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Abstract

Conventional nonintrusive load monitoring relies on measurements of steady-state current
and voltage for determining the operating schedule of loads of interest in a building. The
Multiscale Transient Event Detector (TED) described in [1] advances the capabilities of
conventional NILMs by using vector space methods to identify load transients or transient
sections. The structure of the TED algorithm has significant parallelism inherent to it.
This suggests the possibility of implementing the TED as a multiprocessing machine with
several inexpensive processors performing the various tasks in parallel. The development of
a parallel version of the sequential algorithm, the synthesis of a model for a multiprocessing
platform for transient event detection based on the parallel algorithm, and the design and
construction of a prototype Multiprocessing Load Monitor (MLM), were the major goals of
this thesis. Data dependencies in the TED algorithm were identified and used to parallelize
the TED algorithm. A model for the MLM was then developed keeping in mind complexity
and reliability issues. Hardware design of the main subsystems was under taken. The MLM
prototype consists of a data acquisition front-end and several computational units operating
in parallel and communicating with one another. The acquisition front-end samples the
analog input streams (envelopes of real and reactive power, etc.), stores and periodically
transfers blocks of the digitized data to the computational modules. These 80C196-based
modules may be configured to perform transient search on various time scales, time scaling
of data using tree-structured decomposition [1], or result collation. They were designed to
be scalable, and versatile enough to perform any of the TED operations. The MLM's user
interface is implemented on a host PC, and allows, for instance, the downloading of code to
the slave processors and the uploading of event detection results. The principal application
of the prototype MLM was transient event detection on power load lines. The model, as
well as the prototype, are general enough to allow transient detection in other environments.

Thesis Supervisor: Steven B. Leeb
Title: Carl Richard Soderberg Assistant Professor of Power Engineering
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Chapter 1

Introduction and Background

1.1 Theoretical Background

The Nonintrusive Load Monitor (NILM) is a device that monitors the electric util-

ity service entry of a building and, from measurements of voltage and aggregate current

made solely at this point, is able to determine the operating schedule of every load of in-

terest in the building. Nonintrusive load monitoring is a convenient and economical means

of acquiring energy data for this purpose. Compared with conventional load monitoring,

nonintrusive monitoring boasts easier installation, simplified data collection, and simplified

data analysis because the NILM allows for all analysis to be done at a single central location

[1]. Additionally, a NILM is a potentially powerful platform for power quality monitoring.

"Power pollutants" are loads which do not draw sinusoidal input currents. Harmonic cur-

rents create harmonic voltages in the tranmission system and degrade the quality of the

delivered voltage waveform [2]. In conjunction with determining the operating schedule of

the loads, the NILM could check for power quality offenders by relating the introduction of

undesirable harmonics with the simultaneous turning on of the offending loads.

While the NILM demonstrates much improvement over conventional metering proce-

dures in both ease and scope of operation, more sophisticated techniques are needed to deal

with loads in an industrial or commercial setting. State-of-the-art nonintrusive monitoring

devices such as the residential NILM [3], depend upon changes in steady state real and

reactive power for load identification. Such a NILM would not for instance, be able to dis-

tinguish loads that coincidentally draw nearly identical steady state power. This presents

a potential limitation in the context of industrial settings which contain loads that may be

13



modified to homogenize their steady state behavior [4].

The Multiscale Transient Event Detector (TED) described in [1] advances the

capabilities of conventional NILMs by using vector space methods to identify load transients

or transient sections. Instead of monitoring steady state conditions, it searches for transients

and matches them to stored templates of the load whose activity caused them. Hence, it

does not suffer from the limitations of a residential NILM in a commercial or industrial

environment.

The basis for the TED is the observation that transient behavior of most important load

classes is distinctive and repeatable. This allows reliable recognition of individual loads

from the observed transients. Each transient in current, real or reactive power, and other

quatities, may be subdivided into segments of significant variation, known as v-sections.

A load may thus be modelled as a set of v-sections comprising its characteristic transient

behavior. Detecting the turning on of a load would simply (and reliably) mean recognizing

all the v-sections for the load in the input data stream. This pattern recognition may

be done using any feasible pattern discrimination technique such as a euclidean filter or a

transversal filter [5].

Figure 1.1, reproduced from [1], shows an example of a turn-on transient. Figure 1.1(a)

shows the envelope of real power during the turn-on transient of a rapid start fluorescent

lamp. The trace in Figure 1.1(b) shows the envelope of reactive power during the turn-on

transient. The location of the v-sections in the two waveforms, computed by a change of

mean detector implemented in MATLAB in [1], are schematically marked by ellipses A-E in

the figures. The regions between the ellipses have very little variation in their level, i.e., are

quasistatic. If two loads were to turn on simultaneously, the transients would overlap. This

overlap, however, would not be intractable as long as the v-sections of one load transient

occur during the quasistatic segments of the other load transient. As the widths of the

v-sections are narrow, this may be quite probable, so that in most cases of overlap the TED

would be able to resolve the loads correctly. By considering transients as sets of v-sections

rather than as a single event to be detected, the TED allows for monitoring in a busy

environment with a high rate of event generation.

The algorithm for the prototype Transient Event Detector (TED) of [1] is flowcharted

in Figure 1.2 (reproduced from [1]).

The first step is data acquisition. Once it is armed, the TED waits for a triggering event

14
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Figure 1.1: Rapid Start Lamp Bank Transients in (a) Real Power (b) Reactive Power

(a change of mean in the input data stream), whereupon a block of samples is acquired. The

v-sections of the load transients will have been previously collected and stored as templates.

(The discriminating filter searches for these templates in the input data in step 5.)

Event detection may be carried out over several time scales. For instance, the input

stream may be downsampled by factors of two and analyzed for v-sections on those time

scales. The advantage of such an approach would be to allow templates of complex v-sections

to be reduced to manageable sizes which would conserve both memory and processing time.

Hence, for instance, data stream decomposition would allow us to identify a particular

transient on a coarser time scale than the input stream. The procedure employed by the

TED for downsampling data is known as tree-structured decomposition and is performed

15
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Figure 1.2: The Multiscale Transient Event Detection Algorithm

at step 2. In the prototype, the input data block is downsampled twice to produce data on

three time scales. Steps 3 and 4 then set up a loop to perform pattern search on each scale.

Transversal filtering is used to detect v-sections in the input data stream.

A major concern in searching for v-sections to establish load activity is the possibility

of superimposed transients due to simultaneous activity of multiple loads. As noted above,

the v-sections are small enough to make complete superpositioning unlikely, thus allowing

some degree of overlap in the transients. In the rare event of complete superpositioning,

pattern recognition could fail. The danger still remains however, of a v-section being falsely

detected due to the activity of another load with a more complicated set of v-sections. If

all the v-sections in a complex v-section set of a certain load are found, it is very likely

that the transient associated with the load is present in the input stream. If now a v-
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section belonging to a load with a simpler v-section set is also detected at about the same

point in the input stream, it may be safely assumed that this v-section is not present and

the identification is spurious. For instance, consider load X with a complicated transient

consisting of four v-sections in an input stream, and load Y with only one v-section in the

same input stream. If the v-section for Y resembles one of the v-sections for X, load Y

may be falsely reported as activated each time load X turns on. To handle this case, an

intra-scale v-section lock out is performed in step 5 on the result of the pattern search on

each scale as follows: The pattern search on a scale is hierarchical, with v-sections belonging

to the most complex transients being searched first. If a complex transient is detected, the

locations of its v-sections are noted. A simpler transient will not be considered as identified

if its v-sections are detected at the previously recorded, locked out locations.

Once all v-sections for a load on a time scale are found, the load transient is considered

positively identified and a report is made of all events detected on that time scale (step 6).

The TED then repeats event detection and lock out on the other time scales (step 7).

When all the patterns on all the scales have been searched, all events detected must be

further conditioned by inter-scale v-section lock out (step 8). This follows the same principle

as an intra-scale lockout. It guarantees that v-sections from a complex pattern on a coarse

time scale were not used to match simpler v-sections on a finer time scale. Finally, a report

of all loads identified is made in step 9, and the TED waits for the user to arm it again.

This multiscale transient event detection algorithm allows for several interesting routes

for advancement. The event detection, tree-structured decomposition, and result collation

procedures all have a high degree of parallelism inherent to them. This suggests the pos-

sibility of implementing the TED as a multiprocessing machine with several inexpensive

processors performing the various tasks in parallel.

1.2 Contributions of This Work

The major contribution of this thesis was the development of a multiprocessing platform for

multiscale transient event detection by extending the serial algorithm of [1]. The first step

towards this goal was to analyze the TED algorithm in search for parallelism. The time/data

dependencies of the major functional steps of this algorithm were brought out. Mapping

these functions over a mesh of processors meant considering implementation issues early

17
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Figure 1.3: The Multiprocessing Load Monitor (MLM)

on. Thus, for instance, tradeoffs between computational complexity and reliability of event

detection were considered. In the context of this study, an abstract model of a multipro-

cessing architecture for transient event detection was formulated. The Multiprocessing

Load Monitor (MLM), as it is referred to throughout this work, was designed to fulfill

the three objectives discussed below.

A primary purpose of the MLM developed as part of this thesis, was utilitarian: to

develop an inexpensive and commercially viable implementation of the multiscale transient

event detector presented in [1]. To achieve this goal, an effort was made to parallelize the

event detection and tree-structured decomposition algorithms proposed in [1], as discussed

earlier. This parallelism was then reflected in the machine model (see Figure 1.3) which con-

sisted of front-end preprocessing blocks (the analog preprocessor and the master board

- see Chapter 3) and a mesh of computational units (CU), programmable and config-

urable to allow maximum flexibility of function. The event detection and tree-structured

decomposition operations could be distributed over these units in a way that was deemed

analytically and/or experimentally optimal. Cost-effectiveness in the physical implemen-

tation was achieved by using inexpensive microcontrollers and associated memory to form

the computational units.

18

I I

Anmog

Preprocemor

1(t)
L~t

K

: 1
I I

: 1I II I
I I

: .I I
I I~I
I I

(
: .K/I 
I I

. . .~~~~~~~ .......................................................... .............

-



Transient event detection is implemented on the MLM by distributing the functions of

event detection, tree-structured decomposition, and result collation over several computa-

tional units. In addition the v-sections associated with the loads must be assigned to the

computational units, keeping in mind processing power and interconnection limitations. An

important direction for future work would be to analytically determine the optimal distri-

bution of these various functions and load transient assignments over the computational

units. Hence, one aim of the MLM is to provide an experimental platform that may one

day be used to test the theory of optimal implementation of the multiscale event detector

algorithm in a parallel processing environment. This demanded that the architecture of the

basic computational unit be flexible with regards to both intercommunication and individ-

ual functionality. A unit should, therefore, be configurable to allow communication with the

master board, the host PC or another computational unit, as shown in Figure 1.3. It should

also be able to function as a pattern recognizer, perform tree-structured decomposition, or

gather and interpret results from the pattern recognizers.

Finally, the MLM was designed to form the basis for a platform for nonintrusive diag-

nostic evaluations of industrial loads. The MLM allows raw data to be shipped - in bulk

- directly to the host PC, while reporting all events detected. Diagnostic routines on the

PC could use this information to detect changes in the transient patterns (e.g. in the shapes

and relative placements of v-sections) that may indicate potential problems with the loads

being monitored. Problems could be detected and remedied before they lead to significant

down-time.

1.3 Thesis Outline

In this chapter we introduced the concept of nonintrusive load monitoring and the versatility

of the Transient Event Detector (TED) of [1]. A preliminary discussion of the rewards of

taking a parallel approach to the sequential algorithm of the TED is made. This underscores

the goal of the thesis: To design and implement a prototype of this parallellized TED

algorithm in the form of the Multiprocessing Load Monitor (MLM).

Chapter 2 explores the parallelism in the TED algorithm. Tasks that may be subdi-

vided, distributed over different processors, and performed in parallel are identified and

a parallel version of the algorithm is constructed. A discussion on the tradeoff between
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the time/memory complexity and reliability of event detection is presented. In the con-

text of the parallelized algorithm and complexity issues, an abstract model of the MLM is

presented.

Chapter 3 describes one of the two main subsystems of the MLM, the Master Board,

which is the data acquisition front-end. The data acquisition module's functionality

and design methodology are explained, followed by a detailed report of the design and

implementation of the module.

Chapter 4 rounds off our discussion of the hardware implementation of MLM by pre-

senting the Computational Units of the MLM. Their function and top-level design are

described, and supplemented with details of the actual implementation.

In Chapter 5, the software architecture of the MLM is elaborated. The code written

for the computational units is described in the context of the parallel TED algorithm. The

other major software effort was the design of the Host PC User Interface. Its functions and

software implementation are also discussed in detail.

Chapter 6 presents the final configuration of the prototype MLM developed for this

thesis. Results obtained during testing, and the performance achieved, are stated and

evaluated with reference to the goals of this research.

Finally, Chapter 7 reiterates the aim of the thesis and gives a summary of the results

achieved. It also indicates directions for future work based on the present research.

Several appendices are included at the end to support and enhance the body of this

thesis. Appendices A and B consist of the schematics for the MLM and are important

references for Chapters 3 and 4 respectively. Appendix C contains the PAL source code

for both the data acquisition board and the computational modules. Appendix D lists

the source code for the computational units. Appendix E gives details of the Host PC

Interface software. Both ECM code and RISM code (resident in slave Read Only Memory)

are included. Appendix F describes the design and construction of the PC I/O card used for

MLM control. In Appendix G we give full details of the analog preprocessor by including [8]

in its entirety. Appendix H supplements the discussion of prototype performance in Chapter

6. It gives details of the v-section sets for the monitored loads, as well as the software

routines that activate the test loads in sequence. And finally, Appendix I is intended to be

a pictorial guide to the construction of the prototype MLM.
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Chapter 2

The Structure of the MLM

In this chapter we formulate the structure of a Multiprocessing System for transient event

detection. We begin by analyzing the TED algorithm of [1] presented in Chapter 1, for

data dependencies between its operations. Ensuring that these ordering constraints are

met, a parallel version of the algorithm is developed. Before mapping this algorithm into a

computation model, we discuss complexity and reliability tradeoffs. Finally, the structure

of the Multiprocessing Load Monitor (MLM) designed and developed for this thesis is

presented in Section 2.3.

2.1 Parallelism in the TED Algorithm

As discussed in Chapter 1, the TED algorithm of [1] monitors load activity by searching

for transients in several data signals (e.g., real and reactive power) over several time scales.

Consider the general case of searching for transients in data streams 1...R, over time scales

1...S. Transient event detection would consist of the following sequence of operations:

1. Sample data on each input stream [R operations].

2. Scale each stream in time, to get S - 1 new streams for each original input stream

[R(S - 1) operations].

3. For each data stream (on each time scale), perform transient event detection [RS

operations].

4. Collate results and perform intra-scale v-section lockout on results for each time scale

[S operations].
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5. Perform inter-scale v-section lockout on results from all time scale [1 operation].

The total number of sequentially performed operations, 0, is given by:

0 = R + R(S- 1) + RS + S + 1

-0 = 2RS + S + 1

Thus, for instance, if we were monitoring 5 input signals and searching over 3 time scales,

a total of 34 operations would be sequentially performed. Most of these operations are not

constrained to precede or follow one another. As a first step in bringing out the parallelism

in the transient event detection algorithm, we must determine the data dependencies for

the functions performed in the algorithm.

2.1.1 Data Dependencies for TED Operations

We begin by explaining the terminology that will be used in the discussion to follow. Sup-

pose an operation g cannot occur until another operation f has completed. We denote the

start of g by g and the end of f by fe. The precedence relation [6] between f and g can be

expressed as:

fe < g,

which is an inequality between the instants of the end of f and the start of g. This precedence

constraint can be extended to cover entire operations by stating:

f g9,

which expresses the fact that f and g cannot proceed concurrently. The precedence con-

straint -< is transitive, meaning that:

f g &gh = f< h
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A precedence graph is a directed graph that represents the ordering on a set of events

induced by precedence constraints. An arrow (directed edge) in the graph between vertices

representing operations f and g specifies the constraint f g.

One of the main sources of precedence constraints is data dependency. A data-dependency

constraint between operations f and g occurs if some value produced by f is required as input

to g. A data-dependency graph is a precedence graph depicting only constraints due to data

dependencies. It is an important visual tool that we shall now use to impose an ordering

on the TED algorithm.

Figure 2.1 shows the data-dependency graph for the TED operations, for a sample

case examining two time scales. The following data dependencies are present in the TED

algorithm:

* For each stream independently: Data Acq. < Event Detect. (original scale)

* For each stream independently: Data Acq. < TS Decomp.

* For each new scale independently: TS Decomp. Event Detect.

* For each time scale independently: Event Detect. -< Intra-scale lockout

* Over all time scales and all streams: Intra-scale lockouts -< Inter-scale lockout

Perhaps more importantly, the data-dependency graph states that the following opera-

tions are independent.

* The operations of data acquisition, tree-structured decomposition, and event detection

can be performed on each data stream independently.

* For a given time scale:

- All result collation and intra-scale lockouts may be performed independently.

* For a given data stream:

- All tree-structured decomposition operations can be performed independently.

- All operations (event detection, collation and intra-scale lockout) on different

time scales may be performed independently.
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ata Acq.
Stream N)

Figure 2.1: Data-Dependency Graph for TED Operations

2.1.2 The Parallel Transient Event Detection Algorithm

The data dependencies and "independencies" brought out in the previous section give us

the guidelines by which to parallelize the transient event detection process. The Parallel

Transient Event Detection Algorithm is given in Figure 2.2.

Here are the main steps in the algorithm:

1. Data acquisition is performed on all input streams in parallel.

2. The following operations are performed in parallel:

* Event detection on the original time scale is performed on all data streams in

parallel. Each load's transients on every stream are searched for in parallel. In

addition, the v-sections for a given load on a given stream may be searched for

in parallel.

* Tree-structured decomposition is performed on all the streams in parallel.
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Figure 2.2: The Parallel TED Algorithm

3. Event detection

same manner as

4. Result collation

parallel.

on all the time-scaled data streams is performed in parallel in the

for the original data streams.

(including intra-scale lockout) is performed on each time scale in

5. Inter-scale lockout is performed on the results of the collaters.

2.2 Complexity/Reliability Tradeoffs

There is considerable freedom in mapping the parallel algorithm into an abstract model for

a multiprocessing transient event detector. In producing a practical, reliable, and economi-

cally viable implementation, there are restrictions in addition to the precedence constraints

of the algorithm. Thus, before we set up the MLM model of choice, we cover the issue of

complexity and, in particular, the tradeoffs between complexity and reliability of operation.

As our discussion is geared towards designing an MLM model, let us begin by stating
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the design features that arise naturally from the parallel TED algorithm. The task of

digitizing data over several channels and storing and relaying data suggests the use of

specialized hardware. Instead of using one or more processors for data acquisition, a seperate

hardware module with specialized analog-to-digital converters, etc., should be designed to

serve as the acquisition front-end. The sampling rate would be determined by the frequency

characteristics of the inputs. The digitized data would be buffered and periodically shipped

to the processors. The size of the transfer blocks and the sampling rate would determine

the processing time available to the computational units between consecutive data arrivals.

Thus, block size is related to the processing power of the units. The tasks of v-section

search, tree-structured decomposition and result collation (with intra-scale lockout) would

be distributed over a mesh of computational units, as stated earlier. Inter-scale lockout, the

last step in the TED algorithm, may be performed by the host PC that would be needed

to coordinate the MLM and provide a user interface. This last task assignment follows

from the fact that inter-scale lockout requires significant memory ( it requires access to

information on all v-sections, their relative locations and their relative priority) and it need

not be performed in real-time.

The mapping of loads and their v-sections over the processors and time scales available

remains to be established. First we must decide on a processor that will give us adequate

(yet inexpensive) computational power to perform the TED operations within the time

frame established by the input sampling rate and the transfer block size. Another decision

to be made is to determine the degree of parallelism to be incorporated in the final design:

Just because two operations can be done in parallel does not mean they have to be done

in parallel. This essentially means determining how many v-sections and how many loads

should be sequentially processed by a single processor, as well as how many input streams

a processor should search over. Finally, we must also decide which time scale a v-section

should be identified on. A rigorous analytical solution to these questions is beyond the scope

of our treatment of these issues. However, the factors that must be considered in determining

the optimal MLM configuration are discussed here, and the architectural decisions made

for the MLM (e.g., choice of processor and distribution of v-sections) are justified in the

context of this discussion.

The most important factor governing the implementation of the parallel TED algorithm

as a multiprocessing machine, is cost (remember that the goal of our work is to design
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an economical and commercially viable load monitor). An increase in complexity is most

unattractive to the extent that it raises cost. Our discussion of complexity is made under

this simplifying assumption.

System Complexity for the MLM may measured in terms of software complexity

(or computational complexity) and hardware complexity (or component count). Software

complexity itself represents the computation latency for a software operation as well as its

memory requirements. Component count is an important factor as it directly affects cost.

Computation latency of operations influences our design by helping us estimate the compu-

tation power needed of our processor. Moreover, the latencies of the various operations in

the TED will determine how many tasks may be performed by a single processor within the

established time frame. Higher latencies would mean adding more processors to perform all

the operations, raising component count and hence, cost. Memory requirements are in a way

the least important of the three factors: As long as the memory available in each processing

module suffices, the memory requirements of an operation are irrelevant. The main influ-

ence on our MLM Model of the TED operations' memory utilization is in estimating the

maximum memory that would ever be needed per computational unit. This would be used

to define the memory range that must be provided by our processor. Once that is achieved,

this part of system complexity may be ignored. Thus, as cost is our primary concern, for

our purposes, system complexity is reflected and represented to a good approximation by

component count alone.

In selecting a processor for the MLM we used the software complexity of the TED opera-

tions as our guide. First of all, memory requirements were considered. A processor searching

for several v-sections over an input data block requires, in general, far less than 10K of data

memory and less than 10K of program memory. A 16-bit addressing architecture, giving

access to 64K of memory was therefore decided upon. Since flexibility in inter-processor

communication would be required, access to several I/O Ports and individual I/O pins, a

serial port, versatile interrupt handling, and other features characteristic of an embedded

controller were needed. The Intel 80C196KC appeared to fit the bill.

Computation latencies of the various TED operations, e.g., pattern search, were used

to verify this choice. This required determining the block size of input data transfers. As

a first step the range of possible sampling rates was fixed. For the types of inputs that

the MLM would work on, the sampling rate would be between 100Hz and 250Hz. Given
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the interrupt processing latencies of the 80C196KC, a block size of one (i.e., sending each

sample as soon as it is acquired) would be unrealistic - too much time would be lost

processing interrupts a few hundred times each second. If a very large transfer block size

is chosen, say 5000 samples, new data would be shipped after 25 seconds (given a sampling

rate of about 200Hz). This is impractical as it would make load identification lag the load

activity by nearly a minute, if a v-section is split between two transfer blocks. Such a

large block size would also be unsuitable because of the long transfer time. The correct

size is somewhere between these extremes. The most important clue is the computation

time of the TED operations on the 80C196. Experiments were conducted with various

v-section sizes (varying from 10 to 200 points) on data blocks varying in length from 100

to 2000 sample points. Block sizes in the range 100-1000 points emerged as good choices.

These gave the processors 0.5-5.0 seconds between consecutive data arrivals, and processor

interrupt frequency was not unreasonable. We chose a block size of 500 points. The time

needed to carry out pattern search using Euclidean filtering (see Chapter 4) on this block

size for various template sizes was measured. The results showed that a 100 point template

could be searched in about 0.75 seconds. Hence, the biggest template that could be searched

would be about 325 points long. It was also seen that the total points searched determined

the computation time, regardless of the fact that the points comprised a single v-section

template or spanned several templates. Thus, five 30 point templates took about the same

time (slightly more due to initialization overheads, etc.) as a single 150 point v-section. As

it was estimated that actual v-section templates would vary in size from about 10 points to

35 points on average, this meant that about 10-25 v-sections could be identified on a single

80C196 in the alloted 2.5 seconds. TIee-structured decomposition required on the order

of 0.3-0.4 seconds, which meant that a processor performing decomposition could double

as an event detector. This timing data guaranteed us the flexibility in load and v-section

assignment that we needed. The 80C196 was therefore judged a feasible choice for the given

sampling rate and transfer block size.

Having established the time frame for processor computation, we now comment on the

degree of parallelism needed in our model. Since we transfer data every 2.5 seconds, the

worst-case lag between the end of a load transient and load identification being reportedl is

'Since the durations of transients vary from load to load, we measure identification lag from the end of
the transient to the load being identified by the MLM.
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just under 5 seconds. It therefore makes little sense to distribute one v-section per processor

i.e., completely parallelize pattern search for load v-sections. Not only does this waste each

processor's computation power, it makes no difference to the worst case delay in reporting

load activity, while tremendously increasing component count. A much better scheme would

be to allow some sequential processing per processor e.g., by alloting 5 to 10 v-sections to

each event detector processor.

Component count could reasonably be increased if it leads to increased reliability in

the functioning of the MLM2. The MLM would be deemed perfectly reliable if a load turn-

on was reported if and only if the load turned on. That is, the MLM must never miss

a load turning on and it must not be deceived into falsely reporting load activity when

none occured. The problem with transient event detection (and with pattern recognition

in general) is that the events - i.e., the v-sections - are not perfectly repeatable, are

accompanied by background noise, and may occasionally be partially distorted due to high

load activity in the monitored environment. The error threshold set must therefore be large

enough to accomodate all possible v-section manifestations. This means transients due to

other loads turning on or off may be seen by the discriminating filter to lie within the error

bounds, so that a false identification may occur. We consider below some techniques for

overcoming these problems and note how they inevitably require a complexity tradeoff.

One way to increase reliability would be to use a more sophisticated discriminating filter,

or filters, to perform the pattern search. The hope would be that by the maximal use of the

information available, these techniques may be able to define the tightest error threshold for

positive recognition. The problem with this scenario is the necessary increase in software

complexity (and, in particular, computation latency). This in turn would mean an increase

in component count. In our case, the Euclidean Filter (see Section 4.2.1) was chosen for

pattern discrimination largely because it was compatible with the processing power of the

80C196 - a more sophisticated filter might severely reduce the number of v-sections that

may be processed per computational unit, leading to an unaffordable increase in complexity.

However, more research is needed to determine the ideal filter in terms of resolution per

computational complexity, for a given set of resources (such as processing power, allowed

2The term reliability is used here to mean correctness of operation - i.e., how reliable is the MLM as
a load monitor. It must not be confused with system reliability (in the context of robustness and fault
tolerance) which is defined in terms of the mean time to failure of the system as a whole [7].
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Figure 2.3: Improving Reliability By V-section Search Over More Streams

time, etc.).

We could also improve MLM reliability by searching for more v-sections over more

streams, in the identification of a load. Figure 2.3 shows the case of identifying load A,

with the challenge of loads B and C giving turn-on transients that resemble the transient for

A in certain input streams. The ovals represent "identification spaces" set up by the error

thresholds for the transient sections of load A on each stream. The dark arrow represents a

transient in the input stream due to the turning on of load A, the dotted arrow represents

transients in the input due to load B, and the light arrow denotes transients due to load

C. Note that the error threshold for load A in stream 1 is large enough to allow transients

due to load B or load C to be occasionally interpreted as load A transients. Thus, if

pattern search for load A is conducted only on stream 1, false identifications of A will

occur. Load A has a transient v-section in stream 2 and if this is used in conjunction with

stream l's transient, we see that transients in stream 2 due to load B never make it to

A's "identification space". In this way, false identification of load A due to B's activity is

eliminated. Similarly, v-section search in stream 3, eliminates spurious reporting of load A

turning on, due to load C's activity. Clearly, reliability is improved and, equally clearly,

unfortunately, so is component count. Nevertheless the MLM model should allow the use

of this technique to improve reliability.

An important issue in the context of reliability and complexity trade-offs is determining

the best time scale on which to search for a v-section. If a v-section search is conducted on

the finest scale possible (i.e., the highest sampling rate), we have more frequency contents

of the input signal available (higher resolution) than at any other scale: To go to a coarser
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scale requires downsampling (including pre-filtering), in which the higher frequencies of

the input stream would be lost [19]. Hence, reliability is maximized at the finest scale.

However, this also means more points per v-section, which increases memory requirements

and computation time, and consequently component count. Downsampling the input data

and searching for a proportionally smaller v-section would save on processing complexity

but may reduce the resolution of transient recognition. To strike the perfect balance would

require studying the frequency characteristics of the v-section, the possibilities of a false hit,

and the computation power available. In general, if the variations in the transient are slow,

or scaled out in time - i.e., the input is predominantly a low frequency signal - so that no

useful information is lost in the process of low-pass filtering and decimation, this procedure

should be undertaken, and the v-section identified on the coarser scale. If the v-section

varies quickly in time (high frequencies present), downsampling could affect identification

reliability. Thus, tree-structured decomposition and identification on a coarser scale is a

particularly good idea for v-sections that exhibit slow variation over an extended period of

time.

It is possible to improve reliability without particularly increasing complexity. An ex-

ample is the idea of having individual error thresholds for each v-section searched. Certain

loads exhibit remarkably consistent transient behaviour on certain input streams. Other

loads may not be as cooperative. If there was one global error threshold, reliability of load

identification would be severly decreased. Hence, we should customize the error threshold

for each pattern to be searched according to the degree of its repeatablility. The increase

in software complexity is minor as far as computation time goes, and not too costly in the

extra memory needed.

The discussion in this section focussed on issues governing the optimal configuration of

a multiprocessing machine for load monitoring via transient event detection. It was also

intended to ground our choice of implementation of the parallel TED algorithm in reality.

As stated earlier, much theoretical work needs to be done in this direction. The good news

is that the MLM's design allows easy reconfiguration. This would therefore provide the

ideal platform to test the optimal distribution of these various functions and load transient

assignment over the MLM processors.
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Load 1

Stream R

To Collater

Figure 2.4: Identifying a Load on One Time Scale

2.3 The Structure of the MLM

The MLM model is now presented in the context of the TED dependency graph and the

complexity issues raised in Section 2.2.

Consider once again the parallel TED algorithm in Figure 2.2. A natural way to struc-

ture the MLM would be to have a seperate subsystem for data acquisition, feeding a network

of processing modules performing the rest of the operations. The data acquisition front-

end would sample all input channels simultaneously. It would buffer the digitized data

and periodically ship data blocks to the processing modules. This way the sampling and

transference of input data are performed in parallel over all input channels.

The allocation of tasks over the processing modules follows naturally from the algorithm

and the complexity constraints:

* Each processing module works on only one input stream.

* Each processing module is assigned exactly one of three functions:

1. Tree-structured decomposition.
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Load D+1 to 2D

Stream R Stream R

To Collater

Figure 2.5: Identifying N Loads on One Time Scale

2. Searching the input stream for v-sections belonging to one or more loads.

3. Collation of event detection results on a given time scale.

* Inter-scale lockout is performed by a host PC.

In keeping with our goal of a practical and economical implementation, we do not choose

the "finest grain" distribution of tasks over the modules. Hence, while v-sections of a load

on a stream may be distributed over different processors and identified in parallel, we choose

to search for all v-sections on one data stream sequentially on one processor. Moreover,

multiple loads may be assigned to a single processor. These decisions are not dictated

by precedence constraints. Rather they reduce component count (fewer processors) and

communication complexity, while not significantly affecting computation time.

Consider the task of identifying one load on one time scale. Suppose the load has tran-

sient v-sections on streams 1 through R. Figure 2.4 shows the configuration of modules

needed. Module M1 searches stream 1 for the v-sections present in that stream. Upon de-

tecting all v-sections, it signals M2, which has been searching for v-sections in its own input

stream. The detection results are thus passed down this linear chain. When all modules
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Loads 1,2 Loads 3,4,5

To Collater

Figure 2.6: A More Compact Load Assignment

including the final processor MR, have identified their v-sections, the load is considered

identified on the given time scale and a message to that effect is passed on to the collater

for that time scale.

We now expand our example to cover the identification of N loads on a particular time

scale, with v-section search being conducted on all R streams. Figure 2.5 shows the general

processing module configuration. Each processor searches for v-sections of D loads on their

respective input streams. Whenever a processor identifies all the v-sections for one of its

loads, it relays a message to the next processor in the column. As multiple loads are

being tracked, it is important for processors to communicate which load's v-sections have

been identified. Note that the column-like placement or linear linking of modules, with

communication possible only with neighbors, is an economical configuration which easily

serves our purpose. Details of how the communication along these chains of processors is

implemented are given in Chapter 4.

The symmetrical distribution of loads and their v-sections is somewhat misleading. In

reality most loads will not have v-sections on all streams. They will also not have the same

number of v-sections or similarly sized v-sections on different streams. The distribution and
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Figure 2.7: The MLM Model

nature of v-sections will also differ from load to load. Thus while the columnar structure

of 2.5 is a good visualization, a more compact configuration will be possible in most prac-

tical instances. Figure 2.6 shows the "custom" distribution of loads and v-sections across

processing modules. Loads 1 and 2 have a large number of v-sections in stream 1 compared

to loads 3,4, and 5. Hence, one processor is dedicated to v-sections of Loads 1 and 2 in

stream 1. Another looks for stream 1 v-sections of Loads 3, 4, and 5. Loads 1 through 4

have fewer/smaller v-sections in streams 2 and 4. Load 5 has no v-sections in any stream

other than stream 1. These facts are used to completely identify all five loads over four

processors, as shown in Figure 2.6.

Figure 2.7 gives the model of the Multiprocessing Transient Event Detector that will be

implemented in this thesis and utilized for load monitoring. A data acquisition front-end

samples all input streams and relays the data blocks to the processing modules. Tree-
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structured decomposition is performed on each stream independently. Event detection on

the original time scale begins as soon as the front-end sends new data. Event detection on

other scales is performed following the completion of tree-structured decomposition of the

input data to that scale. Collation and intra-scale lockout are performed independently on

each time scale. The task of inter-scale lockout is relegated to a host PC which also controls

the entire MLM by downloading code to the processors and uploading results from them.

The configuration of modules for event detection on each time scales is load-dependent.

Details of this configuration are irrelevant in the abstract model.

Chapter 3 describes the hardware design and implementation of the data acquisition

front end. Chapter 4 follows up with the design of the slave modules and details of how

inter-slave communication takes place. Chapter 5 concludes the implementation details of

the MLM by discussing the software design for the entire system including the software

development of the host PC interface.
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Chapter 3

The Data Acquisition Front-End

A major contribution of this thesis is the development of a multiprocessor-based nonintru-

sive load monitor. The Multiprocessing Load Monitor (MLM) consists of two distinct

subsystems: the data acquisition front-end, or the Master Board, and the main compu-

tational unit, the Slave Module. In addition, an Analog Preprocessor' interfaces the

MLM with the power load lines by providing conditioned analog inputs to the master board.

In this chapter we focus on the function and design of the data acquisition front-end.

We begin with a brief discussion of the analog preprocessor and the inputs to the master

board.

3.1 The Analog Preprocessor

The analog preprocessor is the primary interface between the digital world of the MLM

and the utility service entry, i.e., the power lines driving the loads being monitored. Its

principal outputs are estimates of the envelopes of real and reactive power, as well as in-

phase and quadrature third harmonic contents of current. It also gives the higher harmonic

contents of the current, providing 16 analog channels per phase, to be analyzed by the MLM

computational units. Full details of the analog preprocessor are given in [8]. This paper is

included in its entirety in Appendix G.

Given below is a listing of the outputs of the analog preprocessor. Note that in-phase

and quadrature harmonics are referred to with the same P and Q notation as "real power"

1The Analog Preprocessor was designed and developed by S.B. Leeb and S.R. Shaw. See Appendix G
for details of its functionality.
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and "reactive power", even though there is generally no higher harmonic of voltage and

so, strictly speaking, no high harmonics of power. The nomenclature used here is adopted

from [8], and is simply a "short-hand" notation for describing the in-phase and quadrature

higher current harmonics.

1. Envelope of real power, P.

2. Envelope of reactive power, Q.

3. Envelope of second harmonic of real power, 2P.

4. Envelope of second harmonic of reactive power, 2Q.

5. Envelope of third harmonic of real power, 3P.

6. Envelope of third harmonic of reactive power, 3Q.

7. Envelope of fourth harmonic of real power, 4P.

8. Envelope of fourth harmonic of reactive power, 4Q.

9. Envelope of fifth harmonic of real power, 5P.

10. Envelope of fifth harmonic of reactive power, 5Q.

11. Envelope of sixth harmonic of real power, 6P.

12. Envelope of sixth harmonic of reactive power, 6Q.

13. Envelope of seventh harmonic of real power, 7P.

14. Envelope of seventh harmonic of reactive power, 7Q.

15. Envelope of eighth harmonic of real power, 8P.

16. Envelope of eighth harmonic of reactive power, 8Q.

The master board accepts 8 analog inputs from the 16 choices. In a typical case, the

master board would look at P, Q, 3P, 3Q, 5P, 6P, 7P, 8P. These inputs would be sampled

and the data passed to the slave modules, which would search this data for transient events.
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3.2 Functional Overview of the Master Board

The Master Board acts as a digitizer, a buffer and a relay between the analog preprocessor

and the computational units, as well as between the preprocessor and the host PC. It is

proclaimed master because it has the highest priority in the eyes of the computational units

(its slaves) when it informs these units that new data is ready to be transferred to them.

Moreover, because of the single-sided handshaking between the master board and the slave

modules, the master does not wait for the slaves to announce their availability, imperiously

beginning the data transfer after a fixed time period.

The master board is therefore, the data acquisition front-end of the MLM. It interfaces

with the analog preprocessing module by accepting 8 analog channels from it, digitizing the

signals, storing them in RAM, and periodically transferring the data blocks to the slave

modules. It also interfaces with the host PC via a PC I/O card, and provides the PC with

an expansive window of acquired data upon request. Its primary functions are:

* Digitize the analog data coming from the preprocessor.

* Collect and store the digital data.

* Periodically transfer suitable size blocks to the slave modules.

* Ensure data integrity by not allowing any loss of incoming data during transfer of

sampled data to slave modules.

* Store, and upon request, transfer, large windows of data to the PC.

3.2.1 Data Acquisition and Storage

Figure 3.1 shows the basic blocks of the master board. The eight analog input channels get

serviced by two 4-channel Analog-to-Digital Converters (ADCs). Each A-to-D converter

relays its conversion results to dedicated memory in the form of 8Kx8 SRAMs. Each ADC,

the associated memory ICs, and its memory address counters form an Acquisition Bank.

Within each bank, the acquisition of data and its storage into memory is governed by the

Sampling Rate Generator Module and the Control Logic. The basic data path of the master

board consists of an 8-bit data bus, a 12-bit address bus, and various control and status

signals. An important control signal, the Sampling Rate Signal is generated by the sample
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Figure 3.1: The MLM Master Board

rate generator. This is a square wave which goes to both ADCs and triggers them to sample

the input channels. Its frequency, which may be selected via dip-switch settings, determines

the sampling rate. After each analog-to-digital conversion, a signal is sent to the control

logic informing it that new sampled data is ready. The control logic then reads the data

from the ADCs and writes it into memory.

3.2.2 Data Transfer to Slave Processors

The acquired data must be periodically transferred to the slave processors. Transfer begins

when the memory ICs are filled up. The master board issues an interrupt signal to all the

slave processors. It allows the slaves to leave their computation activity and enter into a

listening mode. Data is read sequentially from both acquisition banks simultaneously, and

transmitted to the slaves. An "output" register is dedicated to the communication of data

for each input channel. The output lines of the registers are connected to the input ports of
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the slaves for that input channel. During data transfer, each of these eight output registers

is loaded with a data sample from their channel. The control logic then generates Data

Available (DAV) signals to tell the slaves that data may be read. This cycle is repeated

until the entire data block is transferred.

In the present implementation, the block size is 512 samples (1024 bytes). The transfer

of this large set of data cannot usually happen neatly between two sampling events in the

ADC. If an ADC conversion is not read, new conversions will overwrite it, compromising

the integrity of the sampled data. To avoid this, the Programmable Array Logic (PAL) ICs

controlling the transfer of data and the PAL controlling the its acquisition, communicate

with one another: If the ADCs signal the arrival of new data during a block transfer, the

acquisition PAL "interrupts" the transfer PALs, gains control of the address and data buses,

reads the new data into the right memory location, and returns the control of the address

and data buses to the transfer PALs.

3.2.3 Host PC Communication

The main function of the master board is to transfer data to the slave modules. In addition,

the data is shipped to the host PC to allow, among other things, comparison with the results

of transient event detection produced by the slaves and to carry out high-level diagnostic

checks on the operating loads. For this purpose, the master board incorporates a PC

interface section with its own memory, output registers, connectors, and control PALs. The

schematics for this section are given in Figure A.4, in Appendix A.

