
The Geometry of the Generic Line Complex
by

Joshua S. Sher

B.A., Mathematics and Physics (with Honors), Wesleyan University,
1991

Submitted to the Department of Mathematics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Mathematics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1995

© Massachusetts Institute of Technology 1995. All rights reserved.

Author .................................. ........
Department of Mathematics

May 1, 1995

'2

.Certified by . ........... ...........................
Victor Guillemin

Professor of Mathematics
Thesis Supervisor

Accepted by.
I/ David Vogan

Chairman, Departmental Committee on Graduate Students
:,;A;,ACi; i;-US ':T iS "IS'i -u TE

OF TECHNOLOGY

OCT 2 0 1995 .-.

LIBRARIES

. I. . . . . . . . . . . . . . . . . .. .. . . . . . . . : �- : ." %-,f - .



The Geometry of the Generic Line Complex

by

Joshua S. Sher

Submitted to the Department of Mathematics
on May 1, 1995, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Mathematics

Abstract
In this paper, we study the Radon transform from RP3 to the Lagrangian Grassma-
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Chapter 0

Introduction

In this paper we study the Radon transform from RP3 to the Lagrangian Grass-

manian. lMuch of the background material discussed in Chapter 1 can be found in

Victor Guillemin's book: Cosmology in (2 + 1)-Dimensions, Cyclic Models, and

Deformations of M2,1.

In Chapter 1 we give a number of descriptions of the Lagrangian Grassmanian

and the Radon transform. The most important fact we use is that both RP3 and

the Lagrangian Grassma.nian are homogeneous spaces for the ten dimensional group

Sp(4, R). Accordingly, we give a Sp(4, R)-equivariant description of the Radon trans-

form.

In Chapter 2 we use the representation theory of Sp(4, R) to identify the kernel and

range of the Radon transform. Furthermore, we construct geometrically an operator

that picks off the kernel for us. Finally, we show that this operator is actually a

Fourier integral operator corresponding to an interesting involution of T*RP3 - 0 and

we give a few descriptions of this involution.

In Appendix 1, we discuss the canonical relation associated to the Radon trans-

form. In Appendix 2, we discuss some facts about the representation theory of U(2)

which is the maximal compact subgroup of Sp(4, R).
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Chapter 1

Background

Section a:

Some Motivation

Consider the following: Take a function f(x) on RP3, a metric on RP3, and a line

r on RP3 (which you can think of as a great circle on S3 ) and form the integral

f (x)ds

where ds is the arc length derived from the metric. The space of lines on RP3 is, as

a manifold, G2.4 - the Grassmanian of 2-planes in 4-space. Thus the above defines a

smooth map

R: C"(RP3) -+ C'(G2,4)

--called the Radon transform (or the x-ray transform). It is well known that this

map is injective, so given the integral of a function over every line we can recover the

function.

Since the dimension of G2,4 is bigger then the dimension of RP3, an obvious

question is: can we determine a function on RP3 with less information? To put

this more precisely, for what 3 dimensional hypersurfaces X of G2,4 is the map

R : C(RP 3) + C°°(X) injective. We will call such a hypersurface admissible.

GCelfand and Graev gave a characterization of these hypersurfaces.

Theorem 1 (Gelfand and Graev) A hypersurface X is admissible iff X is locally

(near a generic point) either:

a) the set of lines incident to some non-singular curve in RP3 , or

b) the set of lines tangent to some smooth surface in RP3 .

In this paper we will look at the simplest example of a non-admissible complex of

lines (i.e. a non-admissible hypersurface in G2.4 ). It is well known that G2,4 imbeds in

RP5 via the Plicker imbedding (we will give more details about the Plicker imbedding
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later on). Consider a generic (we will define this later) degree 1 hypersurface in

RP5. Let L be the intersection of G2,4 with this hypersurface. Then L is NOT

admissible. In this paper we study the kernel and range of the Radon transform from

C-(RP3) -+ CO(L).

Section b:

The Lagrangian Grassmanian

The surface inside G2,4 which we are interested in is the Lagrangian Grassmanian

(the space of Lagrangian 2-planes in R4 with respect to some symplectic form). This

surface is cut out of G2,4 by a linear equation (we will describe this in detail). We

will also give two other well known descriptions of the Lagrangian Grassmanian.

Let us recall some basic facts about G2,4. Let An"(Rm) be the n'th graded piece of

the exterior algebra on Rm. As is well known, Gn,m can be imbedded into P(A"(R m))

via the Plficker imbedding which takes the plane spanned by vl,..., v, to the multi-

vector vl A ... A v,. The range of this map consists of the decomposable elements in

An(Rm ) which in the case of A 2(R4) has a particularly simple description: a E A2(R4 ) is

decomposable iff aAa = 0. (Write a as a sum of a minimal number of decomposables.

