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ABSTRACT

Oceanic phytoplankton play an important role in the global carbon cycle. Some

species of microalgae apparently use the enzyme carbonic anhydrase to accumulate

inorganic carbon. This enzyme has been found in the marine diatom Thalassiosira

weissflogii. Zinc, an essential cofactor of carbonic anhydrase, has been shown to limit T.

weissflogii growth at low carbon dioxide concentrations. The regulation of carbonic

anhydrase activity by CO 2 concentration implies that the enzyme is important for the

acquisition of inorganic carbon (Morel et al. 1994). In order to gain insight into the

mechanism of this carbon-zinc co-limitation, the carbonic anhydrase protein was

examined in greater detail. The enzyme was purified and sequenced, and the

corresponding gene cloned. The carbonic anhydrase gene sequence was different from

other algal carbonic anhydrase genes, and encoded a protein of roughly 32 kilodaltons.

The amino terminal amino acids sequenced from the purified T. weissflogii carbonic

anhydrase are 72 residues downstream of the putative starting methionine predicted by

the CA44 cDNA. This difference may be due to the presence of a short-lived signal

sequence designed to guide the enzyme to the correct cellular location. This work opens

the door for additional experiments to examine the mechanism of T. weissflogii inorganic

carbon acquisition.

Thesis Supervisor: Dr. Francois M. M. Morel

Title: Professor of Civil and Environmental Engineering
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1 Introduction

1.1 The Zinc Hypothesis

Microalgae use a variety of mechanisms for the accumulation of inorganic carbon

from the waters in which they live. Some species apparently use the enzyme carbonic

anhydrase to concentrate dissolved inorganic carbon. Algal carbonic anhydrase has been

most extensively studied in freshwater species, but has also been found in marine

microalgae such as Dunaliella tertiolecta (Aizawa and Miyachi 1984) and the diatoms

Phaeodactylum tricornutum (Patel and Merrett 1986) and Thalassiosira weissflogii

(Morel at al. 1994). Since zinc is an essential cofactor of carbonic anhydrase, these

diatoms, when growing under conditions of low CO02, require more zinc than cells living

in CO2 sufficient conditions. However, many areas of the ocean have extremely low zinc

concentrations. For example, in the north Pacific surface waters the zinc concentration

is about 2 picomolar (Bruland 1989). Similar to Martin's (1988) theory regarding iron

limitation of primary production in high nutrient-low chlorophyll regions of the ocean,

the zinc hypothesis states that surface water zinc levels can, through modulation of

carbonic anhydrase activity, affect phytoplankton growth, species composition, and CO2

consumption in many areas of the ocean.

1.2 The Biological Pump

The carbon cycle in the ocean is largely driven by the biological pump, which

involves the complementary reactions of photosynthesis and respiration. Photosynthesis

is the creation of biomass from CO2 and H2 0 through the reaction CO2 + H2 0 ->

(CH2 0)n + 02. Respiration is the subsequent breakdown of this biomass by the reaction

(CH20)n + 02 -- CO2 + H20. Algae are the primary producers, and the biomass they

create by photosynthesis is utilized up the food chain by grazers and other non-

photosynthetic organisms. Primary productivity in the ocean is thought to be limited by

nitrate or phosphate. Once one of these nutrients is exhausted, no more biomass can be

produced until it is recycled during respiration. Thus respiration and photosynthesis are

interdependent.
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The biological pump has two loops. One is the alternating cycle of

photosynthesis and respiration that occurs in the surface waters of the ocean. The

second is the cycling of organic carbon between the surface waters and the deep ocean.

Some of the biomass drops out of the surface water loop and enters the deep sea loop

through particles sinking and the downwelling of dissolved organic matter. This amount

is estimated to be about 20% of the surface biomass (Sarmiento 1993), although it can

vary greatly. The organic matter that sinks to the deep ocean is eventually respired back

into its original components (mineralization). This causes the deep waters to become

enriched in CO2. During upwelling, dissolved nutrients and CO2 are brought back to the

surface waters and re-enter the surface pool, completing the second loop of the

biological pump.

Although upwelled seawater is supersaturated with CO2 with respect to the

atmosphere, the abundant nutrients that this water contains create a fertile area for the

algae. If an algal bloom occurs in an area of upwelling, it can consume much or all of

the CO2 (until the nutrients are depleted) and therefore reduce the amount of CO2 that is

released to the atmosphere at that location. Thus, the biota can play a significant role in

controlling whether a region of the ocean is a local source or a sink of atmospheric CO2.

Siegenthaler and Sarmiento (1993) estimated that if the biological pump were fully

effective, and surface nitrate and phosphate levels were drawn down to zero everywhere,

the atmospheric CO2 level would drop from 280 ppm (pre-industrial value) to

approximately 160 ppm, whereas if the biological pump were turned off the level would

rise to 450 ppm.

The effectiveness of the biological pump is regulated to a large extent by

phytoplankton physiology and ecology. In particular, it is controlled by the efficiency

with which phytoplankton communities can fix carbon. This efficiency is manifested in

the ratio of carbon to nitrogen or phosphorus, or the ratio of inorganic carbon to organic

carbon in sinking particulate matter and may be controlled by the abundance of iron or

zinc.
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1.3 The Redfield Ratio and HNLC Regions

The Redfield Ratio describes the relationship between nitrogen, phosphorus, and

carbon in organic matter. This ratio was defined by the observation that the ratio of

carbon to nitrogen to phosphorus is the same in seawater as it is in living organisms: 106

C: 16 N: 1 P (Redfield 1963). The Redfeld Ratio can be combined with the

photosynthesis equation to write the following equation for the formation of biomass:

106 CO 2 + 127 H20 + H3 PO 4 + 16 NO 3- + 16 H + <->(CH20) 10 6 (NH 3) 1 6 (H3 PO4 ) + 138 02

Thus, the nitrate and phosphate present in a parcel of water can be used to

calculate the maximum amount of biomass that could be produced in that parcel. In

most areas of the ocean, nitrate and phosphate are depleted in the surface waters,

indicating that the biological pump is operating at its maximum level. There are,

however, three well known exceptions. The Southern Ocean, the equatorial Pacific, and

the northern Pacific have been classified as high nutrient-low chlorophyll (HNLC)

regions (Murray et al. 1994). Although there is a large amount of biomass present in

these regions, the nitrate and phosphate are high enough to support additional biomass.

It is not known exactly why this occurs, although several theories have been proposed.

One of these theories, the iron hypothesis, will be discussed in section 1.5.

The Redfield Ratio has been taken as constant in almost all ocean models. Slight

variations in this ratio, however, could affect the biological pump. If some

phytoplankton were able to fix carbon more efficiently than others and therefore use less

nitrate per CO2 fixed, then more CO 2 could be consumed before the limitation imposed

by nitrate depletion was reached. Sambrotto et al. (1993) have provided some evidence

for this in the ocean. They measured the carbon and nitrogen content of sinking

particulate matter in the north Atlantic during an algal bloom, and estimated that using

the Redfield Ratio underestimates the actual primary productivity by as much as fifty

percent. This disparity could be explained by zinc-carbon colimitation of some species

but not others.
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1.4 The Rain Ratio

Coccolithophores are a large group of algae which produce a calcium carbonate

shell by the following reaction: Ca+ 2 + 2HCO 3- -+ CaCO 3 + H 2 0 + CO 2 (Nimer and

Merrett 1992). A portion of this calcium carbonate sinks to the deep ocean along with

the sinking particulate organic matter in the deep loop of the biological pump. The Rain

Ratio is defined as the ratio of calcium carbonate to organic carbon in particulate

material falling from the surface waters to the deep ocean (Berger and Keir 1984). The

ratio depends upon the relative abundance of calcifying phytoplankton in the surface

waters, their growth rates, and the exact proportions of carbonate and organic carbon

produced by each species present. Because calcium carbonate production decreases

alkalinity, it actually causes a concurrent production of CO2 to the water and potentially

to the atmosphere (Sundquist 1993). Therefore, the percentage of a local phytoplankton

population that precipitates calcium carbonate (the total biomass is still limited by nitrate

and phosphate) can affect how much CO2 is released or consumed in that particular area.

1.5 The Iron Hypothesis

One way to increase the net productivity of the biological pump is fertilization of

the HNLC regions. Although nitrate and phosphate are traditionally considered to be

limiting, in these regions they are still plentiful and therefore not limiting growth. Martin

et al. (1988) suggested that iron was the element limiting productivity in the Southern

Ocean. Large organisms, with a smaller surface area to volume ratio, would be expected

to be more limited than smaller organisms (Morel et al. 1991). Although addition of iron

to sea water samples caused an enhancement in biomass and growth rates (Martin et al.

1988), it is difficult to extrapolate these bottle experiments to what occurs in situ. The

algae in this area are probably iron limited, but it is uncertain whether this has a large

effect on primary productivity. Phenomena such as grazing and iron complexation might

limit the total biomass level that could be reached. This hypothesis was tested in the

equatorial Pacific Ocean, approximately 500 kilometers south of the Galapagos Islands.

Nearly 7,800 moles of iron were added to an ocean patch approximately 8 km by 8 km.

The patch was then monitored for increases in algae growth, iron uptake, and many
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other factors. The results of this first experiment were not clear cut, however (Watson

et al. 1994, Martin et al. 1994), so a second experiment was performed. It has not yet

been analyzed, but appears to have resulted in a much larger algal bloom than was

observed in the first experiment.

1.6 The Zinc Hypothesis Extended

Similar to the theory that iron limits primary production is the theory of zinc

limitation. Experiments on the marine diatom Thalassiosira weissflogii show that if

there is sufficient available zinc (15 picomolar) in the culture medium, C0 2 stress caused

by diffusion limitation is relieved through the action of carbonic anhydrase (Morel et al.

1994). Coccolithophores, which either lack carbonic anhydrase, as in the case of

Emiliana huxleyi, or have very little, as in the case of Pleurochrysis carterae (Sikes and

Wheeler 1982) do not require carbonic anhydrase to acquire inorganic carbon.

Therefore, in areas of the ocean with low zinc concentrations, at low C0 2, growth of a

population of coccolithophores might be favored over growth of a population of diatoms

or a mixture of the two. If there is abundant zinc, it is unclear which organisms will be

favored. The consequence of changing this species composition is a change in the

amount of CO2 drawn down per nutrients used. If coccolithophores predominate, less

CO2 will be drawn into the biological pump than the amount a mixed population will

draw down, which in turn will be less than the amount a population composed entirely of

diatoms will sequester.