The memory in the PC interface is larger than in the acquisition banks - eight times

larger, allowing a total of eight data blocks to be stored and upon request, transferred to

the PC. A transceiver IC, the LS245, in the interface section acts as the gateway to the

PC interface memory: If the transceiver is enabled, the data bus of the acquisition bank is

connected to the interface section data bus. In this case, all writes to the acquisition bank

memory also go through to the PC interface memory. This is the storage mode. During

the PC transfer mode, the PC interface module is disconnected from the rest of the board

and writes in the acquisition bank are not seen by the interface memory. Instead, the data

collected in the interface memory is read out and transmitted to the PC. Once the transfer

is complete, the interface module returns to the storage mode.
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3.2.4 Control Logic

There is no on-board processor for the master board. Instead, the microcontrol of the

various functional blocks in the master board is implemented by Finite State Machines (see

[6]) programmed into six Programmable Array Logic (PALs) ICs. Details of these FSMs

are given in Section 3.3. The PAL Code is listed in Appendix C. A summary of the master

board PALs, and their functions, follows:

* PALAD: Controls the data acquisition process, including reading data from the ADCs

into memory. Communicates with the transfer PALs (see below) to ensure no conver-

sions in the ADCs are overwritten while a transfer is in progress.

* PALTR1 and PALTR2: Control the transfer of data to the slave modules, providing

the necessary handshaking signals. Communicate with PALAD to ensure integrity of

acquired data.

* CLKGEN: Manages the operations of the sampling rate generator unit.

* PALPC1 and PALPC2: Govern the storage of data and its transfer (including per-

forming the handshaking protocol) to the host PC.

3.3 Design and Implementation

Several functional subsections comprise the master board. Their data paths and logic-level

details are given below.

3.3.1 A/D Conversion

The master board uses two AD7874s [9] for A-to-D conversion (see Figures A.1 and A.5).

These Analog Devices IC's are complete 12-bit, 4-channel data acquisition systems with four

track/hold amplifiers allowing simultaneous sampling of all channels. The ADC expects a

negatively-asserted pulse on its CONVST line. On the rising edge of CONVST, all four

input track/holds go from track to hold. Conversion is then performed sequentially on

channels 1 through 4, and the results are stored in on-chip registers. Upon completion of all

four conversions, the INT signal goes low indicating data availability. Data is presented on

the output lines DB[O-11], when CS and RD are asserted. To read the conversion results
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of all four channels, the CS and RD lines must be asserted four times and each time the

data must be read from the port. Thus, reading data from the AD7874 consists of four read

operations. The first read after a conversion always accesses channel 's conversion result,

the second read always accesses the second channel's data register, and so on. Note that

INT is deasserted (goes high) after the first read operation.

In the master board, two AD7874's are used to sample eight analog inputs. In order to

sample all eight channels simultaneously across both ADCs, the CONVST inputs of both

ADCs are tied together and driven externally from the same source. Also, in order to ensure

good full-scale tracking across the ADCs, the REF OUT signal of the first ADC is fed to

the REF IN input of the second ADC. The CS and RD inputs are also tied together. The

voltage V (-5v), is provided by a common voltage regulator (79L05), and AGND and

DGND signals are tied together at a single point close to each AD7874 to reduce noise.

Both ADCs have CLK tied to V8, so that the internal laser-trimmed clock oscillator is used

for all on-chip operations. With this internal clock source, the maximum conversion time,

from the rising edge of CONVST to the final conversion (channel 4's result registered), is

35us.

The data outputs of each ADC go to two buffers (74LS245s), the six LSBs to one and

the six MSBs to the other. These buffers have their outputs tied together and connected to

the 8-bit data bus (the 2 most significant bits of which are not used). The data bus goes to

the I/O lines of an 8Kx8 SRAM. During a read operation, when the AD7874 outputs data,

each latch is enabled in turn (the Low Data "Byte" first) and written into the SRAM. Note

that each AD7874 has its own pair of buffers and its own storage RAM. The conversion

results of both ADCs are transferred to memory in parallel.

In order to control the data acquisition process, a 22v10 PAL is used. This control PAL,

labelled PALAD in the schematics (see Figure A.1), and its operation are described in detail

in Section 3.3.4. PAL listings are given in Appendix C.

3.3.2 Data Storage

The master board samples all channels, stores the data in RAM, and then transfers a block

of data to the slave modules. For our purposes, a block size of 512 points was deemed

optimal, each point occupying two bytes (12-bit A/D conversions). A total storage of 4K is

needed per AD7874, as there are four channels per ADC. Hence, we used 8Kx8 RAMs [10].
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These are addressed by HC4040's which are 12-bit synchoronous counters with positively-

asserted RESET inputs (see Figures A.1 and A.5). Both RAMs share the same counters.

Two counters are used to address a RAM, one is labelled the "ADCOUNTER", the other

is called the "TRCOUNTER". Each counter outputs its count to a pair of 8-bit buffers, the

LS245's. The eight LSB's of the count go to one buffer, and the four MSB's of the count go

to the other. The buffers drive the address lines of both RAMs. At a time, only one pair

of buffers is enabled. Hence, only one counter addresses the two RAMs at any given time.

During the acquisition phase, the ADCOUNTER addresses the RAMs, i.e., its buffers

are enabled and the buffers in front of TRCOUNTER are disabled. Each time a conversion is

completed, eight bytes are written into each RAM (four sample points), and the ADCOUNTER

is properly incremented by the control logic to provide correct memory addressing. When

512 conversions have been completed and 4K of RAM has been filled, the ADCOUNTER

increments from 0x1111 to 0x0000. This signals the control logic that a window of data is

ready for dispatch to the slaves. As a result, the transfer phase is entered. The ADCOUNTER

buffers are now disabled and the TRCOUNTER buffers are enabled, so that memory is now

addressed by TRCOUNTER. The sample points are read out of memory and sent to the

slave modules via the Slave Interface Circuitry, detailed in the next section. If during

the transfer phase, the ADCs assert INT to signal a conversion, the control logic disables

the TRCOUNTER buffers, re-enables the ADCOUNTER buffers and stores the samples at the

addresses dictated by ADCOUNTER. It then passes addressing control back to TRCOUNTER. At

the end of the block transfer, the ADCOUNTER buffers are enabled in place of the TRCOUNTER

buffers, and the board re-enters the acquisition mode.

One important aspect of addressing the RAM must be noted. The RAM is read se-

quentially during the transfer phase but it is not written sequentially during the acquisition

phase. The order in which the samples are read from the ADC is as follows:

1. LSB of Channel 1 Data.

2. MSB of Channel 1 Data.

3. LSB of Channel 2 Data.

4. MSB of Channel 2 Data.

5. LSB of Channel 3 Data.
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6. MSB of Channel 3 Data.

7. LSB of Channel 4 Data.

8. MSB of Channel 4 Data.

This, however, is not the order in which we want the data to appear in RAM. As we

will be retrieving data from RAM sequentially, it will be more convenient to place the four

LSBs together and store the four MSB's next:

1. LSB of Channel 1 Data.

2. LSB of Channel 2 Data.

3. LSB of Channel 3 Data.

4. LSB of Channel 4 Data.

5. MSB of Channel 1 Data.

6. MSB of Channel 2 Data.

7. MSB of Channel 3 Data.

8. MSB of Channel 4 Data.

This ordering allows us to interleave dispatches of the data from different channels when

we sequentially retrieve sample points. For instance, if slave module X processes Channel 1

data, the master board first sends it the LSB of the Sample point and lets it take some time

to store away the data in its local RAM. In the mean time the master board dispatches the

LSBs of Channels 2, 3, and 4 to other slave modules. By the time it retrieves the MSB of

the Channel 1 data, module X is ready to receive this data, and no delay is needed. This

interleaving saves time and simplifies data tranfer addressing. To achieve this ordering, we

must connect the ADCOUNTER output to the RAM address lines in the following order:

* ADCOUNT 0 -4 RAM ADDR 2

* ADCOUNT 1 -- RAM ADDR 0

* ADCOUNT 2 -+ RAM ADDR 1
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Thus, the eight writes to memory do not access sequential (0-1-2-+3-+...7) locations.

Instead, the following sequence of memory accesses is observed:

Location 0- Location 4-+Location 1- Location5-+

-+ Location 2-- Location 6-+Location 3-4 Location 7

It is easily verified that this access pattern produces the desired ordering.

3.3.3 Slave Interface

Eight 10x2 connectors line one edge of the master board. The outputs of eight 74F574s

go to these connectors (refer to Figures A.3 and A.5). Each connector also receives two

handshaking signals from the control logic. One row of pins on each connector is grounded.

This assembly forms the Slave Interface Circuitry on the master board. Each analog channel

thus has an LS574 and a 10x2 connector associated with it. The four 574s for Channels 1-4

take their input from the I/O lines of one RAM, and the four 574s for Channels 5-8 take

their input from the other RAM. Obviously data for any one on Channels 1-4 and any one

of Channels 5-8 can be accessed simultaneously, since they reside in seperate RAM. This

is precisely what occurs during data transfer. The control logic asserts the Data Available,

or DAV, signals which are not only transmitted to the slave modules via the connectors,

but also go to the CLK input of the interface registers (574s) and latch the respective data

bytes on their rising edge. This way when the slave modules see DAV asserted, data is

already latched at the corresponding 574 outputs and available, via the connectors, at the

input ports of the slaves.

The control logic issues four Data Available signals: DAV1, DAV2, DAV3 and DAV4.

DAV1 clocks the registers receiving data from analog channels 1 and 5, DAV2 clocks

the registers receiving data from analog channels 2 and 6, and so on. Thus, the data is

read sequentially from both RAMs simultaneously and transmitted by the assertion of the

appropriate DAVs, which are asserted in order from DAV1 through DAV4. After one

round of DAV assertions (DAV1 - DAV2 -+ ...DAV4), the LSB of a single sample point

from all eight channels has been transferred to the slave modules. After two rounds of DAV

assertions (DAV1 - DAV2 - ...DAV4 - DAV1 - DAV2 - ...DAV4), both the LSB

and the MSB of a single sample point from all eight channels have been transferred to the

slave modules. This cycle is repeated 512 times, till all data has been transferred. The
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control logic operation is detailed in the next section.

3.3.4 Control Logic

The data acquisition from the analog preprocessing subsystem and the transfer of stored

data to the slave modules is coordinated by the master board control logic (schematics in

Figure A.1). The micro-control required, though subtle, is not complex enough to warrant

the use of a microcontroller. Two finite state machines implemented on three PALs (22v10s)

were sufficient for our purposes. These PALs are clocked by a 1 MHz oscillator. PALAD has

the FSM primarily responsible for reading conversion results from the AD7874s and writing

them into memory. PALTR1 and PALTR2 together implement the FSM that coordinates

the transfer of data from memory to the slave modules. Both FSMs must update the

address counters and their buffers. In addition both FSMs must coordinate with each other

to ensure that the correct memory address counter (either AD_COUNTER or TRCOUNTER) is

addressing the RAM at any given time. That is, they must relinquish their shared resource,

the SRAMs, whenever necessary, to ensure the integrity of the acquired data.

Much of the control requirements have already been made clear in the preceding sections.

A discussion of the finite state machines and a listing of the PAL-generated control signals

should completely explain the workings of the control logic. The PAL listings in Appendix

C detail both the FSMs implemented. They also include a list of all PAL control signals.

To explain the design and motivation for our particular FSM, a chronological listing of the

events to which the control logic responds is given below. This will clarify the PAL code in

Appendix C.

First, we consider the actions of the "AD FSM":

1. The ADCs start a conversion in response to the CONVST trigger pulse.

2. Upon the completion of a conversion, the ADCs assert their respective INT signals.

PALAD monitors the INTs from both ADCs and, on seeing them asserted, prepares

to begin ADC read operations.

3. As a first step, PALAD asserts the PALADBUSY signal, to tell the Transfer FSM that

it needs the SRAMs. It then checks if a transfer to slave modules is in progress, by

checking the PALTRBUSY signal from PALTR2.
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4. If a transfer is in progress, the AD FSM waits for the Transfer FSM. The latter sees

the PALADBUSY signal asserted, and responds by finishing its current sample point

transfer, going into a wait state, and deasserting PALTRBUSY. It will resume the

transfer once the AD FSM is done with its ADC read.

5. Once it sees PALTRBUSY deasserted, the AD FSM proceeds with the ADC read. It

repeats the following cycle 4 times:

(a) Assert CS and RD [both ADCs read simultaneously].

(b) Enable the LSB Buffers.

(c) Enable the SRAM WE [both SRAMS are written to simultaneously].

(d) Deassert these signals to complete the write.

(e) Increment ADCounter.

(f) Repeat the above steps for the MSB buffers to transfer the high byte to memory.

(g) Check if the three LSBs of AD_Counter are 000, i.e., if eight writes (of 4 sample

points, one from each channel) have occured.

(h) If not, repeat cycle.

6. The AD FSM deasserts PAL_AD_BUSY, and waits for another conversion. If the TR

FSM was interrupted in the middle of a transfer by the AD FSM, it will now resume

its operation.

Here are the operations performed by the TR FSM:

1. Once 4K of data (1K per channel) is in each SRAM, ADCounter's MSB (RAM Ad-

dress Bit 11) will have transitioned from 1 to 0. This transition triggers the TR FSM

to start a transfer to the slave modules.

2. The TR FSM asserts PALTR_BUSY. If an ADC conversion is being written to memory,

it waits for the AD FSM.

3. If the PALADBUSY is not asserted, the TR FSM asserts the Master-Slave handshaking

signal INT, to interrupt all slave modules expecting data from the master. This line

goes to the NMI (Non-Maskable Interrupt) line of the slave processors, so that after
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a suitable wait (about 8us) the master can be sure all slaves are listening. This way,

one-sided handshaking is all that is required.

4. Both the ADCounter and TRCounter output buffers are controlled by PALTR2.

When not in transfer phase, the AD-Counter buffers are enabled so that in the default

case, RAM addressing is done by the ADCounter. When the TR FSM enters the

transfer phase, ADCounter buffers are disabled and the TRCounter buffers enabled.

5. The TR FSM repeats the following steps until all 4K bytes are shipped out from both

SRAMs:

(a) RAM Output Enable(OE) is asserted.

(b) DAV1 is asserted. This latches the Channel 1 and Channel 5 data into the

corresponding output registers. It also tells the listening slave modules that data

is available.

(c) OE is disabled; TR_Counter is incremented.

(d) OE is enabled; DAV2 is asserted; OE is disabled; and again, TRCounter is

incremented

(e) DAV1 may now be deasserted as enough time has passed for the slave modules to

note data availability and respond to it. (See slave software listings in Appendix

D.)

(f) The above steps are repeated for DAV3 and DAV4. At proper intervals, DAV2

and DAV3 are deasserted.

(g) The LSBs have now been transferred (remember the order of stored data in the

RAMs). Another round is initiated starting with DAV1. Note that DAV4 will

be deasserted early in this round.

(h) Finally, one sample point (two bytes) from each channel has been transferred.

The TR FSM now checks if the AD FSM wants to write the results of a conversion

to memory, i.e., if PALADBUSY is asserted. If so, it deasserts PALTRBUSY, and

goes into a wait state until PALAD_BUSY is deasserted.

(i) If not, TR FSM checks if the above cycle has been repeated 512 times, that is, if

the MSB of TRCounter has transitioned from 1 to 0. This MSB is tracked in the
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following way: A Flip-Flop (74LS74) is used to latch the state of the TR_Counter

MSB during the above cycle of transfers. At the end of the cycle this old state is

compared to the current state of the MSB. If the 0-+1 transition has not taken

place, the above cycle is repeated, otherwise the transfer is complete.

6. After all 512 samples from all eight channels have been transmitted, PALTRBUSY is

deasserted, TRCounter buffers are disabled, and ADCounter buffers enabled. The

TR FSM once again tracks ADCounter' s MSB to see when the next 512 point block

will be ready for transfer.

Refer to Appendix C for a complete listing of PAL code and pinouts.

3.3.5 Sampling Rate Generator

The CONVST input to the AD7874 needs to be pulsed regularly in order to obtain spec-

trally pure samples. This signal is provided by the Sampling Rate Generation Module (refer

to Figure 3.1). This module comprises an EPROM, a programmable interval timer (8254),

a PAL for micro-control, and a dip switch and resistor strip for frequency selection.

The 8254 is a general purpose multi-timing element, capable of being configured as

an event counter, rate generator, square wave generator and real-time clock [16]. It is

programmed by writing to its Control Word Register via its 8-bit bidirectional data port.

The other three registers Counters 0, 1, and 2 are also initialized with the required count

word. These four internal registers are selected by the address bits Al and AO. In order to

configure the 8254 as a square wave generator (which is the function needed for our purpose

of sample rate generation), we must write the correct byte to the control word register.

In order to set the frequency, we must write the LSB and MSB of the desired count into

Counter 0 (the counter we choose to generate CONVST).

The EPROM is needed to store all the various counts corresponding to the range of

frequencies from which we can chose our sampling rate. The two LSBs (AO, Al) of the

EPROM Address are driven by the PAL which can sequence through the three words

stored at any particular offset. The next nine bits (A2-A10) are determined by a dip switch

setting. This allows us to chose the correct EPROM address offset, and hence the count, to

produce the desired sample rate. The expected range of sampling rates is 50Hz to 300Hz.

The Rate Generation PAL is responsible for the correct initialization of the 8254 by
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loading the control data from the EPROM into the proper 8254 registers. The PAL goes

through this sequence upon power up. In addition, a switch connected to a PAL input via

a schmitt trigger allows the MLM user to reset the sampling rate by simply resetting the

dip switch and pressing a button. The rate generator PAL Code is listed in Appendix C

along with the PAL pinout.

3.3.6 Reset Circuitry

The reset circuitry is shown in Figure A.2. It consists of an RC configuration in parallel

with the Reset switch, and a protection diode. The pulse generated is conditioned and

buffered through two schmitt triggers in series. The output is a negatively-asserted signal,

RESET, that is fed to all the PALs on the master board. In addition, another signal,

the positively-asserted RESET, is taken from the output of the first schmitt trigger and

applied to the CLR input of the HC4040s. In the same schematics is shown a similar circuit

which is used to provide the LOADRATE signal to the rate generator PAL. Note that

this allows the sample rate to be set at power up or be reset manually, as mentioned before.

3.3.7 PC Interface

While the primary function of the master board is to collect and transfer data to the slave

modules, we can do more with the data acquired. Specifically, the data can be shipped to

the host PC to allow, for instance, comparison with the transient event detection results

produced by the slaves. This data would also allow transient templates to be collected

during the MLM training phase (see section 5.2). For this purpose, the master board

incorporates a PC interface section with its own data buffer, output registers, connectors,

and control PALs. The schematics are included as Figure A.4.

The data buffer consists of two 32Kx8 SRAMs addressed by a single counter, the

HC4040. Note that this address counter is a seperate HC4040 in the PC interface sec-

tion and not the TRCounter or the ADCounter. It provides address lines A[03:14] to the

memory ICs (the PC interface PALs provide A[0:2], as explained below). These RAMs

each store 8 times as much data as each storage RAM. Each SRAM has an input buffer

on its I/O lines which is the gateway between the output of the AD7874 buffers and the

PC interface SRAMs. By disabling these buffers, the PC interface PALs can disconnect the

SRAMs from the rest of the acquisition and storage circuitry, and can then ship data from
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these RAMs to the PC. The I/O lines of the SRAMs also drive output registers (LS574s)

whose outputs go to connectors linking the master board to the PC. A 16-bit word of data

(a byte from each RAM) is thus presented to the PC via the connectors. These connectors

also carry handshaking signals.

While the PC does not request data, the PALs keep the RAM input buffers enabled.

Every time PALAD writes conversion data to the two storage RAMs, the data is simulta-

neously written into the PC RAMs. The PC RAM Counter is updated to keep pace with

the ADCounter. Using the RAM WE and OE lines, and the CLKCNT from PALAD to

control the PC Interface RAMs, and their counter, would not be correct. While this would

synchronize the PC Interface Buffer with the Data Acquisition Section, it would not allow

the PC Interface PALs to isolate the PC RAMs from the ADC section, when it wants to

access the data there and send it to the PC. Hence, the synchronization is done through the

PC PALs who monitor the RAM WE line and other relevant PALAD signals to see when an

ADC conversion result is being written to memory. Furthermore, not only do the PC PALs

update the address counter, but in fact directly provide the three least significant address

bits. This is necessary because 15 lines are needed to address the 62256 RAM IC, and the

4040 is a 12-bit non-cascadable counter. This scheme is less cumbersome than incorporating

several 4-bit counters in the design. In a way it is also more symmetric: A/D conversion

results are written in 8 byte blocks, so the PALs need update only their internal address

counter during the AD data storing sequence and not worry about the external address

counter. Once the memory writing is completed, the 4040 is incremented to record the

acquisition of a new set of sampled data. Refer to the PC PAL code listing in Appendix C.

The PC PALs receive two communication signals PCMODE and PCFETCH from the host

PC, and send a Data Valid signal, DAV2PC, to the PC. In addition, a fourth connection

labelled PCMISC, is provided to be used as an input to, or an output from, the master

board. This hardware configuration allows for flexibility in designing the PC software for

interfacing with the MLM master board. Several handshaking schemes are possible. The

following sequence is the one implemented in the master board.

1. The PC asserts the PCMODE signal.

2. The PC PALs responds by entering into data transfer mode, asserts PC_MISC, and

waits for the PC to request data.
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3. Upon seeing PCMISC, the PC executes the following cycle 32K times:

* The PC asserts PCFETCH.

* The PALs place the first data word on the output, increment the counter, and

assert DAV2PC.

* The PC reads in the data and deasserts PCFETCH.

* The PC PALs deassert DAV2PC.

4. Once the transfer is complete, the PC deasserts PCMODE.

5. The PALs deassert PCMISC.

3.3.8 Miscellaneous Hardware Components

In addition to the IC's and discrete components, the MLM master board includes hardware

components discussed briefly below.

Jumpers

In order to provide flexibility in the choice of the final implementation, and leave software

decisions to the end, the following jumpers were used on the master board:

* J15: Selects whether PC PAL2 takes in the global CLK signal or an output from PC

PAL1 at its Clock Input, pin 1 (see Figure A.4).

* J18: Selects whether PCMISC will be a PAL output or input (see Figure A.4).

* J19: Decides whether the GateO input of the 8254 comes from the CLKGEN PAL or

is connected to Vcc (see Figure A.2).

Decoupling Capacitors

For roughly every two ICs on the board, a 0.1uF decoupling capacitor is placed on the

board. These capacitors are placed as close as possible to the chips (within 0.030 inches)

and usually at their front end (before pin 1). Decoupling capacitors are also used between

-12v and GND, and +12v and GND, near the 7905 voltage regulator. A bigger tantalum

capacitor is used near the power source, between GND and +5v.
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Component Quantity
A/D Converters 2
Memory ICs 5
Prog. Timer 1
PALs 6
Counters 3

Registers 10
Buffers 10
Misc. ICs 4
Total ICs 41
Discrete Comp. 47
Connectors 15

Total Comp. 103

Table 3.1: Master Board Component Listing

Headers linking Host PC to Slave Modules

Standard-size DIN (Dual-in-line) 20 pin headers are used in the master board to interface

with the slave boards and the host PC. The lead spacing between pins is 0.100 inch. See

schematics in Figure A.3 for the ordering of the signals on the connectors.

In addition, a DB9 connector and a 5x2 DIN header are provided on the master board

(see Figure A.3). These are not connected to any components on the board and indeed, are

not part of the master board design. They carry signals used for PC communication with

the slave modules. Placing the DB9 connector on any one particular slave board would

have been asymmetrical, and placing them on all slave modules would have been wasteful.

These connectors on the master board are relays for the exclusive use of the slave modules.

3.4 Hardware Specifications

The MLM master board is a 12in. x 12in., 2-layer printed circuit board (PCB). The schemat-

ics and layout for the PCB were developed using the Personal Automated Design System

(PADS). Refer to [11] and [12] for details of this CAD tool.

Table 3.1 lists the components that populate the master board. There are 103 compo-

nents on the board. Of the 41 ICs, the ADCs are by far the most sensitive to power level

changes, requiring the +5v and -5v inputs to remain within 5. of their expected value.

This places strict limits on Vcc, delivered from the power supply, and on Vs8 at the output
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of the LM7905 voltage regulator:

4.75v < V < 5.25v

-4.75v > V,, > -5.25v

As the master board must transfer data over cable to several slave modules, its current,

and therefore power consumption, is significant. Its supply current rating is nearly 2A under

normal operating conditions, bringing its power consumption to about 10W. If the master

board and one or more slave boards (their current requirement is comparable) are driven

by the same supply, it must be ensured that the power supply is capable of delivering the

requisite current to the boards. Otherwise Vc, may drop below the required 4.75v.

Master board schematics are given in Appendix A. PCB layout plots showing component

placement are also included.
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Chapter 4

The MLM Computational Units

This chapter explores in detail the function, design and implementation of the basic MLM

Computational Unit, the Slave Module1. We begin in Section 4.1 with the block-level

design of a MLM slave module. In the context of this discussion and the treatment of

the computational model of the MLM in Chapter 2, Section 4.2 explains how the slave

processors perform their various functions. Finally, in Sections 4.3 and 4.4, details of the

hardware design and implementation of the slave module and the slave board are given.

Schematics for the board, as well as final layout silkscreens, are included in Appendix B.

They should be referred to throughout this chapter and, in particular, during the reading

of Sections 4.3 and 4.4, where implementation details are laid out.

4.1 Design Overview of a Slave Module

The MLM contains several slave modules operating in parallel and communicating with one

another. The slave module is the primary functional unit of the MLM. The slave module's

design was governed by the following aims:

* Flexibility (in function assignment): A slave processor must be able to perform any

task in the transient event detection algorithm. Not only must each processor be able

to perform the computational tasks, it must also accomodate the different modes of

master-slave and slave-slave communication that are needed for the various functions.

'In this thesis the terms slave module, processor module, slave, processor and slave processor are used
interchangeably to mean the basic computational unit of the MLM. The term slave board refers to the actual
printed circuit board (PCB) which houses four slave modules.
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* Architectural Symmetry: Flexibity of functionality must be achieved without custom

hardware additions: A single slave module architecture must be developed that may

be programmed to perform any step in the algorithm.

* Scalability: The architecture should be perfectly scalable so that an increase in compu-

tational power may be simply and robustly provided by adding on more slave modules

to the multiprocessing system.

4.1.1 The Processing Engine

Figure 4.1 shows a block-level diagram of the architecture of a slave module. The cen-

terpiece of the slave module is the Intel 80C196KC microcontroller [13]. Both Read Only

Memory (ROM) and Random Access memory (RAM) are provided. The microcontrol of

all data paths is performed by the Microcontrol PAL (see Appendix C) in conjunction with

the 80C196KC. The controllers internal UART is used for inter-slave communication. An

external UART was therefore needed to carryout communication with the PC. A parallel

port, Port 1, of the microcontroller is used for accepting data from the master board. In

the case of slaves working on time scales derived from the original data, data is accepted

from the "data decomposing" slaves, also called master-slaves. A four-bit input port, the

High Speed Input (HSI) Port and a four-bit output port, the High Speed Output (HSO)

Port are used for inter-slave communication.

4.1.2 PC Interface

The Host PC communicates over a serial link with the slave boards. It accesses the slaves

to perform the following functions:

1. Download program code into a slave's RAM.

2. Download templates needed for transient event detection.

3. Retrieve results of event detection and collation from the collaters.

4. Issue a software reset to the processors.

As shown in Figure 4.1, a UART IC, the Intel 82510, is present in each slave module and

carries out the serial communication with the PC. The support interface circuitry consists of
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PC

PC (Load Chains)

Figure 4.1: The MLM Slave Module

connectors, etc., to allow the routing of the RS-232 signals to each slave and allow on-board

daisy-chaining of cables coming from the PC and going to all slaves.

As the architecture is highly scalable, an MLM prototype may consist of several slave

boards, each housing four slave modules. Hardware support must be provided to enable

the PC to select one processor at a time and address all communication to it. The imple-

mentation is simple: Each slave processor is assigned a unique 8-bit ID. The host PC sends

the selected slave's ID byte via a PC I/O card (see Appendix F) to each slave board. The

actual processor selection is achieved by special circuitry, called the "glue logic", on the

slave boards. The glue logic accepts as input, the serial link to the PC as well as the serial

lines of all four slaves. It compares the provided slave ID byte with DIP switch settings to

determine if its board is selected and, if so, which processor is selected. It then connects

the accessed slave processor's serial lines to the PC serial lines, allowing communication to
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Figure 4.2: The Interconnection Circuitry for a Slave Module

proceed. Figure 4.2 shows the connectors needed to implement this scheme. To allow ease

of scalabilty while maintaining architectural symmetry, the serial channel of the PC goes to

a DB9 connector on the master board. From here it is distributed to all the slaves via ribbon

cables. Placing a DB9 connector on a single slave board would have led to an asymmetrical

design. Placing it on every slave board would have been redundant. Each slave board has,

as part of its glue logic circuitry, two identical connectors to allow on-board daisy-chaining

of the cables carrying the serial signals. The processor ID connectors are also duplicated

on each board for this purpose.
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4.1.3 Master Board Interface

The master board sends the acquired data to the slave processor via an 8 bit parallel link.

The slaves receive the data on their Port 1. The interrupt signal from the master goes to

each slave's Non-Maskable Interrupt (NMI) line. This means that regardless of the task a

slave may be performing when the master decides to send it a shipment of data, it will be

ready within 61 state cycles (7.6s) to acquire data from the master. The transmission of

each sample is controlled by the Data Avaliable (DAV) signal of the master board, which

the slaves accept as an input on a port 2 line.

Slave processors searching for transient events on time scales different from that of the

originally sampled data, acquire input data from other slaves performing tree-structured

decomposition. The elegance of the master interface circuitry and the data transfer protocol

means that, for these slaves working on the new time scale, it does not matter whether their

"master" is the master board or another slave. The communication asymmetry occurs only

in the case of the data decomposing slaves. If these were configured as event detectors

instead of decomposers, they would have used Port 1 strictly as an input port. Now,

however, they must output data on Port 1 as well (ports 2, 3, and 4 are not available for

this function). The simple solution implemented allows this flexibility without sacrificing

symmetry. As shown in Figure 4.2, a buffer is placed between the input connectors carrying

data from the master and port 1. When the decomposing slaves are ready with data to

be sent to the slaves, the buffer is disabled. Port 1 is now used to output the decomposed

data. Once the transfer is completed, the buffer is re-enabled and the link with the master

board is re-established. Note also in Figure 4.2, the use of two connectors to receive the

cable from the master board, allowing for daisy chaining of cables on-board.

4.1.4 Inter-Slave Communication

In order to implement the abstract model of the MLM presented in Chapter 2 over a

distributed network of processors, one of the most important features is hardware support

of inter-processor communication: as load v-sections are distributed over several processors,

all processors associated with the identification of a load must be able to communicate

their findings to one another. For this purpose the High Speed Input (HSI) Port, and the

High Speed Output (HSO) port are used. Four 5x2 connectors are provided in each slave
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module. Each connector is supplied an HSI line and the corresponding HSO line, pin 1 of

the connector getting the HSI bit and pin 10 getting the HSO line. This bitwise pairing

and signal placement allows the output signal from one slave to go to the input signal of

the other slave, and vice versa, by a simple ribbon cable connection. This scheme allows

two-way handshaking betweeen the salves. In the present implementation this handshaking

was enough to tell slaves searching for the same load on a particular time scale whether one

slave has found all its v-sections or not - the serial link was not used between every slave

module. Note how this scheme is independent of whether a slave is configured as an event

detector, a collater, or a data decomposer which also performs event detection.

The serial port is also used in interprocessor communication in conjunction with the

HSI/O ports. In the current implementation of the MLM the serial link is used only to

relay a load identification to collaters. However, if one were willing to bear the increased

hardware and software complexity, the serial link may be used between event detector

processors as well. Even in the serial port's simple use for transmitting results to the

collater, consideration must be given to the fact that a collater's RECEIVE line accepts

several processor's TRANSMIT signal. In order to avoid contention, the serial link is treated

as a shared bus and the TRANSMIT line of each slave module is made to go through a tri-

state buffer. Only when (via the HSI/O lines) a slave gets the go-ahead from the collater,

can it take hold of the bus and transmit serial data.

4.2 Functional Overview of the Slave Module

The slave module can be configured to perform any one of the following functions:

* Transient event detection on one of several time-scales for one or more loads.

* Tree-structured decomposition and communication of the processed data to other

units.

* Gathering of results from pattern recognizers, collating these results and relaying them

to the PC.

Having understood the basic design of the MLM slave module, we now detail how these

modules function as event detectors, data-stream decomposers, or collaters, and how the

interprocessor communication works. Since our discussion here builds on the abstract model
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Figure 4.3: The MLM Model

of the MLM developed in Chapter 2, the diagram of our MLM model is reproduced in Figure

4.3 as reference for subsequent sections.

4.2.1 Event Detection

All slave modules periodically receive windows of data (in the present implementation, 512

sample points) from the master board (or a "master-slave"), comprising the input stream.

Each slave module configured as a transient event detector has the templates of the v-

sections that it is to detect, downloaded into its memory at startup time. Each slave

may have v-sections belonging to the same load, or it may include v-sections belonging to

more than one load if there is sufficient computation time available. Moreover, v-sections

belonging to a single load may be distributed over several processors as most loads display
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characteristic transients in several input streams (P, Q , 3P,..., etc.) and a slave processor

can work on only a single input stream.

The pattern discrimination technique employed in the MLM is euclidean filtering. In

this scheme, the aggregate of the point-wise absolute difference between two N-vectors is

calculated. This is the euclidean distance between the two vectors. The euclidean distance

between two N-point vectors, i and t, is:

n=N-1
E lin-tnI
n=O

Hence an N-point v-section template t, would be matched against N-point sections or

subsequences i, of the input stream according to the above formula. If the euclidean distance

between t and i is within the error threshold, the v-section is said to have been positively

identified i.e., a v-section identification is said to occur. In the MLM slaves, the input data

is ac-coupled prior to filtering. The v-section templates are also ac-coupled. This make v-

section identification possible even if a v-section occurs with a dc shift in the input stream.

This is essential to our goal of detecting v-sections occuring in the quasi-static regions

of another load's transient, when two load transients overlap. The euclidean filtering of

ac-coupled vectors that takes place in the slaves, may be represented as:

n=N-1

E lin(ac) - tn(ac) I
n=O

As shown in Figure 4.3, a slave processor works on a particular time scale and inputs a

single data stream from the master board (or a "master-slave"). It iterates over the input

data, calculating the euclidean distance between a template and input subsequences. The

procedure is repeated for each template that the slave is supposed to identify, and each

v-section identification for a load is noted. Once all the v-sections for a load on a processor

are identified, the processor announces this fact to the other processors identifying the rest

of the v-sections on the given time scale for that load. A load identification on that time

scale is said to occur when all the v-sections for that load have thus been identified. Load

identification information is then passed to another slave processor, the collater (see Section

4.2.3), which collates the all event detection results on a given time scale. If a load has

to be identified on more than one time scale, the collaters for each time scale will get the
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identification results from the event detectors and pass on their results in turn to the host

PC. The final verdict on whether the load has been identified will be made by the host PC.

As the set of v-sections associated with a load may be distributed over several processors,

a procedure was devised for interprocessor communication which would allow v-section

identifications to be translated into complete transient identification. Communication of

v-section identification is done over the High-Speed Input/Output (HSI/O) port lines of

the processors. The serial port is used to report a load identification to the collater (see

Section 4.1.4). Connecting every processor associated with a load to every other processor

would have been tedious and unnecessary. Instead, for each load detected by the MLM, all

the processors identifying its v-sections on one time scale are linearly linked together via

the HSI/O port lines to form a single chain of processors called a load chain. The processor

at the head of this chain is designated as the "first processor" and the one at the tail is the

"last processor". Each processor on the load chain is aware as to its being the first, last or

an intermediate processor on the chain.

Communication follows a Generate and Propagate scheme. If the first processor

identifies all of its v-sections for a given load, it generates an "identification message"

towards the next processor on the chain. This message is propagated by the intermediate

processors upon detection of their v-section(s), until the last processor receives this message.

Like all other processors on the chain, the last processor must also wait to identify its v-

sections. If the last processor also identifies its v-section(s), a load identification is said to

take place. When this happens, the last processor compiles a record comprising all relevant

information (the transient location, the associated load, the event time, etc.). This is, as

mentioned, then serially transmitted to a collater.

As an example, consider Figure 4.4, displaying seven processors M1, M2,...,M6. M1

through M5 are configured for transient event detection. M1 accepts as input real power, P.

M2 and M3 work on reactive power, Q. M4 searches the third in-phase harmonic of current

3P. M5 works on the quadrature fifth harmonic, 5Q. Processor M6 is a collater for their

time scale. Two loads, L1 and L2, are being monitored. L1 has one or more v-sections in

P, Q and 3P. Its identification is the responsibility of M1, M2 and M4 and the load chain

for load L1 is thus:

M1i- M2-+ M4
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Figure 4.4: Load Chains in the MLM

Load L2 has one or more v-sections in P, Q and 5Q. The chain for load L2 is:

M-+ M3-+ M5

M2, the intermediate processor for L1, waits for the identification message from M1. If no

such message is received, M2 may not generate a hit message to M4 even if its v-section set

is detected. Suppose M1 now detects its v-sections in stream P and sends an identification

message to M2. If M2 has already identified all its v-sections in Q, this message would

then be propagated to M4. M4, the last processor would then transmit a load identification

record to the collater M6, if and only if, it too detects all its v-sections in its input stream,

3P. Note that any processor may, like M1 or M3 (which is part of the unshown load chain

for load 5), be a part of more than one load chain. The transmission of results in the chain

for load L2 follows a similar sequence.
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4.2.2 Tree-Structured Decomposition

As explained in Chapters 1 and 2, the transient event detector in [1] allows for v-section

detection over multiple time scales. To implement this function in the MLM, certain slave

modules perform the function of time scaling the input data-stream and transmitting the

downsized data block to the slave processors working on that new time scale. In the MLM,

one processor is dedicated to downsampling input data to each of the required time scales.

Thus if we need two input streams (real and reactive power envelopes, P and Q, for example)

to be searched on three time scales, we need two decompositions per stream. Hence, we

would need four processors dedicated to tree-structured decomposition. As given in Figure

4.3, in response to an input data block, each decomposer slave processor, runs the tree-

structured decomposition algorithm on the data, which to a first approximation is digital

low pass filtering followed by decimation in time (see [1] for details of this algorithm). The

resulting block is then transmitted to the pattern recognizer slaves working on this coarser

time scales. This transmission is done using the exact protocol of the regular master-to-

slave transmission. The decomposer processors thus perform the decomposition as well as

set up the slaves to perform event detection on the resulting time scale.

As tree-structured decomposition is a less computation-intensive algorithm than pattern

recognition via euclidean filtering, the decomposer slave modules may also have time to

perform pattern recognition and be part of a load chain.

4.2.3 Result Collation

Once all the processors on a load chain have detected their set of v-sections, a load identi-

fication record is compiled by the last processor on the chain and passed on to the collater

module. There is one collater per time scale. That is, the last processors on all the load

chains for a time scale go to the same collater. The primary function of the collater is to

perform intra-scale lock-out on identified v-section and relay all geniune load identifications

on its time scale to the host PC. Communication between a collater and all the last proces-

sors is on a round-robin basis. The collater polls each processor to see if a load identification

record awaits it. If so, the collater grants the processor access to its serial port and reads

in the record. Serial communication was chosen for this data path as the amount of data

transmitted is on the order of a few bytes, making it unnecessary to dedicate a parallel port
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for this purpose. Handshaking for this data transmission is achieved using the High Speed

Input Output (HSI/O) port of the processors.

Once the collater reads in the data, it performs the lock-out procedure: It has in its

memory all the templates of the v-sections that comprise its associated loads, and if multiple

load hits are detected, it determines whether the v-section from a more complex v-section

set coincides with a v-section for another load with a simpler v-section set. If this is the

case, the load with the simpler v-section set is not considered identified. The collater then

tabulates a record in memory of the events detected and asserts a flag which indicates to

the host PC that new data is available.

The host PC also communicates with the collaters on a round-robin basis, checking

periodically for the assertion of a flag by the collater, reporting one or more positive iden-

tifications. Since each collater works on a single time scale, they cannot independently

perform inter-scale lockout. The final steps (inter-scale lockout and result display/storage)

in the multiscale event detection algorithm are assigned to the host PC which has the event

detection results on all the time scales available to it.

4.3 Slave Module Implementation Details

Design details of slave module are now set forth. It may be helpful to refer to the schematics

in Appendix B while reviewing this section.

4.3.1 Memory Section

The slave memory comprises two 32Kx8 ROMs and two 32Kx8 RAMs (refer to Figure B.1).

The ROMs contain the RISM (Reduced Instruction Set Monitor) code. This is the code

that the host PC expects to be installed in the Target (in our case, the slave modules), for

the PC to communicate properly with the Target. The RISM consists of about 300 bytes of

80C196KC code, and provides primitive operations. Software running on the host PC uses

the RISM commands to provide a complete user interface to the slave modules. A summary

of the structure of RISM is given in Appendix E. To learn more about the structure and

content of the RISM refer to [14]. Using the RISM routines, target software can be loaded

into the RAMs. In addition to program code, the RAMs are used to store pattern templates

and input data arrays, etc.
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Both types of memory are in a 16-bit configuration with one IC for the High Byte and

one for the Low Byte of data.The 80C196KC signals WRH and WRL are used for the high

and low data RAMs repectively. The RD signal goes to all four memory chips. The CS

signals come from the Microcontrol PAL. This PAL uses the memory address accessed and

the address bus' LSB to determine the chip to be selected. A jumper for pin A14 of the

SRAMs accomodates the use of either a 16Kx8 or a 32Kx8 RAM capacity (refer to Figure

B.1).