An easy fact is that for such a minimal representation of a two-vector, all the vectors

involved are linearly independant. Therefore, every element in A2(R4 ) can be written

as a sum of two decomposables. If a is not decomposable then write a = a A b + c A d

where a, b, c, and d are linearly independant. So, a A a = 2a A b A c A d which is not

0 since a, b, c, and d are linearly independant. If a = a A b, then clearly a A a = 0.)

Let (x 1, ... , r4) be a basis for R4 , then (xt A x2,... , x3 A x4 ) is a basis for A2(R4 )

which is R6. Denote a general element a E A 2(R4) by

a = 7ijxi A xj.
i<j

Define the function Q(a) by the equation aAa = Q(a)xtAx 2Ax 3AX 4. Q is a quadratic

form on R with signature (3, 3). Furthermore, the set Q = 0 is independent of our

choice of basis and is projectively invariant so it cuts out a hypersurface in RP5 . This

hypersurface is G2,4.
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In our present coordinates we can write Q(a) = 712734 - 713724 + 714723' Let us

change coordinates to exhibit the (3, 3) signature of this quadratic form. Let

vI = (12 + Y34)/ V = (714 + 723)/\

3 = (13 - 72 4)/ V4 = (712 - 34)/

2!5 = (14 - 23)/ V6 = (713 + Y24)/2-

In these coordinates:

Q(a) = v2 + v2 + ,, 2 2 v2 -2 v2

Now let w be a symplectic form on R4 . We can define a linear functional, 1, on R6

by l(x A y) = w(x, y) and extend this to all of R6 linearly. A 2-plane spanned by ql

and q2 is Lagrangian iff w(ql, q2) = 0. Therefore, the Lagrangian Grassmanian, which

is by definition the space of Lagrangian 2-planes in R4, sits inside G2,4 as a hyperplane

corresponding to the additional equation = 0. Furthermore, if we choose coordinates

on R4 so that w is in canonical form then our equation becomes v1 = 0. We will denote

this space L. Note that arbitrary linear functionals on R6, by the reverse procedure,

define two-forms on R4. So generic linear functionals define non-degenerate two-forms

(symplectic forms) on R4. For this reason, L is sometimes called the generic line

complex.

We proceed by giving another description of L due to Veblen. Note that restricted

to L, our quadratic form is:

Q = 2 + 2 2 2 2= V2+ 3- -V -4 6.
So for a E L:

2 + 2 _2 2 _2 .,2 + V = 0.

Furthermore, L is contained inside P(v 2, ... , v6) = RP5 which is double covered by S5

(which we will choose to have radius 2). So points on the double cover of L satisfy

the equation:

V22 + V3 + V42+ + V = 2.
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So combining these equations, we see that L is double covered by v 2 + tv2 = 1 and

v2 + v,2 + 262 = 1. In other words, L is double covered by S2 x S1. Furthermore, Q

defines the metric (d.r) 2 - (dO)2 on 52 x S t.

Let (dx2 + dx2 - dt2) be the usual Minkowski (2, 1) metric on R3. Notice that

S,2 x S1 with the metric (dx)2 - (dO)2 is a compactification of Minkowski (2, 1) space.

On this space, the involution (x, 9) -+ (-x,-0) preserves the conformal structure

of S2 x St and thus L = (S x S)/((x,.) (-x,-9)) is a compactification of

Minkowski (2, 1) space possessing the same conformal structure. Therefore, we will

sometimes refer to L as compactified Minkowski space, denoted AI2,1, and use the

fact that T*AI2.t decomposes into timelike, lightlike, and spacelike regions.

One fact that we will refer to later on, is that L can be viewed as one component of

the boundary of the Siegel domain (called the Shilov boundary). The Siegel domain

consists of two by two symmetric matrices of the form: A + iB, where B is positive

definite, so it has a complex structure and therefore we have a notion of holomorphic

functions on the Siegel domain.

The final fact about L that we will need is the following: notice that each lightlike

line in L intersects the plane v2 = 0 in exactly one point and thus the space of all

lightlike lines is RP3.

Section c:

Double Fibrations

A general framework exists for dealing with Radon transforms-that of double

fibrations.

Definition 1 Let X, Y, and Z be manifolds. A double fibration is a diagram

z

x Y

such that the map pi x P2 : Z -+ X x Y is a proper differentiable imbedding of Z into

x x Y.
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Let F, = pl(x) and G = pl'(y) be the fibers above x and y. Since P1 x p2 is

a proper differentiable imbedding of Z into X x ', (p x p2)(F) and (P x 2 )(Gy)

a.re submanifolcls of {x} x Y and X x {y}. Thus, we can view the Fx's as a smooth

family of submanifolds of Y and Gy's as a smooth family of submanifolds of X. Z is

called the incidence relation since, viewed a.s a submanifold of X x Y, it consists of

pairs (x, y) such that x E Gy (and equivalently y E Fx).

