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Abstract
Functional testing is a part of the VLSI design process for which there is no standard
approach. Some research suggests that a method which integrates directed testing
and random testing has the best chance of providing a bug-free design quickly. The
functional testing system for the Arctic router chip uses this method and is designed
with a very structured approach to shorten testing time further. This approach is
comprised of the following three methods. Verilog is used to implement both the
testing system and the Arctic chip itself. Signals are generated and recorded during
test simulations with Verilog modules that connect to each functionally separate set
of Arctic's pins. Finally, all tests have configuration, execution, and checking phases
to force the users of the system to think about testing in a structured way. The result
of this structured approach is a very fast and flexible testing system.
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Chapter 1

Introduction

The current trend in electronic systems design is to push as much functionality as pos-

sible into integrated circuits. Newer systems are generally much smaller and much

faster than their predecessors, but they also have larger and more complex inte-

grated circuits. These circuits are often called Application Specific Integrated Cir-

cuits (ASICs) because they are specific to their own systems. Over the past few years,

the number of ASICs fabricated has greatly increased, and the size and complexity

of those ASICs has also increased. In order for these chips to remain cost-effective,

however, design time must remain fairly short, and this has proven to be a difficult

problem.

How can ASIC designers go about shortening design time? Often, designers use

Hardware Description Languages (HDLs) such as Verilog and VHDL to design their

chips, and synthesis tools such as Synopsis to compile those designs down to gate

descriptions, shortening design time. Scannable design methodologies together with

Automatic Test Pattern Generators can shorten design time by automatically gener-

ating manufacturing tests for integrated circuits. Another part of the design process

that could benefit from some automation is functional testing, sometimes called de-

sign verification. This part of the process ensures that a design performs its required

functions before it is sent to be fabricated. This is at least as important as any other

part of the design process, but it is an area that has received little attention. This

thesis analyzes this part of the ASIC design process, and presents some experiences
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with a testing system that may shed some light on the functional testing problem.

1.1 The ASIC Design Process

Let's begin by looking at the ASIC design process, and seeing how functional testing

fits in. The term "ASIC" is a rather loose one, and generally refers to low-volume

microchips, or chips that are designed for specific systems and are unlikely to find

their way into other systems that the designers did not envision. Usually, designers

will try to keep these chips simple, to reduce design time, but it is possible to make

them as large and as complex as any integrated circuit on the market. Therefore, all

three major methods used to design integrated circuits, full custom design, standard

cell design, and gate array design, are used to design ASICs.

Full custom designs are the most low-level, requiring the designers to specify the

exact location of every wire and transistor. Standard cell designs are a bit simpler; the

designer is given a library of fairly simple logic elements and allowed to assemble them

in any way. The gate array is the simplest design method. A Gate Array designer

simply needs to supply a chip fabricator with a description of the chip in terms of

logic gates and state elements, and the fabricator will handle the placement of those

gates and the routing of all connecting wires. I will focus on the gate array design

process because it is the simplest and because it is the method used to design the

chip discussed in this thesis. However, the ideas presented here are general enough

to be useful with any design method.

Since designing a Gate Array is as simple as coming up with a gate description

of the chip, HDLs and synthesis tools are very popular among gate array designers.

A Hardware Description Language provides an easy way to specify the behavior of

the chip and provides an environment for simulating this behavioral model. The

synthesis tools can turn this model into a gate-level description, and often provide

ways to simulate that description as well, thus completing most of the design work.

After choosing a basic design methodology and gathering tools such as HDLs to

help in the design process, one last major problem needs to be addressed; how should
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the chip be tested to ensure that the final product performs the desired functions?

Designers ensure that their design is correct with functional tests, many of which are

performed before chip fabrication since re-fabrication is costly. Fabricators ensure

that their chips are free from manufacturing defects by requiring that the designers

come up with some kind of manufacturing tests.

Manufacturing Tests are usually generated in some automated fashion. If the chip

has scannable state elements, then it is relatively straightforward to write some kind

of Automatic Test Pattern Generator (ATPG) that can generate tests which will

detect nearly all common manufacturing defects. Some ATPGs are even available

commercially, removing the burden of writing this tool from the designer. If the chip

does not have scannable state elements, then some kind of ATPG can still be used.

Such generators often create functional tests that are capable of detecting a certain

percentage of possible manufacturing defects.

This brings us finally to the issue of functional testing. Every one of the above

steps in the ASIC design process has some clear methods or tools associated with it,

but there is no clear functional testing method a designer can use to verify that his

or her design is correct. With no tools or conventions to help designers along, they

must solve this problem from the very beginning each time they begin a new design.

This can be a considerable burden when a team is trying to finish a design quickly,

because functional testing is very time consuming, and it is very hard to do right. It

is very important, however, because every bug that is not discovered in the functional

testing phase must be found after fabrication or once the chip is already in a system,

at which time fixes are much, much more costly.

1.2 The Shape of a Functional Testing System

Unfortunately, functional testing can be a very daunting task because it needs to

accomplish a very large number of things at once. At the highest level, we can

say that functional tests should perform design verification, that is, verify that the

design fits all specifications. This implies that functional testing should begin before
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the design is completely correct, and functional testing is therefore, in many cases,

debugging. Debugging a system is, in itself, a very haphazard and confusing task,

usually accomplished by simulating the system with some set of inputs and monitoring

the system's behavior to determine where a problem occurs. Let us assume that

debugging and functional testing of ASICs are accomplished with such a system, and

look at the form this system should take.

Because the system should perform design verification, it needs to work like a kind

of virtual test fixture. A design for the chip is given, a number of tests are run, and

the system should say, "Yes, it's working," or "No, it's not working." This implies

two things. First, the testing system must be general; that is, it must be capable

of exercising every function of the chip and putting the chip in nearly every possible

state. Without this condition, it would be impossible to determine whether or not

the design worked in every situation. Secondly, tests should be repeatable, so that it

will be possible to determine when something that was broken begins to work.

There are two other requirements of a functional testing system that are less

intuitive. One requirement is that the functional testing system should work at the

lowest level of the design. In other words, the system should work with the actual

design and not with some simulation for that design. This requirement is not so

easily satisfied if a chip is being designed on paper of if no good simulation tools exist

for the actual description of the chip. Some chip designers will write simulations for

the behavior of their chips in some higher-level language like Lisp or C, but there is

no obvious way to determine whether or not the simulation for the chip will behave

exactly as the final design will, and it is therefore necessary to run functional tests

on the lowest level description to ensure the proper behavior of the final design.

The other less intuitive requirement of functional testing is that it should be

somewhat automated. Automating the functional testing system will give the system

itself some of the responsibility for testing the chip. It is necessary to give some of this

responsibility to the testing system since it is nearly impossible for a human to think

of all the tests needed to determine whether or not a chip is functioning properly.

Without some form of automation, the user is left trying to think of every possible
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input pattern that could result in an erroneous output. The easiest way to automate

test selection is to build some kind of random input pattern generators into a testing

system. This method, which I will refer to as "randomization," can make the burden

of functional testing significantly lighter.

Two final and very important requirements for this system are that it should be

very fast and very easy to use. Since it is known that this system will be used as

a debugger, it should obviously be fast enough to re-run tests quickly and simple

enough that it will not hinder someone puzzling on a design problem. Nothing is

more maddening than waiting hours for the results of a simulation that will tell

whether or not a simple bug fix worked. Slow tools can be quite an annoyance, and

can significantly increase the time needed to create a bug-free design. The same

argument applies to the ease of use of those tools. Any design tools must be easy

to use or they will be very little help to the design team. Unfortunately, however,

building speed and ease of use into a system with the diverse requirements listed

above is very difficult.

1.3 The Approach to Testing Arctic

As an example of the possible tradeoffs in a functional testing system, this thesis

presents the approach used to test the Arctic router chip. Arctic is a 4x4 packet

routing chip that has been designed to be a part of the *T multiprocessor, a par-

allel computing project in the Computation Structures Group of the MIT Lab for

Computer Science [1]. Arctic has some very complex functions and a rather confus-

ing control scheme. This complexity makes Arctic a good test bed for a number of

interesting approaches to functional testing.

