eq. 2.21 using the definition of Nye's tensor in Eq. 2.9 yields

epjk + el (2.28)

pi = -aip + 2piCekk + iPkyj,,

which is the same expression as Eq. 2.16 in the absence of elastic strain gradients.

The relationships among plastic slip gradients, geometrically-necessary dislocation

density, Nye's tensor, and lattice curvature presented thus far are general and apply

to any crystal lattice. In the next section, the presence of GND density in crystals

with a high degree of symmetry is considered. The symmetry allows for multiple

dislocation configurations to have the same total geometric properties. Therefore,

the crystallographic dislocation state resultant from the geometric constraints is in-

determinate. The indeterminacy can be resolved using two methods, as proposed in

the next section.
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2.4 Unique Description of GND's in

Redundant Crystals

The most rigorous manner to describe crystallographic dislocation density would be

to develop initial conditions and evolution laws for their densities and their interac-

tions. The geometrical properties of such dislocation distributions would just be a

consequence of the evolving state. Nye's tensor would be a simple result of the density

at any instant, and plastic strain would result from the motion of density through the

volume. Such evolution equations will be the focus of Chapter 3. However, the plas-

tic slip-gradient field alone imposes geometric constraints on the dislocation density

state which disallows many crystallographic dislocation distributions.

In crystals with a high degree of symmetry, the geometric constraints can be sat-

isfied with many different dislocation configurations due to their redundancy, much

the same as a given plastic deformation can be performed by different combinations

of slip on individual systems. In such redundant crystals, the number of distinct

dislocation "types", each with its own geometric properties, exceeds the nine inde-

pendent values in Nye's tensor, but the concept of geometrically-necessary disloca-

tions implies a minimization of density. Consider again Figure 2-4 of the dislocation

threading through a reference volume. It was shown that its total dislocation density

could be decomposed into a geometrically-necessary part and a statistically-stored

part. The geometrically-necessary part was the minimum dislocation density needed

to span the two endpoints of the dislocation line segment. If the only information

from which crystallographic dislocation densities are to be determined results from

geometric constraints, then the crystallographic dislocation density derived from the

constraints must be a minimum density. Anything above the geometric minimum

necessary would (necessarily!) incorporate some statistical character which cannot

be determined through geometric arguments. By considering different density nor-

malizations and minimizing the dislocation density with respect those normalizations,

a unique description of crystallographic GND's can be found.

The first step in finding the GND configuration on a crystallographic basis is to
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discretize the dislocation space of a crystal. The Burgers vectors in a crystal are

already discrete, but the tangent line vector of a dislocation is free to occupy any

direction on the slip plane (If dislocations are allowed to climb, even this restrictive

condition no longer holds!). The tangent line vectors must be discretized in such

a fashion that the discretized space is well representative of the actual dislocation

space. The discretized Burgers vector, b, and tangent line vectors, t, form n-pairs of

geometric dislocation properties. Nye's tensor, a, can be written as a summation of

dislocation dyadics, di, premultiplied by a scalar dislocation density, pi, as follows:

n

a = Zpidi , (2.29)
i=1

where the dislocation dyadic is given by

di = b' 0 tl* .(2.30)

The relationship (2.29) can be rewritten such that Nye's tensor, represented as a

nine-dimensional column vector A containing the components of a, is the result of a

linear operator, D, acting on the n-dimensional crystallographic dislocation density

vector, p, as shown:

Dp=A. (2.31)

The null space of operator D yields those combinations of crystallographic disloca-

tion density which have no geometric consequence; thus these combinations can be

considered as statistically-stored. Such dislocation density groups are placed in a

subspace of the n-dimensional p-space, pss; the dimension of the statistically-stored

dislocation density subspace is n - 9.

In considering GND's, there are two minimizations which can be considered. One

minimization, L2, is geometrically motivated through Eq. 2.26 and minimizes the

sum of the squares of the resulting dislocation densities. The discretization of the

dislocation space only allows certain dislocations on the slip plane to exist, and the

L 2 minimization takes this into account by being able to combine dislocation line
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lengths into a single dislocation line length which may not exist within the original

discretization. The other minimizing technique, L 1, is energetically motivated. By

considering dislocation density as line length through a volume, the total dislocation

line energy can be minimized by finding the dislocation configuration with the smallest

total line length.

Mathematically, the L2 minimization is the easier of the two methods to compute.

The functional, C(p, y), to be minimized takes the form

C(p, y) = p'p + yT(Dp - A), (2.32)

where the nine-dimensional vector y contains the Lagrange multipliers. The solution

can be found explicitly because it follows from singular value decomposition, having

the following mathematical form:

PGN = (DTD 1 DT A = BA, (2.33)

which gives an explicit formula for the crystallographic GND density, PGN, for any

given value of Nye's tensor. Furthermore, PGN calculated in this manner describes a

dislocation density subspace which is orthogonal to pss such that (PGN)TpSS = 0, and

the two subspaces span the total n-dimensional space of crystallographic dislocation

densities.

There is no explicit formula for determining PGN from Nye's tensor with respect

to the L1 minimum. Using this technique, the functional, E(p, y), to be minimized

takes the form
n

E(p, y) = Z Ipil + YT(Dp - A) , (2.34)
i=1

where the nine-dimensional vector y contains the Lagrange multipliers. A linear

simplex method is implemented to calculate PGN for each different value of Nye's

tensor. The resultant crystallographic dislocation density vector doesn't lie outside

the pss subspace, as is possible for the one obtained using the L2 minimization.

The two techniques are demonstrated on a face-centered cubic (FCC) crystal in the
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following sections to illustrate the properties of each normalization, and the null space

of D is also analyzed to determine the properties of pss in redundant crystals.

2.5 Geometrically-Necessary Dislocations

in FCC Crystals

Face-centered cubic crystals have slip systems in which the slip-planes are of {111}

type and the slip-directions are of < 110 > type. Although any discrete basis of

dislocations which exist in the crystal may be considered, a natural choice is to limit

the dislocations to only pure edge and pure screw types as Kubin et al. (1992) have

done in their dislocation simulations. Adopting this discretization, there are a total

of eighteen different dislocation types: twelve edge and six screw dislocations. The

dislocations and their line properties are given in Table 2.1. Crystallographic dislo-

cation density is described by an eighteen-dimensional vector in which each distinct

dislocation type receives its own index, and pi is the density of the ith dislocation

type. The densities in the vector may be positive or negative in sign, and the in-

terpretation of the sign of a density will be discussed. Nye's tensor has only nine

independent components; therefore, when describing the dislocation state in terms of

crystallographic dislocation densities, the problem is under-defined, much like the in-

determinacy of apportioning slip on crystallographic planes based on a known plastic

deformation.

The geometric properties of the crystallographic dislocation densities were mapped

onto the FCC unit cell using Eq. 2.9, and the indices of Nye's tensor became the three

orthonormal directions of the FCC unit cell. A set of nine vectors were found which

led to no contribution in Nye's tensor. These null vectors can be considered as the

redundant or SSD's and will be discussed in detail in the next section. The GND

density was calculated using the two different techniques outlined in the previous

section, and the resultant GND distributions from the L2 and L' minimizations will

be presented independently and compared at the end of this section.
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Using the singular value decomposition described above, a set of nine crystallo-

graphic dislocation vectors were obtained which minimized the sum of the squares

of the densities and satisfied the geometric requirements of Nye's tensor. Table 2.2

shows the matrix which can be used to compute a general crystallographic disloca-

tion distribution from GND density using L2 minimization and the SSD density with

< 100 > directions as the basis vectors of Nye's tensor. The first nine columns of this

matrix make up the matrix, B, in Eq. 2.33. Note that there are negative crystallo-

graphic dislocation densities in the GND vectors. The negative densities appear as

a result of the discrete dislocation basis chosen. The basis defines the right-handed

edge and screw dislocations as being positive densities, and left-handed edge and

screw dislocation densities are considered negative. The Ll formulation employs an

expanded basis, and the necessity to interpret negative densities is eliminated.

Upon inspection of the nine GND vectors, there are only two distinct dislocation

arrangements which are formed: one which exhibits the same properties as a < 100 >

< 100 > screw dislocation, and one which exhibits the same properties as a < 100 >

< 010 > edge dislocation on the FCC unit cell. The other seven density vectors

are just orthogonal transformations of these two GND vectors. In FCC materials,

dislocations with Burgers vectors of < 100 > type are not preferred, but an arrange-

ment of crystallographic dislocations can be formed which has the same geometric

properties as a < 100 > type dislocation. This arrangement for a screw dislocation

is mathematically described by the first density vector (column 1) in Table 2.2, and

is graphically presented in Figure 2-6 by interpreting the densities as line lengths

within a volume described by Eq. 2.9. Figure 2-6 shows the resulting double-helical

structure, with screw dislocations around the perimeter of the structure and a mix

of edge and screw dislocations in the center. The global geometric properties of this

dislocation structure are the same as those of a [100] type screw dislocation. It is

periodic in the direction of the dislocation line vector, [100], and there is a discrete

rotational symmetry about the [100] axis, much as a [100] [100] screw dislocation

would have, if it existed in FCC crystals.

A similar arrangement can be created to describe a resultant < 100 > < 010 >
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edge dislocation in FCC materials. This arrangement is mathematically described by

the second vector (column 2) in Table 2.2, and is graphically shown in Figure 2-7.

It is made up of twelve edge dislocations, and two screw dislocations which cross at

the center of the structure. The structure is again periodic in the line direction, and

it has the same global geometric properties as the < 100 > < 010 > edge dislocation.

The structure also has a mirror symmetry on either side of the virtual extra atomic

half plane. With these nine vectors, a lattice dislocated with an arbitrary Burgers

vector and line direction can be described as a periodic structure made up of the

eighteen crystallographic dislocation densities in FCC materials.

To implement the L1 minimization of GND's using the linear simplex method,

the discretization employed for the L 2 minimization had to be altered such that only

positive densities were considered. This was accomplished by giving the left-handed

screw and edge dislocations their own index, i, and requiring all densities to be non-

negative. The size of the discrete dislocation basis doubled, introducing eighteen more

SSD vectors. The new SSD vectors introduced through this discretization represent

dislocation dipoles formed by right and left-handed dislocations of equal length. Dis-

location dipoles are what are classically thought to result from plastic deformation,

and are the most common example of SSD's, and although they were not accounted

for in the discretized space employed in the L2 formulation, they do appear in this

expanded space.

To calculate the GND density using the linear simplex method, a feasible solution

was found through row reduction of the matrix D from Eq. 2.31 and back substitu-

tion. The minimal L1 density was found through an iterative process, and had to be

conducted for each different value of Nye's tensor. In order to compare the results of

L' and L 2 minimizations, the dislocation structures for the < 100 > < 100 > screw

dislocations and the < 100 > < 010 > edge dislocations were also found using the L1

minimization technique. The crystallographic dislocation structure for a [100] [100]

screw dislocation using the L1 minimization technique is depicted in Figure 2-8. The

structure consists of two separate dislocation lines with Burgers vectors [110] and

[110], respectively, and the same average tangent line vector [100], and each thread-
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ing dislocation line consists of three dislocation line segments. The crystallographic

dislocation structure for the L' minimal [100] [010] edge dislocation found is shown

in Figure 2-9. It also is made up two separate dislocation lines with Burgers vectors

[110] and [110], respectively, and the same average tangent line vector [010], and each

threading dislocation line consists of two dislocation line segments.

The purpose of this exercise in crystallographic GND's was to find a method

to best represent the actual GND dislocation arrangements in crystals. Both of

the methods found periodic dislocation arrangements which threaded through the

reference volume and had the same global geometric effects. Comparing the screw

and edge dislocation arrangements obtained with the two different techniques, the

L1 minimization appears to be a more promising technique than the L 2 technique

for determining GND's. In each case, the L' method created dislocation structures

which were composed of two separate dislocation lines with constant Burgers vectors

threading through the volume; the arrangements created by the L 2 method were much

more complicated in the sense that they contained more dislocation segments in their

structures and also required the formation of intricate junctions. The total dislocation

line length needed to describe the [100] [010] edge dislocation with the L 2 minimization

was a factor of 1.25 greater than the corresponding L' minimization. The total line

length needed to describe the [100] [100] screw dislocation with the L 2 minimization

was a factor of 1.01 greater than the L' minimization. Note that this particular

crystalline orientation required the longest total dislocation line length to represent

a geometrically-necessary screw dislocation calculated using the L' minimization.

All other crystalline orientations required shorter total dislocation line lengths. The

disadvantage of employing the L1 method over the L 2 method is that there is no

explicit formulation using the linear simplex method to determine PGN from Nye's

tensor, whereas the singular value decomposition does provide an explicit relation for

the L2 minimum configuration.
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2.6 Statistically-Stored Dislocations

in FCC Crystals

Classically, statistically-stored dislocation density has been considered to be com-

prised of dislocation dipoles and planar dislocation loops. In the formalism used to

find PGN with the L' minimization, a total of twenty-seven SSD density vectors were

found: only eighteen of these were common dislocation dipoles. In the analysis of the

null space of the linear operator D in Eq. 2.31, nine other SSD structures were found

which are neither simple dislocation dipoles nor simple planar loops. These higher-

order closed structures are mathematically represented by the space spanned by the

last nine vectors of the matrix in Table 2.2. An infinite number of SSD structures

can be created by different combinations of the twenty-seven null vectors found, but

to illustrate the properties of higher-order SSD structures, the simplest in terms of

fewest number of lines and highest symmetry have been found.

The simplest structure consists of five dislocation line segments and is mathe-

matically represented, in varying orientations, by the last eight null vectors in Table

2.2. Interpreting the densities as dislocation line lengths as before, the vectors can'

be graphically represented. The basic structure corresponding to the last eight null

vectors is shown in Figure 2-10. The structure consists of a central edge disloca-

tion that splits into two dislocations which loop around and connect back to the

original center dislocation. The Burgers vectors of the three dislocation lines which

compose this structure are different, and this structure could be created by the inter-

section of two expanding dislocation loops with different Burgers vectors on the slip

plane. The result would be a dislocation arrangement like the one depicted. Note,

however, that the two dislocations are not required to initially be on the same slip

plane because, through cross-slipping, an intersection may also occur. There are two

linearly-independent planar dislocation structures such as the one depicted in Fig-

ure 2-10 on each of the four slip systems leading to the eight null vectors in Table

2.2.

The remaining SSD arrangement described by column 10 in Table 2.2 is made
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up of six edge dislocations in the three-dimensional structure shown in Figure 2-

11. Three of the dislocations are on the same slip plane with the other three lying,

respectively, in the other three slip planes of the FCC crystal lattice. This structure is

unique in that it contains a three-dimensional stacking fault. whose boundaries are the

edge dislocations shown in the figure. Since the extra half planes of atoms are fully

contained within the structure, there is no geometric consequence over the volume

containing the structure. Linear combinations of this vector with the other eight

can create other, more complicated, three-dimensional SSD's. Figure 2-12 depicts a

three-dimensional structure consisting of four screw dislocations on the perimeter of

the structure and four edge dislocations in the interior of the structure, but as these

three-dimensional structures become more complicated, it becomes harder to imagine

their occurrence in real crystals.

In general, the higher-order dislocation structures in FCC crystals primarily con-

sist of dislocation loop segments which terminate at planar junctions. The total

structure self-terminates, which is to say that the Burgers vector is conserved at each

junction in the structure. The closed structures do not thread through the volume as

do the crystallographic GND's; furthermore, they don't create any dislocations which

pierce the surface of the reference volume.

A general dislocation state for FCC crystals in this basis of thirty-six linearly in-

dependent density vectors (nine crystallographic GND vectors, eighteen dislocation

dipole vectors, and nine higher-order SSD vectors) can be constructed by any linear

combination of the twenty-seven SSD vectors and the particular combination of GND

vectors dictated by the value of Nye's tensor. This geometrically-allowable dislocation

(GAD) density would conform to the geometric constraints, but would not restrict

the total crystallographic dislocation density to any minimum principle. These vec-

tors span the space of all glissile dislocations in FCC crystals, within the discrete

dislocation basis. Such a discrete basis could be used to model observed dislocation

density arrangements. Also, there may be other crystalline kinetic constraints which

may suppress the population of dislocations on certain planes. In Chapter 3, evolu-

tion equations for crystallographic dislocation density will be developed such that the

50



SSD and GND populations can be individually tracked during plastic deformation,

and minimization techniques that were presented in this chapter to determine the

geometric density will not be necessary. In Chapter 4, a statistical density model

evolving the eighteen dislocation dipole vectors will be implemented to simulate the

behavior of aluminum single crystals subject to tension.

2.7 Geometrically-Necessary Dislocations

in Polycrystalline Aggregates

Parallels have been suggested between the determination of active slip systems from

the plastic deformation tensor and the determination of crystallographic GND's from

Nye's tensor. In fact, the method used to determine PGN using the L' minimization

is analogous to the method employed by Taylor in the determination of the active

slip systems in plastic deformation (Taylor, 1934; Taylor, 1938). Taylor's method was

based on the principle of maximum work. The active slip systems were determined

to be those which required the least cumulative shearing to accomplish the desired

deformation. The L 1 minimization of PGN employs a similar energy principle because

it produces the dislocation configuration with the smallest total line energy (assuming

the constant line energy model), which satisfies Nye's tensor.

Continuing with this analogy, there is a geometric relationship between the yield

strength of a polycrystal and the critical resolved shear strength of a slip system.

There should be a corresponding relationship between Nye's tensor averaged over

a polycrystal and the crystallographic GND density in a single crystal. The Taylor

factor, T7f, relating the tensile yield strength, o-y, to the critical resolved shear strength

for slip, TCRSS, acts as an isotropic manifestation of the crystalline anisotropy at the

continuum level, and is defined as

UY = 7rcRss . (2.35)

The Taylor factor, mTh, was successfully derived by Bishop and Hill, and for FCC
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polycrystals, Tff was found to be 3.06 (Bishop and Hill, 1951b; Bishop and Hill,

1951a).

A similar factor may be considered for macroscopic strain gradient fields in poly-

crystals. Of course, GND's arise locally in polycrystals in which macroscopic strain

gradients are not present. Local interactions between neighboring grains give rise to

GND's leading to the grain-size dependence of strain hardening (Dai et al., 2000).

Apart from this local GND density, macroscopic strain gradient fields lead to a macro-

scopic Nye's tensor which must be interpreted on a continuum level. Using the infor-

mation at the single crystal level, a corresponding Nye factor, T, may be introduced

to reflect the scalar measure of GND density, PGN, resultant from macroscopic plastic

strain gradients.

The simplest macroscopic description of plastic strain gradient fields, which can

be described by single-parameter Nye's tensors, are found in plane strain bending and

torsion. In the calculation of T for each of these cases, Nye's tensor, aij was taken to be

uniform across the polycrystal, but the dislocation density was not continuous across

the polycrystal. These conditions ensured intra-grain lattice continuity, but allowed

dislocation lines to terminate at grain boundaries. The Nye factor was calculated

with the following equation:

- I n
r - 1: 1PGN (aij; , 0, w(2-36)

nb i1

where b is the magnitude of the Burgers vector and q, 6, and w are the Euler angles

defining the orientation of crystal i, and n is the number of grains in the sample.

The crystallographic GND dislocation density, PGN, was calculated using the linear

simplex method for each orientation, and the isotropic measure, 7, of the GND density

was the total dislocation line length in each grain. The calculation was conducted for

FCC polycrystals in bending and torsion. In the case of bending, the Nye factor was

found to be 7 = 1.85 such that

PGN(e)b = 1.8512 , (2.37)
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and in the case of torsion, the Nye factor was found to be ; = 1.93 such that

PcN(s)b = 1 .9 3 1o',1 , (2.38)

where the (e) and (s) subscripts denote the isotropic edge and screw density respec-

tively.

The Nye factor accounts for the underlying crystalline anisotropy in this contin-

uum measure of GND's. Current isotropic continuum models (Fleck and Hutchinson,

1997; Gao et al., 1999) of strain-gradient plasticity use invariants of the curvature ten-

sor, which is closely related to Nye's tensor through Eq. 2.28, as a measure of GND

density, but the value of Nye's tensor on a continuum material point of a polycrystal

is not a sufficient measure of the GND's present. The actual dislocation density based

on crystallographic considerations for the case of plane strain bending and torsion is

almost twice that which would be predicted by the use of Nye's tensor alone. Since

the dependence of the plastic resistance on the dislocation density is most often a

function of the square root of the dislocation density, the increased resistance due

to the presence of GND density is underestimated if the scalar measure of the GND

density is not magnified by a Nye factor.

The dislocation density descriptions in this chapter were static. Only the geomet-

ric relationships between the GND's and SSD's were considered, with no attention

as to how such density structures could evolve with plastic deformation. There were

clues uncovered in Section 2.1 that could possibly lead to evolution equations for the

GND density. The evolution of the SSD density is much more complex, and both the

generation and annihilation of such density must be considered if a general dislocation

state variable for plasticity is to be formulated. However, the analysis in this chapter

shows that the evolution equations of the SSD density must conserve Nye's tensor.
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Figure 2-1: Schematic process (a-e) through which geometrically-necessary edge dis-
locations accumulate.
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Figure 2-2: Schematic process (a-e) through which geometrically-necessary screw
dislocations accumulate.
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Figure 2-3: An edge dislocation dipole in a volume element used to define Nye's
tensor.

Figure 2-4: A dislocation line threading through a reference volume element used to
define Nye's tensor.
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Figure 2-5: A simple dislocation network with two junctions threading through a
reference volume element used to define Nye's tensor (a), and its corresponding geo-
metric fingerprint (b).
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Figure 2-6: A periodic dislocation network derived through the L2 minimization
scheme which has the same geometric properties as a < 100 > < 100 > positive
screw dislocation.
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Figure 2-7: A periodic dislocation network derived through the L 2 minimization
scheme which has the same geometric properties as a < 100 > < 010 > positive edge
dislocation.
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Figure 2-8: A periodic dislocation network derived through the L minimization
scheme which has the same geometric properties as a < 100 > < 100 > positive
screw dislocation.
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Figure 2-9: A periodic dislocation network derived through the L' minimization
scheme which has the same geometric properties as a < 100 > < 010 > positive edge
dislocation.
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Figure 2-10: A discrete planar dislocation structure representing the intersection of
two dislocation loops with different Burgers vectors.
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Figure 2-11: A three-dimensional dislocation structure composed of six edge disloca-
tions which self terminates and has no geometric consequence.
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Figure 2-12: A three-dimensional dislocation structure composed of four edge and
four screw dislocations which self terminates and has no geometric consequence.
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Table 2. 1: The dislocation basis used to describe the dislocation state in FCC crystals.

The dislocation densities are indexed with respect to their Burgers vector direction,
b=b/1|b,11; tangent line direction, t; and resident slip plane, n.