By choosing a metric on X, we can define our Radon transform: R : C°°(X) -

C7o(Y) by

Rf(y)= I f(x)dx.

There is a rnicrolocal analog to our double fibration diagram. Since Z imbeds in

X x Y as a submanifold we can consider its conormal bundle N*Z C T*(X x Y).

(Let t be the inclusion of a manifold M into a. manifold P. N*M is the kernel of *

and is a Lagrangian submanifold of T*P.) Since T*(X x Y) - T*X x T*Y, we get

projections rrl : N*Z - T*X and 7r2 : N*Z -4 T*Y. Deleting the zero sections, we

get the following diagram:

N*Z-O

T*X -O T*Y-O

Since N*Z - 0 is a Lagrangian subma.nifold of T*(X x Y) this diagram defines a

canonical relation between T*X - 0 and T*Y - O. Assuming that we can pick non-

zero densities on Y, and Z (which is possible for the manifolds that we will look at),

then we can identify functions with densities. Let d be the density on Z. The Radon

transform is the map:

f - p2*((ptf)d).

Assuming that the fibers of p2 are compact, then P2* makes sense since we can push

forward densities under submersions by integrating over the fiber. From this per-

spective, our Radon transform is a Fourier integral operator (of order -1/2) with the

above diagram as its canonical relation.
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In the situation that we are interested in, X = RP3, Y = L and Z = {(x, )lx c 1l

where x and I are viewed as lines and planes in R4. The fibers that we are integrating

over are circles. The double fibration associates to every point x E RP3 a lightlike

geodesic in L and to every point 1 E L a "Lagrangian" geodesic in RP3. This gives us

the canonical relation:

N*Z -O

T*RP3 - O T*L - O

Let us now summarize some facts about the maps rl and ir2 (for details see

the appendix). Recall that every fiber of T*L - 0 decomposes into a spacelike, a

lightlike, and a timelike subspace and thus T*L-O globally decomposes into spacelike,

timelike, and lightlike regions. Let v denote the lightlike region. Let r = 7r '().

Let T = rl(F). The map rl is 1 to 1 on the complement of F in N*Z - 0 and the

map 2 is 2 to I on the same set. From this data, there exists a smooth involution

of N*Z - 0 which is the identity on r and switches the preimages of r2 on the

complement. Furthermore, since rl is 1 to 1 off r we get a corresponding smooth

involution of T*RP3 -O with fixed point set equal to T. We denote this involution t and

notice that . is a canonical transformation. Let t.* be the corresponding involution on

functions. (We will construct this operator in chapter 2.) Note that by construction

t preserves R's canonical relation, and, therefore, R o t* = R. Therefore, it is clear

that Range (1 - t.*) C Kernel R. We will, in fact, show that Range ( - t*) = Kernel

R and give an interesting description of t.

Section d:

Symmetry

Recall that our two spaces, RP3 and L can be viewed as homogeneous spaces for

G = Sp(4, R) (the symplectic group on R4). Choose a Lagrangian plane, 1, in R4 and

a line, x, in 1. Let P = the stabilizer of x in G and let Q = the stabilizer of I in
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G. These are the two non-conjugate parabolics in G. In this notation, RP3 = G/P,

L = G/Q and Z = G/(P n Q).

To take advantage of this symmetry we need to recast our Radon transform in

a G-equivariant way. Let L be the bundle over RP3 whose sections are smooth

functions f(x) on R4 - 0 that are homogeneous of degree -2 (in other words it is the

bundle 0(2)). Let L2 be the bundle (over L) (IQI(V))* where V is the Lagrangian

plane in R4 corresponding to the point I E L and Il(VI) denotes densities on V.

(Note: these are not densities on L.) Recall that a density 6 is a volume form Q

and an orientation ± with the equivalence relation (, ±) (-f, :F). Thus under

linear change of coordinates densities transform by Iet and thus duals of densities

transform by Ideti. We can represent our two parabolics as the matrices in Sp(4,R)

of the following form:

P= E 1 q= f

where the blocks in q are two by two. These bundles are induced from one-dimensional

representations of P and Q:

L 1 = G xpR L2 = G xQR

I I

G/P G/Q

where the respective characters of the two parabolics are X(p) = a2 and 2 (q) =

Idet(A)j. Notice that both characters are trivial on their maximal compact subgroups

so that we can trivialize both bundles and view sections as functions on the base.

