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Abstract

In this thesis, we explore the variability of the output produced by a deterministic pro-
cessing time two-machine finite buffer line with unreliable machines. We characterize
the interruptions of flow in the system and propose a model to predict the variance
of the output in the short term. We identify the correlations between consecutive
departures from the line as a main factor in determining the variance of production
of a two-machine finite buffer line. We derive some conclusions about the behavior
of the variance of the output in the long term, and finally, we explore the changes
in the variance of the output as a function of time. The tools used for this work are
primarily simulations and previous analytical results.
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Chapter 1

Introduction

1.1 Motivation

A manufacturing system or production line is the set of elements (e.g., machines,

buffers, transportation) used for the transformation of raw material into a product.

The performance of a manufacturing system is conditioned by disruptive events (fail-

ures of machines) that randomly occur and penalize the performance of the system.

There are two undesirable consequences of these failures: the first is a reduction of

the mean production, the second is the variability of the output produced.

Most of the research on production lines made has focused on the effect of the

randomness in the mean production rate and inventory levels of a system. There is

an important gap in the research literature on the effect of the randomness in the

variability of the production. However, randomness is extremely important on a day-

to-day basis. It is not unusual to find variations around 30% of the mean production

in the weekly production of a factory. Despite the variability, a manufacturing plant

needs to assure consistent delivery of the products to its customers to stay in business.

Reducing and dealing with variability of the production is a key factor in the success

of a company.

The purpose of this thesis is to explore the variability of the output produced by

15



a deterministic processing time two-machine finite buffer line. This is the simplest

non-trivial manufacturing system: the processing time is fixed and equal for all the

machines and the failure and repair characteristics of the machines are geometrically

distributed. This thesis is meant as a first step in developing an understanding of the

variability of the output of a production line that can be used later to analyze more

complex systems.

1.2 Approach

1.2.1 Tools

Three basic tools have been used in the development of this thesis:

Study of simpler systems We started the study by understanding the variance of

a two-machine zero buffer system, and we built on this system to represent the

behavior of the more complex finite buffer system.

Simulations The main tool in this study has been the use of simulations. A simula-

tion package is a computer software that reproduces the events that take place

in a production line. Several modifications have been introduced in an available

software1 for the specific purposes of this thesis. The simulations have been

used to gain intuition about the behavior of the system, to test hypothesis and

to confirm the validity of the results obtained.

Previous analytical results Miltenburg (1987) calculated the limit of the variance

of the output per time unit when the time tends to infinite (limt,,, 2 (t)). We

define this value as the asymptotic variance rate. This value has been used to

explore the long term behavior of the systems studied.

Some results derived by Buzacott and Shanthikumar (1993) about the equiva-

lence of a two-machine finite buffer line and a two-machine zero buffer line in

ldescribed in Section 7.1
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terms of their interdeparture distribution have been used to confirm some of the

work described in this thesis and to formulate hypotheses about the behavior

of the system.

1.2.2 Outline

In Chapter 2 we explain the deterministic two-machine finite buffer model that is

used for the study of the variability of the output.

In Chapter 3 we derive analytically the variance of the output for a single machine

with two failure modes during a time interval. This result approximates very well the

variance of the output of a two-machine zero buffer line.

In Chapter 4 we identify the possible reasons that result in an interruption of the

output in a two-machine finite buffer line. We determine the parameters that char-

acterize the frequency and length of these interruptions of flow. These results lead to

the representation of the original two-machine finite buffer system by a two-machine

zero buffer line with the same characterization of the interruptions of flow. We com-

pare this simplification with a similar one performed by Buzacott and Shanthikumar

(1993).

In Chapter 5 we derive some conclusions about the variance of the line output over

a long interval, and the changes of this asymptotic variance rate as a function of the

buffer size. An analytical result derived by Miltenburg (1987) is used to determine

this asymptotic variance rate. Systems with machines having the same and different

efficiencies are studied separately.

In Chapter 6 we build a model that predicts the variance of output of a determinis-

tic two-machine finite buffer system during a time interval using the results derived in

the previous chapters. Comparison with simulation shows that the model predicts the

variance accurately only for short time intervals. We identify the correlation structure

between consecutive departures of the line as the factor that is not accounted for in

the model and that modifies the output pattern of a two-machine finite buffer line.
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In Chapter 7 we perform simulations for a wide variety of two-machine finite

buffer lines to evaluate the behavior of the variance rate of the output of a system

as a function of time. We identify three different time frames, in each of which the

variance is shaped by a different mechanism. We make some observations about the

difference in the behavior of a system and its reverse.

1.3 Literature Review

This literature review is restricted to the previous work done on the variability of a

production line.

Miltenburg (1987) derives a formula for the variance of the output per time unit

produced by a line with finite buffers as the time tends to infinity. Miltenburg uses

the Markov chain properties of the transfer line to derive this result. The derivation is

done for a deterministic processing time model, with geometric failures and repairs.

The method is not restricted to a two-stage line, but it is very computationally

intensive and this limits the dimensions of the system to which it can be applied.

Ou and Gershwin (1989) obtain a closed form expression for the variance of the

lead time of a two-machine finite buffer line. The Laplace-Stiejes transform is used

to derive this result from the steady state probability distribution. The derivation is

obtained for deterministic, exponential and continuous processing time models with

geometric/exponential failures and repairs.

Heindricks (1992) develops analytical expressions for the steady state interdepar-

ture distribution of a line and the correlation structure of this distribution. Heindrick

also uses Markov chain properties to derive this result. The derivation is done for

exponential processing time, finite buffer line, perfectly reliable machines. Like Mil-

tenburg's result it would be very computationally intensive for more complex systems.

Buzacott and Shanthikumar (1993) provide a formula for the steady state inter-

departure distribution of a system. The derivation is done for a deterministic two-

18



machine line, with geometric failures and repairs. They also obtain the characteristics

of a two-machine zero buffer line with exactly the same interdeparture distribution.

Gershwin (1993) obtains an expression for the variance of the output of a single de-

terministic processing time machine with geometric failures and repairs. The variance

is calculated as a function of the time period over which the system is observed.
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Chapter 2

Deterministic Processing Time

Model

2.1 Description

Deterministic Processing Time By deterministic line we mean a system con-

sisting of machines with deterministic processing times. These machines fail and are

repaired at random, so the system is not actually deterministic.

This model is described in detail in Gershwin (1994). It is based on the model

of Buzacott (1967). This model is formed by two machines with a buffer between

(Fig. 2-1). The length of time that parts spend in each machine is fixed, known in

advance and the same for both machines. This time is taken to be the time unit.

All operational machines start their operations at the same instant. A machine is

operational when it is not under repair, starved (when there is no material in the

preceding buffer), or blocked (when the following buffer is full). The first machine

(M1) is never starved and the last machine (M2) is never blocked.

Failure and Repair Distribution Failures are considered to be operation depen-

dent. This means that if a machine is not working, due to starvation or blockage, it

21



Ml M 2

P r N p2 r 2

Figure 2-1: Representation of a two-machine line with a buffer

cannot fail. During a time unit when Mi is working, it has probability Pi of failing.

Its mean time to fail (MTTF) in working time is thus 1/pi.

During a time unit when Mi is under repair it has a probability ri of being repaired.

Its mean time to repair (MTTR) is thus 1/ri.

Both the failure and repair distributions are assumed to be geometric. One of

the main features of this distribution is that it is memoryless. This means that the

probability of a machine failing (or being repaired) in a time unit is independent of

the number of units it has been working (or been down) previously.

Buffer The buffer is a storage element. It is characterized by the total number of

parts it can contain (N). Parts pass through the buffer with a transportation delay

that is very small compared with service times in the machines (except for the delay

caused by other parts in the buffer). A piece spends at least one time unit in the

buffer before being transferred from one machine to the next.

Conventions There are two conventions that are made about the operations of the

line:

* A machine fails or gets repaired at the beginning of a time unit. This means

that a machine that has been repaired must produce at least one part before

the next failure. A machine that has failed spends at least one time unit down

before being repaired.

* The buffer level changes at the end of each time unit. It depends on the state

of the machines at the beginning of the time unit and of the level of the buffer

22



in the previous time unit.

2.2 Representation of the Two-Machine Line

Markov Chain We use a Markov chain to model the line. The states are

s = (n, al, a2), where

n = 0, 1, ..., N is the number of parts in the buffer

ai = 0, 1 is the state of Mi

0 = DOWN

1 = UP (includes starvation and blockage)

We study the system in steady state. Steady state means that the probability of the

system being in a given state does not depend on the conditions in which it started.

We determine the probability of finding the system in each of these states.

Steady State Distribution The steady state probability distribution satisfies:

p = pP (2.1)

where p is the steady state probability vector and P is called the transition matrix.

The derivation of the transition matrix and the solution of the steady state probability

vector is presented in Gershwin (1994).

Performance Measures Two of the most important performance measures of the

system in steady state are the production rate (E) and the average buffer level ().

They are obtained from the steady state distribution as follows:

23



Efficiency The efficiency of a single machine (Mi) is the percentage of time

that it is working when isolated. The efficiency of an isolated machine is:

ei= (2.2)
ri + Pi

The efficiency of a two-machine system is the average number of parts that come out

of (or into) the system in a period of time. It is equivalent to the production rate

measured in this time unit, and it is calculated as follows:

N N-1
E = -p(i, cla, 1) = E p(i, 1, a2) (2.3)

i=l i=O

Two particular two-machine systems are:

1 1

Zero buffer: E = (2.4)1+ + 
Pi P2

Infinite buffer: lim E = min (e1 ,e2 ) (2.5)
N-+oo

Average Buffer Level Average buffer level represents the average work in

progress in the system. Its formula is:

-= ni p(s) (2.6)

Variance of the Output The variance of the output is a way to quantify the

discrepancy between the production in a particular period and the average production

in steady state. This is a very important measure of the randomness of a system, and

very little work has been dome so far to derive it. The work found in the literature

use the properties of the Markov chain to derive analytical results.

1This formula is an approximation derived by Buzacott (1967). It assumes that the two machines
cannot fail at the same time unit. The exact formula taking into account that there might be
simultaneous failures is

1

1 + + 2 - P1P2rl r2 rl +r2-l r2
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In this thesis, we try to understand the variance of the output of a system. As we

will see, the variance of the output of two-machine zero buffer line is fairly easy to

obtain analytically, and it is the existence of a finite buffer that significantly compli-

cates the output process. The difficulty lies on the fact that the buffer accumulates

material and in doing so keeps track of the events that have taken place in the system.

This complicates the pattern in which pieces leave the production line, and makes it

harder to derive any analytical results.

The properties of the interruption of the output are obtained using the characteris-

tics of the steady state distribution presented here. Other tools, especially simulation,

are used to gain understanding of the behavior of the system.
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Chapter 3

Variance of the Output for Special

Cases

3.1 Introduction

In this chapter, we develop an analytical formula for the variance of a deterministic

processing time two-machine line with zero buffer size and for a deterministic single

machine. In later chapters we will use these results to compare the variance of this

system with that of a deterministic two-machine finite buffer line, and to model the

latter system.

First, we describe what we mean by the variance of the output. Then, we state why

these special cases are of importance to understand the behavior of a system with

finite buffer size. Finally, we derive the variance of the output for a deterministic

two-machine line with zero buffer size and for a single machine.

3.2 Variance of the Output

In this section, we describe what we mean by the variance of the output over a period

of length t.

27



The output of a production line during a period of length t (Oi(t)) is the number

of parts that an observer, placed after the last machine of the line, (Fig 3-1) sees

come out of the line during t consecutive time units. In the case of a deterministic

line, the output at a given time unit will be 1 or 0.

The mean ((t)) and the variance (o(t)) of the output for a period of time t are

two important performance measures of the system. If our observer watches the line

for N independent periods of length t, the mean and variance of the output can be

estimated as follows:

N

O)= j Z ,(t)
i=l

N

o(t) N-1 i 1 (t)- (t))2

As it has been derived in equation (2.3)

Efficiency = lim N (t) E
t N-oo i=1

Mean Production (t) = Et

In the next sections we derive the variance of the output as a function of the

length of the period [O, t].

N N
Variance of the Output(t) = lim t _ 

N-oo N-i=1

We assume that we assume that the probability of being in a particular state at

the start of a period of observation of the system is the steady state probability of

that state. For our calculations, we use the steady state probability as the initial

condition to solve our system.

28



Figure 3-1: Observer watching the output of a production line

3.3 Effect of the Buffer as a Decoupling Element

The purpose of a buffer is to increase the production rate of a system by acting as a

decoupling element between the machines. Its effect is to reduce the dependence of

each machine's behavior on the other. As long as the buffer is not completely full or

empty, a machine is not affected by the failures and repairs of the other one. M2 is

only affected by the performance of M1 when the buffer empties (starvation). In this

case, M2 cannot produce due to lack of raw material. Similarly, M1 is affected by the

performance of M2 when the buffer fills (blockage). In this circumstance, M1 cannot

produce due to lack of space to store the finished parts.

Given two machines, the decoupling effect of the buffer depends on the buffer size.

It is reasonable to think that, the bigger the buffer size the greater the decoupling

effect, because the probability of a M2 being starved and M1 being blocked decrease.

Thus, there are two cases where the effect of the buffer is extreme: zero buffer (no

decoupling) and infinite buffer (maximum decoupling). For finite buffer sizes, we

expect the decoupling effect to be between these two extreme cases.

29
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3.4 Variance of Output of a Deterministic Two-

Machine Line with Zero Buffer Size

In this section, we represent the two-machine system with zero buffer size by a simple

Markov chain. Using two simplifications, we conclude that this system can be very

well approximated by a single machine with two failure modes. As the derivation of

the variance of this second system is easier, we will use it to determine the variance

of the original system.

3.4.1 Representation of a Two-machine Line with Zero Buffer

Size

Conventions We use the conventions explained in Chapter 2. The pieces in the

system are represented as being in a buffer. The machines do not hold pieces. They

transfer pieces from the upstream to the downstream buffer while performing an

operation on them. If a machine fails while performing an operation, the piece it is

working on is considered to be in the upstream buffer at the next time unit. If the

machine does not fail the piece is in the downstream buffer at the next time unit.

As there are two pieces in the system when both machines are working, N = 2 is

necessary to represent the behavior of a zero buffer system with these conventions.

From now on we use the terms zero buffer system and N = 2 as equivalent.