Density bt n

Pi [P10 [112][11

P2 i [10i1] [121] 11

P3 [011] 1[112][11

P4 1 110] [112] 1- 1

p5 [101] 1[ 121] [L 1

P6 - [011] 1-[211] 1 1

p'7 [110] [112][1]

P8 1[io01 [121] 11

pq [011] 11 11

Pio [110] 1[112] [-L 1

P122 [061 [v1] [l

P14 [101] 1[101] [1-]L [ill ]

P12 [011] 1 ] [-1]L [111]

Pi [110] -L[110] 1[111] or -L[Ili]

P14 [101] [101] -L[111] or -L[ill]

P16 1 101 1 110 1 111] or -[111]
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a 7c -13c -7c -a 13c c -c 0 3

-a 13c -7c -c 0 c 7c -13c a 0

0 c -c -13c a 7c 13c -7c -a 0

a -7c 13c 7c -a 13c -c -c 0 0

-a -13c 7c c 0 c -7c -13c a 3

0 -c c 13c a 7c -13c -7c -a 0

a -7c -13c 7c -a -13c c c 0 0

-a -13c -7c c 0 -c 7c 13c a 0

0 -c -c 13c a -7c 13c 7c -a 3

a 7c 13c -7c -a -13c -c c 0 1

-a 13c 7c -c 0 -c -7c 13c -a 1
0 c c -13c a -7c -13c 7c -a I

5d e 0 e 5d 0 0 0 -d 0

5d 0 e 0 -d 0 e 0 5d 0
-d 0 0 0 5d e 0 e 5d 0

5d -e 0 -e 5d 0 0 0 -d 0
5d 0 -e 0 -d 0 -e 0 5d 0

-d 0 0 0 5d -e 0 -e 5d 0

_ 1
a= C8 d=-

9 84 18

1 1 0 0
-2 1 0 0

1 -2 0 0
0 0 1 1
0 0 -2 1
0 0 1 -2
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 -- ,3 -,r3
0 0 0 -3-
0 0 0 0

-3 -\3 0 0
0 -\/3 0 0
3 0 -.l 0

3
e-

14

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 1 0 0

-2 1 0 0

1 -2 0 0
0 0 1 1
0 0 -2 1
0 0 1 -2

-3 -3 0 0
0 0 0 -T3h

,F3 0 VF 0
0 0 -3 3
0 -4 0 0
0 0 0 0

Table 2.2: The linear operator used to create geometrically allowed dislocation density
from Nye's tensor and statistically stored dislocation density. The first nine columns
form the matrix B in Eq. 2.33 weighted by the components of Nye's tensor with
< 100 > basis vectors. The last nine columns represent non-dipole components of the
statistically-stored dislocation density, weighted by the parameters Ai independent of
Nye's tensor.
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Chapter 3

Dislocation Density-Based

State Variable Model for

Continuum Crystal Plasticity

The dislocation density state variable formulation may conceptually be separated

into two parts: the kinematics associated with crystallographic slip, resulting plastic

deformation, and lattice reorientation; and the kinematics associated with evolution of

the dislocation density state in the crystal. The two parts are intimately related. The

dislocation state affects the plastic response of the crystal, and the plastic response of

the crystal determines the evolution of the dislocation state. In this section, kinematic

relationships for crystallographic slip and dislocation density evolution, as well as the

links between them, will be developed.

3.1 Single Crystal Kinematics

The single crystal kinematics described below is based on the developments of Asaro

and Rice (1977). The total deformation gradient, F, mapping a reference configura-

tion of the material to the final configuration, may be multiplicatively decomposed

into an elastic deformation gradient, F', and a plastic deformation gradient, FP, such

67



that

F = FFP , (3.1)

where FP maps the original configuration of a body to an intermediate configuration

describing the effects of plastic deformation on an unrotated and undeformed crystal

lattice, and Fe maps the intermediate configuration to the final deformed configura-

tion. Typically, Fe is associated with small elastic stretches and arbitrary rigid-body

rotations. The plastic deformation gradient evolves according to the flow rule

'P = LPFP , (3.2)

where LP is the plastic flow rate. In crystals, LP is comprised of the superposition of

the resolved crystallographic plastic shear rates, y, such that

LP = Z 0m" 0 no, (3.3)
a

where mr and ng are unit lattice vectors in the undeformed configuration correspond-

ing to the slip direction and the slip plane normal direction, respectively, for a given

slip system a. During plastic deformation, the crystal lattice may stretch and rotate,

and in the deformed configuration, the slip direction and slip plane normal become

m and n , respectively, which can be related to the initial lattice directions through

the following transformations:

In = Fem ; n a= Fe-Tn . (3.4)

An elastic strain measure, Ee, corresponding to the Cauchy-Green strain with

respect to the intermediate configuration, is defined as

E = -{FEIF - 12} , (3.5)
2

where 12 is the second-order identity tensor. The work-conjugate stress measure,

T, corresponding to the second Piola-Kirchhoff stress tensor with respect to the in-
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termediate configuration, is related to the Cauchy stress, T, through the following

transformation:

T = det (F ) F-~TFeT . (3.6)

The work-conjugate stress measure is related to the Cauchy-Green elastic strain tensor

through the anisotropic elastic coefficients of the crystalline material. The functional

form of this relationship is taken to be

T = L [Ee] (3.7)

where L is a fourth-order tensor containing the anisotropic elastic coefficients of the

crystal.

The connections between the single crystal kinematics and dislocation density

state variables are made by relating the conservative glide motion of the crystallo-

graphic densities to the plastic shear rates in Eq. 3.3 through the Orowan relation

(Orowan, 1940). The evolution of the dislocation density state in turn depends on the

current material state, the stress T, and the crystal orientation. The stress state is a

function of the current elastic deformation gradient, which can be considered as the

residual of the total deformation gradient modulo the plastic deformation gradient.

Therefore, the evolution of stress, strain, and dislocation state with loading history

are strongly coupled.

3.2 Dislocation Density Kinematics

With the exception of Eq. 3.7, the mathematical relationships in the previous section

were all based on the configurational geometry of a plastically deforming body. Geo-

metric considerations simplified the constitutive response from a general, and a priori,

unstructured relationship connecting the histories of stress and the total deformation

gradient, to a simple linear relationship between the second Piola-Kirchhoff stress

and the Cauchy-Green elastic strain, both referred to the intermediate configuration.

The remaining complexity of the model lies in predicting the resolved plastic shearing
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rates, Ay, for representative values of stress and material state.

Internal state variables, a set of variables quantifying the properties of the current

material state that control the material response being investigated, have proven to

be powerful tools in capturing the plastic evolution of solids. The most widely used

state variables in continuum crystal plasticity represent crystallographic slip-system

strengths. Evolution of "strength" state variables has been inferred from phenomeno-

logical hardening equations relating changes in the crystallographic strengths to the

slip-system activity. The ability of these models to predict accurately the plastic be-

havior of the materials is directly related to the phenomenological complexity in the

model (Kumar and Yang, 1999). Complex phenomenology is needed because there is

typically no underlying geometric structure to connect the slip-system resistance to

the slip-system activity. As before, where use of geometric essentials associated with

the single crystal kinematics enabled constitutive simplification, the geometry associ-

ated with dislocation density kinematics presented in Chapter 1 provides a structural

framework for development of a simple set of constitutive equations for the plastic

evolution of crystals.

The arrangement of dislocation lines in the crystal is not arbitrary. The conserva-

tion of Burgers vector and the continuity of the dislocation line must be maintained.

Dislocation lines cannot terminate within an otherwise perfect crystal. They must

end either on a free surface, a grain boundary, another set of dislocations, or some

other type of defect. If the dislocation ends on another set of dislocations at a node,

then the combined Burgers vector of the set, be it one line or many, must have the

same Burgers vector as the first dislocation, thereby conserving the total Burgers

vector.

A density of dislocation lines, defined as the total length of dislocation line (as a

function of Burgers vector and tangent line vector) within a unit volume, must follow

the same physical laws that govern the individual lines. In representing a group of

dislocation lines as a density, information about the actual spatial correlation of the

lines within the volume is lost. However, the concept of conservation of Burgers vector

can be extended to apply to a density of dislocations, thus restricting the spatial
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variation of dislocation density fields. Within the current internal state variable

framework, this conservation principle will become the basis of the density evolution

equations developed.

The evolution of the dislocation density at macroscopic length scales can be con-

sidered as controlled by two physical processes: the generation of new density, and

the annihilation of existing density. Both processes rely on the motion of dislocations

through the crystal: in a static crystal the dislocation density doesn't change. With

the consideration of the accumulation or loss of density due to the dislocation flux

divergence of each species, the macroscopic model may be extended to capture the

scale-dependent material behavior observed at microscopic length scales.

The generation of density can be considered in two parts: nucleation and growth.

The nucleation of density is controlled by the presence of discrete sources such as the

famous Frank-Read source (and other such configurations), whereby planar disloca-

tion loops are nucleated. As stated before, dislocation density doesn't capture the

spatial correlation of the dislocation lines within the volume; therefore, it also doesn't

correlate with whether or not the configurations associated with the various specific

sources exist within the volume. The assumption is made that such sources do exist,

providing a non-zero dislocation density is found within the volume. The expansion

of these (previously) nucleated planar loops by dislocation glide will be primarily re-

sponsible for the increase of the total dislocation line length within the volume and for

the corresponding crystallographic shear resulting from their collective motion. The

annihilation of density will be primarily controlled by encounters of dislocation line

segments with the opposite polarity and the same character. If two dislocation lines

of the same character but opposite polarity occupy the same lattice space, there is

no way to distinguish them from the perfect crystal. The line defects are eliminated,

causing a reduction in the total density. This density recovery mechanism, in which

mobile species of the same character but opposite polarity encounter each other with

some frequency, and eliminate their respective lengths, will be the basis for the anni-

hilation of density in the model. The flux divergence contribution to the dislocation

density accumulation/loss will follow from the plastic strain gradient considerations
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in Chapter 2, but instead of relying on a minimization scheme to determine uniquely

the polar density on a crystallographic basis from the plastic strain gradients, the flux

divergence of the individual species of dislocation density will be used to determine

uniquely the polarity of the crystallographic dislocation state.

3.2.1 Generation of New Density

During crystallographic slip, dislocations move across the slip planes to accomplish

the plastic deformation, but in doing so, they must increase the total dislocation line

length to maintain line continuity and conservation of Burgers vector. The simplest

illustrative example of this may be found in the expansion of a planar dislocation

loop. Consider the expanding dislocation loop shown in Figure 3-1. The dislocation

line marks the boundary between the regions in the plane that have slipped (gray)

and the regions that have not (white). The change in the plastic shear &y due to the

expansion of the loop is given by

J^ = ,Ab (3.8)
V

where 6A, is the change in the slipped area, and V is the volume of the region.

Along with the increase in area of the slipped region, the length of the boundary has

also increased, and the process has thus generated more dislocation density, or line

length within the volume. The change in the length of the dislocation line cannot

be quantified by considering only the change in the slipped area because different

configurations of the boundary can contain equal areas (but unequal perimeters).

However, if the outward displacement of the dislocation line were known as a function

of its Burgers vector and tangent line, then not only would the change in the slipped

area be known, but the increase of the dislocation length, as a function of Burgers

vector and tangent line, would also be known.

The continuous space that a dislocation tangent line vector may occupy makes

such a general description difficult. If the tangent line space is restricted to a set

of discrete values, the topology of the dislocation loops within the crystal becomes
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fixed, and the increase of the discrete dislocation density due to expanding planar

loops becomes tractable. If the dislocation loop shown in Figure 3-1 is idealized to

be composed of discrete dislocation line segments of known geometry, then evolution

equations may be written to quantify exactly the generation of the density due to

slip.

Consider the idealized expanding dislocation loop in Figure 3-2. The loop in

Figure 3-1 has been idealized to be composed of discrete segments of pure edge and

screw dislocations. Of course, this discretization is by no means the only possible

discretization of the dislocation loop in Figure 3-1, but it is the simplest discrete loop

geometry needed to establish the dislocation evolution equations. The discretized loop

is composed of a positive edge dislocation, negative edge dislocation, positive screw

dislocation, and negative screw dislocation segments arranged so that they form a

closed loop. The same density discretization has been previously described (Lardner,

1974); however, the density evolution equations developed by Lardner from the same

schematic are significantly different than the equations developed here. From the

simple schematic, it is immediately evident that an outward motion of the screw

dislocation segments leads to increased line length of the edge dislocation segments,

and an outward motion of the edge dislocations leads to increased line length of the

screw dislocations. The increased length is needed to maintain the continuity of the

dislocation loop in the crystal. For this simple case, the time rate of change for the

dislocation line lengths I becomes

e+ = e_=VS + VS- (3.9)

s+ = is- =Ve+ Ve+ , (3.10)

where v is the outward velocity of the dislocation loop relative to the lattice, the

subscripts e and s denote dislocation character (edge, screw), and the "+" and "-"

denote dislocation polarity, (right-, left-handed). Note that the generation of disloca-

tion lines conserves Burgers vector because equal line lengths of positive and negative

dislocations are created, and that the rate of generation is independent of the length
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of the moving dislocation lines. The time rate of change of the slipped area A, is

quantified by

As = le+Ve+ + le-Ve- + s+Vs+ + ls-Vs- , (3-11)

and is related to the plastic shear rate in the body through Eq. 3.8.

The results of the simple model involving a single dislocation loop may be gen-

eralized and applied to populations of discrete dislocation segments in a material. If

dislocation density p is defined to be the dislocation line length per unit volume of

the crystal, then the kinematic evolution equations for the generation of dislocation

density become

a -~a aj
- e e+

Ps+(gen) Ps-(gen) -a + a (3.12)
s- le+

~_ )a av-
Pe+(gen) = e-(gen) - la a(.3

where V is the average velocity of the dislocation population, 1 is the average segment

length of the dislocation density, and the superscript a denotes the crystal slip-system.

The sign convention implied in the equations requires that all densities, average ve-

locities, and average lengths be positive. The ratio p/i yields the number density of

dislocations per unit volume, and, as in the simple example, the rate of generation of

dislocation density is independent of the total length of the dislocations. Also, the

Burgers vector is again conserved, with equal values of positive and negative den-

sity being created. The configuration used to introduce the dislocation generation

equations was a planar loop, but the geometry need not be so simple. The main

assumption is that the mobile segments terminate within the crystal at dislocation

nodes. Motion of a dislocation segment away from those nodes would again require

that the moving segment leave a dislocation dipole trail extending to the nodes. The

planar loop example used to motivate the generation of density is just the simplest

type of node a dislocation segment would encounter.

The discretization chosen here leads to the evolution equations found in this sec-

tion. A different discretization of the dislocation tangent line space would lead to
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similar, but different, evolution equations. The main requirement in choosing an

appropriate discretization is to choose a set such that closed planar loops can be de-

scribed by the discrete space of tangent lines. The evolution equations for a different

set could again be motivated by the expansion of a single loop., while maintaining line

continuity.

The dependence of the plastic shear rate on the dislocation density flux can be

easily found by combining Eq. 3.11 and a rate form of Eq. 3.8. providing

to =a(p"+ae±+ + pOa_3i_ + " + paf-) Jblsign(Ta) , (3.14)

where ra is the resolved shear stress on slip system a. This result is equivalent to the

classical result obtained by Orowan (1940). Even in this simplest case, it is impossible

to determine the rate of dislocation generation from the plastic strain rate because

the plastic strain rate doesn't contain enough information to determine uniquely the

velocities of each of the participating densities.

3.2.2 Annihilation of Existing Density

Along with the generation of new density in the crystal. the annihilation of dislocation

density occurs simultaneously. At relatively low densities, the generation of density

dominates the dislocation density evolution, but as density increases, annihilation

processes become more prevalent. Many dislocation reaction processes can reduce

the dislocation density. In modeling dislocation annihilation within the discrete dis-

location density basis considered, the annihilation of each discrete density must be

considered.

Many dislocation reactions can be considered as a means of reducing the total

density. The simplest reaction that can be conceived is between two dislocations,

having the same tangent line direction but opposite Burgers vectors, that encounter

one another, leaving from their reaction no resultant contribution to their respective

densities. A more general "annihilation" reaction could be considered in which, for

example, two dislocations with different Burgers vectors and tangent lines combine to
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form a dislocation with lower total energy than the energy contained in the two initial

dislocations. All such possible reactions could be considered, but just as the evolution

equations for generation required the conservation of Burgers vector, the total Burgers

vector must again be conserved. This restriction is most generally enforced by using

the dislocation tensor. The dislocation density tensor a was defined in the previous

chapter as:

a Eb (9 todp, (3.15)

where dp is a differential length per unit volume of a dislocation line with Burgers

vector bo and unit tangent to for all dislocation segments contained in the volume.

For a discrete dislocation basis, the line integral became a simple summation of the

form:

a = Ep bc to . (3.16)

A general set of density generation and annihilation evolution equations must satisfy

the condition that the net change in the dislocation density tensor must be zero,

such that they only generate and annihilate the SSD density of the crystal. The gen-

eration equations previously discussed satisfied this condition implicitly by creating

dipole density that does not contribute to the dislocation tensor. Self-annihilation

likewise is concerned with the interaction of dipoles that have no net dislocation ten-

sor. All allowable annihilation reactions conserve the dislocation tensor and lead to a

decrease in the free energy in the crystal. In the current formulation, the assumption

is made that the dislocation reaction responsible for the majority of density reduction

is controlled by self-annihilation, in which dislocations with the same character but

different polarity react, leaving behind no contribution to the resultant density.

Consider a single negative dislocation moving with a velocity, vre, relative to a field

of positive dislocations of density p+. If the positive field is randomly distributed, then

the negative dislocation passes within a certain distance, R, of a positive dislocation

at a frequency f given by

f = p+Rvrei . (3.17)
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If there are N_ /V negative. dislocations per unit volume moving through the positive

field, and an average segment length of L is eliminated every time one of the disloca-

tions passes within the distance above, then the rate of annihilation of the negative

density becomes
N_L_

V= - p+RVrel (3.18)

In Eq. 3.18, NIL/V is equivalent to the density of negative dislocations p-. Also,

the annihilation rate of the negative density must be equal to the annihilation rate

of the positive density of the same character. The annihilation rates must be applied

to all of the dislocation indices introduced in the generation evolution equations.

For the pure edge and pure screw dislocation density discretization considered, the

annihilation rates become

Pe+(ann) = e-(ann) = -- - Re (Dej+ +a_ (3.19)
P+ann a a a RsTa e+ a(.0

Ps+(ann) = s-(ann) = ~p3+p-s_ (S+ ). (3.20)

Without screw cross-slip or edge climb, the annihilating dislocations would have to lie

in the same slip plane. Although cross-slip and climb motion may not be addressed

explicitly within the present model , the relative magnitudes of capture radii account

for both processes implicitly. From Eq.'s 3.12, 3.13, 3.19, and 3.20, it is clear that the

generation depends linearly on the density, and the annihilation depends quadratically

on the density. Furthermore, if there is no net polarity of the dislocation density in

the initial state and p+ (t=o) = p-I (t=O), polar densities of the same character will be

equal for all time as determined through the generation and annihilation processes;

therefore, the internal variable space may be reduced by defining

a Pa+ + pa_ = 2p+ = 2pa (3.21)

a = a_ = 2p = 2pa, (3.22)
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and

a e+ = a (3.23)

Ia S+ =a a (3.24)

3.2.3 The Accumulation/Loss of Polar Density

The role of non-homogeneous deformation and the observed length-scale dependent

material response has been linked to the polarity of dislocation density. A more

common name for this density is geometrically-necessary dislocation density (Ashby,

1970) because the net polarity of a dislocation density has geometric consequences on

the crystal lattice. The GND/SSD classification of dislocation density has evolved to

the extent that these two populations are sometimes considered as separate entities

and treated differently. The polar dislocation density exists within a sea of statistical

density, and it is impossible to associate any one particular dislocation with either

population.

There are two extreme viewpoints in the decomposition of the dislocation density:

every dislocation is geometrically necessary, and every dislocation is statistically-

stored. Both statements can be correct, depending on the length scale of observation.

As discussed in Chapter 2, the definition of these quantities (GND/SSD) depends on

the size of the representative volume element (RVE) under consideration. El-Azab

(2000) considers nano-scopic RVE's in an attempt to describe discrete dislocation

dynamics within a continuum framework in which every dislocation is geometrically

necessary. The other extreme considers a macroscopic RVE in which geometrically-

necessary dislocations exist only if the body experiences large macroscopic strain

gradients (Gao et al., 1999). Although no one claims that deformation in crystals is

locally homogeneous everywhere, the simplifying assumption is made in some models

to describe the behavior of large RVE's. A key part of the concepts of geometrically-

necessary and statistically-stored dislocation density is the RVE over which they are

measured. The RVE used in any analysis must be smaller than the geometric features
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that are being investigated so that their influence can be clearly resolved.

The SSD/GND decomposition of dislocation density is useful in thinking about

the geometric consequences (or the lack thereof, as the case may be) of the total

density; however, a more natural description of a general dislocation population is to

describe the density by its mean and its polarity (Lardner, 1974). The mean density

for each character on slip-system a is given by

pa= (p+ + p-) (3.25)

S= s+ + PS_ ,(3.26)

and the polarity of a dislocation density is given by

= p - P- (3.27)

PaS:+ - ,a_ .P(3.28)

for each crystallographic density in the discrete set. Note, however that the dislocation

polarity, thus defined, may be positive or negative, depending on the magnitudes of

the positive and negative species. This mean/polarity classification describes the same

density state as the SSD/GND decomposition, but ideologically, there is a difference

in the two measures.

The SSD/GND decomposition implies an additive relationship between the GND's

and the SSD's,. whereas the mean/polarity decomposition has no such implication.

Both the GND and SSD densities are taken to quantify real densities, and not the

absence of density, in a volume; decomposition of a general dislocation density dis-

tribution into an SSD and a GND density leads to two non-negative measures of

density. In chapter 2, the SSD/GND decomposition was used to analyze dislocation

distributions in FCC crystals, and any negative crystallographic densities that were

found through the minimization techniques were interpreted as positive densities of

negative species, and not as an absence of positive species. Both positive and nega-

tive crystallographic GND densities were interpreted as additional dislocation density,
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above a norm of statistical dislocation density.

The mean/polarity decomposition of density employs a different metric. The

density mean quantifies the total dislocation density of a given dislocation character;

the mean is calculated as half of the total density of the same character on a given slip

system. The polarity of the dislocation density is the difference between the positive

and negative species of the same character. The mean is always positive and is a count

of the total number of dislocations in a volume. The polarity can be either positive or

negative, and a negative polarity can equally well be interpreted as an "absence" of

density instead of the "presence" of density of a particular sign. The polarity and the

mean are independent measures of the total dislocation density of a given character.

In the GND/SSD decomposition of density, the two measures, being both positive,

sum to the total density, but it is not clear what happens to the level of SSD density

in a crystal under non-homogeneous deformation, compared to the homogeneously

deforming crystal at the same level of plastic strain. Most often the SSD density is

assumed to be the same in both cases, leading to an implicit addition of density due

to the species flux divergence contribution in non-homogeneously deforming crystals.

The polarity of the density has no implication on the total level of density because it

quantifies the difference between two species.

The polar accumulation and/or loss of the individual species will first be consid-

ered in a small deformation analysis building upon the results of Chapter 2. The

small strain analysis will be used to build intuition as to dislocation processes in-

volved. Then a large deformation analysis will be conducted based on the finite

deformation kinematics in Section 3.1.

Small Deformation Analysis

Equations 2.1 and 2.2 may be rewritten in rate form in terms of the dislocation

polarity such that

e±- "- m", (3.29)
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g 1
= IV " -*pO. (3.30)

The directional derivatives of the crystallographic plastic strain rates lead to a change

in polarity of the dislocation densities on that slip system. If the change in the polarity

is positive, the strain rate relationship doesn't specify whether the change is due to

an excess accumulation of positive density, an excess loss of negative density, or some

combination of both. All that Eq.'s 3.29 & 3.30 specify is the change in the net

difference between the two densities.

The ambiguity of the relationship between strain rate gradient and the changes

in the density of individual dislocation species can be overcome by substituting the

Orowan relation in Eq. 3.14 for the strain rate in Eq.'s 3.29 & 3.30. By tracing the

dislocation flux divergence for each species, a unique set of polar accumulation/loss

equations for dislocation density due to non-homogeneous plastic deformation may

be written, but simple substitution of Eq. 3.14 into Eq.'s 3.29 & 3.30 does not solve

the ambiguity problem alone. An appeal must be made to the physics behind the

process. Surely, a flux divergence of positive edge dislocations cannot directly affect

the evolution rate of negative edge dislocation density. The flux of positive edge

dislocations definitely affects the population of negative edge dislocations through

the annihilation evolution equations, but the flux divergence is a rate measure of the

difference in the number of dislocations of a given type entering and leaving a material

point within the crystal. Likewise, the flux divergence of the negative edge density

should not directly affect the rate of change of the density of positive edge dislocations

at a material point. The same arguments may be applied to the flux divergences of

the screw densities, and they, too, may be thought to operate independent of one

another in affecting the dislocation polarity at a material point.