We now define our map R: r(L) -+ (L 2). Let hi be a generator for H1(V - 0)

(i.e. a circle). Let represent the radial vector field on V. Let 6 = (, ±) be a

density on Vt - 0. Let f(x) be a section of L1. On V - 0 we can write f(x) = ()
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and Q = dx A dy where (x, y) are a basis for V,. Therefore,

f(x)(d ) = f(x)(xdy - ydx) = f(O)dO

on (VI - 0) which is closed, so it defines a cohomology class. Our orientation ± gives

us a pairing between homology and cohomology. Rf(l) is a dual to a density. To

define Rf(l), we define how it pairs with the density 6. We define:

< Rf(1),6 > = < h, f(9)dO >

where the pairing on the right is the pairing between homology and cohomology.

We now show that this map is G-equivariant. It is enough to check this when

g E Q and I = eQ is the identity coset (the general case follows since the compact

part of G only translates the base L = G/Q). Let A be the two by two block in

Q which acts on the plane V. Note that because g is a linear map g-lhl = ±hl in

homology depending on the sign of det(A). This map is G-equivariant because:

< Rgf(l), 6 >=< h, f(g- x)(xdy - ydx) >

which equals by a change of variables:

< g-' hi, f(x)g*(xdy - ydx) >=

< g-lhl, f(x)det(A)(xdy - ydx) >

and since g-l h = ±hl in homology depending on the sign of det(A), this equals:

Idet(A)I < hi, f(x)(xdy - ydx) >=

< gRf(l), >

since g acts on duals to densities by Idet(A)I.

Notice that one generator for homology in Vi-0 is precisely the great circle that we

want to integrate around. Therefore, viewing sections of these bundles as functions,

this map is the Radon transform.

There is one more fact that we will need. Recall our canonical relation:
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N*Z - O

T*RP3 - 0 T*L - O

Lemma 1 This canonical relation is G-equilariant.

Proof: Let i : Z -+ X x Y be the inclusion. Then we get a corresponding map

i* T*(X x Y) -+ T*Z, where N*Z = Kernel i*. Let g E G. It is obvious that x E I

iff gx E gl. So, gi = ig, and therefore gi* = i*g. So Kernel gi* = Kernel i*g. o

Corollary 1 The involultion t is G-equivariant.

Proof: switches the two points with the same image under r 2. Let zl and Z2 be

two points on T*RP3 - 0 such that 7 2ir (zl) = 7r2ri- 1(z 2). Therefore,

r27r l((zl ) = r27r1 (Z2) = 727rj g(z2)-

Thus, (gl) = gz2. °
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Chapter 2:

The Kernel and Range of the Radon Transform

Section a:

Some representation theory

Recall that our two spaces, RP3 and L, can be viewed as homogeneous spaces for

G = Sp(4, R). Choose a Lagrangian plane, 1, in R4 and a line, x, in 1. Let P be the

stabilizer of x in G and let Q be the stabilizer of I in G. These are the two non-

conjugate parabolics in G. Furthermore, RP3 = G/P and L = G/Q. Also note that

when P is a parabolic subgroup then GI/P = K/(P n K) where K is the maximal

compact subgroup of G.

In our case, K = U(2) and K n P is a direct product of a S1 with Z/2 and K n Q

is an 0(2). We are interested in how our line bundles over RP3 and L decompose

into irreducible representations of G but first let us look at the U(2) story. By the

Peter-Wevl Theorem, L 2(K) = (( YoVC) where A ranges over all the representations

of K. Similarly, L2 (K/H) = T(V'H 0 V). In other words, each K representation

occurs with multiplicity equal to the number of H invariants in V. Notice that the

characters of both parabolics are trivial on their maximal compact subgroups, so

sections of our bundles can be regarded as functions on the base. Therefore, it is

easy to characterize which U(2) representations occur as sections of our line bundles.

We will summarize the results here (for details see the appendix). From standard

results about the representations of U((2) we recall that any representation of U(2)

can be written as Sk 0 det' where Sk is the standard representation of U(2) on degree

k polynomials in two variables and det is the determinate representation.

In this notation, the tU(2) representations that occur in r(L 1) (L1 is the line

bundle over RP3 ) are of the form (2n, -a) where n > 0 and 0 a < 2n. With respect

to the Sp( 4 , R) action, there are only two irreducible components of r(L 1 ): a odd

and a even (we will call these 0 and E), and r(L 1) splits into a direct sum of these

two irreducibles. (We will describe these components fully in the next section.) We

represent the decomposition of r(L 1) with respect to the Sp(4,R) action with the

following diagram:
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r(L 1)

i\
0 E

0

Paths from the top to the bottom represent maximal chains of G-submodules so the

quotients are irreducible. (Note: Maximal chains of G-submodules have the Jordan-

H6lder property. That is, the set of quotients and their multiplicities are the same

for every maximal chain. More generally, if G is any connected semisimple Lie group

then the representations of G arising from parabolic induction have this property. See

[Knapp] p.373 for details.)