Model The behavior of a two-machine line with zero buffers is as follows:

1. When both machines are working, material is coming out of the system.

2. If M2 fails at time tf and M1 keeps working, output stops at time tf. M1 is

blocked at time t + 1. If M2 is repaired at time tr2, there is output at time t 2

and M1 can work (or fail) at time t 2 + 1.
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3. If M1 fails at time tf and M2 keeps working, output stops at time tf + 1. M2

is starved at time tf + 1. If Ml is repaired at time trl, M2 can work (or fail) at

time tl + 1.

4. Both machines can fail at the same time. The way the system resumes normal

activity depends on the order of repairs. Ml is repaired at time t and M2 is

repaired at time tr2.

* tr2 < t: If M2 is repaired at time tr2, a piece comes out of the system at

time t 2. M2 is starved at time t 2 + 1. If M1 is repaired at time trl, M2

can work (or fail) at time tl + 1.

* tl1 < t2: If Ml is repaired at time tl, M1 is blocked at time tl + 1. If

M2 is repaired at time t 2, there is output at time tr2 and Ml can work (or

fail) at time t42 + 1.

* t = tr2 = t,: There is output at time t.

Steady State Probability Distribution The only non-transient states are (0, 0,1),

(1, 0, 0), (1, 1, 1), and (2, 1, O0). The Markov chain that represents this system is shown

in Fig. 3-2.

3.4.2 Simplification: Single Machine with Two Failure Modes

First simplification The state (1, 0, 0) is visited very infrequently (only when M1

and M2 fail simultaneously). Therefore, the system that results if we ignore the exis-

tence of this state is a good approximation of the system. This approximation results

in a simplification of the Markov chain and, as a consequence, a simplification of the

derivation of a formula for the variance of the output. In Fig. 3-2 the states and

transitions that can be eliminated have been drawn in dashed lines. This simplifica-

tion can also be explained by saying that P1P2 is a second order quantity, very small

compared to the rest.
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Figure 3-2: Markov chain that represents a two-machine line with zero buffers

Second simplification The system after this simplification is shown in Fig. 3-3.

When the system is in state (1, 1, 1) we assume material is coming out of the system

at a rate of one piece per time unit. If the system is in the other states, we assume

there is no output. This is not precisely true. The failures and repairs of Ml are seen

by the observer at the end of the line with a delay of a unit of time after they take

place. If M1 fails at time tf and M2 remains operational, the state of the system at

this time unit is (0, 0, 1) and one part comes out of the system. During the rest of

the time M1 spends in this state, no output emerges. If Ml is repaired at time tr

the state of the system at this time unit is (1, 1, 1) but no material comes out of the

system.

If we wanted the Markov chain to describe this output process precisely, it should

be modified as shown in Fig. 3-4. This discussion is presented in Schick and Gershwin

(1978). States (1, 1, 1) and (0, 0, 1) in Fig. 3-3 are split into two different states to

represent the transitions explained in the previous paragraph. The underlined states

represent the productive states (states where material comes out of the system). The
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1-

Figure 3-3: Simplified Markov chain of a two-machine line with zero buffer size

1- P1 - P2

1- r 1- r2

Figure 3-4: Markov chain with productive and non-productive states

probabilities of these states satisfy

p(1, 1, 1) = p(1, 1, 1) + p(1, 1, 1)*

p(O, 0, 1) = p(O, 0, 1) + p(O, 0, 1)*

where p(l, 1, 1) and p(O, 0, 1) are the steady state probabilities of the system repre-

sented in Fig. 3-2. The steady state probabilities are not modified: the system we

are describing is the same as the previous one, but we are presenting it in such a way

that we can precisely identify the productive and non-productive states. Whenever
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M1 fails, the system spends a time unit in (0, 0, 1) first, and whenever the system

leaves state (0, 0, 1)* it spends a time unit in (1, 1, 1)*. So,

p(O, 0, 1) = p(1, 1, 1)*

The mean production rate is the probability of the system being in a productive state.

In this case,

E = p(O, 0, 1) + p(l,1, 1) = p(l, 1, 1)* + p(l, 1, 1) = p(l, 1, 1).

Therefore, we can conclude that the simplification does not alter the performance

of the system in terms of the average production rate. Also, the simplification does

not modify significantly the pattern of non-productive and productive periods (and

subsequently the variance). As there is a delay of one unit both when M1 fails and

when it gets repaired, one delay compensates the other. Thus, we can conclude

that this approximation does not alter significantly the performance measures of the

system while it simplifies the process of deriving the variance.

The Markov chain left after these simplifications is identical to the Markov chain

that represents the behavior of a single machine with two failure modes1 (Fig. 3-3).

State (1, 1, 1) is equivalent to state 1 and represents the system is producing pieces at

a rate of one per unit time. State (0, 0, 1) (Failure of M1) and (2, 1, 0) (Failure of M2)

are equivalent to states 01 (Failure of type 1) and 02 (Failure of type 2) respectively.

There is no output while the system is in either of these states.

Fig. 3-5 compares the variance of the output of the original two-machine zero buffer

system (Fig. 3-2) and of the simplified single machine two failure modes system (Fig. 3-

3). Both the variance of the original system and the variance of the simplified system

have been calculated analytically 2. Example 1 graphs show cases were the machines

1All through the thesis the term single machine with two-failure modes refers to two failure modes
that cannot happen at the same time

2 The variance of the simplified system has been calculated using the formula derived in Section
3.5. The variance of the original system has been computed using the same procedure but for the
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are identical. In Example 2, both machines have the same efficiency. Example 3

shows the effect of modifying r2 and Example 4 shows the effect of modifying P2. We

can see that it is a very good approximation in all cases. The maximum difference

obtained in all the cases tried was less than 3%. We can see that as the machines

become more unreliable, the probability that both machines fail at the same time

increase, and as a consequence, the simplification works worse.

3.5 Variance of a Single Machine with Two Failure

Modes

In the next section, we derive the variance of the output of a single machine with

two failures modes, and from now on, we will use this derivation to approximate the

variance of the output of a two-machine line with zero buffers.

This derivation is based on the procedure followed by Gershwin (1993) to deter-

mine the variance of a single machine with one failure mode.

Model We assume the processing time of the machine is deterministic, that is, it

takes a fixed amount of time to complete an operation. This time is the time unit.

Both failure modes cannot take place simultaneously. During a time unit when the

machine is down, it may either stay down (with probability 1 - rl if it is a failure of

type 1 and with probability 1 - r2 if it is a failure of type 2), or its repair may be

completed (with probability r1 if it is a failure of type 1 and with probability r2 if it is

a failure of type 2). During a time unit when the machine is operational, it may either

perform an operation (with probability 1 - P1 - P2 or it may fail without completing

an operation (with probability pi the failure is of type 1 and with probability P2 the

failure is of type 2).

original Markov chain. As this system is more complex the variance has been derived numerically
using an iterative process.
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Fig. 3-3 shows the Markov chain that represents this

system. In state 1 the machine is producing pieces. In state Oi, the machine is down

with a failure of type i.

The steady state probabilities are:

P(01) P(02)] = [p(1)

1 -P1 -P2

P( (0 P 2) |r,

r2

P=pP

Pi 0

1 - rl P2

0 1 -r 2

(3.1)

Probability Distribution of the Output Let r(n, a, t) be the probability that

the machine is in state a at time t and n pieces have been produced in [0, t]. Then,

7r(n, 01, t + 1) = (1 - rl)7r(n, 01, t) + pl7r(n, 1, t)

7r(n, 02, t + 1) = (1 - r2)7r(n, 02, t) + p27r(n, 1, t)

7r(n, 1, t + 1) = E ri7r(n - 1, i, t) + (1 - pi -p 2 )r(n - 1, 1, t)
i=1,2

7r(n, a, t)

7r(t, Oi, t)

r(0, 1, t)

= O,t> O,n> 1

= Ot > O, n > 1, Vi

= Ot > O,n>1

In addition, as we commented in Section 3.1, we assume that the system starts in

steady state. Therefore,

7r(0, 1, 0) = pi = p(l) = 1 1 C
1 + i=1,2 r

(3.8)
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(3.2)

subject to

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

Steady State Distribution



Px

r(, i, 0) = Poi = p(Oi) -- Pi c Vi
1 + ji=1,2 r iri

(3.9)

Formulae for Performance Measures Two performance measures are of interest:

the mean and the variance of the number of pieces produced during a specified time

interval.

The mean and the variance of the amount of material produced in t time steps

are:

Mean Production:

Variance of the Output:

t

n(t) = E n(lr(n, 01, t) + r(n, 02, t) + r(n, 1, t))
n=O

a2(t) = E(n(t)2) - (t)2

where

t
E(n(t)2) = n2((n 1, t) + r(n, 02, t) + ir(n, 1, t))

n=O

Formulae for the mean and the variance of the production are derived in Appendix

A using the difference equations (3.2), (3.3) and (3.4) for ir(n, o, t). They are

n(t) = Ct (3.10)

r2(t) 2p2(2- P2 - r2) + rp(2 - p - r) - 2pl2rlr2)t (3.11)
(p2 rl + r2Pl + rlr2 )3

(2 + b - -P2 -rt -r 2)((r2-rl)2 - (P + P2 -b)2) - t)
b(-b + pi + 2 +rl + r2)3 -

2C (-2 + b - pi - P2 - r - r2)((r2- r) 2- (Pi + P2 - b)2)(1-
b(b + 1 +P2 + r + r2)3 2

where

(3.12)
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1 Pi +P2 +T2+r +b (3.14)1= 1p2 ±r2 rib (3.13)2 (3.14)

Note that i, 132 < 1 and therefore the influence of the terms (1 - P,), (1 - t) in

the variance decrease as t increases. For large t,

li 2(t ) Cr2p 2(2-P2 - r2) + r2pi(2-Pi -rl) - 2plp2rlr 2 (3.15)

t-oo t (p2r, + r2p + rlr2)3

We introduce now the concept of variance rate and asymptotic variance rate:

* variance rate is the variance of a period of length t per time unit.

2(t)
variance rate =

t

* asymptotic variance rate is the limit of the variance rate when the length t of

the period tends to infinity.

2(t)asymptotic variance rate = = lim )
t-00oo t

Then, equation (3.15) can be written

a2(t) r 2p2(2-P2 -r 2) + r2p(2-p -rl) - 2pl 2rlr2 (3.16)A = lim = C (3.16)t-oo t (p2rl + r2pl1 + rlr2 )3

Example Fig. 3-6 shows the comparison between the results obtained by simulation3

and by analytical derivation. Example 1 graphs show cases were the machines are

identical. In Example 2, both machines have the same efficiency. Example 3 shows

the effect of modifying r2 and Example 4 shows the effect of modifying P2. The shape

of the curve variance rate vs. time is common for all zero buffer systems. It is con-

cave and grows asymptotically to reach a limit. This limit has been calculated by

3 The procedure used in the simulations is described in Section 7.1.
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Miltenburg (Section 5.1.1).

3.6 Variance of the Output of a Machine with One

Failure Mode

Derivation The formula derived in the previous section can be simplified to obtain

the variance of the output of a machine with a single failure mode. For this purpose,

we choose parameters for one of the failure modes so that it never takes place.

rl=1 P1=

r2 = r P2= P

The mean and the variance of the output of the production simplify to:

n(t) = t (3.17)r+p

2 (tl) - rp (2 (r+ p)2 r + p
2rp (1-r-p)(1-(1-r - p)')

- 2rp~~~~~~~~ ~(3.18)
(r+ p)4

This results agrees with the result derived previously by Gershwin (1993). In this

case, the asymptotic variance rate is

AM = tlim (t rp (3.19)t-+00 t (r+p)2 r+p
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3.7 Asymptotic Variance Rate of the Output for a

Two-Machine Zero Buffer System

In this section, we derive an expression that relates the asymptotic variance rate of

a two-machine zero buffer system (A(Ml,M2,o)) to the asymptotic variance rate of the

machines (AM, AM2) that compose the system.

From (3.19),

riPi
(ri + pi)2

2

ri + Pi
2 -ri -Pi

= ei(1-ei) r+p

e (1 - ei)
i = 1,2

and thus,

2- ri -i = >A(M~ri )i = 1, 2.
e(1 -ei)

Substituting this expression in (3.16) and simplifying we get,

C4

(lM,M2,o) = r
rjr2 el - eM1( e( -e

AM 2

+ e2(1- e) -

2ele2

(1 - el)(1 - e2)
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Chapter 4

Flow Interruption of a

Two-Machine Line with Finite

Buffer Size

In this chapter, we identify the circumstances that lead to flow interruption in a

two-machine finite buffer system. We obtain parameters that characterize these in-

terruptions in terms of their mean frequency and length. We also evaluate their

probability distributions. These results are used to define a two-machine zero buffer

system whose failure behavior is the same as that of the original two-machine fi-

nite buffer system. Finally, we show the similarities between these results and those

obtained by Buzacott and Shanthikumar (1993).

4.1 Types of Interruptions

The system is working if an observer placed at the end of the line sees material

coming out. In this case, the system is in a productive state. A period when output

is not coming out is defined as an interruption. An interruption of the output takes

place when the system enters a non-productive state. There are two different types
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Time 0 2 4 6 8 10 12 . . t
1 3 5 7 9 11 13

Starvation of M
Starvation ofNon-Productive states

-] Failure of M2

H Productive state

Figure 4-1: Interruptions of flow in the system

of non-productive states, and they lead to two different types of interruptions. These

interruptions are failures of M2 and starvations of M2, and are explained in detail in

the following paragraphs. In Fig. 4-1, we represent the output of the line for a range

of time units:

* Productive periods: t = 0, 4 < t < 8, 11 < t < 13.

* Interruption of flow due to starvation of M2: 1 < t < 4.

* Interruption of flow due to failure of M2: 9 < t < 10.

Failure of M2 Failures of M2 always affect the output of the system. While M2 is

operational there might or might not be output, but if M2 is down there is

definitely no output. The non-productive states that cause this interruption of

flow are (n, al, ) V n E [0, N], axl = (0, 1).

Starvation of M2 M2 is starved when it is not allowed to work due to lack of ma-

terial in the buffer. When Ml is down and M2 keeps working, the buffer level

decreases at a rate of one piece per time unit. The failures of Ml only interrupt

the flow of output when the buffer empties. This means that some failures of

M1 will not cause an interruption of output, either because M2 keeps working

and Ml gets repaired before the buffer empties, or because M2 fails before this

happens. Some of the interruptions seen by the outside observer will be shorter
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than the length of the failure of M1, because the material in the buffer post-

pones the interruption. The non-productive state that causes this interruption

of flow is (0, 0, 1)1.