Another physical consideration has to be offered to discuss the cross accumula-

tion/loss terms, due to the discrete dislocation density basis used. Substitution of

the Orowan relation into Eq. 3.30 leads to terms wherein the gradient of the flux of

edge density, dotted with the p'-direction, leads to a change in the polarity of the

screw density. There seem to be no good arguments as to whether such a contribution
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should lead to accumulation of one of the screw densities or to a loss of the other.

Luckily, the cross terms become smaller and smaller as the dimension of the discrete

dislocation density space increases because the cross effect may be spread among

more dislocation densities. Lardner (1974) assumed that the cross terms would be

additive because a slight screw character was being added to an otherwise pure edge

dislocation line, but the "pure edge" densities and "pure screw" densities that are

used in the discretization should be regarded as terms of real densities they represent.

The "pure edge" density should not be literally interpreted but should perhaps be

understood as representing the portion of the density that behaves more like edge

dislocations than screw dislocations. In the aluminum study conducted in the next

chapter, the distinction can be made easily, based on the ability of the dislocation

density to cross-slip (screw) or not (edge). Perfectly straight dislocations are only

model constructs for actual curved dislocations in the material. Since it is ambiguous

as to whether a flux divergence of the edge density will lead to an accumulation or loss

of density of respective screw species, the assumption is made that it leads to both

symmetrically. The same reasoning can be applied to screw density flux in Eq. 3.29.

With the physical considerations applied to the individual density fluxes, the

following expressions quantifying the accumulation/loss of dislocation density of a

given species due to dislocation flux divergence may be written as

a-[V (pa +a) + +V (pa+"+) + v (p_ )- msign (r)(3.31)

P [7() [Ip _(a) + av (p"+V) + V (p _fa_)] msign (-F) (3.32)

vp+ +) + V (a+ +) + 1v p_,_ -pasign (.ra) (3.33)

= [v (p"J) + V (pa+±"+) + (V (p,"_)] - p sign (r") (3.34)

Inspection of Eq's 3.31-3.34 gives insight into how the crystallographic densities

change due to non-homogeneous plastic deformation; the gradients in the plastic

strain rate alone are not able to provide such insight. Suppose that the dislocation

density everywhere in the crystal has no initial polarity such that pl = 0 and p' = 0,
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and that the average velocity of each dislocation species, locally, is only a function of

the local density state and stress. A property of the average velocity for crystals in

this case is that

a b b b b_ a+ (P b b
+ e+ e- s+ s- Ve+ e- e+ Ps Ps

= e+ Pe+' Pe+, PS_ PS+)
= e \ e-'Pe PS+s)

because

b =b b =b
Pe+ Pe and s+ s-

and the crystal contains enough symmetry for the stress to equally activate both

positive and negative dislocation densities. Therefore, the positive edge density flux

at any material point will be the same as the negative edge density flux at that same

material point, and the same relationship can be derived between the positive and

negative screw dislocation densities. If this equality between the positive and negative

species is true everywhere in the crystal, but the level of density is allowed to vary

spatially in the crystal, then as the crystal begins to deform non-homogeneously, due

to the non-homogeneous distribution of statistical density, a polarity in the density

will arise locally from the previously unpolarized crystal. Furthermore, with the

positive and negative dislocation density flux the same at every point X, according

to

pa_ (X) ;-, (X) = p+ (X) f) (X)

p"_ (X) . (X) = p"+ (X) 7V- a (X)

the change in the dislocation density species must have the following relationship at
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every point X for small strains

Pe+(fux) (X) = -P e-(hX) (X) and Ps+(flux) (X) = -/_(flux) (X) (3.35)

based on Eq.'s 3.31-3.34, solely.

In this special case, the flux divergence equations lead to an increase in the positive

edge density and to an equal loss of negative edge density, and the mean density re-

mains unaffected. The mean density most definitely will be affected by the statistical

processes of generation and annihilation that occur with homogeneous plastic defor-

mation. Furthermore, if the density polarity is small compared to the mean density of

a certain character on a slip-system, the accumulation/loss of density due to further

dislocation flux divergence will not significantly affect the total dislocation density.

In general, the flux divergence contribution to the dislocation density evolution can

augment or lessen the total dislocation density of a given character depending on its

current polarity and flux divergence. Instances in which the species flux divergence

increases the existing polarity can lead to an increase in the total dislocation density

as well, and in cases where the species flux divergence decreases the existing polarity,

the total dislocation density can decrease as a result. In either instance, the change

in the total density due to the species flux divergence is only a fraction of the change

in the polarity of the density. In fact, the change in the mean density due to the flux

divergence of density takes the following form

Pe(flux) = V (pe) - e+ e+ -msign (r') (3.36)

"(f) P [v (S+S+_) - P- -posign (T") . (3.37)

The fact that non-homogeneous plastic deformation can lessen as well as aug-

ment the total dislocation density, compared to the density levels in homogeneously

deforming crystals, contradicts the physical arguments of Ashby (1970). Instead of

additional dislocations being required to satisfy lattice incompatibility, as compared

to the homogeneously deforming body as Ashby envisioned, the density merely de-
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velops a polarity sufficient to accommodate the geometric constraints. According to

the physical arguments presented above, the total density in both the homogeneously

and non-homogeneously deforming bodies may be different at the same level of plastic

strain, but there is some ambiguity as to which crystal would contain more density.

Interpreted within the additive SSD/GND density framework, the presence of a GND

density may lead to a reduction of the SSD density such that the total density is in-

creased or decreased. The change in the total density between the two states will

be only a fraction of the polarity in the crystal. In Ashby's model, the augmented

density led to a higher density of forest obstacles and greater strength in the non-

homogeneously deforming body than in the homogeneously deforming body. Since

the total density isn't necessarily augmented according to the physical arguments

presented the difference in the obstacle-generated strength in the two cases will not

be as great as anticipated. In instances where the density mean numerically domi-

nates the polarity, the contribution of the flux divergence to the evolution of the mean

will be insignificant compared to the generation and annihilation evolution equations,

leading to no measurable change in the forest resistance. Further discussion as to the

role of the polar density in leading to the experimentally-observed length-scale de-

pendent phenomena will be deferred until a set of non-local constitutive equations

are developed in Chapter 5.

Large Deformation Analysis

The small strain analysis assumed that there was no geometry change, no initial lattice

curvature, and no geometric character to the initial density. In the large deformation

analysis these assumptions will be relaxed so that the current geometry, the initial

dislocation state, and the initial lattice curvature crystal are considered. The results

of the small strain analysis in determining whether the polar dislocation density is

accumulated or lost will again be used in this discussion.

In Chapter 2, the incompatibility of the plastic strain was related to Nye's dislo-

cation tensor in Eq. 2.25 in the small strain analysis. The result was generalized by
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Dai (1997) for finite deformations in the form

A= - (VxFPT) T , (3.38)

where A is the dislocation tensor due to lattice incompatibility for finite deformations.

The notation in Eq. 3.38 is confusing as to how the derivatives are taken with all of

the matrix transposes that are performed; therefore, the indicial notation will be

used to evaluate the components of the tensors involved in the expressions to develop

the accumulation or loss of each dislocation species due to the flux divergence of

dislocation density. In indicial notation, Eq. 3.38 takes the form

Ai= -egqkFy, , (3.39)

where eqik is the alternating tensor and ",j" denotes "a/&Xj" with respect to the ref-

erence configuration. This definition of Nye's tensor is incomplete because it doesn't

account for the initial dislocation state of the crystal. Formally, with the initial plastic

deformation gradient equal to identity at every point X within the body according to

FP (X, t = 0) =I2-,

then

A (X, t = 0) = 0

according to Eq. 3.38. In the reference configuration, the plastic deformation gradient

is identity everywhere in the body since there is considered to be no plastic defor-

mation in the initial state. Strain is not a measure of material state. Equation 3.38

would require that there be no polarity in the initial dislocation density state. In

general, this cannot be true; therefore. Eq. 3.38 must be generalized to allow for an
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initial polarity in the reference configuration leading to

Aq = Ao(iq) - e6,kFP'kj , (3.40)

where AO is the Nye's tensor in the reference configuration. This is the definition of

the dislocation tensor in the deformed configuration that will be used in the analysis.

In rate form, Eq. 3.40 becomes

Aiq = -eqjkFPkj . (3.41)

Eq. 3.41 is a complete expression for the change in the dislocation density tensor in

the reference configuration due to the changes in the plastic deformation gradient.

In fact, it is the basis for the relationship that will be used to increment the polar

dislocation density in the non-local model presented in Chapter 5; however, it does

not contain much insight into the dislocation mechanics responsible for the changes.

By considering each of the components that contribute to A separately, a better un-

derstanding of the underlying phenomena responsible for the change in the geometric

character of the dislocation density can be discovered.

Substitution of the flow rule in Eq.3.2 for FP leads to

Aiq = -eqjk (LPFP),j . (3.42)

The product rule of differentiation leads to

Aiq = -ePqjk (LF + LFi 3) . (3.43)

Substitution of Eq. 3.3 and Eq. 3.40 into Eq. 3.43 yields

Aiq = -eqjk Z (/ImQ)ina) + am)ijnaQ), + Y m i a g(),) FP (3.44)
a

+LP (Alq - A(o)lq)
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In Section 2.3, it was shown that Nye's tensor could be related to lattice curvature.

In the general case considered in this derivation, an initial value of Nye's tensor in the

reference configuration must correspond to a lattice curvature in the reference con-

figuration. Neglecting the lattice curvature associated with small elastic deformation

gradients, the change in the lattice directions due to an initial distribution of polar

density can be written for small strains as

m o p 3 oyiAtoyjln ;-no iA to).,p t (3.45)

+ 1A a )iypay, -- pa )in", )2 A(o)kk (n~'Q) (0) (0 -

noama A(o~j Pa ), - p )yiA(oQ)jmaQ) (3.46)

+ A~j(Oys ( ((0 ggg - oig)1 .

Substitution into Eq 3.44 leads to the final result

A = maD(FPTn' x V) (3.47)
0

+ apa 0 &FPT n x (Aon' - .Itr (Ao)n)

- Zano F 0 x (Aopg - tr(Ao)0)]

+ Z m" ® [FpTma x (Aopa - .Itr(Ao)p)

- Zam ® [FPTpg x (Aom - 1tr(Ao)m)

+ LP (A - Ao) .

The first line on the right-hand side of Eq. 3.47 can be understood as the large defor-

mation generalization of the small strain relationship between the non-homogeneous

shearing rate and the dislocation tensor in Eq. 2.25. The rest of terms, which did

not appear in the small strain analysis, result from deformation on a curved crystal

lattice. The expressions on the second and third lines of Eq. 3.47 result from a lat-

tice Burgers vector that changes direction with respect to the material coordinates

in which the reference lattice configuration is defined. The expressions on the fourth
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and fifth lines of Eq. 3.47 result from a slip-plane normal vector that changes direc-

tion with respect to the material coordinates in which the reference configuration is

defined. The last line of Eq. 3.47 results from a constant dislocation flux through

a crystal whose geometric density is changing. According to the results of Eq. 3.47,

flux of a single dislocation species across a crystal with an initially curved lattice can

lead to the accumulation/loss of polar density with the same Burgers vector, and can

also lead to the accumulation/loss of polar densities with different Burgers vectors,

due to curvature in the slip plane.

The most general description of the plastic deformation of an initially curved

lattice has been considered. However, the initial lattice curvature compared to the

final lattice curvature at the end of a typical plastic strain gradient experiment (e.g.

thin-beam bending or thin-wire torsion) is small, given that the dislocation polarity

at the end of one these experiments is two orders of magnitude (p a 10 1 m-2 ) larger

than the total initial dislocation density of the crystal (p 10'm 2 ). Therefore, the

simplifying assumption can be made that AO ~ 0. Although not as rigorous as the

general case, this assumption results in great simplification in the time rate of change

of Nye's tensor:

Si= mg 0 (FPTng x 0+ LA. (3.48)
a

Whereas in the more general case with AO # 0 a material circuit and a lattice circuit

drawn around the initial dislocation state in the reference configuration led to two

different areas, the lattice and material circuits drawn around the initial dislocation

state with Ao = 0 correspond to the same closed loops. Since in Eq. 3.40 Nye's tensor

is calculated with respect to the reference configuration during the deformation of the

crystal, material circuits used to calculate the change in the Nye's tensor due to non-

homogeneous plastic deformation are equivalent to lattice circuits for AO = 0

As in the small strain case, the change in the dislocation tensor viewed in this form

doesn't uniquely specify the change in the crystallographic density. A minimization

technique could be implemented as done in Section 2.4 to find a reasonable crystallo-

graphic distribution, but considering each dislocation density flux individually leads
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to a unique description of the crystallographic dislocation density state. The plastic

flow rate LP , due to the density flux of a single species (, is defined as

LP _= bi 0 nosign (7) . (3.49)

Likewise, the time rate of change of the dislocation tensor A, due to the density flux

of a single species , is defined as

A b' 0 [FPTn x V (p)] sign (7) (3.50)

+ (pk) bc 0 ATn~sign (4i)

with the assumption that Ao ~ 0, and the total rate of change of the dislocation

tensor becomes

A=ZAK .(3.51)

From Eq. 3.50, it is clear that the flux divergence of a dislocation density with

Burgers vector bo will affect only dislocation densities with the same Burgers vector.

As in the small strain case, the non-homogeneous flux of edge dislocations will affect

the screw dislocation polarity and vice-'versa. However, unlike the small strain case, a

non-homogeneous flux of edge or screw density could affect the polarity of dislocation

density with tangent directions not contained in the slip plane. The change in the

dislocation tensor, due to the flux of a single species that contributes to the plastic

shear associated with slip-system a, can be decomposed into three rates of dislocation

density accumulation/loss such that

b_ p + 45b 0 mo + j b ng = A (3.52)

where

a = b - Acp a (3.53)
bO
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S+ = 7 boAmo, (3.54)

1
and = -Ana . (3.55)

The ,± terms in Eq. 3.52 should be read as "the time rate of change of the polarity

of the dislocation density", and the subscript j indicates a density of dislocation jogs

with tangent line direction parallel to the the slip plane normal ng. In the generation

and annihilation evolution equations, dislocation jogs were not explicitly introduced,

although jog density would have to be produced in order for edge dislocations to

climb and self-annihilate. For highly symmetric crystals, FCC and BCC crystals for

example, the dislocation density space does not necessarily need to be expanded to

explicitly account for jogs because the jog density can be represented by a combination

of edge density on a cross-slip plane and in-plane edge density.

Consider Figure 3-3 of a jogged edge dislocation line. The jog with a tangent line

parallel to the slip plane normal could be represented by addition of edge density on

the cross-slip plane and a reduction of edge density in the primary plane. The change

in the two edge dislocation densities to account for the polar jog density is

j= 0 (3.56)

-a b PO POpe = - pea. (.57)

for mg x mb = 0,

where poe, is the edge dislocation polarity on the cross-slip plane, po is the tangent

line direction of a positive edge dislocation on the cross-slip plane (also the in-plane

bi-normal direction), and pa is the tangent line direction of a positive edge dislocation

on the primary slip plane. By using such a transformation for dislocation jogs that

arise due to the geometric constraints, the basis of pure edge and screw dislocations

does not have to be expanded to explicitly include jog densities for highly symmetric

crystals.
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Using the same arguments as in the small strain case, in which a non-homogeneous

flux of positive edge dislocation affected only the positive edge density and both screw

dislocation densities, and a non-homogeneous flux of positive screw density affected

only the positive screw density and both edge dislocation densities, a unique set of

equations can be written for the change in the polar dislocation densities due to the

geometric constraints for large deformations. The equations take the form:

e+ (flux) = Ibo 2 b< (A"++ A"++ -A" p (3.58)

Pe-(flux)0 - be 2 b 8A+ + A" + A_) p (3.59)

S+(flux) = |b"- bo (&S+ + Ae+ + 2A_) mO (3.60)

Ps-(flux) = - 1bg- 2 b (A + A + A ) mA (3.61)

= Ib~2 b8- (A"+ + A" + A+ + A_) ug (3.62)

where A"+ is the time rate of change of the dislocation tensor due to a non-homoge-

neous flux of positive edge dislocations on slip-system a. Likewise, _ is the change

in the dislocation tensor due to negative edge dislocations, ia is associated with

positive screw dislocations, and A_ is associated with negative screw dislocations.

The total change in Nye's tensor due to dislocation flux divergence on slip system a

can be written in the form

A =A"++Ae +Aa++AS_ , (3.63)

and is simply the sum of the individual contributions of each density species on that

slip system. The jog density can be treated explicitly or converted into a combination

of edge densities in the primary slip plane and the cross-slip plane, as discussed earlier.

3.3 Constitutive Equations

The evolution equations of the generation and annihilation of crystallographic dislo-

cation density, as well as the accumulation/loss equations due to non-homogeneous
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dislocation glide, have been based on kinematic relationships. The total dislocation

density evolution is found by combining the three parts such that

P = Pagen) + Pann) + P(flux) (3.64)

No constitutive equations were introduced to capture any material-specific properties

and the evolution of those properties with deformation history. However, the evolu-

tion equations introduced three internal modeling functions: the average dislocation

velocity '4, the average dislocation length 5 , and the capture radius R6 for each dis-

location density of index . The material-specific behavior is introduced through the

forms of these three internal functions that in general may depend on the dislocation

density state, applied stress, crystal geometry, and temperature such that

= T(pC,t b, t, n(, ) (3.65)

1 = 4 (pC,'t',b t, n, 0) (3.66)

R = k (pC, t, bc, t6, nc, 0) , (3.67)

where 0 is absolute temperature. Along with the geometry of the dislocation contained

in b and t , another direction, no, which specifies the unit normal of the area swept

by a moving dislocation, is included as part of the dislocation geometry.

The average dislocation velocity is most directly related to the strengthening of

the crystal. For a material to strain harden, the average velocity must decrease with

increasing density faster than the density increases. The strain rate is the resultant

of a product between the dislocation density and the average velocity. Therefore, to

maintain a constant strain rate as the density increases, the average velocity neces-

sarily decreases. If the velocity were independent of the density and only a function

of the applied stress, strain softening would be observed. To strain harden a material,

the dislocation mobility must decrease with increasing density, such that increasingly

larger stresses must be applied to sustain the same level of plastic activity in the

material.
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The average segment lengths most directly control the growth of dislocation den-

sity. They are used to quantify the increment in density for an increment in dislocation

flux. The capture radii most directly control the annihilation rate of density. The

average segment lengths, along with the capture radii, dictate the evolution profile of

the dislocation density with plastic deformation and determine the saturation level of

density. Explicit forms of the three constitutive functions will be developed to model

behavior of aluminum single crystals in tension and the bending of thin beams.
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Volume = V

Figure 3-1: Schematic of an expanding
leading to the generation of dislocation

dislocation loop during crystallographic slip
density and plastic shear.
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Figure 3-2: Schematic of an expanding dislocation loop idealized as a composition of
discrete line segments forming a closed loop.
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Initial jogged dislocation geometry

Cross-slip plane
N

PO
na

Dislocation line

Primary slip
ba = bb

Final dislocation geometry

Cross-slip plane

b
/O

Dislocation line

.4

P /

Primary slip plane

bo = bo

Figure 3-3: Schematic of a jogged edge dislocation which can be represented as com-
bination of edge dislocations on the primary and cross-slip planes.
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Chapter 4

Application of Local Model to

Anisotropic Behavior of

Aluminum Single Crystals

The "local" model will consider only the dislocation evolution equations associated

with the generation of new density and the annihilation of old density. The polar

accumulation/loss equations associated with non-homogeneous deformation will not

be considered as part of the simulation. The adjective "local" refers to the property

of the model that allows the behavior at a single material point to be calculated

independently of the behavior at the material points around it. This is in contrast to

the "non-local" models in which the behavior of a single material point is dependent

on the behavior of material points around it. Inclusion of the polar accumulation/loss

equations leads to a "non-local" model because the change in the dislocation polarity

is a function of the dislocation flux divergence, and calculation of the flux divergence

depends on the activity of multiple material points.

Since the local constitutive model doesn't include the changes in the dislocation

polarity due to non-homogeneous plastic deformation, the model will not capture

the length-scale dependent material behavior observed. During bulk deformation

processes the total dislocation density can be orders of magnitude larger than the

polarity of the density; therefore, the local model will be able to capture the evolution
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of bulk material properties at macroscopic length scales. The model will be applied

to investigate the plastic anisotropy of aluminum single crystal in tension, where the

effects of microscopic plastic inhomogeneities and resulting dislocation density should

be negligible compared to the bulk generation and annihilation of dislocation density

in determining the plastic evolution of the crystals.

4.1 Selection of Discrete Dislocation Basis

Single crystal aluminum was chosen as the model material on which to test the

density-based internal state variable model. The material was chosen because it has a

highly symmetric crystal structure (FCC) leading to geometrically similar dislocation

densities, and because pure aluminum and its alloys are widely used in engineer-

ing applications. Continuum simulations of FCC single crystals have been concerned

mainly with the plastic response of copper (Cuitifio and Ortiz, 1992; Bassani and Wu,

1991), and to our knowledge, there has been no successful continuum simulation of

the plastic behavior of single crystal aluminum with existing continuum crystal plas-

ticity models. The mechanical behavior of single crystal aluminum is quite different

from that of copper. For reasons that will be discussed in Section 4.6, single crystal

copper turns out to be a relatively "easy" crystal material to simulate, but it is much

more difficult to capture the mechanical behavior of aluminum single crystals.

The first step in modeling a crystalline material in this dislocation density frame-

work is to choose a dislocation density discretization. Since the model will be applied

to capture the plastic response of single crystal aluminum at room temperature, where

aluminum is known to cross-slip readily due to its high stacking fault energy, a total of,

eighteen distinct dislocation densities in the reduced basis will be used. The Burgers

vectors, as well as the tangent line directions, are given in Table 4.1. Of the eighteen

dislocations, there are twelve pure edge dislocations, one for each < 110 > {111}

slip-system, and there are six pure screw dislocations, one for each < 110 > Burgers

vector, that are permitted to slip freely on both of the glide planes in which they

reside. More generally, the total density may be considered to be composed of two
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populations of dislocations. The screw densities represent the fraction of the popula-

tion that may cross-slip, and edge densities represent the fraction of the population

that cannot cross-slip.

4.2 Selection of Constitutive Functions

In developing the internal modeling functions, each geometrically similar dislocation

density will have the same functional form and material constants for dislocation

mobility, average length, and capture radius. The motion of individual dislocations

during plastic deformation may be viewed as a percolation process in which dislocation

lines follow the path of least resistance, subject to the local stresses applied to the line.

Most of the time the lines are immobile, pinned by forest dislocations. With sufficient

activation such an obstacle can be overcome, thereby allowing the dislocation to move

rapidly to the next set of obstacles. Assuming that the average dislocation velocity

can be written for the density of lines in an explicit form, the dislocation density

mobility will be described by an activated glide model first proposed by Kocks et. al.

(1975). The average density mobility will take the following functional form:

i," = veo exp - 1 - (4.1)ex~ kO Sep +Sed

ia = vso exp F I (' ,, (4.2)

where the subscripts e and s denote edge and screw, respectively. In Eq.'s 4.1 and

4.2, vo is a reference velocity, AF is the activation energy required to overcome the

obstacles to dislocation motion, k is Boltzmann's constant, T is the resolved shear

stress on the dislocation density glide plane, sp is the intrinsic lattice resistance, sd

is the resistance due to interactions with forest dislocations, and the parameters p

and q determine the influence of the applied stress on the activation energy. The

resolved shear stress Fa is a function of the applied stress and crystal geometry. For
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dislocation densities in slip-system a, the resolved shear stress is approximated by

Ta-- (Ma 0 n a) ,(4.3)

following Bronkhorst et al. (1992).

The dislocation resistance sd is a non-linear function of the dislocation density

state. Dislocations may impede the motion of gliding dislocations either by piling

up on the glide planes, or by piercing the glide plane as a forest that the mobile

density must cut. The dislocation resistance will be modeled as though it is primarily

due to forest dislocation density interactions; however, reactions between the glide

dislocations and other dislocations that lie in parallel glide planes will also be taken

into account. Although these dislocations do not pierce the glide plane, statistical

densities of dislocations parallel to the glide planes have been observed to increase

the resistance to slip (Argon, 1969). The strength will take the following functional

form:

s= Jb| ' G p, (4.4)

where s is the resistance encountered by dislocation density of index , p is the

shear modulus, and GCC is a matrix detailing the strength of interactions between

dislocations of index and C. By considering the symmetry of the FCC crystal, and

the types of junctions known to form between different dislocations, G C can be filled

with six independent coefficients Go - G5 (Lomer, 1951; Kocks, 1959; Franciosi and

Zaoui, 1982).