1.7 Carbonic Anhydrase

1.7 a Carbonic Anhydrase in Microalgae

Carbonic anhydrase, which requires one or more zinc ions for function, reversibly

catalyzes the following reaction: HC0 3- + H+ -* CO2 + H2 0. In this way, the cell can

use the bicarbonate ion to obtain the required amount of CO2. In plants, this enzyme

functions to supply the enzyme ribulose bisphosphate carboxylase-oxygenase

(RUBISCO) with CO2 during photosynthesis. RUBISCO then fixes the CO2 into 3-

phosphoglyceric acid (PGA). In some algae, however, carbonic anhydrase has been
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found to have an additional role in inorganic carbon acquisition. Two freshwater

species, Chlamydomonas reinhardtii and Chlorella saccharophila, have been shown to

have extracellular as well as intracellular carbonic anhydrase isoforms (Husic et al. 1989,

Williams and Coleman 1993).

Among algal carbonic anhydrases, the most work has been done on the green

alga Chlamydomonas reinhardtii. In addition to a chloroplastic carbonic anhydrase

isoform, two periplasmic isoforms have been found (Husic et al. 1989). The first

periplasmic form, the product of the gene CAH1, is regulated at the transcriptional level

(Ishida et al. 1993). The large and small subunits are translated as a single protein which

is then cleaved. The functional enzyme is a heterotetramer composed of two 37 kD

subunits bound to two 4 kD subunits by disulfide bonds. Two zinc atoms are present per

holoenzyme (Kamo et al. 1990). Activity of this isoform is induced by low CO2 levels

and repressed by high CO2 levels.

The second Chlamydomonas periplasmic carbonic anhydrase is the product of

the gene CAH2, which is 91.2 % identical to the CAH1 gene sequence (Rawat and

Moroney 1991). The protein consists of two 39 kD and two 4.5 kD subunits bound

together in the same manner as the other isoform. This isoform is transcribed at high

CO2 levels, but not at low CO2 levels (Ishida et al. 1993).

Chlorella saccharophila also has two distinct isoforms of carbonic anhydrase

(Williams and Coleman 1993). The periplasmic isoform cross-reacts with antibodies

raised against the Chlamydomonas periplasmic carbonic anhydrases. This isoform is

present at low CO 2 and absent at high CO2. The chloroplastic isoform does not cross

react with the Chlamydomonas periplasmic antibody, and is present at a roughly constant

level regardless of CO2 concentration.

In both cases, the multiple isoforms of carbonic anhydrase are proposed to

function as parts of a carbon uptake and concentration system. This would involve

carbon uptake at the external cell surface in the form of bicarbonate, transport across the

cell membrane, and provision as CO2 to RUBISCO in the chloroplast. The details of

exactly where and how carbonic anhydrase is involved in this system have not been

worked out yet. There are at least two possible scenarios. Carbonic anhydrase may

function as a transporter, facilitating uptake of bicarbonate, and either concurrent
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conversion to C0 2 or conversion to CO2 at a later point by an additional carbonic

anhydrase. Another possibility is that bicarbonate is converted to CO2 at the cell surface

by an extracellular or periplasmic carbonic anhydrase. This creates a local area of high

CO2 which then diffuses into the cell. The goal of the work in T. weissflogii is to

determine which mechanism is operating and how it is regulated.

1.7 b T. weissflogii Carbonic Anhydrase

Preliminary experiments in T. weissflogii have shown that there is at least one

isoform of carbonic anhydrase present, and that there may be more. Most of this

diatom's cellular zinc appears to be present in carbonic anhydrase. Zinc limited growth

curves show faster growth at high CO2 than at low CO2, and bromcresol purple assay

experiments show a direct correlation at low CO2 between the amount of zinc present

and carbonic anhydrase activity (Morel et al. 1994). The experiments described in this

thesis were designed to test the presence of carbonic anhydrase activity at different C02

concentrations. It was determined that more carbonic anhydrase was present in cells

grown at low CO2 than in cells grown at high C0 2. Additionally, carbonic anhydrase

activity was activated or inactivated within eighteen hours of exposure to a new gas

level.

In order to learn more about the properties of the T. weissflogii carbonic

anhydrase, the protein was purified and the gene cloned. Sequence analysis revealed a

predicted protein size of 32 kD, longer than expected from the size of the purified

protein. This size disparity might be due to the presence of signal sequences designed to

guide the protein to the correct location in the cell. The protein sequence did not

resemble published sequences of other algal carbonic anhydrase genes. This work

provides a foundation for many more experiments that will help elucidate the mechanism

of inorganic carbon uptake in T. weissflogii.
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2. Materials and Methods

2.1 T. weissflogii Growth Conditions

T. weissflogii (clone Actin) cultures were grown in modified (lacking cobalt)

Aquil growth medium following the recipe in Price et al. (1988). The final metal

concentrations in media with 100 ptM EDTA were: Fe = 8.32 x 10-6 M, Cu = 1.96 x 10-8

M, Mn = 1.21 x 10- 7 M, Zn = 7.97 x 10-8 M, and Co = 0. Cell concentrations were

followed using a Coulter Channelyzer 256. Gas mixes were prepared in a standard air

N2/ 02 background with the designated concentration of CO2.

2.2 T. weissflogii Harvest and Protein Extraction

Cells were harvested during late stationary phase, at densities of 90,000 to

100,000 cells per ml. They were then filtered through a 0.45 micron polycarbonate filter,

resuspended in approximately 10 ml filtered sea water, and pelleted by centrifugation for

10 minutes at 800 x g in a Beckman TJ-6 swinging bucket rotor. The resultant pellet

was resuspended in an appropriate volume of sea water (500 tll to 1.5 ml) and sonicated

using a Branson Sonifier 250 equipped with a microtip. Sonication was performed at

80% duty cycle, output five, for 45 seconds on ice. Unbroken cells and cellular debris

were pelleted in an Eppendorfmodel 5415C microfuge at 13,800 x g for 10 minutes at 4

o C. The supernatant was then removed to a fresh tube.

2.3 Bromcresol Purple Assay

2.3 a Materials

10 X Running Buffer (IL): 15.1 g tris base, 94 g glycine

Bromcresol purple solution: 0.1 % bromcresol purple in 1 X running buffer
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2.3 b The Assay

Carbonic anhydrase was detected using a modification of the method of

Patterson et al. (1971). Equal amounts of protein were run on a 10% or 12% non-

dentauring polyacrylamide gel using the Laemmli method (Sambrook et al. 1989). The

gel was soaked in bromcresol purple solution and blotted dry with kimwipes. When

saturated CO2 gas was blown over the gel, red or yellow carbonic anhydrase bands

appeared against a purple gel background. The gel was then frozen on dry ice and

photographed under longwave ultraviolet light using a Wratten 74 green filter and

Polaroid 667 black and white film.

2.4 Carbonic Anhydrase/ CO2 Experiment

1 L T. weissflogii cultures were grown in Aquil media lacking cobalt (see section

2.1). The cultures were bubbled with either 100, 300, or 1000 ppm CO2, until 27920,

58192, and 34823 cells per ml respectively. For the final 18 hours, the cultures were

split into two 500 ml cultures and 8 tCi 65Zn was added to each. One culture remained

at the same gas concentration, and one was switched in the following scheme: bottle a:

1000 ppm-1000 ppm, bottle b: 1000 pm-+300 ppm, bottle c: 300 ppm-+300 ppm,

bottle d: 300 ppm-> 00 ppm, bottle e: 100 ppm- 100 ppm, and bottle f: 100 ppm->300

ppm. Cells were harvested at bottle a = 141,000 cells per ml, bottle b = 96,300 cells per

ml, bottle c = 168,700 cells per ml, bottle d = 164,000 cells per ml, bottle e = 61,800

cells per ml, and bottle f= 46,800 cells per ml. Harvested cells were resuspended in

sterile sea water volumes which resulted in samples of equal concentrations cells per

volume. The bromcresol purple assay was performed as already described, and the gel

was dried and exposed to film for two weeks.

2.5 Protein Purification

2.5 a Materials

Carbonate Buffer: 0.1 M Na2CO3, 20% v/v dioxane, pH 11

Dialysis Buffer: 100 mM NaCl, 1 mM EDTA, 20 mM NaH 2PO4, pH 6.8
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Wash I: 25 mM Tris, 22 mM Na2SO4, pH 8.2

Wash II: 25 mM Tris, 300 mM NaClO 4, pH 8.7

Elution Buffer: 100 mM NaOAc, 500 mM NaC10 4, pH 5.6

2.5 b Affinity Resin Preparation

A carbonic anhydrase affinity resin was prepared according to the protocol of

Yang et al. (1985) as follows:

6 g epoxy-activated Sepharose 6B (Pharmacia) was dissolved in milli-Q H2 0,

then washed over a scintered glass filter with 1 L milli-Q H2 0 followed by 800 ml

carbonate buffer. 0.93 g p-aminomethylbenzene sulfonamide in carbonate buffer was

added to the sepharose, the volume brought to 80 ml, and the pH was returned to 11.

The solution was shaken gently for 40 hours at 50 C, then filtered on a scintered glass

filter and washed with 300 ml carbonate buffer, 300 ml milli-Q H20, 300 ml 0.1 M

Na2CO3 pH8, and 300 ml 0.1 M NaOAc pH 4. This was procedure was repeated two

times, and then the resin was resuspended in 200 ml 1M ethanolamine pH 8 and left at

room temperature for 18 hours. Finally, the resin was filtered and washed with 1 L

dialysis buffer then resuspended in 80 ml dialysis buffer and stored at 40 C until used.

2.5 c Purification Protocol

The purification protocol was a slight modification of the procedure described by

Rawat and Moroney (1991). Four liters of T. weissflogii were grown and harvested as

explained in sections 2.1 and 2.2. A 35% ammonium sulfate precipitation was

performed on the supernatant after centrifugation according to the method of Sambrook

et al. (1989). The supernatant was removed and precipitated by 70% ammonium sulfate.