4.3.2 Microprocessing Unit and Microcontrol PAL

The slave module's computational heart is the Intel 80C196KC, a 16-bit, CHMOS mi-

crocontroller [13]. The 80C196KC is designed to handle high-speed calculations and fast

I/O operations, making it a good choice for the MLM. It has 16 multiplexed Address

and Data lines for interfacing with external circuitry, including program memory, RAM,

and the external UART (the I82510). It provides two 8-bit digital I/O ports, High-Speed

Input/Output lines and a Full-Duplex Serial Interface for processor-to-processor communi-

cation. At 16Mhz, it is sufficient for our computational purposes and is upward compatible

with the 80C196KD which operates at 20MHz. 1K of on-chip RAM is useful in speeding

through number-crunching on small arrays. Together with the microcontrol PAL (a 22v10),

the 80C196KC controls all the data paths of the slave module (refer to Figure B.2).

The operation of the 80C196KC depends on the initial contents of the Chip Configu-

ration Register (CCR). Among other things, this 8-bit register controls the way the mi-

crocontroller interfaces with external memory, allowing for a great deal of choice in the

implementation of an 80C196-based system.

The most important feature of the external memory interface is bus width. For memory

accesses the bus width is 16 bits. The CCR is initialized so that the microcontroller operates

in the "Write Strobe Mode". This mode eliminates the need to externally decode high- and

low-byte writes to the external RAM. The 80C196KC generates WRL and WRH instead

of WR and BHE as in the " Standard Bus Mode" (Refer to [13] for further details of

interfacing with external memory). For accessing the I82510 UART, an 8 bit data path is

necessary. To allow dynamic setting of the bus width (to either 16 bits for memory access

or 8 bits for UART reads and writes) the CCR must be configured to allow the input pin

BUSWIDTH to control the width of the data bus. BUSWIDTH must be held high
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during a 16-bit data transfer (program code, RAM access) and low during an 8-bit transfer

(UART access).

Another important consideration is the time the processor must wait for slow memory

devices to complete their actions. The internal control circuitry of the 80C196 allows the

READY signal to be pulled low until an external device completes an operation. While

READY is low, the Bus Controller in the 80C196 inserts wait states into the bus cycle. The

number of wait states generated is specified by the contents of the CCR. For our purposes,

the CCR has been configured to limit the number of wait states to 3. This wait feature

is used whenever the UART is accessed. As it has a long access time (about 200ns), the

microcontrol PAL pulls the READY line low while the UART is chip-selected.

The microcontrol PAL code is listed in Appendix C. It decodes the address bus to

generate the Chip Selectors for the RAM, the ROM and the UART. In addition, it controls

the READY and the BUSWIDTH lines of the microcontroller. Finally, it stores the

current state of the RISM ("user" mode or not "not user" mode, as described in Section

5.2), in an output bit, MAP, which determines whether the program code is executed from

the ROM or the RAM (refer to Chapter 5 and Appendix C).

Some discrete logic is also used in the implementation of the data path. Two octal latches

(74LS573) are used to externally latch the Address. They are clocked by the Address Latch

Enable (ALE) output of the 80C196KC. A STretched ALE (STALE) signal is generated

using a Flip-Flop clocked by the ALE. This is used by the microcontrol PAL to generate

the MAP bit. STALE is deasserted (i.e., the flip-flop is reset) by the output of an LS08.

4.3.3 PC Interface

Each module communicates with the PC via the Intel I82510, a CHMOS Asynchoronous

Serial Controller (see Figure B.3). The I82510 has a Bus Interface Unit, a Serial Module, a

Timing Block, and a Modem Interface Module. The former two units are the ones chiefly

utilized in the slave module.

The I82510 has a simple demultiplexed bus interface which consists of a tri-stated 8-bit

bi-directional data bus and a 3-bit address bus. An Interrupt line, along with Read, Write

and Chip Select pins are the remaining signals used to interface with the CPU. The 182510

is programmed through its registers which are divided into four banks - 35 registers in all.

Only one bank is accessible at a time. The switching is done by changing the contents of the
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bank pointer. Refer to [15] for detailed specifications of the I82510 architecture, registers,

and programming.

The 80C196KC RD line goes to the UART RD input. The WRH line goes to the

UART WR [Note that WRL could also have been used, since in the 8-bit bus mode both

signals are asserted for all writes]. The CS comes from the microcontrol PAL. The Interrupt

output, INT of the I82510 goes to either the Non-maskable Interrupt (NMI) or another

external interrupt source of the microcontroller, depending on the setting of jumpers JP3

and JP9 (see Section 4.4.2). The positively-asserted RESET signal is applied to the RESET

pin, while RESET is applied to the RTS input via a diode. During hardware reset, the

RTS pin acts as an input and is used to determine the System Clock Mode. The RTS pin is

driven low during reset, so as to configure the UART to generate its clock internally using a

crystal oscillator, instead of accepting an external clock signal. The TXD and RXD inputs

are connected, via the Glue Logic, to the corresponding signals from the host PC. Finally,

the DCD/ICLK/OUT1 pin is configured as an output and used by the microcontroller to

indicate to the host PC whether the slave is executing code or awaiting PC command.

4.3.4 Interconnection Details

Figure 4.5 shows the connectors along with the connecter numbers (Jxx) as they appear

in the slave board schematics and layout, and illustrates the listing of the connectors that

follows. The exact pinouts for all these connectors are given in the schematics in Appendix

B.

* J2: The power connector for the slave board, carrying, in order: +5v, GND, +12v,

-12v. Note that while inlets are provided for +12v and -12v, they are not used by

any on the ICs on board. A 4-pin molex connecter was chosen for compatibility with

the master board, where the ADCs do require these signals. J2 is not shown in Figure

4.5 but is present in Figure B.5 in Appendix B.

* J3, J4: These connector accept the 8-bit processor ID data from the host PC.

* J5, J6: These connectors interface with the master board to allow the transfer of

blocks of acquired data.

* J7: This is the output connector used by the decomposer slaves to send time-scaled
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Figure 4.5: Slave Board Connectors

data to event detector slave.

* J8, J9, J10, J11: These are the HSI/O port connectors used in the implementation

of the load chains. Each carries an HSI line and the corresponding HSO line.

* J12: This provides the input for the RXD line of the microcontroller.

* J13, J13-A: This is the output connector for the TXD line of the microcontroller.

J13-A was a second connector added in the protospace to allow daisy chaining of the

TXD lines of the processors communicating with the same collater.

* J14, J15: These connectors receive the serial communication signals from the host
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PC.

4.3.5 Reset Circuitry

The Reset Circuitry is shown at the top of Figure B.2. The RESPIN pulse is generated

by an RC configuration for power-up reset, in parallel with a reset switch Wire-ORed with

the INIT signal from the HOST PC. This is in turn Wire-ORed with the RESET pin of

the 80C196KC. The total sources for slave module reset are:

* Reset Switch.

* Power Up.

* PC-issued reset through negation of INIT signal.

* Internal 80196KC reset (via assembly language Reset Instruction, RST).

Finally, RESET and RESET are generated for the UART by means of a flip-flop

(74LS74) clocked by "WRL.WRH" and cleared by the RESET output of the 80C196KC.

4.4 The MLM Slave Board

Having discussed the MLM slave module's design and function, we now address the imple-

mentation of the slave board, the physical circuit board that houses the slave modules.

The MLM slave board is a 12in. x 12in. printed circuit board. As was the case for the

master board, the schematics and layout for the slave board PCB were also developed using

the Personal Automated Design System (PADS). Refer to [22] and [23] for details of this

CAD tool. The slave board accomodates four slave modules, PC interface "glue logic", and

some prototyping area. The slave modules have been detailed in the previous section. What

remains is a treatment of the "glue logic" on board, which is responsible for interfacing the

PC and the slave modules.

4.4.1 PC Interface Glue Logic

The host PC needs to download program code and data into each slave module. The PC

also needs to retrieve results from the collaters. This communication is done serially as it

is not a time-critical task. Since there is only one RXD line on the PC connected to the
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TXDs of several slaves, and one PC TXD line transmitting to the RXD inputs of several

slaves, the PC must be able to select one slave at a time. This capability is given by the

Glue Logic on board each slave PCB.

Two PALs implement the PC interface. The "Comparator" PAL (see Appendix C)

receives the six Most Significant Bits (MSBs) of the processor ID byte and compares these

to the on-board DIP switch setting. If there is a match, one of the processors on the slave

board is selected. The "Comparator" PAL asserts a SELECT signal to the "Relay" PAL

which then makes the serial connection between the PC serial lines and a slave's UART.

The "Relay" PAL acts as a multiplexer in one direction and a demultiplexer in another: It

demultiplexes the PC TXD/RXD lines to 1 of 4 slave TXD/RXD lines. At the same time

it does a 4-to-1 multiplexing of the four sets of slave serial lines to the single set of PC

serial lines. Upon being told by the "Comparator" PAL that the slave board is selected,

the "Relay" PAL determines from the two LSBs of the processor ID which processor is

selected. It then demultiplexes the PC TXD and RXD lines so that they are connected to

the selected processor's serial lines. Thus, when a module is selected, its UART is connected

directly to the PC's serial port. Other processing modules can have no effect on this link.

As the PC delivers its serial lines via RS-232 cables, a tranceiver IC is used to convert

the PC signal voltages to TTL levels. The component used is the MAX235, an RS-232

line driver/receiver with on-board charge pump voltage converters. This means that the

MAX235 can generate the needed ±12v from 5v - no +12v power signals need to be

provided. Its most useful feature, however, for the PC interface, is a shutdown mode in which

the slave TXD lines are disconnected (put in high-impedance) from the PC RXD line. If a

slave board is not selected, its "Comparator" PAL places the tranceiver in shutdown mode.

This ensures that if a board is not selected, none of its processors can force the PC RXD

line high or low.

4.4.2 Jumper Selections

Several jumpers are used in the slave board to allow flexibility in the configuration of the

hardware. The jumpers in a slave module and the glue logic circuitry, and their selections

are described below.

* JP1: Placed next to the microcontrol PAL, this decides which pin of the PAL provides

the 80C196KC READY signal. In the default position (1-2), the I82510 CS and the
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READY signal are provided by the same PAL pin.

* JP2: Located in the glue logic circuitry, this jumper determines whether the glue logic

PALs are reset by the RESET line or the RESPIN line. The default setting (2-3)

chooses the RESPIN line.

· JP3, JP9: Placed next to the I82510, these select whether the INT (interrupt) output

of the I82510 goes to the NMI line, the P2-2 external interrupt pin or the P0-7 interrupt

pin of the 80C196. The default setting (2-3 for both jumpers) chooses the P2-2 (the

JP3 setting is actually irrelevant if JP9 is in the 2-3 position).

* JP4: This jumper selects the 80C196 input source for the Interrupt signal from the

master, choosing between NMI and P2-2. The interrupt source selected for the master

board interrupt by this jumper and the source for the I82510 interrupt (dealing with

PC communication, selected by JP3/JP9) must be different. Otherwise the slave

module will not be able to communicate with the PC or the master board. The

default setting is 1-2 which selects the microcontroller's NMI pin.

* JP5: This selects the 80C196 pin to which the DAV signal from the master will go.

The current setting (1-2) connects DAV to input pin P2-3.

* JP6: The jumper selects the output pin of the 80C196 that will provide the interrupt

signal when the slave is configured to perform tree-structured decomposition and needs

to transfer time-scaled data to other slaves. The default setting (2-3) selects HSO-1

over P2-5.

* JP7: The jumper selects the output pin of the 80C196 that will provide the DAV

signal when the slave is configured to perform tree-structured decomposition and needs

to transfer time-scaled to other slaves. The default setting (1-2) selects HSO-0 over

P2-7.

* JP8: This determines whether the OE input of the buffer in front of Port 1 is tied to

ground or controlled by P2-6. The present setting (2-3) uses pin P2-6.

* JP10: This jumper allows the 80C196 TXD line to either go directly to the output

connector, J-13, or through a tristate buffer. At present the jumper is in position 2-3

so that the tri-stated TXD line is provided to the output connecter.
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* JP11, J12: These jumpers determine whether the OE input of the tristate buffer for

the TXD line is controlled by P2-7, HSO-0 or HSO-1. The present setting (1-2)

for both jumpers (although the J12 setting does not matter once J11 is in the 1-2

position) chooses pin P2-7.

* JP13: This jumper allows the usage of either 32Kx8 RAMs or 16Kx8 RAMs. The

default setting is (1-2) and the default size is 32Kx8 (256K).

4.4.3 Component Layout

The PCB Layout included as Figure B.6 in Appendix B should be referred to throughout

this section.

The slave board has the four slave modules forming four symmetric quadrants on the

board. On the lower side, from left to right are modules 1 and 2. The upper side has

modules 3 and 4 (from left to right). In the middle of the board is the glue logic (left

center) and some protospacing area (right center). The protospace was included to allow

any additions/changes that may need to be made to the board during the test phase. It

turned out to be extremely useful when the additional connector J13-A, in Figure 4.5. was

added for the on-board daisy chaining of the TXD lines of the microcontrollers (see Section

4.3.4).

Along the left edge of each module are the four memory ICs. To their right, and near

the top is the external UART, the I82510. To the right of this module are the discrete

components and SSI logic making up the Reset Circuitry, as well as an AND gate (LS08)

used in the generation of the STALE signal. Below this part of the board is the 80C196KC

in a 68 pin PLCC package, with a pair of latches (74LS573) and the microcontrol PAL to its

left. To the right of the controller and below it, are arranged the connectors for inter-slave

and master-slave communication.
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[Component I Quantity

Microcontrollers 4
Memory ICs 16
UARTs 4
PALs 6
Misc ICs 30
Total ICs 60
Discrete Comp. 174
Connectors 45

Total Comp. 279

Table 4.1: Slave Board Component Listing

4.4.4 Hardware Specifications

Table 4.1 lists the components that populate the slave board. There are 279 components

on the board, including 60 ICs. None of the ICs in the slave board are as sensitive to changes

in Vcc as the AD7874 used in the master board. Hence, as long as TTL levels are maintained,

no further restrictions apply. Under normal operating conditions, an ICC of about 1.5A is

required.
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Chapter 5

Software Implementation of the

MLM

Having covered the hardware design and implementation of the MLM, we turn to the

software implementation of the transient event detection algorithm on the slave modules.

The design and development of the Host PC Interface software is also included.

5.1 Software for Slave Processors

The 80C196 C source code for Transient Detection, Tree-Structured Decomposition and

Result Collation is given in Appendix D. The salient features of the software design of each

operation are discussed below.

5.1.1 Acquisition of Input Data

A slave module performing a transient pattern search is periodically interrupted on its NMI

line by either the master board or a slave module performing tree-structured decomposition.

A block of 512 input data points is then transferred to the slave processor. The following

NMI interrupt servicing routine (see [17]) is responsible for accepting the data blocks:
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void nmimasterint(void)

{

labell:

while ((ioport2 & Ox08) != Ox08); /* wait for DAV = p2.3 */

input[counter] = (ioportl & Ox3f); /**** 6 bits ****/

while ((ioport2 & Ox08) == Ox08); /* wait for /DAV */

counter++;

if (counter < INPUTSIZE)

goto labell; /* repeat until 512 points received */

newacq = 1; /* flag to indicate arrival of new data*/

noofacq++; /* no. of acquisitions up till now */

counter = 0;

}

5.1.2 Pattern Search

The main operation in the TED algorithm is searching the input stream for patterns stored

as templates in memory. Currently, a single processor can search for v-sections belonging to

three loads. The event detector code (given in Appendix D) may be modified to allow upto

four loads per processor. Beyond that number, the limitation will come from the restricted

fan-in/fan-out of the load chain implementation (see Section 5.1.3). Of course if the fan-

in/fan-out restriction was not present, more loads could be handled by each slave module.

Recall from Section 2.2 that 10 to 25 v-sections (average size of about 20 points) can be

searched by a processor in the time available between consecutive input data arrivals. A

processor can, therefore, easily handle more than four loads. Depending on the number

of v-sections in each load's transient, a processor could potentially monitor v-sections for

10-15 loads.

The backbone of the software implementation for the v-section pattern search was the

load structure [18] defined as follows:

struct load{

unsigned char used; /* load used? */

unsigned char machno; /*load id */
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unsigned

unsigned

unsigned

volatile

unsigned

volatile

unsigned

volatile

unsigned

volatile

unsigned

volatile

unsigned

unsigned

unsigned

char prevhs; /*For First Proc on load chain, no prevhs..*/

char nexths; /* ..and Prevgot must be set to one for it */

char novsec; /* no of vsections associated with load */

short *vsliadd; /* address of st vsec */

short vsisize; /* size */

short *vs2_add; /* address of 2nd vsec /

short vs2_size; /* size */

short *vs3_add; /* address of 3rd vsec /

short vs3_size; /* size */

short *vs4_add; /* address of 4th vsec /

short vs4_size; /* size */

short *vs5_add; /* address of 5th vsec ,/

short vs5_size; /* size */

char firstgot; /* is this the first processor on chain? */

char lastgot; /* is this the last processor on chain? */

unsigned char prevgot; /* Did prev. proc. send the ident. message */

unsigned short prevtime; /* acqtime for prevgot */

unsigned char vshits; /* no. of vsecs. identified so far */

unsigned short vsOloc; /*offset from begin. of inp block for st vs*/

unsigned short acqOtime; /* acqtime for first vsec */

unsigned short vsloc; /*offset from begin. of inp. block for last vs*/

unsigned short thresh; /* error threshold */

short rangehi; /*range within which first and last vsec should be*/

short rangelo; /*range within which first and last vsec should be*/

Each load whose v-sections are to be recognized is characterized by a number ID,

machno. The time scale of operation is defined as a constant at the beginning of the

program for each processor (see listing in Appendix D). The number of v-sections to be

searched and the size and memory address of each v-section template for a load, are stored

in its load structure. The variable prevhs identifies the HSI/O pair on which this pro-

cessor communicates with the previous processor on the load chain. Similarly, nexths

identifies the HSI/O line on which the processor communicates with the next processor
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on the load chain. The flag firstgot is set to 1 if the processor is the first processor

on the load chain, and lastgot is set to 1 if the processor is the last processor on the

load chain. The variable prevgot is set if the previous processor on the chain has sent a

load identification signal, and prevtime stores the "time" at which the prevgot was set.

The number of v-sections found so far are recorded in vshits. The other elements of the

load structure are used to perform a validity check once all v-sections have been found.

For instance, the v-sections must be identified in order, the first and last v-sections must

occur within a certain spatial range, and the identification must take place within a set time

of receiving the previous processor's identification message. Finally, an error threshold is

assigned to each load in the variable thresh.

The time base for the MLM is the number of data transfers that have occured so far.

Thus, if the master board has transmitted 210 blocks of data, the system time is 210. If at

this "moment" (i.e. during this data acquisition cycle) a load is identified, the identification

time will be set at 210. Each slave has two global variables that keep track of time. The

variable, noofacq, counts the number of data acquisitions (time ticks) that have occured

since the system was started up. The variable acqtime is set to the value in noofacq

when a load identification occurs. It is passed on to the collater (and then to the Host PC)

as the time at which the load was identified.

The steps in v-section search for multiple loads on a processor are as follows:

1. Wait for a new acquisition.

2. Once a new data block arrives, do the following for each load that is monitored:

(a) Search for first v-section of the load. If the first v-section is not found, check

vshits to see if the first v-section was identified on a previous acquisition cycle.

If this is also not true, end search for v-sections.

(b) If the first v-section is found in this cycle or is shown as found on an earlier cycle,

check if there are more v-sections to be searched. If not, go to the next step.

Otherwise repeat steps (a) and (b) for the next v-section.

(c) If all v-sections have been identified:

i. Check to see if prevgot is set. If not, then wait for prev_got to be asserted.

ii. If the previous processor has sent the identification message, perform validity

check on the locations of the v-sections and the time difference between
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the previous identification message being received and the v-section being

identified. If the identification is invalid then reset the variable prevgot

and vshits and start over.

iii. If the identification is valid, send an identification message to the next pro-

cessor on the chain. If the current processor is the last processor on the chain,

compile an identification record and serially transmit it to the collater. Also

reset the variables prevgot and vshits.

3. Go back to step 1.

Since the code is interrupt-driven, the processor does not stall while waiting for an event

(such as the arrival of new data or of an identification message). In the above algorithm,

v-sections are identified through euclidean filtering. The euclidean distance between two

N-point vectors, i and t, is computed according to the formula:

n=N-1

E li.- n
n=O

where t is an N-point v-section template and i represents N-point sections or subsequences

of the input stream. If the distance is found to be less than the threshold for the load,

the v-section is considered identified. As explained in Section 4.2.1, the input data is ac-

coupled prior to filtering. The v-section templates are also ac-coupled. This make v-section

identification possible even if a v-section occurs in the input stream, with a dc shift.

5.1.3 Software Implementation of Load Chains

Each event detector slave uses HSI/O lines to implement the load chains. Each processor

allocates, for each load used, an HSI/O pair for communication with the previous processor

on the chain. This is specified by the prev_hs element in the load structure. The element,

next_hs, specifies the HSI/O pair used to propagate the identification message to the next

processor in the chain. As a total of four HSI/O pairs are available on the 80C196KC, the

total fan-in+fan-out is restricted to four. Each process has a servicing routine for the HSI

Data Available Interrupt. If the HSI line corresponding to the prevgot line of a used

load is set to 1 by the previous processor, an HSI Data Available Interrupt occurs. The

servicing routine checks the HSI input on which the interrupting event occurred. If this
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matches the prevhs line of a used load, the corresponding HSO line is used to complete the

handshake. At the same time, prev_got is set to 1 and the current acquisition cycle number

is recorded in prevtime. If the processor is itself ready to propagate the identification

message received, it will set the HSO bit specified by next_hs, to signal the next processor.

If the load's last_got is set, then the next processor is a collater. A record consisting of

the processor ID, load ID, time scale, acquisition time and v-section location (for intra-scale

lockout) is compiled and transmitted to the collater.

5.1.4 Template Management

Templates for v-sections are placed at specific memory locations using the #pragma compiler

directive [17]. These memory locations are listed below:

#pragma locate (templatel = 0x3600) /* 8 BIG TEMPS., 4 SMALL ONES */

#pragma locate (template2 = 0x3800)

#pragma locate (template3 = Ox3AOO)

#pragma locate (template4 = Ox3COO)

#pragma locate (template5 = Ox3EOO)

#pragma locate (template6 = 0x4000)

#pragma locate (template7 = 0x4200)

#pragma locate (template8 = 0x4400)

#pragma locate (template9 = 0x4600)

#pragma locate (template10 = 0x4700)

#pragma locate (template11 = 0x4800)

#pragma locate (template12 = 0x4900)

A total of 12 templates are allowed at present per processor. Eight of these may be 512

points long while the other four may only be 256 points long. Each load may have up to a

maximum of five templates. The function loadinit () initializes the v-section addresses

and sizes for each load. See the listing of p0Oelp.c in Appendix D for an example of

v-section initialization.

An important feature of the slave processor software is the template acquisition mode.

The global variable "mode" is placed at memory location 0x3504. If this is set to 1 by

the host PC, no pattern search is performed upon a new block acquisition. Instead the
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subroutine tmode () is called to determine if a change of mean occured in the input data.

If this is true, the processor enters an endless loop in the t-mode () subroutine from which

it breaks out only if the "mode" variable is reset. Details of the template acquisition mode

from the perspective of the user on the host PC are given in Section 5.2. Note that this

feature is also present in "decomposer" slaves. Here, in template acquisition mode, tree-

structured decomposition is performed and the scaled data is distributed forward. After

the data distribution, tmode() is invoked and, as in event detectors, no v-section search is

performed.

5.1.5 Tree-structured Decomposition

The tree-structure decomposition algorithm in [1] is used to scale input data in time. The

resulting coarser data is passed to slaves working on the derived time scale. In the MLM,

tree-structured decomposition is used to downsample data by a factor of 4. Downsampling

by 4 gives an output block of 128 samples. Thus, multiscale event detection is performed

on two time scales: the original fine time scale and the coarse scale (input downsampled by

4).

The input data is first convolved with a low pass filter [19], [20]. The convolution filter is

in file conv. tmp and is loaded as a template at 0x3600 into the decomposer slave processors.

The filtered data is then decimated in time by the decimate() subroutine. The problem

with decimating by simpling picking out every other sample is that it may cause regions of

high-variation (v-sections) in the input data to not be fully represented in the downsampled

data. See the discussion in [1] on how adaptively selecting between resolving paths, ensures

that arbitrary shift in input data does not cause the decimator to underrepresent a v-

section. The decimate() routine uses this technique to perform decimation in time, so

that v-sections are well-represented in the downsampled data.

The tree-structured decomposition code transfers the time-scaled data to event detectors

slaves searching on that time scale. The routine that performs this task must emulate the

master board, since the code in the listening slaves remains unchanged. The subroutine is

included here:
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void master()

{

ioport2 = ioport2 I 0x40; /* p2-6 = 1: ioportl input buff. disable */

ioportl = 0;

tios0 = ios0;

wsr = 15;

ios0 = tiosO I 0x02; /* INT = HSO-1 */

wsr = 0;

WAIT_COMM

WAITCOMM

tios0 = ios0;

wsr = 15;

iosO = tiosO & Oxfd; /* INT = HSO-1 */

wsr = 0;

for(i = 0; i < DOUTSIZE; i++)

WAITCOMM

ioportl = (unsigned char) (*(dataout+i) & Ox3F); /* 6 LSB */

tiosO = ios0;

wsr = 15;

ios0 = tiosO I OxO; /* DAV = HSO-0 */

wsr = 0;

WAITCOMM

tioso = ios0;

wsr = 15;

ios0 = tiosO & OxFE; /* DAV = HSO-0 */

wsr = 0;

WAITCOMM

WAITCOMM
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ioportl = (unsigned char) ((*(dataout+i) & OxOfcO) >> 6); /* 6 MSB */

tiosO = iosO;

wsr = 15;

ios0 = tiosO I OxO; /* DAV = HSO-O */

wsr = 0;

WAITCOMM

tiosO = iosO;

wsr = 15;

iosO = tiosO & OxFE; /* DAV = HSO-O */

wsr = 0;

WAIT_COMM

}

ioportl = Oxff;

ioport2 = ioport2 & Oxbf; /* p2-6 = 0: ioportl input buff. enable */

masterout++;

}

Observe that HSO-0 is used to provide the DAVsignal and HSO-1 provides INT. Hence,

if the decomposer slave is also used as an event detector as part of a load chain, only HSI/O

lines 2 and 3 can participate in the chain. Note also that the structure is compatible with

the NMI servicing routine of the receiving slaves. These slaves need no modification to work

with the decomposer slaves rather than the master board.

5.1.6 Result Collation

Collaters also function around a structure called load, defined in software. As the collaters

do not perform event detection, this structure is used primarily to hold the record sent by

the event detectors and to be sent to the host PC upon request:

struct load{

unsigned char newhit; /* means yes, 0 means no */

unsigned char used; /* load is used? */

unsigned char gotproc; /* processor which got the final vsecs */

unsigned char machno; /* load ID */
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unsigned char timescale; /* time scale of identification */

unsigned char vslochi; /*offset from begin. of input block of last vs*/

unsigned char vsloclo; /*offset from begin. of input block of last vs*/

unsigned char acqtimehi; /* time of event */

unsigned char acqtimelo; /* time of event */

There are two type of collaters in the MLM: the normal collaters and the wide collaters.

The former accept results from four load chains on the four HSI lines. The latter can

communicate with a total of eight chains by using Port 1 pins as additional I/O lines.

Note that for the wide collater, Port 1 may not be used to talk to the master board.

This is perfectly legal as the collaters do not process the input data anyway. The NMI

interrupts still occur but no data is presented at Port 1 and the servicing routine is suitably

abbreviated:

void nmimasterint(void)

noofacq++;

For the wide collater, the four Port 1 pin pairs P1.0/P1.1, P1.2/P1.3, P1.4/P1.5, P1.6/P1.7

are used in a manner analagous to the HSI/O line pairs, to communicate with the event

detector processors. Loads are assigned in the following order, to the HSI/O pairs and the

Port 1 pin pairs:

Load Li => HSIO 0

Load L2 => HSIO 1

Load L3 => HSIO 2

Load L4 => HSIO 3

Load L5 => P1 0/1

Load L6 => Pi 2/3

Load L7 => Pi 4/5

Load L8 => Pi 6/7

It is important that the actual hardware hookup of load chains to the collater HSI and Port

1 lines is consistent with the loads attributed to each collater during collater initialization
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in the Host PC Interface Program (see Section 5.2.9).

The collaters do not service interrupts on the HSI lines to get detection results. Instead

they poll all the used HSI lines. If the HSI bit is set, the event detector processor is signalled

to start communication of the identification record. This is received on the serial port and

the data is placed in the structure of the load corresponding to the HSI/Port 1 line. The

code for the wide collaters is used for normal collaters as well, by simply initializing loads

5-8 as not used. See the code in p5cip. c in Appendix D.

5.1.7 PC Communication

The host PC uploads the results of transient event detection from the collaters. It polls

the collaters to check if a load has been identified on any time scale. The global variable

"any_hit" in the collater code is set if a load has been identified on that time scale. The

structures containing the identification record, etc., for each load are placed in memory as

follows:

#pragma locate (li = Ox3000)

#pragma locate (12 = 0x3010)

#pragma locate (13 = 0x3020)

#pragma locate (14 = 0x3030)

#pragma locate (15 = 0x3040)

#pragma locate (16 = 0x3050)

#pragma locate (17 = 0x3060)

#pragma locate (18 = 0x3070)

If the PC sees anyhit set to 1, it serially retrieves memory locations 0x3000, 0x3010,

0x3020,..., 0x3070 (load.newhit elements of the load structures) to see which of the eight

loads have been identified. It then proceeds to recover the entire record for each of those

loads. Details of Collater-PC communication from the Host Interface perspective are given

in Section 5.2.9.

In addition to collater communication, the Host PC also communicates with the other

slaves to perform several important tasks as explained in Section 5.2. One feature of Slave-

PC Communication implemented in the slave processor code is discussed here first. The

event detector and decomposer slaves all have special global variables located in memory
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locations 0x3500 through 0x3520. Some of these (e.g. noofacq, newacq etc.) are

important to the operations of the slave module. The rest were used for debugging/testing

purposes. They may now be used to track the code execution of the slave. For example the

pair of variables srin/srout are incremented, respectively, each time the slave module

enters and leaves the subroutine performing serial communication with the collater. For

example, if they are both seen to have a value of 8, it may be deduced that the slave has

successfully performed eight serial transmissions of identification records. Suppose somehow

the ninth transmission could not be completed successfully. Now srin will have the value

9 but srout would still be at 8. This information precisely identifies the nature of the

problem to the user. Other debugging variables behave similarly. An annotated listing is

included below.

#pragma locate (newacq = 0x3500) /* = 1 if new data block just received */

#pragma locate (noofacq = Ox3502)/*no of input acquisitions made so far*/

#pragma locate (mode = 0x3504) /* = if in template acquisition mode */

#pragma locate (tempacq = 0x3506) /* acquisition no. frozen in temp mode*/

#pragma locate (tempadd = Ox3508)/*mem. add where change-of-mean occured*/

#pragma locate (hsiavailin = 0x3510) /* hsiinterrupt routine entered */

#pragma locate (hsiavailout = 0x3511) /* hsiinterrupt routine left */

#pragma locate (gotchain = 0x3512) /* next proc. comm. routine entered */

#pragma locate (gotchaout = 0x3513) /* next proc. comm. routine left */

#pragma locate (eucin = 0x3514) /* Euclidean Filtering routine entered */

#pragma locate (eucout = 0x3515) /* Euclidean Filtering routine left */

#pragma locate (srin = 0x3516) /*Serial Comm to Collater routine entered*/

#pragma locate (srout = 0x3518) /*Serial Comm to Collater routine left*/

5.2 Software Design of the PC interface

The Host Interface for the MLM is implemented on a Pentium-based PC. Serial port COM1

is used to communicate with the slave modules. A PC I/O card was built and installed in

the PC (see Appendix F). This is used to send the 8-bit processor ID to each slave board.

It is also used to communicate with the master board to retrieve the most recently acquired

data. Four handshaking bits and 16 data bits make up this communication channel.
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A summary of the functions performed by the Host PC Code is given below:

* Master board communication: Retrieve the last eight acquisition blocks (about

20 sec. of acquired data) sent to the slaves. Data from all eight input channels is

transferred to the PC.

* Master board mode selection: Place the master board in sleep mode when no

data blocks are sent to the slaves or in acquisition (or transfer) mode in which data

is sent to the slaves.

* Processor selection: Select a slave module for communication.

* Load program code: Download program code into the RAM of the selected pro-

cessor.

* Load templates: Place in processor memory the templates to be searched by the

selected slave.

* Read memory locations: Read specified memory locations, including Special Func-

tion Registers (SFRs). This feature is helpful in testing/debugging, as well as in other

interface functions such as template acquisition.

* Reset processors: Reset a selected slave processor, or all MLM slaves.

* Template acquisition: Allow data for transient templates to be acquired and final

templates to be constructed.

* Poll collaters for results: Allow user to identify certain slaves as collaters and poll

these slaves for load identification results.

* Display results graphically: Display all hits graphically. Also display graphically

the window of data acquired from the master board.

* Update history.txt: Maintain and update a file (history.txt) which contains a record

of all load activity since the time the MLM PC Interface was invoked.

The software program that forms the Interface between the Host PC and the MLM slaves

is actually implemented in two parts. One part resides on the Host PC and is called the

Embedded Controller Monitor (ECM). (Intel's ECM for the 80C196 Evaluation Board [14]
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may be regarded as a distant ancestor.) The other part is resident in Read Only Memory

(ROM) of each MLM slave, and is known as the Reduced Instruction Set Monitor (RISM).

The partitioning of the interface has several advantages. By placing a major portion of the

Monitor code on the host PC, we ensure that the feature set of the user interface is not

limited by the resources of the MLM slaves. By placing part of the program in the slave

modules, we allow concurrent operation of the ECM and the MLM slaves: The user can

trace and modify the state of a slave processor while it is running. The structure of each

part is discussed seperately. ECM is, of course, the more important part to understand,

from a user's point-of-view.

5.2.1 RISM Structure

The RISM code used in the MLM interface is a modified version of the RISM code provided

by Intel with the 80C196KC Evaluation Board [14]. The RISM is made up of about 300 bytes

of 80C196 assembly code. It consists of a section of initialization where the slave module's

external UART is configured and Interrupt initialization is performed. In addition there

is an Interrupt Servicing Routine (ISR) that processes interrupt requests from the ECM

program. The interface works as follows. The ECM sends a character to the selected slave.

The character may be a command which the RISM ISR must recognize and carryout, or

it may be a data byte to be placed in the slave's RAM. When the slave module UART

receives the character, it interrupts the processor. This causes the ISR to be executed. The

ISR reads in the character sent by ECM from the UART. It first determines if it represents

a data or a command. If the character is greater than 0x1F or if the DLE (Data Load

Enable) Flag is set, the character is treated as a data byte. If the character is a command,

the ISR executes a case-jump to the section of code responsible for handling the command.

The slave module then proceeds with normal code execution until it is interrupted again by

the Host PC.

Here is a listing of the commands, and the characters that represent them, used by ECM

and executed by RISM to control the working of the slave modules. The command names

are self-explanatory.

SETDLEFLAG 0x00

TRANSMIT 0x02

READ_BYTE 0x04
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Address (HEX) After RESET After REMAP

0000-O00FF (as data) Internal Registers Internal Registers
0000-00FF (as code) RISM EPROM RISM EPROM
0100-lC00 Unused Unused
1C00-1C10 RISM EPROM RISM EPROM
1C10-1CFF Unused Unused
1D00-1DFF RISM EPROM RISM EPROM
1E00-1EFF Ext. UART Ext. UART
1F00-1FFF Unused Unused
2000-27FF RISM EPROM USER CODE/DATA RAM
2800-5FFF USER CODE/DATA RAM USER CODE/DATA RAM

Table 5.1: Memory Map of the Slave Module 80C196KC

READWORD Ox05

WRITEBYTE Ox07

WRITEWORD Ox08

LOADADDRESS OxOA

READPSW OxOC

WRITEPSW OxOD

READSP OxOE

WRITE_SP OxOF

READPC OxlO

WRITEPC Oxi1

GO Ox12

HALT 0x13

REPORTSTAT 0x14

RESET 0x15

The command execution routines are short, so that the flow through the entire ISR

is about 20 instructions. The serial communication, which occurs at 9600 baud, and the

servicing of the command, thus take up very little time so that no real-time is lost to the

slave processor, unless the user makes ECM actively interrupt the slaves.

When the PC interrupts the 80C196, the processor is, in general, executing program

code from the RAM. It must switch to executing ISR code in the ROM, possibly at the same

memory address as the RAM code. How is this memory map implemented and managed?
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The Decode PAL (referred to as BUSCON in Appendices B and C) outputs the Chip Select

signals to the ROM, RAM and UART, depending on the memory address to be accessed

by the microcontroller. However certain memory ranges are common to both the ROM

and the RAM. For instance, address range 0x2000 to 0x2800 in the ROM or the RAM may

both contain executable code. In a certain mode, code must be fetched from the ROM, in

another from the RAM. The PAL outputs a bit called the MAP bit. If the MAP bit is not

set, the memory ranges common to both the ROM and RAM are fetched from the ROM.

The RISM is said to be in "notuser mode". If MAP is set, and instructions are accessed

from the overlapping memory ranges, code is fetched from the RAM, and the RISM is in

"user mode". On power up, the MAP bit is reset and code is executed from ROM (which

makes sense since there is no code in the RAM yet.) Once code has been downloaded into

RAM and the user mode has been entered, the RAM code is fetched and executed. Even in

user mode some memory locations are mapped exclusively to the ROM e.g. 0x00 to OxFF

in the ROM contains the ISR. When an interrupt from the PC is received, memory access

is initiated from these locations and the ROM is selected by the PAL. A summary of the

memory map is given in Table 5.1.

Some important changes were made to the Intel RISM structure to obtain the RISM

used for the MLM. The interrupt dedicated to MLM-PC communication was the P2-2

interrupt rather than the NMI. Thus the interrupt vector initialization is different for the

MLM RISM where the P2-2 interrupt vectors to the ISR and the NMI is reserved for master-

slave communication. The PSW initialization code is also modified, as the lower byte of the

PSW is the INT_MASK register which is set to a different value for the MLM than the 80C196

Evaluation Board described in [14]. In order to accomodate these changes some assembly

code had to be rewritten and a little code added to the existing RISM of the Evaluation

Board. The changes made to the RISM assembly code are discussed in Appendix E. A

detailed discussion of the original RISM can be found in [14], the 80C196EVB Manual. The

entire RISM code is also included in this handbook.

5.2.2 ECM Program Structure

The code resident in the PC was developed using a Microsoft C compiler, version 6.0 [21].

The executable file is called ECM (for Embedded Controller Monitor) and was designed and

implemented completely and exclusively for this thesis. The program is a DOS-based menu-
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ECH version 4.4 April 12, 1995

_========== = IMIM it = ==MAI=N HMN-U

1. Slave Communication
2. Slave Diagnostic/Echo
3. Slave Processor Selection
4. Data from Master
5. Master Acquisition Mode Setup
6. Slave Mode Selection
7. Collater Communication
8. Display Channel Data
9. Initialize Slave Processors
E. Exit EC"

Figure 5.1: ECM Main Menu

driven interface. The code is listed in Appendix E and should be referenced throughout the

rest of the chapter when the menu selections and the functions they perform are discussed.

The top-level menu selections for ECM are shown in Figure 5.1. Several menu selections

lead to submenus. Main menu choice 1, for instance opens up a submenu for functions

concerned with slave communications (e.g., downloading code). Certain choices in slave

communication present further menu selections. This heirarchical structure is logically

constructed and easy to follow. In general, the ECM code is robust and user-friendly: There

is always the option to exit from submenus, and before any major operation is performed

the user is given the option to recall their selection. Main menu choices 4, 5 and 8 are

largely concerned with controlling and communicating with the master board. Selection

2 is used for debugging purposes only and is therefore not important for the MLM user.

Selections 1, 3, 6, 7, and 9 control the slave modules.

We first consider master board communication and control.

5.2.3 Communicating with the Master Board

An important function of the PC Interface is retrieving the last eight blocks of data tras-

ferred to the slave processors by the master board, when an event is detected or input data
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is requested by the user. As explained in Chapter 3, the master board not only sends blocks

of digitized data to the slaves, it also stores upto eight blocks of data in a circular buffer

implemented using RAMs, counters and PALs. The PC interface accesses this data via a

PC I/O card (see Appendix G). Details of the handshaking protocol are given in Chapter

3.

