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Abstract
The fleet assignment problem is an integral part of the airline planning process.
Given a schedule of international flights and certain maintenance criteria required
by the Federal Aviation Administration (FAA), the objective of the long haul fleet
assignment problem is to assign aircraft of different fleet types to different flights such
that operating costs are minimized. We develop a new formulation for this problem
with the decision variables modeled as sets of flights originating and terminating
at maintenance stations. This variable definition enables explicit incorporation of
aircraft maintenance constraints in the model. Maintenance requirements need to be
considered explicitly in the international problem since opportunities for maintenance
are fewer than in domestic operations.
Using this variable definition, the long haul fleet assignment problem is formulated
as an integer multi-commodity flow problem with side constraints, defined on a time-
line network. The model is solved using a branch and bound procedure in which
the bounds are provided by solving a linear program at each node of the branch
and bound tree. The definition of the decision variable as a string of flights precludes
explicit enumeration of the constraint matrix since it is possible that billions of strings
exist. Hence the root node linear programming relaxation of the problem is solved
using column generation techniques. Using the data and international schedule of a
long-haul airline, near-optimal solutions have been determined. Significant savings in
operating costs are achieved by our solution procedure.

Thesis Supervisor: Cynthia Barnhart
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Chapter 1

Introduction

1.1 The Airline Problem: An Overview

The overall problem of operating and managing an airline is a very complicated

procedure and consists of handling a variety of related issues, each of which is complex.

There are a huge number of decisions to be made and a multiplicity of objectives for

the different parts of the overall problem. Consequently, the airlines adopt a multi-

stage planning process, shown schematically in Figure 1-1. The overall airline problem

consists of:

Analysis of Market demand: Forecasts of expected traffic are made for every pair

of cities the airline serves. Demand in different origin-destination (O-D) markets is

different not only during different times of the year but also during different days

of the week. While methods to estimate this demand are available (refer Ben-Akiva

and Lerman [6] and Simpson and Belobaba [31]), airlines sometimes estimate the

demands by extrapolating historical trends and making amendments based on certain

assumptions or hypotheses (Elce [21]).

Flight schedule preparation: Based on the above forecasts and other considerations

(such as level of service desired, extent of competition and so forth), a schedule of

flights is prepared with times of departure and arrival. These flights depend on

allowable routes that can be flown under the "route authority" or bilateral agreements.

Depending on the demand forecasted and the size of the airline's operations, different
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Analysis of Market Demand

Flight Schedule Preparation

Fleet Sizing and Assignment

Crew Scheduling

Bidline Generation and Assignment

Figure 1-1: Overall View of the Airline Planning Process - A Schematic Diagram

frequencies of flights are flown by the airline in different O-D markets. A detailed

analysis of supply of scheduled air transportation services can be found in Simpson

and Belobaba [31].

Fleet sizing and assignment: The flight schedule developed governs the minimum

size of fleet required. Assignment of equipment to flights in such a way as to match

demand with aircraft size is the essence of fleet assignment. This problem is discussed

in detail in later sections. Another related problem is that of aircraft rotation. Once

the fleeting has been carried out, an optimal routing of each aircraft needs to be

determined, or in other words, a routing for each aircraft consisting of a sequence

of flight legs and ground connections so as to minimize operating costs or maximize

revenues and satisfy maintenance requirements.

Crew scheduling: The next step in the process is to find the optimal allocation

of crews to the scheduled flights. It is assumed that each crew is assigned to exactly

one fleet type. It is required that each flight is covered by exactly one crew, collective

bargaining agreements are satisfied and total crew costs are minimized. This problem

has been solved with a variety of techniques, using heuristics and optimization pro-

9



cedures. The interested reader is referred to Barnhart et al. [5], Shenoi [30], Baker

et al. [4] and Desrosiers et al. [19].

Bid-line generation: The final step in the process is to generate bidlines which

are sets of crew pairings * flown by one crew during the entire planning horizon. The

crew bid for the different sets of pairings and the assignment of crews is based on

seniority.

Clearly each subproblem influences and interacts with another. For instance,

fleet assignment affects crew pairings and in turn the bidline generation. The airline

planning process is, therefore, an involved procedure. Each subproblem is non-trivial

to solve and this precludes the solution of the overall airline planning problem in a

single formulation. Each subproblem is an important piece of the overall problem and

is essential to the smooth operation of the airline business.

This thesis undertakes the study of optimization of the fleet assignment problem

for long haul (international) carriers. A new model has been developed and special

techniques have been implemented to obtain near-optimal solutions for an interna-

tional carrier.

1.2 Fleet Assignment Problem Definition

The objective of the fleet assignment model, given a schedule and a set of aircraft, is

to determine an allocation of equipment type to each leg of the schedule. Specifically,

the long haul (international) fleet assignment problem (LHFAP) is studied here with

the objective of minimizing total costs. The total costs are the sum of the actual

cost incurred in flying a flight leg and the cost of spilled passengers. Spill cost is

defined as the revenue lost in turning away passengers as a consequence of allocation

of an aircraft with capacity less than the demand for a particular flight leg. This

cost can be computed for each flight-fleet pair. In other words, minimization of

*A crew pairing may be defined as a set of duty periods served by the crew that begins and ends
at the same crew base.
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costs can be achieved by optimally matching aircraft sizes with market demands.

Flying an aircraft with capacity less than demand would lower revenue, increase spill

and therefore increase operating costs. A more detailed discussion of the objective

function costs is presented in Section 2.2.

The constraints of the LHFAP that must be satisfied are as follows:

1. Each flight leg in the schedule must be covered or flown by exactly one fleet

type. (Unprofitable flight legs cannot be eliminated and fractional fleet assign-

ments are inadmissible.)

2. Flow of aircraft by fleet type must be balanced (or conserved) with total flights

flown by a particular fleet into a station equalling the total flights flown by that

fleet out of the station. These constraints force the flow to be a circulation and

prevent grounding of any aircraft.

3. The total number of aircraft of each fleet type used may not exceed the to-

tal number of aircraft of that fleet type available for the airline's long haul

operations.

To summarize, the formulation for solving the long haul fleet assignment is:

Minimize [Operation Costs]

s.t.

Flight Cover Constraints

Flow Conservation Constraints

Plane Count Constraints

Plane Integrality Constraints

The LHFAP is described in detail and is contrasted with the domestic fleet as-

signment problem in Chapter 2.

1.3 Motivation

The airline industry is highly capital-intensive and has a low-profit environment, the

combination of which results in a poor profitability position for the entire industry.
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An empty seat on a flight is an instance of lost revenue. "The airline seat is the

most perishable commodity in the world" state Subramaniam, et al. [32]. It is the

objective of the airline to carry as many people as possible and keep its fleet in the

air as long as possible.

It is true that as a consequence of airline deregulation, air travelers have saved

millions of dollars. However the airlines are in a major financial crisis and all airlines

are reconsidering their strategies and undertaking cost-cutting, revenue-enhancing

measures. Predatory pricing, price fixing, code-sharing t, yield management, and so

forth are some of the sophisticated tactics of the airlines to capture more passengers

in all O-D markets and hence improve overall market share.

Optimization tools in Operations Research provide equally sophisticated tech-

niques to minimize operating costs and maximize revenues and profits and these are

being increasingly adopted by airlines. Most of the major airlines have dedicated de-

partments/divisions in Operations Research and are increasingly investing in research

and development ([27]).

Table 1.1 gives the percentage breakdown of operating costs for the major airlines'

operations in the US for the years 1978, 1985, 1993 and 1994 . It is clear that flying

operation costs (in terms of fuel costs, crew costs less depreciation and insurance

costs) and maintenance costs (in terms of flight maintenance and aircraft servicing)

account for about 45% of the total operating costs. In order to enhance profitability

(profits are defined as revenues less operating costs), airlines aim at increasing rev-

enues and lowering costs. From the fleet assignment problem standpoint, a better

matching of aircraft sizes to passenger demands increases revenue. A consequence is

more efficient utilization of the fleet (and hence lowering of direct flying operation

costs), an improved maintenance schedule (or lowered maintenance costs) and hence

a lowering of total operating costs. In fact, improved fleet assigment for their domes-

tic operations at Delta Air Lines Inc., resulted in savings of upto $100 million per

tCode-sharing refers to the concept of different airlines agreeing to share the same code for certain
flights in order that these flights are listed earlier in the computerized reservation system screen

$Source: Schedule 41 reports of financial statistics submitted by carriers to the Department of
Transportation
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Table 1.1: Airline Operations of Major Carriers - Breakdown of Operating Costs (%)

Category 1978 1985 1993 1994

Flying Operations 34.72 34.73 28.73 27.69

Maintenance 12.86 9.76 10.94 10.95

Passenger Service 9.76 9.61 9.08 9.00

Aircraft and Traffic Servicing 18.12 15.29 15.98 16.17

Promotion and Sales 11.97 16.58 17.63 17.09

General and Administrative 4.51 5.47 5.08 5.22

Depreciation and Amortization 5.67 6.35 5.62 5.84

Transport Related 2.39 2.20 6.95 8.03

Total Operating Costs 100.00 100.00 100.00 100.00
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year (Subramaniam et al. [32]). To our knowledge, the solution of the long haul fleet

assignment problem has not been reported in the literature to date, even though, as

in the domestic case, a fleet assignment model for international operations could have

a significant impace in terms of cost savings.