The pellet obtained at this stage was resuspended in 5 ml dialysis buffer and dialysed in

15,000 dalton cutoff dialysis tubing for 1 week at 40 C. The sample was spun for 15

minutes at 40 C and 13,800 x g, and the supernatant loaded onto a 1 ml p-

aminomethylbenzene sulfonamide affinity resin column at a flow rate of approximately

12 to 15 drips per minute. The column was washed with 10 ml wash I followed by 8 ml

wash II, and finally eluted with 2 x 600 jil elution buffer. To examine the results of the
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procedure, 30 ptl of each step was run on a 10 % denaturing gel according to the method

of Sambrook et al. (1989).

2.6 Protein Sequencing

2.6 a Materials

Transfer buffer I: 10 mM CAPS, 20% methanol, pH 11

Transfer buffer II: (4L) 12.5% methanol, 25 mM tris, 0.19 M glycine, pH 8.3

Coomassie stain: 50% methanol, 10% acetic acid, 0.5% coomassie brilliant blue G250

Destain: 10% acetic acid, 10% isopropanol

2.6 b Concentration of Purified Protein

A 14 L culture was purified using the method described in section 2.5. The

eluate was concentrated using a Centricon 10,000 mw cutoff concentration column. To

block the column, it was filled with a solution of 1 mg per ml bovine serum albumin

(Sigma A0281) in elution buffer and spun for 10 minutes at 4,000 x g in a JA-17 rotor.

The column was then rinsed by filling the loading reservoir with elution buffer then

flicking out the liquid. This was repeated 20 times, then the column was filled with

elution buffer and spun for 5 minutes at 4,000 x g in a JA-17 rotor. Next, all remaining

elution buffer was flicked out of the loading reservoir and the sample applied. The

column was not allowed to dry before the sample was loaded. After the sample was

applied, the column was spun for 2 hours at 3,400 x g in the JA-17 rotor. The final

volume was approximately 60 p1l.

2.7 Protein Sequencing

2.7 a Preparation of Sample for N-Terminal Protein Sequencing

The sample was run on a 12% denaturing polyacrylamide gel, then transferred to

PVDF membrane in transfer buffer I for 1 hour at 0.47 amps. The membrane was
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stained with fresh coomassie stain and the protein band cut out. N-Terminal protein

sequencing was performed by Dr. Paul Matsudaira at the Whitehead Institute for

Biomedical Research, Cambridge, MA.

2.7 b Internal Protein Sequencing

Concentrated protein was run on a 12% denaturing polyacrylamide gel and

transferred onto a nitrocellulose membrane in transfer buffer II for 1 hour at 0.47 amps.

The sample was sequenced by Dr. Richard Cook, MIT Biopolymers Laboratory,

Cambridge, MA. Protein was digested by the endoproteinase Lys-C and the resultant

fragments analysed using an Applied Biosystems model 477A.

2.8 Generation of T. weissflogii cDNA library

Two liters of T weissfiogii were grown to a density of 150,000 cells per ml, then

bubbled with 300 ppm CO2 for 1 hour prior to harvesting. Cells were harvested as

previously described, total RNA was extracted, mRNA was isolated, and then the

mRNA was reverse transcribed into cDNA. Next, EcoRI linkers were ligated onto the

cDNA and then cloned into Stratagene's Lambda Zap® II vector. Finally, the library

was amplified.

2.8 a Total RNA Extraction

All equipment and solutions used in this section and sections 2.8 b,c were

treated with diethyl pyrocarbonate (DEPC) to remove any RNAses that might otherwise

degrade the RNA. Two aliquots of 667 ml each were harvested (10 8 cells) and

resuspended in 25 ml ice cold milli-Q H20. Total RNA was extracted by the guanidine

thiocyanate method according to the instructions in Promega's RNAgentsTM Total RNA

Isolation Kit.
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2.8 b mRNA Isolation

Messenger RNA was separated from total RNA using Promega's PolyATract®

mRNA Isolation System. This technique utilizes a biotinylated poly-T oligonucleotide

probe, which hybridizes to the 3' poly-A tail and then, when reacted with streptavidin

coupled to paramagnetic particles, is separated magnetically from the rest of the RNA.

The pellet obtained after following the instructions in the kit was resuspended in 100 dtl

RNAse free water and stored at -70° C.

2.8 c cDNA Synthesis

cDNA was created from the mRNA using Promega's Riboclone® cDNA

Synthesis System. 0.5 tpg Xba I primer was annealed to 1 tg mRNA and the first strand

synthesized using AMV reverse transcriptase according to the kit instructions. The

second strand was synthesized using DNA Polymerase I, and the product resuspended in

30 tl TE (also provided in the kit.)

2.8 d Ligation into the Lambda Zap II Vector

First, the cDNA was fractionated by separation on a 1.2 % TAE agarose gel

according to Sambrook et al. (1989). All cDNA larger than 450 base pairs was cut from

the gel and extracted using the Geneclean®II Kit. This size-fractionated cDNA was

resuspended in 5 tl sterile milli-Q H20. EcoRI linkers were ligated to 0.2 CIg size-

fractionated cDNA using Promega's Riboclone® EcoRI Linker Ligation System. This

product was next digested with EcoRI (New England Biolabs), and then ethanol

precipitated and resuspended in 2.5 ,ul sterile TE from the Linker Ligation Kit. The

following reaction was performed to ligate the cDNA into the Lambda Zap II vector: 2

pl1 digested cDNA was mixed with 1 l (1 ptg) Lambda Zap II arms, 0.5 tl 10 X Ligase

Buffer and 0.5 ptl T4 DNA Ligase (New England Biolabs). This reaction was incubated

at 16° C for 14 hours.
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2.8 e Packaging and Library Titration

The Lambda Zap II vector with the cDNA inserts was packaged into phage

particles using Stratagene's Gigapack®II Packaging Extract Kit. Three [tl of the ligation

reaction described in the previous section were packaged. Next, the library was titered

on NZY plates following the instructions in this kit. Finally, the entire packaging

reaction was amplified according to directions in this kit and the amplified library re-

titered.

2.9 PCR on Library and Probe Generation

2.9 a Obtaining DNA from Amplified Library

Stratagene's Mass Excision Protocol was used to generate library plasmid DNA

in the vector pBluescript II sk-. 108 plaque forming units (pfu) were excised using this

technique. Finally, the DNA was extracted using a Qiagen maxi prep.

2.9 b PCR on Library DNA

PCR primers were designed to the N-terminal and internal carbonic anhydase

protein sequence. Degenerate symbols used are according to the IUPAC/IUB

nomenclature system.

CANterm: 5' ggI ttY MgI MgI caY catY taY gaY 3'

CAN2: 5' gaR gtI caR gaY ggI ttY 3'

RevMQR: 5' cat Rtc Rtc IcK Ytg cat 3'

ForMQR: 5' atg caR MgI gaY gaY atg 3'

RevDLY: 5' ccN ggI gcR taI aRR tc 3'

PCR was performed using the 1 ng each of the CAN2 and RevDLY primers in a

50 tl reaction volume with 25 ng cDNA, 0.2 mM dNTP's, 1 X Taq Polymerase buffer,

2.5 mM MgC12, and 5 units Taq DNA Polymerase (Promega). Thirty three cycles were
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performed with a denaturing step of 94° C for 30 seconds, annealing at 48° C for 30

seconds, and extension at 72 °C for 45 seconds. The PCR reaction was run on a 2%

TBE agarose gel and the band at approximately 500 bp cut out. The DNA was then

extracted from agarose using the Geneclean® II Kit, ligated into the TA cloning vector

using Invitrogen's TA Cloning® Kit, and plated on LB/ ampicillin/ X-Gal plates

according to instructions in the kit. White colonies were picked into 3 ml LB/ ampicillin

and grown overnight. Minipreps were performed according to Sambrook et al. (1989),

and sequenced to check for homology to the protein sequence. DNA sequencing was

performed using Amersham's Sequenase® 2.0 DNA Sequencing Kit with 35S dATP.

2.9 c Searching for Sequence Upstream of the CAN2 Primer Region

To determine if there was more gene sequence upstream of the 5' end of the PCR

product, nested PCR was performed using primers specific to the pBluescript vector in

conjunction with primers made from DNA sequence obtained in part 2.9 b. The

Bluescript-specific primers used were T3 and SK (available from Stratagene). The DNA

sequence obtained in section 2.9 b was used to design the following primers:

BestHind: 5' gtg cgt aca agt cat cac tca tgt c 3'

CA4r 5' ctt gcg atc aac ttg cca gg 3'

First, PCR was performed using I ng each of T3 and BestHind in a 50 Cil

reaction. Reaction components were otherwise identical to those described in section

2.9 b. The reaction conditions were: 23 cycles of denaturing at 950 C for 30 seconds,

annealing at 550 C for 30 seconds, followed by extension at 720 C for 39 seconds. This

reaction was then diluted 1:100, and PCR performed on 1 1l of this dilution using the

primers SK and CA4r, with the rest of the components and conditions identical to those

of the T3/BestHind reaction.

This PCR reaction was then run on a TBE agarose gel, and a band of

approximately 1.1 Kb cut out of the gel. DNA was extracted from the agarose using the

Geneclean® II Kit. This was then cloned into the TA cloning vector as described in

section 2.9 b. Clones TA2 and TA3 were partially sequenced and found to match the

sequence of the PCR product generated in the previous section.
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2.9 d Generation of a Probe for Screening Library

Clone TA3 was digested with EcoRI and HindIII (New England Biolabs) to

generate a DNA fragment approximately 900 bp long. The fragment was run on an

agarose gel, cut and genecleaned as previously described. The fragment was

resuspended in sterile milli-Q H2 0 at a concentration of 2.1 ng per tl.

2.10 Probing the T.weissflogii cDNA library

2.10 a Solutions Used

Church Buffer (500 ml)

5 g BSA

1 ml 0.5 MEDTA

9.66 g NaH 2PO4

25.55 g Na 2HPO 4

35 g SDS

Denaturant Buffer

1.5 M NaCl

0.5 N NaOH

Neutralization Buffer

1.5 M NaCl

0.5 M Tris

pH 8.0

Rinse Buffer

0.2 M Tris

2X SSC

pH 7.5

Wash I

2X SSC
0.5% SDS

Wash II

0.2X SSC

0.5% SDS

SM Buffer

100 mM NaCl

50 mM tris pH 7.5

10 mM MgSO 4

Southern Neutral (500 ml)

NaC1 43.85 g

Tris HCl 66.1 g

Trizma base 9.7 g

20 X SSC (1L)

175.3 g NaCl

88.2 g NaCitrate

pH 7.0
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NaCl 17.5 g

NaOH 4 g



NZY Media (1L)

5 g NaCI

MgS047 H20
5 g yeast extract

10 g NZ amine

pH 7.5

(Note: for NZY agar, add 15 g/L bacto-Agar, and for 2 g

NZY agarose, add 7 g agarose per liter.)