To invoke this function, select 4 (Data From Master) in the main menu and initiate

data acquisition. ECM uploads the data stored in the master board PC interface RAMs,

and places each channel's data seperately in files named chl.dat, ch2.dat,..., ch7.dat,

ch8.dat. Each of these files has 4096 (= 8 x 512) samples of input data, spanning about

20 seconds of acquisition time - the input sampling rate is set at 200Hz.

The data on channels 1, 2, 3, and 4 may be displayed using the main menu choice

8 (Display Channel Data) . When selection 8 is invoked, ECM graphs the data of four

channels contained in the respective ".dat" file, as shown in Figure 5.2. It automatically

scales the y-axis depending on the values of the data points in the files. Channel 1 data

is in the upper right plot, channel 2 is plotted on the upper left corner. In the lower half,

from left to right, are channels 3 and 4. The MLM Console may be ignored while viewing

channel data from the master board.

At present this large window of data, containing the last 20 seconds of sampled input,

available from the master board is used primarily for template acquisition, as discussed

later in the chapter. This data is also used by ECM whenever a load is identified by the

MLM. The ECM informs the user of the loads identified (lists them in the MLM Console),

retrieves the recently acquired data from the master board, and displays channels 1 through

4 in the same manner as menu selection 8. The ECM essentially invokes selections 4 (to

retrieve data) and 8 (to display data) of the main menu.

Other applications of this data bank may be developed as future work is done on the

MLM platform. It would, for instance, be necessary to look at the acquired data for the

purposes of diagnostic load monitoring. Similarly, if the objective was to look at higher

harmonics of current to track down power quality offenders, this feature would be very

useful.
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Figure 5.2: Displaying Channel Data

5.2.4 Master Board Mode Selection

While the ECM controls the MLM largely by controlling the slave processors, there is one

important way in which it influences the functioning of the MLM master board. If option 5

(Master Acquisition Mode Setup) in the main menu is selected, the submenu shown in Figure

5.3 is brought up. The current state of the master board ("sleep mode" or "acquisition

mode") is displayed above the menu selections. The user may then use the choices to set

the mode and exit back to the main menu.

In sleep mode the master board continues to acquire data from the analog preprocessor,

stores them in the data banks as well as the PC interface memory. However, it does not

ship any data to the slaves. A single control line goes from the Host PC (via the PC I/O

card) to the "Transfer PALs" and inhibits the Interrupt signal from being sent to the slave

processors. In this mode therefore, the MLM as a whole is essentially asleep. The master

board may however, be accessed, to provide 20 seconds of data at any time: Sampling of

the input streams never stops.

In the acquisition mode, the PC allows the master board to send data to the slave mod-
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la* MASTER MODE SET UP :::. ~

- Master is in Sleep Mode

Select Function:

1. Place aster Board in Acquisition Node
2. Place Master Board in Sleep ode
3. Exit

Figure 5.3: Master Acquisition Mode Submenu

ules. The slaves can then process the data and report load identifications back to the host

PC. It is imperative to "activate" the system only after all slaves have been initialized e.g.,

the program code has been downloaded. Otherwise the slave modules receive Non Maskable

Interrupts from the master board without having the interrupt servicing routine available

to them in their program memory. This may place them in an undefined/undesired state,

necessitating a "hard" reset. It is also important not to communicate with the slaves when

the system is active. For instance, if program code were to be downloaded into a slave while

the master board was in acquisition mode, the serial communication of program code could

be interrupted by an NMI interrupt from the master. This could potentially misplace or

fragment the program code in the slave processor so that when the code is run, the processor

may enter an undesirable state.

Having dealt with the the ECM master board interface, we turn to the menu options

that implement the slave interface, beginning with the process of slave selection.
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5.2.5 Selecting a Slave Processor for Communication

To select a slave, choose option 3 (Slave Processor Selection) in the main menu. ECM

prompts the user for the processor ID which it expects to be a number in the range 0 to 255,

inclusive. It also allows the user to re-enter the ID if a mistake is made. Once a processor is

selected, it will be the processor addressed in all menu and submenu selections dealing with

slave communication. It is important to select a slave processor when the ECM program is

first started, so as to be sure which processor is being addressed.

The mechanism to carry out this selection is simple. Once the user has entered a valid

processor ID, the ID byte is transmitted to a memory-mapped register (LS374) on the PC

I/O card (see Appendix F). The outputs of this register go to the "glue logic" on each slave

board, where it is compared to the hardwired board ID. Based on these comparisons, one

slave module is connected directly to the PC serial port.

Once a slave has been addressed, we can select item 1 (Slave Communication) in

the main menu and download code, templates, etc. Before we address this menu selection

however, we must explain the procedures performed to get a final program code file and

to extract templates from raw data. These topics precede our discussion of ECM's slave

interface.

5.2.6 Program Code Output Format

The 80C196KC compiler, IC-96, allows C program code to be compiled and outputted in a

format used by the 80C196 evaluation board's Host PC Interface to download programs to

the 80C196 on the evaluation board (see Appendix D for a listing of the batch file, cc.bat,

that invokes ic-96). This format is, however, of little use for us as we are using a host

interface developed exclusively for the MLM. The "output-to-hex converter" utility [13] is

used to achieve a format that the ECM can recognize and work with. This converter is

invoked by the "OH" DOS line command:

C: \> OH myfile. OUT TO myfile.HEX

The .HEX file contains the program code as well as its RAM address etc., in ascii format

so that ECM can use these files to place code in the slaves. Part of a sample .HEX file is

listed below:

97



:03208000E7DB0398

:07245EOOAi640018EF38FC37

:02203E008320FD

:10208300F4C81CC81EA30100351C4501001CiEC357

:102093000100351ECC1ECCiCF5FO69020018C81ACD

:1020A300A0181AC824111CC70116351CC7011735FF

:1020B3001C2A2522189B01013000D702203B510224

5.2.7 Template Collection

One of the more important tasks of the Host PC is the collection of templates of v-sections

that may be sent to slave modules for use in pattern search. There are two ways of producing

raw template data files using ECM.

If the templates are on the original time scale, data is retrieved from the master board

and placed in files chl.dat,..., ch8.dat. (This method can, in theory, also be applied to

extract templates on other time scales. However, it is easier to extract templates on derived

time scales directly from the slaves performing event detection). The method is simple:

Once the load of interest is turned on, main menu selection 4 is used to acquire the recently

sampled data. The transients occuring on the various input streams due to the load's activiy

are thus captured and placed in the respective ".dat" files. The user quits ECM and starts

a mathematics/graphics package (in our case, MATLAB). The ".dat" files are loaded into

MATLAB (or equivalent). Each stream is considered in turn and the v-sections are first

identified and then isolated into seperate text files. To keep things clear a simple protocol

was developed for naming these template files. Suppose the load in question was a Motor.

And suppose we were to isolate two v-sections in stream 1 (P) and two in stream 2 (Q).

The names for the files containing the raw data points for these four templates are given in

Table 5.2. The first letter identifies the load, the second letter identifies the data stream,

the number denotes the sequence in which the v-sections occur in the input stream (1st,

2nd etc.), and the ".RAW" extension signifies that this is a file containing raw template

data.

The second method of capturing and partitioning raw data into v-section files accesses

the slave modules directly. In this procedure, the slave modes are placed in template ac-

quisition mode, using main menu selection 6. The submenu for determining the mode of
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Content I File Name

1st Motor v-section in P MP1.RAW
2nd Motor v-section in P MP2.RAW
1st Motor v-section in Q MQ1.RAW
2nd Motor v-section in Q MQ2.RAW

Table 5.2: Naming Scheme for Raw V-section Template Files

-- SLAVE MODE SET UP _-_

Select Function:

1. Place Slave Nodules in Template Acquisition iode
2. Place Slave Nodules in Normal Function Node
3. Reset All Slave Processers
4. Exit

Figure 5.4: Slave Mode Selection Submenu

operation of slave processors is given in Figure 5.4. Selecting 1 in this menu places all pro-

cessors in template acquisition mode. The processors keep acquiring data from the master

(the master must be in acquisition mode) but do not process it; i.e., no event detection

takes place (tree-structured decomposition does go on so that the slaves on different time

scales do get scaled data from the decomposer slaves). The slaves simply wait for a change

of mean in their input stream. When this change occurs, the slaves freeze all operations

and acquire no further data. The window of 512 bytes in which the mean changed is thus

preserved in each slaves memory. As this change occured due to the activity of the load

whose templates are being collected, the transient causing the change would be captured

in this last acquired block of data. Note that all slaves performing event detection or tree-

structured decomposition follow this behaviour in template acquisition mode. This means
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that event detector slaves on derived time scales freeze the transients they will be searching

for, just like event detectors accepting input data directly from the master board.

Once the load has been turned on and its transient v-sections captured, the slave com-

munication menu is entered (see Figure 5.5) and the relevant range of memory is read

(details in the following subsection) and dumped to a file. This file is then studied by the

user and v-sections are extracted from the data to form the raw v-section files.

The final step in template collection is conditioning the ".RAW" to produce the final

".TMP" file to be loaded into slave memory. The main step is subtracting the mean (dc

value) of the raw template from each point, i.e. ac-coupling the template, as this is what

the euclidean filter does to the input stream it searches. ECM provides this conversion

capability as a submenu option.

Figure 5.5 shows the Slave Communication submenu that is accessed by choosing option

1 of the main menu. To convert a .RAW file to a .TMP file, choose option 2 (Template

Management). The menu shown in Figure 5.6 is displayed. Choose option 2 (Convert

Raw Data to Template) within this menu. The system will prompt the user for the .RAW

file name, as well as the final .TMP file name. The names, along with the extensions, must

be entered. If the .RAW file exists and has the data in the correct format, the ac-coupling

is performed and a .TMP file is generated. Otherwise a message is printed explaining what

went wrong.

As an illustration of the correct format, consider the file MP1.RAW given below:

: FFF5

: FFF2

: FFF2

:002C

:004C

:0079

:0084

:0086

END

/* This is the st raw v-section for Motor in P. The data below was
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4Iw66waa Cnnormal Mode of Execution -

1. Load File
2. Template Management
3. Go
4. Halt
5. Read Range
6. Poke eory
7. Reset Processor 
B. Reset Processor 8 and Remap to User
9. Quit

Figure 5.5: Slave Communication Submenu

uploaded from a slave and edited for v-sections. */

ADDR: 16 bytes of Data (LSB First)

5AFO: F4 FF F5 FF F4 FF F4 FF F4 FF F5 FF F4 FF F4 FF

5B00: F6 FF F2 FF F2 FF 2C 00 4C 00 79 00 84 00 86 00

5B10: 94 00 8B 00 95 00 8B 00 8D 00 95 00 88 00 91 00

5B20: 88 00 8B 00 8F 00 82 00 89 00 84 00 8A 00 88 00

The data values in MP1.RAW are in hexadecimal, with each point preceded by a colon

(':'). The end of the v-section is denoted by the string "END" as shown. Below that

remarks, original data points etc. are placed (as shown) for future reference. Regardless of

which method is taken to generate the raw v-sections, this format is expected by ECM. If

MATLAB is used in method 1 above, to generate the v-section files, the output is given in

exponential form. This can be translated into the desired format by using the executable

"TRANS2" available on the host PC. If the v-sections are hand-picked using the slaves in

template collection mode, it is usually easier to manually edit the v-section file to get them
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1. Load Template File
2. Conuert Raw Data to Template
3. Exit

Figure 5.6: Template Management Submenu

in the correct format.

The MP1.TMP file generated by ECM (from MP1.RAW) is as follows:

:FFBB

:FFB8

:FFB8

:FFF2

:0012

:003F

:004A

:004C

END

Statistics on Template:

Size = 8

Sum = 468

DC value = 58
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ECM generates statistics such as template size, sum of data points, and mean value

for reference. This file may now be downloaded into a slaves RAM using the ECM slave

communication options.

5.'2.8 Communicating with the Slave Processors

Having explained the process of getting final output files for program code and templates,

we now discuss the ECM menu selections that perform the slave communication.

Figure 5.5 shows the submenu within main menu option (Slave Communication).

The most important function (and the most commonly used!) is item 1 (Load File). When

this is selected, ECM prompts for a file name. As explained earlier this is expected to be

in Intel HEX format. The program code is then serially downloaded into slave memory.

Option 2 (Template Management) displays the submenu shown in Figure 5.6. This

submenu allows users to perform two important operations: Loading templates into slave

memory using selection 1, and converting raw templates to the final ac-coupled form that is

used by the slaves. When option 1 is selected, ECM asks for the .TMP file to be loaded into

slave memory. It also requires the address at which the template must be placed. Option

2 and its usage have been discussed in the previous section.

Once program code and template data has been loaded into its RAM, a slave is ready to

start program execution. The 3rd option in the Slave Communication menu (in Figure 5.5),

GO, starts code execution in the slave. Option 4 (HALT) may be used to stop execution.

If the slave is commanded to run again, code execution will be restarted from the instruction

at which the processor was halted.

Option 5 (READ RANGE) in the slave communication submenu allows the user to

retrieve a specified range of RAM locations, display the range, and dump the data to a

file. When option 5 is selected, the system prompts for the start and end addresses of the

memory range to be read. If the address range size is valid ( 0 and < 1024), the specified

locations are retrieved from processor memory and displayed. The user is next asked if the

data is to be dumped to a file. If the option is availed, a file with the specified name is

opened and data is placed in it. The data is placed in the file in the same manner as it is

displayed in the ECM environment:
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16 bytes of Data (LSB First)

5A90: F5 FF F4 FF F5 FF F6 FF F6 FF F4 FF F6 FF F4 FF

5AAO: F4 FF F6 FF F6 FF F2 FF F4 FF F7 FF F5 FF F4 FF

5ABO: F6 FF F4 FF F5 FF F6 FF F5 FF F4 FF F5 FF F6 FF

5ACO: F4 FF F4 FF F6 FF F4 FF FO FF F5 FF F5 FF F2 FF

5ADO: F5 FF F4 FF F6 FF F5 FF F8 FF F3 FF F3 FF F5 FF

5AEO: F6 FF F3 FF F3 FF F5 FF F6 FF F4 FF F5 FF F5 FF

5AFO: F4 FF F5 FF F4 FF F4 FF F4 FF F5 FF F4 FF F4 FF

5B00: F6 FF F2 FF F2 FF 2C 00 4C 00 79 00 84 00 86 00

5B10: 94 00 8B 00 95 00 8B 00 8D 00 95 00 88 00 91 00

The data is displayed bytewise. If the values are words, then the LSB is in the even

memory location, and is displayed before the MSB in the odd memory location. A header

is included for convenience in both the ECM display and the output file.

The read option is most useful in acquiring templates from the slave processors. It may

also be used to verify that templates have been correctly placed in memory. Another use is

to check the important memory locations 0x3500 to 0x3520 (as described in Section 5.1.7)

to see if the slave is behaving properly.

Option 6 gives another easy way to check if the slave processor is in a valid state. The

menu it brings up is in Figure 5.7. It allows the user to read the value of the Stack Pointer

(SP), the Program Counter (PC) and the Processor Status Word (PSW). In the Reset

state, the PC equals 0x2080, and the SP is at 0x100. Under normal program execution,

valid ranges for the PC are:

For Event Detectors : 0x2085 < PC < 0x2600.

For T.S.-Decomposers: 0x2085 PC < 0x2600.

For Collaters: 0x2085 < PC < 0x2300.

The SP may have a value between 0x100 and 0x140 during normal code execution. The

lower byte of the PSW is the content of the INTMASK register, the upper byte contains

various flags (e.g. the "overflow" flag). The expected value of INTMASK can be compared
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Figure 5.7: Special Function Register Submenu

to the lower byte of PSW to determine if the processor is in normal execution state.

Options 7 and 8 issue a software reset command to the slave processor. In general,

option 8 should be used to reset processors, as the processor is also user-mapped i.e. is

ready to accept program code from the PC or execute code already in memory (see 5.2.1).

These are the menu options within the Slave Communication Menu. Most of the Com-

munication between the PC and the slaves is carried out through them. Other ECM main

menu options give additional features to control slave modules. Main menu option 2 was

used during the design of the software interface as a diagnostic tool, and is of no major use

at present. Option 3, which selects a slave processor for communication, has been discussed

earlier. Option 6 leads to the submenu shown in Figure 5.4. Here the mode of operation of

all slave processors may be set using options 1 and 2, as discussed in Section 5.2.7. Option

3 in this submenu allows all processors to be simultaneously reset and is preferrable to a

hard reset of the system. Because it toggles the RESET input pin of each slave 80C196

processor directly, as opposed to issuing a software RESET instruction, it is a more powerful

option than software reset.
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5.2.9 Collater Communication

We have discussed main menu options 1 through 6, and option 8. These options allow

us to interface with the master board as well as configure the slave processors to perform

transient event detection. Main menu item 7 allows us to upload the results of transient

search from the collater processors. When Option 7 is selected, ECM asks the user if collater

initialization needs to be performed. Since ECM does not automatically know which of the

slaves is functioning as a collater and what loads it is looking at, this initialization must

be performed whenever ECM is invoked. The user does not need to key in the collater

IDs or the loads whose identification is reported to each collater. ECM looks at a file

"loadname.txt" to determine all that by itself. The file "loadname.txt" for the 16 processor

MLM prototype (see Chapter 6) developed for this thesis is listed below:

:end

:end

:end

:end

:end

RAPID

MOTOR

COMP

INSTANT

LIGHT

:end

:end

BIGMTR

:end

:end

:end

:end

:end

:end

:end
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:end

:end

There are 16 ":end" statements in the file corresponding to the 16 slave processors. If a

slave is a collater, the names of its loads are entered before its :end" statement. Thus, in

the file above, processors 5 and 7 (remember that the first processor has ID number 0), are

designated collaters. Processor 5 is responsible for five loads, while 7 has one load, BIGMTR

assigned to it. To de-activate a collater using the loadname.txt file, simply remove all the

load names associated with that processor in the file. For instance, if the BIGMTR entry is

removed from the file, ECM will not consider processor 7 a collater anymore and will not

poll it for results.

ECM uses a double array called "packet[ ][ ]" to store the initialization information.

The first dimension corresponds to the collater and the second dimension to the loads per

collater. To continue with our sample "loadname.txt" file, processor 5 is designated the

first collater and "INSTANT" is the 4th load assigned to it. Hence array entry packet[0][3]

contains information on this load. Similarly packet[ll][0] is the entry associated with load

0, "BIG MTR", on collater 1 (processor 7). Each entry of the array is actually a structure

that houses the associated load name as well as all identification information retrieved from

the collater when load activity is reported. The structure is as follows:

struct load_hit(

unsigned char ldhit; /* load identified */

char name[10]; /* name of load */

unsigned char loadid; /* load id */

unsigned char scale; /* time scale of identification */

unsigned char hi_loc; /* offset from begin. of input block for last vs*/

unsigned char loloc; /* offset from begin. of input block for last vs*/

unsigned char hitime; /* time of event */

unsigned char lo-time; /* time of event */

unsigned int curtime; /* current acquisition no (time) */

}
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Note that the structure parallels the structure in the collater program code that holds

the load identification packet.

Once collater initialization is performed, ECM may be placed in "Collater Communica-

tion Mode" in which the system waits for a load to be identified. It polls the designated

collaters on a round-robin basis. The user can break out of this mode by pressing any key.

If the PC sees that a load has been identified, it uploads the identification packet from the

collater and places it in the correct entry of array "packet[ ][ ]". It resets the "hit flag" of

the collater (so that the same identification is not reported more than once) and reports the

event to the user. Next, it retrieves the last 12 seconds of data from the master board and

displays it graphically just as main menu option 8 does (see Figure 5.2). The MLM Console

displays the load(s) identified, the time scale, and the identification "time" (whose units

are the number of input data blocks sent to the slaves by the master board). ECM also

updates a file "history.txt" with the information displayed in the MLM Console. To reset

this recording of load detections, simply erase history.txt. ECM will open a new history.txt

file and start afresh. A portion of a sample history.txt is listed here:

***************

Load: 'INSTANT'

Time: 365

Scale: 1

Load: 'RAPID'

Time: 424

Scale: 1

***************

Load: 'LIGHT'

Time: 457

Scale: 1
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Load: 'RAPID'

Time: 1375

Scale: 1

Load: 'MOTOR'

Time: 1375

Scale: 1

5.2.10 Automatic Initialization of Slave Processors

Downloading code and templates into 16 processors and starting them up manually is not

an enviable task. ECM gives the option of automatically performing all initializations in

Selection 9 of the main menu. When this option is invoked, all processors are reset and each

processor is selected for initialization in turn: program code is placed according to directions

in file "procfile.txt"; templates are loaded according to the information in "proctemp.txt".

Procfile.txt is a sequential listing of the ".HEX" files that are to be placed in processors

0,1,2,... in that order. A sample procfile.txt for initializing 16 processors is given below:

pOelp.hex

plelq.hex
p2_e13a.hex

p3_e13.hex

p4.elp.hex

p5_clp.hex

p6_elq.hex

p7_c2q.hex

pSdlp.hex
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p9_diq.hex

plOe2p.hex

plle2q.hex

p7_c2q.hex

p7_c2q.hex

p7_c2q.hex

p7_c2q.hex

Note the nomenclature of the files containing the program code. For instance, "pO_e lp"

signifies that this file has program code for Processor 0 (pO), which performs event detection

on time scale 1 (el) on data stream P (p). Similarly "p7_c2q" states that the file contains

code for processor 7 (p7), which is a collater on time scale 2 (c2), whose input stream is

Q (q). And "p8_dlp" is the name for the file containing code for processor 8, performing

tree-structured decomposition on scale 1, on stream P. There are occasional exceptions to

the pattern such as "p2_e13a.hex", where the extra "a" at the end denotes "asymmetrical

code" i.e. this file does not contain the usual event detector code to be found in other event

detector (".._e..") files.

The "proctemp.txt" file contains a sequential listing of all templates in each processor.

A portion of a proctemp.txt file is included here for illustration:

rpl.tmp

rp2.tmp

mpl .tmp

mp2. tmp

mp2. tmp

cpl.tmp

mp2. tmp

ipi. tmp

ip2. tmp

:end

rql.tmp

mql. .tmp

mq2.tmp
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: end

r31 .tmp

mq2. tmp

mq2. tmp

i3 .tmp

:end

c31.tmp

c31 otmp

:end

The ":end" statements seperate the template file names for different processors. In the

above sample, processor 0 is initialized with 9 templates, processor 1 has three templates,

processor 2 has four templates and so on. For each processor, the templates are placed in

memory in the order that they are listed in "proctemp.txt", starting at location 0x3600 and

stored at intervals of Ox200 (i.e. 0x3600, 0x3800, Ox3aOO,...), as described in Section 5.1.
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Chapter 6

Prototype Construction and

Results

In this chapter we present the two prototype Multiprocessing Load Monitors constructed

for this thesis. The development cycle is recapitulated, the configuration of each prototype

is explained and a detailed discussion is made of the results collected.

6.1 Development Cycle for the MLM

Before describing the configuration of the two prototype Multiprocessing Load Monitor

built as part of this thesis, a summary of their development is given. After developing

the abstract MLM model, the first step was choosing a versatile yet inexpensive processor.

Having decided on the 80C196KC microcontroller, a protoype of the slave module was

made on a breadboard. At the same time the master board was also prototyped on a

breadboard. Individual functionality and communication between the boards were tested

and the designs were finalized. Logic level schematics were drawn in PADS to capture

the design details. These were used to lay out the actual printed circuit boards (PCBs)

and the layouts were sent for manufacturing. Software development was also begun at this

point. The manufactured boards were populated with components and tested. The Host

PC Interface's development was also undertaken. The code for the processors was tested

out on the hardware. Once the software and hardware were verified to work correctly,

the slave boards were configured to form the prototypes. The PC Interface was finalized

and the protoypes were tested thoroughly on actual loads. The slave processor code, the
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Module Function Time Scale Input Stream Input Source
MO Pattern Search 1 P Master Board
Ml Pattern Search 1 Q Master Board
M2 Pattern Search 1 3P Master Board
M3 Pattern Search 1 P Master Board
M4 Decomposition 1 P Master Board
M5 Collation 2 P Master Board
M6 Collation 1 P Master Board
M7 Pattern Search 2 P Slave M4

Table 6.1: Slave Module Configuration in the MLM-8S

PAL code, and the ECM code were fine-tuned during this experimentation. Results of load

identification with the multiscale transient event detection algorithm implemented on the

MLM prototypes were collected. The results of this effort are described in the next four

sections, and Appendix I presents a pictorial genesis of the MLM prototypes to go along

with the discussion here.

6.2 Prototype I: MLM-8S

The two prototypes constructed differ only in the number of slave modules present. The

smaller prototype, known as the MLM-8S, consists of a master board and two slave boards

(8 slave processors). The three boards are stacked in a rack-mount chassis and powered by

two power supplies. The assembly goes into a cabinet that also holds the Host PC.

Slave board 1 houses slave modules MO through M3. These all perform transient de-

tection on the original time scale on data streams P, Q and 3P. The second slave board

houses M4 which performs tree-structured decomposition, M7 which is an event detector

on the new time scale, and M5 and M6, the collaters for the two time scales. A summary of

the slave modules' function and interconnection details are given in Tables 6.1 and 6.2. In

addition to the HSI/O interconnections, each collater's RXD line is connected to the TXD

lines of the last processors of the load chains listed below:
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First Module HSIO Line Second Module HSIO Line

MO HSIO 0 M1 HSIO 0
MO HSIO 1 M1 HSIO 1
MO HSIO 2 M3 HSIO 0
M1 HSIO 2 M2 HSIO 2
M1 HSIO 3 M2 HSIO 3
M2 HSIO 0 M6 HSIO 0
M2 HSIO 1 M6 HSIO 1
M3 HSIO 2 M6 HSIO 2
M3 HSIO 3 M6 HSIO 3
M7 HSIO 0 M5 HSIO 0
M7 HSIO 1 M5 HSIO 1
M4 HSIO 3 M5 HSIO 3

Table 6.2: Slave-Slave Interconnections for MLM-8S

M2 (TXD) => M6 (RXD)

M3 (TXD) => M6 (RXD)

M7 (TXD) => M5 (RXD)

M4 (TXD) => M5 (RXD)

MLM-8S monitored three of the six loads available for testing. Details of the test stand

and the loads monitored are given in Section 6.4. The load chains implemented in the

MLM-8S are listed below, with the collater for each chain shown at the end, in square

brackets:

MOTOR: MO(P)-+ M1(Q)-+ M2(3P) [-+ M6]

INSTANT START LAMPS: MO(P)-4 M1(Q)-+ M2(3P) [-+ M6]

INCANDESCENT LIGHT BULBS: M3(P) [-+ M6]

The slave modules also make available to the user the following load chains, presently

unused:

M3(P) [-÷ M6]

M7(P) [-+ M5]

M7(P) [-4 M5]

M7(P) [ M5]

M4(P) [-4 M5]
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Module Function Time Scale Input Stream Input Source
MO Pattern Search 1 P Master Board
M1 Pattern Search 1 Q Master Board
M2 Pattern Search 1 3P Master Board
M3 Pattern Search 1 3P Master Board
M4 Pattern Search 1 P Master Board
M5 Collation 1 P Master Board
M6 Pattern Search 1 P Master Board
M7 Collation 2 3P Master Board
M8 Decomposition 1 P Master Board
M9 Decomposition 1 Q Master Board

M10 Pattern Search 2 P Slave M8
M11 Pattern Search 2 Q Slave M9
M12 Pattern Search 1 P Master Board
M13 Pattern Search 1 Q Master Board
M14 Pattern Search 1 3P Master Board
M15 Collation 1 3P Master Board

Table 6.3: Slave Module Configuration in the MLM-16S

6.3 Prototype II: MLM-16S

The second prototype constructed, the larger of the two, is known as the MLM-16S. It

consists of a master board and four slave boards giving a total of 16 slave processors. The

five boards are stacked in two rack-mount chasses which, together with the power supplies,

go into the cabinet that holds a host PC.

Slave board 1 houses slave modules MO through M3. These all perform transient de-

tection on the original time scale on P, Q and 3P. The second slave board houses M4 and

M6, which are also event detectors, and M5 and M7, the wide collaters for the two time

scales currently implemented in MLM-16S. Slave board 3 holds slave modules M8 and M9,

performing tree-structured decomposition on P and Q respectively. M10 and M11 are the

event detectors on the coarse scale which receive data, downsampled by 4, from M8 and

M9. The fourth slave board consists of slave modules M12 through M15. Modules M12,

M13, and M14 perform transient detection on the fine time scale on P, Q and 3P. M15 is

a normal collater that takes event detection results from M12..14. A summary of the slave

modules' function and interconnection details is given in Tables 6.3 and 6.4.

In addition to the HSIO interconnections each collater's RXD line is connected to the
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First Module HSIO Line Second Module HSIO/Portl Line
MO HSIO 0 M1 HSIO 0
MO HSIO 1 M1 HSIO 1

MO HSIO 2 M3 HSIO 2
MO HSIO 3 M2 HSIO 3
M1 HSIO 2 M2 HSIO 2
M2 HSIO 0 M5 HSIO 0
M2 HSIO 1 M5 HSIO 3
M3 HSIO 0 M5 HSIO 2
M4 HSIO 0 M6 HSIO 0
M4 HSIO 1 M6 HSIO 1
M6 HSIO 2 M5 HSIO 1
M6 HSIO 3 M5 P1.0/1.1
M4 HSIO 2 M5 P1.2/1.3

M10 HSIO 0 M11 HSIO 0
M10 HSIO 1 M11 HSIO 1
M10 HSIO 2 M7 HSIO 2
M11 HSIO 2 M7 HSIO 0
M11 HSIO 3 M7 HSIO 1
M12 HSIO 0 M13 HSIO 0
M12 HSIO 1 M13 HSIO 1
M12 HSIO 2 M14 HSIO 0
M12 HSIO 3 M15 HSIO 0
M13 HSIO 2 M15 HSIO 1
M13 HSIO 3 M14 HSIO 1
M14 HSIO 2 M15 HSIO 2
M14 HSIO 3 M15 HSIO 3

Table 6.4: Slave-Slave Interconnections for MLM-16S

TXD lines of the last processors of the load chains listed below:

M2 (TXD) => M5 (RXD)

M3 (TXD) => M5 (RXD)

M6 (TXD) => M5 (RXD)

M4 (TXD) => M5 (RXD)

M9 (TXD) => M7 (RXD)

Mll (TXD) => M7 (RXD)

M14 (TXD) => M15 (RXD)

M13 (TXD) => M15 (RXD)

M12 (TXD) => M15 (RXD)
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MLM-16S monitored all six loads available for testing. Details of the test stand and the

loads monitored are given in Section 6.4. Load chains implemented in the MLM-16S are

listed below, with the collater for each chain shown at the end, in square brackets:

INSTANT START LAMPS: MO(P)-+ M2(3P) [ M5]

RAPID START LAMPS: MO(P)- M1(Q)-+ M2(3P) [-+ M5]

COMPUTER: MO(P)- M3(3P) [- M5]

SMALL MOTOR: M4(P)-+ M6(Q) [-+ M5]

INCANDESCENT LIGHT BULBS: M4(P) [-+ M5]

BIG MOTOR: M10O(P)-+ M11(Q) [-+ M7]

Additional loads may be identified. Board 4 was in fact not used as there were not

enough loads to utilize the processors on it. MLM-16S provides the following load chains

on boards 1, 2, and 3, as yet unused:

MO (P)- M1 (Q) [- M5]

M3 (3P) [-+ M5]

M4 (P)-+ M6 (Q) [-+ M5]

M10 (P) [-+ M7]

M10 (P)-+ M11 (Q) [-+ M7]

Board 4 is configured to allow the use of the following load chains:

M12 (P)-+ M13 (Q)-+ M14 (3P) [-+ M15]

M12 (P)-+ M13 (Q) [-+ M15]

M12 (P)-+ M14 (3P) [- M15]

M12 (P) [ M15]
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Figure 6.1: Prototype Test Facility

6.4 Results

The test stand used for experimentation was originally constructed as the prototype

testing facility used in [1]. A block diagram of the stand is shown in Figure 6.1. It consists

of the components of the platform for event detection, a collection of test loads (four of

which are included in the figure), and an electronically switched circuit braker panel which

provided the electrical hookup to the loads. The monitoring platform consisted of the

prototype MLM, the analog preprocessor and the host PC. A three phase electrical service

powered the loads, which were chosen as representative of important load classes in medium

to large size commercial and industrial buildings. In our experiments, the voltage and

current waveforms of only one phase of the electrical service were monitored. The circuit

breaker panel can support a total of eight devices: six single phase loads whose activities

were monitored, and two three phase loads not included in our experiments. A dedicated

computer controls the operation of each load connected to the circuit breaker panel through

a collection of relays. This PC runs software that can turn the loads on and off in any

sequence. It also allows the relative timing of the turn-on and turn-off events to be specified

by the user. Hence, it can be programmed to start-up the loads to simulate a variety of

possible end-use scenarios. It can ensure that turn-on events for different loads overlap -

a feature used frequently in our experimentations.
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The MLM monitors the electrical service entry of this "mock" building. It identifies

the turn-on time and type of the loads activated. The MLM has, of course, no a priori

knowledge of the operating schedule for the test loads. Experiments with this test facility

are easily verified since the loads are activated under computer control. Moreover, these

experiments are reasonably representative of the conditions that may be found on part of

the wiring harness of an actual building [1].

We review here the results of using the MLM prototypes to monitor load activity. As

mentioned above, a total of six loads were used in our experimentation. Results of 18

experiments are included here [the results given here are not "hand picked" or representative

of specially tuned tests]. They range from a single load turning on to three or four devices

turning on all at once. The following six loads' activities were monitored:

1. 1/4 Hp Induction Motor

2. Bank of Rapid Start Fluorescent Lamps

3. Bank of Instant Start Fluorescent Lamps

4. Incandescent Light Bulbs

5. Computer

6. 1/3 Hp Induction Motor

MLM-8S was used to monitor loads 1, 2, and 3 while MLM-16S performed event detection

for transients of all six loads. Results of detecting single load activity are given first. The

two prototypes (in particular MLM-16S) were also tested with simultaneous multiple load

start-ups, and these experiments are discussed next.

The results are displayed in Figures 6.2 through 6.19. These figures are the screen dumps

of the plots of transient sections displayed by ECM (see Section 5.2). Recall from Chapter

5 that once the MLM is armed and the PC is in collater communication mode, it waits

for a load turn-on event, and its subsequent identification, to occur. When this happens,

identification data is uploaded from the collaters. During this result retrieval, the other

slave processors go on acquiring and analyzing input data, so that the MLM never stops

monitoring load activity. Several seconds of recently acquired data is also retrieved from

the master board and displayed graphically. The displays show four plots consisting of the
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envelopes of real power (P) in Watts, reactive power (Q) in VAr, and in-phase second (2P)

and third (3P) harmonic contents of current. Loads identified as turning on are shown in the

MLM Console Window along with the time of the event (see Section 5.2.9). As mentioned

in Chapter 5, event detection was carried out on two time scales: Time scale 1 denotes

the original (fine) scale and time scale 2 stands for the scale derived by downsampling the

original data by 4 (the coarse scale). The scale (1 or 2) on which the load was detected is

also reported. The following shorthand names were used to denote the loads monitored:

MOTOR = Small (1/4 Hp) Induction Motor

RAPID = Rapid Start Fluorescent Lamp Bank

INSTANT = Instant Start Fluorescent Lamp Bank

LIGHT = Incandescent Light Bulbs

COMP = Computer

BIG_MTR = Big (1/3 Hp) Induction Motor

Figures 6.2...6.7 show the results of the MLM's detection of solitary loads turning on.

The graphs show the turn-on transients in the four streams for each event. The loads are

seen as correctly identified. Figures 6.2 thorough 6.6 show the activity of loads detected

on time scale 1. Figure 6.7 shows the captured turn-on transient for Big Motor. Note

that the identification is made on time scale 2. The transient shapes shown in the first six

figures should be studied and remembered. The v-sections chosen to represent each load

are outlined in Appendix H. The v-sections for all loads on the original time scale were

collected, in general, by walking through the transients and picking the edges that were

seen as most repeatable. The templates for the big motor were not collected from raw

input data. Instead, the small motor's v-sections were scaled in time and amplitude, and

used for event detection on the coarse scale. The ease of template collection makes the

performance of the MLM prototypes as load monitors, that much more remarkable.
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The transient shapes in Figures 6.2...6.7 should be studied carefully. This will help in

examining the experiments with overlapping transients described below.

Figures 6.8 through 6.19 show the responses of the MLM when multiple loads were

activated at about the same time. The transients overlap considerably, but the v-sections

are distinct, and so the events are correctly identified. Table 6.5 gives a listing of these

overlapping events as well as the delays used (in the software routines on the PC controlling

the circuit breaker) to generate the sequence of load turn-ons in each case. For instance,

entry 2 in Table 6.5 states that Figure 6.9 shows the result of turning on first the Rapid

Start Lamps and, after a delay factor of 1550, the Small Motor. The term delay is a unitless

count used to denote the software delay provided between consecutive load activations. See

Appendix H for sample software routines used to activate multiple loads.

Refer to Figures 6.8 and 6.9 which show the small motor and instant start lamps being

activated. In Figure 6.8, the motor is turned on first and, after a delay, the instant start

lamps are started up. The v-sections do not overlap - indeed the entire main transients of

the two loads do not overlap- so that load identification is easily achieved. Contrast this

with the case in Figure 6.9, where the instant start lamps are started immediately after

motor is turned on. The transients overlap completely. In fact, the main transients for the

instant start lamps in P and Q occur plumb on top of the transients for motor. However the

v-sections for the instant start lamps occur in quasistatic regions of the motor transients.

Hence, all v-sections are recoverable, and the activity is correctly tracked.

Figures 6.10 through 6.12 show further instances of two loads turning on together and

being detected on time scale 1. Figures 6.13 through 6.16 show experiments where three

devices were turned on and identified on the fine time scale. In Figure 6.14, for instance,

the rapid start lamps are turned on, followed by the instant start lamps and then the small

motor. The transients in P, for example, for the instant start lamps and small motor occur

in quasistatic sections of the transient for the rapid start lamps. While all three transients

overlap completely, the v-sections are identified and the events are reported.

Figure 6.17 gives a good example of multiscale event detection, with the small motor

correctly identified on time scale 1 and the big motor on scale 2. The big motor is turned

on first, followed closely by the small motor. Note the complete overlap of transients in

both P and Q. The v-sections are still recoverable and the load activity is thus detected

correctly.
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Figure Loads Started (in order) Delay 1 Delay 2 Delay 3

6.8 S. Motor, Instant 9500
6.9 S. Motor, Instant 1550 - -

6.10 S. Motor, Light 1700 - -

6.11 Rapid, S. Motor 12000 - -

6.12 Rapid, Instant 13000 - -
6.13 Rapid, S. Motor, Instant 12000 1550 -
6.14 Rapid, Instant, S. Motor 1550 10500 -
6.15 S. Motor, Light, Instant 1700 9000 -
6.16 Computer, S. Motor, Instant 10000 1550 -
6.17 B. Motor, S. Motor 7000 - -
6.18 B. Motor, Rapid, S. Motor, Instant 30000 12000 1550
6.19 B. Motor, S. Motor, Rapid, Instant 7000 25000 1550

Table 6.5: Multiple Load Turn-on Delays

Finally, Figures 6.18 and 6.19 show four loads turning on: The transients overlap and

event detection is carried out on two time scales. In Figure 6.18, the big motor turns

on first, followed by the rapid start lamps, the small motor, and the instant start lamps.

The transients of the latter three completely overlap, but all four loads are still correctly

identified. In Figure 6.19, the small motor follows the start up of the big motor and the

transients for the two overlap. This pair of transients is followed by the transients for

the rapid start lamps and the instant start lamps, with the instant start lamps' transient

occuring in the middle of the rapid start lamps' transient. All four loads are identified and

the event records are shown in the MLM Console.
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Figure 6.15: MLMscope Report: Small Motor, Light, Instant
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Figure 6.18: MLMscope Report: Big Motor, Rapid, Small Motor, Instant
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6.5 Summary

Both MLM prototypes were consistently able to recognize the turn-on transients of the

test loads and were not deceived into reporting false activity, unless of course the v-sections

overlapped intractably. The versatility of the MLM was such that even seemingly intractable

overlaps were processed correctly.

This performance is even more impressive considering the fact that relatively little effort

was spent in collecting the v-sections and training the MLM on the loads (e.g. by adjusting

error thresholds). The templates for all loads on the original time scale were collected by

walking through the transients and picking the edges that were seen as most repeatable.

The templates for the big motor were not, in fact, collected from raw data. Instead, the

v-sections for the small motor were simply scaled in time and amplitude, and used by the

slaves performing event detection on the coarse scale to identify the activity of the big

motor. The fact that the MLM was still able to consistently identify the big motor gives

credence to the idea of representing a class of loads by a single transient shape scaled in time

and amplitude - a notion which can be fully utilized in multiscale transient event detection.