Existing models and solution procedures for fleet assignment (Gopalan and Talluri

[24], Hane et al. [25]) do not include maintenance considerations because their explicit

incorporation:

1. is unnecessary (feasible aircraft rotations satisfying maintenance can be gener-

ated); and

2. destroys tractability and computational efficiency.

The domestic fleet assignment problem is, therefore, solved without any mainte-

nance considerations. Solution of the international fleet assignment problem without

the maintenance constraints, however, often provides a solution that is infeasible in

that maintenance requirements cannot be satisfied. The reason for this is primar-

ily due to differences in the structure (in terms of the network) and the scale (in

terms of number of flights offered and aircraft utilized) of domestic and international

operations of airlines (explained in greater detail in Section 2.1.1). Therefore, we

provide a formulation in Section 2.2 and a solution methodology in Chapter 3 that

allow maintenance considerations to be explicitly incorporated in the solution of the

international fleet assignment problem.

1.4 Contributions of thesis

The main contributions of this thesis are:

1. Formulation of a new model for the long haul fleet assignment problem with

maintenance considerations explicitly incorporated.

2. A computationally efficient implementation of the new formulation.
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3. Presentation of computational experience using real-world data of a long haul

airline in the form a case study (Chapter 4) and an analysis of results. This

includes an optimal fleeting for the airline's international operations and a sig-

nificant savings in operating costs of compared to those of the current fleeting

flown by the carrier.

1.5 Outline of thesis

The long haul fleet assignment problem is formally defined and the integer program-

ming formulation is presented in Chapter 2. A comparison of the long haul formula-

tion with that for domestic operations is presented and the relative merits discussed.

Chapter 3 presents alternative solution methodologies and outlines the solution strat-

egy adopted. In Chapter 4, a case study involving the international schedule and data

of a long-haul carrier is presented. Implementation details, computational results and

relevant experience are presented. Future research and scope are discussed in Chapter

5.
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Chapter 2

Problem Definition and

Formulation

In this chapter, a thorough definition of the long haul fleet assignment problem is

presented. In particular, the LHFAP is contrasted with the domestic fleet assignment

problem to motivate the need for a new model. A new mathematical model is then

presented.

2.1 Problem Definition

The problem studied here is the long haul fleet assignment problem (LHFAP). Given

an international schedule of flights and certain maintenance criteria required by the

Federal Aviation Administration (FAA) * and Feo and Bard [22], the LHFAP requires

the determination of which fleet type should fly each flight leg in the schedule such

that operating costs are minimized or operating revenues/profits are maximized. In

this thesis, specifically, operating costs are minimized.

The FAA requires that maintenance (A and B checks) be performed every 65

*The FAA requires different levels of maintenance checks. The checks are called A, B, C and
D and vary in frequency and duration. These range from a visual inspection of all major systems
such as landing gear, engines and control surfaces, every 65 flying hours (Check A) to a balance
check which is a more expensive and extensive operation but less frequent. For more details of the
maintenance requirements and industry practice, the reader is referred to Talluri and Gopalan [24].
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flying hours. Industry practices are more stringent and require maintenance every 40

to 45 flying hours or (a more conservative) every three to four elapsed days. (Talluri

and Gopalan [24]). Thus the maintenance is scheduled either based on a flying time

criterion or on an elapsed time criterion.

2.1.1 Domestic vs International Fleet Assignment: A Con-

trast

One difference between long haul or international and domestic fleet assignment is

the planning horizon. In domestic operations, flights are often repeated each day

of the week and a daily planning horizon is appropriate. However, in international

operations, flights do not typically repeat daily and a weekly planning horizon is

required.

Domestic operations of an airline are characterized by a hub-and-spoke network.

Technically, a hub is defined as a city which accounts for at least a certain percentage

of enplanments (Phillips [29]). A major hub is a city that accounts for at least one

percent of total domestic enplanements; medium hubs are those with 0.25% to 0.99%

of domestic enplanements; small hubs have 0.05% to 0.24%; and non-hubs have less

than 0.05% domestic enplanements. Phillips [29] defines a "major hub" as an airport

that accounts for 10% or more of total domestic passengers enplaned, or 10% or

more of total domestic departures, for a particular air carrier t. Markets are served

either out of the hub or through a hub. A consequence of hub-and-spoke operations

is a reduction in direct service between smaller cities with lower demand. Instead,

connecting service is offered through one or more hubs (Kanafani and Ghobrial [26]).

Passengers are, therefore, consolidated in links (or spokes) to and from the hub and

this allows the airline to exploit economies of aircraft size. Also airlines and passengers

are in a position to take advantage of economies of increased schedule frequency. This

provides the motivation for the airlines to resort to a hub-and-spoke network.

tFor example, American enplanes 61% of the passengers at its major hub, Dallas/Fort Worth
while Delta enplaned about 90% of the passengers at Atlanta, Delta's major hub
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Carriers usually tend to be dominant at their hubs in terms of gates, terminal

space, groundside constraints, airport landing slots, etc. The airlines usually maintain

facilities for maintenance of their aircraft at their hubs (Phillips [29]). This fact

coupled with the daily planning horizon for the domestic operations has an interesting

consequence. Typically, there exists a period of inactivity during the day at a hub

when routine maintenance is performed. In contrast, international operations involve

point-to-point service resulting in a more sparse network with fewer opportunities

for maintenance. There is one further implication of the hub-and-spoke operations.

The increased activity at the hub (in other words, greater number of flights from or

through the hub) implies that it is possible to "swap" aircraft to fly different flights

after the fleet assignment has been done, while still preserving the validity of the fleet

assignment. An aircraft requiring maintenance can therefore be either swapped with

another aircraft and be maintained at the hub or can fly another departing flight

out of the hub in order to reach a maintenance facility. This facilitates adherence

to the FAA's maintenance requirements. Such opportunities are limited in the long

haul case. For a detailed analysis of the swapping applications in the domestic fleet

assignment problem and an efficient algorithm for the same, the interested reader is

referred to Talluri [34]. For the domestic problem, therefore, experience shows that

it is possible to find a feasible (with respect to maintenance) aircraft routing given a

solution to a fleet assignment model that does not explicitly incorporate maintenance

constraints.

To illustrate the effect of the hub-and-spoke nature of domestic operations, con-

sider the airline whose international schedule and data are used in the case study in

Chapter 4.

The airline's domestic operations involve 2500 flights a day serving about 150 cities

with 475 aircraft of 11 fleet types and 5 major hubs. The international operations,

on the other hand, involve about 1200 flights a week serving 55 cities with 75 aircraft

of 11 fleet types and 8 maintenance bases. The fact that most domestic flights arrive

at or pass through hubs implies that maintenance opportunities are greater in the

domestic problem than in the international case. Also the possibility of swapping of

18



aircraft given the larger number of aircraft and given the hubs in domestic opera-

tions, makes fleet assignment without explicitly considering maintenance constraints

possible. Such swapping opportunities are limited in international operations.

2.1.2 Solving the Domestic Fleet Assignment Problem: State-

of-the-art

The fleet assignment problem has been described as one of the largest and most diffi-

cult problems in the airline industry (Subramaniam et al. [32]). Considerable research

has been done on the domestic fleet assignment problem. The interested reader is

referred to Abara [1], Dillon et al. [20], Hane et al. [25], Daskin and Panayotopoulos

[14], Subramaniam et al. [32]. Different operations research-based techniques have

been applied, with different decision variable definitions and different objectives. For

example, Daskin and Panayotopoulos [14] applied a Lagrangian Relaxation approach

to fleet assignment, others have used classical mixed integer programming techniques

to solve the problem. Hane et al. [25] defined the decision variable as a particular

flight flown by an aircraft of a particular fleet type with an objective of minimizing

total costs of operation, while Abara [1] defined the decision variable as a feasible

turn and aircraft combination with an objective of maximizing the operating profits

(essentially revenues less operating costs). Both Hane et al. [25] and Abara [1] solved

the domestic fleet assignment problem using mixed integer programming techniques

available in commercial optimization software.