2.10 b Probe Labeling

The probe was created using Stratagene's Prime-it II Random Primer Labeling

Kit. In each labeling reaction, 25 ng DNA was labeled with a32P dCTP according to kit

instructions.

2.10 c Filter Lifts

Eighty 150 mm plates were plated at approximately 40,000 pfu each, for a total

of 3.2 million pfu screened. The library was plated on NZY plates according to the

instructions in Stratagene's Lambda Zap® II vector kit. Plates were then chilled for 2

hours at 40 C, and overlayed with Hybond N filters (Amersham) for 2 minutes. Filters

were immersed for 2 minutes in denaturant buffer, then 5 minutes in neutralization

buffer, followed by 30 seconds in rinse buffer. Finally, they were baked at 800 C for 2

hours. The plates were stored at 40 C until they were needed again.

2.10 d Probing the Filters

Probing was carried out in Stratagene's PersonalhybTM hybridization oven in

240 x 80 mm bottles. Ten 150 mm filters were screened per bottle. They were

prehybridized in 30 ml Church buffer at 65 C for 30 minutes to 2 hours. The probe

was denatured by boiling for 5 minutes, then added directly to the prehybridization

reaction and hybridized at 650 C overnight. The filters were then washed by 30 ml wash
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I at 65° C for 15 minutes, followed by 30 ml wash I at 650 C for 30 minutes, and finally

30 ml wash II at 650 C for 30 minutes. Filters were wrapped in Saran Wrap and exposed

to film with an intensifying screen at -70 ° C overnight.

Cores in the area of potential positives were picked into 1 ml SM buffer + 20

[ld chloroform, vortexed, and stored at 40 C. Each contained a mixture of plaques,

including the potential positive.

2.10 e PCR Screening to Identify Full Length Clones

Stratagene's Rapid Excision Kit protocol was used to generate plasmid DNA

from each of the picks. This DNA was used as template in a PCR reaction using primers

to the 5' end of the gene. The primers used were NtForw and BestHind. The sequence

of primer NtForw is: 5' gaa aca ctg cat tgg gat gg 3'.

PCR was performed using 1 l DNA and component concentrations as

previously described. The reaction consisted of 23 cycles, denaturing at 950 C for 30

seconds, annealing at 550 C for 30 seconds, and extension at 720 C for 39 seconds. The

PCR reactions were run on an agarose gel, and clones with a band at approximately 500

bp were selected for further analysis.

2.10 f Isolation and Retesting of Full Length Clones

Bacteria containing the excised picks from step 2.10 e were plated onto 100

mm LB/ampicillin plates and grown at 370 C overnight. Colony lifts were then

performed. Plates were chilled at 4 C for 30 minutes, and then overlayed with Hybond

N filters for 2 minutes. Next, the filters were soaked in southern base for 2 minutes,

southern neutral for 2 minutes, and finally 2 X SSC for 2 minutes. Filters were then

baked and probed exactly as described previously. Positive colonies were picked into 3

ml LB/ ampicillin for minipreps and sequencing.
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2.10 g Sequencing

Clones were sequenced using Amersham's Sequenase ® 2.0 DNA Sequencing

Kit with a thio 35 S dATP at 12.5 ptCi per tl. The primer Revcheck was used to

confirm that the clones matched carbonic anhydrase sequence. Revcheck sequence: 5'

tgt acg ctt cgt cgt cag g 3'. Two clones were selected for further analysis. They were

grown up in 100 ml LB/ampicillin and prepped using the Qiagen Plasmid Midi Kit. The

DNA was resuspended in 330 tld sterile milli-Q H2 0, extracted with phenol-chloroform

and precipitated with ethanol (Sambrook et al. 1989), and finally resuspended in 340 ll

sterile milli-Q H2 0. Clone CA44 was sent to the W.M. Keck Foundation Biotechnology

Resource Laboratory at Yale University for complete sequencing. These sequencing

reactions were performed on an Applied Biosystems 373A DNA Sequencer using

fluorescently-labeled dideoxynucleotides and Taq DNA polymerase.
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3. Results

3.1 Carbonic Anhydrase/ CO2 Experiment

(Carbnic alnhyvdras (Znl

I121314 516 I 1 2 1 3 4 16

Figure 1. Bromcresol Purple Assay and Autorad. The

left panel is a photo of the bromcresol purple assay, the

right is an autorad of the same gel. The CO2

concentrations were as follows: Lane 1: 1000 ppm, Lane

2: 1000 ppm switched to 300 ppm, Lane 3: 300 ppm, Lane

4: 300 ppm switched to 100 ppm, Lane 5: 100 ppm, and

Lane 6: 100 ppm switched to 300 ppm.

Figure 1 is a photo of the bromcresol purple assay and corresponding

autoradiograph of the gel. Almost all of the cellular zinc was present in the same region

of the gel as the carbonic anhydrase activity, indicating that cellular zinc levels may be

involved in regulating the amount of carbonic anhydrase and therefore CO2 uptake

capacity. Cells grown at low CO2 levels had more carbonic anhydrase activity than cells

grown at higher C0 2, and adaptation to new CO2 levels occurred, at least partially,

within 18 hours of the switch to a different gas concentration.

3.2 Protein Purification

The gel of the protein purification shows two proteins of very similar size at

approximately 27 kilodaltons as well as several fainter bands of smaller sizes (Figure 2).

The lower bands may be isoforms or degradation products of the 27 kD proteins. The

doublet at 27 kD was confirmed to have carbonic anhydrase activity using the

bromcresol purple assay. The smaller bands did not appear to have carbonic anhydrase
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activity, although there might not have been enough protein present for activity visible

using this assay. Note that the bands present on the gel at approximately 66 kD are

artifacts from the sample loading buffer.

--r-
*tiF"Z 'n -

m

Figure 2. Denaturing Polyacrylamide Gel of Protein

Purification. Bio-Rad low range SDS-PAGE standards,

found in the far left and far right lanes, are (from the top):

97.4 kD, 66 kD, 45 kD, 31 kD, 21.5 kD, and 14.5 kD.

The high molecular weight bands (seen in empty lanes as

well as sample lane) are artifacts from the sample loading

buffer.

3.3 N-terminal Protein Sequence

N-terminal protein sequencing identified the first 15 amino acids of the protein

as: 1. ala, 2. unknown, 3. glu or gly, 4. glu, 5. val, 6. gin, 7. asp, 8. gly, 9. phe, 10. arg,

11. arg or tyr, 12. his, 13. his, 14. tyr, 15. asp.

3.4 Internal Protein Sequences

Two fragments of the protein were sequenced. Eight amino acids of fragment 1

were identified as: 1. ile, 2. ser, 3. ala, 4. ser, 5. ser, 6. phe, 7. asp, 8. lys.
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Eighteen amino acids of fragment 2 were identified as: .lys, 2. met, 3. gin, 4.

arg, 5. asp, 6. asp, 7. met, 8. ser, 9. asp, 10. asp, 11. leu, 12. tyr, 13. ala, 14. pro, 15. gly,

16. unknown, 17. arg, 18. gin.

3.5 Total RNA Extraction

An estimate of cellular RNA concentration as approximately 8 pg per cell was

obtained based on very rough calculations. The total yield of mRNA was 1.6 X 10-6 g

mRNA obtained from 2 X 108 cells, or 8 X 10- 15 g mRNA per cell. Assuming that

mRNA is about 1% of total RNA, and 10% efficiency in the harvest protocol, the

cellular RNA concentration is therefore approximately 8 pg per cell.

3.6 The Library

The titer of the T. weissflogii Lambda Zap II library on January 9, 1994 was

determined to be 1010 pfu per ml. The ratio of empty vector to vector with insert was

approximately 4 to 1.

3.7 PCR Using Degenerate Primers from Protein Sequence

From the PCR reaction using primers CAN2 and RevDLY, a PCR fragment

clone 11.3 was isolated. Clone 11.3 contained sequence coding for both the N-terminal

protein fragment as well as both internal protein fragments. The location of this clone on

the carbonic anhydrase gene map in figure 3 is from base 543 through base 1072.

3.8 PCR product from Nested PCR Reaction

A larger segment of the carbonic anhydrase gene sequence was obtained by

performing PCR with first the T3 and BestHind primers, followed by PCR with the SK

and CA4r primers. Two clones, TA2 and TA3 were sequenced and found to partially

match the sequence of clone 11.3. The position of the TA2 and TA3 sequence on the
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carbonic anhydrase map in figure 3 is from base 01 to base 1076. This sequence also

indicated that the carbonic anhydrase gene had more 5' terminal sequence located

upstream of the N-terminal protein sequence described in section 3.3. Therefore, this

carbonic anhydrase might have a cleaved signal sequence used for cellular localization, or

alternatively the protein used for N-terminal sequencing had been partially degraded by

proteases prior to the sequencing reaction.

3.9 Library Screening

Of the 3.2 million pfu screened with the probe created from clone TA3, 70 clones

were isolated that hybridized to the probe during both the primary and secondary

screening. PCR on these 70 clones using the NtForw and BestHind primers identified 11

clones that were long enough that they might contain the 5' end of the probe. Clones

CA1, 2, 3, 6, 9, 13, 27, 44, 56, 58, and CA60 were partially sequenced and found to be

identical. Clone CA44 was selected for complete sequencing.

3.10 Clone CA44 Vital Statistics

Clone CA44 was 1.4 kb long and encoded a 32 kD protein (Figure 3). The

coding region began with a methionine (Met 106) at position 315 and ended with a stop

codon at position 1210. The sequence encoding the amino acids predicted to be at the

N-terminus was present, but it was 72 amino acids into the coding region. A

comprehensive restriction map of the carbonic anhydrase gene is provided in appendices

one and two.

This protein had some slightly hydrophobic regions (figure 4), including one of

roughly 20 amino acids at the very beginning of the translated protein sequence (in the

putative signal sequence). The remainder of the protein was hydrophilic, with the

exception of a slightly hydrophobic stretch near the middle.