An important observation about these failures is that both cannot happen simultane-

ously. M2 cannot be starved (unable to work due to lack of material) and undergoing

repair at the same time. In general, there will be productive periods in between

these interruptions. In very rare occasions2 we may find a starvation of M2 followed

immediately by a failure of M2.

4.2 Buffer as the Memory of the System

In this section, we explore how the buffer acts as a record of the events of the system

and how the interruptions of flow due to starvations provide a way of simplifying the

study of a two-machine line over time.

Suppose that we observe the buffer level for a while. If both machines are working

or under repair, the buffer level does not change. If M1 fails and M2 keeps working,

the buffer level decreases at a rate of one part per time unit. If M2 fails and M1

1As we discuss in Section 4.3.1 this is not exactly true. The first time unit that state (0, 0, 1) is
reached there is output. There is no output in the subsequent time units while the system remains in
this state or the time unit after the system leaves the state (and reaches (1, 1, 1)). As a consequence,
the time that the system spends in state (0, 0, 1) is the same as the time that the output is interrupted
due to starvation, and the periods of starvation are the periods that the system is in state (, 0, 1),
with a unit delay. Therefore, it is accurate to identify starvation with state (0, 0, 1).

2 The sequence of states have to be:

TIME STATE OUTPUT REASON FOR NO OUTPUT
1 (1,1,1) or (1,1,1) yes
2 (0, 0,1) yes
3 (0, 0,1) no starvation of M2

· .. (0, 0, 1) no starvation of M2
t, - 1 (0, 0, 1) no starvation of M2

t, (1, 1, 1) no starvation of M 2
t + 1 (1, 0, 0) or (2, 1, 0) no failure of M 2

M2 is starved from t = 3 to t = tr. At t = t + 1, M2 is allowed to work, but it fails, so a failure
of M2 starts after a starvation before any production comes out of the line.
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keeps working, the buffer level increases at the same rate. Therefore, the change in

buffer level during a period of time reflects the difference in performance between the

upstream and the downstream machine during that time.

There is a limit to this role of the buffer. Whenever there is a blockage or a

starvation the difference in performance is not reflected accurately. A starvation

empties the buffer, and as a consequence the memory is lost. Whatever happens in

the system after a starvation does not depend on the history of the system before this

starvation took place. This leads to an interesting observation: the behavior of the

two-machine line over time can be studied as a series of periods which are independent

of each other. These periods are the periods between starvations.

On the other hand, the likelihood of observing a starvation depends on the buffer

level of the system at the time of a failure of M1. As we have seen in Section 4.1, the

higher the buffer level, the less likely it is that a starvation occurs. The probability

of a starvation taking place depends only on the history of the system after the last

starvation.

These observations can be summarized in technical terms: a two-machine line can

be studied as a renewal process where starvations are the events that bring the system

to its starting state (Gallager, 1995). Though this observation is not further used in

this thesis, we believe it is worth mentioning it because it may provide additional

tools to study the behavior of the system.

4.3 Interruption of output due to starvation: Equiv-

alent Machine

As we have seen before, there are two kinds of interruptions of the output:

* Failures of M2: The parameters that define these interruptions are the mean

time to fail (MTTF 2 ) and to repair (MTTR 2) of M2.
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* Starvation of M2: In this section, we calculate the parameters that define the

interruptions of flow due to starvation of M2 .

We characterize the interruptions of output of the system due to starvations of M2

by determining the mean time between starvations (MTTF,) and the mean length of

a starvation (MTTR,). If the time between starvations and the length of a starvation

are geometrically distributed random variables, we can define:

r* = MTTR = p (starvation finishes this period/there was no output last period)

1 = P (starvation starts this period/there was output last period)

In this way, the interruptions of output due to starvations of M2 are characterized

in the same way as the failure and repair behavior of a machine. Therefore, M1 and

the buffer can be substituted by a single machine M* with parameters p* and r. The

two systems are very close equivalents in terms of the failure and repair behavior.

This is represented in Fig. 4-2.

M…

r, , p,

Figure 4-2: Equivalent machine to M and the buffer

This two-machine zero buffer equivalent system will be used to determine the

variance of the output of the original. The model developed for this purpose is
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TIME STATE OUTPUT REASON FOR NO OUTPUT
-1 (1, 0,1) or (1,1,1) yes
0 (0, 0,1) yes
1 (0,0,1) no starvation of M2

. .. I (0, 0, 1) no starvation of M2
tr - 1 (0, 0, 1) no starvation of M2

tr (1, 1, 1) no starvation of M 2

tr + 1 (1,0,0) or (2,1,0) no failure of M2

4.1: Sequence of states that define a starvation in a two-machine finite buffer

00//A I

I I I I I I I VA/A AIm ,11 7 I
I I I I V/V/V/V/V/V/VzJ I

0123 . . .

~;3 Starvation of M 2

I I I I I I I
I I I I I I 

Figure 4-3: Start and end of an starvation

presented in Section 6.1.1.

4.3.1 Length of a Starvation

Start and End of a Starvation The sequence of states that define a starvation

is shown in Fig. 4-3 and Table 4.1:

At time t = 0, there is output coming from the system. M1 starts down and does

not get repaired during this time unit. M2 starts up, gets the last piece from the

buffer and does not fail while processing it. This piece leaves the system at the end

of t = 0. Starvation starts at t = 1, the time unit after the system first gets to state

(0,0,1).

Starvation ends at tr + 1, the time unit after the system first gets to state (1, 1, 1).
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At time t = t,, there is no output coming from the system. M1 starts down, gets

repaired during this time unit and processes a part. M2 is up, and cannot work

because the buffer is empty. The piece processed by M1 reaches the buffer at the end

of the time unit, ending the starvation of M2.

We have found the states that define the start and the end of an starvation. If we

determine the mean time to go from (0, 0, 1) to (1, 1, 1), we have the mean time to

repair of the starvations. The actual starvation has a delay of one time unit, meaning

that it starts and ends a unit of time after these states are reached, but this delay

has no influence on its length.

Mean Length of a Starvation (MTTR.) We have determined this parameter

using two different methods, which give exactly the same results.

Method 1 The easiest way to determine MTTR. is to think about the charac-

teristics of the repair distribution of M1. The length of the interval from (0, 0, 1) to

(1, 1, 1) is the time it takes M1 to get repaired once in state (0, 0, 1). As the repair

distribution of M1 is geometric (and thus, memoryless), the probability of getting re-

paired once in state (0, 0, 1) is independent of how long M1 was down before reaching

(0, 0, 1). So, we can conclude

MTTR. = MTTR1 (4.1)

Method 2 There is another more elaborate way of determining MTTR.. It

consists of using the transition matrix in equation (2.1) of the original two-machine

line to determine the average time it takes to go from state (001) to (111) (which

we call w(o01)(111)). In technical terms, this average time is called the expected first

passage time between those states. The procedure to obtain this value is described

in detail in Appendix B. The result obtained is

MTTR = MTTR 1 (4.2)
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TIME STATE OUTPUT REASON FOR NO OUTPUT
-1 (0, 0, 1) no starvation of M2

0 (1, 1,1) no starvation of M2

1 (1,0,1) or (1,1,1) yes
.. . ... ...
t,-1 (1,0,1) or (1,1,1) yes
t (0,0,1) yes
t8 + 1 (0, 0, 1) no starvation of M2

Table 4.2: Sequence of states that define the time between starvations in a two-
machine finite buffer line

Repair Time Distribution From Method 1 we can conclude that the repair time

distribution is geometric.

4.3.2 Time between Starvations

Start and End of a Period between Starvations The reference states we use to

determine the distribution parameters are again (1, 1, 1) and (0, 0, 1). The sequence

of states that define a period between starvations is shown in Table 4.2:

A period between starvations starts at t = 1, one time unit after state (1, 1, 1) is

reached from (0, 0, 1). This period ends at t = t,, one time unit after state (0, 0, 1)

is first reached. Fig 4-4 shows a period between starvations. During this time, there

might be interruptions of flow due to failures of M2. These interruptions are not taken

into account in calculating the time between starvations. As we stated in Section 4.1,

a starvation cannot take place while the output has been interrupted due to a failure

of M2. This is equivalent to saying that M. cannot fail in this case.

Mean time between starvations (MTTF.) There are three different methods

of obtaining this parameter, which give us the same result:

Method 1 In Fig. 4-2 the original two-machine system is represented as an

equivalent two-machine line with zero buffer size. The efficiency (E) of a two-machine
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Adz Starvation of M2

E1 Failure of M2

Figure 4-4: Start and end of a period between starvations

line with zero buffer size is

E + MTTR2 + MTTR1
MTTF2 MTTF,

We want the efficiency to be that of the original system, which can be obtained

from equation (2.3). All the parameters of the equation are known except MTTF,

and thus,

MTTF = ( ) (4.3)r1 e2-E

Method 2 Again this method is more computationally intensive than the pre-

vious one. Using the procedure described in Appendix B, we can obtain w(111)(0oo),

which is the mean time it takes the system to go from state (1, 1, 1) to (0, 0, 1), or in

other words, the mean length of the period between starvations.

However, this value is not yet what we are looking for. The time to fail is defined

as working time between failures. In the period between starvations, M2 may fail. If

M2 is down, the system is not working (and does not have the possibility of starving).

Therefore, the mean working time to fail is the fraction of W(111)(o00) that M2 is

working.
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MTTF* = w(11i)(ool) 72 = W(lll)(OOl) e2 (4.4)
r2 + P2

Method 3 This method is based on the procedure used by Buzacott and Shan-

thikumar (1993) to determine the mean time to fail in a two-machine line with an

intermediate buffer. For this derivation we assume that the working mean time be-

tween starvations is geometric. Let p be the probability of seeing an interruption of

the output in this period, provided that there was output last period. That is,

p = p(no output this time unit/there was output last time unit)

There are two reasons why the output can be interrupted: failure (P2) and starvation

(p,) of M2. Since both cannot happen at the same time,

= P + p(failure of M2)+ p(starvation of M2)
p(there was output last period)

where

p(a failure of M2 starts)
P2 = p(there was output last time unit)

p(a starvation of M2 starts)
P* p(there was output last time unit)'

In steady state,

p(a starvation of M2 starts) = p(a starvation of M2 ends)

so
p(a starvation of M2 ends)

P* p(there was output last time unit)

The probability of seeing output during a time unit is the efficiency of the system in

steady state

p(there was output last time unit) = E.
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The probability that a starvation ends during a time unit is the probability of 1M2

being starved and M1 being repaired during that time unit

p(a starvation of M2 ends) = rip(0, 0, 1).

Combining these expressions, the final result is

rlp(0, 0,1)
P*= E

and therefore,

MTTF = = (4.5)
p, rip(0,0, 1)

Equation (4.3) is equivalent to equation (4.5).

Time between Starvations Distribution Though we have been able to calculate

the mean of the time between starvations, the distribution of this variable is not

geometric. We have run several simulations3 to obtain the shape of this distribution.

In the example presented we have changed MTTF 1 while maintaining the rest of the

parameters constant: rl = T2 = 0.1, P2 = 0.01, N = 20. The results are shown in

Fig. 4-5. We have represented the density distribution of the working time between

starvations in a semilogarithmic scale. The X-axis has been scaled using MTTF 1

to allow several distributions to be plotted in the same graph. If the distributions

were geometric, their representation would be straight lines. Though we will assume

that the distribution is in fact geometric, this conclusion is not confirmed by the data

obtained.

Limit of p, as the Buffer Size Increases As the buffer size increases, the prob-

ability of starvation of M2 (and thus p,) decreases. However, the limit p, reaches as

the buffer size grows depends on which machine is less reliable. Using equation (4.3),

3The simulation software is described in Section 7.1.
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of material in the buffer. This is equivalent to saying that p, tends to zero.

However, if the most efficient machine is M2, the buffer will tend to be empty in

steady state regardless of its size. This is because M2, on average, can produce more

material than M1 can provide. Therefore, the failures of Ml starve M2, interrupting

the output. The disruptive effect of the failures of M1 (interruption of the output)

decreases as the buffer size increases, but it reaches an asymptotic value greater than

zero.

4.4 Another Derivation of the Equivalent Machine

Buzacott and Shanthikumar (1993) analyze a two-machine line system with opera-

tion dependent failures. They derive the parameters of a two-machine zero buffer line

equivalent to the original system in terms of having the same steady state interdepar-

ture distribution. The parameters of the two-machine zero buffer line obtained are

similar to the parameters of the equivalent machine derived in Section 4.3. In this

section, we compare the approaches.

4.4.1 Buzacott and Shanthikumar's Model

Assumptions Buzacott and Shanthikumar's model is very similar to Gershwin's

model described in Chapter 2. The only differences are:

* Starvation/Blocking behavior: If both machines are up and the buffer level is

zero, there is no starvation in Buzacott and Shanthikumar's model and there

is in Gershwin's. If both machines are up and the buffer is full, there is no

blocking in Buzacott and Shanthikumar's model and there is in Gershwin's.

* Observation instant: In Buzacott and Shanthikumar's model the buffer level in

a time unit is defined by the events and the buffer level at the previous time

unit. In Gershwin's model the buffer level is defined by the events of that same
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time unit and the buffer level at the previous time unit.

Buzacott and Shanthikumar's model n(t) = f(n(t - 1), o(t - 1), a2(t - 1))

Gershwin's model n(t) = f(n(t - 1), al (t), ce2(t))

* Number of pieces in the system: In case of failure, in Buzacott and Shan-

thikumar's model the pieces being processed are stored in the machine while in

Gershwin's model they are considered to be in the upstream buffer. This means

that for a buffer of size N, the maximum number of pieces in the system in

Buzacott and Shanthikumar's model is N + 2 while in Gershwin's it is N.

Equivalent Machine for the First Machine and the Buffer The interdeparture

time is the number of time units between consecutive departures of parts from the

line. Buzacott and Shanthikumar conclude that a two-machine line with a finite buffer

size has the same interdeparture distribution as a two-machine with zero buffer line,

where the first machine has a failure probability p', and a repair probability r r1 .