The UT(2) representations in r(L 2) are of the form (2n, -2a) where n > 0 and a

is any integer. The Sp(4, R)-submodule structure looks like:

r(L2)

H AH

S

H and AH represent functions with holomorphic and anti-holomorphic boundary

data on the Shilov Boundary (L) of the Siegel domain. S consists of the U(2)-

representations 77. > a > 0 and is the only irreducible G-submodule of (L2). Note
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that these are the'same U(2)-representations that occured in E. Thinking of L as

compactified Minkowski space, these representations correspond to functions which

live microlocally in the spacelike region and its boundary the lightlike region. (If we

consider the hyperbolic Laplace operator A on AM2,1 corresponding to the (2, 1) metric

then S is spanned by the functions with non-negative eigenvalues.) The other two

irreducible quotients in this diagram correspond to the positive and negative timelike

regions. Thus, the G structure of this bundle, by dividing the timelike space into two

pieces, represents the fact that compactified Minkowski space is a causal model of the

universe. For more details on causality see [Hawking-Ellis].

From all this it is now trivial to identify the kernel and range of our Radon

transform. By Schur's Lemma, any G-equivariant map must map irreducibles back

onto themselves or to 0. Thus, it is clear that the component O (the representations

(2n, -a) with a odd) is in the kernel of our map since it does not occur as a Sp(4, R)

representation in (L 2). Furthermore, the fact that there exist functions on RP3 that

are not in the kernel of our map implies that the other component of (L 1) is not

in the kernel. Thus, the range of our map is the component S, which consists of

the representations (2n, -2a) with n > a > 0. In other words, it is the spacelike

and lightlike functions. This corresponds to the following observation. Consider our

canonical relation:
N*Z-O

T*RP3 - 0 T*L - 0

The range of r2 is the spacelike and lightlike regions.

To summarize, let 2n > a > 0. We have proven the following theorem:

Theorem 2 The kernel of the Radon transform consists of the U(2)-representations

(2n, -a) with a odd and the range consists of the U(2)-representations (2n, -a) with

a even.

16



Section b:

The Symplectic Fourier Transform

In the previous section we saw that r(L 1) splits as a direct sum of two irreducible

components called O and E (for odd and even). Let a be the map from r(L 1) to

r(L 1) defined by a(f) = -f if f is in 0, and a(f) = f if f is in E (you extend

this linearly to any function). It is clear that a2 = 1 and that Kernel (R) = Range

(1 - a). In this section, we construct a geometrically, using the fact that since r(LI)

has only two Sp(4,R) irreducible pieces, there is, up to sign, only one non-trivial

Sp(4, R)-equivariant involution of r(LI).

The involution that we are interested in is the symplectic Fourier transform which

we define as follows: Let w be a symplectic form on R4 . Let g be the standard metric.

Let J be the complex structure on R4 such that g = w oJ - 1. We define the symplectic

Fourier transform, SF, from S'(R4 ) - S'(R4 ) (where S' denotes the Schwartz space)

as follows:

SF(f)(y) = eiw(xy)f(x)w 2.

Note that SF is related to the usual Fourier transform, FT, by SF = FT o J*

J o FT where J*f(x) = f(Jx). Furthermore, note that FT2f(x) = f(-x) and that

J*2f(x) = f(-x), so that on even functions FT, J, and SF are all involutions.

We now recall some facts about the usual Fourier transform. Let f(x) be a smooth

section of L 1. That is, f(x) is homogeneous of degree -2 on R4 and Co on R4 - 0.

The section f(x) is of tempered growth and is locally integrable so it is a tempered

distribution and thus has a Fourier transform, FT(f). Furthermore, the fact that

Ily2kFT(f)(y) = FT(Akf)(y) and that f is C on R4 - 0 implies that FT(f) is also

C( on R4 - 0. Finally, note that FT maps homogeneous distributions of degree k

on Rn isomorphically to the homogeneous distributions of degree -n - k. Combining

this with the fact that FT 2 = identity on even functions we get, for n = 4, that FT

is an involution of homogeneous distributions of degree -2 and thus of r(L 1) (since

it preserves smoothness).

Since J* also preserves the degree of homogeneity, we can conclude that SF is

also an involution of r(LI) which is, by construction, Sp(4, R)-equivariant and not 
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identity. (Note that this fact implies the representation theory fact that r(L 1) splits

a.s a direct sum of two representations.) Therefore, SF = ±a. Furthermore, it is easy

to check (by applying SF and a to one function) that:

Theorem 3 SF = a

In the next section, we will show that ar is actually a O'th order classical Fourier

integral operator on RP3 and we describe and interpret its canonical transformation.