28



Figure 3. CA44 DNA Sequence and Corresponding Amino Acid Sequence

CAC GCC AAA GAC GAA AAC TCC AAG
his ala lys asp glu asn ser lys

GTC GGA CTT CTT GCT TCC ACC ATC
val gly leu leu ala ser thr ile

GCC GCT GCA
ala ala ala

CCG GCT ACT GCC GAG
pro ala thr ala glu

GAC AAC TTC CTT GTT CCC ATC GAC
asp asn phe leu val pro ile asp

ATC TTC GAC GAG GGC ACC AAC GTA
ile phe asp glu gly thr asn val

TGC ATC CAC ATG CCT GGT CCT CAA
cys ile his met pro gly pro gln

ATG GAA GTC GAC GTA GTC CCC AAC
met glu val asp val val pro asn

AAT GTT CAC TGG CAT CTT GGA ACC
asn val his trp his leu gly thr

AGT GGT CCG AAC GGA AAC GTT GGC
ser gly pro asn gly asn val gly

CAG GAT GGA TTT CGC TGC CAT CAC
gln asp gly phe arg cys his his

GAA TGG
glu trp

TCT GGA
ser gly

AAA CAC TGC ATT GGG ATG
lys his cys ile gly met

GCC GGC GCA TGT GGA ACC
ala gly ala cys gly thr

TTC TGC AAC CTC GAT ATG GAG ACT
phe cys asn leu asp met glu thr

GTT GGA GTT CAA GGA CAA ATC TTC
val gly val gln gly gln ile phe

TTG ATT CGA GGA TGG ATT GTC GAT
leu ile arg gly trp ile val asp

ACC GGA TCC ACC ACT GGG GAG AGT
thr gly ser thr thr gly glu ser

ACC TGG CAA GTT GAT CGC AAG TGC
thr trp gln val asp arg lys cys

1
TAC GAT ATG AAG ATG CAA CGT GAT
tyr asp met lys met gln arg asp

1
GAA CTG GTT ACA CCC GAG TAT GTA
glu leu val thr pro glu tyr val

31/11
TTG AAA
leu lys
91/31
GCG CTT
ala leu
151/51
GAT AAG
asp lys
211/71
ATC GTC
ile val
271/91
TGT GCC
cys ala
331/111
GCT GGC
ala gly
391/131
ACC AAG
thr lys
451/151
GAA CAC
glu his
511/171
GTT CCT
val pro
571/191
TAC GAC
tyr asp
631/211
GAA GTT
glu val
691/231
ACC TAT
thr tyr
751/251
CTT CAA
leu gln
811/271
ACC ATT
thr ile
871/291
GAA GAA
glu glu
931/311
CGC AGC
arg ser
991/331
CAC AAG
his lys
1051/351
GAC ATG
asp met
1111/371
GCT AAC
ala asn

GCC GCT GTG TGC GTG CTT GGA CTC
ala ala val cys val leu gly leu

GCC GTT CAG AAC AAC AGT TCC AGC
ala val gln asn asn ser ser ser

ACC GTT GCG ACC CTC GAA GCC AGT
thr val ala thr leu glu ala ser

CCC GAA AGG GCC ACT GCT GAG ATC
pro glu arg ala thr ala glu ile

GAG AAG GCG ATC AAG CTG GAC AAC
glu lys ala ile lys leu asp asn

GCT AAC GTC ACC AAG GGA TTC AAG
ala asn val thr lys gly phe lys

AAT TAC TGG CAA AGC TCC ATG TGC
asn tyr trp gln ser ser met cys

TAC TCT GTC GGC GAG TAT GAC GAA
tyr ser val gly glu tyr asp glu

TAC CGC CGT ACC CTT GCC GAG GGA
tyr arg arg thr leu ala glu gly

CCT GAC GAC GAA GCG TAC ACC AGG
pro asp asp glu ala tyr thr arg

GGA GAG ACA TAT GAA GTT CAT TGG
gly glu thr tyr glu val his trp

CAG TAC CAA ACA CCT TTC TAC GAT
gln tyr gln thr pro phe tyr asp

ACT
thr

CTT GCG CCC CAG GAC ATT GCG
leu ala pro gln asp ile ala

GTC AAT GAC GAC ACA TAC TAC TAC
val asn asp asp thr tyr tyr tyr

ATG GGA ATG GGT CAA GAC ATC GCC
met gly met gly gln asp ile ala

AAT GAA ATT TGT TCA TCC TAC TCC
asn glu ile cys ser ser tyr ser

ATC AGT GCT TCC TCC TTC
ile ser ala ser ser phe

AGT GAT GAC TTG TAC GCA
ser asp asp leu tyr ala

AAC
asn

GAT AAG
asp lys

CAT GGA
his gly

CAG CAA ACC CGT CGT CTC ACT
gln gln thr arg arg leu thr
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1/1
CAA CAA
gln gin
61/21
TCC ACT
ser thr
121/41
AAC GCA
asn ala
181/61
GGA TCT
gly ser
241/81
GCC ACC
ala thr
301/101
GTT GAC
val asp
361/121
GGA TTG
gly leu
421/141
CCC GTC
pro val
481/161
AAT GGC
asn gly
541/181
GAA GTG
glu val
601/201
CCC TAT
pro tyr
661/221
CCT CAC
pro his
721/241
GGT GTA
gly val
781/261
AAC GCA
asn ala
841/281
CCT GAT
pro asp
901/301
ATG TAC
met tyr
961/321
CCC ATT
pro ile
1021/341
CTT TGC
leu cys
1081/361
TCC AGG
ser arg



1141/381 1171/391
GAG AAG CAT GAA CAC AAT CAC AGC CAT GGT CAC AGC CAT GTA CGT GGT CAC CAG CAC CAC
glu lys his glu his asn his ser his gly his ser his val arg gly his gln his his
1201/401 1231/411
CAA TGG TTT TAG GTT GTC GAT GAG TGT ATG GAT GAT GCT CTT TAG TTT TGT ACG TCT CAC
gln trp phe AMB val val asp glu cys met asp asp ala leu AMB phe cys thr ser his

1261/421
GAA TAT GTT TAT TAC AGA TTT CCG
glu tyr val tyr tyr arg phe pro
1321/441
AAT TAT TAG TTT CCT TAA AAA AAA
asn tyr AMB phe pro OCH lys lys
1381/461
AAA AAA AAA AAA AAA AAA AAA AAT
lys lys lys lys lys lys lys asn

1291/431
GAG CCA ATA TTA ATT TCA ATT AGT TAA TTC TAA ACA
glu pro ile leu ile ser ile ser OCH phe OCH thr

1351/451
AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA
lys lys lys lys lys lys lys lys lys lys lys lys
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Figure 4. Kyte Doolittle Hydrophobicity Plot of the CA44 Protein

Sequence. Translated protein sequence begining at Met 108. Amino acid

position is on the horizontal axis and hydrophobicity on the vertical axis.
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4. Conclusions

The T. weissflogii carbonic anhydrase gene described in this thesis does not

appear to have homology to any published algal chloroplastic or periplasmic carbonic

anhydrase isoforms. The Chlamydomonas reinhardtii periplasmic genes exhibit some

homology to mammalian carbonic anhydrases (Fukuzawa et al. 1991), and many of the

algal chloroplastic genes are homologous to the chloroplastic carbonic anhydrases of

higher plants such as pea (Fukuzawa et al. 1992). Since the T. weissflogii protein is in

the same size range as the other carbonic anhydrases and has the carbonic anhydrase

enzyme activity, the lack of homology might simply reflect the fact that T. weissflogii is

evolutionarily quite distant from these other organisms. Alternatively, the sequence

differences might suggest slightly different properties of the T. weissfilogii enzyme. For

example, it might be associated with a transporter, a proton pump, or some other protein

utilized in the carbon accumulation mechanism.

The protein predicted to be translated from clone CA44 was 32 kD,

approximately 8 kD longer than expected. The amino terminal amino acids sequenced

from the purified carbonic anhydrase are 72 residues downstream of the putative start

methionine predicted by the CA44 cDNA. It has not been determined whether the

proteolytic events that generated the sequenced polypeptide were a result of proteolysis

during protein purification or a physiological protein processing event. If, however, the

N-terminus of the sequenced protein was not degraded, then the roughly 8 kD protein

encoded upstream of it is probably a signal sequence responsible for sending the protein

to the correct cellular location. Many of the amino acids at the beginning of this stretch

of 72 residues are slightly hydrophobic, so it is possible that this portion of the protein

might serve as a signal sequence and be cleaved after insertion into the endoplasmic

reticulum.

The apparent size of the purified carbonic anhydrase on the denaturing

polyacrylamide gel was 27 kD. This is different from the size of the predicted protein

beginning at Met 106 (-32 kD) as well as the predicted protein beginning at Ala 178

(-24 kD). There are at least two possible explanations for these discrepancies. The

simplest explanation is that salts from the purification protocol might have caused the

sample to run differently from the standards in the gel. Additionally, one or more post-

translational modifications such as glycosylation and signal sequence cleavage might
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cause the final protein size to be larger or smaller than that predicted by the gene

sequence. There are three potential N-linked glycosylation sites present in the protein

which would act to make the protein larger than predicted. The consensus sequence for

this glycosylation event, Asn-X-Ser/Thr, is present at Asn 114, Asn 161, and Asn 386.

Therefore, if the preprotein that is initially translated is glycosylated at one or more sites,

it would be larger than 32 kD, and if a signal sequence were then cleaved, the protein

would be smaller again. This could result in a final protein of 32 kD.