The failure probability pl is derived using the same procedure as in Section 4.3.2,

Method 3. The result is

P2 + P = p(no output this time unit/there was output last time unit)

pI = p(a starvation of M2 starts/there was output last time unit)

P1 EE

4.4.2 Comparison

Next, we compare the parameters of the equivalent system derived in Section 4.3 with

the parameters used by Buzacott and Shanthikumar.
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Both procedures represent the two-machine system with a two-machine zero buffer

line. They eliminate the buffer and quantify its effect by reducing the number of

failures of the system due to failures of M1. Both p, and p' represent the probability

of interrupting the output due to starvation of M2 in their correspondent systems.

The fact that they can both be obtained using the same procedure demonstrates it.

We have seen that the most important assumptions made both in Buzacott and

Shanthikumar's and in Gershwin's models are the same. Therefore, the values of

p, and p for a system should be close. Fig. 4-6 compares these values for different

systems. As we saw in the description of the models, for a buffer size N, the maximum

number of pieces in the system for Gershwin's model is N and for Buzacott and

Shanthikumar's model is N+2, so the total number of pieces in the system is different.

To compensate for this factor, p' has been calculated for buffer size N - 2.

* Cases (a) to (d) have the same M1, and M2 has in all cases the same efficiency.

The less frequent the events of M2 are, the closer are p, and p'.

· Cases (I) to (III) show that the difference between p, and p' depends only on

the characteristics of M1 and M2 and not on the buffer size.

* Cases 1 to 10 are randomly generated systems that are presented to give the

reader an idea of the range of the difference between p, and p'.

The difference between p, and p gets bigger as the frequency of the failures and

repairs of the machines increase. This is because the different conventions of the

models affect more the behavior as the frequency of the events increase.

We can conclude that by both procedures we obtain a two-machine zero buffer

system equivalent to the original two-machine finite buffer system in terms of the

interruption of the output. In Section 6.2 we confirm that the interdeparture dis-

tribution of the original and the equivalent system are the same. However, we also

discover that the variance of the output of the original and the equivalent system are

significantly different, and we provide an explanation for this.
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Number rl I r2 P2 IN p'p. I l -P.

a 0.95 0.39 0.85 0.15 6 0.260852 0.223400 0.143577

b 0.95 0.39 0.54 0.096 6 0.255330 0.231500 0.093328

c 0.95 0.39 0.27 0.048 6 0.274870 0.261862 0.047323
d 0.95 0.39 0.034 0.006 6 0.361787 0.359620 0.005989

I 0.1 0.01 0.1 0.01 20 0.004897 0.004871 0.005263

II 0.1 0.01 0.1 0.01 50 0.002646 0.002632 0.005263

III 0.1 0.01 0.1 0.01 100 0.001498 0.001491 0.005263

1 0.035 0.002 0.021 0.0021 72 0.017735 0.017711 0.001363

2 0.076 0.0066 0.079 0.0054 29 0.003470 0.003461 0.002767

3 0.057 0.0065 0.055 0.012 89 0.000522 0.000518 0.006363

4 0.1 0.069 0.033 0.0093 15 0.057124 0.056710 0.007245

5 0.068 0.017 0.25 0.036 71 0.007417 0.007356 0.008230

6 0.21 0.038 0.015 0.013 18 0.013620 0.013454 0.012150

7 0.033 0.011 0.22 0.1 233 0.000149 0.000147 0.013950

8 0.093 0.012 0.18 0.11 45 0.000114 0.000110 0.039521

9 0.5 0.18 0.11 0.056 11 0.055353 0.052571 0.050264

10 0.34 0.23 0.81 0.58 8 0.050287 0.039076 0.222941

Figure 4-6: Comparison between the mean time between starvations for Buzacott and
Shanthikumar's and Gershwin's two-machine finite buffer lines
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4.5 Conclusions

The goal of this chapter was to identify the circumstances that lead to flow inter-

ruption in a two-machine finite buffer system and to obtain the parameters that

characterize their frequency and length. Two types of interruptions were identified:

failures of M2 and starvations of M2. Both interruptions cannot happen at the same

time.

The frequency of the failures of M2 are defined by P2 and their length by r2. Both

distributions are geometric. The frequency of the starvations of M2 are defined by

p* = r(e2 - E)/(Ee 2) and their length by r, _ r. The distribution of the length of

the starvations is geometric. We assume that the distribution of the frequency of the

starvations is geometric, because ,although it is not, it is fairly close to it.

This failure characterization allows us to represent M1 and the buffer by an equiv-

alent machine M* whose failures are defined by p. and r. This derivation is analogous

to the one performed by Buzacott and Shanthikumar (1993).
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Chapter 5

Asymptotic Variance Rate of the

Output

There is only one result in the literature that we are aware of that determines ana-

lytically the variance of the output of a deterministic two-machine line with a finite

buffer size. Miltenburg (1987) derives the asymptotic variance of the output of a pro-

duction line. In this chapter, we use this result to explore the change in the variance

of the output of a two-machine line as function of the buffer size.

5.1 Miltenburg's Asymptotic Variance Rate

5.1.1 Derivation

This derivation is explained in more detail in Miltenburg (1987). The asymptotic

variance rate of a function f called A(f) is the limit of the variance of this function

over a period [0, t] divided by t when t tends to infinity:

Asymptotic variance rate = A(t) = lim (f(t)) (5.1)
t-+00 t
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We restrict our attention to functions defined over the states of a Markov chain. Let

f be defined as

f(t) = E g(k)
k=1

where

= value of g at the kth time unit

- giif the system is in state i at time k

Kemeny and Snell (1976) (corollary 4.6.2) provide a way to calculate A(f) as a

function of g:

A(f) = limt-o00

U2 (f(t))

t
1

= lim -a2
t-oo t [g(k)] =

k= 
E gicijgj

i,j=1

where

cij is the limiting covariance of state i and state j

cij can be calculated using Kemeny and Snell (1976) (theorem 4.6.1):

PiZij + Pjzji - PiPj
Cij = pi (2Zii - 1- pi)

i j
i=j

where

Pi = steady state probability of state i

zij = element (i, j) of the fundamental matrix Z,

where

Z = (I - P + )-

I = identity matrix.

P = transition matrix as defined in (2.1).
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, = limiting multi-step transition probability matrix,

where each row is the steady state probability vector p.

Miltenburg derived the asymptotic variance rate of the output of a production

line. He defined g(k) as the following function of the state:

i1 if i is a productive state (i e NP)

0 otherwise (i E NP)

Then f(t) = k=l g(k) is the production of the line in an interval [O,t] and

A(f) - A is the asymptotic variance rate of the output of the line. By substituting

the value of gi for this particular case in equation (5.2) the asymptotic variance rate

of the output (A) is calculated as follows:

A = lim (2 g(k) = cij (5.4)
t--0 t _

5.1.2 Example: Variance of a Single Machine with Two Fail-

ure Modes

The purpose of the example is to illustrate Miltenburg's procedure. The asymptotic

variance rate obtained by this procedure agrees with the value obtained in Section

3.4, and this derivation validates that result.

The system we are analyzing is a single machine with two failure modes. We

assume the two failures cannot happen at the same time and that there is always a

productive period between failures. Fig. 5-1 represents the Markov chain transition

graph of the system. It has only one productive state (1) and two non-productive

states (01) and (02). Equation (5.2) simplifies to
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1-

Figure 5-1: Markov chain of a single machine with two failure modes

n

A = 9Sicijgj = cll = pl(2ll - P - 1)
i,j=1

From the derivation in Section 3.5, using equations (3.1), (3.8) and (3.9),

1 -P1 -P2 Pi 0
rl 1 - rl P2
r2 0 1 - r2

P2 P3

P2 P3 

P2 P3

p(l)

p(l)

p(l)

p(01) P(02)

P(0) p(02)

P(0) P(02)

1

1 + rl + r
P1 P2

To calculate c1l, we just need z11. Using the definition in equation (5.3), z11 turns

out to be
p2r2(1 + r2) + plr2(1 + r1) + rlr22

(p2rl + plr2 + rlr2)2

Therefore,

r2p2(2 - p2 - r2) + r22p(2 - pi - rl) - 2p1p 2r1 r2
(p2rl + r2pl + rlr2)3
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which is the same as equation (3.19).

5.1.3 Limitations of Miltenburg's Asymptotic Variance Rate

There are very simple production lines for which the number of states is very small and

A can be calculated analytically following the derivation in the previous subsection.

Except for these very simple cases, Miltenburg's procedure to obtain A is compu-

tationally intensive. The number of states in a system composed of k machines and

k - 1 buffers of size Ni is
k-1

2k (Ni + 1).
i=l

The number of states defines the size of the matrix that must be calculated (and

inverted) to calculate A. This number grows very quickly as the number of machines

or buffer sizes increase and limits the cases in which the method can be used.

5.2 Asymptotic Variance Rate of a Production Line

and its Reversed Line

Here, we introduce some notation (some of which has already been used) that we use

in the rest of the chapter:

a2 (t) is the variance of the output of Mi if it is working in isolation.

AMi is the asymptotic variance rate of the output of Mi, if it were operating in

isolation.

AMi = lim aM (t)
t--}o t

aMl M2 N) (t) is the variance of the output of the system formed by M1 and M 2 with

a buffer of size N.
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* [ m, M2 I Flow of holes

Flow of material

P2 2

System (F)

<Z Ml MB

p r
1 1

N

C' Flow of material

P2 r2

Reversed System (R)

Figure 5-2: Representation of a system and its reverse

A(M1 ,M2,N) is the asymptotic variance rate of the output of the two-machine finite

buffer line formed by M1 and M2 and a buffer of size N.

A(M,,M2,N) = lim 1a(2M,M2,N)(t)

Two special cases of this notation are:

A(Mi,M2,O) is the asymptotic variance rate of the output of the two-machine zero buffer

line formed by M1 and M2.

A/(M,M2,00) is the value to which A(M1 ,M2,N) converges as N increases:

(MXM 2,oo) = NimN-+oo
lim 1 2MI,M2,N) (

N, is the minimum buffer size that, given e satisfies,

V N' > Ne, \A(M,M2,N') - A(M,M 2 ,oo)I < E.

The reverse of a production line is the production line formed by the same ma-

chines and buffers but placed in the reverse order (Fig. 5-2).
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5.2.1 Finite Buffers

The steady state probability distribution of a system (F - (M1,M 2, N)) and its

reverse (R - (M2 , Ml, N)) are related as follows:

PF(n, e1, a2) = pR(N - n, T2, a,)

This result can be derived by exchanging the r and r2 and Pi and P2 in the

solution of the steady state probability equations presented in equation (2.1), and

which is derived in Gershwin (1994).

A way of interpreting the relationship between a system and its reverse is to

consider that, in a system, two processes are taking place simultaneously (Ammar,

1980). One process is the movement of pieces in the direction of the flow and the

second process is the movement of holes in the opposite direction. A hole is an empty

space in the buffer. At all times, the number of parts plus the number of holes in the

buffer is equal to the buffer size N. If a part leaves the system, a hole enters it and

if a part enters the system, a hole leaves it. A hole entering the system means that

there is output during that time unit.

Let us define for the purpose of this section the following notation:

A°(M 1, A 2, N) or A(M,M2,N) Variance of the output of pieces of a system.

A\ (M1 , M2, N) Variance of the input of pieces of a system.

A° (M1 , M2, N) Variance of the output of holes of a system.

A' (M1 , M2, N) Variance of the input of holes of a system.

Asymptotic Variance Rate of the Output of a System (F) and its Reverse(R)

Conjecture: for finite buffers, the asymptotic variance rate of the output of the line

(A°(M 1 , M2, N)) is the same as the asymptotic variance rate of the output of the

reversed line (A°(M 2, M1, N)), or
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ao(Ml, M2, N) = AO(M2, Ml, N)

This has been observed by computing and comparing both values for a wide

variety of examples, and agrees with the values obtained by simulations 1. Examples

are presented in Appendix C.

This conjecture is very important for the study of the variance of the system

over time. In Chapter 7, we observe that in general, the variance of a system and

its reverse over a short period of time are not the same. However, this conjecture

suggests that the behavior of both systems has to converge for some sufficiently large

t. We use this asymptotic behavior as a tool to understand the changes of the system

over time.

Asymptotic Variance Rate of the Output (0) and the Input (I) of a System

The equivalence between the flow of pieces (P) and the flow of holes (H) in the

opposite direction implies:

A°(M2, Ml, N) = A,(M 2, M1, N) (5.6)

AI (M2, Ml, N) = A° (M2, M, N) (5.7)

From Fig. 5-2 we can see that the flow of holes in a system is equivalent to the

flow of material in its reverse system. Therefore, the asymptotic variance rate of the

output of holes in a system is the same as the asymptotic variance rate of the output

of pieces in a the reverse one. The same is true for the input of holes and pieces. This

can be expressed as:

AO(Ml, M2, N) = A (M2, Ml, N) (5.8)

1Due to the fact that the procedure of calculating the asymptotic variance rate is computationally
intensive, the maximum buffer size that we have tried is N = 400.
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A (Ml, M2, N) = A, (M2, M1 , N) (5.9)

From equations (5.5), (5.6), (5.7) and (5.8),

Al/(Ml, M2, N) = A° (Ml, 2,N) (5.10)

We can conclude that, for a system with finite buffers, the asymptotic variance rate

of the output is equal to the asymptotic variance rate of the input.

5.2.2 Infinite Buffers

Though experimentally we have come to the conclusion that

A(M,M 2 ,N) = A(M 2,M1 ,N)

when the buffer size is finite, we cannot extend our conclusions to the infinite buffer

case.

In Section 7.3 we see that the variance of a system and its reverse are not the same

for small periods of time [0, t], but that as time increases the values of the variance

converge. Let t be the smallest time such that for a given N and 

t > t (Ml,M2 N) t)t- (M2 ,M1,N) () 

The greater the buffer size the longer time it takes for both values to converge.

That is, as N increases, tN increases. Miltenburg's derivation does not provide infor-

mation to define the time t.

We do not know if the limit of t as N - o is finite, so we cannot conclude

whether the asymptotic variance rate converges in this case.

Another reason that prevents us from deriving conclusions is that if the buffer is

infinite either a system or its reversed system never reaches steady state. If the more
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efficient machine is the first one, the material accumulates in the buffer without limit.

Therefore, it is not meaningful to talk about the steady state behavior of the system.