A common attribute of all models is that maintenance constraints are not explic-

itly incorporated for the reasons discussed in the previous section. However, all the

standard constraints of flight coverage, flow balance and aircraft count discussed in

Section 1.2 have been included in all the models. A common feature of the models is

that the formulations are flight based. Since the number of flights is finite, it is possi-

ble to explicitly enumerate the variables and hence the constraint matrix. Thereafter,

the problem is solved as a mixed integer program using a standard optimizer, e.g.

OSL (Hane et al. [25], Subramaniam et al. [32]), or using other techniques such as
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Lagrangian Relaxation (Daskin and Panayatopoulos [14]).

Substantial savings have been reported by major US airlines for fleeting in their

domestic operations using these models - American Airlines (Abara [1]), Delta Air

Lines (Subramaniam et al. [32]) and USAir (Dillon et al. [20]). For example, a 1.4%

improvement in operating margin has been reported by Abara [1] and a 100 million

dollars per year savings in operating costs by Subramaniam et al. [32].

2.1.3 Solving the Long Haul Fleet Assignment Problem:

State-of-the-art

To our knowledge, no published literature exists for the solution of the long haul fleet

assignment problem specifically. This thesis presents the first published model for the

international fleet assignment problem.

The discussion in Section 2.1.1 establishes that the domestic fleet assignment

problem could be solved without explicitly incorporating maintenance constraints.

While different hypotheses for the inapplicability of a similar solution strategy for the

long haul fleet assignment problem have been stated, the need for a model different

from the ones available for the domestic problem has not been established. In order

establish this need, we tried to solve the long haul problem ignoring maintenance

requirements. The decision variable was defined as Xfk, a flight f flown between

by a fleet type k (as defined by Hane et al. [25]). Constraints of flight coverage,

flow balance and aircraft count (see Section 1.2) were incorporated and the linear

programming relaxation of the problem was solved to optimality using the CPLEX

Release 3.0 optimization software. The results are summarized in Table 2.1. While

fractional optimal solutions were obtained, these were found to be infeasible solutions

in that maintenance requirements could not be satisfied . In other words, ignoring

maintenance requirements results in infeasible solutions to the long haul problem §

SThe optimal basis from this model was infeasible when used as a starting basis for the model
with maintenance considerations included.

§Note that domestic models have "pseudo-maintenance constraints" included. That is, bounds
are placed on the number of aircraft of different fleet types that need to be in maintenance stations
each night. Inclusion of these constraints might result in feasible solutions for the long haul problem.
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Table 2.1: Results of Long Haul Problem Solved without Maintenance Constraints

and hence, a new model is required.

2.2 Problem Formulation

For the long haul fleet assignment problem, we propose a formulation that ensures

conformity to maintenance regulations. Before presenting the mathematical formula-

tion, we provide a description of the network representation of the domestic and long

haul fleet assignment problems and present the variables and notation we adopted.

2.2.1 The Network

Before describing the network used in solving the LHFAP, an understanding of that

used in solving the domestic problem (as defined by Hane et al. [25]) is appropriate.

The Domestic Fleet Assignment Network

In Hane et al. [25] and Subramaniam et al. [32], the domestic fleet assignment

problem is modeled on a time-expanded multi-commodity flow network, spanning one

day. This network consists of:

* Nodes which represent flight departures or arrivals at a station at a given point

in time. Each departure node is associated with the departure location and time

of a flight, while each arrival node is associated with a flight arrival location

21

# Flights # rows # columns # non-zeroes Solution Time to
(# fleets) value optimality

126 (2) 516 892 2322 2960369.00 9s
408 (2) 1572 2794 7298 10439404.00 im 24s
360 (4) 2472 4988 13000 8053843.00 im 56s
536 (4) 3496 7244 18956 13539728.00 3m 22s
546 (7) 5831 12922 33873 15557153.50 8m 50s
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Figure 2-1: The Network for the Daily Problem - Flight-based.

and its arrival time increased by refuelling and baggage handling time. Nodes

are numbered chronologically in increasing order of time.

* Flight arcs which correspond to flight legs of the schedule. Flight arcs are

numbered chronologically in increasing order of departure time.

* Ground arcs which permit an aircraft to sit on the ground, either to make a

connection or be maintained. Essentially ground arcs connect different nodes at

a given station. Overnight arcs are also ground arcs but these allow aircraft to

sit on the ground overnight at a station. These arcs are also called wraparound

arcs since they wraparound the network, given that the planning horizon is one

day.

Example: Consider the network in Figure 2-1, with 3 stations and 5 flights.

Nodes 2, 5 and 10 represent Frankfurt at different points of time. Arc i represents a

flight leg from Atlanta to Frankfurt and arc v represents one from Madras to Atlanta

at a later point in time. Between an aircraft arrival at a node and the next departure
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Figure 2-2: The Network for the Weekly Problem - String-based.

out of the city, there is a ground arc which represents the plane sitting on the ground.

The arc between nodes 4 and 7 at Atlanta is an example of a ground arc. Overnight

arcs or wraparound arcs are between nodes 8 & 3, 9 1 and 10 &f2.

The Long Haul Fleet Assignment Network

The LHFAP is also modeled on a similar topologically sorted time-line network.

While the domestic fleet assignment network spans one day, the network for the

LHFAP spans one week. Another distinction is that the nodes and arcs are interpreted

differently. In the long haul network, a node represents a maintenance station and

there is a departure node and an arrival node for each string. The departure nodes are

associated with the location and time of departure of the first flight in the string. The

¶This distinction results as a consequence of the definition of strings. A string is defined as a set
of flights flown by a fleet type originating and terminating at a maintenance station for that fleet
type.
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arrival nodes are associated with the location and arrival time plus refuelling/baggage

handling time and maintenance time II at the arrival of the last flight in the string.

There is one arc in the LHFAP network for each string (recall that decision vari-

ables in the formulation are string-based). Given a schedule of flights, the number of

strings may measure in millions, even billions. The following example illustrates this

point.

Example: Using the network in Figure 2-1 it is possible to construct a string-

based network such as the one shown in Figure 2-2. Without loss of generality, assume

all three cities are maintenance bases. To illustrate the enormity of the problem of

constructing strings, consider flights i, iii and v in Figure 2-1. At least three legitimate

strings (i, ii and iv in Figure 2-2) can be constructed (by combining flights i and iii,

flights iii and v and flights i, iii and v respectively). As the size of the Figure 2-

1 network increases, that is, as the number of flights in the schedule increases, the

possible number of strings explodes. To illustrate, a major long haul airline flying

about 1200 flights a week, maintaining about 30 to 40 maintenance bases and using

about 10 different fleet types results in more than a few hundred billion of strings.

Note that the network in Figure 2-2 is defined for each equipment type. Different

fleet types have different maintenance stations and therefore, different networks.

2.2.2 Notation and Definition of Variables

Definition of Variables

The set of flights in the schedule is denoted by F, the maintenance stations (cities)

in the schedule by M, the set of available fleets by K and the available number of

aircraft of each fleet type by N(k) for each k E K. A string is defined as a set of

flights flown by a particular fleet type, where the flights originate and terminate at a

maintenance station for that fleet. Then, the set of all possible strings is denoted by

J. A maintenance station for a particular fleet type at an arrival/departure time is

IlIn our application, maintenance time of 8.5 hours has been assumed.
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represented as {mtk}, with m E M at a take-off/arrival time t for fleet type k E K.

The set of all nodes in the long haul network (as described in the previous section) is

denoted by D.

The decision variable, jk, has a value 1 if the string j E J is flown by fleet

k E K, and 0 otherwise. This decision variable definition ensures that maintenance

constraints are explicitly satisfied since only "legal" strings are considered, i.e., strings

that satisfy FAA maintenance requirements regarding number of hours flown before

maintenance.

Other Notation

The coefficients in the constraint matrix are defined as follows: aiik has a value of 1

if string j E J flown by fleet k E K covers flight i E F, and 0 otherwise; bijk has a

value 1 if string j E J flown by fleet k E K terminates at node E D, -1 if it starts

at node I E D and 0 otherwise; dkj has a value 1 if fleet k E K flies string j E J and

0 otherwise.