There are three main ideas in the approach used to design Arctic's functional

testing system. The first is the use of Verilog as an implementation language. This

was the natural choice of language for the system since Arctic is a gate array and

is being designed entirely in Verilog, but we shall see later that this choice gives a

number of other desirable traits to the system. The use of Verilog, for example,
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ensures that the lowest-level specification for the design is being simulated at all

times. Also, and perhaps most importantly, it makes it easy for the testing system to

change state inside the chip during simulation which can sometimes allow the system

to run many times faster.

The second main idea is the use of virtual testing modules to simulate components

of the system outside the chip during tests. The term module, here, refers to the chief

method of abstraction in Verilog, and Arctic is designed as one large module. In

the testing system, all components that are connected to Arctic are also modeled

as different modules, one for each logically distinct entity. For example, each of

Arctic's input ports and output ports is connected to a module that knows how to

communicate with that port. All signals related to a port are grouped together, giving

the designer of the system a clear structure to work with, and giving the user of the

system a clear, simple picture of the testing system.

The last major idea used in this functional testing system relates to the organiza-

tion of the tests themselves. At this point, the reader may be wondering, "Just what

is a 'test' anyway?" In Arctic's functional testing system, a test consists of three

parts: a specification for a beginning configuration of Arctic, a set of inputs, and a

specification for the state of Arctic after all the inputs have been sent. Together,

these three parts form a "test group," the basic testing unit around which the entire

system is built. This may seem like common sense, indeed all three of these ideas may

seem like common sense, but since there is no conventional way to design a functional

testing system, we must state them clearly. This will give us a starting point for

discussion about this system, and serve as a reference against which other possible

designs can be judged.

1.4 Overview of This Thesis

In the following chapters, I will detail the design and implementation of Arctic's

functional testing system. The experiences contained here should be useful to anyone

designing a similar system, because they show the strengths and weaknesses of an
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interesting set of design choices. I will begin in Chapter 2 by describing some other

work that has been done in functional testing; this will show the motivations for the

design of this system. Chapter 3 will give a careful description of the goals of the

Arctic testing project. Chapter 4 will give an overview of the original implementation

of Arctic's functional testing system, while Chapter 5 will look at the newer system

that has a great deal of randomization built in. Finally, Chapter 6 will discuss how

well the testing system met our original goals, and Chapter 7 will present what wisdom

was gained from experience with this system. Those readers desiring further details

may be interested in Appendix A, which gives many examples of tests designed for

the first functional testing system, and Appendix B, which contains the user's manual

for that system.
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Chapter 2

Background

Before diving into all the details of Arctic's functional testing system, it will be helpful

to look at some of the recent thoughts and experiences of others who have addressed

this problem. The ideas presented in this chapter are relevant to any VLSI testing

effort, and they will help to explain why I made some of the choices that will be

presented later in this thesis. First, I will look at some abstract functional testing

methods, and then I will focus on more practical methods.

2.1 Abstract Testing Methods

The purpose of testing a system is to prove that the system is "correct," and it is

natural, therefore, that abstract thought on testing is concerned mostly with methods

that prove the correctness of a system. Some theoreticians have created logical lan-

guages for specifying hardware and software systems with which it is possible, given

a specification and a set of axioms, to prove certain properties about each hardware

module or block of code. This might be thought of as a way of proving "correct-

ness," and such methods have been used successfully with hardware systems. It is

arguable, however, that these proving languages are not as useful with very large and

complex systems, and even their supporters agree that this "testing" method cannot

replace other testing methods [6]. All of the interesting theoretical work that relates

to functional testing of integrated circuits focuses on randomization.
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Randomized testing methods seek to automatically generate and test a subset of

a hardware system's possible states with the intent of finding all design bugs with

a certain probability. This descends from the tried and true "brute force" testing

method. In "brute force," every possible state of a system is entered, and in each

state it is determined whether or not the system is functioning properly. This assumes,

of course, that there exists some method for determining whether or not the system

is functioning properly in every state, but such methods do exist for many simple

systems. The difficult problem is how to enter every possible state of a hardware

system. As hardware systems continue to get more complex, the number of possible

states in a typical is growing exponentially. For many modern systems, it is not

possible to enter each possible state for as little as a nanosecond and expect to have

entered all possible states in any one person's lifetime. This makes the brute force

method impractical for most VLSI systems.

It hardly seems necessary, though, to enter every possible state in a hardware

system. Logic is frequently replicated, and from a design standpoint, if one piece of

a datapath is working, it is frequently the case that all the other pieces are working,

too. In fact, the only states that need to be entered are those where design bugs can

be detected, and, together, these states form a small subset of the possible states.

Randomized testing methods generate a small set of states with a pseudo-random

number generator. If the random number generator is implemented carefully, the

designer can be sure that every bug in the system can be detected in at least one of

the generated states. The trick, then, is to run the random number generator long

enough to generate a subset of states so large that it includes every needed state.

Unfortunately, it is generally impossible to determine how long is long enough. It is

comforting to know, though, that the probability of detecting every bug gets higher

if more tests are run. Also, since many bugs can propagate their effects over large

portions of a chip, they can be detected in many different states. Chances are high,

then, that one of these states will be entered early in testing if the random signal

generators routinely exercise all parts of the chip. This can make random testing a

very practical method, as well.
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This probabilistic argument for proving correctness may seem a bit suspicious, but

this method has been successfully used to test some very large and complicated chips.

Wood, Gibson, and Katz generated random memory accesses to test a multiprocessor

cache controller, and with it found every logical bug ever detected in the system except

for two that were missed because of oversights in their testing system [3]. Clark tested

a VAX implementation successfully by executing random instruction sequences on a

simulation of the new implementation and cross-checking the results by executing the

same instructions on the VAX that was running the simulation [2]. These are some of

the examples that have proven randomization to be a powerful technique in testing

hardware systems.

2.2 Practical Testing Methods

Hardware systems were being built long before any formal methods were developed

to prove their correctness, and as we have noted, formal methods are not always

practical for the largest and most complicated chips. How, then, is testing done in

the real world? A designer that is presented with the task of performing functional

testing on an chip usually has to figure this out for him or herself, but there are a few

general methods that have been successful, historically. Most designers who wish to

test their chips have the ability to simulate their design in some way. Let us assume

that all testing projects have this in common and look at how the designers might

choose the tests that are run on this simulation to show its correctness.

One way to choose tests is to attempt to list all the functions of the chip that

need to be tested and try them out, one by one. This is a very satisfying method

because there is a clear point when it can be said that testing is complete [2]. It is

difficult to make this method work in modern designs, however. The number of cases

will be huge, and it is likely that some tests that should be run will be overlooked.

This method remains, however, as the naive approach to functional testing.

A slightly different approach to testing is to carry out a focused search for bugs.

This differs from the previous method in that testers are not merely trying out every
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function of a chip, but rather they are experimenting with it to see how it might break.

There are several advantages to this method. Often, the tests run on the system using

this testing method will be very similar to the actual inputs the system will be given

when it is in regular use, giving the testers greater confidence that the system will

work for its intended use. Also, the testers will be consciously trying to make the

system break, and a conscious effort to find a problem with a system will probably

uncover more bugs since many bugs tend to be related. Another big advantage of

this method is that it has no set completion time. This is an annoying trait from the

manager's point of view, but from the designer's, it emphasizes the fact that testing

should stop only when no new bugs have been found for a long time, and not when

some possibly incomplete list of tests has been finished. This testing method is fairly

common, and is makes up at least part of the testing strategy of several successful

chip projects, such as MIT's Alewife project [7]. It can be very time consuming and

exhausting, however, and may not be appropriate for smaller design teams or teams

with a tight schedule.

The above methods can be categorized as "directed testing," where a human is

responsible for choosing the tests run on the system. We have seen before, however,

that the computer can take responsibility for this task, which brings us back to the

randomized testing ideas from the previous section. Most VLSI systems will not be

as regular as a cache controller or a microprocessor, however, and they may not be

so easily tested with randomization. With these devices, it sufficed to randomize

memory accesses or instruction sequences, and this gave a set of inputs that was

sufficiently random to check nearly all the functions. Other systems may have many

disjoint sets of state, all of which can have a significant effect on the behavior of a

system. For example, imagine a DSP chip that can process four signals at once, each

one with a different function, and imagine that the four signals can even be combined

to make new signals. The way a testing system should go about randomizing inputs

becomes less clear.

The answer, again, is to make the system capable of randomizing every piece of

state in the system, but now the programmer must be very careful that the testing sys-
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tem does not inadvertently introduce some kind of pattern into the input sequences.