However, though our hypothesis are restricted to the finite buffer cases, the obser-

vations of A (Section 5.3), make us believe that A(M 2,Mi,N) and A(M1,M 2,N) approach

a limit as N increases. We define this limit as A(M),M2,O). The previous argument

allows us to state that

A(MI,M2,0) = A(M 2,M1, ).

In Section 7.3 we discuss this a little bit further.

5.3 Asymptotic Variance Rate of the Output as a

Function of the Buffer Size

In this section, we analyze the influence of the buffer size in the asymptotic variance

rate of the output of a system.

The questions that we want to answer are:

* Are there upper and lower limits for A(M 2,M 1,N)?

* How does A(M 2,M1 ,N) change as N increases?

We have performed this study by determining A(M 2,Ml,N) as a function of N for

a variety of cases. We have used Miltenburg's derivation of the asymptotic variance

rate of the output to obtain these results. We discuss them in two different sections:

machines with different efficiencies and machines with the same efficiencies. As we

mentioned before, we deal with finite buffer sizes so the results are valid for both a

system and its reverse.
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5.3.1 Machines with Different Efficiencies

Fig. 5-3 and Fig. 5-4 show A(M2 ,M,N) as a function of N. In Fig. 5-3, M2 character-

istics are r2 = 0.1, P2 = 0.1. In Fig. 5-4, M2's characteristics are r2 = 0.4, P2 = 0.1.

In both figures, M2 is the less efficient machine. In case (a), MTTR 1 = MTTR 2. In

case (b), MTTF 1 = MTTF 2 . In case (c), we compare different M1 with the same

efficiency. The following observations can be made from the graphs:

A(M1 ,M 2 ,0 ) : From the data obtained in these experiments we see that the asymp-

totic variance rate of the zero buffer system A(M1,M2 ,o) can be greater, smaller or

between AM1 and AM2.

In Fig. 5-3 case (c), AM2 = 2.25. In all the cases represented, AM2 > A(M,M2).

We find examples of:

* AM1 > AM2 > A(Mi,M2,O)

M1 characteristics are rl = 0.1, Pi = 0.0541, AM = 2.73. A(M1 ,M 2) = 1.65

* AM2 > AM1 > A(M,M2,0)

M1 characteristics are rl = 0.15, Pi = 0.0811, AM = 1.74. A(M1,M2) = 1.43

* AM2 > A(M1,M2,0 ) > AM1

M1 characteristics are rl = 0.225, pi = 0.122, AM = 1.09. A(M1,M2) = 1.28

In Fig. 5-4 case (c),AM2 = 0.48. In all the cases represented, A(M1 ,M2) > AM2 . We

find examples of:

* AM1 > A(M1,M2,0) > AM2

M1 characteristics are rl = 0.1, Pi = 0.01, AM1 = 1.42. A(M1,M2) = 1.13

* A(M 1,M 2,0) > AM 1 > AM2

M1 characteristics are r = 0.2, Pi = 0.02, AM1 = 0.67. A(M1,M2) = 0.73
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Case a: e2=0.5 r2=0.1 p2=0.1 AsyVarM2=2.25

0 50 100 150 200 250 300 350 400
Buffer Size N

0 50 100 150 200 250 300 350 400
Buffer Size N

Case c: e2=0.5 r2=0.1 p2=0.1 AsyVarM2=2.25

! ' ...

X::~~~ ~ el=
el

elI

-i

=0.649 r1=0.0666 p1=0.036 AsyVarMl=4.21 ---
=0.649 rl=0.1 p1=0.0541 AsyVarM1=2.73 ---
=0.649 r1=0.15 p1=0.0811 AsyVarM1=1.74 ---
=0.649 r1=0.225 p1=0.122 AsyVarM1=1.09 -x ......

AsyVarM2=2.25 ---

0 50 100 150 200 250
Buffer Size N

300 350 400

Figure 5-3: Example 1: Asymptotic variance rate of the output of a two-machine line
as a function of the buffer size
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* A(M,M2,o) > ŽM2 > AM1

M1 characteristics are r = 0.4, P1 = 0.04, AM1 = 0.29. A(M,M 2 ,0) = 0.53

In Section 3.4 we derive the asymptotic variance rate of a single machine with two

failure modes. This value very accurately represents the asymptotic variance rate of a

two-machine line with no buffers. Equation (3.20) shows the relationship between the

asymptotic variance rate of the independent machines and of the zero buffer system.

A (M,M2,o): The asymptotic variance rate of the two-machine system approaches

the asymptotic variance rate of the less efficient machine as the buffer size increases.

If ei > ej, then (M1,M2,) = AMj.

This can be seen in all cases of Fig. 5-3 and Fig. 5-4.

Consider a two-machine line with a very big buffer with M2 less efficient than

AM. As M1 produces more than M2, the material accumulates in the buffer and in

steady state the buffer level is very high. Therefore, the output of the system depends

mostly on the behavior of M2 because M2 is almost never starved. Consequently, the

asymptotic variance rate of the output of a system as the buffer size increases gets

closer to the variance of the production of M2, that is, the asymptotic variance rate

of the production of the less efficient machine. If the system is reversed, the same is

true since the asymptotic variance rate of a system and its reversed one coincide.

N,: We have defined N, as the minimum buffer size that satisfies

V N' > N,, IA(M1,M2,,N,) - A(Ml,M,,)I < .

There are two main factors that affect N, for a given M2: the difference in efficien-

cies between the two machines and the frequency of the events of the more reliable

machine.
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* Difference in the efficiency of two machines: The greater difference there is

between the efficiencies of both machines, the smaller N,. As rl increases or pi

decreases, the efficiency of M1 increases and NE decreases.

This can be seen in cases (a) and (b) of Fig. 5-3 and Fig. 5-4. For example, for

an e = 0.01 in case (a) of Fig. 5-3, if el = 0.75, NE, 100, if el = 0.65, N, 200

and if el = 0.55, N, - 400.

The effect of the buffer, as we discussed in Section 3.3, is to decouple one ma-

chine from the other, to make their performance independent. For the purposes

of the discussion, we use the case where the less efficient machine is M2. The way

to decouple M2 from M1 is to assure that there is enough material in the buffer

so that in case of a failure of M1, M2 can keep working during the length of the

downtime. n depends on the difference in the efficiency of the machines. For a

given N, the greater the difference in the efficiencies, the higher f. Therefore,

to isolate M2, the greater the difference in efficiency between both machines,

the smaller N, needs to be for a given e.

* Frequency of events: The frequency at which the events take place in M1 also

affects N, for a given M2. The lower the frequency of these events (the lower rl

and P1), the higher NE for a given e.

This is shown in cases (c) of Fig. 5-3 and Fig. 5-4. For example, in case

(c) of Fig. 5-4 in all cases el = 0.909. When rl = 0.05, N, ~ 150, when

rl = 0.1, N 50 and when rl = 0.2, N 20.

Though the difference in efficiencies between the machines is the most important

factor to define NE, the lower the frequency of these events, the higher is the

buffer size needed to isolate M2 from the failures of M1.

Upper and lower limits for the A(M,M 2 ,N) In Fig. 5-3, the variance of the

output for intermediate buffer sizes is between the variance of the same line with size

zero buffer and the variance of the less efficient machine. That is AM2 > A(M1 ,M2,N) >

A(M,M 2,oo). However, in Fig. 5-4 there were cases where for some buffer sizes the
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variance becomes smaller than both A(Mi,M2,o) and AMi, where Mi is the less efficient

machine. In cases (a) and (b), we see that this effect appears and becomes more

significant as the efficiencies of both machines get closer. We comment this fact

further in the discussion of machines with the same efficiency in Section 5.3.2.

5.3.2 Machines with Same Efficiency

When the efficiencies of the machines are closer, N, becomes larger and A(M,M 2,N)

may have a minimum for some finite, non-zero N. This behavior has already been

described in the previous examples.

Here, we explore further cases where the efficiencies of both machines are the same

or very close. Fig. 5-5 and Fig. 5-6 show some examples the systems studied. In

Fig. 5-5, we have machines with the same efficiency but with events happening at

different frequencies. In Fig. 5-6, we have identical machines and slight differences

to study the changes of the system. In Fig. 5-7, the efficiencies of both machines are

very similar, but the frequency of the failures and repairs is very different. There are

some of observations about the behavior of these systems that are worth mentioning:

A (M1,M 2,O)

* Same efficiencies: If the machines are identical, A(M,M,) is significantly lower

than AM. If both machines have the same efficiency, A(M,M2,oo) is always lower

than max(AM, AM2).

Fig. 5-5 shows two examples where machines are identical. In case (a) for exam-

ple, when the parameters of both machines are r = 0.1, p = 0.01, A(M,M,400) =

1.01 which is far from AM = 1.42. In case (b) when the parameters of both

machines are r = p = 0.1, A(M,M,400) = 1.50 which is far from AM = 2.25.

Fig. also 5-5 shows examples where machines are not identical. In case (b) we

have examples where
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Example 3: Asymptotic variance rate of the output as a function of the
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- AM 2 < A(M1,M2,co) < AMM1

M1 characteristics: rl = 0.07, Pi = 0.07.

AM2 = 1.42 < A(M,M,,) = 1.856 < AM1 = 3.32

- A(Ml,M2,oo) < AMI and A(M1,M2,) < AM2:

M1 characteristics: r = 0.13, Pi = 0.13.

AM, = 1.67 > A(M,M 2,o) = 1.30 and AM2 = 1.42 > A(M,M 2,) = 1.30

We understand that both machines having the same efficiency is a special case

and that A(Ml,M,O) is different than in the rest of the cases. However, we have

not been able to determine how A(M1 ,M 2,) relates to AM1 and AM2.

* Close efficiencies: When the efficiencies of both machines differ, A(M1,M2,00)

becomes AM, where Mi is the least efficient machine. We have studied the

behavior of the system for N < 400 2. If the difference in the efficiency is small,

A(M1,M2 ,400) is still far from AMi. This means that Ne is greater than 400. As

the differences in the efficiencies increase Ne decreases and eventually becomes

smaller than 400.

Fig. 5-6 explores the changes in the behavior of the system as the efficiencies of

the two-machines become different. Case (a) starts with machine characteristics

r = 0.1, p = 0.02 and modifies r to obtain machines with very close efficiencies

to the original one. Case (b) starts with machine characteristics r = 0.1, p = 0.1

and modifies Pl. As the difference in efficiencies becomes greater, A(M 1,M2 ,N) is

closer to AMi when N = 400. Note that Mi (the less efficient machine) is not

the same for all the curves in each plot.

Fig. 5-7 shows the changes in the behavior of a system as the efficiencies of the

two machines become different. In this case, the frequency of events of the two

machines is very different. The behavior of the system in terms of A(M1,M2,o0)

is the same as observed in Fig. 5-6: as the differences in efficiencies becomes

greater, A(M 1,M2,400) is closer to AMi.

2 The derivation of the asymptotic variance rate involves the inversion of a dense matrix of size
4(N - 1), and this process is very computationally intensive.
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Example 4: Asymptotic variance rate of the output as a function of the
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Upper and Lower Limit of the Asymptotic Variance Rate

* Same efficiencies: When the efficiencies of both machines are the same (Fig.

5-5), in all the cases observed A(M1,M,N) is between the range A(M,M 2 ) and

A(M1 ,M2o)-

It is interesting to compare the behavior in cases (a) and (b) of Fig. 5-5. In

case (a), where e = 0.909, as N increases, A(M1,M2,N) decreases. Comparing the

different graphs we can see that as the frequency of the events of M1 decrease

both AM, and A(M 1 ,M2,N) increase. In case (b), where e = 0.5, as N increases,

A(Mi,M 2 ,N) increases. Comparing the different graphs we can see that as the

frequency of the events of Ml, decrease AM1 increases but A(M,M 2,N) decreases.

We cannot explain the reason for this difference in behavior.

* Close efficiencies: Fig. 5-7 and Fig. 5-6 show cases where the efficiencies of both

machines are close. We observe something that we have already stated when

referring to machines with different efficiencies. In some two-machine systems

A(M1,M2,N) is not between A(M1,M2,0) and A(M,M 2,O) for some N. In these cases

there is a finite buffer size N' for which A(M 1 ,M 2 ,N') presents a minimum. Again,

we cannot explain why this happens.

5.4 Conclusions

From the experiments performed we can obtain the following conclusions regarding

the evolution of A as the buffer size increases:

* Limit of the asymptotic variance rate ((M1,M2,)):

- Different efficiencies of the machines: as the buffer size increases the asymp-

totic variance rate of the system becomes closer to the asymptotic variance

rate of the least efficient machine.

If ei > ej , then A(M1,M2,oo) = AMj.
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- Same efficiency: as the buffer size increases the asymptotic variance rate

of the system becomes smaller than the greatest asymptotic variance rate

of the machines that form the system.

A(M1,M2,oo) < max(AM, AM ) -

* Changes in A(M,M 2,) as N increases: This value may not always be within the

zero and infinite buffer limits. In all the cases when this happens, it presents a

minimum for some value of N'. There are M1 and M2 combinations for which

A(M1,M2,N') = min(A(M,M 2,N)) VN E [2, oo)

* Ne: The greater the difference in efficiencies between both machines, the smaller

N, is for a given . The higher the frequency of the failures and repairs of the

most efficient machines, the smaller N, is.
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Chapter 6

Variance of the Output as a

Function of Time

6.1 Model for the Variance of the Output

In this section, we propose an analytical model to calculate the variance of the output

of a two-machine line with finite buffer size for an interval of time [0, t]. We discover

that this model only represents the variance of the output of the system accurately for

small t. We compare the results of the model with simulations and discuss the reasons

why the model may not be accurate for long periods. We discuss the relationship

between the variance of a system and its interdeparture distribution using the results

derived by Buzacott and Shanthikumar (1993)

6.1.1 Description of the Model

Simplification The failure and repair characteristics of a two-machine line with

finite buffer size can be approximated by a single machine with two failure modes.

The steps to simplify the system are (Fig. 6-1) are:
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Figure 6-1: Simplification of the two-machine finite buffer line

1. The failure and repair distributions of a two-machine finite buffer line are very

close to those of a two-machine zero buffer line (Section 4.3).

2. The production rate and variance of a two-machine zero buffer line is well ap-

proximated by a single machine with two failure modes (Section 3.4).

Representation Thus a two-machine finite buffer line can be represented by a

single machine, two-failure mode system. A single machine, two-failure mode system

is defined by a three-state Markov chain (Fig 6-2). The relationship of the three

states with the original two-machine finite buffer system is:

* 1: System is producing pieces, at a rate of one piece per time unit.