The loads tested showed much variation in the repeatability of their transients. Some,

like the small motor, produced nearly identical transients time after time. Others showed

annoying variations in their transient behavior. However, even with potentially troublesome

loads such as the instant start lamps, the MLM did not falter. In the TED implementation

in [1], the instant start lamps were a major problem to track, as the v-section in P is not

reliable. Even after averaging several runs, a very dependable v-section was not achieved,

so that the error threshold for identification in P had to be set high for this load. This could

lead to false reports of load activity. With the MLM, however, the problem is solved by

considering v-sections in several streams. Thus, in the case of the instant start lamps, the

repeatable behavior in the 3rd harmonic saves the day. The instant start lamps are always

identified and false hits are avoided as v-sections in both P and 3P must be found for an

identification to be proclaimed.
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Chapter 7

Conclusion

Summary of Results

We begin our recapitulation of the work done in this thesis by stating the premise of the

research. Conventional nonintrusive load monitoring has relied on steady state behavior of

loads. The research done in [1] pointed the way to a more versatile approach to determining

the operating schedule of loads of interests, by considering their transient behavior. The

multiscale event detector proposed in [1] advances the capabilities of the common NILM

by using vector space techniques to identify transient sections. The goal of this research

was to exploit the parallelism in the transient event detection (TED) algorithm and, hav-

ing come up with a parallel approach to event detection, to implement the algorithm on

a multiprocessing platform. By using an array of inexpensive processors interconnected in

an intelligent manner, we could construct a potentially powerful and economically feasi-

ble platform for nonintrusive load monitoring. At the same time, fringe benefits such as

power quality monitoring and future applications to diagnostic load evaluations could be

developed. This was the discussion presented in Chapter 1.

Next, we developed a parallel version of the TED algorithm. In the context of the

parallelized algorithm and complexity issues, an abstract model of the MLM was presented

in Chapter 2.

In Chapters 3 and 4, functionality and design methodology of the main subsystems of

the MLM, the Master Board and the Slave Modules are detailed. Their function and

top-level design are described and supplemented with details of the actual implementation.

Chapter 5 rounds off our report on the design and implementation of the MLM with a
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discussion of the system software. The code written for the computational units is described

first, followed by the functions and software implementation of the Host PC User Interface.

Two prototypes were constructed for this thesis, one with 8 slave modules (MLM-8S) and

the other with 16 processors (MLM-16S). Their final configuration is presented in Chapter

6. Results obtained during testing with real loads, and the performance achieved, are stated

and evaluated.

The results obtained from the prototypes were extremely encouraging: the performance

of the MLM was consistent and reliable. The versatility of the concept and the design

was shown by correct load identification despite overlapping transients. The MLM verifies

transient event detection as a valuable and reliable tool in load monitoring. The use of the

inexpensive 80C196 microcontroller to achieve results comparable with, if not surpassing,

the performance of an expensive DSP environment in executing the sequential algorithm

consolidates the potency of a parallel implementation. The ease of scalability was demon-

strated by the fact that construction of the bigger prototype required the simple process

of beginning with one master and one slave board and adding on slave modules till the

computational capacity needed was achieved. Thus, the performance of the MLM will al-

ways be expandable for more challenging load environments, by simply adding processors

to identify more v-sections in various streams over several time scales. Such an expansion

is not possible with a fixed sequential design.

The ratio of monitored loads per processors used was found to be quite reasonable.

MLM-16S for instance has the capability of identifying between 14 to 18 loads with v-

sections spanning four input streams and two time scales, giving a load per processor ratio

of about 1.0. Note that the MLM-16S is in semi-custom configuration; i.e., while the loads

to be identified were known, their exact characteristics (e.g., size and number of v-sections

etc.) were not determined at the time of configuration. If the configuration had been

customized for the number and types of v-sections after these had been studied, this ratio

would have certainly increased. Moreover, if a v-section search is conducted on one time

scale so that the cost of time-scaling each stream and collating seperately on each time

scale is eliminated, the load/processor ratio can be increased further. This is good news

if we need to monitor a group of loads on the same transient time base. With the future

work that may be done on this platform, and with the availablity of cheaper, more versatile

processors, (as discussed in the next section), this ratio could be significantly increased.
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Power quality monitoring is also possible using the MLM built in this thesis. At present

the MLM acquires and makes available to the user the 2nd, 3rd, and 5th harmonics of

current. Together with the load identifcation capability of the MLM, this information would

make it possible to easily track down power quality offenders even in a busy commercial

environment.

Directions for Future Work

The MLM's performance underscores the versatility and power of conducting multiscale

transient event detection using an application-specific multiprocessing computer. Never-

theless, there remain several areas in design and implementation that require future work

before a commercially feasible nonintrusive load monitor is produced.

One process that needs refinement is the manual collection of v-section templates. As

the number of loads to be monitored increases or as the number of v-sections required per

load is increased, extracting templates manually, even with advanced MATLAB features at

one's disposal, is going to be a daunting task. Automating template collection would be a

much-needed improvement in the MLM user interface. First of all, this would require the

automation of the process by which ECM fetches data from the master board following load

activity. Next, signal processing would be performed on the data, probably in MATLAB, or

an equivalent application, to isolate v-sections. Once v-sections are identified, they would

be placed in seperate files in the proper format. Finally, the data would be ac-coupled by

using either a DOS batch file to invoke ECM to perform this task, or writing out seperate

code for the process.

As mentioned in Chapter 2, there is considerable research to be done in coming up with

the optimal configuration of the MLM. Multiscale transient event detection is accomplished

on the MLM by distributing the v-section pattern search, tree-structured decomposition,

and collation, over several computational units. In addition, the v-sections associated with

the loads must be assigned specific computational units. An important direction for future

work would be to analytically determine the optimal distribution of these various functions

and load transient assignments over the computational units. The MLM is designed in

fact, to provide an experimental platform to test theories of optimal implementation of the

multiscale event detector algorithm in a parallel processing environment.
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The next step towards an economically viable load monitor would be to streamline the

design of the MLM for cost. Several immediate steps can be taken: the boards may be

implemented on 4-6 layer PCBs instead of the 2-layer boards in the current version; the

on-chip ROM version of the 80C196 could be used; surface mount technology could be

used to reduce PCB real estate cost, as well as the overall bulk of the load monitor; a

smaller, cheaper external UART could be incorporated in the slave modules in place of the

I82510. More involved options include moving to a new architecture that offers the same

computational prowess for lower cost.

Increasing the performance of the MLM as seperate from optimizing for cost, would

be another interesting avenue for future work. One important starting point is to remove

the bottle-neck created by the limited HSI/O lines available for load chaining. Potentially,

v-sections belonging to more than four loads may be handled by a processor. However, the

number of chains passing through an intermediate processor or an end processor is restricted

to two. The slave that is the first processor for all its associated load chains has a limit of

four chains imposed on it. At present, no serial communication occurs between processors

on a chain. This stifles the flexibility of load assignment; in particular this implies that all

v-sections on a time scale for a load, on one data-stream, must reside in a single processor.

Till now these limitations have not proven problematic. However, as the challenges in load

monitoring increase and as the basic computational unit used becomes more efficient, these

design issues would need to be dealt with.

The MLM is a potentially valuable platform for nonintrusive diagnostic evaluations of

industrial loads. The MLM allows raw data to be shipped - in bulk - directly to the

host PC, while reporting all events detected. This wealth of data could be harnessed by

the proper techniques and algorithms, to perform pre-emptive diagnosis. Results reported

in [26] and [27] show how multirate estimators can be used to determine the state space

parameters for induction motors using only measurements made at the electrical terminals.

It is conceivable that similar techniques could be developed for other types of rotating

electric machinery, and for other loads. By tracking trends in parameters over a period

of time, it may be possible to say something about the "health" of the monitored loads.

The capability to foretell the need for maintenance would make the MLM invaluable in an

industrial or commercial environment.

The work of this thesis is a major step towards the construction of a powerful and
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economically viable nonintrusive load monitor for commercial and industrial environments.
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Appendix A

Master Board Schematics and

Layouts

The following schematics and plots are included in this appendix:

* Figure A.1: Master Board Schematic 1.

* Figure A.2: Master Board Schematic 2.

* Figure A.3: Master Board Schematic 3.

* Figure A.4: Master Board Schematic 4.

* Figure A.5: Master Board Schematic 5.

* Figure A.6: PCB Component Layout for Master Board.

* Figure A.7: PCB Component and Solder Side for Master Board.
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Figure A.5: Master Board Schematic 5
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Figure A.7: Master Board: PCB Component and Solder Sides
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Appendix B

Slave Board Schematics and

Layouts

The following schematics and plots are included in this appendix:

* Figure B.1: Slave Board Schematic 1.

* Figure B.2: Slave Board Schematic 2.

* Figure B.3: Slave Board Schematic 3.

* Figure B.4: Slave Board Schematic 4.

* Figure B.5: Slave Board Schematic 5.

* Figure B.6: PCB Component Layout for Slave Board.

* Figure B.7: PCB Component and Solder Sides for Slave Board.
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Figure B.I: Slave Board Schematic 1
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Figure B.5: Slave Board Schematic 5
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Figure B.7: Slave Board: PCB Component and Solder Sides
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Appendix C

PAL Code

This appendix includes the code for all the PALs used for control in the MLM. Pinouts are

listed within the files. The functional details of the PALs are discussed in Chapters 3 and

4. We begin with the PALs in the master board.

C.1 Master Board PALs

All microcontrol on the master board is the responsibility of FSMs implemented on PALs -

no microprocessor is present on-board. The following PALs are used and their source code

is given below, in the order of the listing.

* PALAD

* PALTR1

C PALTR2

· CLKGEN

· PALPC1

* PALPC2
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Name palad2;

Partno NA;

Date 7/2/94;

Revision 2;

Designer Umair Khan;

Company LEES;

Assembly NILM Front End (Analog Interface);

Location Writes A/D conversion result into SRAM;

/ ****************************************************************** 10o

/* /1

/, I
/* ,/

/ ******************************************************************/

/* Allowable Target Device 7ypes: GAL22V10 */

/ ****************************** ***********************************

/** Inputs **/

Pin 1 = clk ; /* */ 20

Pin 2 = lint ; /* */

Pin 3 = pal_tr_busy ; /* */

Pin 4 = adcnt_lsb /* */

Pin 5 = adcnt2ndlsb; /* */

Pin 6 = adcnt_3rdlsb; /* */

Pin 7 = !int2 /* */

Pin 13 = !reset /* */

/** Outputs **/

30

Pin [14..17] = [s3..0] ; * */

Pin 18 = paladbusy ; /* */

Pin 19 = !clk_ad_cnt ; /* */

Pin 20 = !en245ad_hi; /* */

Pin 21 = !en245ad_lo; /* */
Pin 22 = !we ; /* */

Pin 23 = !ad_cs_rd ; /* */
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/ ** Declarations and Intermediate Variable Definitions **/

field state = [s3..0];

/** Logic Equations **/

sequenced state 

present ' d' 0

if int next 'd'15 out pal_ad_busy;

default next 'd'0;

present ' d' 1

if pal_tr_busy next 'd' 1 out palad_busy;

default next 'd' 2 out pal adbusy out adcsrd out en_245ad_1o;

50

present 'd' 2

next

present 'd' 3

next

present d' 4

next

present 'd' 5

next

present 'd' 6

next

present 'd' 7

next

present 'd' 8

next

present 'd' 9

'd' 3 out we out pal_adbusy out adcs_rd out en_245ad_1o;

'd'4 out we out palad busy out adcs_rd out en245ad1o;

60

'd' 5 out pal_adbusy out adcsrd out en_245ad_1o;

'd' 6 out pal_adbusy out clkad_cnt out adcs_rd out en_245ad_1o;

'd' 7 out pal_ad_busy out adcsrd;

'd'8 out palad_busy out adcsrd out en_245ad_hi;

'd'9 out we out pal_ad_busy out ad_cs_rd out en_245adhi;

70

next d'10 out we out pala,

present 'd'10

next 'd'11 out pal_ad_busy 

present ' d ' 11

next 'd' 12 out pal_adbusy 

present 'd'12

next 'd' 13 out pal_ad_busy;

dbusy out ad_cs_rd out en245adhi;

out adcs rd out en 245ad hi;

out clk_ad_cnt out ad_cs_rd out en_245ad_hi;
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present 'd'13

if !adcntlsb & !adcnt_2ndlsb & adcnt_3rdlsb next 'd'O;

default next 'd' 2 out paladbusy out adcs_rd out en_245ad_lo; 80

present ' d' 14

next 'd'0;

present 'd' 15

if int2 next ' d' 1 out pal_ad_busy;

default next d'0;

}

159



Name pal_trl;

Partno NA;

Date 7/12/93;

Revision 2;

Designer Umair Khan;

Company LEES;

Assembly NILM Front End (Analog Interface);

Location Transfers SRAM data to Slave 80C196's;

/*************************************** 10

/* */

/* */

/* */

/******************************************************************/

/* Allowable Target Device Types: GAL22VIO */

/******************************************************************/

/** Inputs **/

Pin 1 = clk ; /* */ 20

Pin 2 = trmsb ; /* */

Pin 3 = adcnt_msb ; /* */

Pin 4 = paladbusy ; /* */

Pin 5 = old_msb /* */

Pin 6 = init /* */

Pin 13 = !reset ; /* */

/** Outputs **/

30

Pin [14..19 = [s5..0 ; /* */

Pin 20 = ldold_ff ;

Pin 23 = !buffenab ;

/** Declarations and Intermediate Variable Definitions **/
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field state = [s5..0];

/** Logic Equations **/

buff_enab.d = state : ['d'3..'d'31];

sequenced state {

present 'd'O

if init next d'; 50

if adcntmsb next dl;

default next d'O ;

present 'd'

if adcntmsb next d'2;

default next 'd' ;

present 'd'2

if palad_busy next 'd'2;

if init next 'd'0;

default next 'd'3;

present 'd'3 60

next 'd'4;

present 'd'4

next Id'5;

present 'd'5

next 'd'6;

present 'd'6

next 'd'7;

present 'd'7

next 'd'8;

present 'd'8 70

next 'd'9;

present 'd'9

next 'd'10;

present 'd'10

next 'd'1i;

present 'd'11

next 'd'12;
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present 'd'12

next d'13;

present 'd'13 
80

next d'14;

present 'd'14

next d'15;

present d'15

next 'd'16;

present d'16

next 'd'17;

present 'd'17

next 'd'18;

present 'd'18 
90

next 'd'19;

present 'd'19

next d'20;

present 'd'20

next 'd'21;

present 'd'21

next 'd'22 out ld_old_ff;

present 'd'22

next 'd'23;

present 'd'23 100

next 'd'24;

present 'd'24

next 'd'25;

present 'd'25

next 'd'26;

present 'd'26

next 'd'30;

present 'd'30

if tr_msb & oldmsb next 'diO;

default next 'd'31; 110

present 'd'31

if paladbusy next 'd'32;

default next 'd'12;

present d'32

if palad_busy next d'32;

default next 'd'12;
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present 'd'27

next 'd'O;

present 'd'28 
120

next 'd'O;

present 'd'29

next 'd'O;

present 'Id33

next d'O;

present 'd'34

next 'd'O;

present 'd'35 
130

next 'd'O;

present 'd'36

next d'O;

present 'd'37

next 'd'O;

present 'd'38

next 'd'O;

present 'd'39

next 'd'O;

present 'd'40 
140

next 'd'O;

present 'd'41

next 'd'O;

present d'42

next 'd'O;

present 'd'43

next 'd'O;

present 'd'44

next d'O;

present 'd'45 
150

next 'd'O;

present 'd'46

next 'd'O;

present d'47

next d'O;
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present d'48

next d'O;

present 'd'49

next d'O;

present d'50 160

next d'O;

present 'd'51

next 'd'O;

present 'd'52

next d'O;

present 'd'53

next 'd'O;

present 'd'54

next d'O;

present 'd'55 170

next 'd'O;

present 'd'56

next 'd'O;

present 'd'57

next 'd'O;

present 'd'58

next 'd'O;

present 'd'59

next d'O;

present 'd'60 180

next 'd'O;

present 'd'61

next d'O;

present 'd'62

next 'd'O;

present 'd'63

next 'd'O;

}
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Name pal'tr2;

Partno NA;

Date 7/05/94;

Revision 2;

Designer Umair Khan;

Company LEES;

Assembly NILM Front End (Analog Interface);

Location Transfers SRAM data to Slave 80C196's;

/* */

/* */

/* */

/******************************************************************/

/* Allowable Target Device Types: GAL22V10 */

/** Inputs ***************/*************

/** Inputs **/

Pin

Pin

Pin

Pin

Pin

Pin

Pin

Pin

1

2

3

4

5

6

7

8

= clk

= s5

= s4

= s3

= s2

= si

= sO

= init

/*

/*

/*

/*

/*

/*

/*

/*

30

/** Outputs **/

Pin 14

Pin 15

/* Be careful

Pin 16

Pin 17

= !en_245_trcnt ;

= !en_245_adcnt ;

here! This is the

= paltrbusy

= !clktrcnt

*/

*/

/*

/*

way the schematics went out*/

/*
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Pin 18 = !ramoe /* */

Pin 19 = dav3 ; /* */ 40

Pin 20 = dav2 ; /* */

Pin 21 = davl ; /* */

Pin 22 = davO ; /* */

Pin 23 = int /* */

/** Declarations and Intermediate Variable Definitions **/ 50

field state = s5..0];

/** Logic Equations **/

en_245_adcnt.d = state:['d'O..2] state:'d'32;

en_245_trcnt.d = state: 'd'3..'d'31];

paltrbusy.d = state:['d'3..'d'31];

ramoe.d = state:['d'12..'d'13] # state:['d'15..'d'16] # state:['d'18..'d'19] # state:['d1..'d'22];

clktrcnt.d = state:'d'14 # state:'d'17 # state:'d'20 # state:'d'23;

davO.d = state:['d'13..'d'17];

davi.d = state:['d'16..'d'20];

dav2.d = state: ['d'19..'d'23];

dav3.d = state: 'd'22..'d'26];

int.d = state:['d'3..'d'11];
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Name clk'gen;

Partno NA;

Date 6/31/94;

Revision 2;

Designer Umair Khan;

Company LEES;

Assembly NILM Front End (Analog Interface);

Location The Sampling Rate Generator for AD7874;

/************************************/ 10

/* */

/* Allowable Tar Deice Tpes GAL**************************************

/* Allowable Target Device Types: GAL22VO */

/* Inputs **/

Pin 1 = clk ; /* */ 20

Pin 2 = !load ; /* */

Pin 3 = !reset /* */

/** Outputs **/

Pin [14..17] = [s3..0] ; /* */

Pin 18 = a0'8254 ; /* */

Pin 19 = a1'8254 ; /* */

Pin 20 = !wr'8254 /* */

Pin 21 = prom'aO ; /* */ 30

Pin 22 = prom'al ; /* */

/** Declarations and Intermediate Variable Definitions **/

field state = [s3..0];
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40

/** Logic Equations **/

sequenced state -

present ' d' 0

if reset next 'd' 13;

next 'd'1;

present 'd'l 1

next

present 'd' 2

next

present d' 3

next

present 'd' 4

next

present 'd' 5

next

present 'd' 6

next

present 'd'7

next

present 'd' 8

next

present ' d' 9

'd'2 out aO_8254 out a1_8254;

'd'3 out aO_8254 out al18254 out wr_8254;

'd'4 out aO_8254 out al8254;

'd'5 out promaO;

' d' 6 out prom_aO;

'd'7 out promaO out wr_8254;

'd'8 out promaO;

'd'9 out promal;

next 'd'10 out prom

present 'd'10

next 'd'11 out prom

present 'd'11

next 'd'12 out prom

present 'd'12

if load next 'd' 13;

if reset next 'd' 13;

default next 'd'12;

present ' d' 13

if reset next 'd' 13;

if load next 'd'13;

50

60

Lal;

Lal out wr_8254;

Lal; 70

168



default next 'd'O;

present ' d' 14

next 'd'O; 80

present d' 1.5

next dIO;

}
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Name pcla;

Partno NA;

Date 4/26/95;

Revision 2;

Designer Umair Khan;

Company LEES;

Assembly NILM Front End (Analog Interface);

Location Stores A/D conversion in SRAM and sends upon request to PC;

/ ******************* ** ******************/ 10

1* *1

/ *********************************************** ******************

/* Allowable Target Device Types: GAL22V10 */

/ ***** ******************** **** **********/

/** Inputs **/

Pin 1 = clk ; /* */ 20

Pin 2 = pc_mode ; /* */

Pin 3 = raw_fetch /* */

Pin 4 = !ram_we_in ; /* */

Pin 5 = !ad_cnt ; /* */

Pin 6 = paladbusy ; /* */

Pin 7 = pc_fetch ; /* Connected by hardware to pin 15 */

/** Outputs **/

Pin 14 = misc_ack ; /* */ 30

Pin 15 = fffetch ; /* */

Pin [16..19] = [s3..0] ; /* */

Pin 20 = !ramwe ; /* */

Pin 21 = !ram_oe ; /* */

Pin 22 = marcnt ; /* */
Pin 23 = !245_enab ; /* */
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/** Declarations and Intermediate Variable Definitions **/

40

field state = [s3..0];

busy = state:'d'14; / ** new **/

/** Logic Equations **/

245_enab.d = !pc_mode & !busy; /** new **/

ff fetch.d = raw fetch;

rantwe = ram we in & !pc_mode & !busy; / ** new **/

50

sequenced state {

present ' d ' 0

next 'd'l;

present 'd'l 1

if (pc_mode & !paladbusy) next 'd'8 out misc_ack; /* new */

if ram we in next 'd' 2;

default next 'd' 1;

60

present 'd'2 /*ramwe is still active ie it is a 2 state pulse now */

next 'd'3 out mar_cnt;

present ' d' 3

next 'd'4 out mar_cnt;

present ' d' 4

next 'd'l;

present ' d' 5

next d'O;

present ' d' 6

next d'O;

present ' d' 7

next 'd'O;
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present 'd' 8

if pc_fetch next 'd'9 out ramoe out misc_ack; 80

if !pc_mode next 'd'O;

default next 'd' 8 out misc_ack;

present 'd' 9

if !pc_mode next 'd'O;

default next 'd' 10 out ram_oe out misc_ack;

present 'd'10

if !pcmode next 'd' O;

default next 'd' 11 out ramoe out misc_ack; 90

present 'd'11

if !pc_mode next 'd'O;

if !pcfetch next 'd' 12 out misc_ack out marcnt;

default next 'd' 11 out miscack;

present ' d ' 12

if !pc_mode next 'd'O;

default next 'd'13 out misc ack out marcnt;

100

present 'd' 13

if !pc_mode next 'd'14; /** new **/

default next 'd' 8;

present ' d' 14

if !pal_ad_busy next 'd'O; / ** new */

default next 'd'14;

present 'd'15

next 'd'O; 110
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Name pc2a;

Partno NA;

Date 3/16/95;

Revision 1;

Designer Umair Khan;

Company LEES;

Assembly NILM Front End (Analog Interface);

Location Stores A/D conversion in SRAM and sends upon request to PC;

/ **************** ***************** ********/ 10
/* */

/* */

/* */

/ ************************************************ *****************

/* Allowable Target Device Types: GAL22V1O */

/ **************************************************** ***********/

/** Inputs **/

Pin 1 = clk ; /* */ 20

Pin 2 = mar cnt ; /* */

Pin [11..7] = [s_in4..0] ; /* */

/** Outputs **/

Pin 14 = ramadd0 ; /* */

Pin 15 = ram_addl ; /* */

Pin 16 = ramadd2 ; /* */

Pin 17 = !4040_clk ; /* *

Pin 18 = 4040_rst ; /* */ 30

Pin 19 = 574_clk ; /* */

Pin 20 = !574enab ; /* */

Pin 21 = marout ; /* */

Pin 22 = dav2pc ; /* */

Pin 23 = ramadd3 ; /* */

/** Declarations and Intermediate Variable Definitions **/
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field state = [ramadd3..0];

field statein = [sin3..0]; 40
reset = statein: d ' 0:

/ L* Logic Equations **/

4040_ rst.d = state_in: 'd' O;

574clk.d = state_in:'d'9;

574_enab.d = statein:'d'9..'d' 11];
da-v2pc.d = state_in:[d' 10.. 'd' 11];

sequenced state 
50

present d '

if mar cnt next d'9;

default next 'd'0;

present ' d' 9

if mar cnt next 'd'9;

default next ' d' 1;

present 'd'1 60

if marcnt next 'd'10;

if reset next 'd' 0;

default next ' d' 1;

present 'd'10

if mar cnt next 'd' 10;

default next 'd'2;

present ' 2

if mar cnt next d ' 11; 70
if reset next ' d ' O;

default next 'd'2;

present ' d' 11

if mar cnt next 'd' 11;

default next 'd'3;
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present d ' 3

if mar_cnt next d' 12;

if reset next 'd'O; 80

default next d' 3;

present ' d' 12

if mar_cnt next 'd' 12;

default next ' d' 4;

present d ' 4

if mar cnt next 'd, 13;

if reset next d' O;

default next ' d' 4; 90

present ' d' 13

if mar cnt next 'd'13;

default next ' d' 5;

present 'd' 5

if mar_cnt next 'd'14;

if reset next 'd' O;

default next 'd'5;

100

present ' d' 14

if marcnt next 'd' 14;

default next 'd'6;

present ' d' 6

if mar cnt next 'd' 15;

if reset next 'd'O;

default next 'd'6;

present 'd'15 110

if mar cnt next 'd' 15;

default next d' 7;

present ' d' 7

if mar cnt next 'd'8 out 4040_clk;

if reset next d'0;
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default next ' d' 7;

present 'd' 8

if mar cnt next 'd'8; 120

default next ' d' O;

}
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C.2 Slave Board PALs

The microcontrol in each slave module is implemented by a PAL labelled BUS_CON in the

schematics in Appendix B. The file containing code for this PAL is slave3. pld. In addition,

two PALs are used in the Glue Logic Circuitry of the slave board. The source code for these

three PALs is included here in the order of the following listing.

* BUSCON

* GLUERLY

* GLUECMP
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Name Slave3;

Partno NA;

Date 1/21/94;

Revision 2;

Designer Umair Khan;

Company LEES;

Assembly NILM Slave Processor;

Location The Euclidean filter computers;

/ ********* *****************************/ 10
/* ,/

/ */

/ ****************************************************************/

/* Allowable Target Device lolpes: GAL22VIO */

/ *****************************************************************

/** Inputs **/

Pin 1 = clk ; /* */ 20

Pin 2 = stale /* */

Pin 3 = !hlda ; /* */

Pin [4..11] = [a8..a15] /* */

Pin 13 = !reset ; /* RESPIN */

Pin 22 = !reset2 ; /* */

/** Outputs **/

Pin 14 = !cs510 ; /* */

Pin 15 = !ce_prom ; /* */ 30

Pin 16 = !ce_ram ; /* */

Pin 17 = !buswidth ; /* */

Pin 18 = state_bit_0 ; / */

Pin 19 = state_bit_l ; /* */

Pin 20 = state_bit_2 ; /* */

Pin 21 = !wait ; /* */

Pin 23 = map ; /* */
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40

/** Declarations and Intermediate Variable Definitions **[

FIELD memaddr = [a15..8];

eprom = (!map & memaddr:[2000..27ff]) # memaddr:[0..ff]

# memaddr:[1000..ldff];

uart = memaddr:[le00..leff];

wait_1 = stale & !hlda & (wait_2 # eprom); 50

wait_2 = stale & !hlda & (wait_3 # uart);

wait_3 = wait_4;

wait_4 = wait_5;

wait5 = wait_6;

wait_6 = wait_7;

wait_7 = 'b 0;

FIELD statecount = [state bitO ..2];

$DEFINE async_start ' b' 000

$DEFINE hold_2 'b' 001 60

$DEFINE hold 3 'b'011

$DEFINE hold_4 'b111

$DEFINE hold 5 'b'110

$DEFINE hold_6 'b' 100

$DEFINE hold 7 'b'101

$DEFINE removehold ' b' 010

/* Wait-State Machine */

SEQUENCE state_count 70

{

PRESENT asyncstart

IF wait_1 OUT wait;

IF wait1 & !wait_2 NEXT removehold;

IF wait_2 NEXT hold_2;

DEFAULT NEXT asyncstart;
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PRESENT hold 2

OUT wait;

IF wait_3 NEXT hold_3; 80

DEFAULT NEXT remove hold;

PRESENT hold_3

OUT wait;

IF wait_4 NEXT hold 4;

DEFAULT NEXT remove hold;

PRESENT hold 4

OUT wait;

IF wait 5 NEXT hold_5; 90

DEFAULT NEXT remove_hold;

PRESENT hold_5

OUT wait;

IF wait 6 NEXT hold 6;

DEFAULT NEXT remove hold;

PRESENT hold6 100
OUT wait;

IF wait_7 NEXT hold_7;

DEFAULT NEXT remove hold;

PRESENT hold7

OUT wait;

NEXT remove hold;

PRESENT remove hold

NEXT async start; 110

/ ** Logic Equations **/
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map.d = (memaddr:[1000..ldff] & !stale) # map;

map.ar = reset;

map.sp = 'b'0; 120

map.oe = Xb'l;

ceprom = (!map & memaddr:[2000..27ff]) # memaddr:[O..ff]

# memaddr:[1000..ldff];

ce_ram = (map & memaddr:[2000..27ff]) # memaddr:[2800..5fff];

cs510 = memaddr:[leOO..leff];

buswidth = cs510;

state_bit_0.AR = reset;

statebit_0.SP = 'b'O; 130

state_Ibit_0.OE = 'b' 1 ;

state_bit l.AR = reset;

state bit l SP = Xb0O;

state_bit 1.OE = 'b' 1;

state_bit 2.AR = reset;

state_bit_2.SP = 'b'0;

state_bit_2.OE = 'b' 1;
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Name gluel;

Partno NA;

Date 8/3/94;

Revision 2;

Designer Umair Khan;

Company LEES;

Assembly NILM Slave Processor;

Location Glue Logic Master PAL;

/ ****************************************************
/* ~~~~~~~~~~~~~~*1

/* *l

1* *

/******************************************************/
/* Allowable Target Device Tipes: GAL22V1O */

/**********************************************/

/ ** Inputs **/

= clk

= !reset

= !boardsel;
= [pcO..1] 

= [m_txd0..3];
= pc_txd

= mdcd0 ;

= mdcdl;
= mdcd3;
= mdcd2 ;

/*

/*

/*
1*

*/

*/

*/
*/

/ * FROM MAX TXD LINES

/* FROM PC TXD LINE

*/

*/

30

/ ** Outputs **/

20

Pin [14..17] = [m_rxdO..3] ;

Pin 18 = pc_rxd

Pin 19 = !max not shut;

Pin 21 = pc_dcd

/ * TO PC RXD LINE

/*

/* TO PC DCD LINE
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Pin

Pin

Pin

Pin

Pin

Pin

Pin

Pin

Pin

Pin

1

2

3

[4..5]

[6..9]

10

11

13

22

23

*/

*/

*/



/** Declarations and Intermediate Variable Definitions **/

FIELD node sel = [pcl..O];

nodeO = node sel: 'b'OO;

nodel = node sel : 'b'01;

node2 = node_sel: 'b'10;

node3 = node sel: 'b'11;

/** Logic Equations **/

maxnotshut = board sel;

50

m_rxdO = pc_txd # !nodeO

m_rxdl = pc_txd # !nodel

m_rxd2 = pc_txd # !node2

m_rxd3 = pc_txd # !node3

# !boardsel;

# !board sel;

# !boardsel;

# !boardsel;

/* need "# !board_sel" as the PAL */

/ * generates signals even when the */

/ * MAX 235 is shutdown, and we want */

/* a high on all maz_rxd's. */

/ * Don't need a !board_sel for pc_rxd, as that goes thru the MAX235 which is

shut down anyway */

pc_rxd = (m txdO & nodeO) # (m_txdl & nodel) # (m_txd2 & node2) # (m_txd3 & node3);

pc_dcd = (m_dcdO & nodeO) # (mdcdl & nodel) # (mdcd2 & node2) # (mdcd3 & node3);
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Name gluecomp;

Partno NA;

Date 8/3/94;

Revision 2;

Designer Umair Khan;

Company LEES;

Assembly NILM Slave Processor;

Location Glue Logic Pal 1 (for comparison of ID bits.);

/******************* /*******************
/* */

/* 
/3 I
/ ***************************************************************

/* Allowable Target Device Types: GAL2V10 */

/ ********************** t************************************

/** Inputs **/

Pin 1 = clk

Pin 2 = !reset

Pin [6..11] = [pc0..5]

Pin [13..18] = [idO..5]

/ *
1*

*/

*/

/* 6 MSB of the PC control byte */

/* */

/** Outputs **/

Pin 19 = boardsel; /* negatively asserted (see below): = 0, if pc = id */

Pin 20 = misc2pc;

30

/** Declarations and Intermediate Variable Definitions **/

/ ** Logic Equations **/

boardsel = (pcO $ idO) # (pcl $ idl) # (pc2 $ id2) # (pc3 $ id3) # (pc4 $ id4) # (pc5 $ id5);
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Appendix D

Software for Slave Processors

Three files are included here as samples of the software developed for the three main oper-

ations in transient event detection. In addition, the batch file that is used to compile the

80C196 C source code is also given:

* pO0_elp. c: V-section Search via Euclidean Filtering.

* p8_dlp. c: Tree-Structured Decomposition.

* p5_clp. c: Result Collation.

* cc.bat: Batch file that invokes the compiler.
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D.1 Code for V-section Search

/* pelp.c */

#pragma model(kc)

#pragma interrupt (nmi_master_int = 31)

#pragma interrupt (hsidataavail = 2)

/* Slave Processor Code: Pattern recognition and communication. */

/* Suitable for any slave recognizer placed anywhere on the gotcha chain. */

/* Assumes that vsecl in "load" structure has the vsec that occurs first ..*/

/ * in a data stream. That is, order of vsecs must match order of occurence..*/

/* of vsecs in real data */

#include<80C196.h>

#define NODEID 0

#define TIME SC 1

#define DATASIZE 512

#define INPUT_SIZE (DATA_SIZE*2)

#define T_DETECT +20 / * for template collection mode */

#deflne HSI1 0x01

#define HSI2 0x04

#define HSI3 0x10

#define HSI4 0x40

#define HSI_INPUTS 0 /* for HSI_ MODE register */

register char apple[15];

#pragma locate (apple = 0x30)

volatile char input[2*DATA_SIZE];

volatile short dataO[DATA SIZE];

volatile short datal[DATA_SIZE];

volatile short data2[DATA_SIZE];

volatile short res[DATA_SIZE];

volatile short tdata[256];

volatile short templatell;

/ * input from master */

/ * converted input data */

/ * for consecutive block*/

/ * results */

/* 8 512 point temps., 4 256 point temps. */
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volatile short template2f;

volatile short template3;

volatile short template40;

volatile short template50;

volatile short template6f;

volatile short template7o;

volatile short template8;

volatile short template90;

volatile short templatelO1;

volatile short templatell;
volatile short templatel20;

/** locate arrays in memory **/

#pragma locate

#pragma locate

#pragma locate

#pragma locate

#pragma locate

#pragma locate

(res = Ox4AOO)

(tdata = Ox4EOO)

(input = 0x5000)

(dataO = 0x5400)

(datal = 0x5800)

(data2 = Ox5C00)

#pragma locate

#pragma locate

#pragma locate

#pragma locate

#pragma locate

#pragma locate

#pragma locate

#pragma locate

#pragma locate

#pragma locate

#pragma locate

#pragma locate

(templatel = 0x3600)

(template2 = 0x3800)

(template3 = x3A00)

(template4 = Ox3COO)

(template5 = Ox3EOO)

(template6 = 0x4000)

(template7 = 0x4200)

(template8 = 0x4400)

(template9 = 0x4600)

(templatelO = 0x4700)

(templatell = 0x4800)

(templatel2 = 0x4900)

/* 8 BIG TEMPS., 4 SMALL ONES */

60

70

/** structure containing info. on loads to be identified by this processor **/

struct load{

unsigned char used;

unsigned char machno; /*load id */

unsigned char prev_hs; / *For First Proc. on load chain, no prev_hs.. */
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unsigned char next_hs; /* .and Prev_got must be set to one for it */

unsigned char no_vsec; / * no of vsections associated with load */

volatile short *vsl_add; / * address of 1st vsec */

unsigned short vslsize; / * size */ 80

volatile short *vs2_add; / * address of 2nd vsec */

unsigned short vs2_size; / * size */

volatile short *vs3_add; /* address of 3rd vsec */

unsigned short vs3_size; /* size */

volatile short *vs4_add; / * address of 4th vsec */

unsigned short vs4_size; / * size */

volatile short *vs5_add; /* address of 5th vsec */

unsigned short vs5 size; / * size *1

unsigned char first_got; / * is this the first processor on chain? */

unsigned char last_got; /* is this the last processor on chain? */ 90

unsigned char prev_got; /* Did prev. proc. send the ident. message */

unsigned short prev_time; / * acq_time for prevgot */

unsigned char vs_hits; / * no. of vsecs. identified so far *i

unsigned short vsO_loc; / *offset from begin. of inp block for 1st vs*/

unsigned short acqOjtime; / * acqtime for first vsec */

unsigned short vs_loc; / *offset from begin. of inp block for Last vs*/

unsigned short thresh; / * error threshold */

short range_hi; / *range within which first and last vsec should be*/

short rangelo; / *range within which first and last vsec should be*/

} 11, 12, 13; 100

unsigned char new_acq; / *fiag*/ / * = I if new data block just received */

unsigned short no_of acq; / *no of input acquisitions made so far*/

unsigned short acq_time;

unsigned short counter;

volatile short *datapoint; / * where processed input data resides */

unsigned char datapos;

unsigned char mode; / * Mode=O => Norm. Function. Mode=1 => Temp. Collection */

unsigned short temp_acq; /* acquisition no. frozen in temp mode*/ 110

unsigned short *temp_add; / *mem. add where change-of-mean occured*/

/ * Beginning Test memory locations */

unsigned char hsiavailin;
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unsigned char hsiavail_2;

unsigned char hsi availout;

unsigned char gotchain;

unsigned char gotchaout;

unsigned char eucin;

unsigned char eucout;

short sr_in; / *unsigned char srin;*/

unsigned char srout;

unsigned char tempsp;

#pragma locate (hsi_avail_in = 0x3510) /* hsiinterrupt routine entered */

#pragma locate (hsi_avail_out = 0x3511) /* hsiinterrupt routine eited */

#pragma locate (gotchain = 0x3512) /* next proc. comm. routine entered */

#pragma locate (gotchaout = 0x3513) /* next proc. comm. routine eited */

#pragma locate (euc-in = 0x3514) /* Euclidean Filtering routine entered */

#pragma locate (euc_out = 0x3515) /* Euclidean Filtering routine exited */

#pragma locate (sr-in = 0x3516) /*Serial Comm to Collater routine entered*/

#pragma locate (sr_out = 0x3518) / *Serial Comm to Collater routine eited*/

#pragma locate (hsi avail_2 = 0x3520)/ * validity check routine entered*/

#pragma locate (tempsp = 0x3522)

/ * End of Test memory locations */

#pragma locate

#pragma locate

#pragma locate

#pragma locate

#pragma locate

(newacq = 0x3500)

(no_of acq = 0x3502)

(mode = 0x3504)

(temp_acq = 0x3506)

(temp_add = 0x3508)

/* = if new data block just received */

/ *no of input acquisitions made so far*/

/ * = 1 if in template acquisition mode */

/* acquisition no. frozen in temp mode*/

/*mem. add where change-of-mean occured*/

void gotchacomm(struct load *1); /* communicate with next proc., */

void euclidean(struct load *1); /* manage vsec. search */

void load_init(); /* initialize loads */

unsigned char valid(struct load *ld); /* check if contact is valid */

void tmode(); / * for template acquisition mode */

unsigned short euc(short *temp, unsigned short T_SIZE, unsigned short LIMIT);

void tell collate(struct load *1); / * serial comm. with collater */

void load_init()
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{

/ *load II */ / *Rapid */

1l.used = 1;

11.machno = 1; / *This proc is first proc in load chain of ii */

11.prevhs= 5; /*initialize prev to garbage val. for First Proc */

1.nexths = 2; 160

ll1.novsec = 2;

11.vsladd = templatel; /* address of 1st vsec */

11.vsl_size = 16; /* size */

11.vs2_add = template2; /* address of 2nd vsec */

11.vs2_size = 31; /* size */

11.vs3_add = template3; / * address of 3rd vsec */

11.vs3_size = 5; /* size */

I.vs4_add = template4; /* address of 4th vsec */

11.vs4_size = 5; /* size */

11.vs5_add = template5; /* address of 5th vsec */ 170

11.vs5_size = 5; /* size */

ll.first.got = 1; /* first processor on load chain*/

l11.prev.got = ll.first_got;

11.last_got = 0;

l11.vshits = 0;

l.thresh = 215; /* error threshold */

ll.range_lo = 0; /*range within which first and last vsec should be*/

11.range_hi = 400; / *range within which first and last vsec should be*/

/*load 12 */ * computer */ 180

12.used = 1;

12.machno = 3;

12.prevhs= 5; / *initialize prev to garbage val. for First Proc */

12.next hs= 3;

12.novsec = 1;

12.vsl_add = template6; /* address of 1st vsec */

12.vsl_size = 22; /* size */

12.vs2_add = template7; /* address of 2nd vsec *1

12.vs2_size = 10; /* size */

12.first_got = 1; /* first processor on load chain*/ 190

12.prev_got = 12.first_got;