The first two coefficients, Go and G1, account for in-plane interactions, and the

other four coefficients, G2 - G5 , account for out-of-plane interactions. The Go coeffi-

cient describes the interaction between dislocations with the same Burgers vector and

parallel slip planes (self-interaction); however, there is no resistance between edge and

screw dislocations with the same Burgers vector on parallel slip planes. The G1 coef-

ficient describes the interaction between dislocations on parallel slip planes, but with

different Burgers vectors. The other four interaction coefficients contain dislocation
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densities that pierce the planes of the gliding density.

The crystallographic densities have been defined as line length per unit volume,

but a totally equivalent definition may be used in which the density is defined as a

number density piercing a unit area with a normal direction parallel to the dislocation

tangent direction. The two measures of dislocation density yield the same magnitude

of density. The piercing density of dislocation density pC with tangent line direction

t on a plane with a unit normal n4 becomes 1n4 tjpC. The four interaction coef-

ficients describing interaction between the out-of-plane forest density and the glide

dislocations must account for not only the strength of the interaction, but also the

piercing density on the glide plane.

The interaction coefficient G 2 describes the interaction between dislocation densi-

ties with the same Burgers vector, but on a different slip plane (cross-slip interaction)

given by G2 = g921n - tSi, where 92 accounts for the strength of the interaction and

t! accounts for the piercing density. Likewise, the coefficient G3 = 931nc - t(I

describes the interaction between dislocation densities that result in a junction with a

< 110 > Burgers vector in either of the slip planes of the dislocations involved (glissile

junction). Finally, the remaining two coefficients represent dislocation interactions

that form sessile junctions. The weaker of the two, the Hirth lock, is described by

G 4 = 941n - t-|, and the stronger of the two, the Lomer-Cottrell lock, is described

by G5 = 451n -Q. The six coefficients fill the strength interaction matrix according

to the types of interactions anticipated between the gliding density and the forest

density. Table 4.6.2 shows the arrangement of the six interaction coefficients in the

strength sub-matrix for the edge dislocation interactions.

A simple functional form for the dislocation capture radii R will be considered.

Two constant distances. Re and R, will be considered; they describe the critical

distance necessary for annihilation between edge and screw dislocations, respectively.

Two distances are necessary because the ability of screw dislocations to cross-slip

dictates that the screw density should have a larger capture radius than edge disloca-

tions that cannot cross-slip. The edge capture radius is based on the ability for edge

dislocations on parallel planes to climb short distances toward one another.
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Perhaps the average dislocation segment length is the most difficult constitutive

function to understand and physically motivate. Consider again the "generation"

evolution equations, found in Eq.'s 3.12 and 3.13, and their relationship with the

plastic strain rate, found in Eq. 3.14. The average dislocation segment length relates

an increment of the density flux associated with a particular species to an increment in

density due to its glide motion. The scale of the average segment length is on the order

of the diameter of the average dislocation loop. The motion of kinks on dislocation

lines contributes to the plastic strain rate on a slip system, but does not contribute to

the increase in dislocation density on that system. The length scales representative of

kink motion are much smaller than the magnitude of the average segment length in

these constitutive functions. The functional form of the average segment length could

in theory be directly determined by analyzing dislocation dynamics simulations from

the viewpoint of.this kinematic framework. The simulations conducted by Kubin and

co-workers (Kubin et al., 1992; Kubin et al., 1998) are probably the most applicable.

In their simulations, the dislocation lines are discretized as a series of small edge

and screw dislocation segments. Since the same discretization is used in this density

model, analysis of the dislocation evolution in their discrete simulations could lead

to a functional form of the "average segment length." To our knowledge, dislocation

dynamics researchers have not published such an analysis of dislocation evolution;

therefore a simple functional form of the average segment length will be used.

The average dislocation segment length lT will be assumed to be solely a function

of the dislocation density state of the material. Dislocation segments may get trapped

in certain sections of the crystal where the forest density is considerably greater than

in the majority of the crystal. As the forest density increases, more sections of the

dislocation loops may get trapped, and the average length of a dislocation segment

decreases. The following functional form will be used to model IC:

If = 1 , (4.5)

where Hc is the average segment length interaction matrix. The Hc matrix will be
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assumed to be composed of six coefficients HO - H5 that follow the same convention

as the coefficients in the GC( matrix, and are based on the type of interactions an-

ticipated between the gliding dislocation and the forest density. Because the Ho and

H1 coefficients detail the interaction between dislocations in parallel planes, we will

ignore the these contributions to 1, by setting HO = H, = 0. The coefficients H2 - H5

detail the interactions with dislocations that pierce the slip plane. The out-of-plane

coefficients are determined by the formula Hi=2,5 = hi nC - tC , where hi quantifies

the strength of interaction and nC - tCI quantifies the dislocation piercing on the slip

plane. The values of HC are, in principal, independent of the values in the strength

interaction matrix, GC, but the HCC matrix takes the same form.

4.3 Finite Element Implementation of Local Con-

stitutive Model

The constitutive model for single crystals aluminum was implemented into a the

commercially available FEM package ABAQUS/Standard as a user-defined material

(UMAT) (Hibbitt et al., 1998) and was used with first-order brick (C3D8) elements to

simulate the orientation dependence of the stress/strain behavior of aluminum single

crystals subject to uniaxial tension at ambient temperature. The ABAQUS/Standard

UMAT is part of an implicit algorithm that enforces nodal equilibrium at every time

increment. The inputs to the UMAT interface are the total deformation gradient at

time t, F (t); the Cauchy stress at time t, T (t); an estimate as to the total deformation

gradient at time T = t + At, F (r); and a set of state-dependent variables at time t.

The state-dependent variables in this formulation are the crystallographic dislocation

densities, pC, and the plastic deformation gradient, FP, with respect to the reference

configuration. Although the plastic deformation isn't a true state variable (it is a

hereditary integral of the plastic deformation rate in the material), it allows for the

conceptual separation of the total deformation gradient into the plastic and elastic

deformation gradients. Along with these two state variables, the time rate of change
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of the dislocation density at time t, ,5 (t), and the time rate of change of the second

Piola-Kirchhoff stress at time t, T (t), are also given to aid in the calculation.

Given the input variables to the UMAT interface, the subroutine is responsible

for calculating the Cauchy stress at time r, T (-r); the plastic deformation gradient

at time r, FP (r); the crystallographic dislocation density at time -r, p (r); and the

material jacobian at time -r, C (-r). The material jacobian is defined as

C 9T (-) (4.6)
(9Et (7) '

where Et (r) is the relative strain tensor. It is defined by

Et (-r) -= In (Ut (-r)) , (4.7)

where Ut (r) is the relative stretch tensor. The relative stretch tensor is evaluated

from the polar decomposition of the relative deformation gradient, Ft (-r), such that

Ft (r) = Rt (-r) Ut (r) . (4.8)

The relative deformation gradient is determined by the following expression

Ft (-r) = F (r) F-' (t) . (4.9)

4.3.1 Time Integration Procedure

The determination of the state at time -r from the inputs to the UMAT subroutine

employs a backward Newton solving algorithm. This section will develop the relevant

equations that are iterated to solve for the state at the new time increment.

The constitutive equation found Eq. 3.7 may be combined with Eq. 3.1 to form

' (r) = L [FP-T (-r) F T (-r) F (r) FP-' (r) - 12 . (4.10)

Assuming that LP is constant over the time increment, time integration of the plastic
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flow rule in Eq. 3.2 leads to

FP (7) = exp [AtLP (-r)] FP (t) . (4.11)

The time increments taken during the course of the deformation are typically small,

allowing for the exponential in Eq. 4.11 to be approximated by a Taylor series to give

FP (T)-= [12 + AtLP (r)] FP (t) (4.12)

Inversion of Eq. 4.12 to the same level of accuracy with the substitution of the crys-

tallographic slip rates for the plastic velocity gradient from Eq. 3.3 leads to

FP- (-r) - FP' (t) 12 - AtLZA 0 (r)S8] (4.13)

where

S" =M" (9 n a(4.14)

and

1 a (T) = - ( (-r), PC (T)) . (4.15)

The crystallographic strain rates are also functions of the crystalline geometry, but

for notational simplicity the geometry dependence is not explicitly included in this

section. Substitution of Eq. 4.13 into Eq. 4.10 leads to the following relationship:

i () T -At toT(r ,p (-r)) C" (4.16)

where

tr = L [B- I 2 ] (4.17)

B = FP~T (t) FT (-r) F (7) FP- (t), (4.18)

C = L [K] ,(4.19)

K" = BSg + SaT B. (4.20)
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All of the quantities in Eq.'s 4.17-4.20 are known. In Eq. 4.16, the second Piola-

Kirchhoff stress has been written as a function of itself and the crystallographic

dislocation density at time -r.

The dislocation density at time r can be written in the following form

p, (r) = p, (t) + At,5 (T (T) P, (r)) (4.21)

The time rate of change of the dislocation density is taken as constant over the

time increment with the value at the the end of the increment. The portions of the

dislocation density evolution equations that are considered here are the generation

and annihilation contributions, but not the polar accumulation/loss contributions,

and, similar to the crystallographic strain rates, the dislocation density time rate of

change is also a function of the crystal geometry, although it is not explicitly included

in the notation.

Equations 4.16 and 4.21 have T (r) and p (-r) posed in such a way that they are

functions of T (r) and p (r) and known quantities. Therefore, they can be iteratively

solved to find solution at the next time increment. In strength-based crystal plasticity

models, the crystallographic strengths are most often updated explicitly because they

are found to change very little over the time increment. This allows for a large

improvement of the computational performance of the analysis. In contrast, the

dislocation density state variables grow exponentially and, therefore, must be included

in the Newton iteration when solving for the state at time -r.

A column vector, Z, is created by combining the second Piola-Kirchhoff stress

tensor as a six-dimensional vector and the 18-dimensional crystallographic dislocation

density vector in the following manner:
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The solution of the stress and

Newton method is given by

T1[ (-r)

T 2 2 (T)

T 33 (7)

T 1 2 (-

T 23 (7)

T 3 1 (-r

Pi (T)

P2 (T)

P18 (T)

dislocation

T 2

T3

T4

T5

T 6

Pi

(i-)

(7-)

(T)

(7)

(7-)

(T)

(T)

(4.22)

[P18(7) I
density state after the nth iteration of the

Zn+l = Zn - F-' [W],

T ( ) - T' + At T a (rn (7), p,( (7)) Ca

p$n (7) - p (t) - At/i (i (7-), P' (7))

C9T.-r ,,-)) Ea

9p.(r)

where T is 24x24 square matrix with unity on the diagonal and zeros everywhere

else. In Eq. 4.24, the W, column vector has the same format as the Z vector, and

in Eq. 4.25, the tensors T, T', and C' are written as column vectors also. The

initial guess as to the stress and dislocation density state at time r is done through
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(4.25)
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an explicit calculation where

Tn= (r) = T (t) + AtT (t) (4.26)

and

p$o (7-) = p, (t) + AtV (t) , (4.27)

where T (t) is approximated by

-T (t) - T (t - At)
T (t) =t LAt

and

/ (t)= f ( (t), (t)).

After the iterative solution is found to within a small tolerance for the set of non-

linear equations, the state is updated. The plastic deformation gradient at time -r is

updated using Eq. 4.12, and the elastic deformation gradient is calculated by using

Eq. 3.1 and inverting the plastic deformation gradient. Once the elastic deformation

gradient at time r is obtained, the Cauchy stress at time T is calculated through

Eq. 3.6, and the crystallographic orientations are updated through Eq. 3.4.

4.3.2 Calculation of the Material Jacobian

For small changes in the deformation gradient over the time increment, the relation-

ship between Et (-r) and Ut (-r) can be approximated by

Et(T) =U(r) - 12 . (4.28)

Differentiating this equation, the following result is obtained

dEt ()edUt ().(4.29)
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Therefore, the material jacobian can be approximated by

aT(T)
alUt (T) (4.30)

For simplicity, indicial notation will be used to develop the equations associated

with the derivation of the material jacobian. Inversion of Eq. 3.6 takes the form

Tij = [det (Fe)]1 (FimTmnFjn) . (4.31)

Taking the partial derivative of the Cauchy stress with respect to the relative stretch

tensor leads to

aTj
aUt(ki)

= [det (F')] [SmkiTmnF n + FzeQmnkiF i

+F TmnSjnkli- FemTmnFn (F,, Spqki), (4.32)

where

aF*.

Ut(ki)

&Ut(ki)

(4.33)

(4.34)

From a combination of Eq.'s 3.1, 4.8, 4.9, and 4.13, the elastic deformation is

approximated by the following expression

L8mj (4.35)-- Z" (i-) AtSa(mi)]

Differentiation of Eq. 4.35 with respect to the relative stretch tensor yields

Simi= Rt(ik) (-r) Fe (t) - Rt(ik) (T) F m (t) Z a (T) ALtS(mj)

-Rt(in) (7) Uttnp) (7) Fen (t) 1 Ja AtS( (4.36)
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where

ja .a (4.37)
aUt (-r)

The partial derivative of the second Piola-Kirchhoff stress with respect to the

relative stretch tensor can be found by differentiating Eq. 4.16. The result that

operation is

Qijkl= Dijkl - At : Ca J, - At aJa , (4.38)
a a

where

Dijki = 1 jnmnk1 (4.39)

ijk = 2 ijmn [EmpkiS0(pn+ Spnkl(pm) (4.40)

with

8 ijkl = F (t) Ut(im)Fmj (t) + F*, (t) Ut(mk)F"j (t) . (4.41)

To complete the set of equations necessary to determine the material jacobian

an analytical form for ja must be found. The crystallographically resolved plastic

strain rate is a function of the second Piola-Kirchhoff stress and the crystallographic

dislocation density state; therefore, Ja can be written as

J. = T l + .U9PC (4.42)23 (Tkl allt(ij) apC (9Utti,

By differentiating Eq. 4.21 it can be shown that

___ pC Off~ -' Of t 0ThBk
O = _C - A f)t .O 'A aT() (4.43)

aUttii apC aikI (9Uttij)

Substitution into Eq. 4.42 yields

Jia = Ma
Uj ilk1 jj ,i (4.44)
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where

Ma-= + [u - At ( t (4.45)

Substitution of this result into Eq. 4.38 and solving for Qijkl leads to the final expres-

sion

QAt a il-i [Dmnkl -- Z At1/anC ni] (4.46)

The analytical expression for the material jacobian is an approximate solution,

but the level of error is the same as the level of error in calculating the Cauchy stress

and the dislocation density state at time r as a result of the Taylor expansions that

were used to simplify the calculation. Note, the material jacobian derived here is

non-symmetric, with Cijkl # Cklij. The analytical jacobian is much faster to calculate

than a jacobian calculated through perturbation techniques; furthermore, an accurate

jacobian reduces the number of iterations that the implicit finite element algorithm

must perform to obtain an equilibrium solution and provides a good prediction as to

the deformation gradient at the next time step.

4.4 Selection of Material Constants

Along with the anisotropic elastic constants (Huntington, 1958) needed in Eq. 3.7, the

constants introduced in the three constitutive functions for the dislocation mobility,

average segment lengths, and capture radii contain the material-specific properties

needed to model the evolution of the dislocation density state and stress/strain re-

sponse for any loading history. The parameter space introduced by the constitutive

functions is quite large, and able to provide a rich description of the material.

Most of the material constants may occupy only a limited range of values. Kocks

et al. (1975) suggest that the activation energy AF should lie in the range

0.05 < < 2 . (4.47)
A~Vb -~
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Likewise, the exponents p and q also typically lie in the following ranges:

0 < p < 1 , and 1 < q < 2 . (4.48)

The strength interaction coefficients Go - G5 are related to forest interactions and

the amount that a dislocation line bows before it can cut through an obstacle; there-

fore, the interaction coefficients Go, G 1, and 92 - 95 should all be less than unity.

Furthermore, latent hardening experiments have shown that the out-of-plane inter-

actions should be stronger than the in-plane interactions, and a strength interaction

scale has been suggested by Franciosi and Zaoui (1982). The segment length interac-

tion coefficients Ho - H5 should also have a limited range of numerical values related

to the strength interaction coefficients. A general guideline is that Hi Gi for all

interactions.

Using the rough guidelines, values of the strength and average segment length

interaction coefficients were determined by considering the stress/strain response and

deformation stability for different crystallographic orientations. Single slip was in-

vestigated using the < 123 > orientation. The description "< 123 > orientation"

of a crystal in this context means that the < 123 > crystallographic direction was

parallel to the tensile axis. In this orientation, only one slip-system was highly ac-

tive, and the value of the Go-coefficient could be determined because it dominated

the stress/strain behavior. Likewise, the poly-slip orientations considered( < 111 >,

< 100 >, and < 112 >) were also used to determine values of the coefficients, al-

though their analysis was more complex. With more than one slip-system potentially

active during the deformation, sub-matrices including only the active systems could

be constructed, and the influence of the different interaction coefficients could be

probed by considering the stability of deformation modes to orientation perturba-

tions, as well as the appearance of certain coefficients in some the sub-matrices but

not others. For slight misalignments with the tensile axis, all six of the potentially

active slip-systems in the < 111 > orientation are observed to contribute to the plas-

tic deformation, while only four of the eight potentially active slips systems in the
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misaligned < 100 > orientation are observed to contribute to the plastic deforma-

tions. The interaction coefficient associated with the Hirth-lock, G4, appears in the

sub-matrix of active systems for the < 100 > orientation, but not in the sub-matrix

for the < 111 > orientations. Taking advantage of such differences in the plastic

deformation observed for different orientations, the importance of certain interaction

interaction coefficients in some orientations (but not in others), and the stability of

deformations modes to misorientations provides a methodology of determining rep-

resentative values for the model parameters. The values of the strength interaction

coefficients and the average segment length coefficients may be found in Table 4.6.2.

To decrease further the parameter space, edge and screw densities were given the

same mobility. In the mobility functions, the values of the activation energy, AF, and

the exponents which control the stress dependence, p and q, were taken from Bala-

subramanian and Anand (2000), in which the values were determined by considering

the temperature-dependence of the rate-dependent yield strength of polycrystalline

aluminum. The remaining coefficients were determined by fitting the orientation-

dependent stress/strain data of aluminum single crystals at room temperature and

by maintaining dislocation densities of the same magnitude as observed in experi-

ments. The remaining values of all the constants used to capture the mechanical

properties of aluminum may be found in Table 4.3.

4.5 Simulation Geometry, Boundary Conditions,

and Initial State Conditions

The model will be used to simulate single crystal tension experiments conducted by

Kocks (1959) and by Hosford et al. (1960). The four crystallographic orientations

mentioned in the previous section will be investigated: < 111 >, < 100 >, < 112 >,

and < 123 >. Both experimental investigations detail the many aspects of the tests

that will be included in the simulation geometry, boundary conditions, and initial ma-

terial state. In the deformation of single crystals, the geometry, boundary conditions,
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and initial state are critical in determining the plastic evolution of crystal. Individual

crystals in a polycrystalline material are constrained by their neighboring grains, and

the anisotropic behavior of each crystal is countered by the anisotropic behavior of its

neighbor leading to a more homogeneous deformation mode than observed in single

crystals. The ability of the Taylor models to capture the texture evolution of poly-

crystals is a result of this quasi-homogeneous deformation in polycrystals (Bronkhorst

et al., 1992). Due to the strong anisotropy in single crystals, and the unconstrained

free surfaces, the details are very important in defining the simulation.

In their experiments, the investigators used similar specimen geometries and

boundary conditions, and in this theoretical investigation, the geometry and bound-

ary conditions will closely follow from the experimental conditions documented. The

simulation geometry used was square cylinder where the length of the cylinder par-

allel to the loading direction was nine times greater than the cross-sectional width.

The geometry was discretized into 72 first-order brick (C3D8) elements as shown in

Figure 4-1, leading to 576 materials points.

The simulation boundary conditions were set to model a finite crystal in tension.

The normal direction of the top and bottom surface was fixed to remain parallel

to the tensile axis. The top and bottom surfaces were also fixed so that they were

unable to rotate relative to one another about the tensile axis, but the surfaces were

able to contract in cross-sectional area. The lateral surfaces with normal directions

that were initially perpendicular to the tensile axis were left traction-free. Lastly, the

whole geometry was required, on average, to remain aligned with the pulling direction.

Similar boundary conditions were used in the experimental investigations by using

grips on the specimens were not free to rotate during the tests. A specimen-average

true tensile strain rate of 10-3 S was applied to the geometry for 100 s to ultimately

reach a 10% strain level in each of the four orientations.

The initial material state conditions that had to be specified were the initial crys-

tallographic orientations, the initial dislocation density state of the material, and

temperature. In their experiments, Kocks (1959) and Hosford et al. (1960) both doc-

ument slight misalignments (within 2') of the samples with the nominal orientations
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tested. The exact orientation of the test crystals was not documented. For reasons

that will be discussed in the next section, the initial misalignment of the crystal with

the tensile axis has a pronounced effect on the deformation history of single crystals,

especially for orientations in which two or more slip-systems are potentially active. A

one degree misalignment was included for the three orientations that had more than

one equally favored slip-system as an attempt to simulate the real initial condition

of the experiments. The exact orientations were chosen so that there was a large

difference in the initial Schmid factors on the highly-stressed slip-planes. The Euler

angles used to simulate the four nominal orientations may be found in Table 4.4. The

three Euler angles 0, q, and w are used to create a second-order rotation tensor Q
that relates the crystal basis vectors to the global reference frame according to

e; lobal - Qerystal , (4.49)

and

cosqOcosw - sin Osinw cos9 sinqOcosw - cosqOsinw cosO sinw sin0

Q = -cososinw - sinqcoswcos6 -sinosinw+cosocoswcos9 coswsin6

sin # sin 0 - cos # sin 0 cos 0
(4.50)

The initial crystallographic dislocation density was distributed equally among the

edge and screw dislocation densities so that half of the density was initially of edge

character, and the other half was initially of screw character. The initial dislocation

density was set to 4.16 x 1010 m- 2 for each crystallographic edge dislocation density

and 8.33 x 1010 m-2 for each crystallographic screw dislocation density, such that

the total initial density was po = 1 x 1012 m- 2 (pob 2 = 8.2 x 10-8). Although the

dislocation density state was not documented in the experiments conducted by the

investigators cited earlier, the level of density chosen corresponds to a typical density

found in annealed crystals (Basinski and Basinski, 1979). The simulations were con-

ducted at room temperature (298 K), and isothermal conditions were assumed during

the deformation history.
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4.6 Results and Discussion

4.6.1 Summary of Experimental Observations

In three of the orientations considered, two or more slip-systems are equally stressed if

the crystal is perfectly aligned with the tensile axis. The < 111 > orientation has six

equally favored slip-systems, while the < 100 > has eight equally-stressed systems.

The < 112 > orientation has only two highly-stressed slip-systems. The < 123 >

orientation has one highly-stressed slip-system. The orientations of the specimens in

the reported experiments deviated from the ideal orientation by no more than two

degrees (Kocks, 1959; Hosford et al., 1960); however, the symmetry of the slip-systems

with the tensile axis was broken, leading to variations in the resolved stresses on the

potentially active slip-systems.

From x-ray and slip-trace analysis, as well as observations of the macroscopic de-

formation of the tensile specimens, even slight crystallographic misalignment has a

pronounced effect on the deformation mode of the oriented crystals. The < 111 >-

oriented crystals are observed to deform uniformly by activating all six slip-systems,

thus maintaining the orientation of the < 111 > direction substantially parallel to the

tensile axis. The < 100 > orientation, which has eight potentially active slip-systems,

follows a more complicated deformation path. Initially, all eight slip-systems are ac-

tive, but after a small amount of plastic strain (6 ~ 0.01), the specimens are observed

to transition from an isotropic deformation to a plane strain deformation, with the

predominant crystallographic slip occurring on two pairs of the cross-slip systems.