The objective coefficients, cjk are the costs incurred if string j is flown by fleet

k. String costs are merely the sum of the costs for each of the flights covered by

the string. "Spill costs" are also included in these coefficients. Spill is defined as the

positive part of the difference between projected demand for seats in a given pair of

cities and the seating capacity of the aircraft. Since some of this spill is recaptured,

the objective coefficient also includes the reduction in cost due to revenues from the

recaptured passengers. As a result, the costs of flying a string varies by fleet type.

The objective function cost parameters play an important role in enforcing certain

constraints that either cannot be easily formulated or are specific to one fleet type.

For example, gate or noise restrictions might disallow aircraft of certain fleet types

from landing at certain airports. These restrictions can be captured by imposing a

higher cost of operation for the disallowed equipment type.
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2.2.3 The Mathematical Model

The basic integer programming model for the LHFAP is as follows:

min Z Z Cjkjk

kiEKjEJ

E aijkXjk = 1.0 V i E F (2.1)
kcEKjEJ

bljkjk = 0.0 VI1 D,V k E K (2.2)
jEJ

Z djkjk < N(k) V k E K (2.3)
jEJ

Xjk E {0,1} (2.4)

The formulation essentially consists of three sets of constraints. The first set of

constraints (2.1) is the "flight coverage" constraints. There is one constraint for each

flight, requiring that each flight is covered by exactly one string. The second set

of constraints (2.2) is the "flow balance" constraints, ensuring conservation of flow

of aircraft of all fleet types. The third set of constraints (2.3) is the "fleet size"

constraints, ensuring that the number of aircraft used of a particular equipment type

does not exceed the available number of aircraft of that type. There is one such

constraint for each equipment type. The set of constraints (2.4) ensures that each

string is binary, guaranteeing that a string is either flown or not flown by a single

aircraft type.

A typical constraint matrix for the long haul fleet assignment problem is shown

in Figure 2-3. The total number of constraints in the constraint matrix is:

Nf+ E Nmk + Nk
kEK

where Nf represents the total number of flights in the schedule, Nmk represents

the number of maintenance nodes for fleet type k and Nk represents the total number

of fleet types maintained by the airline.
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Ground Arcs

Flight cover
constraints

(#flights)

Flow conservation
constraints

(g#leets * # nodes)

Plane count
constraints u

(#fleets)

String Arcs

Fleet 1 Fleet 2 ... ... Fleet k

Figure 2-3: Typical Constraint Matrix
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Example: Consider a schedule of 1200 flights with 10 fleet types and 10 main-

tenance stations, resulting in about 500 maintenance nodes. The total number of

constraints is 1200 + 500 10 + 10 = 6210 constraints and the number of variables

in the matrix measures in the billions.
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Chapter 3

Solving the Long Haul Fleet

Assignment Problem

This chapter outlines the overall solution strategy adopted in solving the LHFAP.

Section 3.1 includes a description of the different methodologies used to solve integer

programs and large linear programs containing numerous variables. These methodolo-

gies are fairly standard and have been extensively researched and applied to a variety

of problems. Section 3.2 outlines the overall solution algorithm used to solve these

large scale problems and the strategy we adopted to solve the LHFAP in particular.

Traditionally, the domestic fleet assignment problem has been solved using a

branch and bound strategy, which involves solving a linear relaxation of the prob-

lem (LP) at each node of an enumeration tree. Solution of the LP is achieved using

the simplex algorithm since explicit enumeration of the constraint matrix is possible.

However, the huge number of variables (strings) in the LHFAP precludes direct solu-

tion of the LP. Instead column generation techniques are used to solve the LHFAP LP

relaxation at each node of the branch and bound tree. These methods are discussed

in the following sections.
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Figure 3-1: A Branching Rule for a Binary Decision Variable.

3.1 Solution Methodologies

A branch and bound procedure is used to determine the optimal integer solution to

the LHFAP. This entails solution of many LP relaxations. Since explicit enumeration

of the LHFAP constraint matrix is impractical and impossible due to limitations of

memory, the LP relaxations are solved using column generation techniques.

3.1.1 Branch and Bound

Branch and bound is a "divide and conquer" algorithm used to solve an integer

program to optimality. The rationale behind the strategy is to construct an enumer-

ation tree as follows. At the root node of the tree, the linear programming relaxation

of the problem is solved to optimality. If this solution is integral, then the original

integer problem is solved. If however, there exists a variable xi* in the optimal LP

solution that is non-integral, then additional nodes in the tree can be constructed
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using a branching rule on the variable, xi. A branching rule essentially divides the

feasible IP solution space into mutually exclusive, collectively exhaustive regions, each

of which corresponds to a node in the tree. The rule is similarly applied to all non-

integral solutions at each node and the resulting tree is called the branch and bound

tree.

There are a number of different branching rules that are possible and hence dif-

ferent bases on which to construct the tree. One such rule is shown in Figure 3-1.

Consider a minimization problem with variables taking binary (i.e., 0 or 1) values

only. The root node LP solution, x*, has a non-integral component, xj. The branch-

ing rule creates two branches (nodes) with an additional constraint over the root node

LP. The left node has the constraint xj = 0 while the right node has the constraint

zj = 1.

Some insight about the nomenclature, branch and bound, is quite relevant at this

point. The LP solution at every node of the branch and bound enumeration tree has

four possible outcomes:

1. The LP is infeasible, which implies that feasible solution space is empty and

hence further branching from that node cannot result in an improved, feasible

solution.

2. The optimal LP solution value is worse than the current best integer solution,

which means further exploration at this node has no benefit. This is because

the LP solution in a minimization problem is a lower bound on the IP solution.

3. The optimal LP solution value is better than the current best integer solution

and the LP solution is integral. This means that a better integer solution has

been found and further exploration is unnecessary.

4. The optimal LP solution value is better than the current best integer solution

and the LP solution is non-integral. This means that further branching is

required since an improved integral solution may be found.

The first three outcomes above provide a bound on the IP solution value and
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result in the branch-and-bound tree being fathomed *, while the fourth provides

an opportunity to branch further in the enumeration tree. Also, the four outcomes

are mutually exclusive and collectively exhaustive, that is, exactly one of them must

occur. For a thorough treatment of branch and bound, the interested reader is referred

to Bradley et al. [9].

3.1.2 Column Generation

Given the fact that the number of variables in the LHFAP is enormous, it is imprac-

tical to explicitly enumerate the constraint matrix. Consequently, it is impossible to

solve the LP relaxation of the LHFAP at each node of the branch and bound tree

directly using the Simplex algorithm. This motivates the use of column generation,

also known as Dantzig-Wolfe decomposition [12], [13]. These techniques do not re-

quire explicit enumeration of the constraint matrix, but instead generate columns (or

variables) "as needed" (Ahuja et al. [2]).

Applied to the LHFAP, column generation methods use a subset of the set of fea-

sible strings as a starting basis, B. Associated with B, is a set of simplex multipliers,

ir, such that the reduced costs of the basic variables are zero. These simplex multi-

pliers are then used to price out t the non-basic columns (or variables). Assuming a

minimization formulation, if a variable has a negative reduced cost, it may improve

the solution and it is therefore introduced into the constraint matrix. Adding vari-

ables to the constraint matrix is referred to as column generation. The generation

of columns stops when optimality has been achieved, i.e., when there are no more

variables with negative reduced cost. Column generation procedures work best when

columns with negative reduced cost can be generated without examining all variables.

Generating such columns or determining that none exist is called the sub-problem,

while the solution of the linear program with a restricted subset of the variables is

*To fathom is defined as "to get to the bottom of or to understand thoroughly. In our con-
text, fathoming may be more appropriately defined as "understood enough or already considered".
Outcome 1 above is termed "fathoming by infeasibility", outcome 2, "fathoming by bounds" and
outcome 3, "fathoming by integrality". (Bradley et al. [9])

tPricing out essentially means computing the reduced costs of a string
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called the restricted master problem. Column generation is a well researched area of

large scale optimization, detailed descriptions of which can be found in Ahuja et al.

[2] and Berstimas & Tsitsikilis [8].

3.1.3 Column Generation Subproblem

With column generation techniques, the repeated solution of the subproblem is often

the bottleneck in the overall solution procedure. In this section, we show that the

column generation subproblem of the LHFAP can be cast as a shortest path problem.

Shortest path problems find wide applicability in transportation, communication,

inventory planning, DNA sequencing, and so forth. An extensive bibliography has

been compiled by Deo and Pang [15] and a thorough theoretical treatment can be

found in Ahuja et al. [2]. For discussion of the role of shortest path subproblems in

column generation procedures, the reader is referred to Shenoi [30] and Desrochers

and Soumis [16] [17].

Consider a variable in the formulation of the LHFAP discussed in Section 2.2.