Since all inputs are pseudo-random, there is always a danger of introducing a pattern

and missing some important group of inputs, and the more disjoint groups of state

are, the more likely that the programmer will slip up and miss something. If the four

signal processors in our DSP example above were each given the same function at

the same time, for example, the test would hardly be as complete as a test where the

function of each processor was independent of the other three.

There is another difficulty a designer encounters when building a random testing

system. How does the system determine "correct" behavior of the chip? In the

directed testing methods, the user defines what the outputs of the chip should be for

each test, and this problem does not arise. The random tester, however, must be able

to define "correct" outputs by itself. This was simple for the cache controller and

VAX implementation mentioned above, because models of correct behavior were easy

to come by. In most cases, though, such a model is not so easy to find, and the only

solution is to limit the range of behaviors that the system can simulate, so that the

model can be made simpler. As a result, the random testing system loses the ability

to detect certain kinds of bugs.

It seems, then, that each method has its own advantages and problems. A designer

facing the task of functionally testing a chip design might be disappointed with the

options, but some combination of the above ideas can lead to a fairly reasonable

approach to testing. When designing Arctic's testing system, for example, we chose

to combine a random testing strategy with a focused search for bugs. The resulting

system is capable of both random and directed testing, where each approach makes

up for the failings of the other. Since our design team is small, the random tester can

find the subtle bugs we do not have the time to search for. Since the random tester

cannot find all the bugs, we can search for the ones it cannot find with the directed

tester. This is an approach to testing that fits well with the constraints of an ASIC

design team, and it is this combination of ideas that has actually been used in the

Alewife cache controller and VAX examples mentioned above [2, 7]. In the chapters

that follow, we will see how this approach is used to build Arctic's testing system.
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Chapter 3

Goals for the Arctic Testing

Project

In the remaining parts of this thesis, I will explore the problem of functional testing

by describing the functional testing system of the Arctic router chip. Arctic chips

will form the fat tree network that will allow the processors in the *T multiprocessor

to communicate with each other. In this chapter, I will go over the goals the design

team had in mind when designing the testing system for Arctic, but before I begin,

it may be helpful to give an overview of Arctic itself.

Figure 3-1 shows a block diagram of Arctic [1]. Arctic consists of four input ports

connected to four output ports by a crossbar, and maintenance interface section

through which Arctic is controlled. Message packets enter an input port and can exit

out of any output port. Since all "links" are bidirectional in an Arctic network, input

ports are paired with output ports that are connected to the same device. Packets

vary in size and can be buffered upon arrival in each input port. Flow control in

an Arctic network is accomplished with a sliding window protocol similar to the one

used by TCP/IP. A transmitter (output port) and a receiver (input port) are both

initialized with an initial number of buffers, and a receiver notifies the transmitter

when a buffer is freed so that the transmitter knows to send packets only when buffers

are available.

So that the system can tolerate any clock skew for incoming signals, each input
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port runs on a different clock which is transmitted with the data. Data has to be

synchronized into a local clock domain before it can be sent out. Also, data on the

links is transmitted at 100 MHz, though the chip itself operates at 50 MHz, which

causes a little more complexity. More sources of complexity are an extensive set of

error checking and statistics counting functions, two levels of priority for packets, flow

control functions such as block-port and flush-port, a "mostly-compliant" JTAG test

interface, and manufacturing test rings that are accessible in system (not just during

manufacturing tests).

Most of these details about Arctic can be ignored unless the reader wishes to dive

into the examples given in Appendix A or the user's manual in Appendix B. The

details are mentioned here only to give the reader an impression of Arctic's complexity.

Arctic falls into that large category of ASICs that have many complex functions and

for which there is no obvious way to design a functional testing system. We chose

to begin by implementing a directed testing system, and approached the problem by

first drawing up a set of goals as guidelines to help us with our implementation. The

sections that follow list each goal we had for our system and explain why we found

that goal important.

3.1 General

Because this system was to be the only system completely dedicated to testing Arctic,

it seemed necessary to require that the system be general enough to test any of Arctic's

functions. This meant that the testing system needed to be capable of putting Arctic

in any state, or, stated another way, the testing system needed to be able to send any

input signal to Arctic. With this ability, the system was guaranteed to be able to put

Arctic in any state. Also, we decided that every output signal of Arctic should be

recorded or monitored, so that no important behavior could be missed.

27



3.2 Easy To Use

Since the original time frame for the testing project was only three months, and since

there were only 5 engineers and 4 students working on Arctic during that period,

we decided that the testing system needed to be very easy to use, or testing would

never get done in time. Three students were to implement the system, and it was to

be available to anyone in the design team who had the time or the need to look for

bugs. This meant that the intended users were more than just the designers of the

testing system, and it would therefore have to be simple and well documented. Also,

since the chip was still being developed, we knew that this system might be used as

a debugging tool, and as mentioned in Section 1.2, any debugging tool has to be easy

to use for it to be effective. When debugging, users need to be able to create intricate

tests even if they lack experience with the system.

3.3 Fast

As with ease of use, the system had to be very fast because of the lack of time and

human resources. Because Arctic was so complex, behavioral simulations were only

running at about two cycles per second. We knew that the testing system would

have to play some interesting tricks to boost speed or we would not be able to finish

testing in time. Our hope was to make the system capable of running a short test in

no more than 5 to 10 minutes, so that the user would not have to wait terribly long

for the results of a simulation after a new bug fix.

An additional reason to speed up the system was the group's lack of computing

resources. The members of the design team were sharing a fairly small number of

workstations. We hoped to keep the load on these machines to a minimum by making

simulations take as little time as possible.
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3.4 Repeatable

It was also mentioned in Section 1.2 that all tests needed to be repeatable. We hoped

to be able to save all the tests we generated so that we would be able to run any of

them again as regression tests. Also, it was necessary for any input to be repeatable

if the system was to be useful as a debugging tool. This meant that there could be

no unpredictable behavior in the system. If any parts were random, the seeds for the

random number generators needed to be saved so that the simulation could be run

again in exactly the same way.

3.5 Randomizable

Our hope was to build random test generators into this system, but the immediate

need was for a general tester and debugging tool. We knew that the random input

generators might not be general enough to test any function of the chip, and we knew

that debugging is impossible when all inputs are generated randomly, without any

user control. We decided to build a directed testing system with the intent of adding

some kind of random testing later on, since randomization seemed to be too complex

a task for the first pass.

3.6 Low Level

We also saw in Section 1.2 that it is a good idea for a simulation to work with the

lowest level specification of a chip design. This idea is presented well in a paper by

Douglas Clark [2]. In this paper, Clark argues that all serious implementation and

simulation work should be done at the gate level, and designers should not waste time

designing and testing high-level models of their chips. His argument is that the latter

method requires more design time since designers need to design and test separate

high-level simulations in addition to low level designs. He also argues that tests on

high level simulations are less accurate, lacking the subtle interactions between gates.

Arctic was being designed with Verilog and compiled to gates with Synopsis, so,
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in a sense, all simulations were at a very low level. The Verilog model described

every interaction between the sub-modules in full detail, and the gate description was

generated automatically. We decided to follow Clark's wisdom to the letter and chose

to make our system capable of simulating both the pre-compiled Verilog description

and the compiled, gate-level description, which could be represented as Verilog code.

This, we felt, would be a more rigorous test, and since we hoped to have a working

chip in only three months, such a rigorous test was necessary.

In the next chapters we will see that it is nearly impossible to reach all of these

goals simultaneously. The desire to make the system general, for example, is almost

diametrically opposed to the desire to make it easy to use, because the addition of

functions always complicates a system. After taking a close look at the implemen-

tation of Arctic's testing system, we will return to this set of goals and evaluate the

system's performance with respect to each of them.
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Chapter 4

Implementation of the Testing

System

In this chapter, I will discuss the implementation of Arctic's functional testing system.

There are two conceptually separate parts to Arctic's testing system, the "hardware"'

that connects to the Arctic chip and the "software" used to control that hardware.

However, since the entire system is being simulated in the Verilog HDL, this distinc-

tion is blurred. I will begin by discussing the hardware side of the design, which

consists of a number of signal generators and monitors connected to the Arctic mod-

ule, and then describe the software side, which manages the tests themselves.