The < 100 > direction maintains its alignment with the tensile axis during the defor-

mation; however, during the plane strain deformation mode, there is significant aster-

ism in the < 100 > pole that is not observed during the initial isotropic deformation

of the crystal. The < 112 >-oriented crystals are observed to deform plastically in

a single-slip mode with secondary slip on the other highly stressed slip-system. The

dislocations created during the deformation of < 112 >-oriented crystals are known

to form Lomer-Cottrell locks, widely considered as the strongest dislocation junctions

in FCC crystals; as a result, the < 112 >-oriented crystals are observed to have the
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greatest plastic resistance among crystal orientations which primarily undergo single

slip.

The stress/strain response of the different orientations is most effectively charac-

terized by comparing the responses to the behaviors observed in copper, the most

widely tested and simulated FCC crystal. Figure 4-2 depicts the stress/strain be-

havior of aluminum single crystals as determined by Kocks (1959) and Hosford et al.

(1960), while Figure 4-3 depicts the stress/strain behavior of single crystal copper

specimens as determined by Takeuchi (1975). The experimental data is compared

most effectively if the stress levels measured for the different crystals are normalized

by their shear moduli. Both crystals have anisotropic elastic behavior; therefore, a

scalar shear modulus is calculated for each crystal by calculating the shear modulus

resolved on the slip-planes. The calculation takes the form:

1
A = - (C - C12 + C44) , (4.51)

3

where Cu, C12, and C44 are the anisotropic elastic constants with respect to the FCC

unit cell, leading to PAA = 25 GPa and pcu = 37 GPa. The normalized stress/strain

curves determined from the experimental data for both crystals can be found in

Figure 4-4.

As in copper, the < 111 > orientation of aluminum has the highest initial hard-

ening rate and reaches the highest stress levels. The curvature of the stress/strain

curve in aluminum is much greater, and the saturation level of stress is reached at

lower plastic strains, as compared to copper loaded in the same orientation. The

< 100 > orientations of the two crystals have drastically different behaviors. Both

aluminum and copper initially have high rates of hardening for small plastic strains.

Copper crystals continue along that path and ultimately reach stress levels that are

roughly half that of the stress levels reached for the < 111 >-oriented crystals. The

< 100 >-oriented aluminum behaves quite differently. As the material transitions

from the isotropic deformation mode to the plane strain deformation mode, the hard-

ening rate transitions from the initial high slope to a very low hardening slope, and
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the final stress levels reached are between one-fourth and one-third of the stress levels

reached by the < 111 >-oriented aluminum crystals. The < 112 > and < 123 >

orientations that predominately deform by activating a single slip-system also exhibit

different behavior for the two materials. Both crystals initially have a period of Stage

I hardening with low hardening rates. Copper crystals transition to Stage II harden-

ing with a high linear hardening rate, and then come to Stage III hardening behavior

with falling hardening rates as the rate of dislocation density accumulation begins to

fall. The aluminum crystals transition from Stage I directly to Stage III behavior at

earlier strain levels than copper, without the appearance of the high linear hardening

found in Stage II.

The stress/strain evolution in single crystals has been shown to be very sensitive

to the accuracy of the initial orientation, especially for orientations in which two or

more systems are equally favored (Davis et al., 1957). Likewise, the exact orientations,

with the 1' misalignments, used in the simulations are most likely not the same as

in the experiments, but there should be reasonable agreement in the deformation

modes observed in the experiments and simulations. The constants in the model

were set to approximate closely the stress/strain curves documented in experiments

so as to understand the underlying processes and dislocation evolution responsible

for the mechanical behavior of the crystal.

4.6.2 Comparison of Simulations and Experiments

The results of the simulations are shown in Figure 4-2, along with the experimentally

determined values of the stress/strain behavior for the different orientations. The

simulations reasonably capture the stress/strain relationships for the four different

orientations considered. Along with the stress/strain profile for each orientation, the

evolving dislocation density profile may also be investigated. First, gross measures

of the state will be considered, such as the total level of dislocation density and the

character, edge or screw, of the whole density during the deformation, then a more

detailed analysis of the dislocation structure will be conducted of the two orientations

that have the most potentially-active slip-systems. The dislocation profile will be
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investigated at a material point in the center of the specimen geometry, away from

the constrained ends, because experimental investigators typically look at the center

when conducting microscopy of deformed materials.

Consider Figure 4-5 that shows the total dislocation density, defined as the sum of

all the crystallographic densities in the material, during the deformation of the mate-

rial. The dislocation density appears to grow linearly with plastic strain, although the

slope is different for each orientation. In experiments this linear relationship is often

observed, and it has led to phenomenological expressions of density evolution as linear

functions of plastic strain rates (Cuitinio and Ortiz, 1992). The crystal orientation

with the most total density (< 111 >) is also the strongest, and the crystal orienta-

tion with the least density (< 123 >) is the also the weakest. Consider Figure 4-6

that shows the ratio of edge dislocation density to the total dislocation density of the

crystal. This is a gross measure of the total character of the underlying dislocation

state of the material. Initially all of the orientations start out with a ratio of one

half as set by the initial conditions of the simulations. The orientations that deform

by activating multiple slip-systems (< 111 > and < 100 >) reach steady-state ratios

around 0.75. The single-slip orientation (< 123 >) has a much higher concentration of

edge dislocations relative to screw dislocations, showing a ratio of 0.97. In single crys-

tal tension experiments, researchers looking at dislocation microstructures associated

with single slip have commented that the dislocation density observed is composed

almost completely of edge dislocations (Argon, 1969), as predicted by the simulation.

The < 112 > orientation shows a transition behavior. The crystal initially follows

the path of the single-slip behavior: then, at 6% strain it undergoes a transition, and

the ratio of edge dislocation density to screw dislocation density appears more in line

with the orientations that activate multiple slip-systems.

Dislocation models have been proposed that characterize only one scalar density

for each slip system (Cuitiio and Ortiz, 1992). A simple distribution of density as

a function of in-plane tangent direction is assumed, and effective piercing densities

are calculated using that distribution so that the dislocation density resistance may

be calculated using an interaction matrix similar to the form adopted in Eq. 4.4.
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The results of the current simulations suggest that such an assumption may not

accurately describe the density evolution in plastically deforming crystals and that

the dislocation density distribution may depend on the mode of plastic deformation.

The sensitivity of the initial misorientation for the crystals with multiple slip-

system activation was investigated for the < 111 >, < 100 >, and < 112 > orienta-

tions. The results are shown in Figures 4-7, 4-8, and 4-9, respectively, for orientations

ranging from a perfectly-oriented crystal to orientations with a maximum of 20 mis-

alignment. The perfectly-oriented < 111 > simulation traces the experimental data,

and for misorientations of one degree or less, the agreement is quite good. The

perfectly-oriented < 100 > simulation deviates from the experimental data of alu-

minum, and qualitatively resembles the behavior of single crystal copper in the same

orientation. The < 100 > simulation with 0.50 misorientation closely resembles the

behavior of the perfect orientation, but the crystals with misorientations of 10 and 1.50

exhibit different behavior and transition to a lower hardening behavior after start-

ing out on the same initial slope as the perfectly-oriented simulation. At 20 off-axis,

both orientations of the crystal experience some degree of single slip. The alignment

appears to be less critical in the nominally < 112 >-oriented crystal. Except for

the perfectly-aligned crystal, there is little variation in the stress/strain behavior of

the misoriented crystals with increasing misalignment as compared to the other two

orientations.

The deformation modes observed in the experiments are also captured by the

simulations. The deformation modes in the < 111 >- and < 100 >-oriented crys-

tals are the most interesting to compare and contrast because they have the most

potentially active slip-systems. The shear rates on the active slip-systems during the

history of the deformation of the < 111 >- and < 100 >-oriented crystals are given

in Figures 4-10 and 4-11, respectively. In the figures, the Schmid and Boas notation

is used for the twelve slip-systems where the letters A, B, C, and D denote the (111),

(111), (111), and (111) slip planes, respectively; and the numbers 1, 2, 3, 4, 5, and 6

denote the Burgers vectors [011], [011], [101], [101], [110], and [110], respectively. The

initial misorientation in each crystal breaks the symmetry of the potentially active
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slip-systems with the tensile axis. In the case of the < 111 >-oriented crystal, the

deformation is able to maintain activity on all six slip-systems, and converges toward

the symmetric activation on all slip-systems after initially diverging. In the < 111 >

orientation, the arrangement of the active slip-systems relative to the tensile axis

promotes the symmetric activation of all slip-systems. A non-symmetric deformation

mode causes lattice rotation that increases the Schmid factors on the less-active sys-

tems and decreases the Schmid factors on the highly-active systems, thus stabilizing

the deformation mode. The < 100 >-oriented crystal shows a significantly different

behavior. At the start of the deformation history, all eight potentially-active systems

contribute to the plastic deformation, but the deformation mode quickly diverges

from one in which all eight are active, to one where four of the slip-systems account

for the majority of the plastic deformation. The four systems consist of two pairs of

slip-systems in which the screw dislocations may cross-slip. As a result, the macro-

scopic deformation appears isotropic in the early stages, and ends in plane strain after

a small amount of tensile elongation. The symmetric activation of the two cross-slip

pairs does not cause any lattice rotation of the crystal. The asterism of the pole that

is observed in the experiments is due to non-homogeneous deformation on a length

scale smaller than the length scale of observation. The cross-slip pairs are not equally

active locally, and activation of a single cross-slip pair leads to the deviations in the

pole figure that are experimentally observed.

The differences in the dislocation density evolution between the < 111 > and

< 100 > orientations detail the misorientation dependence of the stress/strain evo-

lution. The history of the crystallographic dislocation density evolution mirrors the

strain-rate history of the crystals. Consider Figures 4-12 and 4-13 that show the accu-

mulation of crystallographic dislocation density during deformation for the < 111 >-

and < 100 >-oriented crystals, respectively. The crystallographic dislocation density

evolution in the < 111 >-oriented crystal also shows that the dislocation density,

which initially diverges due to the crystal misalignment, converges at larger strains

toward two values: one for the edge densities, and another for the screw densities.

The crystallographic dislocation density evolution in the < 100 >-oriented crystal
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significantly differs from that of the < 111 >-oriented crystal. In Figure 4-13, the

dislocation density plotted on a log scale shows that the greatest change in the dis-

location density occurs in the first few percent of tensile strain, and during the de-

formation, the dislocation density roughly spans four orders of magnitude. Whereas

in the < 111 > orientation, the distribution of dislocation density was converging,

the dislocation density in this orientation diverges. The most abundant crystallo-

graphic densities are found in the four slip planes that accomplish the majority of the

deformation in the plane strain mode described.

Since both the edge and screw dislocation densities are calculated for each slip-

system, the general character of the dislocation density can be evaluated. Figure 4-14

and Figure 4-15 show the evolving character of the active dislocation densities during

deformation of the < 111 >- and < 100 >-oriented crystals, respectively. The initial

condition was set so that half of the initial population was split evenly between edge

and screw densities. As the deformation progressed, the edge dislocation densities

became roughly three and a half times greater than the screw density with the same

Burgers vector. The character in this simulation is a product of the difference in

the capture radii of the edge and screw dislocations; however, there are also other

methods within the framework to model the character of the evolving density. By

manipulating the ratio between the reference velocities, Vo, in the edge and screw

mobility equations, the character of the dislocation density can also be controlled.

From the dislocation evolution equations found in Eq.'s 3.12, 3.13, 3.19, and 3.20,

it is evident that as the mobility ratio changes, the relative density of the slower

species will increase; and as the ratio between the capture radii changes, the relative

density of the species with the larger capture radius will decrease. The result is robust

and independent of the dislocation density profile set as the initial conditions of the

simulation. A more detailed analysis of the influence of different material parameters

on the stress/strain behavior and dislocation evolution may be found in Appendix A.

The magnitude of the dislocation density, along with its character, translates into

the crystallographic strength of the crystal. Figure 4-16 and Figure 4-17 show the

resistance to dislocation motion on the potentially active slip-systems for the < 111 >-
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and < 100 >-oriented crystals, respectively. The six resistances in the < 111 >

orientation increase in a stable manner, just as do the dislocation densities. Initially,

the tensile stress and the crystallographic resistances are close in magnitude, while

at ten percent elongation, the crystallographic resistances are roughly four and a half

times the tensile stress. At ten percent strain, the crystallographic strengths of the

crystal are still increasing, while the stress appears to be reaching a saturation level.

The separation occurs because as the dislocation density increases, the same plastic

strain rates may be attained with lower average velocities as shown in Figure 4-18,

enabling the ratio of the applied stress to the crystallographic strength to decrease

with increasing density, as shown in Figure 4-19.

The history of the crystallographic strengths in the < 100 > orientation shown

in Figure 4-17 again reflects the bifurcation (rapid evolution of a symmetry-breaking

initial imperfection) discussed earlier. The weakest systems are those with the most

in-plane density, and the systems with the highest strengths are those that become

inactive and have the lowest densities. Furthermore, the spread in the strengths also

demonstrates the strong off-diagonal dominance of the strength-interaction matrix

associated with forest interactions.

The orientation-dependent behavior of single crystal aluminum is quite different

from the behavior observed in copper, as discussed earlier. The dislocation density

model yields some insight into the underlying reasons for the different behaviors.

The ability of screw dislocations in aluminum to cross-slip readily, in contrast to the

inability of those in copper to do so, is one major factors in the difference. In the

model, the ability of the screw density to cross-slip led to the use of a large capture

radius for the screw dislocations in annihilation. The large capture radius in turn

led to a high curvature in the < 111 > stress/strain curve, and to the disappearance

of Stage II hardening in the < 112 > and < 123 > orientations. The dynamic

recovery of dislocation density occurs at much lower density levels in aluminum than

in copper. The differences in the behavior of the < 100 >-oriented crystals is a much

more complicated story.

As misorientations are applied to a nominally < 100 >-oriented crystal, the tran-
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sition from the activation of eight slip-systems as found in copper to the activation of

four slip-systems in aluminum, depends not only on the ability of screw dislocations

to cross-slip, but also on the relative weakness of the Hirth lock as compared to the

other out-of-plane dislocation interactions. The eight potentially active slip-systems

in the < 100 > test appear as four pairs of cross-slip systems. As the misorientation

is applied, one of the slip-systems in each cross-slip pair has the higher Schmid factor,

while the other of the pair has one of the lower Schmid factors of the eight active

systems. As demonstrated earlier, the most active systems show larger dislocation

densities. The ability of the screw dislocations to cross-slip, however, increases the

mobile density on the system with the lower Schmid factor and promotes the increase

of edge dislocations on the other slip-system. Examination of the dislocation density

evolution in Figure 4-13 shows this mechanism. The edge dislocation density on the

two slip systems with the lower initial Schmid factors is lower than the correspond-

ing screw dislocation density; but as the deformation proceeds, the edge density on

these systems eventually exceeds their screw dislocation density, and ultimately it

approaches the value of the edge dislocation density on the systems with the higher

initial Schmid factors. The transition from the activation of all eight slip-systems to

four slip-systems, which is aided by the ability of the screw dislocations to cross-slip,

would not be possible if not for -the relative weakness of the strength interaction coef-

ficient, g4, associated with the Hirth lock compared to the other out-of-plane strength

interactions: 92, 93, and g5. The forest interactions led to an off-diagonal dominance

in the strength interaction matrix GC. The weakness of the Hirth lock interaction

coefficient enables the plane strain deformation mode to have a lower hardening rate

than in the isotropic deformation case. It is not clear how such physical understanding

could be incorporated into a phenomenological form that could be used in association

with the strength-based internal state variable models of continuum crystal plasticity.
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Figure 4-1: The specimen geometry used to simulate the anisotropic plastic deforma-
tion of Aluminum single crystals in tension.
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Figure 4-5: Total crystallographic dislocation density evolution during plastic defor-
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Figure 4-7: Effect of initial misorientation on the stress/strain of a nominally < 111 >-
oriented single crystal.
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Figure 4-10: A history of the crystallographic plastic strain rates of the six potentially
active slip-systems of a < 111 >-oriented single crystal. Initial misorientation is 10.
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Figure 4-11: A history of the crystallographic plastic strain rates of the eight poten-
tially active slip-systems of a < 100 >-oriented single crystal. Initial misorientation

is 10.
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Figure 4-13: A history of the crystallographic dislocation density generated during
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Figure 4-14: The ratio of edge dislocation density to the total density for each active
Burgers vector during the tensile elongation of a < 111 >-oriented single crystal.
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Figure 4-15: The ratio of edge dislocation density to the total density for each active

Burgers vector during the tensile elongation of a < 100 >-oriented single crystal.
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Figure 4-16: A history of the evolution of slip-system strengths in the six potentially
active systems during the tensile elongation of a < 111 >-oriented single crystal.
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Figure 4-17: A history of the evolution of slip-system strengths in the eight potentially
active systems during the tensile elongation of a < 100 >-oriented single crystal.
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Figure 4-18: Decomposition of the crystallographic strain rate on one of the six
equally-active slip-systems for a perfectly-oriented < 111 > crystal into the density
on that slip plane, both edge and screw, and their respective average velocities.
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Figure 4-19: Normalized resistance and normalized applied shear stress on one of the
six equally-active slip-systems for a perfectly-oriented < 111 > crystal during tensile
elongation.
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Table 4.1: Geometry of dislocation density discretization used to model aluminum
single crystals.

p Index bo to Slip System

1 [110] 12 B6

2 1[101] [121] B4

3 -[011] 1[ 11] B2

4 -[110] 1[112] A5

5 1 [101] - [121] A3

6 1[011] [211] A2

7 1[110] [112] D5

8 [101] 1 [121] D4

9 1[011] 1[211] D1

10 [110] L[112] C6

11 1[101] 1[121] C3

12 1[011] 7=[211] C1

13 1[110] [110] B6 & C6

14 [101] 1 [101] B4 & D4

15 [011] [011] A2 & B2

16 1[110] 1[110] A5 & D5

17 1 [101] 1 [101] A3 & C3

18 - [011] [011] Cl & Dl
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Table 4.2: Strength interaction sub-matrix, GC, for the edge dislocation interactions.
The average segment length interaction matrix, HC takes the same form, but with
different values. The values used to model single crystal aluminum are given below.

Go G1 G1 G4 G5 G3 G4 G3 G5 G2 G3 G3

G1 Go G, G5 G4 GC G G2 G3 G3 G4 G

G1 G1 Go G3 G3 G2 G5 G3 G4 G3 G5 G4

G4 G5 G3 Go G1 G1 G2 G3 G3 G4 G3 G5

G5 G4 G3 G1 Go G1 G3 G4 G5 G3 G2 G3

G3 G3 G2 G1 G1 Go G3 G5 G4 G5 G3 G4

G4 G3 G5 G2 G3 G3 Go G , 1 G4 G5 G3

G3 G 2 G3 G3 G4 G5 G1 Go G1 G5 G4 G3

G5 G3 G4 G3 G5 G4 G1 G1 Go G3 G3 G2

G2 G 3 G3 G4 G 0 G G4 G5 G3 Go G1 G1

G3 G 4 G5 G G 2 G3 G5 G4 G3 G1 Go G1

G3 G5 G4 G5 G3 G4 G3 G3 G2 G, G, Go

Strength interaction coefficients:

Length interaction coefficients:

Go = 0.10, G1 = 0.22, Gi=2,5 = gi n tC
where 92 = 0.30, g = 0.38,

94 = 0.16, 95 = 0.45

Ho = 0.00, H1 = 0.00, Hi=2,5 = hi n - tC
where h2 = 0.05, h3 = 0.12,

h4= 0.03, h5 = 0.25
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Table 4.3: Material parameters used for single crystal Aluminum simulations.

Elastic Coefficients C1 = 108 GPa

C12 = 61.3 GPa

C44 = 28.5 GPa

= 25.0 GPa

Dislocation Mobility Coefficients VeO = vso = 1 M/s

AF = AF, = 3.0 x 10-19 J/atom

Sep= sp = 2 MPa

Pe = P, = 1.1

q, = q,= 0.141

Capture Radii Re = 18.6 nm

R = 93.0 nm

Burgers Vector bj = 2.863 A

Table 4.4: Euler angles used to simulate misoriented single crystals with 10 misorien-
tation.

Orientation 9 (0) O () . (0)

< 111 > 55.6430 135.5119 0.0000

< 100 > 89.5774 90.9063 45.0000

< 112 > 34.4494 -43.9860 90.0000

< 123 > 36.6992 153.4349 180.0000
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Chapter 5

Application of Non-Local Model

to Lattice-Incompatibility

Plasticity

5.1 Ideal Double-Slip Geometry and Selection of

Discrete Dislocation Basis

An idealized crystalline geometry is chosen to investigate the length-scale-dependence

of crystal plasticity on the micron scale. The idealization is made to reduce the

dimension of the crystallographic dislocation density from 36 densities in the full

three-dimensional problem to 8 dislocation densities in the idealized geometry. A

three-dimensional non-local model has been developed previously, based on a hybrid

crystallographic strength/dislocation state variable formulation (Arsenlis and Parks,

2000), the results of which show the same length-scale-dependence as an idealized

two-dimensional model with the same formulation (Dai et al., 2000). Therefore, an

idealized crystalline geometry appears to be adequate for investigating the role of the

polarity of the dislocation density in crystal plasticity at microscopic length scales.

The idealized geometry that will be used is a planar crystal with two slip-systems.

The double-slip geometry, initially proposed by Asaro (1979) and then refined by
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Dai (1997) , has been derived from a special orientation of three-dimensional FCC

crystals, leading to an effective double-slip geometry. The FCC crystalline orientation

which leads to this condition is depicted in Figure 5-1. Plane strain deformations

occurring in the plane with a normal direction parallel to the [110] direction can be

accomplished by activating a combination of four slip systems on two slip planes.

The plane strain condition is enforced by requiring equal activation of the [101] (111)

slip-system with the [101] (111) slip-system and equal activation of the [101] (111)

slip-system with the [011] (111) slip-system. Equal activation of the two pairs of

slip systems leads to an effective double-slip geometry, in which the "effective" slip-

systems become [112] (111) and [112] (ill). The complex three-dimensional geometry

can be simplified into a two-dimensional one described by two angles, q and 4, as

shown in Figure 5-2. Here # is the angle that the symmetry axis makes with the

global coordinates, and 4 is the half-angle between the two "effective" slip-systems.

The value of V' that will be used in the analysis is 300, which is approximately the

angle derived from the FCC geometry.

The crystallographic basis that will be used is of the same type as previously

used to model the anisotropic behavior of single crystal aluminum. Four dislocation

densities, corresponding to positive and negative edge and screw densities, for each

slip-system will be used to characterize the crystal, leading to a total of eight crys-

tallographic dislocation densities. A schematic of the "crystallographic" dislocation

density geometries included in the model is shown in Figure 5-3. Although the model

considers only plane strain deformations, the dislocation motion is three-dimensional.

The motion of the (effective) edge dislocations remains in the plane; however, the con-

tribution of the screw densities to the in-plane plastic deformation results from their

motion out of the plane.

Planar dislocation models have been constructed such that only edge dislocations

are used to characterize the state of these idealized crystals (Needleman, 1995), but

in the context of those models, edge dislocation sources must be included explicitly

to evolve the dislocation density state. Furthermore, the edge dislocations in Needle-

man's idealized crystal do not contribute to dislocation forest hardening since they
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do not pierce the other slip-system, and as a result the obstacle resistance does not

evolve. Including the screw dislocation densities in the present model removes the

necessity to include explicit sources of density, due to the evolution equations intro-

duced in Section 3.2. Also, the forest density can evolve with deformation because

the screw dislocations of one system pierce the plane of the other slip-system.