The reduced cost of the string represented by this variable, xij, can be written as:

Cjk= Cjk - aij + jk - ejk + 7jk (3.1)
i

where cjk is the cost of string j for fleet k, aij is the dual variable associated with

the cover constraint for flight i of string j (constraints 2.1), 3sjk is the dual associated

with the flow balance constraint corresponding to the start node s of string j for

fleet k (constraints 2.2), 3ejk is the dual variable associated with the flow balance

constraint corresponding to the end node e of string j for fleet k (constraints 2.2) and

'jk the dual variable associated with the fleet size constraint for string j and fleet k

(constraints 2.3). Note that for a given node pair and fleet type, the terms fsk, 3ek

and 7k are constant. Therefore, for each node pair it is possible to price out all strings

between those nodes by running a shortest path procedure (on the network described

in Figure 2-1) with modified arc costs:
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C'jk = Cjk - cij (3.2)

Shortest path problems can be broadly classified into three categories depending

on whether or not additional constraints or multiple optimality criteria exist. They

are:

1. A simple, unconstrained shortest path problem with the objective of finding the

cheapest (least cost) path between two nodes based only on the costs of the

arcs in the network. Unconstrained shortest path problems can be solved using

label setting or label correcting algorithms. The interested reader is referred to

Ahuja et al. [2] for further details and complexity analyses of these algorithms.

2. A multi-criterion shortest path problem arises when multiple optimality criteria

exist or multiple arc costs exist. For example, in some crew scheduling problems

(Shenoi [30]), variable costs are defined as the maximum of three costs. To

determine the variable with minimum cost, a shortest path procedure with

three costs associated with each arc is solved. The multi-criterion shortest path

problem can be solved using dynamic programming based methods such as those

described by Desrochers and Soumis [16], [17].

3. Constrained shortest path problems are those where the shortest path between

two nodes is required to satisfy certain additional constraints. Since the least

cost path may not satisfy the additional constraints, all possible paths between

the two nodes may have to be evaluated to find the optimal path. The con-

strained shortest path problem can be solved using methods such as those de-

scribed by Desrochers and Soumis [16], [17].

For the LHFAP, the subproblem can be modeled either as multiple simple, un-

constrained shortest path problems or as multiple constrained shortest path prob-

lems, depending on the specific maintenance scenarios. Recall from Section 2.1 that

there are two maintenance scenarios; namely Maximum Flying Time and Maximum

Elapsed Time. If the maximum flying time requirement that maintenance occur at
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least once in every 45 flying hour period is adopted, the shortest path subproblem is

a constrained shortest path problem, i.e., the shortest path should satisfy the addi-

tional constraint that it not contain more than 45 hours of flying. Since all possible

paths between two nodes in the LHFAP network may need to be evaluated in order

to determine the shortest path satisfying the additional constraint, this procedure is

computationally intensive. However, if the maximum elapsed time requirement that

maintenance occur at least once every 3 (or 4) elapsed days is adopted, the shortest

path subproblem is an easy, unconstrained shortest path problem. The shortest path

procedure needs to consider only those strings that exist in a three (or four) day time

window beginning at each source node.

Solution of the LHFAP subproblem using the appropriate shortest path procedure

results in the identification of a single string for each node pair. The reduced cost of

each string is computed using Equation 3.1. If the reduced cost of a string is negative,

addition of this string to the constraint matrix may improve the solution. Any one

of the following strategies can be adopted in adding strings to the constraint matrix:

* All strings with negative reduced cost can be added to the constraint matrix;

or

* The string with the most negative reduced cost can be added to the constraint

matrix; or

* A few (most) negative reduced cost strings can be added to the constraint

matrix.

Using one of these strategies, a new master problem is constructed and solved.

This iterative procedure of solving a restricted master problem and a subproblem is

continued until no columns with negative reduced costs are found and hence the LP

relaxation of the LHFAP is solved.
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Figure 3-2: Schematic Representation of Solution of Root-node LP.

3.2 Solution Strategy

This section presents a column generation algorithm to solve the LP relaxation of the

LHFAP and describes the method adopted to obtain integer solutions to the LHFAP.

3.2.1 Linear Programming Solution to the Long Haul Fleet

Assignment Problem

A column generation algorithm shown in Figure 3-2 is used to solve the LHFAP

LP relaxation. An iteration of the algorithm requires the solution of:

1. The Restricted Master Problem, i.e., the LP relaxation of the formulation dis-

cussed in Section 2.2.3 containing a subset of the total set of strings. The
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restricted master problem is solved using the simplex algorithm and the opti-

mal dual solution is used to compute modified arc costs (see equation 3.2) for

each arc in the network; and

2. The Subproblem, i.e., the generation of negative reduced cost strings using one

of the shortest path procedures discussed in Section 3.1.3.

The LHFAP LP relaxation is solved when no strings with negative reduced costs

exist.

3.2.2 Integer Programming Solution to the Long Haul Fleet

Assignment Problem

Integer solutions to the LHFAP can be obtained using the branch and bound tech-

niques described in Section 3.1.1. However, the solution of LP relaxations at each

node of the enumeration tree leads to practical difficulties, namely:

* Branch and bound is a computational and memory-intensive procedure even

when the LP relaxations can be solved directly, i.e., without column generation;

and

* Conventional branching strategies based on variable dichotomy complicate the

subproblem structure making it impractical to solve the LP relaxation at each

node of the branch and bound tree.

As a result, we adopt a simpler approach, a heuristic branch and bound approach,

that is not guaranteed to result in an optimal solution. The heuristic solves only the

root-node LP using column generation, with LP's at other nodes solved using only

a fixed subset of columns. This subset of columns may be the exact set of columns

generated in solving the root-node LP, or it may be a subset. Since additional columns

are not generated within the branch and bound tree, some variables with negative

reduced cost may be excluded and a suboptimal LHFAP solution may be determined.

This approach has, however, been successfully adopted by Hane et al [25], Anbil et
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al [3], Barnhart et al [5], Desrochers and Soumis [18] and Shenoi [30] to solve similar

problems.

A heuristic solution strategy described by Hane et al [25] uses the optimal LP

solution. In the optimal solution to LP relaxation of the LHFAP, it is possible that

values of some of the variables are close to zero or one. The idea of Hane, et al is to fix

the values of these variables to zero and one respectively, eliminate appropriate rows

and columns from the constraint matrix and solve the IP using branch and bound.

Substantial enhancements in computational efficiency are achieved in their application

(Hane et al [25]). The danger in adopting this strategy is that as a result of fixing

the values of some variables, a feasible solution may not exist. As an alternative,

CPLEX (the optimization software used) [11] provides a heuristic procedure to fix

values of variables close to integer. Redundant rows and columns are eliminated

from the constraint matrix and the IP is solved using branch and bound to obtain

an integer solution, termed the initial integer solution. This initial integer solution

is then used as an upper bound to prune the branch and bound tree and thereby

enhance the computational efficiency of the procedure. Note that in this strategy,

there is no danger of making the problem infeasible.

Though an optimal integer solution to the problem cannot be determined unless

all nodes in the branch and bound enumeration tree are evaluated, it is possible

to terminate the branch and bound procedure when either the current-best integer

solution is a certain (small) percentage from optimality or when a certain threshold

number of nodes of the branch and bound tree have been scanned. No hard-and-fast

rule exists for this threshold number. Hane et al [25] adopt a node limit of 2000,

while Shenoi [30] adopts node limits of 1000 and 10000 depending on problem size.

In summary, the overall strategy adopted to obtain an integer solution to the LH-

FAP is a heuristic branch and bound procedure with only the root node LP relaxation

solved exactly using column generation and an initial integer solution generated using

the CPLEX heuristic. The following is the step-by-step procedure adopted:
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1. The LHFAP LP relaxation is solved to optimality using the column genera-

tion techniques highlighted in Sections 3.1.2 and 3.1.3. Specifically the column

generation subproblem is solved based on a maximum three day elapsed time

criterion (recall that this is corresponds to an unconstrained shortest path sub-

problem. See Section 3.1.3).

2. The entire set of columns in the optimal root node LP solution are the only

columns considered at all other nodes of the branch and bound tree. No columns

are generated at the other nodes of the enumeration tree.

3. An initial integer solution, determined using the CPLEX heuristic described

above, is used to prune the branch and bound tree.

4. A branch and bound procedure is executed and is terminated either when an

integer solution 0.5% from optimality is determined or when 1000 nodes of the

branch and bound tree are scanned.