Since a great; deal of attention was paid to the speed of this system, I will also

describe one of the system's special operating modes, quick mode. In this mode,

operations that read or modify configuration and control information inside the chip

can be completed almost instantaneously, speeding up most tests by an order of

magnitude. I will explain how this mode is entered and show how the addition of

such a feature is made easy because Verilog is used as the implementation language.

Ideally, this system would be entirely contained within a Verilog simulation, but

unfortunately, Verilog is not powerful enough to perform all the functions this testing

system needs to perform. For example, Verilog has very primitive file input capa-

bilities, and it completely lacks the ability to allocate memory dynamically. This

necessitates an additional pre-simulation step which can be thought of as completely
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Figure 4-1: The Arctic Functional Testing System's "Hardware"

separate from the other parts, and I will therefore present it at the end of this chapter.

4.1 Hardware

The "hardware" in Arctic's functional testing system is presented in Figure 4-1. The

Arctic module is inserted into a virtual testing fixture surrounded by smaller stub

modules that communicate with each port and the maintenance interface, sending

proper input patterns and recording or monitoring outputs. The Arctic design is

represented as a Verilog module, and the structure for the testing system mimics the

modular structure inside the chip.

This organization keeps functionally distinct units separate. In an actual system,

each of Arctic's input ports would be connected to an output port (either on an-

other Arctic chip or on some other network interface unit) and vice versa, and the

maintenance interface would be connected to a JTAG controller. In this system, each

smaller module imitates each separate functional unit. This gives the system a clear
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structure, making it easier to expand and modify it.

It is also important to note that this structure is very flexible. Some testing

systems have kept signal generators and monitors in separate C or Lisp processes that

communicate with the hardware simulation through Unix sockets [7]. By keeping each

unit in a Verilog module, we are able to modify the interface between the module and

Arctic easily, should Arctic change, and we can easily modify the interaction between

these modules.

Each of these smaller modules is really more like a stub than an actual functional

unit. Whereas, in some of our early experiments, we hooked up a model for an entire

output port to communicate with each input port, in this system we tried to keep

each of these "stubs" as simple as possible. All contain logic that generates encoded

signals (such as clocks and Manchester encoded signals) and records output patterns

or signals and error if an incorrect pattern is received. Some contain functions that

allow the user of the testing system to utilize the specific functions of the "stub." This

gave more flexibility than using fully functional modules, which would have been easier

to implement, but would not have allowed us to generate unusual (or erroneous) input

patterns or record outputs in any way we saw fit. Following this reasoning, let us

refer to a module connected to an input port the input port's stub, and the module

connected to an output port the output port's stub. The module connected to the

maintenance interface will likewise be called the maintenance interface's stub.

The recording machinery mentioned above is actually some of the most complex

and varied logic in the entire system. Each stub receives Arctic's rather complicated

output patterns and reduces it to a small piece of usable information, such as "packet

X was received at time Y from port Z," or "signal B has just generated a Manchester

encoding error at time T." Information that needs to be recorded, such as the received

packet above, is stored as a record in some appropriate log file, to be scanned later

when the system checks that all packets were received (this step will be discussed

in the next section). Information that does not need to be recorded, such as the

Manchester encoding error above, is error information and can stop the simulation

immediately.
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Most of the logic that transmits input signals to Arctic, on the other hand, is very

simple. Most are simply registers or simple clock generators. The real complexity

here lies in the control for these transmitters, which I consider software that is bound

to the particular module in which it is used. This will be discussed further in the

next section.

I believe this design offered the best flexibility and modularity of any organization.

The different modules could be easily divided among the workers for implementation

and maintenance, and the complexity of the system could be managed by observing

the module boundaries. Another subtle advantage of this organization is that the

Arctic module itself can be removed and replaced with any other model. This makes

it easier to update the system when new releases of Arctic's design are made available,

even if the new design is a gate-level model. This allows the testing system to be

useful at every point in the design process.

4.2 Software

The software for this system is organized as a number of functions that are defined

within the modules they relate to, with some of them kept at the top level. When a

simulation begins, a top-level program that consists of many calls to these functions

begins. These function calls in the top-level program can be thought of as actions

taken during a session with this chip. The first actions reset and configure the chip,

and these are followed by other actions that send in packets, extract internal state,

or whatever is desired. The user is presented this interface to the functional testing

system, but in order for it to be useful, there needs to be some logical organization

for a test.

We decided to organize all tests in small groups. These groups were to be the

smallest independent testing units in the system. In other words, the smallest piece

of code that can accomplish a useful test is a "test group." This "test group" (called

a "test sequence" in the user's manual in Appendix B) consists of a configuration

phase, where Arctic is placed in a known state, an execute phase, where a number of
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actions are carried out on the chip, and a check phase, where the state of Arctic is

checked against a specification of what the state should be. This must be the smallest

unit of a test, because it is the smallest unit that can allow the user to attempt to

put the chip in a certain state and check whether it worked or not.

This organization mimics several other functional testing systems [3, 2, 7]. Most

of these systems have some kind of testing unit that consists of an initial state for

the system, a set of actions to be performed, and a specification of the final state of

the system. It does seem to be the the one point that designers of such systems agree

on, because it forces the users of the system to think about testing in a structured

way, and it gives a convenient way to organize groups of related tests, any number of

which can be run in one simulation, if desired.

In our system, test groups are specified with a number of files, each named

testxxx.type, where "xxx" is the number of the test group and "type" is an exten-

sion such as "code" or "config." In the following sections, I will describe each phase

of a test group and describe the file types that are relevant to it.

4.2.1 Configure Phase

To begin a test group, Arctic needs to be put in a known state. This phase begins by

reading the file testxxx. config and using the specification there to store appropriate

values in Arctic's configuration registers. After that, a known value is loaded into

Arctic's control register, and the chip is ready to run a test.

Before the test actually begins, however, a little bookkeeping needs to be done.

Several files that will be used to record the outputs and state of the chip during the

execute phase need to be opened for writing. These files will be closed in the check

phase or if the simulation dies suddenly due to an error.

4.2.2 Execute Phase

In this phase, all the actions that need to be taken on the chip are carried out. These

actions are listed in the file testxxx. code, which contains actual Verilog code (pre-
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dominantly function calls) that is spliced into the main program before the simulation

begins. The first action in this file is a function call that carries out the configure

phase of the test group, and the last action is a function call that carries out the

check phase. All the code in between is part of the execute phase.

These remaining actions are predominantly calls to other functions that perform

tasks such as writing Arctic's control register, sending a set of packets through the

system, or reading and storing Arctic's statistics information. The system is very

versatile, though, and allows the user to write any block of sequential Verilog code in

this file, making it possible to specify any desired input pattern or check for any error

that might not be detected in the check phase. This kind of versatility was necessary

if the system was to meet our generality goal. Arctic is very complex, and it would

be difficult to build special functions to generate all possible input patterns or detect

every possible error. With the ability to use actual Verilog code, the user can test all

those functions that cannot be tested with the existing input/output machinery.

Most of the actions performed during a test group do, however, conform to a

relatively small number of patterns. This indicated that a set of functions that fa-

cilitated the generation of these patterns was a good idea. Many of these actions,

such as writing a certain value to the control register or resetting the chip, can be

implemented simply, but one action that deserves some explanation is the action that

sends a set of packets into the chip.

Sending packets into Arctic is the most common and most complex input pattern.

Transmitting packets is the basic function of the chip, but it requires the coordination

of many encoded signals for a long period of time. For this reason, there is considerable

machinery in this testing system that is devoted to sending packets.

First of all, all packets in the universe of the testing system have a unique number

called a packet identifier. This identifier is actually part of the payload of the packet,

which reduces some of the generality of the system by fixing those bits of the payload

to be a certain value. This was necessary, however, in order to track the packets

as they go through Arctic. A library of packets is read in at the beginning of a

simulation.
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These packets are used by the function send_packets (file_name), where "filename"

is a file specifying a list of packet send commands. Each of these commands specifies

a packet to be sent, the time it should be sent, and the input port it should be sent

to. The name of this file is testxxx. y. pkts, where "pkts" indicates that this is a list

of packet send commands, and the "y" can actually be any letter. This extra letter is

useful because it is often necessary in a test group to use this function to send several

sets of packets, and the files used by the different calls need to be distinguished in

some way. As one might imagine, this is the most frequently used function, and it

greatly simplifies the problem of sending packets though Arctic. Whether or not it

helps enough is debatable, as we shall see in Chapter 6.