First, let us describe a in more detail and thus calculate explicitly the kernel of our

Radon transform.

Let Hk denote the degree k homogeneous harmonic polynomials on R4 . The

restriction of the Hk's to S3 gives a basis for L2 (S3 ) and thus the even harmonic

polynomials (k even) gives a basis for L2(RP3 ). Therefore, any homogeneous function

of degree -2 ca.n be uniquely represented as a sum 4 -T where h2k E H2k.

Definition 2 Let F2k = WA

If f E F 2k then FT(f) = (-l)kf (see [Stein], p. 73, for details about the Fourier

transform of homogeneous distributions). Finally, J is an isometry so it preserves

r 2k+2 and it maps H2k back onto H2k with eigenvalues ±1 (since J* 2 f(x) = f(-x) =

f(x) because f is even).

Definition 3 Let F2 kS, where s = 0 or s = 1, denote the (-1)8 eigenspace for J* in
2 kF".

Recall that = FTo J*. Thus acts on F 2k by (_l)k+. Therefore, our kernel con-

sists of "half" of each F2k consisting of the F2 kS where k+s is odd. These correspond

to the representations (2k, -a) where a is odd.

We summarize with the following theorem:

Theorem 4 Kernel(R) = Range(l - ) = eF2k,s where k+s is odd.

Furthermore, note that the map a, by construction, depended only on the symplectic

form w and not on the complex structure J. In the next section we show that a

actually lives as a. FIO on RP3 and we give another canonical description of it.
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Section c:

The Canonical Involution on T*RP3 - 0

Recall that eigenvalues for the Laplace operator on S3 are n(n + 2) with eigenspace

nH". Thus, the eigenvalues on RP3 are 4k(k+ 1) where n = 2k are the even eigenspaces.

We renormalize the Laplacian so that geodesic flow has period 27r. Under this renor-

malization, the Laplacian, A, has eigenvalue k(k + 1) on H2k. Let A = A + 2-

Notice that A has eigenvalue k on H2k and has the same symbol as V/Z. Since A

is self-adjoint and elliptic, e irA is a unitary O'th order FIO with symbol equal to

Hamiltonian flow for period 7r generated by the symbol of A. (see Theorem 1.1 in

[Duistermaat-Guillemin]) In other words, e irA's corresponding canonical transforma-

tion of T*RP3 is geodesic flow for period r. Furthermore, ei'rA has eigenvalue (-l)k

on H 2k so if we identify functions on RP3 with sections of L1 we see that ei'rA is the

same as the Fourier transform, FT. Notice that J preserves lines on R4 and thus acts

on RP3. Therefore, we have proven:

Theorem 5 a = eirA o J* is a O'th order unitary FIO associated with the canonical

transformation = (Geodesic Flow for period r) o J.

We proceed by giving a nice description of I. First let us recall the following

description of T*RP3 - 0. Let AI = T*(R 4 - 0) - 0 - (R4 - 0) X (R4 * - 0). Consider

the action of R* on M defined by (v,~) -+ (Av, 1X). Since the function < v,~ > is

non-constant and is preserved by this action, it is the moment map for this action.

Let us do symplectic reduction at the 0 level set of the moment map. What we get

is pairs

On* vR r | : 0, 0 Z 0, and < v, >= }.

Note that we can view this space as maps A : R4 R4 where A = ((.)v and that this

space is precisely T*RP3 - 0. Alternatively, we can use the symplectic form w on R4

to represent RP3 as pairs

{(x 0.. ) E (R4 -0) (R4 _ 0) I W(X, V) = 0}.

Note that Al//R* T*RP3, so T*RP3 acquires its symplectic structure from this

reduction.
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Using our symplectic form, w, on R4 we can identify (R4 - O) x (R4* - O) with

(R4 -0) x (R4 - 0). Consider the following involution, i, on (R4 -O) x (R4 - O) defined

by:

i: (v) (v,x).

Notice that this involution maps R* orbits to R* orbits.

Lemma 2 i is a canonical transformation of T*(R4).

Proof: Let WAn be the canonical symplectic form on T*(R4) which is identified with

T(R4 ). Let (x1, VI), (x2, 2) be a pair of tangent vectors at (, v). We note that for

the canonical form:

WAl((Xl, Vl), (X2, V2 )) = M((Xl, 0)(0, V2)) + M((Vl, 0), (0 X2))

and that

wAI((X, 0), (0, y)) = w((, X), (y, 0)).

Combining these two facts we get,

i*wAf((XIvl ), ( 2 , V2)) = wAf((v, x1), ( 2 , 2 )) = WM((X1, V1 ), (X 2, 2 ))-

Since i maps R* orbits to R* orbits, we get a corresponding involution of T*RP3 - 0.