Further details of the solution strategy adopted are presented in Section 4.2.4.
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Chapter 4

Case Study

This chapter presents a case study using the international schedule of a major US long

haul airline and elaborates on computational experience gained in solving the long

haul fleet assignment problem. The formulation was coded in the C programming

language using the CPLEX Release 3.0 optimization software (CPLEX Optimiza-

tion Inc. [11]). The computational tests were run on an IBM RS 6000 Model 370

workstation.

4.1 The Data

The data, provided by a major U.S. long haul airline, consists of a weekly schedule

of 1162 flights serving 55 cities worldwide. There are 75 aircraft and 11 equipment

types. The airline has 8 maintenance stations with each maintaining on an average 4

fleet types.

Initially, the full problem was too large to solve and as a consequence, subproblems

were created to test the model and the solution strategy outlined in Section 3.2. The

creation of subproblems is a non-trivial task since the schedule needs to be balanced,

with the number of departures and arrivals at each station being the same. The

current fleeting adopted by the long-haul airline was available and this was used to

generate the case study problems. Essentially, a subset of fleets was picked and the

schedule with only those flight legs currently flown by the subset was constructed. The
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Table 4.1: Case Study Problem Sizes

Problem Name # Fleets # Flights

P1 2 126
P2 2 408
P3 4 360
P4 4 536
P5 7 546
P6 11 1162

feasibility of the airline's current fleeting guarantees

case study problem generated. Table 4.1 shows the

constructed.

the feasibility and balance of the

sizes of the various subproblems

4.2 Implementations

This section provides a history of the implementation of the solution strategy used

to solve the LHFAP. Some of the improvisations and strategies used to enhance the

computational efficiency of the model are presented.

4.2.1 Node Aggregation

Node aggregation in the network model is a technique that eliminates a large

number of rows (constraints) from the problem formulation. This concept has been

successfully implemented by Hane, et al [25] in solving the domestic fleet assignment

problem. The rationale behind the concept is that there is no need and no advantage

for two arrival nodes (Figure 4-1) to be treated as distinct if there are no departure

nodes between them. Similarly, there is no advantage in placing departures as dis-

tinct nodes in the time-line network later than the previous arrival. This concept of

consolidating nodes into one is referred to as node aggregation or node consolidation.

In Figure 4-1, for example, only two nodes are required instead of seven, one
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Figure 4-1: The Concept of Node Aggregation

for flights A, B, C (arrivals), D and E (departures) and another for flights F and

G. Note that flights E and F cannot be combined into one node, since that would

legitimize a string in which a flight would depart (E) before it arrived (F), a physical

impossibility.

The reduction of the number of nodes in the network has a very interesting con-

sequence. Note that in the LHFAP constraint matrix (Figure 2-3), the number of

constraints is proportional to the product of the number of nodes in the network

and the number of fleet types. A reduction in the number of nodes in the network,

therefore, has a dramatic effect in decreasing the size of the problem. Table 4.2 shows

the results of node aggregation on the different problems. The size of the model (in

terms of number of constraints, nodes and ground arcs) reduces by a factor of 2 to 5

depending on the problem.

Empirical experiments show that the number of simplex iterations required by

CPLEX to solve an LP is 2 to 3 times the number of rows in the constraint matrix.

For the LHFAP, the effect of a reduced number of constraints is even more dramatic

because the column generation solution procedure involves repeated solutions of LP's.

Node aggregation, therefore, reduces the computation time considerably. As a

42



Table 4.2: Sizes of Case Study Problems with and without Node Aggregation

result, all further runs were

network.

performed with node aggregation incorporated in the

4.2.2 Preprocessing and Advanced Basis

CPLEX includes a procedure to reduce the size of the constraint matrix using

substitution to eliminate rows and columns. This is achieved by CPLEX's Presolver

and Aggregator by identifying and eliminating redundancies.

Table 4.3: Computation Times with and without Preprocessing and Advanced Basis
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Name Consolidation #constraints #ground arcs # nodes

P1 No 648 520 504
Yes 270 142 294

P2 No 1294 884 1632
Yes 605 195 581

P3 No 2542 2228 1440
Yes 901 537 527

P4 No 3648 3108 2144
Yes 1257 717 739

P5 No 4125 3572 2184
Yes 1458 905 754

P6 No 9857 8684 4648
Yes 2857 1684 1409

Problem # flights Solution Time incl Solution Time without
Name (# fleets) Preprocessing and Preprocessing and

Advanced Basis Advanced Basis

P1 126 (2) 7s 9s
P2 408 (2) Im 29s 4m 1ls
P3 360 (4) 13m 54s lh 59m
P5 546 (7) 20m 20s lh 24m



CPLEX offers another feature allowing the current basis to be saved and used

as a starting point to solve a problem similar in nature. This can be achieved by

appropriately setting CPLEX's advanced basis indicator. Since column generation

requires repeated solution of LP's that are similar in nature, it is possible to exploit

this feature to improve the computational efficiency of the solution procedure. In

other words, the basis of the LP solution at the end of each restricted master problem

is saved and the solution procedure for the next iteration starts using this advanced

basis.

Table 4.3 presents a comparison of computation times taken to solve problems P1,

P2, P3 and P5 using the dual simplex algorithm. Clearly, preprocessing of the con-

straint matrix and use of an advanced basis at each iteration of the column generation

solution procedure results in substantial improvement of computation times. Hence,

all further runs had the CPLEX indicators set appropriately to ensure preprocessing

and use of advanced basis.

4.2.3 Solving the LP: Initial Runs

Solving the LHFAP LP relaxation is possible using different simplex algorithms -

primal simplex, dual simplex or network simplex. CPLEX has the following features

with regard to different simplex procedures:

1. optimize which executes the primal simplex algorithm;

2. dualopt which executes the dual simplex algorithm. Problems with high de-

generacy and with little variability in the right hand side coefficients, but with

significant variability in the cost coefficients (note that the LHFAP fits into this

class of problems) are reported to be solved much faster using the dual simplex

algorithm than the primal simplex; and

3. netopt which exploits the network structure of a given formulation and solves

the model (or part of it) using the network simplex algorithm. CPLEX has

the capability to extract the network structure from a model and solve it using
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Table 4.4: Primal Simplex vs Dual Simplex - Computation Results

Problem Primal # CG Iters Dual Smplx # CG Iters
Name Simplex w/ Primal Soln Time w/ Dual

Soln Time Simplex Simplex

P1 0ls 17 32s 15
P2 3m 26s 52 32m 56s 45
P3 25m 11s 104 3h 50m 43s 95

the network simplex algorithm. The complete solution to the problem is then

obtained by using either the dual simplex algorithm (dualopt) or the primal

simplex algorithm (optimize), given the initial (infeasible) solution provided

by solving the network portion of the formulation with the network simplex

algorithm.

Primal simplex vs Dual simplex

First, the primal and dual simplex algorithms were tested. The computational

results for problems P1, P2 and P3 are summarized in Table 4.4. Hane et al [25] in

their solution of the domestic fleet assignment problem achieved substantial gains in

solution time for some data sets, using a steepest-edge pricing strategy, the results of

which for our problems are reported in the next section.

Steepest-Edge Pricing

All variants of the simplex method move from one vertex of the polyhedron of feasible

solutions to another along edges that are "downhill" such that the objective function

decreases *. The idea behind steepest-edge pricing is that at each iteration, "the most

downhill" edge or the one with steepest improvement in objective function is chosen

(Forrest and Goldfarb [23]). A steepest edge pricing strategy was, therefore, tested

for case study problems P1, P2, P3 and P5 using both primal and dual simplex

algorithms. The results are summarized in Table 4.5.

*It is assumed here that a minimization problem is being solved.
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Table 4.5: Steepest-Edge Pricing Performance

The dual simplex algorithm usually performs better than primal simplex when

steepest-edge pricing is used. The reduction in run times for both the primal and dual

simplex solvers using steepest-edge pricing, results from a reduction in the number

of column generation iterations required (Tables 4.4 and 4.5). All further runs are

carried out using the dual simplex algorithm using a steepest-edge pricing strategy.

Dual simplex vs Network Simplex

The LHFAP flow balance constraints (Equations (2.4)), have "a pure network" struc-

ture. These constraints constitute the major portion of the formulation as can be

observed from Figure 2-3. Table 4.6 presents a comparison of the number of "pure

network" (flow balance) constraints and "non-network" (flight coverage and aircraft

count) constraints in the LHFAP formulation. The flow balance constraints are

EfEF Nmf in number, where Nmf represents the number of maintenance nodes for

fleet type f E F, or about 55% of the total number of constraints with node consoli-

dation and about 85% of the total number of constraints without node consolidation.