Up to this point, I have detailed many ways that the user can specify input

patterns to Arctic, but I have not discussed how Arctic records outputs. Recall that

during the configure phase of the test group, several files were opened for output.

Each of these files has a name of the form testxxx. log. logtype, where "logtype"

is either "pkts," "stats," or "errs." These files are used to store a specific type of

output from the chip so that, in the check phase, this output may be checked against

another file, testxxx. chk. logtype, which contains a specification for how the log

should appear. The information in these log files is gathered either automatically, or

when the user specifies.

The only information that is gathered automatically is a set of records specify-

ing packets that are received at each output port's stub. Whenever a stub receives

a packet, the stub checks that the packet matches the packet that was transmit-

ted, and then a record specifying the packet's identifier, time of receipt, and out-

put port is placed in the file testxxx.log.pkts. This file will be checked against

testxxx. chk. pkts in the check phase to make sure that the correct packets emerged

from the correct ports.

The other two kinds of log files gather information only when the user specifies.

The function write_stats reads all the statistics counters in Arctic and stores their

values in the file testxxx.log. stats. This information can be gathered any num-

ber of times during a test group, so that the user can monitor statistics before and
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after some action is taken. The function write_errs_contr is a similar function

that records all the bits of state not accounted for in any other check and writes to

testxxx. log. errs. It reads the Arctic control register and the error counters in ad-

dition to some other small bits of information. As with write_stats, this information

can be gathered any number of times, and at the end of the execute phase, these two

files are checked against the files testxxx.chk.stats and testxxx.chk.errs.

4.2.3 Check Phase

In this final phase of the test group, the log files are first closed, and then each log file

is loaded and checked against its corresponding check file. Since Verilog can only read

in numerical data (and no strings), all of these log and check files must be encoded

as numerical data, a relatively easy task since most of the data that can be collected

from the simulation (such as statistics and errors) is already numeric. This gives a

very simple check algorithm; read in the check file and the log file and make sure the

two are the same for each value. For values in the log file that will not matter, an

"x" can be placed in the location corresponding to that value in the check file. This

will cause the check to work for any value in that location in the log file.

With this carefully defined structure of a test group, we have completed a clear

definition of the hardware and software portions of the testing system. This defined,

it is much easier to decide which new functions are possible, and how they should be

added to the system.

4.3 Quick Mode

From the very beginning, we could tell that these tests were going to run very slowly.

The design was so complex that it required nearly 50 megabytes of memory to simu-

late, and when running on an unloaded sparclO, the simulation averaged about two

cycles per second. To make matters worse, all of Arctic's internal state was accessed

through a JTAG test access port. This interface, which we called the maintenance

interface, required all non-packet-related communication with Arctic to be done one
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bit at a time through a scan path running at a clock speed of one-fifth of the system

clock. Since each configuration register was 160 bits long, this meant that an absolute

minimum of four minutes was needed just to scan in a single configuration register. To

make matters worse, the maintenance interface had a very large overhead to manage

the different types of data that could be scanned in, increasing the time needed to

configure Arctic to about 45 minutes, on average. This was clearly an unacceptably

long time to wait just to finish the first step of a test group.

The truly aggravating thing about these long maintenance interface operations is

that they did not seem to be accomplishing any "real" work. The ability of the chip

to scan in control and configuration information needed to be tested, but most of the

time, these functions were only being used to set up the chip for another test and

weren't performing any "interesting" actions. If there were a way for us to bypass this

long configuration step, we thought, we could significantly shorten the time needed

to run a test.

This observation resulted in the creation of "quick mode." In this mode, any

"uninteresting" actions can be abstracted away, i.e. they can take place without being

simulated. Operations performed through the maintenance interface, for example, can

be done instantly, without using the maintenance interface at all. These operations

can be given an extra flag as an argument. If this flag is 1, then the function will

bypass its maintenance interface operation. By "bypassing," here, we mean that the

operation will directly read from or write to the registers holding the state information

that needs to be manipulated. With Verilog, any register buried deep inside a module

can be accessed directly with a hierarchical name, which makes it easy for each

function to read or modify any of Arctic's registers. Therefore, any function that

manipulates state through the maintenance interface can be told which registers to

access, giving it the ability to run in quick mode. The user must only keep in mind

that, after executing an operation in quick mode, the system will not necessarily be in

exactly the same state it would have been if the operation were performed normally. In

most cases, though, the similarity is close enough to make a simple test run smoothly.

Since quick mode is implemented by accessing state inside Arctic, it might stop
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working whenever the model of Arctic is changed significantly. Since this was likely

to happen often, and we did not want the entire testing system to stop functioning

when a change was made, we needed a way to turn off quick mode for the entire

simulation. We defined a global variable, SPEED, that would be set at the beginning

of a simulation to determine whether it should be run in quick mode or not. Even

if the simulation were running in quick mode, however, we knew it was possible that

the user might not want to run every possible function quickly. For this reason, every

function that can run quickly is passed the extra argument SPEED that determines

whether or not the function should run quickly for each separate call. In this system,

then, it is possible to turn quick mode on and off globally, and it is possible to control

it locally, at each function call.

This quick mode seems like a simple idea, but it is a very powerful one because

it reduces the time needed to run a simple test from 45 minutes down to about

5 minutes, an order of magnitude improvement! For other tests that deal almost

exclusively in maintenance interface operations, such as the the ones described in

Appendix Section A.2, the improvement can be as much as 50 to 1.

4.4 Running the System

With the information presented above and the user's manual in Appendix B, a user

can begin to experiment with this testing system. However, running the system needs

to be discussed before the user can start up a simulation, and the user might want to

know how to choose the tests that he or she wants to run. These problems, as well

as a few implementation problems that cannot be solved using Verilog, are all solved

with a pre-simulation step that is used to run the system.

The user actually runs the system by typing runtest filename where "filename"

is the name of a master simulation file such as the one in Figure 4-2 that contains a

list of packet libraries followed by a list of tests that need to be run. The libraries

contain all the packets that the system can use, and must be generated before the

simulation, either by hand or with some generation tool. This organization gives the
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Figure 4-2: Master Simulation File

user precise control over the packets generated, and easily accommodates new groups

of packets. A list of tests follows this list of libraries. This list specifies which tests

will be run and what order they will be run in.

The pre-simulation step sets up the Verilog simulation by instructing it to begin

by loading in the specified libraries of packets. It then scans each of the tests listed

and instructs the Verilog simulation to run each test. This is done by splicing the

testxxx. code file for each test into the top level simulation. After this step com-

pletes, the Verilog simulation begins and performs all the tests that were specified in

the master simulation file.

This pre-simulation step solves another rather difficult problem. Verilog does not

have the ability to allocate memory dynamically, and the size of every data structure

needs to be specified before the simulation can begin. This is difficult to deal with in

this system, because the size of the buffers needed to hold log files or lists of packet

send commands will vary widely from test to test, and unless we used some gross

overestimate of the maximum space needed, the simulation would risk running out

of memory. To avoid this problem, and to avoid wasting memory, the pre-simulation

step scans through the tests to be run and sets up some important data structures in

the simulation to have just the right size. This makes the system a bit more difficult

to understand, but it does make it much easier to use when the user can abstract
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away the details of this step.

This completes a full picture of Arctic's functional testing system. The system has

other operating modes which the user has access to, but the information given above

is sufficient for a user to begin writing useful tests. The amount of detail presented

here may seem excessive, but I believe it is useful as an example of the problems

that arise when designing such a system. For those readers desiring even more details

about how this system is used, Appendix A presents many example test groups. The

first example presented there is particularly helpful, demonstrating how the different

parts of the system interact in a simple case. Appendix B contains the user's manual

for this system, and may also be of interest for readers desiring greater detail.

42



Chapter 5

The Randomized System

In earlier chapters I discussed at length the importance of randomization in a testing

system, but Arctic's testing system, as I have described it, has few random testing

features. To remedy this situation, I designed a second system devoted entirely to

random testing. This system is based on the basic structure and modules of the older

system, but it is kept separate, because it, unlike the tester-debugger of the previous

section, is designed to be run with almost no human intervention.