12.last_got = 0;

12.vs_hits = 0;
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12.thresh = 200; / * error threshold */

12.range_1o = 0; /*range within which first and last vsec should be*/

12.rangehi = 200; / *ange within which first and last vsec should be*/

/ *load 13 :Instant */ / * trained */

13.used = 1;

13.mach_no = 4; 200

13.prev_hs= 5; /*initialize prev to garbage val. for First Proc */

13.next_hs= 4;

13.no_vsec = 2;

13.vsl_add = template8; /* address of 1st vsec */

13.vslsize = 11; /* size */

13.vs2_add = template9; / * address of 2nd vsec */

13.vs2_size = 10; /* size */

13.first_got = 1; / * first processor on load chain*/

13.prev_got = 13.first_got;

13.last_got = 0; 210

13.vs_hits = 0;

13.thresh = 160; /* error threshold */

13.range_1o = 0; / *range within which first and last vsec should be*/

13.range_hi = 34; / *range within which first and last vsec should be*/

/ *** NMI ISR ***/

void nmimasterint(void)

220

labell:

while ((ioport2 & 0x08) != 0x08); / * wait for DAV = p2.3 */

input[counter] = (ioportl & Ox3f); / **** 6 bits ****/

while ((ioport2 & 0x08) == 0x08); / * wait for /DAV */

counter++;

if (counter < INPUT_SIZE)

goto labell; /* repeat until 512 points received */

new_acq = 1;

noof_acq++; 230

counter = 0;

}
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/*** HSI DATA AVAILABLE ISR ***/

void hsi_data avail(void)

{

/* This routine responds to hsi events only if a load's "prev_hs" matches */

/* the hs input on which the event takes place */ 240

unsigned int temptime;

unsigned char temp, t_iosO;

/ * Test */

hsiavail_in++;

/* End Test */

temp = hsistatus & 0x55; / *read hsi line */

if((temp & Ox01) == Ox01) /* if hs line 1 */

{ / *output on corresponding hso line*/ 250

if ((11.prevhs == 1)&&(11.used == 1))

{ / *prev. slave on load chain has sent message*/

11.prev_time = noof acq;

11.prev_got = 1;

else if ((12.prevhs == 1)&&(12.used == 1))

{ /*prev. slave on load chain has sent message*/

12.prev_time = noof_acq;

12.prev_.got =1;

} 260

else if ((13.prevhs == 1)&&(13.used == 1))

{ /*prev. slave on load chain has sent message*1

13.prev_time = noof acq;

13.prev.got =1;

else goto temp2;

t_iosO = iosO; /* handshaking protocol*/

wsr = OxOf;

josO tiosO = tiosO Ox01;

wsr = 0; 270

while ((hsistatus & Ox02) == Ox02);
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t_iosO = iosO;

wsr = OxOf;

iosO = tiosO & Oxfe; /* handshaking protocol completed*/

wsr = 0;

temp2:

if((temp & Ox04) == Ox04) / * if hs line 2 */ 280

{ / *output on corresponding hso line*/

if ((11.prevhs == 2)&&(ll.used == 1))

{ /*prev. slave on load chain has sent message*/

11.prev_time = noof acq;

11.prev_got = 1;

else if ((12.prev_hs == 2)&&(12.used == 1))

{ /*prev. slave on load chain has sent message*/

12.prev_time = noofacq;

12.prev_got = 1; 290

}

else if ((13.prev hs == 2)&&(13.used == 1))

{ /*prev. slave on load chain has sent message*/

13.prevtime = no-of acq;

13.prev_got = 1;

else goto temp3;

tiosO = iosO; /* handshaking protocol*/

wsr = OxOf;

iosO = tiosO Ox02; 300

wsr = 0;

while ((hsi status & Ox08) == Ox08);

t_iosO = iosO;

wsr = OxOf;

iosO = t_iosO & Oxfd; /* handshaking protocol completed*/

wsr = 0;

temp3:

310
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if((temp & OxO1) == OxlO) / * if hs line 3 */

{ /*output on corresponding hso line*/

if ((ll.prev_hs == 3)&&(11.used == 1))

{ / *prev. slave on load chain has sent message*/

11.prev_time = noof acq;

11.prev_got = 1;

else if ((12.prev hs == 3)&&(12.used == 1))

{ /*prev. slave on load chain has sent message*/

12.prev_time = noof_acq; 320

12.prev.got = 1;

}

else if ((13.prev_hs == 3)&&(13.used == 1))

{ /*prev. slave on load chain has sent message*/

13.prev_time = no of acq;

13.prev_got = 1;

}

else goto temp4;

tiosO = iosO; /* handshaking protocol*/

wsr = OxOf; 330

iosO = tiosO Ox04;

wsr = 0;

while ((hsistatus & Ox20) == Ox20);

tiosO = iosO;

wsr = OxOf;

iosO = t_iosO & Oxfb; /* handshaking protocol completed*/

wsr = 0;

temp4: 340

if((temp & Ox40) == Ox40) / * if hs line 4 */

{ / *output on corresponding hso line*/

if ((11.prev_hs == 4)&&(11.used == 1))

{ /*prev. slave on load chain has sent message*/

ll1.prevtime = no-of acq;

11.prev_got = 1;

else if ((12.prevhs == 4)&&(12.used == 1))

195



{ /*pre. slave on load chain has sent message*/

12.prevtime = no_of_acq;

12.prev.got = 1;

else if ((13.prevhs == 4)&&(13.used == 1))

{ / *prev. slave on load chain has sent message*/

13.prev_time = noof acq;

13.prev_got = 1;

else goto temp5;

t_iosO = iosO; /* handshaking protocol*/

wsr = OxOf;

iosO = tiosO I 0x08;

wsr = 0;

while ((hsi status & 0x80) == 0x80);

tjos0 = iosO;

wsr = OxOf;

iosO = t_ios0 & Oxf7; /* handshaking protocol completed*/

wsr = 0;

I
370

temptime = hsitime;

/* Test */

hsiavail out++;

/* End Test */

main()

{

unsigned short i, t;

/ * Test Variables*/

hsi_avail_in=O; hsiavailout=0; gotchain=O; gotcha_out=0;

eucin=O; euc out=0; sr_in=O; srout=O;tempsp=0;temp_acq=0;temp_add=0;;

hsi_avail_2 = 0;

/ * End Test Variable Initialization */
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/ * Read

temp5:

HSI Time Register */
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ioportl = Oxff;

ioport2 = Ox3f; / * bits 6 and 7 are outputs */

counter = 0;

new acq = 0; / *flag*/

no-ofacq = 0;

acq_time = 0;

/ * Port 2 initialization to

ioport2 = ioport2 O0x80;

ioport2 = ioport2 & Oxbf;

ioport2 = ioport2 & Oxdf;

suit jumper configurations: */

/* p2-7 = 1: TXD tristate enable */

/ * p2-6 = 0: ioportl input buff. enable */

/* p2-5 = 0: TS Decomp. interrupt */ 400

wsr = 1;

t2control = Ox01;

wsr = 0;

hsi_mode = HSI INPUTS; / hsi input event mode */

iocO = Ox55; /* ObOOO010101 */

iocl = Ox20; /* ObOO100000 */

hso_command = OxOC; / *reset hso lines */

hsotime = timerl + 10;

410

int_pending = 0; /* interrupt initialization */

intmask = Ox84;

baud_rate = Ox67; /* ser init */

baud rate = Ox80;

sp_con = Ox0l;

/ *sbuf = NODE ID;*/ / * dummy transmission */

load init(); /* initialize loads */

enable(); / * interrupt initialization *

datapoint = datal; /* set input data pointer */

data pos = 1;
420

while(l)

{

if(newacq)

(
if (datapos == 1)
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/ * if new data, then process */



/* convert two 6 bit points to one 12 bit no*/

for (i = 0; i < DATA_SIZE; i++)

{ 430

t = input[2*i+1]<<2;

if (t > 127)

t = t + OxffOO;

*(datapointi) = (t<<4)+input[2*i];

}

datapoint = data2;

datapos = 2;

else { /*convert two 6 bit points to one 12 bit no*/

for (i = 0; i < DATA SIZE; i++) 440

t = input[2*i+1]<<2;
if (t > 127)

t = t + OxffO;

*(datapoint+i) = (t<<4)+input[2*i];

*(dataO + i) = *(datapoint +i);

}

data-point = datal;

datapos = 1;

} 450

newacq = 0; /* reset flag */

if(mode == 1) / * If temp. collection mode... */

{

tmode(); /* ..don't do pattern search */

continue;

}

if (Il.used == 1)

euclidean(&11); / *euclidean filtering for ll */

if (12.used == 1)

euclidean(&12); / *euclidean filtering for 12*/ 460

if (13.used == 1)

euclidean(&13); / *euclidean filtering for 13*/

if (ll.used == 1)

{

if ((ll.vs_hits==1ll.no_vsec)&&(11.prev_got == 1))
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if(valid(&l1)) / * if load iden. is valid */

gotchacomm(&ll1);/ *send message */

}

if (12.used == 1) 470

if ((12.vshits == 12.no_vsec)&&(12.prev_got == 1))

if(valid(&12)) / * if load iden. is valid */

gotchacomm(&12);/ *send message */

}

if (13.used == 1)

{

if ((13.vshits==13.no vsec)&&(13.prev_got == 1))

if(valid(&13)) / * if load iden. is valid */

gotchacomm(&13); / *send message / 480

}

}

/ * C'heck if Load identification is not false **/

unsigned char valid(struct load *ld)

{

short temp_diff;

hsi_avail_2++; 490

/ * check prev_got */

if(ld->first_got == 0)

{

if(acq_time - ld->prev time > 1)

goto bad-end;

/ * see if first to last vsec fall within range and delta */

if((acq_time - ld->acqOtime) > 1) 500

goto badend;

if((acq_time - ld->acqO_time) == 1)

tempdiff = (ld->vsloc + 512) - Id->vsO0loc;

else

tempdiff = ld->vsloc - ld->vsO0loc;
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if((temp_diff >= Id->range_lo) && (temp_diff <= ld->range_hi))

return(1);

badend:

ld->vs hits = 0; / * Re-initialize the no. of hits obtained */ 510

Id->prevgot = Id->first_got; /* Re-initialize the prev_got line */

return(O);

/* This routine does the bookkeeping for vsection search and detection */

/* or all loads */

void euclidean(struct load *Id)

{

unsigned short loc;

unsigned char i, dorest; 520

do_rest = 0;

i= ld->vs_hits;
/* always search for 1st vsec */

loc = euc(ld->vsl_add, Id->vsl_size, Id->thresh);

if (loc != Oxfff) /* vsec found! */

{

dorest = 1;

ld->vsOloc = loc; / * record for 1st..*/

ld->acqOtime = no_of acq; /* vsec / 530

ld->vs_hits=1;

if(ld->novsec == ld->vs_hits) /* all vsecs found */

ld->vsloc = loc;
acq_time = no_ofacq;

return;

if((i == 1 II do_rest == 1)&&(ld->novsec > 1)) 540

do_rest = 0;

loc = euc(ld->vs2_add, Id->vs2_size, Id->thresh);

if (loc != Oxfff) /* vsec found! */
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do-rest = 1;

ld->vs_hits++;

if(ld->no_vsec == Id->vshits) /* all vsecs found */

{ 550

ld->vs_loc = loc;

acq_time = noofacq;

return;

if((i == 2 11 do_rest == 1)&&(ld->no vsec > 2))

{

do_rest = 0;

loc = euc(ld->vs3_add, ld->vs3_size, ld->thresh); 560

if (1oc != Oxfff) /* vsec found! */

{

dorest = 1;

ld->vs_hits++;

if(ld->no_vsec == ld->vs_hits) /* all vsecs found */

{

Id->vsloc = loc;

acq_time = no_of_acq;

return; 570

if((i == 3 do_rest == 1)&&(1d->novsec > 3))

{

dorest = 0;

loc = euc(ld->vs4_add, Id->vs4_size, Id->thresh);

if (loc != Oxfff) /* vsec found! */

do_rest = 1; 580

ld->vs_hits++;

if(ld->no_vsec == Id->vs_hits) /* all vsecs found */
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ld->vsloc = loc;

acqtime = no_of acq;

return;

590

if((i == 4 dorest == 1)&&(ld->no vsec > 4))

{

loc = euc(ld->vs5add, Id->vs5size, Id->thresh);

if (loc != Oxfff) /* vsec found! */

{

dorest = 1;

ld->vshits++;

if(ld->no_vsec == ld->vs_hits) /* all vsecs found */

{ 600

ld->vsloc = loc;
acq_time = no_of acq;

return;

/* This routine performs the actual Euclidean filtering for each v-section */

unsigned short euc(short *template, unsigned short TEMP_SIZE, unsigned short HI_LIMIT) 610

{

long sum, accumerror;

short dc, *dat;

unsigned short ij, min, mean_calc, location;

/* T'est */

euc_in++;

/ * End Test */

sum = 0; 620

meancalc = 16384/TEMPSIZE; /* (2 to the power 14) = 16384 */

location = Oxfff;
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if (datapos == 1) /* data2 has just been filled */

dat = data2 - (TEMP_SIZE - 1);

else /* else datal has just been filled */

dat = datal - (TEMP_SIZE - 1);

for (j = O; j < TEMP_SIZE; j++)

sum+ = *(dat+j);

630

for (i = 0; i < DATA_SIZE; i++) /* euclidean filtering the data... */

{

accum error = 0;

dc = (int) ((sum * mean_calc)>>14);

for (j = 0; j < TEMPSIZE; j++)

{

*(tdata+j) = *(dat+i+j) - dc;

accum_error+ = abs(*(template+j) - *(tdata+j));

sum = sum + *(dat+i+j) - *(dat+i); 640

*(res+i) = accum_error;

for (i = 0, min = HI_LIMIT; i < DATASIZE; i++) /*determine v-sec. location*/

{

if (*(res+i) < HI_LIMIT)

{

if (min > *(res+i))

{

min = *(res+i); 650

location = i;

/* Test /

euc_out++;

/* End Test */

return(location); 660

}
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/* Once all vsecs. have been identified and validated, send identification */

/ * message to next processor. If this is the last processor, compile a */

/ * record and send to collater . gotcha_comm(..) performs these tasks. */

void gotchacomm(struct load *Id)

{

int i;

unsigned char m, tiosO;

/* Test */ 670

gotcha_in++;

/* End Test */

Id->vs hits = 0; / * Re-initialize the no. of hits obtained */

Id->prevgot = Id->first_got; /* Re-initialize the prev_got line */

m = Id->nexths;

switch(m)

{

case 1:

t_iosO = iosO; 680

wsr = OxOf;

josO tiosO = tiosO Ox01;

wsr = 0;

while ((hsi status & Ox02) == OxO);

if(ld->last_got == 1) / *If last processor on load chain*/

tell_collate(ld); / *send record to collater */

tiosO = iosO; /* handshaking protocol*/

wsr = OxOf;

iosO = t_iosO & Oxfe;

wsr = 0; 690

while ((hsi status & Ox02) == x02);

break; / * handshaking protocol completed*/

case 2:

tiosO = iosO;

wsr = OxOf;

iosO = t_iosO I Ox02;

wsr = 0;

while ((hsi status & Ox08) == OxO);

if(ld->last got == 1) / *If last processor on load chain*/ 700
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tell_collate(ld); /*send record to collater */

tiosO = iosO; /* handshaking protocol*/

wsr = OxOf;

iosO = t_iosO & Oxfd;

wsr = 0;

while ((hsistatus & Ox08) == Ox08);

break; /* handshaking protocol completed*/

case 3:

tiosO = iosO; 710

wsr = OxOf;

iosO tiosO = tiosO Ox04;

wsr = 0;

while ((hsi status & Ox20) == OxOO);

if(ld->last_got == 1) /*If last processor on load chain*/

tell_collate(ld); /*send record to collater */

tiosO = iosO; /* handshaking protocol*/

wsr = OxOf;

iosO = t_iosO & Oxfb;

wsr = 0; 720

while ((hsistatus & Ox20) == Ox20);

break; /* handshaking protocol completed*/

case 4:

t_iosO = iosO;

wsr = OxOf;

ios = tiosO Ox08;

wsr = 0;

while ((hsi_status & Ox80) == OxO0); 730

if(ld->last_got == 1) /*If last processor on load chain*/

tell_collate(ld); / *send record to collater */

t_iosO = iosO; /* handshaking protocol*/

wsr = OxOf;

iosO = t_iosO & Oxf7;

wsr = 0;

while ((hsistatus & Ox80) == Ox80);

break; /* handshaking protocol completed*/
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/* Test S/
gotcha_out++;

/* End Test */

/ * Send serial data to collater /
void tell collate(struct load *ld)

/ * A packet consists of: *1

750

/ 1. processor id */

/: 2. load id */

/ * 3. location hi byte */

/ * 4. location lo byte */

/* 5. acq_time hi byte */
/ 6. acqtime lo byte *1

/* 7. time_scale /

char WAIT = 5; /* try 2 */

/ TEST / 760

sr_in++;

/* END TEST */
/* enable the LS125 tristate buffer */
tempsp = sp stat; / * read sp_stat to clear it */

ioport2 = ioport2 & 0x7f; /* p2-7 = 0 s/

while (WAIT != 0)

WAIT--;

sbuf = NODE ID; / * transmit processor id*/

while((sp stat & 0x20)!=0x20); /* wait to complete trans. */ 770

sbuf = ld->mach no; /* transmit machine id*/

while((sp stat & 0x20)!=0x20); /* wait to complete trans. */

sbuf = (unsigned char) (ld->vsloc >> 8); /* transmit loc hi */

while((sp_stat & 0x20)!=0x20); /* wait to complete trans. S/

sbuf = (unsigned char) Id->vs loc; /* transmit loc lo*/

while((sp stat & 0x20)!=0x20); / * wait to complete trans. */

sbuf = (unsigned char) (acqtime >> 8); /* transmit acq_time hi S/

while((sp_stat & 0x20)!=0x20); / * wait to complete trans. /
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sbuf = (unsigned char) acq_time;

while((spstat & 0x20)!=0x20);

sbuf = TIME_SC;

while((sp stat & 0x20)!=0x20);

/ * transmit acq_time lo */

/ wait to complete trans. /

/* transmit time_sc *1

/* wait to complete trans. /

/ * disable the LS125 tristate buffer */

ioport2 = ioport2 Ox80; /* p2-7 = 1: TXD tristate enable */

/* TEST */

sr_out++;

/* END TEST */

}

/ * This routine handles template

void t;_mode()

{

short init, *dat, i, j;

long int dc;

if (datapos == 1)

dat = data2;

else

collection mode /

/ * data2 has just been filled */

/* else datal has just been filled */

dat = datal;

init = *(dat+O);

sr_in = init;

for(i = 0; i < DATA_SIZE-4; i++)

dc = 0;

for(j = 0; j < 4; j++)

dc+= (long int) *(dat+i+j);

dc = (dc >> 2);

if((abs(((short) dc) - init)) > TDETECT)

{

temp_acq = noof acq;

temp_add = dat+i;

while(mode);

new_acq = 0;

noof acq = 0;

return;

}
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}
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D.2 Code for Tree-structured Decomposition

/* p8_dlp.c */

#pragma model(kc)

#pragma interrupt (nmi_master_int = 31)

#pragma interrupt (hsidata_avail = 2)

/* Slave Processor Code : Tree Structured Decomposition */

/ * This processor may also do pattern recognition */

/* But HSIOO and HSIO1 not available !!*/

10

#include<80C196.h>

#define NODE_ID 8

#define TIME_SC 1

#define DATA_SIZE 512

#define DOUT_SIZE (DATA_SIZE/4)

#define TSIZE 11

#define INPUT_SIZE (DATA_SIZE*2)

#define RSIZE (DATA_SIZE) /****/ 20

#define HI_LIMIT +200

#define T_DETECT +30 / * for template collection mode */

#define HSI1 0x01

#define HSI2 0x04

#define HSI3 0x10

#define HSI4 0x40

#define HSI_INPUTS (HSI1+HSI2) / * for HSI MODE register */

#define TIME_COMM 0x02 / * FIGURE OUT time */
#define WAIT_COMM (tiocO = ioc0; iocO = tioc0 I 0x02; while (timer2 < TIME_COMM);} 30

register char apple[15];

#pragma locate (apple = 0x30)

volatile char input[INPUT_SIZE]; /* input from master */

volatile short dataO[DATA_SIZE]; /* converted input data */

volatile short datal[DATA_SIZE]; /* for consecutive block*/
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volatile

volatile

volatile

volatile

volatile

volatile

volatile

volatile

volatile

volatile

volatile

volatile

volatile

volatile

volatile

volatile

short data2[DATA_SIZE];

short result[R_SIZE]; /* results */
short dataout[DOUT SIZE];

short convtemp[128];

short res[DATA_SIZE]; /* temporary array for decimate() and euc() */

short tdata[256]; / * temporary array for euc() */

short loc[DATA_SIZE];

short templatel[256];

short template2[256];

short template3[256];

short template4[256];

short template5[128];

short template6[128];

short template7[128];

short template8[128];

short template9[128];

#pragma locate

#pragma locate

#pragma locate

#pragma locate

#pragma locate

#pragma locate

#pragma locate

#pragma locate

#pragma locate

/ * 4 512 point temps., 5 256 point temps. */

50

(res = 0x4A00)

(tdata = 0x4E00)

(input = 0x5000)

(dataO = 0x5400)

(datal = 0x5800)

(data2 = 0x5C00)

(convtemp = 0x3600)

(result = 0x3700)

(data_out = 0x3B00)

#pragma locate

#pragma locate

#pragma locate

#pragma locate

#pragma locate

#pragma locate

#pragma locate

#pragma locate

#pragma locate

(templatel = 0x3D00)

(template2 = 0x3F00)

(template3 = 0x4100)

(template4 = 0x4300)

(template5 = 0x4500)

(template6 = 0x4600)

(template7 = 0x4700)

(template8 = 0x4800)

(template9 = 0x4900)

/ 4 BIG TEMPS., 5 SMALL ONES */

70

struct load{
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unsigned char used;

unsigned char machno; / *load id */

unsigned char prevhs; / * For First Proc. on load chain, no prevhs.. */
unsigned char next_hs; /* ..and Prev_got must be set to one for it */

unsigned char no_vsec; /* no of vsections associated with load */

volatile short *vsl_add; /* address of 1st vsec */

unsigned short vsl size; /* size */

volatile short *vs2_add; /* address of 2nd vsec */

unsigned short vs2_size; /* size */

volatile short *vs3_add; /* address of 3rd vsec */

unsigned short vs3 size; /* size */

volatile short *vs4_add; /* address of 4th vsec */

unsigned short vs4_size; /* size */

volatile short *vs5_add; /* address of 5th vsec */

unsigned short vs5_size; /* size */
unsigned char firstgot; /* is this the first processor on chain? */

unsigned char last_got; /* is this the last processor on chain? */

unsigned char prev_got; /* Did prev. proc. send the ident. message */

unsigned char vs_hits; /* no. of vsecs. identified so far */

unsigned short vs_loc; / *offset from begin. of inp block for Last vs*/

} 11, 12, 13;

unsigned char new_acq; / *flag*/ / * = 1 if new data block just received */

unsigned short no_ofacq; / *no of input acquisitions made so far*/

unsigned short acq_time;

unsigned short counter;

short *datapoint; / * where processed input data resides */

unsigned char data_pos;

unsigned char mode; /* Mode=O => Norm. Function. Mode=1 => Temp. Collection */

unsigned short temp_acq; /* acquisition no. frozen in temp modeS/

unsigned short *temp_add; /*mem. add where change-of-mean occured*/

#pragma locate (new_acq = 0x3500)

#pragma locate (noof acq = 0x3502)

#pragma locate (mode = 0x3504)

#pragma locate (temp_acq = 0x3506)

#pragma locate (temp_add = 0x3508)

/ * Beginning Test memory locations */
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unsigned char hsi_avail_in; /* hsi.interrupt routine entered */

unsigned char hsiavail_out; / * hsiinterrupt routine exited */

unsigned char gotchain; /* next proc. comm. routine entered */

unsigned char gotcha_out; /* next proc. comm. routine exited */

unsigned char eucin; / * Euclidean Filtering routine entered */

unsigned char euc_out; /* Euclidean Filtering routine exited */

unsigned char sr_in; / *Serial Comm to Collater routine entered*/

unsigned char sr_out; / *Serial Comm to Collater routine exited*/

unsigned char tempsp;

unsigned char master_in; /* Data Comm. to event detector routine entered*/

unsigned char master_out; /* Data Comm. to event detector routine exited*/

#pragma locate (hsiavail_in = 0x3510)

#pragma locate (hsiavail_out = 0x3511)

#pragma locate (gotcha_in = 0x3512)

#pragma locate (gotcha_out = 0x3513)

#pragma locate (eucin = 0x3514)

#pragma locate (eucout = 0x3515)

#pragma locate (sr in = 0x3516)

#pragma locate (sr_out = 0x3517)

#pragma locate (masterin = 0x3518)

#pragma locate (masterout = 0x3519)

#pragma locate (tempsp = 0x3520)

120

130

140

/ * End of Test memory locations */

void init(); /* 80C196 initializations*/

void load_init(; /* initialize loads */

void euclidean(struct load *1); / * manage vsec. search */

void tmode(); / * for template acquisition mode */

unsigned short euc(short *temp, unsigned short t_size);

void gotchacomm(struct load *1); / * communicate with next proc., */

void tell collate(struct load *1); / * serial comm. with collater */

void conv(; /* convolution for low-pass filtering */

void s_decimate(); / * simplified decimation */

void decimate(unsigned short *cnt); / * adapt decimate*/

void master(); / * Data Comm. to event detector routine*/
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void loadinit()

/*load 11 */

ll.used = 0; /* load not used */

ll.mach no = 1; 160

ll.prevhs= 3;

ll.next hs= 4;

ll.novsec = 2;

11.vsl_add = templatel; /* address of 1st vsec */

11.vsl_size = 4; /* size */

11.vs2_add = template2; / * address of 2nd vsec */

11.vs2 size = 16; /* size */

I1.last_got = 0;

l1.vs_hits = 0;

170

/*load 12 */

12.used = 0; /* load not used */

12.machno = 4;

12.prev_hs= 3;

12.next_hs= 4;

12.novsec = 1;

12.vsl_add = template3; /* address of 1st vsec */

12.vsl_size = 10; /* size */
12.last_got = 1;

12.vs_hits = 0; 180

/ *load 13: Only two loads can be active at a time due to */

/* only HSIO2 and 3 being available */

13.used = 0; /* load not used */

13.mach no = 4;

13.prev_hs= 5;

13.next_hs= 5;

13.novsec = 1;

13.vsl_add = template4; /* address of 1st vsec */

13.vsl size = 10; /* size */ 190

13.last_got = 1;

13.vs_hits = 0;
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/* 80C196 initializations*/

void init()

{

/* Testt Variables */

hsiavail_in=0; hsi_availpout=O; gotchain=O; gotchaout=0;

eucin=0; eucout=0; srin=0; srout=0; masterin=0; master_out=O;

/ * End Test Variable Initialization */

counter = 0;

new_acq = 0;

noof acq = 0;

acq_time = 0;

/ *flag*/

ioportl = Oxff;

ioport2 = 0x3f; /* bits 6 and 7 are outputs */

/ * Port 2 initialization to suit jumper configurations: */

ioport2 = ioport2 I 0x80; / * p2-7 = 1: TXD tristate enable */

ioport2 = ioport2 & Oxbf; /* p2-6 = 0: ioportl input buff. enable */

/ *ioport2 = ioport2 V4 Oxdf;*/ / * p2-5= O: TS Decomp. DAV */

wsr = 1; / * Timer 2 clock source */

t2control = Ox1l;

wsr = 0;

/ * ioc2 = 0240; */ / * timer 2 config */
hsi_mode = HSI INPUTS; /* hsi input event mode */

ioc0 = 0x55; /* ObO1010101 */

iocl = 0x20; /* ObO0100000 */

hso command = OxOC; / *reset hso lines

hso_time = timerl + 10;

*/

int_pending = 0; / * interrupt initialization */

int_mask = 0x84; /* 10000100 */

baud_rate = 0x67; / * serinit */
baudrate = 0x80;

sp_con = Ox1l;

/ *sbuf = NODE ID;*/ / * dummy transmission */

load-init(; / * initialize loads */
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enable(); / * interrupt initialization */

datapoint = datal; / * set input data pointer */

datapos = 1;

/ *** NMI ISR ***/

void nmi master_int(void)

{

labell:

while ((ioport2 & Ox08) != 0x08);

input[counter] = (ioportl & Ox3f);

while ((ioport2 & 0x08) == Ox08);

counter++;

if (counter < INPUTSIZE)

goto labell;

/ * wait for DAV = p2.3 */

/ **** 6 bits ****/

/* wait for /DAV */

new_acq = 1;

no-of acq++;

counter = 0;

/*** HSI DATA AVAILABLE ISR ***/

void hsi data avail(void)

/* This routine responds to hsi events only if a load's "prev hs" matches */

/* the hs input on which the event takes place */

unsigned int temptime;

unsigned char temp, t_iosO;

/ * Test */

hsi_availjin++;

/ * End Test */

temp = hsistatus & 0x55; / *read hsi line */

if((temp & OxO1) == Ox01) / * if hs line 1 */

{ / *output on corresponding hso line*/

if ((ll.prev_hs == 1)&&(ll.used == 1))

ll.prev_got = 1;
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else if ((12.prev_hs == 1)&&(12.used == 1))

12.prevgot =1;

else if ((13.prevhs == 1)&&(13.used == 1))

13.prev_got =1;

else goto temp2;

t_iosO = iosO; /* handshaking protocol*/

wsr = OxOf;

iosO = tiosO I Ox01;

wsr = 0; 280

while ((hsistatus & Ox02) == Ox02);

tjiosO = iosO;

wsr = OxOf;

iosO = t_iosO & Oxfe; /* handshaking protocol completed*/

wsr = 0;

temp2:

if((temp & Ox04) == Ox04) 290

{ /*output on corresponding hso line*/

if ((11.prevhs == 2)&&(11.used == 1))

11.prev_got = 1;

else if ((12.prevhs == 2)&&(12.used == 1))

12.prev_got = 1;

else if ((13.prevhs == 2)&&(13.used == 1))

13.prev_got = 1;

else goto temp3;

t_iosO = iosO; / * handshaking protocol*/

wsr = OxOf; 300

iosO = iosO IosO Ox02;

wsr = 0;

while ((hsi status & Ox08) == Ox08);

t_iosO = iosO;

wsr = OxOf;

iosO = t_iosO & Oxfd; /* handshaking protocol completed*/

wsr = 0;

temp3: 310
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if((temp & OxlO) == OxlO)

{ /*output on corresponding hso line*/

if ((11.prevhs == 3)&&(ll.used == 1))

11.prevgot = 1;

else if ((12.prev-hs == 3)&&(12.used == 1))

12.prev_got = 1;

else if ((13.prev hs == 3)&&(13.used == 1))

13.prevgot = 1;

else goto temp4; 320

t iosO = iosO; /* handshaking protocol*/

wsr = OxOf;

iosO = tiosO Ox04;

wsr = 0;

while ((hsistatus & Ox20) == Ox20);

tjiosO = iosO;

wsr = OxOf;

iosO = tjosO & Oxfb; /* handshaking protocol completed*/

wsr = 0;

330

temp4:

if((temp & Ox40) == Ox40)

{ /*output on corresponding hso line*/

if ((11.prevhs == 4)&&(11.used == 1))

11.prev_got = 1;

else if ((12.prevhs == 4)&&(12.used == 1))

12.prev_got = 1;

else if ((13.prev hs == 4)&&(13.used == 1)) 340

13.prev_got = 1;

else return;

tiosO = iosO; /* handshaking protocol*/

wsr = OxOf;

iosO = t_iosO I Ox08;

wsr = 0;

while ((hsistatus & Ox80) == Ox80);

tiosO = iosO;

wsr = OxOf;
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iosO = t_iosO & Oxf7; /* handshaking protocol completed*/

wsr = 0;

/* Read HSI Time Register */

temptime = hsi time;

/* Test */

hsi avail out++;

/* End Test */

main(

{

unsigned short i, count;

short t;

init();

while(1)

{

if(new_acq) / * if new data, then process */

{ /*convert two 6 bit points to one 12 bit no.*/

if (datapos == 1)

for (i = 0; i < DATA_SIZE; i++)

{

t = input[2*i+1]<<2;

if (t > 127)

t = t + Oxff0O;

*(datapoint+i) = (t<<4)+input[2*i];

data_point = data2;

datapos = 2;

else ( /*convert two 6 bit points to one 12 bit no*/

for (i = 0; i < DATA_SIZE; i++)

{
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t = input[2*i+1]<<2;

if (t > 127)
t = t + OxffOO;

*(datapoint+i) = (t<<4)+input[2*i];

*(dataO + i) = *(datapoint +i);

}

data_point = datal;

data_pos = 1;

}

newacq = O; / * reset flag */

conv(); / * convolution for low-pass filtering */

s_decimate(); / * simple decimate*/

/ *decimate(E4count);*/ / * adapt decimate*/

master(); /* Data Comm. to event detector routine*/

if(mode == 1) /* If temp. collection mode... */

{

t_mode(); / * .. don't do pattern search */

continue; / * .. don't do pattern search */

}

if (11.used == 1)

euclidean(&ll);

if (12.used == 1)

euclidean(&12);

if (13.used == 1)

euclidean(&13);

I

if (11.used == 1)

{

/ *euclidean filtering for 11 */

/ *euclidean filtering for 12*/

/ *euclidean filtering for 13*1

if ((ll.vs_hits==ll.no_vsec)&&(ll.prev_got == 1))

gotchacomm(&11); /*send message */

}

if (12.used == 1)

{

if ((12.vshits == 12.no_vsec)&&(12.prev_got == 1))

gotcha_comm(&12); / *send message */

}

if (13.used == 1)
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if ((13.vshits==13.novsec)&&(13.prev got == 1))

gotcha_comm(&13); /*send message */ 430

/* convolution for low-pass filtering */

void conv(

{

long int sum; 440

short i, j, *dat;

if (datapos == 1) /* data2 has just been filled */

dat = data2 - (T_SIZE - 1);

else /* else datal has just been filled */

dat = datal - (T_SIZE - 1);

for (i = 0; i < R_SIZE; i++) / * low pass filtering ... */

{

sum = 0; 450

for (j = 0; j < T_SIZE; j++)

sum+= (((long int)(*(dat+i+j))) * ((long int) convtemplj]));

result[i] = (short) (sum>>14);

/* adapt decimate*/

void decimate(unsigned short *dcount) /* make it take DATASIZE as arg etc. */

{

long suma, sumb; 460

int nsegs, i, j, numl, count=0;

short *dat; /* loc[DATA_SIZE] IS res[DATA_SIZE] */

if (datapos == 1) / * data2 has just been filled */

dat = data2 - (TSIZE - 1);

else / * else datal has just been filled */
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dat = datal - (TSIZE - 1);

nsegs = 1;

res[nsegs-1] = 0;

numl = *(dat+O); /* ?????*/

j = 0;

while (j < DATA_SIZE-14)

while (abs(numl - result[j]) <= 5)

j+= 2;

while (abs(numl - resultj]) > 5)

j+= 2;

if (j < DATA SIZE-13)

{

if (j > res[nsegs-1])

{

res[nsegs] = j+15;

nsegs++;

res[nsegs]

nsegs-++;

= DATA SIZE - 14;

for (j =0; j < nsegs - 1; j++)

{

suma = 0; sumb = 0;

for (i = res[j]; i< reslj+l]; i+=2)

{

suma += result[i]*result[i];

sumb += result[i+l] * result[i+l];

}

if (suma> sumb)

{

for(i = reslj]; i < resj+1]; i += 2)

{

data out[count] = result[i];
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count++;

else
{ 510

for(i = reslj]; i < resj+l]; i += 2)

{

data_out[count] = result[i+l];

count++;

*dcount = count;

}

520

/* simple decimate*/

void s_decimate() /* simple decimator: downsampling by 4, even samples */

{

unsigned int count,i;

for (i = 0, count = 0; count < DOUTSIZE; count++, i+= 4) /** 2 **

dataout[count] = (result[i]>>l);

}

/* Data Comm. to event detector routine*/ 530

void master()

{

unsigned short i;

unsigned char t_ioc0, t_iosO;

masterin++;

ioport2 = ioport2 I 0x40; /*p2-6 = 1: ioportl input buff. disable */

ioportl = 0;

tios0 = iosO; 540

wsr = 15;

iosO = tiosO I Ox02; /* INT = HSO1 */

wsr = 0;

WAITCOMM
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VWAIT COMM

tios0 = ios0;

wsr = 15;

ios0 == tiosO & Oxfd;

wsr =: 0;

/* INT = HSO1 */

for(i = 0; i < DOUT SIZE; i++)

{

WAIT COMM

ioportl = (unsigned char) (*(dataout+i) & 0x3F); /* 6 LSB */

tiosO = ios0;

wsr = 15;

iosO = tiosO 0Ox01; /* DAV = HSOO */

wsr = 0;

WAITCOMM

t iosO = iosO;

wsr = 15;

iosO = tiosO & OxFE; /* DAV = HSOO */

wsr = 0;

WAIT COMM

WAIT COMM

ioportl = (unsigned char) ((*(dataout+i) & 0x0fc0) >> 6); /* 6 MSB */

t_iosO = ios0;

wsr = 15;

iosO = tiosO I x01; /* DAV = HSOO *

wsr = 0;

WAIT COMM

tiosO = ios0;

wsr = 15;

ios0 = t_iosO & OxFE; /* DAV = HSOO */

wsr = 0;

WAIT COMM

ioportl = Oxff;

ioport2 = ioport2 & Oxbf; /* p2-6 = 0: ioportl input buff. enable */

maste:rout++;

}
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/* This routine does the bookkeeping for vsection search and detection */

/* or all loads */

void euclidean(struct load *ld)

{

unsigned short loc;

unsigned char i, dorest; 590

do-rest = 0;

i= ld->vshits;
/* always search for 1st vsec */

loc = euc(ld->vsl_add, ld->vslsize);

if (loc != Oxfff) /* vsec found! */

{

do-rest = 1;

ld->vshits++;
} 600

if(ld->novsec == ld->vs_hits) /* all vsecs found */

{

ld->vsloc = loc;
acq_time = no_of_acq;

return;

if(i == 1 dorest == 1)

{

dorest = 0; 610

loc = euc(ld->vs2add, ld->vs2_size);

if (1oc != Oxfff) /* vsec found! */

{

dorest = 1;

ld->vshits++;

if(ld->no_vsec == ld->vs_hits) /* all vsecs found */

{

ld->vsloc = loc;
acq_time = no-of acq; 620

return;
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}

if(i == 2 1 dorest == 1)

do rest = 0;

loc = euc(ld->vs3 add, ld->vs3size);

if (loc != Oxfff) /* vsec found! */

{

dorest = 1;

Id->vs_hits++;

}

if(ld->no vsec == ld->vs hits) /* all vsecs found *

{

ld->vs_loc = loc;

acq_time = noof_acq;

return;

if(i == 3 dorest == 1)

do_rest = 0;

loc = euc(ld->vs4 add, Id->vs4_size);

if (oc != Oxfff) /* vsec found! */

{

do rest = 1;

ld->vs_hits++;

if(ld->novsec == ld->vs hits) /* all vsecs found */

{

ld->vs_loc = loc;

acq_time = noofacq;

return;

if(i == 4 dlo rest == 1)

loc = euc(ld->vs5 add, ld->vs5 size);
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do rest = 1;

Id->vshits++;

if(ld->novsec == Id->vs hits) /* all vsecs found */

{

Id->vsloc = loc;

acq_time = no-of acq; 670

return;

/ * This routine performs the actual Euclidean filtering for each v-section */

unsigned short euc(short *template, unsigned short TEMP_SIZE)

{

long sum, accum error; 680

short dc, *dat;

unsigned short ij, min, meancalc, location;

/* Test */

euc.in++;

/* End Test */

sum = 0;

meancalc = 16384/TEMPSIZE; /* (2 to the power 14) = 16384 */

location = Oxfff; 690

if (data-pos == 1) / * data2 has just been filled *t

dat = data2 - (TEMP_SIZE - 1);

else / * else datal has just been filled *t

dat = datal - (TEMP_SIZE - 1);

for (j = 0; j < TEMPSIZE; j++)

sum+ = *(dat+j);

for (i = 0; i < DATASIZE; i++) /* euclidean filtering the data... */

{ 700
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accumerror = 0;

dc = (int) ((sum * meancalc)>>14);

for (j = 0; j < TEMP_SIZE; j++)

{

*(tdata+j) -= *(dat+i+j) - dc;

accum error+ = abs(*(template+j) - *(tdata+j));

sum = sum + *(dat+i+j) - *(dat+i);

*(res+i) = accumerror;

710

for (i = 0, min = 250; i < DATASIZE; i++) / *determine v-sec. location*/

{

if (*(res+i) < HILIMIT)

{

if (min > *(res+i))

{

min = *(res+i);

location = i;

720

/* Test */

eucout++;