The case study problems were tested using both dual simplex (with steepest-edge

pricing) and network simplex algorithms and the computational results are summa-

rized in Table 4.7. Note that the formulation for the LHFAP does not have a pure

network structure. CPLEX extracts and solves the embedded network portion of

the formulation using the network simplex algorithm. The primal or dual simplex

algorithm is used to solve the overall problem with the other non-network constraints
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Problem Primal # CG Iters Dual # CG Iters
Name Steepest-edge with PSE Steepest-edge with DSE

Soln Time Soln Time

P1 8.5s 17 7s 14
P2 2m 12s 46 1m 29s 41
P3 11m 28s 80 13m54s 86
P5 26m 35s 70 20m 20s 61



Table 4.6: Number of "Pure Network" and
without Node Consolidation - A Comparison

"Non-network" Constraints with and

Problem Node consldn # network # non-network Network
Name done ? constraints constraints constraints

as % of total
P1 No 520 128 80.2%

Yes 142 128 52.5%
P2 No 884 410 68.3%

Yes 195 410 32.2%
P3 No 2228 364 87.6%

Yes 537 364 59.6%
P4 No 3108 540 85.2%

Yes 717 540 57.0%
P5 No 3572 553 86.6%

Yes 905 553 62.1%
P6 No 8684 1173 88.1%

Yes 1684 1173 58.9%

Table 4.7: Dual Simplex vs Network Simplex - Computation Results

Name LP Solver Solution Time # rows # columns #non-zeroes

P1 DS 7s 270 1146 5124
NS 9s 270 1132 4982

P2 DS Im 29s 605 3565 19189
NS 3m 50s 605 3627 19584

P3 DS 13m 54s 901 8506 50994
NS 28m 45s 901 9218 55262

P5 DS 20m 20s 1458 11122 61756
NS lh 47m 20s 1458 10984 60928
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using the optimal basis from the network simplex as the starting basis. Based on the

discussion in the previous section, the dual simplex algorithm is used.

It was found that dual simplex (with steepest-edge pricing) was faster than net-

work simplex, especially as the problem size got bigger. This could be explained by

the fact that node aggregation eliminates a large number of constraints that consti-

tute the network portion of the formulation. The effect of the non-network portion

of the formulation was therefore more pronounced. The dual simplex algorithm was

therefore used.

Example: From Table 4.6 for problem P6 with 1162 flights and 11 fleets, there

are 8684 "pure network" constraints without node consolidation. After node consoli-

dation is performed, the number of the same decreases dramatically to 1684. In each

case, the number of "non-network" constraints is 1162 + 11 = 1173. Clearly the

network portion of the formulation decreases substantially as a consequence of node

consolidation and hence the decrease in the computational efficiency of the network

simplex algorithm.

Solution of Column Generation Subproblem

As discussed in Section 3.1.3, the LHFAP column generation subproblem is mod-

eled as a shortest path problem and the FAA maintenance criteria are explicitly

incorporated based either on a maximum flying time scenario (constrained shortest

path problem) or on a maximum elapsed time scenario (unconstrained shortest path

problem). Specifically, we model the maintenance requirements based on the latter

(Section 3.2.2) and incorporate the requirement of maintenance at least once every

three elapsed days.

In order to establish that the constrained shortest path algorithm is computa-

tionally more expensive, problems P1, P2, P4 and P5 are tested with both the

constrained shortest path implementation and an unconstrained shortest path imple-

mentation in which strings that exceed 45 flying hours are not considered. The results

of the run times are summarized in Table 4.8. The maximum flying time scenario

takes substantially greater computation time without a comparable improvement in
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Table 4.8: Unconstrained vs Constrained Shortest Path Problems - A Comparison

solution value. The maximum elapsed time scenario is, therefore, adopted.

Solving to LP Optimality: Summary of Implementation details

The implementation details of the overall algorithm to solve the LP relaxation of the

LHFAP is summarized in Figure 4-2. The network is generated and nodes are consol-

idated, resulting in a reduced size network. The optimization solver's preprocessor is

used to eliminate redundancies and further simplify the constraint matrix. The prob-

lem is then solved using an artificial basis and the dual simplex algorithm. The basis

is saved and, using the dual solution, the subproblem is solved with the three day

maximum elapsed time scenario and columns with negative reduced cost are added.

Using the advanced basis, the new restricted master problem is solved. This process

continues until all columns have non-negative reduced cost and the LHFAP LP is

solved. Then, the branch and bound solver is invoked.

4.2.4 Solving the IP: Branch and Bound Implementation

Details

After solving the LHFAP LP relaxation at the root node of the branch and bound

tree, the entire set of columns in the constraint matrix is passed to CPLEX's IP
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Problem # flights Shortest Path Solution Solution
name (# fleets) Problem Time Value

P1 126 (2) Unconstrained 7s 2960369.00
Constrained 17s 2960369.00

P2 408 (2) Unconstrained 2m s 10611441.00
Constrained 6m 43s 10641120.00

P4 536 (4) Unconstrained 38m 38s 13624637.45
Constrained 4h 14m 22s 13563334.35

P5 546 (7) Unconstrained 23m 11s 16286255.29
Constrained lh 45m 46s 16179416.08



Figure 4-2: Solution Algorithm for the LHFAP LP Relaxation

solver.

CPLEX's rounding heuristic is used to obtain a first integer solution. The heuristic

fixes values of the variables in the LP solution at or near integer to those values. A

depth-first-search branching is carried out and an integer solution is found. This initial

integer solution serves as an upper bound on the optimal IP solution. A branch and

bound procedure is then carried out with the initial integer solution used to prune

the branch and bound tree.

The path of the optimizer through the branch and bound tree is determined by

certain user inputs. For example, from a given node, it is possible to either delve

deeper into the branch and bound tree or move up the tree (i.e., backtrack). In our

solution procedure, a depth-first search strategy is used to select the next node in the

branch and bound procedure and a strong branching scheme t is invoked to select

the variable to branch on at the node selected. Based on computational experience

tCPLEX partially solves a number of problems with tentative branches and selects the most
promising branch under the strong branching scheme of variable selection at a node.
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Solution Steps:

1. Generate network and consolidate nodes.

2. Build artificial basis

3. Aggregate using CPLEX's preprocessor.

4. Solve LP using dual simplex algorithm with
steepest-edge pricing.

5. Save basis to use as an advanced basis
for next iteration.

6. Price-out attractive columns using dual solution
using a maximum 3-day elapsed time criterion and
add to constraint matrix.

7. Repeat Steps 4 through 6 until LP is solved.



Figure 4-3: Overall Algorithm for Solution of the LHFAP
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Solution Steps:

1. Solve the root node LHFAP LP relaxation using
implementation details described in Fig. 4-2 and
pass all columns generated to CPLEX s IP solver.

2. Perform CPLEX heuristic to fix values of variables close
to integer, and obtain initial integer solution.

3. Carry out branch and bound procedure with a depth
first search for selecting nodes and a strong branching
scheme to select the variable on which to branch.

4. Prune the branch and bound tree where possible
using the initial integer solution obtained using the
CPLEX heuristic.

5. Terminate branch and bound procedure when an
IP-LP gap of 0.5% is achieved or when 1000 nodes
of the branch and bound tree have been scanned.



in solving the root-node LP, the dual simplex algorithm is used to solve the LP's at

each node of the branch and bound tree.

Given we are solving a minimization problem, the root-node LP optimum value

Zip, is a lower bound on the integer program optimum value Zip. In the event that

the branch and bound procedure results in an integer solution value equal to the LP

optimum, the IP solution is optimal. However, this is seldom the case in practical

applications. The IP-LP gap is defined as the ratio of the difference of the IP and LP

solution values to the LP solution value, i.e.,

IP- LP Gap- Z '- Zp

As explained in Section 3.2.2, the branch and bound procedure is terminated

either if this gap is smaller than a threshold value of 0.5% or if 1000 nodes in the

branch and bound tree have been scanned.

We define Cmin = LEfCf-min, where Cmin is the minimum cost incurred in

flying the schedule and Cf_min is the minimum cost of flying flight f across all fleet

types. Cmin is therefore the cost incurred in flying the schedule if all constraints are

relaxed. Given this cost, we define the optimality gap as:

Optimality Gap = (Zp - Cmin) - (Zi - Cmin)
(Ztg, - Cmin)

Figure 4-3 summarizes the implementation details of the overall strategy adopted

to solve the LHFAP.