We have already seen a number of reasons why some kind of random tester is

necessary. Perhaps the most important is that it alleviates the burden of generating

tests. With a random tester, a design team can let the testing system look for obscure

bugs while the team members concern themselves with debugging known trouble

spots. Also, randomized testing is desirable for theoretical reasons. The number of

possible states in a large chip like Arctic is huge, and it is nearly impossible for a

human to pick out a set of tests that will uncover every design bug. A carefully built

randomized tester can find this set with a fairly good probability. Douglas Clark

expresses this idea well in his paper on hardware verification strategies.

The method I advocate for dealing with the problem of a huge space of

behaviors is to sample randomly (really pseudo-randomly) from one or

more sets of possible tests. A random selection can pick any test with

some probability, and the longer a random test-selector runs, the more
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likely it is that any particular test will be found. [2]

In this chapter I will present the design and implementation of Arctic's random

testing system. This part of the testing project is much more recent, and as a result,

important parts of the system have not yet been implemented. Therefore, I will give

only a brief overview of the design and where I cannot give examples of problems

encountered with the system, I will try to predict the problems that would have been

encountered if the system had been finished. To remain consistent with Chapter 4, I

will begin by discussing changes to the system's "hardware" and then discuss changes

to the "software."

5.1 Hardware

In the new system, each stub has been modified to hold some kind of randomizer.

Each of the stubs connected to the input ports, for example, has a random packet

generator that is capable of creating a completely new packet whenever it is needed.

The user is given the ability to specify the distribution of these random packets by

controlling certain constants for each port, such as the probability that a packet is a

high-priority packet, the mean length of a packet (modeled as an exponential random

variable), and the mean wait time between receiving a packet and sending a free

buffer signal (both of which are also modeled as exponential random variables). This

is a very loose control mechanism, allowing the user to have only a general influence

on the traffic through the chip. For the most part, the simulations execute without

any outside influence at all.

Because all packets could be generated randomly in this system, I chose to create

completely new packet management mechanisms that would be contained in the input

and output port's stubs. In this system, packets were generated when needed and

did not need to be kept in files and loaded at the beginning of a simulation. Also,

records of received packets were not written to any file. Instead, each input port's stub

maintained records of the packets which it sent. An output port's stub that received

a packet would immediately check the sender's record to see if the packet was sent
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out the correct port, and if it was, the sender's record would be deleted. Managed

correctly, this system could continue to send packets forever using a constant amount

of storage.

Let's take a closer look at how each sender manages the transmission of packets.

When a new packet is created it is given a unique identifier in the form of a times-

tamp generated with the Verilog command $time. This timestamp is not completely

unique, since other input port stubs might be generating packets at exactly the same

time, but packets can also be distinguished by their sender, so this does not really

matter. Note, however, that I have sacrificed a bit of generality here by requiring

each packet to have correct timestamp and point of origin information in its payload.

After the packet has been generated, the input port's stub stores its timestamp,

length, and checksum in a queue corresponding to the output port of Arctic from

which the packet should leave. When an output port's stub receives a packet, it looks

in the queue that should hold a record for the packet. Since packets are sent in FIFO

order between any input port and output port, the output port's stub is guaranteed

to find the needed record at the front of the queue, as long as the system is working.

The stub checks the timestamp, length, and checksum of the packet with the values

in the queue, and if they are not the same, it signals an error. Otherwise, it pops the

element off the queue and waits for the next packet.

Since there is a limited amount of storage inside Arctic, this system knows the

maximum number of outstanding packets there can be at any given time. Therefore,

the size of these queues is rather small and constant, a considerable improvement over

the old system, which had to hold every packet in a buffer for the entire length of a

simulation.

The random packet management system described above is almost all the ran-

domization "hardware" that is required for this system. This part of the system has

been completed; it generates and receives packets continually, modeling "correct be-

havior" for Arctic by simply keeping track of the packets sent. However, there are

two other parts of the system that have not been implemented yet. One of these is, of

course, the randomizer connected to Arctic's maintenance interface. This seems, at
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first glance, to be simple to implement; the transaction functions from the previous

system can be used to send randomized configuration and control words to Arctic.

The other randomizer that is needed is some kind of error generator to create link

errors, bad packets, incorrect maintenance interface operations, and other detectable

errors. This seems a bit more complicated, but still manageable since there is a clear

definition of what kinds of errors Arctic can detect. These will not be simple to im-

plement, however, because the system must not only generate these inputs, but also

predict how those inputs will affect Arctic.

Both of these randomizers can have a dramatic effect on Arctic. The configuration

and control words can affect the flow of packets in ways that are very difficult to deal

with. Randomly changing the routing information in a port's configuration register,

for example, can extremely complicate the problem of tracking randomly generated

packets. Also, some detectable errors can create a confusing avalanche of errors. Some

link errors can cause this by fooling an input port into thinking that a packet is being

transmitted when the port is really idle, thereby creating a flood of errors that are

detected on a packet that does not actually exist.

There are a few tricks that can be played to simplify this problem. Maintenance

interface operations can be managed by structuring the testing "software" so that

the effects of each of the operations has a more limited scope of effects. This will

leave a larger space of tests untried, but some of these untried tests may not be

needed, and those that are can be tested with the older, more flexible system. If

we restrict configuration changes to ones that do not change routing control bits,

for instance, we can keep packet management simple and still avoid routing bugs by

conducting extensive tests on the routing bits with the older testing system. More

complex behavior can be avoided by restricting the moments when Arctic's control

register can be changed. Changes in the control register that take effect when there

is still packet traffic in the system are very hard to model. These situations can be

overlooked in the testing system on the grounds that, in most cases, changes in control

information take place when packets are not flowing.

Random errors present a slightly different problem. Ideally, we would not like
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to limit the kinds of errors that can be generated, because error counter tests are

hard to create with the old system (as seen in Appendix Section A.3), and we cannot

easily claim that the test cases we will miss are unlikely to occur in normal situations.

Perhaps an avalanche of errors can be tolerated, though. If, when an error is gener-

ated, the testing system stops worrying about all state in Arctic except for the error

counter that should reflect the detection of that error, then any avalanche of errors

can be tolerated.. Once the system generates the error, the system will determine if

the error was detected, and then reset Arctic and the testing system to begin from a

known state. This is a valid approach because it actually models how Arctic will be

used. Arctic is designed to detect and not recover from errors.

Designing these randomizers is not altogether trivial, then. The structure bor-

rowed from the earlier system makes it easier to decide where certain parts can be

placed and does provide some functions for managing maintenance interface transac-

tions, but predicting how these random generators affect the state of Arctic can be

hard. The benefits are considerable, however. This system is capable of generating a

wide variety of tests that a human would never be able to create.

5.2 Software

The "software" in this system coordinates the activities of the randomizers. The

randomizers are capable of running without any central controller, but the system

still needs to occasionally stop sending inputs and determine if Arctic is in a correct

state. For this reason, the concept of a configure-execute-check loop is still useful.

The system should put Arctic in a known state, send random inputs for a certain

amount of time, and then pull state information out of Arctic to determine if Arctic's

state matches the predicted state. Also, if a bug is detected, it is convenient to have

a checkpoint from which the simulation can be restarted so that the conditions under

which the bug appeared can be repeated without re-running the entire simulation.

Tests are therefore organized in test groups, just as in the earlier system. Again, the

group is the smallest unit of a test, and any group can be run in isolation.
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The difference with this system is, of course, that very little human intervention

is needed before the simulation can begin. Some constants need to be set to define

the average length of packets, the frequency of packets, the probability of generating

certain errors, the number of cycles in a test group, etc., but these are provided mostly

for the purpose of tweaking the system so that a nice balance of inputs can be found.

The only piece of information in the system that need change for each simulation is a

single number that serves as the random seed for the entire simulation. All random

numbers in the entire system are derived from this seed, and it need change by only

one bit to generate a completely new random simulation. The register containing the

value for this seed is modified after every random number is generated, and the seed

is output at the beginning of every test group. A test group can be re-started simply

by using the given seed as the initial seed for the simulation.

Let's look at each of the phases of a test group, individually. At the beginning of

a new group, the configuration phase is entered and a new configuration is chosen.

As mentioned in the previous section, this configuration is not completely random,

because the bits corresponding to routing rules are always the same. All other config-

uration data that affects packet flow or statistics is randomizable. A random initial

value for the control register is also chosen in this phase. When all this is complete,

the execute phase begins.