/* End Test */

return(location);

730

/* Once all vsecs. have been identified and validated, send identification */

/ * message to next processor. If this is the last processor, compile a */

/* record and send to collater . gotcha_comm(..) performs these tasks. */

void gotchacomm(struct load *ld)

int i;

unsigned char m, t_ios0;

/ * Test */

gotchain++;
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/* End Test */

ld->vshits = 0; / * Re-initialize the no. of hits obtained */
ld->prev_got = Id->first_got; /* Re-initialize the prev_got line */

m = ld->nexths;

switch(m)

{

case 1:

tiosO = iosO;

wsr = OxOf;

iosO = t_ios0 0x01; 750

wsr = 0;

while ((hsi status & Ox02) == OxOO);

if(ld->last_got == 1) /*If last processor on load chain*/

tell_collate(ld); /*send record to collater *

t_iosO = iosO; /* handshaking protocol*/

wsr = OxOf;

iosO = tioso & Oxfe;

wsr = 0;

while ((hsistatus & Ox02) == Ox02);

break; /* handshaking protocol completed*/ 760

case 2:

t_iosO = iosO;

wsr = OxOf;

iosO = tiosO I Ox02;

wsr = 0;

while ((hsistatus & Ox08) == OxOO);

if(ld->last_got == 1) / *If last processor on load chain*/

tell_collate(ld); /*send record to collater *

t_iosO = iosO; /* handshaking protocol*/ 770

wsr = OxOf;

iosO = tiosO & Oxfd;

wsr = 0;

while ((hsi status & Ox08) == Ox08);

break; /* handshaking protocol completed*/

case 3:

tiosO = iosO;
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wsr = OxOf;

iosO = t_iosO Ox04; 780

wsr = 0;

while ((hsi status & 0x20) == OxOO);

if(ld->last_got == 1) /*If last processor on load chain*/

tell_collate(ld); /*send record to collater *

t_iosO = iosO; /* handshaking protocol*/

wsr = OxOf;

iosO = tiosO & Oxfb;

wsr = 0;

while ((hsistatus & Ox20) == Ox20);

break; /* handshaking protocol completed*/ 790

case 4:

t_iosO = iosO;

wsr = OxOf;

iosO = t_iosO I Ox08;

wsr = 0;

while ((hsi status & Ox80) == OxO0);

if(ld->last_got == 1) /*If last processor on load chain*/

tell_collate(ld); / *send record to collater */ 800

t_iosO = iosO; /* handshaking protocol*/

wsr = OxOf;

josO tioso & Oxf7;

wsr O0;

while ((hsi status & Ox80) == Ox80);

break; /* handshaking protocol completed*/

/ Test */

gotchaout++; 810

/* End Test */

/* Send serial data to collater */

void tell_collate(struct load *ld)

{

/ * A packet consists of: *
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/ * 1. processor id */

/* 2. load id */

/* 3. location hi byte */ 820

/* 4. location lo byte */

/* 5. acq time hi byte */

/* 6. acq_time lo byte */

/* 7. timescale */

char WAIT = 5; /* try 2 */

/* TEST */

srin++;
/ END TEST */

/* enable the LS125 tristate buffer */ 830

tempsp = sp_stat; /* read sp_stat to clear it */

ioport2 = ioport2 & 0x7f; / * p2-7 = 0 */

while (WAIT != 0)

WAIT--;

sbuf = NODEID; /* transmit processor id*/

while((sp_stat & 0x20)!=0x20); /* wait to complete trans.*/

sbuf = Id->mach_no; /* transmit machine id*/

while((spstat & 0x20)!=0x20); /* wait to complete trans. */ 840

sbuf = (unsigned char) (ld->vs_loc >> 8); /* transmit loc hi */

while((sp_stat & 0x20)!=0x20); /* wait to complete trans. */

sbuf = (unsigned char) ld->vs_loc; /* transmit loc lo*/

while((spstat & 0x20)!=0x20); /* wait to complete trans. */

sbuf = (unsigned char) (acqtime >> 8); /* transmit acq_time hi */

while((spstat & 0x20)!=0x20); /* wait to complete trans. */

sbuf = (unsigned char) acq_time; /* transmit acq_time lo */

while((sp_stat & 0x20)!=0x20); /* wait to complete trans. */

sbuf = TIME_SC; /* transmit time_sc */

while((sp_stat & 0x20)!=0x20); /* wait to complete trans. */ 850

/* disable the LS125 tristate buffer */

ioport2 = ioport2 I 0x80; /* p2-7 = : TXD tristate enable */

/* TEST */

srout++;
/ END TEST */
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}

void t mode()

860

short init, *dat, i, j;

long int dc;

if (data_pos == 1) / * data2 has just been filled */

dat = data2;

else /* else datal has just been filled */

dat = datal;

init = *(dat+O);

sr_in = init;

for(i = 0; i < DATA_SIZE-4; i++) 870

{

dc = 0;

for(j = 0; j < 4; j++)

dc+= (long int) *(dat+i+j);

dc = (dc >> 2);

if((abs(((short) dc) - init)) > TDETECT)

temp_acq = nopofacq;

temp_add = dat+i;

while(mode); 880

new_acq = 0;

noof acq = 0;

return;

231

__



D.3 Code for Result Collation

/* p5_c1p. */

/ * For wide collaters, be careful with port 1: */

/* 1. Remove ls245; also disable it via port 2.6 */

/* 2. ONLY DECLARE AS USED THE LOADS THAT ARE ACTUALLY CONNECTED TO PORTI */

/* OTHERWISE THE COLLATER WILL SEE A ONE (A GOTCHA) ON THE UNUSED, BUT */

/ * DECLARED AS USED, PIN */

#pragma model(kc) 10

#pragma interrupt (nmi master_int = 31)

/* Slave Processor Code: Collection, collation and pc communication. */

/ * Suitable for any slave collater */

/* Assumes that vsecl in "load" structure has the vsec that occurs first ..*/

/ * in a data stream. That is order of vsecs must match order of occurence */

/ * of vsecs in reality. */

/ * REMEMBER to initialize which of the input lines are being used */

#include<80C196.h> 20

#define NODE_ID 5

#define DATA_SIZE 512

#define HSI1 0x01

#define HSI2 0x04

#deflne HSI3 0x10

#define HSI4 0x40

#define HSI_INPUTS 0 / * for HSIMODE register */

30

register char apple[15];

#pragma locate (apple = 0x30)

struct load{

unsigned char newhit; /* 1 means yes, 0 means no */

unsigned char used; /* is load used */

unsigned char got_proc; / * processor which got the final vsecs */
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unsigned char mach_no; /* name of load */

unsigned char time_scale; / * time scale of identification */

unsigned char vs_loc_hi; / *offst from begin. of inpt block of Lst vs / 40

unsigned char vs_loc_lo; / *offst from begin. of inpt block of Lst vs*/

unsigned char acq_time_hi; /* time of event */

unsigned char acq_timelo; /* time of event */

} 11, 12, 13, 14, 15, 16, 17, 18;

/* 11: hsil, 12: hsi2,....15: ioportl-1, 16: ioportl-3,...18: ioportl-7 */

#pragma locate (11 = Ox3000) /* HSIO 0 */

#pragma locate (12 = 0x3010) / * HSIO 1 */

#pragma locate (13 = 0x3020) / * HSIO 2 */ 50

#pragma locate (14 = 0x3030) /* HSIO 3 */

#pragma locate (15 = 0x3040) / * P1.0/1 */

#pragma locate (16 = 0x3050) / * P1.2/3 */

#pragma locate (17 = 0x3060) / * P1.4/5 t/

#pragma locate (18 = 0x3070) / * P1.6/7 */

unsigned short no_of acq; / *no of input acquisitions made so far*/

#pragma locate (noof acq = 0x3500) / *no of input acquisitions made so far*/

unsigned char anyhit; / * a load hit received */

#pragma locate (anyhit = 0x3502) 60

void sercomm(struct load *Id, unsigned char c, unsigned char portno);

void init(void);

unsigned char sr_in; /*Serial Comm to Collater routine entered*/

unsigned char srout; / *Serial Comm to Collater routine eited*/

#pragma locate (sr-in = 0x3516)

#pragma locate (srout = 0x3517)

/ ** NMI ISR **/ 70

void nmi_master_int(void)

{

noof acq++;

)
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main()

{

unsigned char i, tiosO; 80

/* Test Variables */

srin=O; srout=O;

/ * End Test Variable initialization*/

init();

while(1) / * poll all used loads for identification record*/

{

loadl:

if (11.used == 0)

goto load2; 90

if ((hsistatus & Ox02) == Ox02)

{

sercomm(&11,OxO1,0);

while ((hsistatus & Ox02) == Ox02);

tiosO = iosO; /* handshaking protocol */

wsr = OxOf;

iosO = t_iosO & Oxfe; /* handshaking completed*/

wsr = 0;

ll.newhit =1;

anyhit = 1; /* to tell PC that a hit was reported */ 100

load2:

if (12.used == 0)

goto load3;

if ((hsiLstatus & Ox08) == Ox08)

ser_comm(&12,0x02,0);

while ((hsi_status & Ox08) == Ox08);

tiosO = iosO; /* handshaking protocol */ 110

wsr = OxOf;

iosO = t_iosO & Oxfd; /* handshaking completed*/

wsr = 0;

12.new_hit =1;

anyhit = 1; /* to tell PC that a hit was reported */
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}

load3:

if (13.used == 0)

goto load4;

if ((hsistatus & Ox20) == Ox20)

{

ser_comm(&13,0x04,0);

while ((hsistatus & Ox20) == Ox20);

t_iosO = iosO; /* handshaking protocol */

wsr = OxOf;

iosO = t_iosO & Oxfb; /* handshaking completed*/

wsr = 0;

13.newhit =1;

anyhit = 1; / * to tell PC that a hit was reported */

load4:

if (14.used == 0)

goto load5;

if ((hsistatus & Ox80) == Ox80)

sercomm(&14,0x08,0);

while ((hsistatus & Ox80) == Ox80);

tiosO = iosO; /* handshaking protocol */

wsr = OxOf;

iosO = tiosO & Oxf7; /* handshaking cot

wsr = 0;

14.new hit =1;

anyhit = 1; /* to tell PC that a hit was 

load5:

if (15.used == 0)

goto load6;

if ((ioportl & OxO1) == OxO1)

ser_comm(&15,0x02,1);

while ((ioportl & OxO1) == Ox01);
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ioportl = ioportl & Oxfd; /* handshaking completed*/

15.new hit =1;

anyhit = 1; /* to tell PC that a hit was reported */

load6: 160

if (16.used == 0)

goto load7;

if ((ioportl & Ox04) == Ox04)

sercomm(&16,0x08,1);

while ((ioportl & Ox04) == Ox04);

ioportl = ioportl & Oxf7; /* handshaking completed*/

16.new hit =1;

anyhit = 1; /* to tell PC that a hit was reported */

170

load7:

if (17.used == 0)

goto load8;

if ((ioportl & OxlO) == OxlO)

{

sercomm(&17,0x20,1);

while ((ioportl & OxlO) == OxlO);

ioportl = ioportl & Oxdf; /* handshaking completed*/

17.new_hit =1; 180

anyhit = 1; /* to tell PC that a hit was reported */

load8:

if (18.used == 0)

continue;

if ((ioportl & Ox40) == Ox40)

{

ser_comm(&18,0x80,1);

while ((ioportl & Ox40) == Ox40); 190

ioportl = ioportl & Ox7f; /* handshaking completed*/

18.new_hit =1;

anyhit = 1; / * to tell PC that a hit was reported */
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}

}

}

void init(void)

{

unsigned char i;

noof_acq = 0;

ioportl = 0x55;

ioport2 = Ox3f; / * bits 6 and 7 are outputs */

/ * Port 2 initialization to suit jumper configurations: */

ioport2 = ioport2 I 0x80; /* p2-7 = 1: TXD tristate enable */

/*DIS A BLE (p2-6 =1) ioportl input buff. enable */

ioport2 = ioport2 I 0x40; /* p2-6 = 1: ioportl input buff. enable */

ioport2 = ioport2 & Oxdf; /* p2-5 = 0: TS Decomp. interrupt */

wsr = 1;

t2control = Ox1l;

wsr = 0;

hsi_mode = HSIINPUTS; /* hsi input event mode .. does not matter*/

iocO = 0x55; /* ObOl010101 */

iocl = Ox20; /* ObO0100000 */

hso command = OxOC; /*reset hso lines */

hso time = timerl + 10;

int_pending = 0;

intmask = Ox80;

baud_rate = 0x67;

baud_rate = Ox80;

spcon = Ox09;

i = sbuf;

enable();

i = sbuf;

anyhit = 0;

11.new hit = 0;

/ *initialize interrupts */

/* 10000000 */

/ * ser init */

/* dummy RECEPTION */

/* dummy RECEPTION */

/ *initially no hits */

/*initially no hits */
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12.new hit = 0;

13.new_hit = 0;

14.new_hit = 0;

15.new_hit = 0;

16.new hit = 0;

17.newhit = 0;

18.new hit = 0;

11.used = 1;

12.used = 1;

13.used = 1;

14.used = 1;

15.used = 1;

16.used = 0;

17.used = 0;

18.used = 0;

/ *initially no hits */

/ *initially no hits */

/*initially no hits */

/ *initially no hits */

/ *initially no hits */

/ *initially no hits */

/ *initially no hits */

/ ** 5 loads used here ** 240

/ ** 5 loads used here **/

}

250

/* routine which receives hit info from event detectors */

void sercomm(struct load *Id, unsigned char c, unsigned char portno)

u
unsigned char temp, tjioso, i;

/* A packet consists of:

/* 1. processor id

/* 2. machine id

/* 3. location hi byte

/* 4. location o byte

/ * 5. acq_time hi byte

/ * 6. acq_time lo byte

/ * 7 time_scale

*/

*/

*/

*/

*/

*/

*/

*/

260

/* TEST */

srin++;
/* END TEST */

temp = sbuf; / * dummy read */

temp = spstat; / *reset sp_stat by reading it */ 270
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if(portno) /* continue handshaking protocol with slave.. */

ioportl = ioportl I c; /* via port 1 or.. */

else

I
t_iosO = iosO;

wsr = OxOf;

iosO = tiosO I c;

wsr O0;

while((sp_stat & Ox40)!=Ox40);

Id->got-proc = sbuf;

while((spstat & Ox40)!=Ox40);

Id->mach no = sbuf;

while((sp_stat & Ox40)!=Ox40);

Id->vs lochi = sbuf;

while((spstat & Ox40)!=0Ox40);

ld->vsloclo = sbuf;

while((spstat & Ox40)!=Ox40);

Id->acq_time_hi = sbuf;

while((spstat & Ox40)!=Ox40);

Id->acq_time lo = sbuf;

while((sp stat & Ox40)!=Ox40);

Id->time_scale = sbuf;

/ * via hsio line */

280

/* wait for complete rec. */

/* transmitted processor id*/

/* wait for complete rec. */

/* transmitted machine id*/

/* wait for complete rec. */

/ * transmitted vs location (hi)*/

/ * wait for complete rec. */

/* transmitted vs location (lo)*/

/* wait for complete rec. */

/ * transmitted acq time hi t/

/ * wait for complete rec. */

/ * transmitted acq time lo /

/* wait for complete rec. */

/* transmitted time scale*/

290

for( i = O; i < 20; i++);

/* TEST */

sr-out++;

/ * END TEST */

300

}
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D.4 Batch File for Code Compilation

The following batch file invokes the compiler (IC-96), the relocater and linker utility (RL-

96), and the output-to-hex converter (OH). Carefully note the directory where it expects

to find the source file and the directories where the final files are placed.

@c:\ic96\bin\ic96 %1.c debug

8c:\ic96\bin\rI96 c:\ic96\lib\cstart.obj, %l.obj, c:\ic96\lib\c96.1ib to c:\ecm\out\%l.out stacksize(+10) purge

@c:\ic96\bin\oh c:\ecm\out\%l.out to c:\ecm\hex\%l.hex

@c:\ic96\bin\oh c:\ecm\out\%l.out to c:\umair\animal\%l.hex
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Appendix E

Software for the Host PC

Interface

We include in this appendix the software developed to implement ECM, the PC Interface. In

addition, the assembly code added (and other changes made) to the 80C196KC Evaluation

Board's RISM to obtain the MLM RISM, are discussed in Section E.2.

E.1 ECM Code

/* ECM4. c: Host PC Interface for the ANIMAL */

/* Version 4.4d */

/*Date: Apr. 24, 1995 */

/* ECM2 Additions: */

/ * Download collater code to all 16 processors automatically */

/* update hits in a history file */

/* ECM3 Additions */

/ * automatic template loading */ 10

/* Additions in ECM4 */

/* automate load name collection and collater selection in collater mode */

/ *#include <stdio.h>

#include <stdlib.h>

#include <bios.h>
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#include <conio.h>

#include <graph.h> */

20

#include "2globcon. h" / * for graphical display */

#-i:nclude "2globvar. h" / * for graphical display *1

/ * RISM COMMANDS */

#dlefine SET DLEFLAG 0x00

#dlefine TRANSMIT 0x02

#dLefine READ-BYTE 0x04

#define READ WORD 0x05

#define WRITEBYTE 0x07

#define WRITE_WORD 0x08 30

#define LOAD_ADDRESS OxOA

#define READ_PSW 0x0C

#define WRITEPSW OxOD

#define READSP OxOE

#define WRITE_SP OxOF

#define READ PC Ox10

#define WRITE PC Oxll

#define GO 0x12

#define HALT 0x13

#define REPORT_STAT 0x14 40

#define RESET 0x15

/ * For JDR I/O Card Access */

#define MAX RANGE 0x300

#define IOBASE_ADDR 0x300

#define SLAVE_NODE (IOBASEADDR + 0x04)

#clefi:ne REGA_8255 (IOBASEADDR + 0x00)

#cdefine REGB_8255 (IOBASEADDR + 0x01)

#cdefine REGC 8255 (IOBASEADDR + 0x02)

#clefine CONT_8255 (IOBASEADDR + 0x03) 50

#dlefine MASTER_SET (IOBASE_ADDR + 0x08)

#define COM1_CONT Ox3FC

#dlefine MODE_8255 0x93

#d[efine SETFETCH outp(CONT_8255,0x0B);} /* CONTROL BYTE TO SET FETCH:PC5 */

#define CLRFETCH outp(CONT_8255,0XOA);} / * CONTROL BYTE TO RESET FETCH:PC5 */
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SETMODE {outp(CONT8255,0x09);} /* CONTROL BYTE TO SET MODE:PC4 */

CLRMODE {outp(CONT_8255,0x08);} / * CONTROL BYTE TO RESET MODE:PC4 */

#define MISC_MASK

#define DAV_MASK

#define LOADS

#define NUM_SCALE

#define LOADNUM

#define COLL_NUM

#define HIADDR

#define HI_MODE_LOC

#define LO_MODE_LOC

#define ADD HI HIT

#define ADD_LO_HIT

#define CHK_WAIT

#define NUM PROCS

void normal();

void echo();

void glueio();

void masterio();

void master-set();

void slave_set();

void rstslave();

void resetit();

void coll_comm();

void init_proc();

0x02 / ** misc is input pc1 **/

0x01 /** dav is input pcO**/

0x08

0x02

(LOADS * NUM_SCALE) /*LOADNUM=LOADSzTIMESCALES*/
0x04

0x30

0x35

0x04

/* high addr byte for packets in collaters */

/ * High Addr. for "mode" in slaves */

/* Low Addr. for "mode" in slaves */

0x35 / * high addr for hit byte in collaters */

0x02 /* low addr for hit byte in collaters */

200000 /* wait in CHECK STATUSO */

16

/* for main menu selection 1*/

/ * for main menu selection 2*/

/ * for main menu selection 3*/

/ * for main menu selection 4 */

/ * for main menu selection 5*/

/ * for main menu selection 6*1

/* for main menu selection 6.3*/

/* subroutine performing reset*/

/* for main menu selection 7*/

/ * for main menu selection 9*/

void loadfile(); / * for main menu selection 1.1 */

void load_it(FILE *infile); /* subroutine performing reset*/

void tempo; / * for main menu selection 1.2*/

void loadtemp(; /* for main menu selection 1.2.1*/

void temp_it(unsigned char addhi, unsigned char add lo, FILE *infile);

void read_range(); / * for main menu selection 1.5*/

void poke_mem(; / * for main menu selection 1.6*/

void make_temp(; / * for main menu selection 1.2.2*/
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/* support routines for rism comm. $/

void load_data(unsigned char lobyte, unsigned char hi-byte);

void load_addr(unsigned char obyte, unsigned char hibyte);

void loadpc(unsigned char lo byte, unsigned char hi_byte);

void load psw(unsigned char lo byte, unsigned char hibyte); 100

unsigned char gethex(FILE *infile);

void CHECK_STATUS(); /* chack status of coml */

void REC_WAIT(; / * wait for reception of data from MLM slave */

void DELAY(); /* delay between successive polling of collaters etc. */

void DELAY2(); /*used in coll_comm() to wait until all hits are received */

int runstat(; /* check status to see if program running */

unsigned int readsfr(; /* read SFR: SP, PC, PSW */

/* support routines for retrieving hit info and master board data: */

110

/* subroutine for retrieving hit info data: */

void get_hit(unsigned char loaddr, int collater);

void getbyte();

void update(); /* update contacts in contacts.tzt */

void history(); / *update history. tzt with latest hit */

void armed(); /* collater communication mode */

void wait_exit();

void get_16sec(unsigned int bar); /* retrieve last several seconds of.. */
/* .. acquired data from master */ 120

void mark(); /* external function: */

/* collater communication global variable */

unsigned comlstat;

unsigned long chk wait; /*

unsigned char cur proc; / * currently selected processor */

unsigned char numcoll; / * number of collaters */

unsigned char id[COLL_NUM]; /* collater+load array

unsigned char msmode; / *master mode */ 130

/* A packet, sent on a load hit, consists of: */

/* 0. hit? */
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/* 1. machine id */

/* 2. time_scale */

/* 3. location hi byte */

/* 4. location lo byte */

/* 5. acq_time hi byte */

/* 6. acq_time lo byte */ 140

/* IN ADDITION, THE COMPILED RECORD CONSISTS OF:*/

/* 7. current time */

struct load-hit{

unsigned char ld_hit; /* load found */

char name[10]; / *load id */

unsigned char loadid; / *load id */

unsigned char scale; / * time scale */

unsigned char hiloc; /*offset from begin. of inpt block for Lst vs*/

unsigned char lo_loc; / *offset from begin. of inpt block for Lst vs*/ 150

unsigned char hi_time; /* acq time of event */

unsigned char lo_time; /* acq time of event */

unsigned int cur_time; /* current acq time */

}packet [COLL_NUM] [8];

main()

{

char mode;

160

bios serialcom(_COMINIT,,(COM CHR8 I COMNOPARITY I _COMSTOP1 I _COM_9600));

outp(CONT8255, MODE_8255); /* INITIALIZE PC COMM PORTS ON 8255 ETC. */

CLRFETCH;

CLRMODE;

for(;;)

_clearscreen(_GCLEARSCREEN);

printf(" \\n----- ---- ---------------
printf("\t\tECM version 4.4 \t April 12, 1995");

printf("\n\n--------------------------------------------------------------------- \n\n);
printf("\n\n******************* MAIN MENU**************\n\n");

printf("\n\nl. Slave Communication\n");
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printf("2. Slave Diagnostic/Echo\n");

printf("3. Slave Processor Selection\n");

printf("4. Data from Master\n");

printf("5. Master Acquisition Mode Setup\n");

printf("6. Slave Mode Selection\n");

printf("7. Collater Communication\n");

printf("8. Display Channel Data\n");

printf("9. Initialize Slave Processors\n");

printf("E. Exit ECM\n\n");

scanf("%c", &mode)

switch (mode)

{

case '1':

normal();

break;

case '2':

echo();

break;

case '3':

glueio();

break;

case '4':

master io();

break;

case 5'

master_set O;

break;

case '6' 
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slaveset();

break;

case '7' :

coll_comm();

break;

case '8':
mark();

break;

case '9':
init_proc();

break;

case 'e' :

return 0;

220

230

/ * menu selection 2 */

void echo()

{

unsigned int ij;

unsigned char ch, chl;

clearscreen(_GCLEARSCREEN); 240

/ * Echo mode */

printf("\n\n******************* ECHO MODE ******************\n\n");

printf("\n\nThis is the Echo Mode. Characters entered are echoed on the board. \n");

printf("A '\\' or '/' returns you to the main menu. \n\n");

ch = run stat();

if (ch == 1)

{

printf("\n\n\t**** Processor %d

printf("\t**** Press Any Key To

Is Running ****\n", curproc);

Exit ****\n");
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while (!kbhito);

ch = getch();

return;

printf("\nResetting Processor d..n 1", cur-proc);

loaddata(1,0);

CHECK STATUS();

_bios_serialcom(_COM_SEND,0, RESET); 260

/* wait */

for (j = 0j < 600; j++)

for (i = 0; i < 32000; i++);

printf("\nProcessor /.d Reset", cur_proc);

chl =_bios_serialcom(_COMRECEIVE,0,0); /* Dummy Read */

while(l)

printf("\nlnput Character to be displayed by ecm\n"); 270

printf("\n* ");

ch = getchar();

if (ch == '\n')
ch = getchar();

if ((ch== '/')II (ch== '\\'))
break;

_bios serialcom(_COM SEND,0, ch);

RECWAIT(; 280

chl =-biosserialcom(_COMRECEIVE,0,0);

printf("Character Sent = c (%x). Character Received = %x.\n\n", ch, ch, chl);

/* menu selection 1 */

void normal()

{

unsigned int ij, m; 290
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/ * Check if user running. If not then remap to user */

i = run stat();

if(i != 1)

{

CHECK_STATUS();

_bios_serialcom(_COMSEND,O, '\\'); / *user mapped */

for(;; ) 300

{

_clearscreen(_GCLEARSCREEN);

printf("\n\n\n\t************ Normal Mode of Execution *************\n\n");

printf("\n\n\nl. Load File \n");

printf("2. Template Management\n");

printf("3. Go\n");

printf("4. Halt\n");

printf("5. Read Range\n");

printf("6. Poke Memory\n"); 310

printf("7. Reset Processor Zd\n", curproc);

printf("8. Reset Processor Xd and Remap to User\n", curproc);

printf("9. Quit\n\n");

m = getchar();

if (m == '\n')
m = getchar();

i = 0;

switch(m) 320

{

case '1' :

/* Check if user running. If so then cannot load */

i = run stat();

if (i == 1)

{

printf("\n\nProgram Running - Command Ignored. \n");

wait_exit();

break;
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loadfile();

break;

case '2'

tempO;

break;

case '3':
i = run stat();

if (i == 1)

{

printf("\n\nProgram Running - Command Ignored.\n");

wait-exit();

break;

}

CHECK_STATUS();

_bios serialcom(_COM_SEND,0, GO);

break;

case4' :
CHECK STATUS();

_biosserialcom(_COM_SEND,O, HALT);

break;

case '5':

read_range();

break;

case '6':

pokemem();

break;

case '7':

printf("\n\nResetting Processor %d...", curproc);

loaddata(1,0);

CHECKSTATUS();

_biosserialcom(_COM_SEND,0, RESET);

/ * wait */
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for (j = Oj < 600; j++)

for (i = 0; i < 32000; i++); 370

printf("\n\nProcessor %d Reset. o", cur proc);

waitexit();

break;

case '8':

printf("\n\nResetting Processor d...", curproc);

loaddata(1,0);

CHECKSTATUS();

_bios_serialcom(_COM_SEND,0, RESET);

/* wait */ 380

for (j = 0;j < 600; j++)

for (i = 0; i < 32000; i++);

_biosserialcom( COM_SEND,0, '\\'); /*user mapped */

printf("\n\nProcessor %d Reset and Memory Mapped to User.\n", curproc);

waitexit();

break;

case '9':

return;

390

/* menu selection 1.1 */

void loadfile()

int i;

char fname[20];

FILE *fopen(), *inf; 400

printf("Enter '.hex' file to be loaded by ECM: ");

scanf("Ys", fname);

if ((inf = fopen(fname, "r")) == NULL)

printf("\n\nCannot access file 'Ys'\n", fname);

waitexit();
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return;

printf("\nLoading File into Target RA..."); 410

loadit(inf);

printf("\n\nProgram Loaded. \n");

fclose(inf);

waitexit();

void loadit(FILE *inf)

{

int i;

unsigned char temp, count, type, add-hi, add_lo; 420

while (1)

temp = getc(inf);

if (temp != ': ')

printf("\n\nERROR: File not in HEX Format. Exiting.\n");

waitexit();

return;
430

count = gethex(inf);

add-hi = gethex(inf);

addlo = gethex(inf);

type = gethex(inf);

if (type == 0x01)

break;

load_addr(add_lo, addhi);

for (i = 0; i < count; i++) 440

{

temp = gethex(inf);

CHECKSTATUS();

bios serialcom(_COMSEND,0, SETDLEFLAG);

CHECKSTATUS();

_biosserialcom(_COM SEND,0, temp);
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CHECK_STATUS();

bios serialcom( COM_SEND,O, WRITEBYTE);

temp = gethex(inf); /* checksum */ 450

temp = getc(inf); /* newline or carriage return */

/* Reset User PC and User PSW */

load pc(0x80,0x20);

loadpsw(0x80,0x02);

/* menu selection 9 * 460

void initproc()

{

int i, j;

FILE *fopen(, *inf, *flist, *tlist;

char fname[15], tname[15],k;

_clearscreen(_GCLEARSCREEN);

printf("\n\n\n\t******** Processor Initialization ********\n\n");

printf("\nTo EXIT: Press 'e' and ENTER.\n"); 470

printf("\nTO INITIALIZE: Press any other key and then hit ENTER. ");

scanf("/,c", &k);

scanf("%c", &k);

if (k == 'e')
return;

/* make sure procfile.tzt is present: */

if ((flist = fopen("procfile.txt", "r")) == NULL)

{ 480

printf("\n\nCannot access file 'procfile.txt'\n");

fclose(flist);

waitexit();

return;

}
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/* make sure proctemp. tzt is present: */

if ((tlist = fopen("proctemp.txt", "r")) == NULL)

{

printf("\n\nCannot access file 'proctemp.txt'\n"); 490

fclose(tlist);

waitexit();

return;

reset_it(); / resetting all slaves */

for (j = 0;j < 500; j++)

for (i = 0; i < 32000; i++); /* Wait */

CHECKSTATUS();

outp(SLAVE_NODE, 0); / * select it first*/ 500

for (j = 0;j < 500; j++)

for (i = 0; i < 32000; i++); /* Wait */

printf("\n\n");

for(i = 0; i < NUMPROCS; i++)

{

CHECK_STATUS();

if(i != 0)

outp(SLAVE_NODE, i); 510

DELAY();

DELAY();

j = runstat();

if(j != 1)

CHECK-STATUS();

_bios_serialcom(_COM_SEND,O, '\\'); / *user mapped */

printf("\nSlave %d User-mapped.\n",i);

}

printf("Initializing Slave d:", i); 520

fscanf(flist,"X.s", fname);

printf("\nLoading file %s into Slave .d... ",fname,i);

if ((inf = fopen(fname, "r")) == NULL)
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printf("\n\nCannot access file 's' \n",fname);

waitexit();

return;

}

load_it(inf);

fclose(inf);

/ * load template */

for(k = 0x36;; k= k+2)

{

fscanf(tlist,"Xs", fname);

if(strcmp(fname,": end") == 0)

break;

printf("\nLoading Template %s at Oxx00

if ((inf = fopen(fname, "r")) == NULL)

{

printf(" \n\nCannot

waitexit();

return;

}

tempit(k, 0x00, inf);

fclose(inf);

CHECK_STATUS();

biosserialcom( COMSEND,0, GO);

printf("Done. \n");

CHECKSTATUS();

outp(SLAVENODE, cur-proc);

printf("\nSlave Modules Initialized\n");

fclose(flist);

fclose(tlist);

wait_exit();

/* menu selection 1.2 */

void tempo

in Slave .d... ",fname,k,i); 540

access file '%s'\n", fname);

550

560
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unsigned char data, i, m;

_clearscreen(GCLEARSCREEN);

printf("\n\n\t ************* Template Management ***************\n\n");

printf("\n\n\nSelect Function:\n\n");

printf("l. Load Template File\n");

printf("2. Convert Raw Data to Template\n");

printf("3. Exit \n\n");

m = getchar();

if (m == ' \n')
m = getchar();

switch(m)

case '1' :

loadtemp();

break;

case '2':

make_temp();

break;

case '3':

return;

/* menu selection 1.2.1 */

void loadtemp(

unsigned int addr;

char fname[20];

unsigned char addhi, add_lo,temp, temp2;

FILE *fopen(, *inf;

600

printf("Enter Template (.tmp) File to be loaded: ");

scanf("%s", fname);
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if ((inf = fopen(fname, "r")) == NULL)

{

printf("\n\nCannot access file '%s'\n", fname);

waitexit();

return;

}

printf("Enter Address (in hex) at which Template is to be loaded: ");

scanf("%x", &addr); 610

add_hi = ((unsigned char) (addr>>8));

add_lo = ((unsigned char) addr);

tempjt(addhi, add_lo, inf);

printf("\n\nTemplate Loaded. \n");

waitexit();

fclose(inf);

}

620

void tempit(unsigned char addhi, unsigned char addlo, FILE *inf)

{

unsigned char temp, temp2;

load_addr(add_lo, add_hi);

while(l)

temp = getc(inf);

if (temp != ':')

break;

temp = gethex(inf); /* MSB-- sent later */

temp2 = gethex(inf); /* LSB-- sent first */

loaddata(temp2,temp);

CHECK_STATUS();

bios_serialcom(_COM_SEND,O, WRITE_WORD);

temp = getc(inf); /* Carriage Return */

}
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/ * menu selection 1.2.2 */

void maketemp()

{

long accum=0;

int value[256],dc;

unsigned int i, j;

char fname[20], f2name[20];

unsigned char temp, temp2;

FILE *fopen(), *inf, *outf;

printf("\n\nEnter Raw Data File Name: ");

scanf(",s", fname);

printf("\n\nEnter Output Data File Name:

scanf("7 s", f2name);

650

I");

if ((inf = fopen(fname, "r")) == NULL)

{

printf(" \n\nCannot

wait_exit();

return;

for(i=0; ; i++)

{

temp = getc(inf);

if (temp != ':')

break;

temp = gethex(inf);

temp2 = gethex(inf);

value[i] = 0;

value[i] = temp;

value[i] = ((int) ((value[i]

accum = accum + value[i]

temp = getc(inf);

access file '.s'\n", fname);

660

/ * MSB-- sent later */
/ * LSB-- sent first */

<< 8) + temp2));

670

}

fclose(inf);

outf = fopen(f2name, "w");

dc = (int) ((accum * (16384/i)) >> 14);

for(j = 0; j < i; j++) 
680
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{

value] = valueU] - dc;

temp = (unsigned char) valuej];

temp2 = ((unsigned char) (valuej] >> 8));

fprintf(outf," :%2.2XY.2.2X\n",(int) temp2, (int) temp);

}

fprintf(outf, "END\n");

fprintf(outf,"\n\n\nStatistics on Template:\n\n");

fprintf(outf,"Size = %d\n", i);

fprintf(outf,"Sum = %d\n", accum); 690

fprintf(outf,'"DC value = %d\n",dc);

fclose(outf);

printf("\n\n Template Data stored in '%,s .", f2name);

wait_exit();

/ * subroutine for reading hex data from .tmp file */

unsigned char gethex(FILE *infile)

{

unsigned char ch[2], t, num=0; 700

fscanf(infile, "%2s", ch);

for (t = 0; t< 2; t++) /* Convert both ascii digits to one hex num */

{

if (ch[t] > Ox40)

ch[t] = ch[t] - 55;

else

ch[t] = ch[t] - 48;

num = ch[l] + (ch[O] << 4); 710

return(num);

/ * menu selection 1.5*1

/ * subroutine for reading data from slave / *

void read_range()

unsigned char com2_stat, lo_byte, hi_byte, range[MAX_RANGE],k;

short int i, j, st_add, end_add, maxindex, temp;
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FILE *fopen(), *outf; 720

char fname[20];

printf("\nStart Address (in Hex): ");

scanf("x", e3stadd);

printf("\nEnd Address (in Hex): ");

scanf("%ox", _endadd);

i = (endadd - st_add);

if ((i > MAX_RANGE) II (i < 0))

{

printf("\nERROR: Illegal Address Range."); 730

waitexitO;

return;

lo_byte = (unsigned char) st_add;

hi_byte = (unsigned char) (st_add >> 8);

load_addr(lobyte, hi-byte);

range[0] =-bios_serialcom(_COM RECEIVE, 0, 0); / * dummy read */

for(i = stadd, j = 0; i <= endadd; i++, j++)

{ 740

getbyte();

rangelj] =_bios_serialcom(_COMRECEIVE,0,0);

maxindex = j;

printf("\nRead Operation Completed. Press Any Key to display data...\n\n");

while (!kbhit());

k = getch();

clearscreen(_GCLEARSCREEN);

for(i = 0; i < max-index; ) 750

{

printf("\nY,4x:\t ", (st_add+i));

for (j = 0; (j < 16) && (i < maxindex); j++, i++)

printf("%2. 2x ",range[i]);

printf("\n\nDo you want to Dump Data to a file [n]? ");

scanf("c", &k);
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scanf("Y.c", &k);

if (k != 'y') 760

return;

printf("\nEnter File Name: ");

scanf("%s", fname);

outf = fopen(fname, "w");

fprintf(outf,"\nADDR:\t\t\t 16 bytes of Data (LSB First)\n");

fprintf(outf," -------------------------- \n);
for(i = 0; i < max_index; )

{

fprintf(outf,"\n.4X: \t ", (st_add+i)); 770

for (j = 0; (j < 16) && (i < maxindex); j++, i++)

fprintf(outf,"X2.2X ", range[i]);

fclose(outf);

printf("\n\n Data stored in file '.s. "', fname);

waitexit();

/* menu selection 1.6*/ 780

void pokemem()

{

unsigned int reg, m;

for(;; )

{

clearscreen(_GCLEARSCREEN);

printf("\n\n\n\t***** Read Special Function Registers *****\n");

printf("\n\n\nl. Fetch SP \n");

printf("2. Fetch PC \n"); 790

printf("3. Fetch PSW \n");

printf("4. Exit\n\n");

m = getchar();

if (m == '\n')
m = getchar();
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switch(m)

case ' 1 : 800

reg = read_sfr(READ_SP);

printf("\n\n SP = %x ", reg);

break;

case '2':
reg = readsfr(READPC);

printf("\n\n PC %x ", reg);

break;

case '3': 810

reg = read_sfr(READ_PSW);

printf("\n\n PSW = %. ", reg);

break;

case'4':
return;

I
wait_exit();

820

/* read in Special Function Registers, SFRs, in menu 1.6*/

unsigned int read_sfr(unsigned char comname)

{

unsigned int sreg = 0;

unsigned char lsb_ch;

lsb_ch =bios_serialcom(_COM_RECEIVE,0,0); /* Dummy Read */

CHECK_STATUS(; 830

_biosserialcom(_COMSEND,0, com_name);

CHECK_STATUS();

_bios_serialcom(_COM_SEND,0, TRANSMIT);

RECWAIT();

lsb_ch =_bios serialcom(_COMRECEIVE,0,0);

CHECK_STATUS();
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biosserialcom( COM_SEND,0, TRANSMIT);

RECWAIT();

sreg =bios serialcom(_COMRECEIVE,0,0);

sreg = sreg << 8; 840

return(sreg + Isbch);

void loaddata(unsigned char lo byte, unsigned char hi.byte)

CHECK_STATUS();

biosserialcom(_COM_SEND,O, SETDLE_FLAG);

CHECK_STATUS();

_biosserialcom(_COM_SEND,O,hi_byte); 850

CHECK STATUS();

biosserialcom( COM_SEND,0, SETDLE_FLAG);

CHECK_STATUS();

_biosserialcom( COMSEND,0,lo byte);

void load_addr(unsigned char lo_byte, unsigned char hi-byte)

loaddata(lobyte, hibyte);

CHECK_STATUS(); 860

bios_serialcom( COM_SEND,0, LOADADDRESS); / *load RAM addr*/

void loadpc(unsigned char lo_byte, unsigned char hibyte)

{

load_data(lo-byte, hibyte);

CHECKSTATUS();

_bios serialcom( COMSEND,0, WRITEPC);

870

void loadpsw(unsigned char lo_byte, unsigned char hi_byte)

{

loaddata(lobyte, hibyte);

CHECKSTATUS();

biosserialcom( COM_SEND,0, WRITEPSW);
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void CHECKSTATUS()

{ 880

/* check status before sending data to the board or selecting... */

/* a new node */

for(chk wait = 0; chkwait < CHK_WAIT ;chk_wait++)

{

coml_stat = bios_serialcom(_COM_STATUS,0,O);

if ((coml_stat & 0x6000) == 0x6000)

return;

printf("\nTRANSMISSION FAILED! \n");

printf("COULD NOT COMMUNICATE WITH TARGET PROCESSOR.\n"); 890

printf("PLEASE CHECK HARDWARE ETC., AND RETRY.\n");

void REC_WAIT()