This carbonic anhydrase gene is a valuable tool that can be used to characterize

the inorganic carbon acquisition mechanism utilized by T. weissflogii. The cloned gene

can now be manipulated to create recombinant protein which can be synthesized and

purified in large quantities. This recombinant protein can be used to perform in vitro

experiments designed to ascertain the structure and function of the enzyme. For

example, the enzyme kinetics can be examined at different CO2 concentrations. Also,

the recombinant protein can be used to raise antibodies. These antibodies can then be

used to visualize carbonic anhydrase cellular localization, as well as in field studies to

examine the occurrence of this enzyme in the environment. Also, the gene sequence can

be used to generate probes to examine regulation of the T. weissflogii carbonic

anhydrase in response to different environmental stimuli. Specifically, the molecular

mechanisms by which zinc and CO2 modulate carbonic anhydrase enzyme levels can be

studied. The probes can be used to examine mRNA levels due to changes in

transcription induced by different zinc and CO2 concentrations. Finally, the purification

technique can be modified to try to detect additional carbonic anhydrase isoforms. All of

the information obtained by these experiments should lead to a better understanding of

exactly how T. weissfilogii acquires inorganic carbon.
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Appendix One

Restriction Map of Carbonic Anhydrase clone CA44

Ple I
NspB II Hinf I

Fnu4H I Tthlll II Mme I

II I I I
CAACAACACGCCAAAGACGAAAACTCCAAGrGA-aAGCC .GCTGTGTCGTGCTTGGACTC CACTGTCGGACTTCTGC 80
GG ± ±)Gl ±C-GT GGTTTCTCC ACGCACGA C1A ACAGCC

I ' 11 ' I .
37 50 67
38 56

56
Fnu4H I
BspW I
Bbv I

NspB II
Fnu4H I

BceF I AlwN I Msp I
HinP I Fnu4H I Hpa II
Hha I BspW I CfrlO I Mnl I
BstU I Bbv I Bsg I BsaJ I

II I II 1111 II II
TTCCACCATCGCGCTTGCC GTTCAGAACACCG CTGCA C C TAACCG 160
AAGGTG;GTAGCGCGA~cGCaGtclFGTCAAGcG¶IvrGCIcG rGGCl~CGATGACGGCTCCTATTCTGGC

II . II II i i I 1- 
90 124 131 146
91 124 135 148
91 124 136

97 125 136
127
128

130
130
130

Sau3A I
Mbo I Sau3A I
Dpn II Mbo I
Dpn I Dpn II

BstY I BspW I
Taq I Alw I Tthlll I Hae III Dpn I

Mnl I Bsr I Taq I BsiY I Sau96 I Dde I

I I I I I I I I II I I
TTGCGACCCTCGAAGCCAGTGGATCTGACAACTTCCTTGTTCCCATCGACATCGTCCCCGAAASGGCCACTGCTGAGATC 240
AACGCTGGGAGCTTCGGTCACCTAGACTGTTGAAGGAACAAGGGTAGCTGTAGCAGGGGCTTTCCCGGTGACGACTCTAG

168 176 206 216 224 233
170 181 208 225 237

181 232
182 237
182 237
182 237
182
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ScrF I
EcoR II
Dsa V

Nla III
NspC I

Alu I Nsp7524 I
Nla IV Sau3A I Nsp I
Ban I Mbo I Fok I BstN I

Taq I Bsp1286 I BspW I Dpn II Hinc II BstX I
Mbo II Mnl I Mae II Bal I Dpn I Mae II SfaN I BstK I
I I III I I I I II II I II I

GCC ACCTTTCGACGACC AAGCGGACAA CG T TGACTGCATCCAATGCC 320
CGGTGGTAGAAGCTGCTCCCGTGGTTGCATACACGGCTCTTC 

1I*1 1II. I I I I I1I 11- 111 I
248 256 266 274 285 299 308 319

251 258 274 285 301 312
259 285 309 319
259 285 314

290 314
314
315

319
319
319

Mae II
Sty I Tthlll I

Mnl I HinP I BsaJ I Taq I
BsiY I Hha I Hph I Sal I

Sau96 I Hae II Mae III Tfi I Hinc II
Ava II Alu I Mae II Hinf I Acc I

I I I 11 I I I II II
¶IGMTCCTrcAAGCTGrr-rW AACGTACCAAGGGNmAAGGGATGAAGTCGACGTAGTCCCCAACACCAAGAATT 400
ACCAGGAGTTCGACCGCGA CAGTGGTTCCCTAAGTTCCCTAACTACCTTCACTGGTTCAGGGGTTGTGG TTAA

I I I II I · I II II 
322 330 341 353 373
322 334 343 353 373

325 335 344 373
325 335 347 374

347 376
377

Nla III
BspW I SfaN I

Bsr I Alu I Bsp1286 I Bsr I Nla IV

11I I I I
ACTG GCTCCATGTGCCCCGTCAATGTCCTACTCTG AGTATGACGAA 480
TGACCGTTTCGAGGTACACGCCAGTGACAAGTGAGACAGCCGCTCATACTGCTT

II I I I .I ..
401 409 417 434 445

410 438
414

EcoN I
BsiY I

Rsa I
Sau96 I Csp6 I Mnl I Fok I Fnu4H I
Ava II Mae II BceF I BsaJ I Bsg I Bbv I
I I I I I I I I I I

AATGGCAGTG GTCCGAACGGAAACGTTGGCGTTCCTTACCGCCGTACCCTTGCCGAGGGAAAGTGCAGATGGA'ITTCG 560
TTACCGTCACCAGGCTTGcTTTGCAACCGCAAGGAATGGCGGCATGGGAACGGCTCCCTCTTCACGTCCTACCTAAAGC

I . I -I I I I I · I I I
490 503 521 533 544 560
490 524 535 549 560

524
528
528
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BsiY I
Sau96 I

ScrF I
EcoR II
Dsa V
BstN I
BstK I

Rsa I EcoO109 I BsmA I
Csp6 I Hae III Fok I Mme I

I IlI 11II I CTGCCATCACTACGACCCTGACGACGAAGCGTACACCAGGCCA G 640
GACGGTAGTGAGCTGCTGTCCGGGATACTACCGTGACGTAACCCTACCTCAACCTC

·
591 599 626 634
591 598 640

596
596
596
596
596

599
602

NspC I
Nsp7524 I

HinP I
Msp I
Hpa II

Mnl I Nae I Nla III
BsiY I CfrlO I Tthlll II

Hae III Nla IV Nsp I Rsa I
Nde I Hae I Gsu I Hha I Nla IV Csp6 I

I 111 I I II I 11 I I I
AACATATGAAGTTCATTGGC CACTC AGCCGGCGCATGTGGAACCACCTATCAGTACCAAACACCTTTCTACGAT 720
TCTGTATAC TTCAAGTAACCGGAGTGAGACCTCACACGGTGGATAGTCA TGCTA

I 11-1 I I 11 I II I I' 
644 658 668 677 685 699

659 670 679 699
661 673 703
661 673 680

674
674

677
679
679

ScrF I
EcoR II
Dsa V

Mbo II BstN I
Ear I BstK I

Taq I Ple I BsaJ I
Mnl I Hinf I HinP I
BsiY I BsmA I Hha I Mme I

I I I I I I 1 
GGTGTATT CTGCAAC CTCGATATGAGACTTTCAAACTCTGCGCCCCAGGACATTGCGAACGCAGTTGGAGTTCAAGG 800
CCACATAAGACGTTGGAGCTATACCTCTGAGAAGTTTGAGAACGCGGGGTCCTGTAACGCTTGCGTCAACCTCAAGTTCC

I I . I I II · I II 
735 745 763 787
735 747 763

737 747 767
749 768
750 768

768
768
768

Mnl I
Taq I

Hph I Tfi I Fok I Mbo II
Mbo II Hinf I Taq I

I I I I I I I
ACAAATc TTCACCATTGTCAATGACcGCACA TACTACTACCCTGATTTGATTCGAGGATATGTCGATGAAGAATGG 880
TGTTTAGAAGTGGTAACAGTTACTGCTTGTGTATGATGATGGGACTAAACTAAGCTCCTACCTAACAGCTACTTCTTTACC

I. . 1. I - I ··
806 849 866

809 849 856 871
852

854
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BsiY I
Sau3A I
Mbo I
Dpn II
Dpn I

Nla IV
BstY I

Msp I
Hpa II Fnu4H I

Rsa I BamH I Bbv I
Csp6 I Alw I Ple I

Nla III Alw I Bsr I Hinf I Fok I

I I I I l I I I I I
GAATGGGTCAAGACATCGCCATGACACCCCGGATCCACCACTGGGAGAGTCGCAGCAATGAAATTTGTTCATCCTACTCC 960
CTTACCCAGTTCTGTAGCGGTACATGTGGCCTAGGTGGTGACCCCTCTCAGCGTCGTTACTTTAAACAAGTAGGATGAGG

I I I II I I I . I
900 910 919 927 950

903 911 927
903 910 932

908 932
908

910
910
911
911
911
911

914
ScrF I
EcoR II
Dsa V
BstN I Sau3A I Sau3A I
BstK I Mbo I Mbo I Alu I

Pf1M I Dpn II Dpn II Taq I SfaN I
BsiY I Dpn I Dpn I Mnl I Hind III Mbo II

I I I I I I I I I
CCCATTACCGCAGT TT CAGATC GCTCCTTCGAACT CAACGATATGAAGAT 1040
GGGTAA TGGACCGG TTCAAC GTAGAA CG ATGCTATACTTCTA

II- I. I. I I I -
962 979 996 1007 1018 1035
962 979 996 1013 1038

968 979 996 1019
968 979 996
968
968

ScrF I
EcoR II
Dsa V
BstX I
BstN I
BstK I
BsaJ I

Sau3A I
Mbo I
Dpn II
Dpn I
Alw I

Nla IV
BstY I
BamH I

Rsa I Nla III Mae III

Mae II Nla III Csp6 I Alw I Bsr I Ava I Alu I

I I I i 11 I I I I
GCAACGTGATGACATGAGTGATGACTTGTACATGGATCCAGGGAACTGGTTACACCCGAGTA TGTA GCTAACAACC 1120

CGTTGCACTACTGTACTCACTACTGAACATGCGTGTACCTAGGTCCCTTGACCAATGTACATCGATTGTT
II II· ·I' 1 I*

044 1053 1068 1078 1089 1099 1110
1068 1075 1093

1078
1078
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Mae III Mae II
Nla III BsaA I
Sty I Rsa I
Nco I Csp6 I Hph I

Dde I Dsa I Nla III Mae III
BsmA I Nla III BsaJ I BstX I BstE II

I I I II I 11 III III
AGCAAACCCGTCGTCTCACTIACGCA GAAQCAATCACAGCCATGGTCACAGCCA GT&ACGGWACA CACCAC 1200
TCGIITnGVIKW>K K O3NCTCTTCGTACTTGTGTTAGTG CAGATTCGGTACATGCACCAGTGGTCGTGGTG