Since all of the plastic deformation occurs in this two-dimensional plane, non-

homogeneous plastic slip will cause the lattice planes to bend in the plane, leading to

a polarity in the edge dislocation densities only. Polarity in the screw densities would

cause the crystal to twist out of the plane, which is not permitted in the plane strain

condition. Polarity in the jog density would cause the crystal to bend out of the plane,

which is also disallowed by the plane strain boundary condition. The idealized crystal

geometry results in a great simplification in the dislocation polarity such that only

four of the eight dislocation densities are affected. Since there are only two non-zero

components of Nye's tensor to be accommodated through multiple combinations of

the four edge densities in the model, the polar accumulation/loss equations developed

in Section 3.2.3 will be used to determine the "crystallographic" dislocation profile of

the dislocation tensor in this underconstrained system.

5.2 Selection of Constitutive Functions

If the set of functions quantifying the average dislocation velocity, capture radius,

and average segment length as described in Section 4.2 were implemented with-

out any modifications to model this idealized crystalline geometry, no length-scale-

dependence associated with non-homogeneous plastic deformation would be predicted

by the simulations. Even with the evolution of the dislocation polarity included in

the general evolution equations for density, the model would not predict a length-

scale-dependence. The functional forms found in Eq.'s 4.1, 4.2, and 4.5 all depend on

the mean dislocation density, and are independent of the polarity of the dislocation

density. The dislocation junction strengths in Eq. 4.4 and the average segment-length-

interaction coefficients in Eq. 4.5 were independent of the polarity of the interacting
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dislocation densities. The total strength interaction coefficients, Go - G5 , did de-

pend on the character of the dislocation density to calculate the piercing density, but

even the character of the interacting dislocations did not affect the strength of the

junctions, 92 - 95. The analysis of the density accumulation/loss equations associ-

ated with the flux divergence of dislocation density in Section 3.2.3, showed that the

time rate of change in the total dislocation density due to the flux divergence of the

dislocation density was only a fraction of the rate of accumulation of polarity in the

density. Furthermore, the difference between the total dislocation density in the non-

homogeneously deforming crystal and the homogeneously deforming crystal could be

positive or negative for the same level of plastic deformation, depending on the exist-

ing polarity and current flux divergence. In situations in which the mean numerically

dominated the polarity of the density, the time rate of change in the total density

due to the flux divergence was insignificant compared to the time rate of change in

the total density due to the statistical processes of generation and annihilation.

Since the change in the total dislocation density including the polar density ac-

cumulation/loss equations is most likely small for most plastic deformation histories,

the stress/strain behavior of a crystal following the constitutive behavior modeled

in Chapter 4 would be largely unaffected by the polarity of the dislocation density.

Therefore, the functional forms of the constitutive equations that were used to model

single crystal aluminum must be modified to capture the length-scale-dependence

observed in experiments both in magnitude and direction. The thin beam bending

experiments conducted by Stblken and Evans (1998) showed that the polarity of the

dislocation density increased unambiguously the normalized bending strength of the

beam. The change of the magnitude of the bending strength due to the polarity of

the density is on the order of the tensile strength of the films as shown in Figure 5-4.

The magnitude of the polarity of dislocation density in the beam bending experi-

ments scales with curvature multiplied by the Burgers vector. The magnitude of the

dislocation polarity in the 12.5 Am thick beam at 10% surface strain is approximately

1014 m2, while the total dislocation density, according to the simulations conducted in

Chapter 4, is on the order of 1016 m2 , yet the small relative difference in the polarity
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(~ 1%) leads to first order effect in the strength. Any modification in the constitutive

equations must be able to reproduce the magnitude of the length-scale-dependence

observed in experiments.

The constitutive equations can be modified such that the length-scale-dependence

is incorporated directly, by modifying Orowan's relation, or indirectly, by modifying

the evolution equations for the statistical density. The plastic strain rate on slip-

system a can be written as a function of the mean and the polarity of the dislocation

density through the following expression:

functions of the mean and the polarity of the dislocation density, and is the

average velocity of the mobile density of each species, written as a function of the

resolved shear stress and the mean and polarity of the complete set of dislocation

densities. The "direct" modifications change the level of plastic slipping activated

for a given resolved stress level by making the mobile density and/or the average

dislocation velocity decreasing functions of dislocation polarity.

The statistical evolution of dislocation density (generation and annihilation) can

be written as a function of the mean and the polarity of the dislocation density

through the following expressions:

-Pm)+ ( P( m)_ (Tpa) 14m~- (,, p± ) , (.)

~(m~ ( SCp ) ()+ SmPs f) a a )

P +P (M, ~) P Sm)R (M~) [(~+(a ~me T,~p)
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(5.4)

where poim) denotes the immobile density of each species on slip system a, written

as functions of the mean and polarity of the dislocation density. To effect scale-

dependent strengthening, the "indirect" modifications to the evolution equations must

increase the rate of change of the density mean by making the average segment length

and/or the capture radii decreasing functions of dislocation polarity. Each of these

possibilities will be considered individually, and the relative merits of each technique

for capturing the length-scale-dependence in crystal plasticity will be discussed.

Consider first the effect of reducing the mobile dislocation density in the presence

of density polarity. The functions for the mobile and immobile dislocation densities

in Eq. 's 5.1-5.3 that were used in the "local" simulation of aluminum were

PPm)e+ = + 7 a (5.5)

PSm)e- = P m+ - (5.6)

pm)s+ = S + a (5.7)

Pirn)s- = - 1 p (5.8)

a a a a a a a C).(59

Pim)e+ = Pm)e- = P9) -+ = Pm)s_ = 0. (5.3)

In the local simulations, the polarity was identically zero because the polar accumula-

tion/loss contribution to the evolution of the dislocation density was not included in

the simulations. As stated earlier, these functions for the mobile density do not intro-

duce a length-scale-dependence after the polar accumulation/loss equations have been

added to the general evolution equations for dislocation density, but the functions can
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be altered by considering the polar density to be immobile, yielding a length-scale

dependence. Possible modifications of the mobile and immobile dislocation density

might take the form

a ~ ~ aa I 1 \
P m)e+ = P m)e- = m 2 + p Pe 2 P±) (5.10)

Pm)s+ m)s_ = min a + Pa 1 a (5.11)

Paim)e+ = max (0, pa) (5.12)

Pam)e_ = max (0, -pa) (5.13)

Paim)s+ = max(0p 8) (5.14)

P(im)s+ = max (0, -ps) (5.15)

In a density state with no polarity, these functional forms yield the same values for

the mobile and immobile dislocation density as the previous set of functions. In a

polarized density state, the second set of functions lead to a smaller mobile density

than the first set of functions by requiring the absolute polar density of each species

to be immobile.

Treating the polar density as immobile requires that greater velocities be activated

by greater stresses in order to retain the same crystallographic plastic shear rates.

This is one of the techniques used implicitly in every existing non-local crystal plas-

ticity model (Fleck and Hutchinson, 1997; Shu and Fleck, 1998; Gao et al., 1999; Dai

et al., 2000) because the "effective" polar density calculated in each of these models

always increases the inferred dislocation density and is never permitted to contribute

to the plastic deformation (e.g. through an Orowan equation), but its presence is

assumed to increase the resistance to plastic deformation. The argument for reducing

the mobile density follows from the physical arguments of Ashby (1970). In his inter-

pretation, the polar density is viewed as an additional amount of density needed to

maintain lattice compatibility, which was not present during "homogeneous" plastic

deformation. Since these dislocations were needed to maintain the coherence of the

lattice structure, they could perhaps be viewed as not as mobile as the statistical
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density, which had no geometric consequence; at the extreme limit, the polar disloca-

tions could be considered sessile. At the dislocation density mechanics level, however,

there appears to be no good reason to adopt the underlying assumptions upon which

this method is based.

The motion of polar dislocations within a representative volume element (RVE)

in a crystal does not affect the dislocation polarity in that RVE. The generation

and annihilation evolution equations create and remove dislocation dipoles and other

statistical density arrangements whether the participating dislocation densities re-

sponsible have a polar character or not. The only method of changing the density

polarity within an BVE is by having unequal in-flux and out-flux of polar density,

as discussed in Section 3.2.3. Instead of maintaining the local lattice continuity by

requiring the absolute polar density be immobile, the model could maintain local

lattice continuity merely by having the same number of polar dislocations entering

and leaving the volume as required by the zero flux-divergence condition, without

imposing a mobility constraint on the density due to the presence of polarity.

Consider the extreme case in which the size of the RVE is chosen so small that

only a few dislocation lines were contained within it, and the majority of these dislo-

cations would be considered to be polar within the small RVE. A mobility constraint

on the "polar" density within the RVE would, in the limit, lead to an immobile (total)

density state globally! The initial dislocation state of a well-annealed crystal most

closely resembles this dislocation density state. During the annealing process, dislo-

cation density is principally removed by statistical annihilation, leaving a crystal with

an abundance of polar dislocations. The length scale of diffusion associated with the

annihilation of statistical density is related to 1/ OP), while the length scale of diffu-

sion associated with the polar density is related to the grain size. In most engineering

materials, the spacing between dislocations is much smaller than grain diameter, and

the mobility constraint does not appear to be valid for such density conditions. At its

most basic level, this method of incorporating material length-scale-dependence relies

on the ability to distinguish polar dislocations from statistical dislocations, which, in

general, is not possible.
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The other direct method of including the length-scale-dependence would be to

reduce the average dislocation mobility in the presence of polar dislocation field.

Within the functional form of the average dislocation velocity selected in Eq. 4.1,

there are three ways that the influence of the polarity of the dislocation density could

be incorporated. The dislocation strength interaction matrix, G C, could be polarized,

the forest interactions associated with the polar density could be stronger compared

to the interactions with statistical density, or a back stress resulting from the spatial

arrangement or polarity could be considered.

The dislocation interaction matrix, G C, used to model the anisotropic plastic

behavior of aluminum single crystals did not consider the difference in strength in-

teractions between dislocation densities with different polarities and characters. The

strength of interaction, g, was based solely on the slip systems of the two interacting

densities. The simplification made in the model is not an accurate description of an

actual crystal, but should be valid for cases in which the dislocation polarity doesn't

influence the behavior. In general, the reactions between dislocations can depend

both on the polarity of the dislocations, as well as their character (Wickham et al.,

1999).

The possible dependence of the strength interaction matrix on the polarity of the

density may be of interest in modeling the length-scale-dependence of crystal plastic-

ity. For simplicity, the discussion will be limited to the forest interaction between a

polarized set of edge dislocations on two slip-systems, since these are the only densities

which become polar in the present idealized crystal geometry. A polarized strength

interaction matrix would lead to two interaction coefficients between the four edge

densities: g++ (= g--), which describes the interaction between dislocations of like

sign on the two slip-systems, and g+- (= g-+), which describes the interaction be-

tween dislocations of opposite sign on the two slip-systems. The average of the of the

two polar interaction coefficients, j = 1/2 (g++ + g+-), is effectively the simplified

value that was used in the local model described in Chapter 4, and it corresponds to

an effective strength interaction coefficient for models that consider the evolution of

statistical densities only.
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For the interaction matrix to be considered polarized, one of the two polar coeffi-

cients must be greater than g, and the other must be less than g. Suppose g++ > g+-

so that the interaction between densities with like signs is stronger than the inter-

action between densities with different signs. States of density polarity in which the

positive densities outnumber the negative densities on both slip-systems would lead

to a greater resistance in mobility of the positive species on the slip systems and to

a lesser resistance in the mobility of the the negative species on the slip systems,

both compared to the unpolarized dislocation density state with the same mean.

Therefore, a given plastic strain rate could be accomplished by the negative densities

moving at faster velocities, due to the weaker resistance, and the positive densities

moving at slower velocities, due to the stronger resistance, without significantly af-

fecting the level of applied stress needed to maintain the plastic shear rate. Although

the polarization of the strength interaction matrix is supported by theoretical findings

(Wickham et al., 1999), it doesn't lead to a measurable length-scale-dependence in

crystals with polarized dislocation density states compared crystals with unpolarized

density states. Polarization of the strength interaction matrix would weaken the resis-

tance for some densities while strengthening the resistance of others simultaneously,

leading to a small (if any) net effect. Furthermore, the direction of change in the

applied stress level, compared to the homogeneously deforming crystal, is ambiguous

and depends on the exact form of the mobility function.

A second potential method of modifying the average dislocation velocity is to at-

tribute a greater strength to the forest interactions of gliding densities with polar

forest densities than to their corresponding interactions with statistical forest densi-

ties. A possible modification of the dislocation resistance takes the form

s8 = G, - p'l + wp'l, (5.16)

where w is a coefficient greater than one. The term inside the parenthesis is the abso-

lute SSD density, and ip4 I is the absolute GND density. The increased strength could

be attributed to the inability of the polar dislocation density to move, thus creating
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stronger obstacles. This method "effectively" increases the total density by (w-p) I I
as viewed through the strength contribution in the presence of a density polarity, and

would lead to the same type of response as the reduction of the mobile density. In

both cases, a larger "effective" density would be used to calculate the dislocation re-

sistance in the average density mobility function than the corresponding density that

contributes to the plastic shear through the Orowan relation. This method is the

most common manner through which the length-scale-dependence is introduced into

non-local plasticity models (Fleck and Hutchinson, 1997; Shu and Fleck, 1998; Gao

et al., 1999; Dai et al., 2000). The magnitude of the statistical dislocation density is

most often inferred from a measure of strength associated with SSD density and not

directly evolved, while the magnitude polar density is directly measured by the dislo-

cation tensor. Since the magnitude of the statistical dislocation density never appears

explicitly in any of these models, the models have "free" parameters with which to

scale the contribution of the polar density to the total strength of the crystal.

Conceptually, this method relies on the assumption that the polar dislocations

contribute additively to the statistical density, based on the physical arguments of

Ashby (1970), and on the ability to distinguish polar dislocations from a sea of sta-

tistical densities. These arguments do not make a very strong case for adopting this

method of incorporating an internal length scale. Namely, as shown in the evolution

equations for the individual density species in Eq's.3.36 and 3.37, the polar dislocation

density does not necessarily increase the mean density. Furthermore, it is impossible

to distinguish a "polar" dislocation line from a "statistical" dislocation line in a sea

of (possibly polarized) density; therefore it is similarly improper to assign a stronger

response to that part of the density.

The first two proposals for directly modifying the dislocation velocity function

attempted to increase the denominator of the Ta l/sa ratio in Eq.'s 4.1and 4.2. The

third option for introducing the effects of a polarity of dislocation density into the

average dislocation velocity function is to reduce the numerator (applied resolved

shear stress) through a back stress. Unlike the statistical dislocation density, polar

dislocations are associated with long range stress fields (Hurtado and Weertman,
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1995). The stress field of a single dislocation decays with 1/r, where r is the distance

from the dislocation. The stress field of a dislocation dipole decays with 1/r 3 , and

the stress fields associated with higher-order statistical multi-poles decay more rapidly

than dipoles. The long range stress fields of polar dislocations drive polar densities

to organize into twist and tilt boundaries so as to lower their long range stress fields;

alternatively, in the presence of an applied stress, the polar dislocations can organize

into pile-ups to establish internal stresses that oppose the applied stresses.

The stress fields associated with the polarity of the dislocation density are inde-

pendent of the level of statistical dislocation density. The back stress associated with

polar densities piling up is blind to the level of the mean density, just as the forest

obstacle strength as determined by the strength interaction matrix is, on average,

blind to the dislocation polarity. Including the effects of the dislocation polarity in a

back stress doesn't necessitate an additive polar density. The effect of the back stress

is independent of any change in the mean value of dislocation density that may result

from the flux divergence of the density species. Furthermore, the back stress doesn't

depend on the ability to distinguish a "polar" dislocation from a "statistical" disloca-

tion because it depends on a field property of the density, and not on the interaction

between any single dislocation with another.

Two indirect methods of incorporating a material length-scale-dependence could

both affect the evolution of the statistical dislocation density in the presence of a

density polarity. The average segment length could be made shorter in the presence

of a polar density, or the capture radii could become smaller in the presence of a polar

density. Both methods would have the effect of increasing the rate of accumulation of

statistical dislocations per unit dislocation flux, relative to the rate of accumulation

in a homogeneously-deforming crystal, and thus increasing the hardening rate of

the crystal. The thermodynamic restrictions of including the material length-scale-

dependence in the hardening equations (in this case, the evolution equations of the

mean density level) have been investigated by Acharya and Shawki (1996).

The average-segment-length interaction matrix, H(, could be polarized in the

same fashion as the strength interaction matrix discussed earlier. Just as in the
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previous case, a polarization of the average segment length interaction matrix would

lead to a difference in the segment lengths between the positive and negative species

of a density with same character. Two dislocation densities with the same mean could

have different average segment lengths, depending on the level of polarity. A crystal

with no polarity of density would lead to the segment lengths being the same for all

dislocation densities with the same character on the same slip system. A polarized

dislocation density state would lead, in the model, to one density having a shorter

segment length and the other having a longer segment length, both compared to the

unpolarized crystal with the same total dislocation density. Just as in the analysis

of the polarized strength interaction matrix, the longer and shorter segment lengths

would tend to offset each other, resulting in a small (if any) net difference in the

rate of generation of statistical density in polarized crystals compared to unpolarized

crystals.

Another possibility is to associate smaller mobile segment lengths in the presence

of polar dislocations by assigning larger interaction coefficients to the absolute polar

density than the statistical dislocation density in the average segment length func-

tional form. The modification to the average mobile segment length function could

take the form

1=, (5.17)

where w is a coefficient greater than one. The shorter segment lengths in the polar-

ized crystal (compared to the unpolarized crystal) would lead to an increase in the

rate of generation of dislocation dipoles in the polarized crystal compared to that in

the unpolarized crystal. During the course of plastic deformation, a greater mean

density would be present for a given amount of plastic strain in a non-homogeneously

deforming crystal than in a homogeneously deforming crystal, and it would appear

as though the presence of polar density increased the total dislocation density. This

method is analogous to attributing stronger strength interactions to the polar density

than to the statistical dislocation density, and it depends on the same assumptions as

the previous case; namely, that the polar dislocations are additive and that individual
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dislocations can be distinguished as either polar or statistical.

A final possibility is to make the capture radii decreasing functions of polarity. The

result of such a function would lead to an increase in the hardening as the polarity

increased and to a higher saturation level of dislocation density. For example, a

possible functional form of the capture radii could be

Re = Reo - W I|Pel1b2  (5.18)

RS = RO - w |p |b 2 , (5.19)

where w is a positive coefficient. Although such a functional form could be con-

structed, there appears to be no good physical argument for making the capture radii

functions of polarity. The polarity of the reaction is already present in the two densi-

ties that multiply the radius, and the magnitudes of the capture radii are related to

the ability of the edge dislocations to climb and of the screw dislocations to cross-slip,

respectively. The strongest functional dependence of the capture radii should be on

the homologous temperature of the crystal, since the both climb and cross-slip are

thermally activated processes.

Including a back stress associated with the polar dislocation density seems to be

the most logical method for incorporating the material length scale dependence in the

dislocation density-based internal state variable model. Dislocation density pile-ups

are related to the spatial variation of the polar dislocation density. A rigorous descrip-

tion of the influence of pile-ups would require investigating the gradients (or more

appropriately the curl) of the Nye's tensor throughout the crystal. For computational

efficiency as well as modeling simplicity, the contribution of polar dislocation pile-ups

will be treated "effectively" (both definitions of the word are intended)t, based on a

simple scaling argument, without using the gradients of the polarity explicitly.

teffectively (adv.) : 1. In a way producing an intended or expected effect 2. efficiently
from The American Heritage Dictionary of the English Language, Third Edition, 1994
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The new functional form proposed for the average dislocation velocity becomes

[ F (-I , -" q e

Da =Da = veo exp [ ( ( e + C (5.20)e+ e- kO Sep + sed

- = j4_ = vsO exp -_ (1 - e fIP , (5.21)
kV8  sp + sd

where 7Tf f is the effective resolved shear stress, and the rest of the terms are the same

as in Eq.'s 4.1 and 4.2. The effective resolved shear stress is related to the applied

stress, T, and the polar dislocation back stress, B, through the following expression

7aff - (i - B) . (mg 9 ng) , (5.22)

where the back stress, B, is defined in the intermediate configuration, the same con-

figuration as the second Piola-Kirchhoff stress measure, T.

The functional dependence of the polar back stress is motivated by the stress field

associated with a single dislocation pile-up. The stress associated with a single pile-up

of edge dislocations (from Hirth and Lothe (1982)) is

pJbi Nj- = ' - (m" a na + nu®g ma) , (5.23)
2(1 - 7) L

where ais the remote value of stress required to get N (polar) dislocations to pile

up within a length L, and v is Poisson's ratio. The ratio L/N can be interpreted as

the average spacing between polar dislocation lines, and this spacing can be further

related to the magnitude of the dislocation polarity such that Eq. 5.23 could rewritten

as a function of the polarity:

a = p _ bI p 7 (M a na + n"g Ma) (5.24)
2 (1 - v) 0

In polar dislocation pile-ups, the direction of the pile-up, in terms how the po-

lar dislocations are arranged in the pile-up, determines the direction of the shear

stress field. The magnitude of the polarity doesn't contain any information about

the gradient of the polar dislocation field. Without considering the polar gradients,
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the pile-ups can be assumed to be organized in such a fashion that they oppose the

applied stress field. Pile-ups that did not oppose the applied stress would quickly

disappear. Also, the form of Eq. 5.24 assumes that all of the polarity organizes into

dislocation pile-ups, but the polar dislocations may also form twist boundaries (screw

densities), tilt boundaries (edge densities), or other energy minimizing structures, and

not form pile-up structures at all. These two considerations lead to the final form of

the back stress, B, such that

2(1M an ~,, (5.25)
B~~ ~ ~~ = VC b cpi, I (M' (9 n' + n' (9 m') sign(m- n)(.)

(1 - v)

where c is a "free" parameter setting the fraction of the total polar density leading

to a back stress. Since the applied stress, T, enters into the expression for the back

stress, the model is only valid for monotonic loading histories.

The rest of the constitutive equations follow the same form as the constitutive

equations used in the simulation of the aluminum single crystals. The dislocation

resistance takes the form of Eq. 4.4, but now, with only two interaction coefficients,

Go and G1. The coefficient Go quantifies the interactions between gliding density

and dislocations on parallel slip planes with the same Burgers vector. The coefficient

G, = gi n - 61 quantifies the interactions of the gliding dislocation density with

density on the other slip plane. In this simplified double-slip geometry, the screw

dislocations are the only dislocations which pierce the slip planes; therefore, there

will be no resistance contribution from the out-of-plane edge densities.

The same functional form will be used to capture the average segment length in

this idealized geometry as was used in the simulation of aluminum single crystals. The

functional form of Eq. 4.5 requires the definition of two interaction coefficients, Ho

and H 1. The coefficient Ho quantifies the dependence of the average segment length

on the in-plane dislocation density, and the coefficient H, = h, to quantifies the

dependence of the average segment length on the out-of-plane dislocation density. As

with the strength interaction matrix, the average segment length has no dependence

on the out-of-plane edge density because the latter do not pierce the slip plane.
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The capture radii will take simple functional forms as in the simulations con-

ducted for aluminum single crystals, again. Since the simulations are conducted at

room temperature, and isothermal conditions are imposed, the capture radii will be

modeled as constants. The radius Re will be used to scale the annihilation rate of

edge dislocations, and the radius R, will be used to to scale the annihilation rate of

screw dislocations.

Since the back stress associated with the polarity of the dislocation density was

treated in an effective manner by relating the magnitude of the dislocation polarity to

an internal stress level, instead of by developing a more rigorous functional form based

on appropriate gradients of the polarity, the size of the representative volume element

(RVE) must be sufficiently large so that the mean value of density is much larger than

the polarity of the density. Although the polarity of the dislocation density is not

assumed to be additive to the total dislocation density, the method relies implicitly on

the ability to distinguish collections of polar dislocations from collections of statistical

dislocations in a volume.