The execute phase is very simple in this system. A counter is set to a user-defined

initial value, and begins to count down to the moment when the system will begin to

enter the check phase. While the system is running, each input port's stub generates

packets, and each output port's stub processes the packets it receives, signalling

errors when it detects them. The errors and maintenance interface randomizers cause

various errors and non-destructive control transactions as well. Thus, the system can

imitate the widely varied interactions that would happen during the normal operation

of Arctic.

The check phase begins when the aforementioned counter reaches 0. First, the

system waits long enough for all packets that are in transit to emerge from Arctic and

for all outstanding maintenance interface operations to complete. Then, the system
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begins to check the internal state of Arctic. During the execute phase, the system

maintained what it believed to be appropriate values for the statistics counters, error

counters, control register, and any other registers that could be read out of Arctic.

During the check phase, each of these values is read out of the chip, and if any

discrepancies are noted, then an error is signalled. At the end of the check phase,

some statistics reporting the actions taken on the chip during the test group are

printed in the simulation log file, so that the test system itself can be monitored, and

the system re-enters the configure phase.

This system is rather pretty, as described above, but there are a few ugly details

that have not quite been worked out yet. This biggest of these problems is deciding

exactly how to manage the changes in packet flow that are caused by some changes to

Arctic's control register. Arctic has some functions, manipulated through the control

register, that can block, re-route, or flush packets. The behavior of each of these

functions can depend on whether or not any one of the other functions preceded it

and whether or not packets were flowing at the time the function went into effect.

Even if we decide to simplify the problem by not allowing packets to be flowing when

a function goes into effect, there are still problems deciding how to stop the flow

of packets to make the change in the control register and how to embed knowledge

into the system about how one function should transition into another function. At

present, I see no solution other than brute force - building into the system all the

information it needs to know to modify the control register safely and to predict the

resulting changes in packet flow.

It seems then, that building this randomized testing system is no simple task. The

structure of the earlier system did, however, give me a clear starting place for this

work and was flexible enough to accommodate all of my changes. Though this system

has not been completed, I believe it could be extremely helpful in eliminating subtle

design bugs. Remember, the advantage of this system is that it has some probability

of catching almost any bug. The bugs that it is not capable of catching can still be

found by focusing some directed tests in the areas that the system cannot reach. The

benefit of the random tester is not that it takes care of all testing, but that it narrows
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the amount of extra testing that needs to be done to something more tractable. Thus,

this random tester does not replace the older system, but merely adds to it, because

the older system is still necessary as a debugging tool and tester for those functions

not testable with the randomized system.
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Chapter 6

Evaluation of the Arctic Testing

Project

Before we can begin to consider what wisdom Arctic's testing system has taught

about the functional testing problem, we need to evaluate how well it has met each

of the goals laid out in Chapter 3. This functional testing system has been up and

running in some form since the summer of 1993, and in that time I have had many

chances to evaluate its performance relative to those stated goals. In this chapter, I

will list those goals and comment on how well the system meets them.

6.1 General

One promise this system does indeed deliver is generality. It was never the case that

the system could not generate an input pattern that was desired, nor was it the case

that it could not detect some erroneous output pattern.

Some prime examples of the value of this generality, as seen in the Appendix

Section A.3, are the error detection test groups. These test groups needed to create

some very unusual input patterns in order to determine if the error detection functions

were working correctly. Without the ability to put any block of Verilog code in a test

group, these tests could never have been integrated seamlessly with the rest of the

system. Many subtle bugs were uncovered by the test groups that focused on errors.
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Other good examples of tests that rely on the generality of this system are the

JTAG tests, one of which is described in Appendix Section A.4. These tests did

not integrate quite as seamlessly into the system as did the errors test groups, since

special functions needed to be written for them, but they were relatively easy to write

because of the structured framework they fit into. The JTAG tests uncovered several

problems related to the stitching of the scan rings.

The random tester appears to be very general as well. Considerable effort has gone

in to making it capable of generating a wide variety of inputs. Also, it is possible

to determine types of bugs that the random tester has no chance of detecting, and

focus directed testing on cases that have a good chance of detecting those bugs. This

seems to be a very general, comprehensive approach to random testing.

6.2 Fast

Because of our efforts to give many procedures the ability to run in quick mode, this

system did end up being fast enough to use as a debugging tool. By speeding up only

two functions, configuration and writes to the Arctic control register, the running

time of a simple test could be reduced from 45 minutes to about five minutes. We

came to rely on this quick mode very heavily, but it was always easy to turn off when

it broke because of the SPEED variable mentioned in Section 4.3.

I used this quick mode quite heavily whenever I found myself debugging portions

of the chip that I did not design. By placing signal probes and re-simulating I was able

to track down several typographical errors without any help from the implementors

themselves. The time to re-simulate after changing probes was short enough to make

this kind of debugging possible.

6.3 Randomizable

Our intention was to extend the original system to run random tests and search for

bugs without our intervention. In actuality, the second system is not connected to
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the first, but since the basic structure of the first system was borrowed to build the

randomized system, I can claim that this goal was met in some way. The true goal,

of course, was to build a random testing system that could be relied on to search

for subtle bugs. Since the system has not been completed, I cannot claim that the

system met that goal. It should certainly be clear from Chapter 5, however, that the

system should, in its final form, be able to generate quite a wide variety of tests.

6.4 Repeatable

The original functional testing system was obviously repeatable, and that made it very

useful as a debugging tool. The fact that the randomized functional tester was able

to restart any generated test group without re-running all previous groups was also

very handy. In its half-completed form, the random tester only found one bug, but

that bug would have been very troublesome to track down without this ability. The

error was caused by a pattern that was generated after several hours of simulating,

but because we were able to restart the test group, it took us only about 10 minutes

to reproduce the error.

6.5 Low Level

One of the more obscure requirements we made of this system was that it should be

able to simulate Arctic at the lowest possible level. Most of the time, functional testing

was performed on the original Verilog model of Arctic. However, the system is capable

of running on a Verilog gate-level description of Arctic that is generated by Synopsis.

This model can also be back-annotated with timing data, so that the simulation can

come very close to the actual behavior of the fabricated chip. Unfortunately, this

part of the system is not working either, due to some problems which we believe are

related to the crossing of clock boundaries, but this may be corrected soon.
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6.6 Easy to Use

At the end of Chapter 3, I stated that some of these goals were almost in direct

opposition to each other, but in all of the preceding sections, Arctic's testing system

seems to have met its goals well. Unfortunately, many of these goals are met at

the expense of this final goal, ease of use. In nearly all places where a tradeoff was

made between ease of use and some other quality, ease of use was sacrificed. This

is especially true of generality. The confusing file structure and packet management

system of the original system is all done in the name of generality.

This does not mean that the system is impossible to use. Great effort was put

into providing simple ways to specify common inputs, and generating a specific input

pattern and checking for a specific output pattern was generally very easy to do, no

matter how unusual the pattern was. For example, it would take about 30 minutes for

someone familiar with the system to write a test group that disables output port 2 and

sends, 3 cycles after disabling, a packet destined for port 2 with the value 057b3aff

in the 14th word of its payload into port 1. This could be very useful if such an input

pattern was believed to reveal a bug. Our hope was to make specification of such

tests easy, and the system succeeds in this goal.

The main problem with this system is that normal cases are not much easier to

specify than unusual cases, despite our efforts to simplify these cases. If the user

wanted a test group that did something as simple as sending 100 different packets

through the system each 10 cycles apart, this could take hours to create because the

user has to specify every bit of every packet and define exactly what time each of

these packets should be sent into the system, as well as exactly which output port each

should emerge from. In most test groups, the user needs to send a large number of

packets, but the system gives the user such precise control over these packets that it is

impossible to send a packet unless it is described in every detail. Some solution to this

problem was needed. We created some packet generation programs, but these were

rather awkward and often generated an unmanageable number of packets. Perhaps

this problem could have been solved by putting random packet generators in each
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input port's stub. Test groups could specify a few parameters for these random

packets and let the system worry about generating them. Tests of this kind were

called "bashers" by the team working on the Alewife cache controller, and apparently

uncovered many bugs [7].

Another reason designing test groups was so difficult was that the structure of

the files used in these test groups was very unintuitive. Remember that Verilog can

only read in files with binary or hexadecimal data. That meant that every file that

specified some detail of a test had to be encoded, adding an extra layer of confusion

to the testing process. Imagine, for example, that the user wants to send packet 5

into port 1 at time 0. To do this, the user has to create a packet insertion file that

looks like this.