.to I 1 II I 11 111 111
1133 1147 1164 1176 1186

1139 1164 1177 1187
1164 1180 1188
1164 1180
1165 1181

1169 1182
BsmA I

Mae II
SfaN I Rsa I

Taq I Fok I Csp6 I

I I I I I I
CAATCGTTTTAGGTTGCATGAGTGTATGGATATCTCTTTAGT T TTGTACG TCTCACGAATATGrTTTATTACAGATT 1280
GTTACCAAAATCCAACAGCTACTCACATACCTACTACGAGAAATCAAAACATGCAGAGTGCTTATACAAATAATGTCTAA

· I · III
1217 1230 1250

1234 1250
1252

1254
Nla IV

Msp I Mse I
Hpa II Ase I

BsDE I Ss I Mse I Mse I

II I I II I ITCCGG CAATATTAATTTCAATTAGTTAATCTAAACAAA TAGC 1360
AGGCCTCGTrAAATCAATTAAG AA ± 1
III III I · ·
1281 1290 1308 1335
1282 1293
1282 1294

1284

1404

38



Appendix Two

Summary of Restriction Sites in Clone CA44

Acc I
AlwN I
Ava I
Ban I
Bgl I
BsaA I
BstE II
BstU I
Dsa I
Ear I
EcoN I
EcoO109
Gsu I
Hae I
Hae II
Hind III
Nae I
Nco I
Nde I
PflM I
Sal I

Ava II
BamH I
BceF I
Bsg I
Bsp1286 I
CfrlO I
Dde I
Hinc II
Nsp I
Nsp7524 I
NspB II
NspC I
Sty I
Tfi I
Tthlll I
Tthlll II

BsmA I
BstX I
BstY I
Hae III
Hpa II
Hph I
Mme I
Msp I
Ple I
SfaN I

gt/mkac
cagnnn/ctg
c/ycgrg
g/gyrcc
gccnnnn/ng
yac/gtr
g/gtnacc
cg/cg
c/crygg
ctcttc
cctnn/nnna

I rg/gnccy
ctggag 1
wgg/ccw
rgcgc/y
a/agctt
gcc/ggc
c/catgg
ca/tatg
ccannnn/nt
g/tcgac

g/gwcc
g/gatcc
acggc
gtgcag
gdgch/c
r/ccggy
c/tnag
gty/rac
rcatg/y
r/catgy
cmg/ckg
rcatg/y

1 1( 372) 2
1 1 ( 124) 2
1 1 ( 1098) 1
1 1( 258) 2

~gc 1 1( 273) 2
1 1 ( 1180) 1
1 1 ( 1185) 1
1 1( 89) 2
1 1( 1163) 1

1/4 1 1( 748) 1
.gg 1 1( 527) 2

1 1( 597) 2
.6/14 1 1( 667) 1

1 1( 657) 1
1 1( 333) 2
1 1( 1017) 1
1 1( 672) 1
1 1( 1163) 1
1 1( 643) 1

:gg 1 1( 961) 1
1 1( 372) 2

12/13
16/14

c/cwwgg
g/awtc
gacn/nngtc
caarca 11/9

2 1( 321)
2 1( 909)
2 1( 96)
2 1( 130)
2 1( 257)
2 1( 134)
2 1( 232)
2 1( 300)
2 1( 313)
2 1( 313)
2 1( 37)
2 1( 313)
2 1( 346)
2 1( 352)
2 1( 207)
2 1( 49)

gtctc 1/5 3 1( 639)
ccannnnn/ntgg 3 1( 311)
r/gatcy 3 1( 180)
gg/cc 3 1( 224)
c/cgg 3 1( 135)
ggtga 8/7 3 1( 343)
tccrac 20/18 3 1( 66)
c/cgg 3 1( 135)
gagtc 4/5 3 1( 55)
gcatc 5/9 3 1( 307)

373(
125(

1099(
259(
274(

1181(
1186(

90(
1164(

749(
528(
598(
668(
658(
334(

1018(
673(

1164(
644 (
962 (
373(

2 322(
1 910(
3 97(
3 131(
2 258(
3 135(
2 233(
2 301(
3 314(
3 314(
3 38(
3 314(
2 347(
3 353(
2 208(
3 50(

1 640(
2 312(
2 181(
3 225(
4 136(
3 344(
4 67(
4 136(
4 56(
2 308(

Bbv I gcagc 8/12 4 1(
932(

Hha I gcg/c 4 1(
763(

HinP I g/cgc 4 1(
763(

Mae III /gtnac 4 1(
1187(

Sau96 I g/gncc 4 1(
599(

123)
281)

90)
450)

90)
450)
342)
26)

223)
614)

4
3
4
1
4
1
2
4
2
1

124( 6) 5

91( 244) 3

91( 244) 3

343( 750) 1

224( 98) 5

130( 430) 1

335( 342) 2

335( 342) 2

1093( 76) 3

322( 168) 3

560( 372) 2

677( 86) 5

677( 86) 5

1169( 18) 5

490( 109) 4

39

840) 1
1088) 1

114) 2
954) 1
939) 1
32) 2
27) 2

1123) 1
49) 2

464) 2
685) 1
615) 1
545) 2
555) 2
879) 1
195) 2
540) 2

49) 2
569) 2
251) 2
840) 1

1
3
1
1
1
1
3
1
1
1
1
1
3
2
1
2

168)
168)
424)
413)
159)
538)
906)
72)
365)
365)
90)

365)
817)
496)
168)
653)

105)
770)
729)
374)
538)
465)
567)
538)
691)
130)

3 490(
2 1078(
2 521(
2 544(
3 417(
2 673(
1 1139(
3 373(
2 679(
2 679(
2 128(
2 679(
1 1164(
1 849(
3 376(
1 703(

3 745(
1 1082(
1 910(
2 599(
1 674(
1 809(
1 634(
1 674(
1 747(
4 438(

723)
135)
692)
669)
796)
540)
74)

840)
534)
534)

1085)
534)
49)

364)
837)
510)

388)
94)

168)
60)

234)
379)
153)
234)
180)
600)

2
3
3
4
3
2
3
3
3
1

1133(
1176(
1078(
659(
908(
1188(
787(
908(
927(

1038(

80)
37)

135)
554)
305)
25)

426)
305)
286)
175)

4
4
4
1
2
4
2
2
2
3



Alu I ag/ct 5 1(
1019(

Alw I ggatc 4/5 5 1(
1078(

BspW I gcnnnnn/nngc 5 1(
274(

Bsr I actgg 1/-1 5 1(
919(

BstK I c/cngg 5 1(
968(

BstN I cc/wgg 5 1(

968(
Dsa V /ccngg 5 1(

968(
EcoR II /ccwgg 5 1(

968(
Fok I ggatg 9/13 5 1(

856(
Hinf I g/antc 5 1(

849(
Mbo II gaaga 8/7 5 1(

871(
ScrF I cc/ngg 5 1(

968(

BsaJ I c/cnngg

Csp6 I

Fnu4H I

Nla IV

Rsa I

g/tac

gc/ngc

ggn/ncc

gt/ac

6 1(
767(

6 1(
903(

6 1(
130(

6 1(
685(

6 1(
903(

289)
91)

180)
1)

123)
136)
175)
170)
318)
114)
318)

114)
318)
114)
318)
114)
308)
94)
55)
78)

247)
164)
318)
114)

145)
315)
523)
165)
36)

430)
258)
225)
523)
165)

290(
1110(
181(

1079(
124(
410(
176(

1089(
319(

1082(
319(

1082(
319(

1082(
319(

1082(
309(
950(
56(

927(
248(
1035(
319(

1082(

5 146(
1 1082(
1 524(
3 1068(
5 37(
1 560(
1 259(
3 910(
1 524(
3 1068(

40) 6
103) 3
729) 1
134) 4
6) 6

803) 1
225) 2
124) 5
277) 2
131) 5
277) 2

131) 5
277) 2
131) 5
277) 2
131) 5
240) 3
263) 2
297) 2
286) 3
502) 1
178) 3
277) 2
131) 5

201)
82)
67)

112)
87)

372)
186)
168)
67)

112)

330(

910(

130(

401(

596(

596(

596(

596(

549(

353(

750(

596(

347(
1164(
591(

1180(
124(
932(
445(

1078(
591(

1180(

3
6
6
4
4
2
4
5
6
4

79) 5 409(

1) 5 911(

102) 4 232(

33) 6 434(

172) 4 768(

172) 4 768(

172) 4 768(

172) 4 768(

77) 6 626(

394) 1 747(

56) 6 806(

172) 4 768(

186)
49)

108)
33)
3)

281)
225)
135)
108)
33)

4
7
5
7
6
3
2
6
5
7

533(

699(

127(

670(

699(

Dpn I ga/tc

Dpn II /gatc

Mae II a/cgt

Mbo I /gatc

Sau3A I /gatc

7 1(
911(

7 1(
911(

7 1(
377(

7 1(
911(

7 1(
911(

181)
68)

181)
68)

265)
126)
181)
68)

181)
68)

2 182(
5 979(
2 182(
5 979(
2 266(
4 503(
2 182(
5 979(
2 182(
5 979(

55)
17)
55)
17)
33)

541)
55)
17)
55)
17)

6 237(
8 996(
6 237(
8 996(
7 299(
1 1044(
6 237(
8 996(
6 237(
8 996(

BsiY I ccnnnnn/nngg

Taq I t/cga

8 1(
602(
962(

8 1(
374(
1013(

215)
59)

251)
169)
363)
200)

2
8
1
3
1
2

216(
661(

170(
737(

109)
74)

36)
115)

5 325(
7 735(

8 206(
6 852(

203)
179)

45)
14)

3 528(
4 914(

7 251(
9 866(

Mnl I cctc

Nla III catg/

7/7 9 1(
325(
854(

9 1(
900(

1165(

147) 4
210) 1
153) 3
314) 1
153) 4
12)10

148(
535(

1007(
315(
1053(
1177(

262 sites found
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610) 1

167) 3

42) 5

485) 1

200) 3

200) 3

200) 3

200) 3

230) 4

102) 4

65) 5

200) 3

234)

204)

3)

15)

204)

2

2

7

7

2

48)
83)
48)
83)
42)

138)
48)
83)
48)
83)

7
4
7
4
5
3
7
4
7
4

285(
1079(
285(

1079(
341(

1182(
285(

1079(
285(

1079(

626)
134)
626)
134)
36)
31)

626)
134)
626)
134)

1
3
1
3
6
8
1
3
1
3

74)
48)

123)
147)

6
9

5
4

20)10
126) 5
206) 2
99) 5
22) 8
36) 7

168(
661(

414(
1075(

88)
74)

266)
72)

7 256(
8 735(

2 680(
6 1147(

69)
119)

220)
18)

9
6

3
9



Appendix Three

Sequences of Primers and Their Locations on the Map in the Genea

Primer Name

CANterm

CAN2

RevMQR

ForMQR

RevDLY 1

BestHind

CA4r

CA3f

NTForw

Revcheck

NewHindIII 2

NewNterm 3

Sequenceb

5' ggI ttY MgI MgI caY caY taY gaY 3'

5' gaR gtI caR gaY ggI ttY 3'

5' cat Rtc Rtc IcK Ytg cat 3'

5' atg caR MgI gaY gaY atg 3'

5' ccN ggI gcR taI aRR tc 3'

5' gtg cgt aca agt cat cac tca tgt c 3'

5' ctt gcg atc aac ttg cca gg 3'

5' tta cct ggc aag ttg atc gc 3'

5' gaa aca ctg cat tgg gat gg 3'

5' tgt acg ctt cgt cgt cag g 3'

5' cct tcg ata agc ttt gct acg ata tg 3'

5' act cgg tct ccg aag tgc agg atg ggt ttc 3'

Position of 5' End

553

541

1056

1039

1078

1051

987

965

512

595

1010

541

b Degenerate base symbols are according to the IUPAC nomenclature system.

a Base locations correspond to the map in figure three and the map in appendix one.