5.3 Finite Element Implementation of Non-Local

Constitutive Model

Unlike the finite element implementation of the local constitutive model that the

necessitated the development of a user-material subroutine (UMAT) for ABAQUS/

Standard, the finite element implementation of the non-local constitutive model re-

quires the development of a user-element subroutine (UEL) for ABAQUS/Standard

(Hibbitt et al., 1998). The development of a user-element is needed because the

calculation of the polar accumulation/loss equations depends on the plastic activ-

ity at multiple material points, and the ABAQUS UMAT interface does not contain

information about the state at other material points.

A modified 8-node iso-parametric reduced integration (CPE8R) element was de-

veloped for the length-scale-dependent simulations. The development of a UEL can
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be broken into two components: the non-local material definition, and the calculation

of the nodal forces and the element stiffness matrix from the stress state and material

jacobian at the material points. The procedure of the second component is standard

in finite element calculations (Bathe, 1996); therefore, the discussion will concentrate

on the non-local material definition.

The time integration procedure for the non-local material model follows basically

the same procedure as the time integration procedure developed for the local material

model in Section 4.3.1. The difference is in the incorporation of the equations leading

to the polarity of dislocation density. The technique for evaluating iM from the rates

of plastic deformation at the material points in the element adopted in the simulation

was developed by Dai (1997). The calculation method involves using the finite element

shape functions to map the time rate of change of the plastic deformation gradient

from the four Gaussian integration points to the corner nodes of the element, then

using the derivatives of the shape functions to find A at the center of the element.

The time rate of change of Nye's tensor is approximated to be constant within the

element so the value of A. calculated at the center of the element is transferred

to the four Gaussian integration points, and then the time rate of change of the

dislocation density state is calculated at each of the four Gaussian integration points.

The calculation scheme is illustrated in Figure 5-6.

The approximation of a constant value of k leads to a constant polarity of the

edge dislocation densities within an element. The mean edge dislocation density at

a material point is not constrained by the mean edge densities at the other material

points within the element. The constant polarity leads to a constant level of the

back stress as calculated through Eq. 5.25; therefore, the calculation of the back

stress is done explicitly, and is not included in the implicit iterative solution of the

crystallographic dislocation density state and stress.

The calculational procedure for the crystallographic density state, p (-r), Cauchy

stress T (r), and the plastic deformation gradient, FP (r) at time r = t+At, given the

the crystallographic density state, p (t); Cauchy stress, T (t); the plastic deformation

gradient, FP (t); the total deformation gradient, F (t), all at time t, as well as the total
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deformation gradient, F (r), is outlined as follows:

Step 1 Using Eq. 4.17, calculate Ttr and C'. With Eq. 5.25, calculate BolI = B (t)

using p (t) and T (t). Make initial guesses for T (T) and p (r) using Eq.'s 4.26

and 4.27, respectively.

Step 2 Calculate T (r) and p (r) through Eq. 4.23 using the backward Newton

method. The calculation is performed on all the material points within an

element simultaneously so as to include the polar accumulation/loss terms in the

crystallographic density evolution. Note: the partial derivatives of the average

dislocation velocity with respect to the polarity of the dislocation density in the

back stress are not included in the F-matrix.

Step 3 Using the values of T (-r) and p" (r) calculated in Step 2, calculate a new

value for the back stress, Bnew. If the difference between Be, and B.ld is larger

than a tolerance level, set Be, to Bold and repeat Step 2, else proceed to Step 4.

Step 4 Update the state. Using Eq. 4.12, calculate FP (r). Using Eq. 3.1, calculate

Fe (r). Finally, using Eq. 3.6, calculate T (-).

The non-local material jacobian is approximated by the local material jacobian

outlined in Section 4.3.2. The partial derivatives of the average dislocation veloc-

ity with respect to the dislocation polarity associated with the back stress are not

included in the material jacobian.

5.4 Selection of Material Parameters

The material constants of the idealized double slip crystal were chosen in such a

way as to capture the evolution of the mechanical properties and dislocation density

of a real crystal during plastic deformation. The crystal that was chosen was alu-

minum since it was the focus of the simulations conducted with the "local" model

in Chapter 4, and the parameter space of the three-dimensional model provided a

starting point for the reduced parameter space in this simple two-dimensional model.
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In the three-dimensional model, the material parameters were found by fitting the

anisotropic stress/strain behavior in the plastic deformation from four different initial

orientations. A similar procedure will be used to fit the parameters of the simplified

double slip model.

The double slip geometry has a limited set of orientations that can be related to the

stress/strain behavior of the three-dimensional crystal. The # = 00 and the # = 901

orientations (with respect to a T22 tensile stress) are the only orientations in which

both slip systems are equally active in tension. Furthermore, both orientations yield

the same stress/strain curve because of the plane strain boundary conditions. The

rest of the orientations lead to one slip-system being favored over the other. To span

all of the stress/strain space of the real crystal with the double slip crystal, the plastic

behavior of the 0' orientation of the double-slip model was fit to the plastic behavior

of the < 111 >-oriented single crystal, and the plastic behavior of the 15' orientation

of the double-slip model was fit to the plastic behavior of the < 123 >-oriented single

crystal. The 150 orientation of the double slip model maximizes the Schmid factor

on one of the slip-systems leading to single-slip behavior like the < 123 >-oriented

single crystal.

As in the local model, the edge and screw dislocation densities were assumed to

have the same mobility. Furthermore, the same values of Do, AF, p, q, and sp will

be used in this two-dimensional crystal as were used in the three-dimensional simu-

lations. The anisotropic elastic constants were also taken from the three-dimensional

simulations, leaving as "free" parameters the strength interaction coefficients, average

segment length interaction coefficients, the capture radii, and the dislocation pile-up

fraction, c.

The strength interaction coefficients, average segment length interaction coeffi-

cients, and the capture radii control the plastic evolution of the bulk crystal as

demonstrated in Chapter 4. These parameters were determined by fitting the two

orientations of the planar crystal corresponding to multi-slip and single slip to the

stress/strain behavior of the < 111 >- and < 123 >-oriented crystals, respectively,

while simultaneously evolving the reduced density basis over four orders of magnitude
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to achieve statistical density levels representative of real crystals. The results of the

fitting can be found in Figure 5-5 in terms of the stress/strain response of the model

compared to the experimental values for the two orientations.

Both the strength and average-segment-length interaction coefficients in real crys-

tals are restricted in magnitude to be less than unity. A strength coefficient equal

to one entails that the gliding dislocation line is unable to cut through an obstacle

and must therefore loop completely around the obstacle to pass, leaving a disloca-

tion loop around the uncut obstacle in the process. In this idealized two-dimensional

crystal, the restrictions on the interaction coefficients must be relaxed so that the

stress and density levels in the real crystal can be achieved. The capture radii must

be decreased also so that individual dislocation densities in the reduced basis can

reach greater levels than the crystallographic densities in the real crystal, leading to

comparable total dislocation density measures. Although there are no planes in this

limited geometry for the screw dislocations to cross-slip on, cross-slip is nonetheless

assumed to occur as a mechanism for screw dislocation annihilation, while climb oc-

curs for edge dislocation annihilation, leading to a larger capture radius for the screw

dislocation density than the edge dislocation density.

The final material parameter which must be set is the polar dislocation density

pile-up fraction, c. The value of this parameter is restricted to lie between zero and

unity. A value of zero indicates all of the polar dislocation density organizes spatially

into low energy structures like tilt and twist boundaries that carry no long range stress

field. A value of unity indicates that all of the polar dislocation density piles-up and

leads to long-range stresses in the material. In general, the c parameter will depend on

the kinetics of the deformation: the ability of polar dislocations to organize into low

energy structures while interacting with the overwhelmingly (in number) statistical

dislocation density that frustrates their organization. Since no spatial information of

the polar density is supplied in the finite element framework adopted in this study, a

constant value for the polar dislocation density pile-up fraction was chosen that led

to a magnitude of material length-scale-dependence in the stress/strain behavior of

the idealized crystal that was comparable to the dependence found in experimental
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observations.

The constants used to model the behavior of thin single-crystal beams in bending

can be found in Table 5.1. Along with the material parameters, the initial conditions

which must be set for the simulation are the initial dislocation density profile, the

temperature, and the orientation angle q.

5.5 Simulation of Plane Strain Bending

Plane strain bending of single crystals was simulated to investigate the length-scale-

dependence of crystal plasticity, and the interaction between the statistical dislocation

density and the polarity of the dislocation density. Six different beam thicknesses

were simulated: 12.5pum, 25pm, 50Mm, 100,tm, 200pm, and 400pm. Along with those

six simulations, a baseline simulation was conducted that did not incorporate any

material length-scale dependence. Labeled "Local Theory," this simulation did not

calculate the dislocation polarity (thereby setting pa = 0), and it is equivalent to

calculating the response of an infinitely thick beam.

The simulation was conducted on a beam discretized into 864 user-defined finite

elements as shown in Figure 5-7. The boundary conditions placed on the beams

imposed a condition of pure bending in the beam section. The left boundary of the

section was required to remain vertical, but allowed to contract as required by the

plane strain deformation. The bottom left node was pinned to prevent rigid body

translation of the beam section. The right side of the beam section was subject to

a user-defined multi-point constraint (Hibbitt et al., 1998). The applied boundary

condition required all of the nodes on the right side to be co-linear along a line with a

specified slope but with an unspecified y-intercept. The imposed boundary conditions

lead to a stress state with a net bending moment and with no net force at the ends

of the beam section.

To maintain the geometric and dynamic similarity of the bending beams over

the length scales spanned by the simulations, the deformation was applied with a

constant surface strain rate of = 0.001 s-1 to a level of ten percent surface strain.
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The time rate of curvature change in the beams increased with decreasing beam

thickness, but the strain rates across the sections of the beam remained unchanged

as the beam thickness decreased. Therefore, the rate dependence of the stress/strain

response did not augment the length scale dependence in the simulations. In the

experiments conducted by St6lken and Evans (1998), there is no report that such

care was taken to maintain dynamically similar deformation paths in their thin beam

bending experiments other than commenting that the "die was displaced slowly."

The initial material state of the beam as quantified by the density, the orientation,

and temperature was similar to the state adopted in the aluminum simulations. The

total initial density was po = 1012 m 2 , and it was split evenly among the eight discrete

dislocation densities in the model. Half of the density was of edge character and the

other half was of screw character, as in the aluminum simulations, and furthermore,

there was no initial polarity in the crystal, meaning that the positive and negative

species of each dislocation type had the same initial densities. The distribution of

the dislocation density in the crystal was homogeneous. The crystal was oriented

symmetrically with respect to the tension/compression loading in the bending beam.

According to the slip system geometry given in Figure 5-2 and the coordinate axis

given in Figure 5-7, the angle q for the simulations was 900. The simulations were

conducted at ambient temperatures of 298 K, and isothermal conditions were assumed

during the course of the deformation of the beams.

5.6 Results and Discussion

The length-scale-dependent mechanical response of the beam subject to plane strain

bending is shown in Figure 5-8 for beams ranging in thickness from 12.5 Am to 400

pum. The bending moments calculated are normalized in the same manner found in

St6lken and Evans (1998), where the bending moment is divided by the beam thick-

ness squared and the tensile yield strength of the < 111 > orientation, so = 5 MPa,

of the crystal. A curve labeled "Local Theory" is also included, representing the me-

chanical behavior of an infinitely thick beam. This baseline curve is the normalized
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moment/surface strain response that would be predicted without incorporating any

material length scale dependence. As shown in Figure 5-8, the normalized moment

at a given value of the surface strain increases as the beam thickness decreases.

A benefit of the simulation is that the limiting behavior for infinitely thick beams

can be easily calculated. The experimentalists do not have this ability, but with

the direct availability of the baseline value, an alternate normalization that isolates

the length-scale-dependence from the bulk behavior can be performed. Consider

Figure 5-9 in which the bending strength has been normalized with respect to the

baseline bending strength determined by the local theory. The plot shows the same

pattern as in Figure 5-8, in which the thinner beams are predicted to have stronger

responses. The 12.5 pm beam shows a sixteen percent increase in bending strength

over the behavior of the beam calculated with the local theory.

By incorporating the beam thickness. in the vertical scale, all of the normalized

bending strength curves in Figure 5-9 can be collapsed onto a single master curve

as shown in Figure 5-10. The length-scale-dependence can be reduced to a simple

function of the form:

M/h2 2 2oh(1h -Mo/h) ( h ) = f (6) , (5.26)
Mo/h2 JbI

where M is the bending moment for a beam of thickness h, IVIO/h2 is the bending

strength in the infinite limit of thickness, and c, is the surface strain. The expression

in Eq. 5.26 can be rearranged into a more familiar Hall-Petch (Hall, 1951; Petch,

1953) type expression:

= o~ + kh' , (5.27)

with

0 = M/h 2

k = Mo/h 2

k = f M0 /h!Ib I~
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Incorporating the length-scale-dependence by appealing to polar dislocation pile-ups

naturally leads to a Hall-Petch exponent m = 1/2 that remains constant with de-

creasing beam thickness. In the model, the exponent is fixed because the back stress

associated with the dislocation pile-ups is proportional to the square root of the

polarity of the dislocation density, and the polarity scales linearly with the beam

curvature.

Figure 5-10 shows that the thinnest beams simulated, 12.5 pum and 25 Am, follow

the trend of the calculations conducted for the thicker beams, but there is quite a bit

of noise in the calculated response. Comparing Figure 5-8 and Figure 5-10, the noise

that appears in the first figure does not appear to be large in magnitude compared

to the value of normalized bending moment, but the subsequent normalization mag-

nifies the noise by normalizing the bending strengths with respect to the local theory

calculation. An explanation for the noise will be offered later in the section when

contour plots of the bent beams are presented and discussed.

The length-scale-dependence calculated in these simulations can be understood

better by inspecting the dislocation density evolution in the deforming beams in

gross measures of statistical density and polarity. Figure 5-11 depicts the average dis-

location density in the beams as a function of the surface strain. The average density

was calculated by summing all of the "crystallographic" densities at every material

point in the crystal, and then calculating a body average from the material point

totals. As argued Section 5.2, the total density at a given accumulated dislocation

flux may not change appreciably as a result of increasing polarity. The total density

scales with the accumulated strain, which is the same for all of the beam thicknesses

simulated, as in the aluminum simulations.

Weertman (1996) has argued that the redundant (SSD) density evolution is con-

nected to the non-redundant (GND) density state of the crystal. Through question-

able physical arguments about the mobility of the non-redundant density state of the

crystal, Weertman argues that the redundant density must always be greater than
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the non-redundant density in the crystal. Despite the physical reasoning, it is the

only instance in the literature where the evolution of the of the statistical density is

considered to be a function of the polarity in the crystal. Within the framework of

the present model, the accumulation rate of statistical density could have been aug-

mented by making either the average segment lengths or the capture radii decreasing

functions of dislocation polarity. Currently there are no clear physical justifications,

Weertman's arguments notwithstanding, for including such a dependence in the av-

erage segment length or capture radius functions.

Figure 5-12 depicts the magnitude of the polarity of the dislocation density, as a

function of surface strain, for the six beam thicknesses simulated. The average dislo-

cation density polarity was calculated in a manner similar to the average dislocation

density. The magnitudes of the polarity in both "crystallographic" edge densities

were summed at each material point, and then a body average was calculated from

the material point totals. For each of the beams the dislocation polarity increases

linearly with surface strain. All of the lines in Figure 5-12 have a y-intercept of zero

since the initial conditions were set with no initial polarity. The slopes of lines in-

crease with decreasing beam thickness. If the average dislocation polarity is plotted

against the beam curvature as shown in Figure 5-13, the dislocation polarity for all of

the beams collapses onto one linear curve. As expected from Eq. 2.28, the dislocation

polarity scales linearly with the curvature of the beam. As shown in Figure 5-11 the

total density in the beams scales with the plastic deformation, parameterized by the

surface strain in this measure.

Comparing average dislocation density with the dislocation polarity found in Fig-

ures 5-11 and 5-12, respectively, for the 12.5 um beam, the dislocation polarity ac-

counts for only 1.5% of the total dislocation density. The overwhelming majority of

the density, 98.5%, is statistical in nature. Although the polar dislocations are domi-

nated in number by the statistical density, their influence on the mechanical behavior

is substantial. In fact, Figure 5-9 shows that the dislocation polarity that was only

1.5% of the total dislocation density led to a strengthening of 16% as measured by

the normalized bending strength: a tenfold relative difference. If the Ashby model
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of length-scale dependence had been adopted by considering the polar density as

"additive" and "immobile", the difference in the normalized bending strength would

be on the order of half the relative dislocation polarity, and definitely not ten times

greater. The experimental literature that focuses on the length-scale-dependence of

crystal plasticity found in the bending of thin films (St6lken and Evans, 1998), the

torsion of thin wires (Fleck et al., 1994), or micro-indentation (Nix and Gao, 1998)

does not support the small change in magnitude of the normalized strength measures

that an obstacle-based incorporation of polar density would predict. The change in

the magnitude of the normalized strengths measures observed in these experiments

is much larger than half of the relative dislocation polarity.

The order of magnitude disparity between the relative magnitude of the dislocation

polarity and its relative effect on the strength/strain evolution suggests that the SSD

density and the GND density play different roles in the evolution of strength during

plastic deformation. Indeed, Hurtado and Weertman (1995) suggest that the SSD's

should be distinguished from the GND's like "apples from oranges" because of their

differing influences on mechanical behavior. Again, it is impossible to assign a label,

SSD or GND, to any one dislocation that is part of a larger density, but on the

density level, it is clear that the density mean and the density polarity must be

treated differently to model the material length-scale effects observed in the plastic

deformation of crystals on the micron scale.

Figure 5-14 contains a contour plot of the von Mises equivalent stress in the

12.5 pm beam after 10% surface strain. The contour plot shows that the largest

stresses are found in the outer surfaces of the beam where the most plastic deformation

occurs. The stresses not only vary through the thickness of the beam, as expected

in homogenous bending, but also vary along the length of the beam. The variation

along the length of the beam is larger on the compressive side of the beam than on

the tensile side.

A similar variation can be seen in the total dislocation density. Figure 5-15 con-

tains a contour plot of the total dislocation density in the 12.5 pm beam after 10%

surface strain. The largest densities are found on the outer surfaces where the most
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plastic deformation occurs. Through the thickness of the beam, the dislocation den-

sity spans over two orders of magnitude at the end of the simulation. The dislocation

density was homogeneously distributed through the crystal at the onset of the sim-

ulation. At the end of the simulation, the density varies both through the thickness

and across the length of the beam. The variation of density along the thickness is

due to the difference in the magnitude of the plastic deformation of the beam. The

variation along the length of the beam is due to a corresponding variation in the

plastic deformation along the length.

The contour plot of the magnitude of the dislocation polarity in the 12.5 Am

beam after 10% surface strain can be found in Figure 5-16. The non-homogeneous

distribution of the density polarity is more striking than the total dislocation density

contour. The polarity of the dislocation density scales with the plastic curvature of

the beam, and not with the (surface) level of plastic deformation in the beam. The

average polarity is directly proportional to the average curvature of the beam, as

shown in Figure 5-13, but the polarity is not homogeneously distributed through the

section. The non-homogeneity is more pronounced in the part of the crystal under

compression than in the part of the crystal under tension. The two-dimensional

crystal under compression breaks a material symmetry, like certain orientations of

the three-dimensional aluminum simulations in tension.

The two slip systems in the planar model are separated by an acute angle of 60'

and an obtuse angle of 1200. The initial orientation of the crystal was such that the

acute angle between the slip-systems was bisected by the beam direction, and the

obtuse angle between the slip-systems was bisected by the thickness direction. This

particular symmetric orientation is stable in tension but unstable in compression. In

tension, if one slip-system has more slip activity than the other, then the crystal

rotates so as to increase the Schmid factor on the less active system and decrease the

Schmid factor on the more active system. In compression, the opposite is true. If

one slip-system has more slip activity than the other, then the crystal rotates so as

to increase the Schmid factor on the more active system, and decrease the Schmid

factor on the less active system.
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The non-homogeneous distribution of stress and density across the length of the

beam is due to the compressive instability of the double slip geometry. The boundary

conditions of the bending deformation imposed don't allow for a single slip deforma-

tion mode to propagate globally through the crystal, but locally the slip activation

on the two systems may differ leading to the behavior seen. The noise that appears in

the bending strength found in Figure 5-9 corresponds to the initiation of these events

in the part of the crystal under compression.
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Figure 5-1: The special orientation of FCC crystals that leads to adoption of two
effective slip-systems in the idealized plane strain model.
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Figure 5-2: A schematic depicting the orientation angle #, and the orientation of the
two slip-systems in the model relative to that angle.
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Figure 5-3: The dislocation density geometries included in the plane strain double-slip
geometry.
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Figure 5-4: Normalized bending moment versus surface strain from the experimental
study of St6lken and Evans (1998) on thin films of nickel polycrystals.
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Figure 5-5: Stress/strain fit of two orientations of the double-slip model with the
experimentally determined values of < 111 >- and < 123 >-oriented single crystals
in tension.
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Figure 5-6: Schematic of the computational procedure for calculating the polarity
of the dislocation density based on the interpolation of the species components of
the time rate of change of the plastic deformation gradient using a modified 2-D
isoparametric brick element with reduced integration.

182

±4 4

Q-)-fl- _U

XLk



.. I I 1 1 1 T l I IL I .:I -, I I

1
3

Figure 5-7: Finite element discretization of a planar single crystal beam used to
simulate the material length-scale dependence in the plane-strain bending behavior
of thin beams.
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Figure 5-8: Normalized bending-moment showing the material length-scale-
dependence observed in thin beam bending. No length-scale-dependence would lead

to a single normalized bending-moment/surface-strain curve corresponding to the line

labeled "Local Theory."
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Figure 5-9: The bending moments simulated in beams varying in thickness from

12.5 /Lm to 400 pm, normalized with respect to the moment calculated by the local

theory, as a function of the surface strain.
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Figure 5-10: Plot of (M/h 2 - Mo/h2)/Mo/h2(h/b)0.5 versus surface strain showing
that the bending moments calculated for different thicknesses reduce to a generalized
Hall-Petch type relationship.
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Figure 5-12: Average polarity of the dislocation density as a function of surface strain

for beams ranging in thickness from 12.5 pum to 400 pm.
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Figure 5-13: Total polarity of the dislocation density as a function of beam curvature
(i'lbI) for beams ranging in thickness from 12.5 pm to 400 Mm.
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Figure 5-14: Contour plot of the equivalent Mises stress in the 12.5 pim thick beam
after 10% surface strain.
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Figure 5-15: Contour plot of the total crystallographic dislocation density in the
12.5 pm thick beam after 10% surface strain.
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Table 5.1: Material parameters used for idealized planar double-slip crystal.

Elastic Coefficients C1  = 108 GPa

C12 = 61.3 GPa

C4 4 = 28.5 GPa

p= 25.0 GPa

V = 0.345

Dislocation Mobility Coefficients VeO = sj = 1 rn/s

AFe = AF,= 3.0 x 10-"9 J/atom

Sep s, = 2 MPa

PePs = 1.1

= q,= 0.141

Strength Interaction Coefficients Go = 0.5

g = 1.732

Average Segment Length Ho = 0

Interaction Coefficients h = 0.577

Capture Radii Re = 10.7 nm

RS = 53.7 nm

Burgers Vector JbI = 2.863 A
Slip-System Half Angle = 30*

Polar Dislocation Pile-up Fraction c = 0.1111
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Chapter 6

Conclusions and Future Work

The focus of this work has been modeling the evolution of the underlying dislocation

density in single crystals responsible for the mechanical response found in experi-

mental observations. A continuum crystal plasticity model was developed within an

internal state variable framework for finite plastic deformations. A discrete set of

crystallographic dislocation densities were used as internal state variables to capture

the material state. Unlike the slip-system resistance-based models and dislocation

density-based models that have been previously employed to characterize the mate-

rial state, the crystallographic dislocation densities in this formulation retained their

geometric structure determined by their Burgers vector and tangent line directions.