* F2: System is down due to a failure of M2.

* S2: System is down due to a starvation of M2 .
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(1- p)(1- P2 )

1- r] 1- r2

Figure 6-2: Representation of the two-machine system with finite buffer size

During a time unit when the system is operational (State 1), it may either produce

a part (with probability 1 - p - p*) or it may have an interruption of flow (with

probability P2 the interruption is of type F2 and with probability p, if the interruption

is of type S2). During a time unit when the system is not producing parts, it may

either stay down (with probability 1 - r if it is an interruption of type S2 and with

probability 1 - r2 if it is an interruption of type F2), or the interruption may finish

(with probability r1 if it is an interruption of type S2 and with probability r2 if it is

of type S2).

Assumptions The assumptions we are making to be able to represent our original

system by the single machine two-failure mode system are:

* The distribution of the operational time between starvations is geometric. In

Section 4.3.2 we have seen that the simulations performed indicate that the

distribution is not geometric. However, we use this distribution to define one

of the parameters of M,, and therefore, we are assuming it is geometrically

distributed.
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* There is a productive period between failures. This is true most often although

as we stated in Section 4.1 there could be a failure of M2 (F2) directly following

a starvation (S2).

Variance of the Output We have seen that a two-machine finite buffer line can

be represented by a single machine with two failure modes, in terms of the failure

and repair behavior. In Section 3.5 we derived a formula (3.11) for the variance of

the output for an interval of length [0, t] for a single machine with two failure modes.

Therefore, we can apply this formula to obtain the variance of the output of the

two-machine finite buffer line. The result is

a2 (t) = (6.1)

(cr2p2(2 - P2 - r2) + r2p*(2 - p* - ri) - 2p*P2r 1r2(p2rl + r2p* + rr 2)3

2C(2 + b - p - P2 - rl -r 2)((r2 - rl)2 - (p + P2 - b)2) (1 
b(-b + p + P2 + rl + r2)3 - 1

2C (-2 + b - p -P2 - rl - 2)(( 2- r1)2- (p* + P2 - b)2)(1 - t
b(b + p + P2 + r +r2)3 2C

where
1

C -- (6.2)

b2 = (r2 - r) 2 + (p, + p2)2 + 2(r2 - r)(P 2 - p*) (6.3), +P2 + r2+ r -b6.4)
2

12 = P,* +P2 +r 2 +r +b (6.5)
2

6.1.2 Comparison with Simulations

We have modeled the variance of a two-machine line with finite buffers by transform-

ing the system into a single machine. Then we have used the variance of this system

to predict the variance of the original one. We know that the single machine system

represents accurately the behavior of a two-machine zero buffer system (Section 3.4).
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The final single machine two-failure mode system obtained in Section 6.1.1 has

the same mean production and very close failure and repair characteristics as the

original two-machine finite buffer one. Therefore, we would expect that the formula

that determines the variance of the output of the second system would work well to

predict the variance of the original.

We have performed simulations to verify the results obtained by the model de-

scribed above1. The comparison shows that the model is only accurate for short

periods [0, t]. Here, we offer an explanation of when and why the model works.

Example Fig. 6-3 compares the results obtained from the model and from simula-

tions for several cases. We use these results to illustrate the discussion.

Discrepancies between the Analytical Model and Simulation As we can see

from the examples, the model does not predict the variance of the original system for

the entire range of times.

The most important observation about the system is that in the long term the

analytical model used does not reproduce some shapes that can be obtained from

simulation. In Section 3.5, we see that the variance rate of the output versus time

for a single machine two-failure mode system has a concave shape and reaches a limit

asymptotically. However, in Fig. 6-3 some of the shapes obtained from simulation for

non-zero buffer systems do not display this pattern.

In spite of the discrepancies in the long term, the model predicts accurately the

variance of the output for short periods of time. The length of this interval of time has

not been quantified in detail but it seems to be smaller than the mean time between

starvations.

1The procedure used to run the simulations is described in Section 7.1.
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6.1.3 Correlation of the Interdeparture Times

The interdeparture time is the number of time units between two consecutive depar-

tures of parts from the system. The model derived in Section 6.1.1 reflects accurately

the variance of a two-machine zero buffer system, but it is not valid for all the values

of t in the case of a finite buffer model. Therefore, there is a difference between the

behavior of the finite buffer and the zero buffer systems. We believe that the differ-

ence can be explained by the correlations of the interdeparture times that appear in

the system as we introduce a buffer.

The ith interdeparture correlation coefficient (o(i)) represents the correlation be-

tween the departure of the piece that is leaving the system this time unit and the

departure of the ith piece that leaves the line after this one. We have also calculated

the partial autocorrelation coefficients ((i)) that indicate the correlation between

these two departures after their mutual dependency on the intermediate departures

is removed.

Determination of the autocorrelation coefficients A more complete derivation

is presented in Wei (1993). Let

v be a vector formed by a series of m observations of the interdeparture times

Z1, Z2, ... , Zm.

p(i) be the correlation coefficient between the tth interdeparture time (zt) and the

ith interdeparture time after it (zt+i).

4(i) be the partial autocorrelation coefficient between the tth interdeparture time (Zt)

and the ith interdeparture time after it (zt+i) after their mutual dependency on

the intervening variables Zt+l, Zt+2, ... , Zt+k-l has been removed.

The formulae used to determine the correlation coefficients are
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(i) = t=l(t (Zt+k-

and D(i) are obtained recursively as follows

((1) = q(1, 1) = o(1)

For i > 1,

@(i)- E=-x i(i - j)qO(i - 1, j)
) = (i-1)-( (i-1,-j)frj<i

Simulation Method The procedure used to obtain the correlation coefficients is as

follows: for every system, 100 simulations have been run for a length of 105 time units

after a warm-up period of 2400 time units2. For these values we have obtained the

mean of the correlation coefficients and the 95% confidence interval. The number of

cases run has been limited by the time-consuming simulation needed. As the buffer

size increases or the frequency of the events is lowered, the number of simulations

needed to get valid results increase significantly. In all cases we have obtained just

the first 10 correlation coefficients.

Comments on the Experiments For a given two-machine system, we have run

the experiments for different N. Fig. 6-4 shows I(i) and S(i) for r = r2 = P1 =

P2 = 0.1. Fig.6-5 shows )(i) for rl = Pi = 0.5, r2 = P2 = 0.1 and its reversed system.

The following conclusions can be derived from the results obtained:

* (i) vs. <(i) Fig. 6-4 shows that both W(i) and (i) for a given system are very

2 The simulator is described in Section 7.1.
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close. This means that the influence of an event that takes place at this time in

the system affects the ith departure from the line directly and that the influence

of the intermediate departures does not change this relationship. Therefore, in

the rest of the analysis we just concentrate in (i). The conclusions we propose

are also valid for qc(i).

* Changes in (i) as i increases : In all the cases, if the buffer size is N, (4(i)

is significant V i < N + 1. The buffer size N determines the maximum number

of pieces in a system at a given time. The correlation coefficients indicate

that the events of the system that take place at this time unit influence the

N following departures of the line. A event that takes place now affects the

departure times of all the material currently in the system. We can also see

that (i), for i > N + 1 become increasingly less significant and that this

process takes longer as N increases.

* Negative D(i): It is also important to mention that 1(i) and H(i) are in general

negative. This means that after a long interdeparture time there are more

likely to be short interdeparture times and vice versa. If there are no failures

in the system, the interdeparture time is 1. If there is an interruption, the

interdeparture time will be greater and, after the system recovers from the

failure, chances are that several pieces will come out with an interdeparture

time of 1.

1((i) becomes more negative as i increases, because longer productive periods

are less likely to happen.

*· c(i) as a function of N: Another interesting observation comparing the values

obtained for different N is that the value of the autocorrelation coefficients

decreases as the number of significant coefficient increases. This means that the

events that take place at this time influence the behavior of the system for a

longer period but that their influence is smaller.

* A system and its reverse: In Fig. 6-5 we see that if the two machines are
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different, the correlation structure is different for a system and its reverse. This

makes sense because the failure and repair characteristics of the machines are

different.

In the examples shown in this section we have seen that the agreement between

simulations and the analytical results is very good for the zero-buffer systems and

that the agreement becomes worse as the buffer size increases. The number of auto-

correlation coefficients that are significant also increase with the buffer size.

This result also agrees with some previous work by Heindrick (1992). Heindrick

did some experiments that showed the effect of buffer capacity in the correlation

structure of a three-machine line. The model that he used was continuous time,

exponential processing time, perfectly reliable machines. The number of significant

autocorrelation coefficients was N + 1, N being the size of the two buffers in the

system. Also, as the buffer size increased, the values of these coefficients decreased.

6.2 Interdeparture Distribution vs. Variance of

the Output

Interdeparture distribution For the model described in Section 4.4.1, Buzacott

and Shanthikumar (1993) calculate the interdeparture distribution. Let f(3)(k) rep-

resent the probability that the time between consecutive departures of a two-machine

line (d) is k. Buzacott and Shanthikumar (1993) prove that the interdeparture dis-

tribution for a two-machine finite buffer size system is equal to the interdeparture

distribution of a two-machine line with zero buffers where the parameters of the first

machine are the parameters of the equivalent machine obtained in Section 4.3. The

complete derivation is presented in Buzacott and Shanthikumar (1993).

Let f(k : p, r) be the probability that the time between consecutive departures

(d) is k for a single machine with parameters r and p. The probability of the interde-

parture time being 1 (fd(l: p, r)) is the probability of the machine not failing during
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Figure 6-5: Example 2: Correlation coefficients
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that time unit (1 - p). The probability of the interdeparture time being k time units,

k > 2 (fd(k : p, r)) is the probability of machine failing and being down for exactly

k - 1 time units.

1-p k=l
fd(k: Pp, )= -

rp(1- r)k - 2 Vk > 2

Then, f(k) for a two-machine finite buffer size satisfies:

f (k) -= fdj(k) = fd(k: p2 r2) + f(k : p, rj)-

fd(k : P1P2, rl + r2 - rlr 2) (6.6)

This expression describes the probability of the interdeparture time being k as the

algebraic sum of the probabilities of the interdeparture time being k for three single

machines:

* M2: Machine parameters are r2 and P2.

* Equivalent machine to M1 and the buffer: Machine parameters are rl and pl.

* Combined machine: Machine parameters are r2 + r - rr 2 and PjP2. This

machine represents the situation where both machines fail during the same

time unit. The term representing the behavior of this combined machine is

subtracted from the previous ones.

This expression also describes the interdeparture distribution for a two-machine zero-

buffer line with machine M1 parameters being rl,p' and M2 parameters being r2, P2.

Fig. 6-6 shows the interdeparture density distribution for three different two-

machine finite buffer lines and their equivalent zero buffer systems. As Buzacott and

Shanthikumar (1993) calculated, the two distributions are identical and agree with

equation (6.6) presented above. These graphs have been obtained by simulating the

behavior of both systems for 107 time units. The simulations and the determination
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of the parameters of the equivalent machine have been calculated using Gershwin's

model. The closeness of these results with the interdeparture distribution calculated

by Buzacott and Shanthikumar provide another argument to support the hypothesis

that the most important assumptions in both models are very similar.

6.3 Conclusion

Buzacott and Shanthikumar (1993) and we derived a two-machine zero buffer system

as a way of representing the original system. We tried to use the simplified system

as a way to derive the variance of the original system. Buzacott and Shanthikumar

use it to derive the interdeparture distribution of the original system.

Though the derivation of the interdeparture distribution is accurate, it cannot be

used to estimate the variance of the original system. The simulations performed in

Chapters 6 and 7 prove that the variance of the two systems differ. The correlations

between interdeparture times modify the output pattern of the system. Thus, though

the steady state interdeparture distribution is the same, the sequence of interdepar-

tures differ. This makes a significant difference in the variance of the output produced

during a period of time.

However, the model derived in this chapter predicts the variance of the system

works in the short term. Therefore, we can conclude that for short periods of time

the correlation structure does not alter significantly the variance of the system. In

Chapter 7 we further discuss the changes in the variance of the system over time and

we identify different time frames for its evaluation.
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Chapter 7

Variance of the Output as a

Function of Time: Simulation

Results

The purpose of this chapter is to present some observations about the variability

of the output of a production line. These results have been drawn by analyzing

simulation experiments. In this chapter, we focus on understanding the behavior

of the variance for different periods of time [O, t] as the time increases. We have

observed here are three different time frames where the variance of the output of the

system is determined by different factors. Studying simultaneously the behavior of a

system and its reverse is a powerful tool to determine these time frames and to derive

conclusions about the behavior.

7.1 Simulation Procedure

A simulation software has been used to run the experiments shown in this thesis1 .

1This program was written by Asbjoern M. Bonvik. It uses almost all the conventions defined
in Gershwin's model (1993). The only difference in assumptions is that in the simulation the time
unit just after a machine is blocked/starved it is allowed to fail, and this is not allowed to happen
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The procedure used to calculate the variance of a system over a specific time t is as

follows: we perform N = 50 replications of the simulation. Each of these replications

gives us a value for the variance of the production ((t)). From the Law of Large

Numbers (Drake, 1967), when N is large enough, the mean of these variances follows

a normal distribution, so we can use the u2 (t) samples obtained to approximate the

variance and a confidence interval around this value:

1 N
Variance estimate c2 (t) = E (t)

95% Confidence Interval U2 (t) + 1.96 L (t) N (t))2
N

Each replication runs for 800 periods of time of length t, after a warm-up period of

2400 time units. These periods are independent of each other as they are separated by

1000 time units. The variance of the production during these periods is recorded as

c? (t). This way of performing the replications assures us that, overall, the probability

of the system being in a particular state at the beginning of a period is the steady

state probability of that state.

7.2 Time Frames for the Study of the Variance

From the results of the simulations performed, and comparing the performance of a

system and its reverse, we have come to the conclusion that the study of the variance

of a system can be subdivided into three time regions:

* Short Term: This period of time is not long enough for the interdeparture corre-

lation structure to affect the output pattern. Though the correlation coefficients

are significant, the number of transitions between interruptions of flow and pro-

ductive periods is not big enough for them to affect the variance significantly.

This is the reason why the model described in Section 6.1.1 predicts accurately

in the model. This is a very minor difference, so the results obtained from simulation can be used
to interpret the behavior of the system.
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the variance of the output for this time frame in spite of not accounting for

correlation. In general, the variance of the output depends more significantly

on the performance of M2. If both machines are different, the variance of a

system and its reverse is different throughout this period.