1 This primer may have 2° structure problems.

2 A mistake was made designing this primer. The fourth base should have been t.

3 This adds a restriction site (BsaI) onto the 5' end.
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Appendix Four

Kits Used in Materials and Methods

Kit Name

Geneclean II

TA Cloning® Kit

RNAgents® Total RNA Isolation Kit

PolyATract® mRNA Isolation System

Riboclone® cDNA Synthesis System

Riboclone® EcoRI Linker Ligation System

Lambda Zap®II Vector Kit

Rapid Excision Kit

Qiagen Plasmid Kits

Prime-it® II Random Primer Labeling Kit

Sequenase® 2.0 DNA Sequencing Kit

Company

Bio 101, Inc.

Invitrogen Corp.

Promega Corp.

Promega Corp.

Promega Corp.

Promega Corp.

Stratagene

Stratagene

Qiagen, Inc.

Stratagene

Amersham

Location

Vista, CA

San Diego,CA

Madison, WI

Madison, WI

Madison, WI

Madison, WI

La Jolla, CA

La Jolla, CA

Chatsworth,CA

La Jolla, CA

Arlington Hghts, IL

42



References

Aizawa, K. and Miyachi, S. (1984) Carbonic Anhydrase Located on Cell Surface
Increases the Affinity for Inorganic Carbon in Photosynthesis of Dunaliella
tertiolecta. FEBS Lett., 173: 41-44.

Berger, W.H. and Keir, R.S. (1984) Glacial-Holocene Changes in Atmospheric CO2 and
the Deep-Sea Record. in Climate Processes and Climate Sensitivity, J. Hanson
and T. Takahashi, eds. AGU Monograph Ser. 29.

Bruland, K.W. (1989) Complexation of Zinc by Natural Organic Ligands in the Central
North Pacific. Limnol. Oceanogr., 34: 269-285.

Bruland, K.W. (1992) Complexation of Cadmium by Natural Organic Ligands in the
Central North Pacific. Limnol. Oceanogr., 37(5): 1008-1017.

Coleman, J.R. and Grossman, A.R. (1984) Biosynthesis of Carbonic Anhydrase in
Chlamydomonas reinhardtii During Adaptation to Low CO2. Proc. Natl. Acad.
Sci., 81: 6049-6053.

Husic, H.D., Kitayama, M., Togasaki, R.K., Moroney, J.V., Morris, K.L., and Tolbert,
N.E. (1989) Identification of Intracellular Carbonic Anhydrase in
Chlamydomonas reinhardtii Which is Distinct from the Periplasmic Form of the
Enzyme. Plant Physiol., 89: 904-909.

Ishida, S., Muto, S., and Miyachi, S. (1993) Structural Analysis of Periplasmic
Carbonic Anhydrase 1 of Chlamydomonas reinhardtii. Eur. J. Biochem., 214:
9-16.

Fukuzawa, H., Ishida, S., and Miyachi, S. (1991) cDNA Cloning and Gene Expression
of Carbonic Anhydrase in Chlamydomonas reinhardtii. Can. J. Bot., 69: 1088-
1096.

Fukuzawa, H., Suzuki, E., Komukai, Y. and Miyachi, S. (1992) A Gene Homologous to
Chloroplast Carbonic Anhydrase (icfA) is Essential to Photosynthetic Carbon
Dioxide Fixation by Synechococcus PCC7942. Proc. Natl. Acad. Sci., 89: 4437-
4441.

Kamo, T., Shimogawara, K., Fukuzawa, H., Muto, S. and Miyachi, S. (1990) Subunit
Composition of Carbonic Anhydrase from Chlamydomonas reinhardtii. Eur. J.
Biochem., 192: 557-562.

43



Martin, J.H., Coale, K.H., Johnson, K.S., Fitzwater, S.E., Gordon, R.M., Tanner, S.J.,
Hunter, C.N., Elrod, V. A., Nowicki, J.L., Coley, T.L., Barber, R.T., Lindley,
S., Watson, A.J., Van Scoy, K., Law, C.S., Liddicoat, M.I., Ling, R., Stanton,
T., Stockel, J., Collins C., Anderson, A., Bidigare, R., Ondrusek, M., Latasa, M.,
Millero, F.J., Lee, K., Yao, W., Zhang, J.Z., Friederich, G., Sakamoto, C.,
Chavez, F., Buck, K., Kolber, Z., Greene, R., Falkowski, P., Chisholm, S.W.,
Hoge, F., Swift, R., Yungel, J., Turner, S., Nightingale, P., Hatton, A., Liss, P.
and Tindale, N.W. (1994) Testing the Iron Hypothesis in Ecosystems of the
Equatorial Pacific Ocean. Nature, 371: 123-143.

Martin, J. H. and Fitzwater, S. E. (1988) Iron Deficiency Limits Phytoplankton Growth
in the North-East Pacific Subarctic. Nature, 331: 341-343.

Morel, F.M.M., Hudson, R.J.M., and Price, N.M. (1991) Limitation of Productivity by
Trace Metals in the Sea. Limnol. Oceanogr., 36(8): 1742-1755.

Morel, F.M.M., Reinfelder, J.R., Roberts, S.B., Chamberlain, C.P., Lee, J.G., and Yee,
D. (1994) Zinc and Carbon Co-limitation of Marine Phytoplankton. Nature,
369: 740-742.

Murray, J.W., Barber, R.T., Roman, M.R., Bacon, M.P., and Feely, R.A. (1994)
Physical and Biological Controls on Carbon Cycling in the Equatorial Pacific.
Science, 266: 58-64.

Nimer, N.A. and Merrett, M.J. (1992) Calcification and Utilization of Inorganic Carbon
by the Coccolithophorid Emiliana huxleyi Lohmann. New Phytol., 121 (2): 173-
178.

Patel, B.N. and Merrett, M.J. (1986) Inorganic Carbon Uptake by the Marine Diatom
Phaeodactylum tricornutum. Planta (Berl), 169: 222-227.

Patterson, B.D., Atkins, C.A., Graham, D. and Wills, R.B.H. (1971) Carbonic
Anhydrase: A New Method of Detection on Polyacrylamide Gels Using Low-
Temperature Fluorescence. Anal. Biochem., 44: 388-391.

Price, N.M., Harrison, G.I., Hering, J., Hudson, R.J., Nirel, P.M.V., Palenik, B., and
Morel, F.M.M. (1989) Preparation and Chemistry of the Artificial Algal Culture
Medium Aquil. Biolog. Oceanog., 6: 443-461.

Rawat, M. and Moroney, J.V. (1991) Partial Characterization of a New Isoenzyme of
Carbonic Anhydrase Isolated from Chlamydomonas reinhardtii. J. Biol. Chem.,
266(15): 9719-9723.

44



Redfield, A.C., Ketchum, G.H. and Richards, F.A. (1963) The Influence of Organisms
on the Composition of Sewwater. In The Sea, ed. M.N. Hill, vol 2, 26-77. Wiley
Press, New York.

Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory
Manual. Cold Spring Harbor Press, New York.

Sambrotto, R.N., Savidge, G., Robinson, C, Boyd, P., Takahashi, T., Karl, D.M.,
Langdon, C., Marra, J., and Codispoti, L. (1993) Elevated Consumption of
Carbon Relative to Nitrogen in the Surface Ocean. Nature, 363: 248-250.

Sarmiento, J.L. (1993) Ocean Carbon Cycle. Chem. and Eng. News, May 31, 1993,
30-43.

Siegenthaler, U. and Sarmiento, J.L. (1993) Atmospheric Carbon Dioxide and the
Ocean. Nature, 365: 119-125.

Sikes, C.S. and Wheeler, A.P. (1980) Carbonic Anhydrase and Carbon Fixation in
Coccolithophorids. J. Phycol., 18: 423-426.

Sundquist, E.T. (1993) The Global Carbon Dioxide Budget. Science, 259: 934-941.

Takahashi, T., Broeker, W.S., and Langer, S. (1985) Redfield Ratio Based on Data from
Isopycnal Surfaces. J. Geophys. Res., 90: 6907-6924.

Watson, A.J., Law, C.S., Van Scoy, K.A., Millero, F.J., Yao, W., Friederich, G.E.,
Liddicoat, M.I., Wanninkhof, R.H., Barber, R.T., and Coale, K.H. (1994)
Minimal Effects of Iron Fertilization on Sea-surface Carbon Dioxide
Concentrations. Nature, 371: 143-145.

Williams, T. G. and Coleman, B.C. (1993) Identification of Distinct Internal and
External Isozymes of Carbonic Anhydrase in Chlorella saccharophila. Plant
Physiol., 103: 943-946.

Yang, S.-Y., Tsuzuki, M., and Miyachi, S. 1985. Carbonic Anhydrase of
Chlamydomonas: Purification and Studies on its Induction Using Antiserum
against Chlamydomonas Carbonic Anhydrase. Plant CellPhysiol., 26(1): 25-34.

45