The geometry of the crystallographic dislocation densities was the focus of Chap-

ter 2. Dislocation arrangements were found that had lattice-geometric consequences

and thus led to a non-zero Nye's tensor. Other dislocation arrangements were found

that had no geometric consequences and thus led to a net zero Nye's tensor. The for-

mer were called geometrically-necessary dislocations (GND's), while the latter were

labeled statistically-stored dislocations (SSD's). Since there were more independent

crystallographic dislocation densities than unique entries in Nye's tensor, two mini-

mization techniques were considered as methods for determining the geometric dislo-

cation density from a known value of Nye's tensor. General dislocation distributions,

contained in representative volume elements (RVE's) within a non-homogeneously

deforming crystal, would contain both SSD and GND populations simultaneously,
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and individual dislocations could not be distinguished as belonging to either the SSD

or GND populations.

The non-homogeneous plastic deformation in crystals can yield detailed disloca-

tion density information; however, the evolution of dislocation density associated with

the homogeneous plastic deformation of single crystals was not as well understood,

leading to the adoption of resistance-based internal state variables in most contin-

uum models. The focus of Chapter 3 was the development of evolution equations for

crystallographic dislocation density. The generation of density was based on the ex-

pansion of dislocation loops. The annihilation of density was based on the frequency

of interaction between positive and negative species of the same character. The ac-

cumulation/loss of polar dislocation density was based on the species flux divergence

of each crystallographic dislocation density. With the evolution equations in place, a

phenomenological hardening model in strength was replaced with evolution equations

based on density kinematics.

Instead of developing phenomenological constitutive equations for the evolution of

the slip-system resistances, the density evolution equations required the development

of three constitutive functions: the average dislocation velocity, the average disloca-

tion segment length, and the critical capture radius for annihilation. With these three

constitutive functions, the stress/strain evolution as well as the underlying dislocation

density evolution could be captured.

The accumulation/loss equations for the polar dislocation density on the species

level showed that the geometrically-necessary dislocation density did not necessarily

increase the total dislocation density found in non-homogeneously deforming bodies

compared to the density found in homogeneously deforming bodies. Since the dis-

location density in a non-homogeneously deforming crystal (bending) compared to

the density in a homogeneously deforming crystal was approximately the same, the

theory that the length-scale-dependence in crystal plasticity, in which crystals have

been observed to exhibit greater strength in the presence of strong plastic strain gra-

dient fields, was due to an increase in the forest obstacle density was refuted. Within

the dislocation density framework used to describe the behavior of single crystals,
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various techniques were evaluated for including the material length scale dependence

in crystal plasticity. The most promising method was determined to be the addition

of a long range (back) stress associated with the polarity in a dislocation density

distribution.

A local version of the model that included only the generation and annihilation

parts of the dislocation evolution equations, but not the polar accumulation/loss

equations, was implemented into a finite element scheme and was used to capture the

anisotropic plastic behavior of aluminum single crystals. The state variable model

captured not only the tensile stress/strain behavior for different orientations of the

aluminum single crystals, but also captured the evolution of the underlying disloca-

tion density responsible for the mechanical behavior observed. The model was able

to capture the predominance of edge dislocation density during single slip and the

differences between the deformation behavior of the < 111 >-oriented crystal and the

< 100 >-oriented crystal. The interaction between dislocations of different character,

screw and edge, as well as the interaction between the gliding density and different

types of forest density, proved to be crucial to understanding the underlying mecha-

nisms leading to the stress/strain observations. The dislocation density description

of the state was also consistent wvith the experimental microscopy of slip traces con-

ducted on the deformed samples.

The set of dislocation density state variables used to quantify the material state

was 18-dimensional. The set of slip-system-resistance state variables typically used to

quantify the material state is typically only 12-dimensional. A slip-system resistance

was calculated from the dislocation density state as part of the average dislocation

velocity constitutive equations, and although a rate form of the slip-system resistance

could be derived as a function of the density and its time rate of change, as done by

Franciosi and Zaoui (1982), the form is not invertible, so a hardening matrix cannot

be found explicitly. The higher dimension of the crystallographic dislocation density,

resulting from the quantification of dislocation character, prevents the inversion, and

as presented in Chapter 4, the dislocation character evolves with deformation his-

tory and cannot be taken to be constant for arbitrary deformation histories, as was
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assumed by Cuitifio and Ortiz (1992).

A non-local version of the model using a simplified planar double-slip geometry

was implemented into a finite element scheme and was used to simulate the length-

scale dependence observed in thin beam bending. The modes of interaction between

the statistical density and the polarity of the dislocation density within the model

framework were discussed, and results of the simulations showed that a relatively small

polarity (1.5%) in the dislocation density could nonetheless significantly increase the

strength levels (16%), compared to the local theory. Adoption of a consistent obstacle-

based method for modeling the length scale dependence in crystal plasticity would

have led to a much smaller increase in the strength than is found in the experimental

observations of St6lken and Evans (1998). The length scale dependence of the new

model was found to fit a Hall-Petch type relationship with a constant exponent m =

1/2.

The advantages of adopting a dislocation density framework for continuum crystal

plasticity are clear. The dislocation density description can be used to investigate the

validity of assumptions used in strength-based constitutive models. The role of dislo-

cation polarity in the length scale dependence of plasticity is an excellent example of

this. The structure and geometry associated with dislocations enables the use of sim-

pler constitutive equations instead of increasing the complexity of phenomenological

hardening equations to capture the mechanical response of crystalline materials. The

evolution of the plastic deformation in the < 100 >-oriented crystal is an excellent

example of the need to include both edge and screw dislocation densities to capture

the dislocation mechanisms that lead to the observed behavior.

The potential of using a dislocation-density-based model for single crystal plas-

ticity within a multi-scale modeling framework is the most promising aspect of the

model. The constitutive inputs to the model are couched in terms of statistical in-

formation of dislocation densities such as the average mobility, and average segment

length of lines in a deforming crystal, as well as junction strengths, and radii of cap-

ture. In principle, all of this information could be determined by carrying out detailed

investigations of dislocation dynamics simulations. By varying the initial dislocation
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density profile as well as the loading history of the dislocation dynamics simulation

cells, the constitutive space of the three functional inputs to the density-based model

could be spanned. After the density-based continuum model, whose constitutive

functions have been determined from simulations at smaller length scales, has been

experimentally verified through comparisons of simulation results with controlled sin-

gle crystal experiments, simulations of polycrystalline aggregates on the order of fifty

grains could be conducted. By varying the grain orientations, grain neighbors, initial

density state and loading history, the density-based model could be used to construct

anisotropic yield loci to be used in a coarser polycrystal model, that could be used

to model engineering structures. The density-based single crystal plasticity model

presented in this thesis is able to efficiently translate information on the dislocation

mechanics level to information on the macroscopic strength and plastic deformation

level.

Obviously, there remains an abundance of work to be done in the area, on varying

levels of complexity. Perhaps the easiest refinement that could be considered would be

to include more dislocation annihilation reactions than the self-annihilation interac-

tion considered in this thesis. In FCC crystals, an interaction between two coplanar

dislocations with different Burgers vectors will create a dislocation with the third

Burgers vector in the plane, and can reduce the total dislocation density of the sys-

tem. Including such annihilation reactions would permit a reduction of the magnitude

of the capture radii used in the aluminum simulations, and lead to increased evolu-

tion of dislocation density on inactive slip-systems. In the aluminum simulations,

the dislocation density evolved mainly on the active systems, while the dislocation

density profile on the inactive systems remained roughly unchanged. Including more

dislocation reactions would lead to richer evolution histories of the crystallographic

dislocation densities within the discrete set considered thus far. With the addition

of annihilation reactions between dislocations on different slip-planes, a single-slip

deformation mode could possibly increase the piercing density on the slip plane with

little or no activity on other slip-planes.

Another avenue of interest could be the effects of expanding the discrete dislo-
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cation density space to include more tangent line vectors. The expansion of planar

loops was the motivation for the generation evolution equations in this thesis. The

loop geometry was idealized as a rectangle consisting of edge and screw dislocation

line segments. The dislocation tangent space could also be discretized in hexagonal or

octagonal loops consisting of dislocation line segments with mixed character. The ex-

panded space would approximate more closely the real crystal, and more annihilation

reactions would need to be investigated other than just the simple self-annihilation

reactions considered here.

More research must also be conducted to determine if the constitutive functions

used in the thesis accurately describe the material behavior. The dislocation me-

chanics based evolution equations appealed to the geometric aspects of the density,

and all of the kinetics were placed into the three constitutive functions for average

dislocation velocity, average segment length, and capture radius. The constitutive

equations adopted in the thesis were based on physical arguments of slip activation

and simple scaling laws. Parameterization of dislocation dynamics results with re-

spect to the three constitutive functions could lead to better constitutive functions for

continuum simulations, as well as a deeper understanding of the evolution of material

state predicted by dislocation dynamics.

The model could also be applied to different crystal systems in which the need

to model dislocations of different character is more important than in FCC crystals.

Screw dislocations in BCC metals can possibly cross-slip on three lattice planes,

and there is a large difference in the mobility of screw dislocations compared to

edge dislocations. The edge dislocations may have mobilities that are two orders

of magnitude greater than the screw mobility in BCC crystals. Most continuum

models of BCC crystals have largely focused on the rate-limiting motion of screw

dislocations, with little or no attention to the edge density. In fact, the physics of slip

activation in these systems has been based on the nucleation and migration of kinks

on screw dislocations (Kothari and Anand, 1998), but the density evolution equations

presented in Chapter 3 show close ties between the motion of edge dislocations and

generation of screw density. The behavior of edge dislocation density in BCC crystals
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has been largely ignored in the literature, but the framework developed in this thesis

shows that the evolution of edge and screw dislocation densities is strongly coupled,

and the presence and behavior of edge dislocation density should not be ignored.

The directions of further research discussed in the last four paragraphs are the

most conservative directions for constitutive development. They represent refine-

ments of the current constitutive framework that should yield better understanding

of the processes controlling the plastic deformation in crystals, leading to simulations

that resemble the behavior of real materials more closely. More ambitious directions

of research lie in the length-scale-dependence of crystal plasticity. The treatment of

the dislocation polarity in this thesis employed assumptions about the organization

of dislocation density and simplified calculation techniques to estimate the level of

polarity at a material point within the finite element. A more rigorous treatment

of the dislocation density is needed to capture the correct behavior of dislocation

densities on the micron level. The ultimate goal of such increased rigor is not simply

to capture the length-scale-dependence in thin-beam bending, thin-wire torsion, or

micro-indentation, but to capture the internal forces leading to the locally inhomo-

geneous organization of dislocation density into walls and dense tangles during the

macroscopically homogeneous deformation of crystals.

The dislocation density evolution equations provide insight into dislocation pat-

tern formation process on a density level, but more work must be done to determine

the interaction forces between densities that cause stable patterns to develop. Based

on the results of this thesis, my belief is that the dislocation polarity and its spatial

gradients are the key to solving this complex problem. The evolution equation for

Nye's tensor found in Eq. 3.47 includes a term which leads to an exponential growth

rate of the dislocation polarity. The last term in the equation states that a homoge-

neous dislocation flux through a dislocated (polarized) lattice will lead to an increase

in the polarity, but the initial polarity must be in the forest density, with Burgers

vectors projecting out of the slip plane. This observation leads to the conclusion

that multiple slip-systems on different glide planes must be active for an exponential

growth in the polarity to occur.
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Secondly, because the dislocation polarity most likely leads to long range stress

fields associated with the non-homogeneous distribution of polarity in the crystal, a

relatively small fraction of polar density, relative to the total dislocation population,

can lead to strong internal stress fields. The lowest energy state for the polar density

is not a pile-up but an organized tilt or twist boundary, and although the density

would prefer to organize in such structures so as to minimize the internal dislocation

interaction energy (Kuhlmann-Wilsdorf, 1999), such an organization is frustrated by

the interaction of the polar density with the statistical forest density. The polar

pile-up must be bound by a high density of dislocations, as found in cell walls, to

provide an almost impenetrable barrier that the dislocations can pile-up against. The

profile of a pile-up leads to a similar stress/density relationship used to model the

length-scale-dependence found in thin-beam bending, in which the stress is directly

proportional to the number of dislocations in the pile-up and inversely proportional

to its length. If the number of dislocations in the pile-up remains constant, then

the length of the pileup will decrease as the macroscopically applied stress increases,

leading to the observation that dislocation cells decrease in size as the stress increases

(Godfrey and Hughes, 2000).

The effects of the polar dislocation density were treated in an "effective" manner

by simply scaling a back stress with the square root of the magnitude of the polarity.

A more rigorous treatment of the back stress would involve a function that depended

on the magnitude of the polarity at a point and its gradients. The gradients of the

polarity give more information as to arrangement of the polar density, and whether

or not pile-up structures exist in the crystal. The gradients of Nye's tensor have the

greatest potential for describing the back-stresses in a non-homogeneously deforming

crystal. Gurtin (2000) has developed a constitutive framework in which the Laplacian

of the plastic deformation gradient leads to micro-forces within the crystal. It is my

belief that the curl of Nye's tensor is the proper measure of the dislocation polarity

that will lead to micro-forces within the crystal (Menzel and Steinmann, 2000). The

divergence of Nye's tensor is identically zero since Nye's tensor is defined as the curl

of another tensor field, but the curl of Nye's tensor contains information about the
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change in the polarity in the directions that describe pile-ups. For example, the

curl operation determines the change in polarity of an edge dislocation density in

the direction of its Burger's vector, and returns a tensor that is simply a magnitude

multiplied by the Schmid tensor of the edge density's slip system.

Evaluation of the curl of Nye's tensor using the finite element method requires

that dislocation density be kept as field variables and not as internal state variables.

Within the finite element framework, the dislocation density would be described as

nodal degrees of freedom, and the finite element shape functions could be used to

evaluate Nye's tensor and its curl at the material integration points. Describing the

dislocation density as a nodal degree of freedom also leads to dislocation density

flux in and out of the finite elements, necessitating a mixed Lagrangian-Eulerian

description of the plastic deformation of crystals and the incorporation of higher-order

boundary conditions on the dislocation flux. This more rigorous description of effects

of polarity in the crystal is more computationally intensive than the computations

done in this thesis; however, low order linear elements could perhaps be used instead

of the isoparametric elements used in Chapter 5.
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Appendix A

Parameter Study of the

Three-Dimensional Local Model

The three-dimensional "local" model that was implemented to simulate the orientation-

dependence in the stress/strain behavior of single crystal aluminum introduced many

parameters whose influences were not fully investigated in Chapter 4. The purpose

of this Appendix is to provide more insight into the overall behavior of the model,

and the manner in which the material constants might be altered to capture the

behavior of other FCC crystals (e.g., copper). The most important feature of the

model that was not able to be manipulated was the ability of the screw dislocations

to cross-slip. The ability of the screw dislocations to do so was deeply embedded in

the UMAT subroutine; however, other features of the model were more amenable to

manipulation.

The study will focus on the crystal orientations relative to the tensile axis which

had the most slip systems active: the < 111 > and < 100 > orientations. The

< 111 >-oriented crystal will be used to show the effect that different parameters

have on the magnitude and shape of the stress/strain response of the model. The

< 100 >-oriented crystal will be used to show the effect of different parameters on

the activation of slip systems during deformation. Since the scale of the stress/strain

response will be considered in the < 111 >-oriented crystal, the initial alignment of

the crystal with the tensile axis will be perfect, leading to symmetric activation of all
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six potentially-active slip-systems. The < 100 >-oriented crystal was misaligned by

1 and given the same initial orientation as in Chapter 4 to break the initial symmetry

of the slip-systems with the tensile axis.

In each of the parameter studies that were conducted, the reference point of the

material constants was the set of material constants listed in Tables 4.2 and 4.3 used

to simulate single crystal aluminum. When any part of the material parameters were

modified in a controlled fashion, the rest of the material parameters held values at the

reference point. The stress-strain curves will be plotted on a normalized axis along

with the experimental data for the aluminum single crystals of Kocks (1959) and the

experimental data for copper single crystals of Takeuchi (1975) serving as reference.

Before the parameter study is presented, a series of simulations showing the ef-

fects of different strain rates and temperatures on the stress-strain response of the

model. Figure A-1 depicts the effect that different strain rates have on the response

of this model, and Figure A-2 depicts the effect that different temperatures have on

the behavior of this model. The constitutive model is both rate and temperature de-

pendent, although the temperature can only be included isothermally in the model's

present form. The temperature dependence of the stress/strain response of aluminum

single crystals at low temperatures has been experimentally investigated by Hosford

et al. (1970), and the magnitude of the response simulated at low temperatures is

representative of the magnitude measured in the experiments.

In Section 4.6.2, the behavior of aluminum was contrasted to that of copper, and

several reasons as to the differences were given in the text. Several of the reasons

given in the text can be investigated by changing different material parameters and

quantifying their effects, even though the biggest difference, the activation of cross-

slip, cannot be directly investigated. Figure A-3 shows the effect of increasing the

strength interaction matrix. Changing all of the coefficients by a factor of two led to

40% increase in the stress, while the general shape of the curve remained similar. With

the factor of two change in the interaction matrix, the strength of the Lomer-Cottrell

lock (strongest junction) was still less than unity. The underlying dislocation density

evolution remained unaffected by the changes in the interaction matrix. Figure A-4
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shows the effect of changing the average segment length interaction matrix by simple

scalar multiplication. Changing this interaction matrix does change the evolution

of the dislocation density. A decrease in HK will cause the dislocation density to

accumulate slower than the reference point value H(I1. Conversely. an increase in H(

will cause the dislocation density to accumulate at a greater rate than the reference

point value. The changes in the rate of accumulation result in changes of the initial

slopes of the stress/strain curves. The changes also affect the saturation level of the

dislocation density and, therefore, the stress levels reached at larger strains. The

changes in the overall shape of the stress/strain response due to changing average

segment length interaction matrix are similar to the changes in the stress/strain

response due to changing the strength interaction matrix. In Figure A-5. the effects of

changing the average mobility of the dislocation density on the stress/strain response

was probed. The mobility was altered by modifying the pre-exponential reference

velocity for both the edge and screw densities uniformly. The results show that

sluggish densities need greater stresses compared the stresses needed to move dynamic

densities at the same strain rate. As with the changes in the strength interaction

matrix, changes in the reference velocity do not change the evolution of the dislocation

density.

The changes in the stress/strain behavior due to changes in the dislocation resis-

tance, average segment length, and dislocation mobility all look very similar and do

not make the aluminum-like behavior of the simulation look any more copper-like.

The changes appear as though they could be offset by changing the value of the shear

modulus to an effective value so as to recover the reference (aluminum) behavior. The

curvature of the different stress/strain curves appears to scale with the magnitude

of stress levels reached by the different simulations. Decreasing the capture radii as

depicted in Figure A-6 does modify the behavior of the model to appear more copper-

like. The two capture radii in the model were decreased simultaneously while keeping

the ratio between the two radii constant. Decreasing the capture radii decreases the

curvature of the stress/strain curve without significantly changing the initial slope of

the stress/strain curve. The evolution of the dislocation density is also affected by the
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changing capture radius, and as the capture radius decreases, the saturation level of

density increases. The results of decreasing the capture radii change the shape of the

stress/strain curve from an aluminum-like behavior to a more copper-like behavior.

The effect of decreasing capture radii on the stress/strain behavior of the < 100 >-

oriented crystal is not as large as the effect was on stress/strain behavior of the

< 111 >-oriented crystal. Figure A-7 depicts the response of the stress/strain curves

to changes in the capture radii of the material. The radii were decremented in the

same manner as in the study on the < 111 > orientation. Decreasing the capture radii

has the effect of changing the terminal slope of the stress/strain curve as discussed

earlier. The slope of the stress/strain curve of the < 100 >-oriented crystal at 10%

strain is much smaller than the slope of the stress/strain curve of the < 111 >-oriented

crystal at the same level of strain. The change in the slopes of the two curves due to

the decreasing capture radii follow the same behavior.

As discussed in Chapter 4, the strength of the Hirth lock junction was very im-

portant in controlling the stress/strain behavior exhibited by the < 100 >-oriented

crystal. The low strength of this junction enabled the crystal to change its mode of

deformation from activation of all eight to activation of four slip-systems. Figure A-8

shows the effects of increasing the strength of the Hirth lock, g4, on the stress/strain

behavior of the < 100 >-oriented crystal. The plot shows that there is a 60% increase

in the stress level for an 88% increase in the strength of the lock. Whereas a 100%

increase in the whole strength interaction matrix resulted only in a 40% increase in

the stress levels of the < 111 >-oriented crystal (Figure A-3). changing only one of

the strength parameters had a significant effect of the stress levels achieved in the

< 100 >-oriented crystal.

Inspection of the crystallographic strain rates on the eight potentially-active slip-

systems, found in Figure A-9, shows why this one material parameter has such a

significant effect on the stress/strain behavior the crystal in this orientation. The two

plots show the crystallographic plastic strain rates on the eight systems during the

course of the simulations for two different values of g4. With the addition of Figure 4-

11, which shows the behavior for g = 0.16, the underlying reason for the importance
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of the Hirth-lock to the deformation path of the < 100 >-oriented crystal can be

explained. An increase in the strength of the Hirth-lock leads to a more symmetric

plastic deformation mode in which all eight potentially-active slip-systems equally

contribute to the total plastic deformation of the crystal in this orientation.

Figure A-10 depicts the effects of decreasing the capture radii in the same manner

as discussed earlier on the < 100 >-oriented crystal with y4 = 0.30. As in Figure A-

7, a reduction of the capture radii does not have a large effect on the stress/strain

behavior in this orientation. Certainly, the effect is not as large as it is on the

< 111 >-oriented crystal depicted in Figure A-6.

Although the ability of the screw density to cross-slip was not modified, the effects

of preventing cross-slip can be discussed within the model framework. There would be

little difference in the behavior of the constitutive model for crystal orientations that

led to single slip behavior; however, there would significant changes in the behavior of

the crystal orientations that favored activation of multiple slip-systems during defor-

mation. The six active slip-systems in the < 111 >-oriented crystal come in the form

of three cross-slip pairs, and the eight active slip systems in the < 100 >-oriented crys-

tal come in the form of four cross-slip pairs. Disallowing cross-slip would reduce the

mobile density on each slip-system because unlike the case here the dislocation density

on one slip-system would not be able to affect the plastic deformation on another. A

reduction of the mobile density would lower the rate of accumulation of density and

change the character of the density. Also, a lower mobile density would necessitate

greater stresses to reach the same plastic strain rates compared to the stresses that

were needed to activate slip with cross-slip allowed. All of these effects would lead to

stress/strain curves that would approximate the behavior of copper single crystals,

especially with the changes in the material parameters discussed earlier.

The last two parameter studies were conducted on the ratio between the edge and

screw capture radii and on the ratio between the edge and screw reference velocities.

As discussed in Section 4.6.2, these ratio control the overall character of the density

in the simulations. Unlike other dislocation density-based models, the current model

can distinguish between edge and screw density on a slip system, and the ratio of
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edge density to screw density can be easily controlled. Consider Figure A-11 which

depicts the effect that the ratio between the edge and screw capture radii has on the

character of the density. In this study, the average of the two capture radii was held

constant as the ratio between them was modified. The simulations were conducted

on the < 111 > orientation, and the plot is of the total edge dislocation density found

at one material point divided by the total dislocation density found at that same

material point. As shown in Figure A-11, the capture radii can be used to control

the profile of the density, but the character, here defined as the edge/screw ratio,

develops over the length of the simulation towards steady state values.

A more powerful method for controlling the character of the density is to allow

disparate mobility in the edge and screw density. Figure A-12 depicts the effects of

varying the ratio between the reference velocities of the edge and screw densities on the

character of the density. As in the previous case, the simulations were conducted on

the the < 111 >-oriented crystal. The geometric mean of the two reference velocities

was held constant as the ratio between them was varied. A difference in the mobility

of edge and screw densities has a much stronger effect on the character of the density.

In this case the slower density is more prevalent than the faster density. The character

develops at lower strain levels than the capture radii could affect. Although overall

the character of the dislocation density may not be important in FCC crystals, the

character of the dislocation density can play an integral role in the behavior of BCC

metals in which there may be a great difference in the mobility of the edge and screw

dislocation densities.
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stress/strain response of the constitutive model for the < 111 >-oriented crystal.
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