* Medium Term: The start of this period is defined by the fact that the cor-

relations start affecting the output behavior of the system. It finishes when

the variance of the systems gets close to its asymptotic value. In the case of

a system formed by two different machines, the variance of the two systems is

different throughout this period.

* Long Term: This period of time is characterized by the fact that the variance

of the system is linear over time and Miltenburg's asymptotic variance rate

describes the output behavior of the system. The time it takes a system and

its reverse to get close to the asymptotic value may be different. When both

systems reach the long term, the variance of both is the same.

Example of a system and its reverse: short, medium and long term be-

havior We use Fig. 7-1 as an example to explore the behavior of a system and its

reverse as a function of time. The characteristics of the system are r = 0.5, pi =

0.05, r 2 = 0.1, P2 = 0.01, N = 20 and = 10.

If we observe the system for a short period of time, the output of the system

depends more heavily on the performance of M2 than on the performance of M1. For

example, if we want to calculate a 2 (10), it is mostly a function of the performance of

1I2 during this time, because the maximum number of pieces that can be produced

is 10, and on average that many are in the buffer. There are moments where the

number of parts in the buffer is less than 10, and then the output might be affected

by the performance of M1, but a2 (10) is determined mostly by M2. The number of

transitions between productive and non-productive periods is very small. Therefore,

the correlation structure does not significantly alter the variance.

As the time frame increases, the influence of M1 becomes greater. If we want
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Figure 7-1: Time frames in the variance of a system

to calculate a2 (50) it depends on both M2 and M1. The reason is that most of the

output has to be processed by Ml during this period before it can be used by M2.

This period is long enough that the interdeparture correlation structure starts to

affect significantly the variance of the period.

If the time frame is long enough, the variance depends equally on the performance

of both M1 and M2, and the system reaches the asymptotic value.

This argument explains why the behavior of a system and its reverse is different in

the short and medium term. The output is determined more heavily by the behavior

of the last machine, and, if the two machines have different characteristics, it makes

sense that the variances are different. It also explains why the behaviors converge

in the long term, as the output in this longer time frame equally depends on the

performance of both machines.

An interesting observation that we made when describing the behavior of the

system in the long term, is that the time it takes a system and its reverse to get to

the long term behavior may be different. Fig. 7-1 shows that the reversed system

gets quicker to Miltenburg's asymptotic value than the original one.
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Boundaries The boundaries between these time frames have not been derived.

However, two different tools have been used to approximately define these boundaries

once a simulation has been performed:

* Model for the variance of the output: The time frame when this system works

corresponds to the short term behavior of the system. Therefore, the time where

the results start diverging from simulation results indicates that the correlation

structure starts affecting the variance of the output.

* A system and its reversed: In the case of a system formed by different ma-

chines, the study of the variability of a system and its reverse can be used to

determine the time where the system is starting the long term behavior. The

information that this provides is equivalent to comparing the variance obtained

from simulation with Miltenburg's asymptotic variance rate.

r1=0.5 p1=0.05 AsyVarMI0.218 r2=0.1 p2=0.01 AsyVarM2-1.42 N=20

1.4

1.2

i I"

0.8

> 0.6

0.4

0.2

n
0 200 400 6W0 800 1000

Time

Figure 7-2: Boundaries of the time frames in the variance of a system

Fig. 7-2 shows the variance rate of the system rl = 0.5, pi = 0.05, r2 = 0.1, P2 =

0.01, N = 20 and its reversed one. Comparison with Miltenburg's asymptotic vari-

ance rate indicates that the long term behavior starts at t 1000 for the system

and at t _ 1000 for its reversed one. Comparison with the results obtained from the

analytical model indicates that the short term behavior of the system ends at t 40.
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7.3 Effect of the Buffer Size in the Variance

In Section 3.3 we discussed the effect of the buffer as a decoupling element. When

the buffer is neither full or empty, the machines can work without their behavior

being affected by the performance of the other machine. As the buffer size increases,

the probability of starvation and blockage decrease and thus, the performance of a

machine is less influenced by the presence of the other. This idea is confirmed by the

results obtained from simulations.

Another interesting observation from the simulations is that the time it takes a

system to reach the long term state is longer as the buffer size increases. In this section

we present some examples of this effect and give an explanation of this phenomena.

Machines with the Same Efficiencies Fig. 7-3 illustrates the changes in the

variance for a system where r = 0.5, pi = 0.05, r2 = 0.1, P2 = 0.01 as N = 2, 5, 20

and 50. As the two machines have the same efficiency, 7i = N/2.

In the case of the zero-buffer (N = 2) system, the variance of the output of a

system and its reverse is the same, because the failure of any machine immediately

affects the output of the line. As the buffer size increases, the material in the buffer

makes the variance of the output in the short term more dependent on the performance

of the last machine. The failures of the last machine affect the output of the line

immediately, but the failures of the first machine affect the output depending on the

amount of material in the buffer. If the characteristics of the machines are different,

the short term behavior of the systems differ. The bigger N, the more material in the

buffer and the variance of a system and its reverse diverge more in the short term.

Due to the same reason, the time it takes the variance of both systems to converge

increases as N increases.

Fig. 7-4 illustrates the changes in the variance for a system with identical machines

r = 0.1, p = 0.1 for N = 2,20 and 50. In this case, the system coincides with its

reverse. As N increases, the time it takes the system to converge to its asymptotic
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r1=r2=0.1 pl=p2=0.1 AsyVarM=2.25 N=2
· . .
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Time
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200 400 600
Time

rl=r2=0.1 pp2=0.1 AsyVarM=2.25 N=50
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Figure 7-4: Example 2: Evolution over time of the variance of a system

106

1.8

1.6

simulation -
miltenberg -----.

.;,i. 

a
,i

1.4

1.2

0.8

1.8

1.6

1.4

0

0

C

aV

1.2

1

0.8

1.8

1.6

1.4

E

II
a

1.2

0.8

I . I I 



value increases substantially.

N -+ oo These examples can also be used to explore the behavior when N -+

oo. Fig. 7-5 shows the variance of M2 (as if it was working in isolation) with the

variance of the system for N = 50 for the case of r = 0.1, p = 0.1.

As N increases, the behavior of the system in the short term gets closer to the

behavior of the single machine. This agrees with the previous argument that the

material in the buffer makes the behavior of the system be that of M2 for short

periods of time. We know that as N increases the system takes longer to reach the

asymptotic variance rate.

22

2

1.8

i 1.
.1

> 1.4

1.2

0.

0.8

Time

Figure 7-5: Same efficiency: Evolution of the variance as N -+ oo

In Fig. 5-5, we calculated A(M,,M2,N) for this production line, up to N = 400.

A(Af 1 ,M 2,N) seemed to reach a limit A(M,M 2,,) - 1.5. Is this value going to be the

limit as N - o or is the system going to behave as the single machine M2?. As we

stated in Section 5.2.2 the steady state has no meaning when the buffer is infinite if

the machines have the same efficiency because the system never reaches steady state.

Therefore, we cannot provide an answer to this question. However, if the buffer is

finite and big enough, the system eventually gets to A(M,M2,OO), though the bigger

N, the longer it will take.
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Figure 7-6: Example 3: Evolution over time of the variance of a system

Machines with Different Efficiencies The explanation provided for production

lines formed by machines with the same efficiencies is valid for lines with machines

of different efficiencies. As N increases the behavior of a system and its reversed line

diverge in the short term. Fig. 7-6 presents the system r1 = 0.0715, Pi = 0.005, r2 =

0.1, P2 = 0.01 and Fig. 7-7 the system rl = 0.2, p, = 0.05, r2 = 0.1, p2 = 0.01.

There is one difference the case of machines with different efficiencies compared

with the case of machines with the same efficiencies. When the same machines have

the same efficiency, as N increases both a system and its reverse take a longer time

to get to the asymptotic behavior. This is not true in the case of different efficiencies:
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* If M2 is less efficient than M1 , > N/2, and as N gets bigger, M2 is protected

by the buffer level from almost all the failures of M1. As N increases, the

variance of the system gets closer to the variance of M2 . Therefore, the short

term and medium term length decrease as N increases.

* In the reversed system, n < N/2, and though the failures of the less reliable

machine affect the performance of the system less as N increases, they always

affect the variance of the output. As N increases, the amount of material in the

buffer makes this effect happen later in time so this system exhibits a longer

short and medium term behavior.

The bigger the difference in efficiency between the machines, the more significant

this behavior. Fig. 7-8 shows this evolution for r = 0.2, Pi = 0.05, r2 = 0.1, P =

0.01. When the less reliable machine (r = 0.2, p = 0.05) is M2, as N increases the

variance of the system gets increasingly closer to the variance of M2, and it takes less

time for the system to get to the asymptotic variance rate. When the more reliable

machine (r = 0.1, p = 0.01) is M2, the system takes longer to get to the asymptotic

variance rate as N increases.

N -+ oo As in the case of machines with the same efficiency, we can explore

the changes in the variance of the system as N - oo.

* If the less efficient machine is M2, the behavior of the system approaches that

of M2 as N increases.

* If the less efficient machine is M1, the system takes longer to converge to the

asymptotic value as N increases. However, if N is finite and big enough, it

will eventually get to A(M 1 , M2, oo). If the buffer is infinite the system never

reaches steady state.
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7.4 Graph of the Variance Rate as a Function of

Time

In Section 3.4 we show that the plots of the variance rates as a function of time for

a two-machine zero buffer system always presents the same shape. It is concave and

asymptotically converges to Miltenburg's asymptotic variance rate.

In many of the graphs shown in this chapter we observe a different pattern for

over t: the graph may present a maximum. In this cases there is a period of length

tmax for which the variance rate is greater than for any other value. In a system

whose graph presents this shape the range of t for which the variance rate is bigger

than the asymptotic value becomes wider as N increases. Unfortunately, we cannot

provide an general explanation of when and why this happens. This is an important

and interesting question that requires further study.

7.5 Conclusions

In this chapter we focus on understanding the changes in the variance of a system as

a function of time. We also observe the changes in the variance as the buffer size of

the system increases. The tool used for this analysis is simulation. The conclusions

derived are:

* There are three different time frames for the study of the variance:

- Short term: The variance of the output can be explained without taking

into account the correlation structure.

- Medium term: The correlation structure affects the output pattern.

- Long term: The variance of the output is linear with time.

* Effect of the buffer size in the variance: In the case of different machines, the

bigger the buffer size, the more different the behavior of a system and its reverse
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in the short and medium term.

- eM2 < eM : As the buffer size increases, the variance of the system becomes

closer to the variance of M2. It also takes less time for the system to get

to the long term behavior.

- eM2 > eM : As the buffer size increases, the variance of the system takes

longer to get to the asymptotic value. In the case of infinite buffers, the

system never reaches steady state.

* Shape of the variance rate as a function of time: We cannot fully understand

the cases where the function presents a maximum for a finite t.
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Chapter 8

Conclusions

8.1 Results

We believe that this work is an important step towards a better understanding of the

variability of the output of a manufacturing system. Very little work has been done

in this area, and this is a most important issue in the day to day life of a production

plant.

The specific results derived in this thesis can be summarized as follows:

* Flow interruption characterization of a two-machine finite buffer size system:

the parameters that define the mean frequency and length of these interruptions

were derived.

* Determination of the difference in the output pattern of a two-machine zero

buffer line and a two-machine finite buffer line: a two-machine finite buffer

system has the same interoutput distribution as an equivalent two-machine

zero-buffer one. However, the variance of the systems is different. The reason

appears to be that the correlation structure of the interdeparture times differ.
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* Observations about the asymptotic variance rate of the output:

- Machines with different efficiencies: The asymptotic variance rate of the

output converges to the asymptotic variance rate of the less efficient ma-

chine as the buffer size increases.

- Machines with the same efficiencies: The asymptotic variance rate of the

output converges to a value that is smaller than the greatest asymptotic

variance rate of the machines that form the system.

- A system and its reverse: The asymptotic variance rate of both systems

coincide.

Another set of results derived deal with the determination of the variance of the

output for finite periods of time. This is an area which, as far as we know, has not

been explored before, except in a limited way, by Gershwin (1993). The work done

here includes:

* Aa analytical derivation of the variance of the output over [0, t] of a single

machine with two-failure modes for all t: this result closely approximates the

variance of a two-machine zero-buffer line.

* Modeling of the variance of the output of a two-machine finite buffer system in

the short term.

* Observations on the variance of the output as a function of time: determination

of the existence of three different time frames in the variance of a system.

- Short term: The number of changes between productive and non-productive

periods is not big enough for the interdeparture correlations to affect the

output pattern.

- Medium term: Correlations significantly affect the output pattern.

- Long term: The variance of the output of the system depends linearly on

the time.
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8.2 Limitations

We think that this contribution is useful in advancing towards the development of a

more complete model of this phenomenon. However, there are still many questions

that remain unanswered at this point:

* Asymptotic variance rate: We do not fully understand how the asymptotic

variance rate changes as the buffer size increases, especially when the asymptotic

variance rate presents a minimum for a finite buffer size. We do not have an

explanation for the value of the asymptotic variance rate as the buffer size

increases in the cases where the two machines have the same efficiency.

* Variance rate of the output as a function of time:

- Boundaries of the time frames: we do not have a way of determining the

length of the time frames.

- Representation of the system for medium term: the shape of the curve is

not fully understood.

8.3 Future Research

Further development of this work would lead to the derivation of a model that predicts

the variance of the output of a two-machine line in the whole time range. A preceding

step for the derivation of this model would probably be the analytical determination

of the correlation structure in the system. Another very useful result would be to

determine the lengths of the different time frames of the variance of the output of a

system. This information should be part of a model that predicts the behavior of the

system in the medium and long term.

In the longer term, the objective would be to extend the results obtained for the

two-machine systems to longer lines. We envision this process as the development of

a decomposition method in which the long line is analyzed as a sequence of combined
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two-machine systems. At this point the research would be in a mature enough stage

to be used effectively in the design and control of a manufacturing system.
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Appendix A

Derivation of Variance of a Single

Machine with Two Failure Modes

In this appendix, we derive the equation for the variance of the production of a deter-

ministic machine with two failure modes during a time interval [0, t]. This derivation

follows closely Gershwin's derivation (1993) of the variance of the output of a deter-

ministic single machine.