4.3 Computational Results and Analysis

This section presents and analyzes the results of the case study and presents the

improvement achieved by the model over the current fleeting adopted by the airline.
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Table 4.9: Results of Root-node LP

Table 4.10: Branch and Bound IP Solution

Problem Soln Time IP Solution LP Solution IP-LP Optmlty
Name Value Value Gap Gap

P1 16s 2960369.00 2960369.00 0.00% 0.00%
P2 im 50s 10606491.00 10606093.00 0.003% 0.24%
P3 29m 47s 8186500.00 8179388.50 0.001% 5.38%
P4 81m 31s 13626702.00 13561351.23 0.005% 87%
P5 24m 56s 16288810.00 16286255.29 0.01% 0.33%
P6 17h 9m 10s 31746628.00 31692362.23 0.17% 2.59%'

4.3.1 Results

The LP relaxation of problems P1 through P6 were solved using the steps discussed

above. Table 4.9 provides the final solution characteristics at optimality. The results

of the branch and bound IP solutions to the problems are summarized in Table 4.10.

Further results of branching are presented in Table 4.11.

Table 4.12 shows the improvement by the fleeting generated in this thesis com-

pared to the current fleeting as flown by the long haul airline. Our LHFAP solutions

consistently have a lower objective function (in other words, a lower operating cost

for the airline) compared to that of the airline's current fleeting. While the improve-

ments for the subproblems P1 through P5, with the exception of problem P4, are not

very significant, the savings for the overall weekly schedule, namely problem P6, is a
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Problem # rows # cols # non- Soln Solution Cmin
name gen zeroes time value value

P1 270 1154 5109 7s 2960369.00 2960369.00
P2 605 3565 19189 lm29s 10606093.00 10439404.00
P3 901 8506 50994 13m54s 8179388.50 8047409.00
P4 1257 12457 123625 37m2s 13561351.23 13486450.00
P5 1458 11122 61756 20m20s 16286255.29 15524764.00
P6 2857 36950 219806 9h6m36s 31692362.23 29597270.00



Table 4.11: Branch and Bound Results

Table 4.12: LHFAP Objective Function Value vs Current Fleeting Objective Function
Value - A Comparison

substantial fraction of the cost.

of savings annually.

This could translate into tens of millions of dollars

Islands - A Boon or a Bane?

Hane et al [25] describe a technique that exploits the topology of the fleet assign-

ment network and reduces the size of the model further. The technique forces the

minimum number of aircraft to be used, thereby avoiding having unnecessary aircraft

on the ground. If, at a time t, there is no aircraft on the ground, then, after an

equal number of arrivals and departures, there will be no aircraft on the ground. The
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Problem Nodes in Node of Node of # of Time in
name B & B First Optimal integral B & B

Integer Integer Soins

P1 10 10 10 1 9s

P2 9 9 9 1 21s
P3 66 66 66 1 15m 55s
P4 361 57 361 14 44m 29s
P5 36 36 36 1 9m 36s
P6 1000+ 255 851 3 8h 2m 34s

Problem # flights Optimal Fleeting Current Fleeting Change
Name (# fleets) Obj Fn Obj Fn

Value

P1 126 (2) 2960369.00 2960369.00 0%
P2 408 (2) 10606491.00 10724828.00 (1.1%)
P3 360 (4) 8186500.00 8332379.00 (1.8%)
P4 536 (4) 13626702.00 14086938.00 (3.3%)
P5 546 (7) 16288810.00 16403081.00 (0.7%)
P6 1162 (11) 31746628.00 33924915.00 (6.4%)



Table 4.13: Island Implementation - IP Results

Table 4.14: Island Implementation - LP Results

ground arcs corresponding to these times can be removed from the network, result-

ing in a time-line consisting of islands. The drawback, however, is that a least cost

solution may require one or more aircraft to be on the ground at all times. Thus,

creation of islands may prevent generation of strings that might have had negative

reduced cost otherwise. This could result in a poorer (higher cost) solution. Even so,

we implemented the above concept. Tables 4.13 and 4.14 summarize the IP and LP

results of the runs with the island technique incorporated.

Implementation of islands results in a dramatic decrease in solution times, while

solution values increase for all problems (with the exception of P1 and P3, for which

the solution values remain the same). Note that there is a decrease in the number

of columns generated at root node LP optimality, a consequence of island creation.

There is, therefore, a trade-off between solution time and solution quality. Since fleet
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Problem Solution IP Solution % inc over
name Time value LHFAP soln

P1 7.5s 2960369.00 0.00%
P2 35.0s 10680091.00 0.69%
P3 7m 35s 8186396.00 (0.001)%
P4 4m 31s 13663184.00 0.26%
P5 10m 43s 16305356.00 0.10%
P6 6h 21m 58s 31790690.00 0.14%

Problem LP Solution LP Solution # Cols
name value time in LP

P1 2960369.00 4.5s 728
P2 10680091.00 28.1s 2115
P3 8179388.50 4m 51s 5373
P4 13653095.17 10m 35s 8354
P5 16300865.67 9m 2s 7838
P6 31739404.35 3h 20m 32s 22273



Table 4.15: A Comparison of LP and IP Solution Times

Problem # flights Time for Root Node Time for IP
name (# fleets) LP as % of total as % of total

P1 126 (2) 44% 56%
P2 408 (2) 81% 19%
P3 360 (4) 48% 52%
P4 536 (4) 45% 55%
P5 546 (7) 82% 18%
P6 1162 (11) 53% 47%

Table 4.16: An Analysis of LP Solution Time

Problem # flights Time taken by Time taken by Total #
name (# fleets) Master Problem Subproblem of Col. Gen.

as % of total as % of total Iterations
P1 126 (2) 86% 14% 14
P2 408 (2) 90% 10% 41
P3 360 (4) 83% 17% 86
P4 536 (4) 95% 5% 47
P5 546 (7) 92% 8% 61
P6 1162 (11) 98% 2% 82

assignment is usually carried out once every quarter or once every month at best,

solution times are not very crucial. However, from a scenario-analysis standpoint,

a decrease in solution time is most desirable. We leave the reader to make his/her

choice.

4.3.2 Analysis of results

Table 4.15 shows the fraction of the total solution times taken to solve the root node

LP relaxation of the LHFAP and the branch and bound procedure to obtain integral

solutions.

On average, about 60% of the total solution time is spent in solving the LHFAP

LP relaxation and the remaining 40% is spent in branch and bound. The root node
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LP solution time is further broken down (Table 4.16) into the fraction of time spent in

solving the restricted master problem and the time spent in solving the subproblems.

From Table 4.16, it is clear that the solution of the LP's using the dual simplex

algorithm consumes the bulk of the time taken to solve the root node LP. In fact, for

problem P6, 98% of the time is spent solving the master problem of the root node

LP resulting in the following breakdown of the total time spent solving the LHFAP,

averaged over all problems:

Root Node LP Solution = 55%

Shortest Path Subproblem Solution = 5%

LHFAP IP Solution = 40%
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Chapter 5

Conclusions and Future Research

This main contributions of this thesis are a novel LHFAP formulation capturing

maintenance considerations and an effective implementation and solution procedure.

The formulation has been tested using the data of a long haul airline and the fleeting

produced results in a substantial savings in operating cost over the current fleeting

flown by the airline. In the course of this work, additional research has been identified

as follows':

1. Work needs to be undertaken to make the constrained shortest path procedure

to price out negative reduced cost strings based on the maximum flying time

criterion computationally efficient. An implementation with efficient utilization

of memory and an effective means of reducing run times is desirable.

2. The implementation of a branch-and-price procedure and comparisons of results

would be interesting. Recall, branch-and-price procedures generate columns

at each node of the branch and bound tree. However, considering the IP-LP

gaps obtained, branch-and-price would only be effective if a major savings in

computation time can be achieved. This might be possible since the root node

LP could be initialized with fewer columns, perhaps only the columns in the

optimal basis of the LP relaxation.

3. Different prioritized branching strategies could be tested and these could provide

interesting comparisons and insights. See Hane et al. [25] for a discussion of
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various prioritized branching strategies.

4. Besides the use of an artificial basis to start the solution of the root-node LP, an

advanced basis, e.g., a current fleeting, might result in a tremendous improve-

ment in solution time. Work could be undertaken to develop heuristics that

generate strings based on available data, such as the current fleeting adopted

by the airline.

5. The high run time for the LHFAP LP relaxation and possibilities of reducing

the same, need to be investigated. Recall that the time taken to solve an LP

directly without maintenance constraints (Section 2.1.3) is substantially lower

than the time taken per column generation iteration in our solution procedure

of the LHFAP LP relaxation. For instance, interior point methods could be

investigated, since similar applications have been solved efficiently using interior

point methods (Hane et al [25]).
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