If we represent an element in T*RP3 - 0 by the matrix w(x, )v, then our involution

maps:

w(x,.) - w(v, .)x.

For this reason, we will call this involution the symplectic transpose, or ST for short.

Since T*RP3 -0 is the symplectic reduction of T*(R4 - 0), we get as a corollary of the

previous lemma:

Corollary 2 ST is a canonical transformation.

Recall that we had two other involutions of T*RP3 - 0: I = (Geodesic Flow for

period r) o J* and t which came from the canonical relation. Also notice that ST is

also G-equivariant (since G preserves w). We now show that these involutions are all

the same.
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Theorem 6 1 = ST = .

Proof: Geodesic flow for period r on T*RP3 - 0 is the same as geodesic flow for

period r/2 on T*S 3 - , so it maps T*RP3 - 0, viewed as matrices, by g(v,.)x -+

--g(x,.)v. In other words, it is the map A -+ -At. J maps (x, ) - (Jx, o Jt ). In

other words, J*(A) = JAJ t . Combining these,

I(A) = -JAJt = JAJ.

On the other hand,

(x, )Y = g(x, J.)y = g(Jt, .)y

and

I(g(Jtx .)y) = g(y, J.)JJtx = g(y, J-)x = w(y, )x.

Therefore, ST = I.

For the other equality, notice that since Ra = R, a's canonical relation must

preserve R's canonical relation. That is, I preserves N*Z - 0 and thus is either or

the identity and it is clearly not the identity. O

Our final interesting observation is the following description of the fixed point set of

the involution I. The fixed point set of this involution are the elements w(Ax, .)x where

A E R*. This is the four dimensional submanifold, A, which are locally multiples of

the one-form ax = w(v(x), ) where v(x) is any local section of the tautological bundle

over RP3. Notice that a determines the usual contact structure on RP3 (its kernel

is precisely the hyperplanes orthogonal to the line x with respect to the symplectic

form). Furthermore, notice that our Lagrangian lines are Legendre curves for this

contact structure. Finally, notice that the characteristics for this contact structure are

precisely the fibers of the Hopf fibration r : RP3 + S2 and thus the contact structure

on RP3 is the same as the contact structure we get by pulling back a symplectic form

from S2 to RP3 .

This contact structure is actually central to why L is not admissible. Recall

Gelfand and Graev's characterization of admissible hypersurfaces. A hypersurface X

is admissible iff X is locally (near a generic point) either: a) the set of lines incident to

some non-singular curve in RP3 , or b) the set of lines tangent to some smooth surface
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in RP3 . At every point in RP3 there are no lines in the contact direction, so condition a

clearly fails. Furthermore, contact structures are not integrable, so condition b fails.

Therefore, L is not admissible.

We conclude with some conjectures. Let Y be a generic degree 1 hypersurface

in G2,2n. Notice that a generic linear functional on G2,2n defines a symplectic form

on R2n and that Y is the space of isotropic two-planes in R2n with respect to that

symplectic form and thus it is also a homogeneous space for Sp(2n,R). Again we

can define a Radon transform R: CO(RP2 n"- ) -+ C°(Y) by integrating over the the

corresponding lines in RP2n - l. Notice that the involution ST generalizes to RP2 n-I

and its fixed point set defines the usual contact structure.

Conjecture 1 Let Ybe a generic degree hypersurface in G2,2n. Let R: Coo(RP2n -1 ) 

C°°(Y) be the Radon transform. Then Kl'ernel R = Range (1 - a) where is the in-

volution on functions associated with the symplectic transpose.

More generally, we conjecture:

Conjecture 2 Let Y be the space of isotropic k-planes (k > 1) in R2 n. Let R:

CO(RP2n- l) -4 COO(Y) be the Radon transform. Then Kernel R = Range (1 - a).

Finally, consider the Radon transform R: C°(RP 2 "n-) - COo(Gn,2n). Let SP be

the involution on G,,2n that maps each plane to its orthogonal plane with respect to

the symplectic form. Notice that restricted to the Lagrangian Grassmanian SP is

trivial. From this we get the associated involution on functions SP*.

Conjecture 3 The Radon transform intertwines a and SP*. That is, Ra = SP*R.

The geometric meaning of this conjecture is that the integral of a function over all

Lagrangian planes is sufficient to determine the average of the integrals over any

two perpendiclar (via the symplectic form) planes. Therefore, we hope to explicitly

extend a function g on L to a SP' invariant function on G,,2n and use this extension

to "invert" our Radon transform. That is, this procedure would give us the unique a

invariant function f such that Rf = g.
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Appendix 1

The Geometry of the Canonical Relation

We begin by noting the following: (x,, 1,,r) E N*Z iff E N*FI and symmet-

rically iff 7 E 7*G,. This is the microlocal analog of the symmetry of the double

fibration. So in particular, this gives us an isomorphism N*FI N*Gx (thus for a

fixed {(x, l)lx E l} choosing determines q and visa versa). Also recall that the Gx's

are the lightlike geodesics in L.