7r(n, a, t) is defined as the probability of producing n parts in the interval [0, t]

being a the state of the machine at time t. This probability distribution is introduced

in Section 3.5, and we use it for the derivation of a set of intermediate results.

A.1 Lemma 1

Let
t

U(t) = E r(n, 1,t) (A.1)
n=O

be the average production in an interval of length t and

t

Di(t) = E 7r(n, i, t) i = 1, 2 (A.2)
n=O
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be the average fraction of time that the machine is down in an interval of length t due

to failures of type i. Then,

1

1 + Zj= 1 ,2 rj

pi
ri

1 + 'j= 1 ,2
p
ri

=C

= PC i=1,2

Di(t + 1) and U(t + 1) can be expressed as a function of Di(t) and U(t) by using

equations (3.2), (3.3), (3.4).

: Di(t + 1)

t+l
= Zrw(n,Oi,t+ 1)

n=O
t+l

= ((1 - ri)r(n, Oi, t) + pir(n, 1, t))
n=O

= (1 - ri)Di(t) + piU(t)

U(t + 1)
t+l

n=O

i = 1,2 (A.5)

r(n, 1, t + 1)

t+l 2

= E (ri7r(n-1,Oi,
n=O i=1

t) + (1 - P + p2)r(n, 1, t))

= (rlDl(t) -plU(t))+ (r2D2(t)- 2U(t)) + U(t) (A.6)

From equations (A.5) and (A.6),

r2D2(t + 1)- p 2U(t + 1) =

r2((1 - r2)D2(t) + p2U(t)) - p2(r1Dl1(t) - piU(t) + r2D2(t) - p2U(t) + U(t)) =

(r2D2(t) - p2U(t))(1 - r2 - P2) - p 2(r1D1(t) - plU(t))

and similarly,

rlDl(t + 1)- plU(t + 1) =
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Di(t)

Proof:

(A.3)

(A.4)



(riDl(t) - p1U(t))(1 - rl - P) - Pl(r2D 2(t) - p2U(t)).

Since from equations (3.8) and (3.9),

rlD1(0) -plU(O) = 0

r2D2 (0) -p 2U(O) = 0

we have

rlDl(t) -plU(t) = 0

r2D2 (t) - p 2U(t) = 0.

Substituting equations (A.7) and (A.8) in (A.6),

U(t + 1) = U(t) = ... = U(O)

and plugging this into equations (A.7) and (A.8),

Di(t + 1) = PiU(t + 1) = = Pi U(O) = Di(O) i= 1,2.
'I

Finally, using the definition of U(t) and Di(t), and equation (3.1)

1C

1 + j=,2 j
U(O) = r(O, 1, ) =

Di(O) = 7(0, Oi, 0) = p(Oi) =

Therefore, Lemma 1 is proved.

A.2 Lemma 2

Let
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t
E,(t) = Znir(n, a, t) (A.9)

n=O

be the average number of parts made in an interval of length t given that at time t

the machine is in state i. Then,

El (t) 4r 2
(Pi + P2 + rl + r 2)2 - b2)

C(b - p -P2 +r2 - ri)(-b+ pi +P2 + r2 - rl)(1 -
b(pl + P2 + ri +r2 - b)2

C(-b - pi -P2 +r2 - rl)(-b - p - P2 +r2 - rl) _ b(pl + P2 + rl + r2 + b)2 2
E02= 24rlp2C

((P1 + P2 + rl + r2) 2 - b2)
2p2C(b - pi - P2 - r2+ rl)(1 t
b(pI + P2 + rl +r2 -b) 2) 

2p2C(-b - pi - p2 - r2 + r l) 
b(pl + P2 + rl + r2 + b)2) 2)

Eol (t) 4pr 2C t
((Pi + P2 + rl + r2)2 - b2)

C(4p2r2- (-b - p - P2 + r2 + rl)(-b + pi + P2 - r2 + rl)) (1
2brl(pl + P2 + rl + r2 - b)2) -Pt

C(4p2r2 - (b - p - P2 + r2 + rl)(b + pi + P2 -r 2 + rl))( 1 f)
2brl(pi + P2 + rl + r2 + b)2)

where C is described in equation (A.3) and b, P1, 2 are

b2 = (r2 - rl)2 + (pl + p2)2 + 2(r2 - rl)(p2 -P1) (A.10)

/f = 1p+ p2 +r2 +ri-b (A.11)
2

32 =1 + P2 + r2 r+b (A.12)2
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Proof:

Each Ei(t+ 1) for i = 1, 01, 02 can be written as a function of El(t), Eo2 (t), Eo, (t)

using the equations (3.2), (3.3), (3.4). This generates the following set of difference

equations:

El(t + 1)
t+l

= 
n=O

t

t
nr(n, 1, t + 1) = E (n + 1)r(n, 1, t + 1)

n=O

+ 1)r1 r(n, 01, t)= (n
n=O

t

+ 1)r27r(n, 02, t)+ E(n
n=O

+ ±E(n + 1)(1 -l- p 2)ir(n, 1, t)
n=O

= r1Eo (t) +r 2Eo2(t) + (1 -Pi -p 2)El(t)

+(r2D2(t) - p2U(t)) + (rlDl(t) - plU(t)) + U(t)

= r1Eo (t) + r2Eo2(t) + (1 - - p2)El (t) + C
t+l

= nr(n, Oi,t + 1)
n=O

t
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= Znr(n, i, t + 1)
n=O

= Z n(l - ri)r(n, Oi, t) + E npi7r(n, 1, t)
n=O

= (1 - ri)Eoi +piE1 (t)

0

1 - r2

r2 1 -

n=O

i = 1, 2.

Pi

P2

P2 - P1l

E 1, (t)

E02 (t)

E1(t)

0

+ 0

C

E(t + 1) = AE(t) + u

The initial conditions are:

Eoi (t + 1)

Eo1 (t +1) 1 - rl

Eo2 (t + 1) 0= 

E 1 (t + 1) rx

(A.13)

E(O) = 0

0

(A.14)



The solution of this particular system has the form (Luenberger (1979)) :

Defining A as the matrix of the eigenvalues of A and M as the matrix of the corre-

Defining A as the matrix of the eigenvalues of A and M as the matrix of the corre-

sponding eigenvectors,

These matrices are:

E(t)= M it-l ]
i=O

1

A= 0

0

0 0
0

o /2

4p2r2rl-((b+rl) 2 -P+P 2 -r 2 )2 )
2r! (b+rl+Pl+P2-r 2 )

-2P2
b+pl+p2+rl -r2

1

4P2:2r1 -(-b+r 2 )2 -(pl+p 2 -r 2 )2 )
2 rl(-b+r2+pl+p2-r2)

-2P2
-b+pl+p2+rl-r 2

1

Performing the operations described in equation (A.15), we get the expressions in

Lemma 2.

As a consequence of this lemma we can obtain an expression for the average

production rate in an interval of length t i(t). By definition,

t

i(t) = n(r (n, 01, t) + 7r(n, 0, t) + ir(n, 1, t)
n=O

= Eo,(t) + E2 (t) + E(t)

Equation (A.16) simplifies to
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(A.15)

Pi
71

M= &
r2

1



A.3 Theorem 1

The variance of the number of parts produced during [0, t] is given by

2 (t)
rl2p2(2 - P2 - r2) + r2p(2 - p - r1) - 2lp 2rlr2

(P2 rl + r2p + rlr2 )3 (A.17)

2C(2 + b - pi - P2 - rl - r2)((r2 - rl)2 - (P + P2 - b)2) (1-t)
b(-b + P + P2 + rl +r2)3

-2C (-2 + b - pi - P2 - rl - r2) ((r2 - rl)2 - (Pl + P2 - b)2) (1-t)
b(b + p + P2 + rl + r2)3 2

where C, b, i and /2 are defined in equations(A.3), (A.10O), (A.11), (A.12).

Proof:

The variance is given by

2 (t) = E(n(t)2) - ((t))2

According to equation (A.16) the second term is

f(t) 2 = C2t2

Defining

t

S(t) = E((n(t) 2) = , n2 (7r(n, 1, t) + ir(n, 01, t) + ir(n, 02, t))
n=O

then,

t+l
= En 2 7r(n, 1, t +

n=O
t

t+l
1) + E n2

7r(n,

n=O

t+l
ol,t) + E

n=O
n27r(n, 02, t + 1)

= E n2 ((1 - rl)7r(n, 01, t)
n=O

+ plir(n, 1, t))

+ E n2((1 - r2 )7r(n, 02, t) + p2 rx(n, 1, t))
n=O

t

+ (n + 1)2(rl7r(n, O 1, t)
n=O

+ r27r(n, 02, t)) + (1 - Pi + p2)7r(n, 02, t))
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t t t

= E n27r(n, 1, t) + E n2=r(n, 01, t) + E n2r(n, 02 t)
n=O n=O n=O

t

+2rl y nr(n, 01, t) + 2r2 E nr(n, 02, t) + 2(1 - pi - P2) Z n7r(n, 1, t)
n=O n=O n=O
t

+rl Z r(n, 01, t) + r2
n=O

t t

rt(n, 02, t) + (1 - P - P2) E ir(n, 1, t)
n=O n=O

Using equation (A.7) and (A.8) together with the definitions in Lemma 1 and Lemma

2 to simplify the expression,

S(t + 1) = S(t) + 2rlEol (t) + 2r2Eo2 (t) + 2(1 - pi - p2)Ei (t) + U(t)

This is a difference equation. Following the same pattern of derivation recursively we

obtain,

S(t) = S(0)+ 2rl
t-1 t-1

El (i)+ 2r2
i=O i=O

Eo2 (i)+2(1-P1-P2)
t-l
EE(i)
i=O

t-1
+ZU(i). (A.18)

i=O

The initial condition is

S(O) = O

The solution to equation (A.18) is

S(t)
r22(2 -P2 - r2) + rp(2 - pi - rl) - 2plp2rlr2t

= (C 1 2 )3 )t
(p2rl + r2pl + rlr2)3

2C(2 + b - p - P2 - rl - r2)((r 2 - r) 2 - (P + P2 - b)2)( 1
b(-b + Pi + P2 + rl + r2)3

Pt)

2C (-2 + b - pi - p - rl -r2) ((r2 - rl)2 - (P + 2 - b)2) (1 )
b(b +pi + P2 + rl + r2)3 1

and the theorem is proved.
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Appendix B

Expected First Passage Time

In this appendix, we describe the result used to derive the expected first passage

time between two states of a Markov chain. This technique is used in Section 4.3 to

calculate the mean time it takes the system to go from one state to another. The

result is applied to obtain the parameters of the machine equivalent to M1 and the

buffer in a two-machine line with finite buffer size. A complete description of the

derivation of the first passage time can be found in Gallager (1995).

Definition The expected first passage time is the expected number of time units,

when the system is in some initial state (k), before some other final state (j) is entered.

The steady state probability distribution is defined by equation (2.1):

P =pP

wThere p is the state vector and P is the transition matrix.

Procedure Let Wkj be the expected number of steps to reach state j starting in

state k j (wjj = 0). Wkj includes the first step plus the number of steps from

whatever state is entered next (which is 0 if state j is entered next). Therefore,
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wkj = 1 + PksWsj, V k j
s/j

Therefore, for a final state j, we obtain the number of steps needed to reach it

from any other state (Wkj, Vk -/ j) by solving the system

Wlj

Wj-lj

wi+lj

wsj

1

1

1

1

+

P1 1

Pi- 11

Pj+11

P'1

.. Pj-1 Plj+l

... Pj-lj-_ Pj-lj+

... Pj+lj-L Pj+lj+

... P'j-x Pj+l

Pls

... Pj+ils

Pss

W1

Wj-

Wj+I

WS

or

where

wj = vector of wkj, Vk j

Wkj is the expected number of steps to get from k to j

u = vector of ls

Pji = transition matrix P after eliminating row and column j

P1 1

pj-ll

Pj+11

Psl

... Plj-1 Plj+l

... Pj_-j_-l Pjlj+l

... Pj+lj-1 P+lj +l

... ... ...

... Psj-1 Psj+x

... Pls

... Pjls

... Pj+ls

* . Pss

This system has a unique solution vector wj. If we are just interested in the expected
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first passage time between states i and j, wij is the only component of the vector wj

we need to calculate.

Application In Section 4.3, we want to calculate the expected time to go from

state (0, 0, 1) to (1, 1, 1) (w(oo)(111)) and the expected time to go from state (1, 1, 1)

to (0, 0, 1) ((11)(oo001)).

W(OO1)(11l): We need to calculate component w(ool) of vector w(111). In this case,

[I - P(lul)]w(lll) = U

where P(111) is the transition matrix P of the system after eliminating row and column

(1, 1, 1).

w7(111)(ool): We need to calculate component w(1ii) of vector W(ool). In this case,

[I - P(oo1)]W(ool) = U

where P(o01) is the transition matrix P of the system after eliminating row and column

(0,0, 1).
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Appendix C

Miltenburg's Asymptotic Variance

Rate

In this appendix, Table. C.1 we present a sample of the results obtained for a wide

range of cases. In all the examples tried

A(M1,M2,N) = A(M,M2,N)
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Table C.1: Asymptotic variance rate for a system and its reverse.

132

rl Pi r2 P2 N A (M,M2,N) = A(M1,M2,N)
0.1 0.01 0.0738 0.00529 10 2.05171
0.1 0.01 0.0738 0.00529 50 1.48795

0.1 0.01 0.397 0.0207 20 1.1913
0.1 0.01 0.397 0.0207 100 1.41533

0.12 0.03 0.0309 0.00212 30 2.67672
0.12 0.03 0.0309 0.00212 50 2.36885

0.12 0.03 0.0936 0.00667 100 1.97053
0.12 0.03 0.0936 0.00661 200 1.97333

0.24 0.1 0.329 0.0239 10 0.995129
0.24 0.1 0.329 0.0239 20 1.0119

0.24 0.1 0.4 0.0404 30 1.01348
0.24 0.1 0.4 0.0404 50 1.01364

0.05 0.033 0.0454 0.00296 50 5.47464
0.05 0.033 0.0454 0.00296 100 5.52314
0.05 0.033 0.0205 0.937 10 5.35317
0.05 0.033 0.0205 0.937 20 5.49812

0.1 0.1 0.259 0.155 100 2.24477

0.1 0.1 0.259 0.155 400 2.25
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