{

for(chk_wait = 0; chk_wait < CHK_WAIT ;chkwait++)

{

coml_stat = bios_serialcom( COM_STATUS,0,0);

if((coml_stat & OxO100) == OxO100)

return; 900

printf("\nRECEPTION FAILED! \n");

printf("COULD NOT COMMUNICATE WITH TARGET PROCESSOR.\n");

printf("PLEASE CHECK HARDWARE ETC., AND RETRY.\n");

int runstat()

{

/ * check status to see if program running */

910

comlstat = _biosserialcom(_COM_STATUS,O,0);

if ((comlstat & 0x0040) == 0x0040)

return(l);

else
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return(O);

/* for main menu selection 3*/ 920

void glue_io()

{

int dataO;

unsigned char data, i;

_clearscreen(_GCLEARSCREEN);

printf("\n\n\t **************** NILM Processor Selection ***************\n\n");

for(; ;)

{ 930

printf("\n\n\nEnter Processor No. (00 to 255): ");

scanf("Y.d", &dataO);

if ((dataO > 255) 11 (dataO < 0))

{

printf ("\n\nInvalid Processor No. d\n", dataO);

continue;

data = data0;

outp(SLAVE_NODE, data); 940

cur_proc = data;

printf("\nProcessor Ed selected for communication.", data);

printf("\n\nDo you want to Exit to Main Menu y]? ");

scanf("%c", &i);

scanf("Xc", &i);

if (i != 'n')

return;

950

/ * for main menu selection 4 */
void master io()
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{

unsigned char data, i;

unsigned int j;

outp(CONT_8255, MODE_8255);

960

clearscreen(_GCLEARSCREEN);

printf("\n\n ************* NILM MASTER BOARD INTERFACE **************\n\n");

printf("\n\nTo EXIT: Press 'e' and ENTER.\n");

printf("\nTO ACQUIRE DATA: Press any other key and then hit ENTER. ");

scanf("Xc", &i);

scanf("%c", &i);

if (i == 'e')
return;

printf("\n\n Acquiring data from Master Board...");

get_l6sec(0); /* 10240 */ 970

printf("\n\nData placed in files: chl.dat, ch2.dat,..., ch8.dat\n");

wait exit();

/* retrieve last several seconds of acquired data from master */

void get_l6sec(unsigned int barrier)

{

unsigned long i;

short int reg_a = 0, reg-b = 0;

unsigned short int t = 0; 980

unsigned char data, rega_lsb, reg_b_lsb, reg_a_msb, reg_b_msb;

FILE *fopen(, *chl, *ch2, *ch3, *ch4, *ch5, *ch6, *ch7, *ch8;

chl = fopen("chl.dat", "v");

ch2 = fopen("ch2.dat", "w");

ch3 = fopen("ch3.dat", "");

ch4 = fopen("ch4.dat", "w");

ch5 := fopen("ch5.dat", "w");

ch6 = fopen("ch6.dat", "w");

ch7 = fopen("ch7.dat", "v"); 990

ch8 = fopen("ch8.dat", "w");
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SET'MODE

while (1)

{

data = inp(REGC_8255);

if (data & MISC_MASK)

break;

}

/ 4* **SETET CH****/

for (i = 0; i < 16384; i++)

{

/* output PC MODE */
/* wait PCMISC */

/ * Assert FETCH */ / *FIRST ASSERTION*/

/ **TEST**// * Assert FETCH */
/* wait DAV */

data = inp(REGC 8255);

if (data & DAV_MASK)

break;

}

reg_a_lsb = inp(REGA_8255) & Ox3f;

reg_blsb = inp(REGB_8255) & Ox3f;

CLRFETCH

while (1)

data = inp(REGC 8255);

if (!(data & DAV_MASK))

break;

SETFETCH

while (1)

{

data = inp(REGC_8255);

if (data & DAV_MASK)

break;

regamsb = inp(REGA_8255) & Ox3f;

regb_msb = inp(REGB_8255) & Ox3f;

CLRFETCH / *

while (1) /*

{

1010

/ * fetch lsb data */

/* Assert !FETCH */

/* wait DA V */

/* Assert FETCH */
/* wait DAV */

/* fetch msb data */

Assert !FETCH */

wait !DAV */

1020

1030
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while (1)

{
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data = inp(REGC_8255);

if (!(data & DAVMASK))

break;

}

/ * start next point retrieval while storing current point in file */

/ **** SETFETCH ***/ * Assert FETCH */

if (i < barrier)

continue; 1040

t =0;

t = reg_a_msb << 2; /* form,
if (t > 127)

t+= OxffO0;

reg_a = (t << 4) + reg_alsb;

t = 0;
t = reg_b_msb << 2; /* form,
if (t > 127)

t+= OxffO0;

reg_b = (t << 4) + reg_blsb;

t = (unsigned short int) i%4;

switch(t)

{ / *place

case 0:

fprintf(chl,"Xd\n", rega);

fprintf(ch5,"Zd\n", regb);

break;

case 1:

fprintf(ch2,"Xd\n", rega);

fprintf(ch6,"'d\n", regb);

break;

case 2:

fprintf(ch3,"Yd\n", reg a);

fprintf(ch7,"X.d\n", reg b);

break;

case 3:

fprintf(ch4,"%d\n", rega);

at data */

at data */

1050

data in .dat files */

1060

1070
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fprintf(ch8,"X/,d\n", regb);

break;

}

CLRFETCH /* Assert !FETCH */

CLRMODE /* output !PC_MODE */

while (1) /* wait !MISC /

data = inp(REGC_8255);

if (!(data & MISC_MASK))

break;

fclose(lchl);

fc]ose(ch2);

fc]ose(ch3);

fclose(ch4);

fclose(ch5);

fclose(ch6);

fclose(ch7);

fclose('ch8);

}

1080

1090

/ * for main menu selection 5*/

void master set()

unsigned char data, i, m;

outp(CONT_8255, MODE_8255);

1100

_clearscreen(_GCLEARSCREEN);

printf("\n\n\t ************* MASTER MODE SET UP

if(msmode == 1)

printf("\n**

else

Master is in Acquisition Mode **\n");

printf("\n** Master is in Sleep Mode **\n");

printf("\n\n\nSelect Function: \n\n");
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printf("1. Place Master Board in Acquisition Mode\n");

printf("2. Place Master Board in Sleep Mode\n");

printf("3. Exit \n\n");

m = getchar();

if (m == '\n')
m = getchar();

switch(m)

{

case '1':
outp(MASTER_SET,O);

msmode = 1;

break;

case '2':
outp(MASTERSET,1);

msmode = 2;

break;

case '3':
return;

waitexit();

/* for main menu selection 6*/

void slave_set()

u
unsigned char data, i, m;

1110

1120

1130

1140

clearscreen(GCLEARSCREEN);

printf("\n\n\t ************* SLAVE MODE SET UP ***************\n\n");

printf("\n\n\nSelect Function: \n\n");

printf("1. Place Slave Modules in Template Acquisition Mode\n");

printf("2. Place Slave Modules in Normal Function Mode\n");

printf("3. Reset All Slave Processers\n");

printf("4. Exit \n\n");
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m = getchar();

if (m == '\n')
m = getchar();

switch(m)

{

case '1' '

for(i = 0; i < 32; i++)

{

CHECK_STATUS();

outp(SLAVENODE, i);

DELAY();

load_addr(LO_MODELOC,HI_MODE_LOC);

load_data(1,0);

CHECK STATUS();

biosserialcom(_COMSEND, 0, WRITEBYTE);

}

outp(SLAVENODE, curproc);

printf("\nSlave Modules in Template Acquisition Mode\n");

break;

case '2' :

for(i = 0; i < 32; i++)

{

CHECK STATUS();

outp(SLAVE_NODE, i);

DELAY();

load_addr(LO_MODE_LOC,HIMODE_LOC);

load_data(0,0);

CHECK STATUS();

bios_serialcom (_COMSEND,0, WRITE_BYTE);

outp(SLAVENODE, cur_proc);

printf("\nSlave Modules in Normal Mode\n");

break;

case '3' :

rstslave();

break;
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case '4' :

return; 1190

waitexit();

/* pause for user input before eitting from submenu */

void wait_exit()

{

char ch;

printf("\nPress Any Key To Continue... \n"); 1200

while (!kbhitO);

ch = getch();

/* within menu 6, reset slaves */

void rstslave()

{

unsigned char k;

_clearscreen(_GCLEARSCREEN); 1210

printf("\n\n ************* RESET ALL SLAVE PROCESSORS *************\n\n");

printf("\n\n\n Are you sure you want to reset all slave processors n]? ");

scanf("Y.c", &k);

scanf("Y'c", &k);

if (k != 'y')

return;

/* used within rst_slaves and processor initializtion */

resetit();

} 1220

void reset_it(

{

int ij, numcoll;

unsigned char cont_data;

printf("\n\n Resetting Processors....\n");

272



cont_data = inp(COM1_CONT); /* toggle DTR(Init) line to affect reset*/

cont_data = cont_data & Oxfe;

outp(COMlCONT, cont_data);

cont_data = cont_data 0x01; 1230

for (j = 0;j < 500; j++) /* Wait */

for (i = 0; i < 32000; i++);

outp(COM1_CONT, cont_data);

printf("\n\n\nAll Processors Reset. \n");

void coll_comm()

{

/* This routine places the host in a communication loop with the collater */

/ * slaves. It checks if there is a hit. If so, it gets the hit info, */ 1240

/ * processes it for interscale lockout. It then calls upon the Master to */

/* send it the last 16 seonds of data and then calls a viewing utility. HAVE */

/* MADE THE MASTER COMM PROCEDURE INTO A SUBROUTINE SO THAT IT CAN BE DONE */

/ *MANUALLY AS A MENU ENTRY OR A UTOMATICALLY BY THE PC WHEN THERE IS A HIT. */

int j, data;

unsigned char i, k, x;

FILE *fopen(, *inf;

char fname[15];

1250

_clearscreen(_GCLEARSCREEN);

printf("\n\n ************ COLLATER PROCESSOR COMMUNICATION ************\n\n");

printf("\n\nDo you wish to perform collater initialization n]? ");

scanf("%c", &k);

scanf("%c", &k);

if (k != 'y')

goto afterwards;

/* make sure to add load names correctly ie. match loadi name to the actual */ 1260

/*load whose chain is coming in at hsil, and load 2 is the load whose chain */

/* comes in at hsi2 of the collater, etc. */

/* make sure loadname.txt is present: */
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if ((inf = fopen("loadname.txt", "r")) == NULL)

{

printf("\n\nCannot access file 'loadname.txt'\n");

fclose(inf);

wait exit(); 1270

return;

for(j = 0, i = 0; j < NUMPROCS; j++) /*i is the collater serial no*/

for(k = 0; k < 8; k++) /*j is the collater processor no*/

{

fscanf(inf, ".s", &packet[i][k].name);

if(strcmp(packet[i][k].name,": end") == 0)

{

if (k!=0) 1280

id[i] = j;

printf("\nProcessor %d designated to be a collater\n", j);

i++;

break;

printf("\ns designated load Y.d in collater Y.d",packet[i][k].name,kj);

1290

num coll = i;

afterwards:

printf("\n\nDo you ish to put the system in Acquisition Mode Cy]? ");

scanf("%c", &k);

scanf("c", &k);

if (k == 'n')
return;
/ * check collaters on a roundrobin basis, until a hit is seen */

armed(); 1300

}

/* continuation of collcomm() */

void armed()
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{

int j;

unsigned char i, k, x, entry;

unsigned char hits, any_hit, acqhi, acqlo;

unsigned short acq;

1310

after init:

_clearscreen(_GCLEARSCREEN);

printf("\n\n ********** System in Acquisition Mode ********* \n\n");

printf("\n To Exit, press any key.\n");

printf("\n\n Waiting for a load hit...");

while(!kbhit())

{

hits = 0;

entry = 0; 1320

forloop:

for(j = 0; j < numcoll; j++) /* For each collater */

{

CHECK_STATUS();

outp(SLAVENODE, idj]);

cur proc = id[j];

DELAY2();

/* Iteratively retrieve the 8 load hit locations */

/* Is there a hit? */

/ * if so, retrieve packet and put in packet [j] */ 1330

load addr(ADDLOHIT, ADDHIHIT);

get.byte();

any hit= biosserialcom(_COM RECEIVE,0,0);

if (!any_hit)

{

DELAY(); /* pause between polling */

continue;

}

DELAY2(; /* let all hits come in */

if(entry = 0) / * if the first */ 1340

{ /* then search all collaters */

entry = 1;

goto forloop;
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/ * get current acq. time */

load_addr(OxOO,Ox35);

getbyte();

acqlo=_bios_serialcom(_COM_ RECEIVE,0,0);

loadaddr(OxO1, 0x35);

getbyte(); 1350

acqhi=_bios serialcom( COM_RECEIVE,0,0);

acq = acqlo + (acqhi << 8);

for (i=0O, x=0; i < 8; i++, x = x + 0x10)

{

loadaddr(x, HIADDR);

get_byte();

packetj][i].ld hit=bios serialcom( COM RECEIVE,0,0);

if (packetj][i].ld_hit == 1)

{

get_hit(ij); 1360

packetlj][i].cur_time = (acqhi << 8) + acqlo;

hits++;

load addr(ADDLO_HIT, ADD_HI_HIT); /* anyhit is reinitialized to 0 */

loaddata(0,0);

CHECK_STATUS();

_bios serialcom(_COM_SEND,0, WRITE_BYTE);

}

if (hits > 0) /* Tell User, update file */ 1370

{

printf("\n\nY.d hit(s) recorded\n", hits); / *leave*/

update(); /* contacts.tzt */

history(); /* history.tzt */

/ * reset hit record */

for(i = 0; i < num_coll; i++) /*leave*/

for(j= 0; j < 8; j++) /*leave*/

packet[i][].ldhit = 0; /*leave*/
printf("\nRetrieving last 12 sec. Data from Master Board...");

get_16sec(0); / * 6144 */ 1380

printf("Done\n\n");

mark();
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i = getch();

goto afterinit;

}

}

i = getch();

printf("\n\nNo longer in Collater Acquisition Mode.\n");

wait_exit();

} 1390

/ * subroutine for retriving hit info data */

void get_hit(unsigned char load, int coll)

{

int i;

unsigned char base;

base = (load*OxlO);

load addr(base,0x30); /* send address */ 1400

loaddata(0,0); /* ld.hit is reinitialized to 0 */

CHECK-STATUS();

biosserialcom(_COM_SEND,0, WRITE_BYTE);

base+= 3;

loadaddr(base,0x30); /* send address */

getbyte();

packet[coll] [load].load_id= bios_serialcom( COMRECEIVE,0,0);

get_byte();

packet[coll][load].scale= _bios_serialcom(_COMRECEIVE,0,0); 1410

get_byte();

packet [coll][load].hiloc= bios serialcom(_COMRECEIVE,0,0);

get_byte();

packet[coll][load].loloc= biosserialcom(_COM_RECEIVE,0,0);

get_byte();

packet [coll] [load].hitime= _bios_serialcom( COM RECEIVE,0,0);

get_byte();

packet[coll][load].lo-time= biosserialcom(COMRECEIVE,0,0);

1420
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void get_byte()

CHECK STATUS();

biosserialcom( COM SEND,O, READBYTE);

CHECKSTATUS();

_bios_serialcom( COMSEND,O, TRANSMIT);

RECWAIT();

1430

/* update contacts in contacts. txt */

void update()

{

unsigned int i, j, loc, time;

FILE *fopen(, *outf;

outf = fopen("contacts. txt", "w");

for(i = 0; i < num_coll; i++)

for(j= 0; j < 8; j++)

if(packet[i] [j].ld_hit) 1440

{

loc= (packet[i][j].hi_loc<<8)+packet[i]j].oloc;

time= (packet[i]lj].hi time<<8)+packet[i][j].lotime;

fprintf(outf,"= ==============\n");

fprintf(outf, "Load: ='.s '\n", packet[i]bj].name);

fprintf(outf, "Time: =.d\n", time);

/ *fprintf(outf, "Location:=%d\ n",loc); */

fprintf(outf, "Scale: =%.d\n", packet[i]j].scale);

} 1450

fclose(outf);

/ *lpdate history. txt with latest hit */

void history()

{

unsigned int i, j, loc, time;

FILE *fopen(, *outf;

outf = fopen("history.txt", "a");

fprintf(outf,"\n***************"); 1460

278



for(i = 0; i < num_coll; i++)

for(j= 0; j < 8; j++)

{

if(packet[i] Uji.Id_hit)

{

loc= (packet[i][j].hiloc<<8)+packet[i][j].loloc;

time= (packet[i]lj].hitime<<8)+packet[i]l].lo time;

fprintf(outf,"\n\nLoad: '%s'\n", packet[i][j].name);

fprintf(outf,"Time: Xd\n", time);

/ *fprintf(outf, "Location: %d\n",loc);*/ 1470

fprintf(outf,"Scale: %d\n", packet[i]j].scale);

fclose(outf);

/* delay used to allow slave selection etc. to go through; also used for */

/ * delay between successive polling of collaters */

void DELAY()

{ 1480

long int i;

for (i = 0; i < 30000; i++);

}

/ * delay used in collater communication to wait until all hits are */

/ * received by the collater */

void DELAY2()

{

long int ij;

for (i = 0; i < 100000; i++) 1490

for (j = 0; j < 100; j++);
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E.2 Modifications Made to 80C196KC RISM

As stated in chapter 5, the RISM for MLM is a modified version of the RISM developed

for the 80C196KC Evaluation Board. The main differences arise from the fact that in the

MLM, the PC communicates with the slaves via the P2-2 interrupt, not the NMI, as in the

evaluation board setup. Assembly Code for the 80C196KC RISM is given in Appendix C

in [14], complete with remarks and line numbers. The instruction set for the 80C196KC is

given in [13], and [22] discusses the assembler for the 80C196 family. The code in [14] is

referenced directly in the listing that follows of the changes made:

is changed from:

external_int: dcw 4700H ;P2-2 INT vector= 4700H

externalint: dcw OOOOH ;P2-2 INT vector= OOOOH

Line 336

A1000036

to:

A1800236

is changed from:

336 ld tempw, #rism_psw

336 ld tempw, 0x0280

;rism_psw = 0000

;NEW VALUE FOR PSW

340 is changed from:

340 clrb char ;clear byte

340 clrw tempw ;clear word

391 is changed from:

)036 391 ld tempw, #rismpsw ;rismpsw = 0000

391 ld tempw, 0x0280 ;NEW VALUE FOR PSW

is changed from:

br diagpauseloop ;to diagpauseloop
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Line 277

0047 277

to:

0000 277

Line

1136

to:

0136

Line

AlOOC

to:

A1800236

line 403

27F5 403

to:



;to nearest RISMEXIT

line 481 is changed from:

C92221 481 push #(diagpauseoffset) ;to diagpauseloop

to:

C90410 481 push #1004H ;to nearest RISMEXIT

Line 482 is changed from:

C90000 482 push #rismpsw ;rismpsw = 0000

to:

C98002 482 push 0x0280 ;NEW VALUE FOR PSW

Line 676 is changed from:

A1000036 676 ld tempw, #rismpsw ;rismpsw = 0000

to:

A1800236 676 ld tempw, 0x0280 ;NEW VALUE FOR PSW

Line 684 is changed from:

C3013E2000 684 st zero, (nmioffset)[0] ;initialize nmi

to:

C3010E2000 684 st zero, (p2-2_offset)[0] ;initialize P2-2

line 687 is changed from:

27FE 687 br monitorpause ;to monitor_pause

to:

26E2 687 br #COOH ;to new code at COO

The following code is added to the RISM at location COO:

ICOOH: C98002 push 0x0280 ;NEW VALUE FOR PSW

1C03H: F3 popf ;store value of 0280 in PSW

1C04: 27FE br 1C04 ; wait here for command
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Line 727 is changed from:

C9201D 727 push #(monitorpauseoffset) ;to monitorpauseloop

to:

C9041C 727 push #C04 ;to nearest RISM_EXIT

Line 728 is changed from:

C90000 728 push #rismpsw ;rismpsw = 0000

to:

C98002 728 push 0x0280 ;NEW VALUE FOR PSW

282



Appendix F

PC I/O Card for MLM Control

As described in Chapter 5, a PC I/O card was used to implement slave module selection

and PC communication with the master board. The JDR PR-2 prototype card was the

I/O card of choice. The PR-2 is an 8-bit I/O card with protototyping space available for

housing application circuitry [23].

The schematics for the card, as given in [23], are shown in Figure F-1. All PC-AT data,

address and control signals used are buffered by IC1..3, so that the PC Bus is protected from

errors in the prototype circuit constructed on the I/O card. A 4 position DIP Switch and a

comparator (IC6) use address lines A[8..5] to place the I/O card in the PC's memory map

[24], [25]. The address range for which the board will be selected is 0x300--0x31F. Address

lines A[4..2] are decoded by an LS138 (IC5 in Figure F-l) to provide eight Chip Select lines

[28]. Each Chip Select output from the LS138 will enable four consecutive addresses. For

instance, pin 14 (Select 1) will be active (low) for Addresses 0x304-0x307.

These blocks of four addresses are especially useful for our prototype circuit as it used

the 8255 General Purpose I/O IC, which has a bank of four registers [16]. The 8255 was used

to communicate with the master board. Its Control Register is initialized with the control

byte needed to configure its three ports as follows: Port A receives data from input streams

1-4, Port B receives data from input channels 5-8 and Port C is used in the following

manner to accomplish the handshaking protocol:

PortC.O: Inputs the DAV2PC signal from the Master Board PALs.

PortC.1: Inputs the PCMISCACK signal from the Master Board PALs.

PortC.4: Outputs the PCMODE signal to the Master Board PALs.
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PortC.5: Outputs the PCFETCH signal to the Master Board PALs.

An octal register, the LS574, is dedicated to slave node selection. Its inputs are con-

nected to the buffered 8 LSBs of the Data Bus. Its OE pin is permanently enabled (tied

low). Its CLK pin (clock input) is tied to a Select line from the decode circuitry on the

I/O card. If a memory write is executed at the address to which this register is mapped

(via the I/O card circuitry), the register will be selected and the pulse on its CLK input

will cause data on the bus to be loaded in. The outputs of this register are connected via

ribbon cables to the glue logic circuitry on each slave board. ECM can thus select a slave

module by writing the ID byte to the memory address of this register.

Another LS574 is used to set the master board mode. Its least significant input line

accepts the buffered LSB of the Data Bus. Its OE pin is also permanently enabled (tied

low). Its CLK pin (clock input) is tied to another Select line from the decode circuitry on

the I/O card. Its LSB output bit is connected directly to an input pin of PALTR2, one of

the Transfer PALs on the master board. ECM sets the master board mode by writing a 0

(acquisition mode) or a 1 (sleep mode) to this register's address in PC memory.

The addresses in PC memory where each of these registers resides are defined in the

ECM software as follows:

#define IOBASEADDR Ox300

#define REGA_8255 (IOBASEADDR + OxOO)

#define REGB_8255 (IOBASEADDR + OxOl)

#define REGC_8255 (IOBASEADDR + Ox02)

#define CONT_8255 (IOBASEADDR + Ox03)

#define SLAVENODE (IOBASEADDR + x04)

#define MASTERSET (IOBASEADDR + Ox08)
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Figure F.1: PC I/O Board Schematics
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Appendix G

The Analog Preprocessor

In this appendix we include the paper titled "Harmonic Estimates for Transient Event De-

tection" as presented at the Universities Power Engineering Conference (UPEC) in 1994.

This describes the salient features of the Analog Preprocessing Board used in the MLM

setup and aids our understanding of the nature of the MLM input streams.

Harmonic Estimates for Transient Event Detection

Steven B. Leeb Steven R. Shaw

Abstract

This paper describes a preprocessor that computes, for an observed waveform, the spectral
envelopes associated with a time-varying Fourier series. Spectral envelopes have proven
remarkably useful for transient event detection and identification at the utility service en-
try of a building. The performance of the preprocessor is illustrated with results from a
prototype.

Background

The transient behavior of a typical electrical load is strongly influenced by the physical
task that the load performs. The load survey conducted in [1] indicates that nonlinearities
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in the constitutive laws of the elements that comprise a load, or in the state equations
that describe a load, or both, tend to create interesting and repeatably observable turn-
on transient profiles suitable for identifying specific load classes. The turn-on transients
associated with a fluorescent lamp and an induction motor, for example, are distinct because
the physical tasks of igniting an illuminating arc and accelerating a rotor are fundamentally
different. Transient profiles tend not to be eliminated even in loads which employ active
waveshaping or power factor correction.

This observation has led to the development of a transient event detector for nonin-
trusive load monitoring. The nonintrusive load monitor (NILM) determines the operating
schedule of the major electrical loads in a building from measurements made solely at the
utility service entry [2], [3]. For electric utilities and industrial facilities managers, the
NILM is a convenient and economical means of acquiring accurate energy usage data with
a minimal installation effort. In [1] and [4], a multiscale transient event detection algorithm
was introduced that can identify individual loads operating in a building by examining
measured transient profiles observed in the aggregated current waveforms available at the
service entry. This detection algorithm extends the applicability of the NILM to demanding
commercial and industrial sites, where substantial efforts, e.g., power factor correction and
load balancing, are made to homogenize the steady state behavior of different loads, and
where loads may turn on and off very frequently.

With the incorporation of the transient event detector, the NILM is also a potentially
important platform for power quality monitoring and for monitoring the performance of
critical loads. For example, the NILM can track down power quality offenders, i.e., loads
which draw extremely distorted, non-sinusoidal input current waveforms, by correlating the
introduction of undesired harmonics with the operation of specific loads at a target site.
The performance of the detection algorithm has been demonstrated with results from a
prototype real-time event detector implemented with a digital signal processor [1], [4].

A critical observation made during the development of the prototype is that direct ex-
amination of a current waveform at the service entry, or a closely related waveform like
instantaneous power, may not reveal key features for transient identification. It is essential
to isolate key features from near constant frequency, "carrier wave" type signals like 120
Hz instantaneous power so that slight errors in matching carrier frequency with a template
do not dominate the results of a recognition system searching for a modulating envelope.
A preprocessor in the prototype event detector eliminates carrier frequency artifacts from
input data by averaging over at least one carrier wave period to generate a short time esti-
mate of spectral content. The slow envelopes of the windowed time average of instantaneous
power, i.e., real power, and of reactive power, and of higher harmonic content, are found by
mixing the observed current with appropriate sinusoids and then low-pass filtering. This
paper describes an advanced preprocessor, or spectral envelope estimator, for use in the
prototype event detector.

Spectral Envelope Estimation
The development of the spectral envelope estimator is stimulated by the generalized aver-
aging techniques presented in [5] and by the short time Fourier transform and Fourier series
methods presented, for example, in [6] and [7] for speech processing and power systems
simulation, respectively. With minor restrictions which cause no limitations in a practical
power systems setting, a waveform x(r) given as a function of r may be described with
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arbitrary accuracy at time E (t - T, t] by a Fourier series with time-varying, complex
spectral coefficients ak(t) and bk(t):

x(t - T + s) = ak(t) cos(k T (t - T + s))
k

+ E bk(t) sin(k- (t - T + s)) (G.1)

The variable k ranges over the set of non-negative integers; T is a real period of time, and
s E (0, T].

The coefficients ak(t) may be found from the formula [5], [8]:

ak(t) = 2 x(t-T + s) cos(kT (t-T + s))ds (G.2)

Similarly, the coefficients bk(t) are computed by the formula:

2 T 27bk(t) = T x(t-T + s) sin(k (t- T + s))ds (G.3)

In practice, Eqns. G.2 and G.3 can be used to compute the evolution in time of the spectral
coefficients ak(t) and bk(t) as an interval of interest of width T slides over the waveform
x. The coefficients ak(t) and bk(t) as functions of time will be referred to as the spectral
envelopes of x for the harmonic k.

Estimates of the spectral envelopes of current waveforms observed at the utility service
entry of a building have proven remarkably useful for transient event detection in the NILM,
for at least two reasons. First, even for waveforms x with substantial high frequency content,
the frequency content of the spectral envelopes can be made relatively band-limited. As
will be seen, this tends to ease the sample rate requirements on any single channel of
the transient event detector. Second, in steady state operation especially, estimates of the
spectral envelopes serve as direct indicators of real and reactive power, as well as potentially
undesirable harmonic content. Demonstrations of these claims follow.

For convenience, let

xC(t) = 2x(t) cos(k T t)

and
s(t) = x(t) sin(k t).

represent sinusoids modulated by the function x. Equations G.2 and G.3 are equivalent to
convolving in time the integrands xc(t) and xs(t), respectively, with a rectangular pulse p(t)
with unit height extending from time 0 to time T, and may be written as

ak(t) = xc(t) ® p(t) (G.4)

and
bk(t) = x8 (t) ® p(t) (G.5)

where the symbol ® represents convolution operator. In the frequency domain, the contin-
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uous time Fourier transform of the spectral envelope ak(t) is

Ak(f) = J ak(t)e- dt

From Eq. G.4, the magnitude of Ak(f) is equivalent to the product of the magnitudes of
the functions XC(f), the Fourier transform of xc(t), and P(f), the Fourier transform of the
pulse p(t). Similarly from Eq. G.5, the magnitude of Bk(f), the continuous time Fourier
transform of bk(t), is the product of the magnitudes of Xs(f), the transform of xs(t), and
P(f).

The effect of computing the spectral coefficients as an integral or average over the interval
T is to attenuate the high frequency content of the spectral envelopes. Equivalently, the
high frequency content of the spectral envelopes is attenuated by the (roughly) low-pass
character of P(f). The localization or high frequency attenuation in the frequency content
of the spectral envelopes increases as the interval T increases in extent.

Each spectral coefficient indicates as a function of time the relative contribution of a
sinusoid in the summations of Eq. G.1. By varying the interval T it is possible to restrict to
an essentially arbitrary degree the frequency content of the spectral envelopes, regardless
of the harmonic k under consideration. In an actual implementation of a transient event
detector, a decomposition of even a relatively broad-band waveform x into spectral envelopes
permits a trade-off, therefore, between sample rate per data channel and the number of data
channels employed.

A second advantage of examining a waveform x in terms of spectral envelopes is the
correspondence of the coefficients to familiar physical quantities in steady state. The term
"steady state" is here taken to refer to a waveform or section of a waveform that is periodic.
The interval T is presumed to be a positive integer multiple of the fundamental period of
this waveform. Consider, for example, the situation in which the waveform x corresponds
to an observed current waveform on a single phase of a utility system with a sinusoidal
voltage waveform. For purposes of illustration, consider the voltage to be a cosine with
angular frequency 27r/T. Intuitively, Eqns. G.2 and G.3 compute the spectral coefficients by
demodulating the periodic waveform x with an appropriate, harmonic sinusoid and low-pass
filtering to preserve only the resulting lowest frequency components. For a periodic current
waveform x with period T, the spectral coefficient al(t) corresponds to a quantity that is
proportional to the conventional definition of real or "time average" power [9]. Similarly,
the coefficient b(t) is proportional to reactive power. Higher order spectral coefficients
correspond to in-phase and quadrature harmonic component content as in a conventional
Fourier series decomposition of a periodic waveform.

Without attempt at a mathematical exposition, we observe in passing that even for
waveforms which are not strictly periodic, spectral envelopes may have appealing inter-
pretations as quantities like real and reactive power, even though such quantities are not
strictly and universally defined for transient or non-periodic waveforms. For waveforms
that satisfy the "slowly varying magnitude and phase" arguments commonly used to jus-
tify quasi-sinusoidal steady state approximations [7], the spectral envelopes can be loosely
interpreted as the slowly varying envelopes of real and reactive power, and of harmonic
content.

While not necessarily essential, the ability to associate spectral envelopes with physical
quantities is comforting when employing spectral envelopes as "fingerprints' in a transient
event detector. Variations in real and reactive power and harmonic content tend to be
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Figure G.1: Signal Flow Graph

closely linked to the physical task or energy conversion process being performed by a load.
Load classes that perform physically different tasks are therefore likely to be distinguishable
based on their transient behavior [1]. Since the spectral envelopes tend to be closely linked
to telltale physical quantities, they are likely, and appear in practice, to serve as reliable
metrics for identifying loads.

Envelope Preprocessor

The prototype transient event detector consists of two components: a preprocessor which
computes estimates of the spectral envelopes, and a digital signal processing card that
monitors the envelopes and runs the transient event detection algorithm. Details of the
event detection algorithm have been presented in [1] and [4]. This section reviews the
design of a hardware implementation of a spectral envelope preprocessor for use in the
transient event detector.

To maximize flexibility, utility, and accuracy, while minimizing cost, the preprocessor
computes an estimate that approximates the spectral envelope integrals of Eqns. G.2 and
G.3. Figure G.1 illustrates the computation implemented in a single channel of the spectral
envelope preprocessor. An observed current waveform i(t), equivalent to the waveform
x in the previous section, is mixed with a continuous time "staircase" or basis sinusoid.
This basis sinusoid is constructed from discrete time samples, Vb[n], of a desired waveform
sampled at high frequency. Analytically, these samples are reconstituted into a continuous
time waveform by a zero order hold (ZOH). This process is line-locked to the observed
voltage waveform at the utility service entry, so that the reconstituted, basis sinusoid will
exhibit a precise, desired phase with respect to the line voltage. The product of the current
and basis sinusoid corresponds to a function such as xc(t) or xs(t) for a particular harmonic
k, as described in the previous section. This product is low-pass filtered to yield an estimate
of a particular spectral envelope for the current.

Figure G.2 shows a partial block diagram of the hardware implementation. A multiply-
ing digital-to-analog converter (MDAC) provides the ZOH and multiplication operations
shown in Fig. G.1. The observed current waveform i(t) is the analog reference for the
MDAC. A memory on the preprocessor contains 1024 two byte samples of the desired basis
waveforms for 16 different channels or spectral envelope estimates. These samples are fed
to appropriate MDAC channels under the control of the steering logic. Although only four
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Figure G.2: Envelope Preprocessor Block Diagram

output channels are shown in Fig. G.2, a total of 16 channels are available on the prototype
envelope preprocessor. A phase-locked loop (PLL) ensures that the operation of the pre-
processor is synchronized to the line voltage waveform. For enhanced flexibility, the basis
sample memory may be implemented either with a read-only memory, or with a static RAM
which can be loaded with samples from a personal computer.

In the prototype, a second order Butterworth filter with a breakpoint at 20 Hz is used
on each channel to provide an estimate of the average or low-frequency component of each
MDAC output. This low-pass filter, convenient from an implementation standpoint, is
obviously not identical to the windowed mean employed in Eqns. G.2 and G.3 to compute
the spectral envelopes. For this reason, and because the basis waveforms are reconstructed
with a (generally negligible) quantization error, the outputs of the prototype are estimates
of the spectral envelopes. By varying the filter breakpoint, it is again possible to trade
localization in time versus localization in frequency, as was possible in the previous section
by varying the interval T.

Prototype Testing and Performance

The prototype spectral envelope estimator has been used in conjunction with a digi-
tal signal processor to test the transient event detection algorithm described in [4]. As
an example of the envelope estimator in operation, Fig. G.3 shows the measured current
waveform and some associated spectral envelopes estimated by the preprocessor during the
turn-on transient of a personal computer. The top trace in Fig. G.3 shows the current
into the computer during the transient. The switching power supply inside the computer
initially draws a few large pulses of current as the internal bus capacitor charges from the
line through a full bridge rectifier. When the capacitor has built up a substantial stored
charge, the current waveform becomes "spikey" as charging begins to occur only near the
peaks in the magnitude of the line voltage waveform. Approximately 0.12 seconds into the
transient, the computer monitor turns on, increasing the total steady state current drawn
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Figure G.3: Personal Computer Turn-On Transient

by the computer and monitor.
The second and third traces from the top in Fig. G.3 show two spectral envelope es-

timates computed by the preprocessor. The trace labeled al corresponds to an envelope
computed by mixing the observed current waveform with a sinusoid with the same phase
and frequency as the line voltage. This trace corresponds to the slow envelope of "real
power." The second trace, labeled a3, indicates the spectral envelope of in-phase third har-
monic content. As might be intuitively expected from examining the "spikey" line current
waveform, the computer draws a substantial third harmonic current in steady state.

The spectral envelopes for different loads, such as those for the computer shown in
Fig. G.3, have proven remarkably useful and robust for performing transient event detection
[1], [4].
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Appendix H

Miscellaneous Details of

Prototype Testing

This appendix supplements the discussion of the MLM prototypes' performance, in Chapter

6. It lists the v-section sets chosen to represent the loads monitored by the two MLM

prototypes. It also includes the software routines (implemented on the PC controlling the

circuit breaker panel) used to activate multiple loads at about the same time.

H.1 V-section Sets

Figures 6.2...6.7 in Chapter 6 show the transients for the six loads used in prototype testing.

V-sections for these loads are listed below:

Small Motor (4 VSs): Rising and falling edges in P an Q (Fig. 6.2).

Rapid (4 VSs): Rising edge of central hump in P, step at the end of P tran-

sient, rising edge in Q in initial spike, and step down in 3P (Fig. 6.3).

Instant (2 VSs): Spike in P and the step in 3P (Fig. 6.4).

Light (1 VS): Spike in P (Fig. 6.5).

Computer (2 VSs): Spike in P and the upward step in 3P (Fig. 6.6).

Big Motor (4 VSs): Rising and falling edges in P an Q, on scale 2 (Fig. 6.7).
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H.2 Software for Multiple Load Activation

Three routines are included here as examples of the software written to generate sequences

of load turn-ons, used to challenge the MLM prototypes. The first file turns on two loads,

the second activates three loads and the final listing turns three loads on in succession.

/ ******* UMAIR85.C *******/

/* Turns on: sm. motor (8) + rapid5 (or light5) */

#include<stdio.h>

main()

{

long i,1,12;

printf ("Enter a delay interval:

scanf("Yld" ,&I);

"); /* get delayl from user */

outp(512,128); / *Turn on first load *,

for(i = 0; i < 1; i++);

outp(512,16+128); / *Trn on second lot

for(i = 0; i < 400000; i++);

outp(512,0); / *rn off all loads */

}

ad /

/******* UMAIR582.C *******/

/* Turns on: rapid- or light-(5) + motor(8) + instant(2)*/

#include<stdio.h>

main()

long i,1,12;

printf ("Enter a delay interval: "); /* get delayl from user */

scanf("/.ld",&1);

printf ("Enter a delay interval2: "); / * get delay2 from user */

scanf("w.ld" ,&12);

295

10

10

/



outp(512,16); /*Turn on first load */

for(i = 0; i < 1; i++);

outp(512,128+16); / *Turn on second loo

for(i = O; i < 12; i++);

outp(512,2+16+128); /*Thrn on third loa

for(i = O; i < 60000; i++);

outp(512,0); /*Turn off all loads */

}

ad */

/******* UM7852. C *******/

/ Turns on: big motor(7) + smin. motor(8) + rapid-or light-(5) + instant(2)*/

#include<stdio.h>

main()

{

long il,12,13;

printf ("Enter a delay interval: g); /* g

scanf("%ld",&l);

printf ("Enter a delay interval2: "); /* g

scanf("%ld",&12);

printf ("Enter a delay interval3: "); /*g

scanf("%ld",&13);

outp(512,64); /*Turn on first load *

for(i = O; i < 1; i++);

outp(512,128+64); /*Turn on second lo

for(i = O; i < 12; i++);

outp(512,16+128+64); /*Turn on third lo

for(i = O; i < 13; i++);

outp(512,2+128+16+64); / *Turn on fourth

for(i = 0; i < 40000; i++);

outp(512,0); /*Turn off all loads */

et delayl from user */

et delay2 from user */

et delay3 from user */

/

ad */

20

ad */

Iload */

I
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Appendix I

The Genesis of the MLM

We end this thesis with a brief pictorial guide to the making of the MLM prototypes. Seven

color photographs/printouts capture the various stages along the MLM's metamorphosis.

They are listed below in order of appearance:

* Figure I.1: The slave module is conceived on PADS. (Note that the figure is not

captioned).

* Figure 1.2: A slave board is configured as part of MLM-16S.

* Figure 1.3: The MLM-16S during testing phase.

* Figure 1.4: The MLM-16S all ready for load monitoring (at last!).

* Figure 1.5: The final setup with both MLM prototypesl and the Host PC in the

cabinet, the analog preprocessor to the right, and the computer controlling the circuit

breaker panel, at extreme right.

* Figures 1.6 and 1.7: Two instances of the MLM at work, as seen in living color.

'The bigger prototype, MLM-16S is at the bottom of the cabinet. Note the photo and the inscription
which represent the nickname given to MLM-16S: ANIMAL (Advanced NonIntrusive Monitor for Arbitrary
Loads).
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Fi-iire 1.2: A Slave Board is Configured as Part of MILhI-16S

Ficture 1.3: The ILI-16S During the Testing Phase



Figure 1.4: The iMLM-1S all Readv for Load MIonitoring



Figure !.5: Tle Final Setup



Figure 1.6: MILM at Work: Computer, Small Motor, Instant

Figure 1.7: MLI at Aork: Big Motor. Small Motor. Rapid. Instant
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