Proposition 1 (Guillemin) r2 is one to one above the lightlike region and is two

to one above the spacelike region.

Proof: Recall that the GX's are lightlike Sl's. So let v be the tangent vector to Gx

at , then E N*G iff < v, >= 0.

Case 1: r7 is lightlike. It is easy to check that there is a unique lightlike tangent

direction which 77 annihilates, so there is a unique x corresponding to that direction

and by our remark above, the data (x, 1, 1) uniquely determines . Thus r2 is one to

one. (Note: If we use our (2, 1) metric to relate vectors and covectors then the only

lightlike vectors orthogonal to a given one point along the given one.)

Case 2: r7 is spacelike. There are two lightlike directions orthogonal to . (We

can choose coordinates such that r7 is dual to the vector {(z,0, 1)1 2 > 1} via the

metric. Then the directions along (1, y, z) are orthogonal to 77. These are lightlike iff

y = - vz 2 - 1.) Thus there are two different x's which are conormal to 77 at 1.

Case 3: is timelike. There are no lightlike directions conormal to 77. ( A general

timelike vector is of the form {(1,0, z)1z2 > 1}. The vectors orthogonal to this point

along (z,y, 1) and since z2 > these are spacelike.) O

Let denote the lightlike region in T*L - 0 and let r = 2r1().

Proposition 2 rl is one to one generically.

Proof: Let r : R4 - + RP3. Given x E RP3, G. is the S of Lagrangian lines

through x. Let (x, ) E T*RP3 - 0. Let G be a Lagrangian line through x. Let v be

its tangent vector at x. Uising the symplectic form on RP3, we can identify v with a
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covector . Let xl be a point on x. Using d7r~l we can identify with a covector ¢

on R4 such that < , x1 >= 0. Note that different xl's give you different c's but they

only differ by a scalar so they annihilate the same vectors. Using the symplectic form

on R4 we write (x, ) as w(w, .)xl. Conormality in this notation means < ,w >= 0

which is an additional condition on if w z. Thus in this case, there is only one

conormal Lagrangian direction. 

Note that generically in the previous proposition means off the contact direction.

lFurthermore, a general fact is that the critical points of r1 are the same as the critical

points of r2. Therefore we get as a corollary:

Corollary 3 rl is one to one off r.

Finally, we recall our involution t which is defined off of T = rl(r) by t(z) = w if

z . w and 7r27r-(z) = r27r-l(w).

Proposition 3 . is a canonical transformation.

Proof: Since t is smooth, to show this we only need to show this locally off of

T, but in a local neighborhood of T we can choose an "inverse" to r2 so that t =

Irl7rl1r 27r - . Since N*Z is a canonical relation, locally both rlr ' and r2 r-
1 are

canonical transformations, so i. is as well. 
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Appendix 2

The U(2) representations

U(2) is the group of complex 2 by 2 unitary matrices. It acts on R4, thought of as

C2 in the obvious way. Let K,1 be the stabilizer in U(2) of the real line {(x, O)Ix E R}

and let K2 be the stabilizer of the real plane {(x, y)lx, y E R}. Then as matrices:

K1= K2 =i( 0 ( cos0 sing01 = eiO - sin 0 cos 0

RIP3 - U(2)/K 1 and L - U(2)/K 2 . As we previously remarked, the U(2) representa-

tions on sections of the induced bundles considered in this paper are the same as on

functions on the base. Therefore, these representations are the K1 and K2 invariants

in Sk 0 det'.

K1 is a direct product of Z/2 with an S1 .

O) 0)

The S1 maps:

k-Py P - ei(p+l)O k-pyp

so the only S1 invariants occur when I = -p > -k. The Z/2 maps:

X k-PyP (l-1)k+l-Pxk-y p

which equals (-l)xk-Pyp when I = -p. So xk-PyP is also an invariant for Z/2 when

k is even. Therefore, Sk 0 det' contains K1 invariants iff

(k, 1) = (2n, -a) where n > 0 and 0 < a < 2n.

KA2 is a semi-direct product of another Z/2 with another S' .

0)( cos0 sinO0

0 1 - sin0 cos0

We can conjugate the S1 into

(et Oi)
V C e"O
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'The only invariants of this S1 are xpy P, SO k is even. The generator for the Z/2 gets

conjugated into
0

-1

-1

0)

Under this element,

xPyP (-1)1xPyP

so I must also be even. Therefore, Sk 0 det' contains K2 invariants iff

(k, 1) = (2n, -2z) where n > 0.
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