00000000000000001

00000000000000052

Since it would take an inhuman memory to recall the exact position of each of these

bits, the user is forced to call up the testing system user's manual when this file is

created, or whenever it needs to be modified. This slows the user down, and makes

life very confusing. If the file instead contained the line "Insert packet 5 into port 1

at time 0," the system might have been much easier to use. It would not have been

easy to add this ability to the system, but it is possible it could have been supported

as a pre-simulation step that would translate more easily understood descriptions

like the one above into hexadecimal numbers before the simulation. A simpler and

perhaps just as effective approach would be to make all test files a kind of table that

the user would fill out. The pre-simulation step could then remove everything but

the numbers, which would be input by the Verilog simulation.

It seems, then, that the only big problem with this functional testing system is

its complexity. Indeed, many members of the team never learned to use the system

at all because it takes so long to learn. Even those who do understand it avoid using

it regularly.

Still, this system has been successfully used to carry out extensive testing of the
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Arctic chip. Countless bugs have been uncovered through directed testing with the

original system. Many examples of these tests can be found in Appendix A. The

random tester has found only one bug, but has the potential to find many more if it

is completed. Also, beyond these practical concerns, this system has been a wonderful

test bed for many ideas related to functional testing.
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Chapter 7

Conclusions

In this thesis, I have presented many details about the implementation of Arctic's

functional testing system to give the reader an idea of the many subtle benefits and

complications that arise from each design decision. To conclude, I will discuss what

the Arctic Testing Project has taught me about functional testing and what I hope

the reader will take away from this thesis.

Since Arctic's testing system has grown out of the idea that there are unique

advantages to implementing a chip's functional testing system in the same language

used to implement the chip itself, these ideas may seem applicable only to gate arrays

and other ASICs designed entirely with HDLs like Verilog or VHDL. However, these

languages are being used more and more frequently to generate significant amounts

of logic in standard cell and full custom chips. We may be approaching the days

when entire full custom chips will be designed with derivatives of these hardware

description languages that integrate the specification of actual transistors with higher-

level specifications. If this were to happen, the ideas in this thesis would be as

applicable to full custom designs as they are to gate array designs.

7.1 Structure Is Important

One of the main focuses of this thesis has been how the careful organization of testing

"hardware" and "software" has simplified Arctic's testing system. Grouping signal
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generation and monitoring hardware into functionally distinct Verilog modules greatly

simplified extensions and maintenance to the system. Grouping testing software into

test groups with configuration, execution, and checking phases forced the users of the

system to think about testing in a structured way. Any testing system can benefit

from such a clear and well defined structure. The structure helps by reducing the

time needed to design and use a testing system, which in turn shortens design time.

Another key idea in this thesis has been the co-existence of a directed testing

system and a randomized testing system. Neither makes a complete testing system

by itself, but together the two can give the designer great confidence that a relatively

bug-free design is being produced. Since the designs of these systems are related,

they may be part of the same system or at least share a large number of modules.

The paramount idea here is that a clear structure is important. It is my belief

that without this structure or one very similar to it, we could not have tested Arctic

in so many varied ways so quickly, and we could not have weeded out so many design

bugs before the first place and route.

7.2 Speed Is Necessary

Speed is a problem for any hardware simulation system, and our design team knew

that this testing system would also be disappointingly slow if we could not give it

some kind of fast operating mode. Over the course of this project it has become

clear, however, that Arctic's functional testing system would have been completely

useless as a debugger without quick mode. I believe that this is one of the most

important ideas to be taken from Arctic's functional testing system. It is likely that

many current chip designs simulate as slowly as Arctic. For any such design it is

absolutely necessary to simulate in some faster mode or no debugging can take place

before the chip is fabricated.

In Arctic's functional testing system, quick mode was implemented by abstracting

away "uninteresting" behavior. Certain functions that read or modified state inside

Arctic did so by manipulating the necessary registers directly, rather than going
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through Arctic's maintenance interface. Thus, an action that changed the value in

the configuration registers could be done instantly rather than taking the normal

3000 or more simulated cycles of operation. This is obviously advantageous if actions

that use quick mode are common in testing simulations, which, in fact, they are. In

an actual Arctic network, the percentage of time spent doing maintenance interface

operations would be almost negligible, but in order to test Arctic, functions that

configure and control Arctic through this interface are needed very frequently.

This idea can easily be extended to other testing systems. In any testing system,

debugging is very important, and in any individual test, it is likely that certain parts

can be thought of as "the test," and other parts can be thought of as "setting up

for the test." Those parts that are setting up are generally uninteresting, and if they

take a very long time to simulate, having a mode where they can run quickly (without

much loss of detail) can be a great help.

7.3 Complexity Is The Enemy

This system had only three regular users. Though it was designed to be useful to

every member of the design team, the learning curve was so steep that most members

of the team used their own simulation tools. For this reason, the danger of complexity

is an important lesson to be learned from Arctic's functional testing system.

In fact, both the directed and the randomized testing system suffered from com-

plexity. The directed tester and debugger had confusing file formats that became

unmanageable when tests became too large. The random system did not need much

of a user interface, but it's complexity has made it very difficult to determine whether

or not it generates the wide variety of tests that we expect. These types of problems

are fairly common for large software projects. It is important to remember that prob-

lems such as these can easily arise in any system that tests a very large and complex

chip.

Fortunately, this complexity did not ruin the testing project, because those of us

that taught ourselves to live with the complexity of the system were able to perform
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extensive testing and get valuable experience from the testing system. This experience

has taught us a great deal about the functional testing problem and has given us

reason to believe that, one day, the ideas in this thesis may be used to make functional

testing as tractable as every other part of the ASIC design process.

7.4 Future Work

It has been mentioned before that Arctic has not yet had its initial place and route.

This gives us some time to add the remaining functions to the randomized testing

system, and perhaps to get the system working with the compiled, gate-level model

of Arctic. The ultimate test will be to see if only timing-related bugs are detected

after the first place and route. Beyond that, the system may be extended to generate

functional tests that will be used as manufacturing test vectors to supplement those

generated with the Mustang Automatic Test Pattern Generator.
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Appendix A

Example Test Groups From

Arctic's Functional Testing

System

This appendix has been included for those readers wishing to see examples of how

Arctic's functional testing system is used as a debugger. It will clarify a number of

details already presented, and present a few more to show how the system can be

extended even further. I assume that the reader fully understands the description of

Arctic given at the beginning of Chapter 3. Other details are given as they are needed.

I will begin with a simple routing test, follow it with some tests of Arctic's errors and

statistics counting functions, describe a test of one of the JTAG test functions, and

finally give some examples of some tests that did not work very well, namely a random

packet insertion test and a high priority test.

A.1 Routing

One of the most simple examples of the use of this system is a test that checks if

the routing logic is working correctly. Arctic uses a two-comparator routing scheme

to determine which output port each packet is destined for [5]. As described in the
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00000001
Offbdff8

040f7bfe

00000000
00000000
000300ff

Figure A-1: test003.config file

Arctic user's manual, this scheme basically has the form

if B1 then R1 else if B2 then R2 else R3

where B1 and B2 are boolean expressions which are the comparators in this scheme.

R 1, R2 , and R 3 are expressions which evaluate to 2-bit values that determine which

of the four output ports a packet is sent out. The comparators are defined as follows.

B1 = (DOWNROUTE and RULELMASK) equal? RULEIREF

B2 = (DOWNROUTE and RULE2_MASK) equal? RULE2_REF

Where RULEiMASK, RULE2_MASK, RULEIREF, and RULE2_REF are all de-

fined in Arctic's configuration registers. B1 and B2 are used to determine which of

R1, R2, or R3 is used to determine the output port.

The reader may note that this routing scheme is rather complicated, and we have

not even discussed the definitions of R 1, R2, and R3 ! However, we can already see an

opportunity to try a simple test. By setting both RULE1_MASK and RULEIREF

to 0, all packets sent into the system should emerge from the port determined by R1.

This is the simple test performed by test003 in our system.

The first step in defining this test is to create the test003. config file, which is

shown in Figure A-1. The file consists of only numerical data, as Verilog requires,

and the numbers shown correspond to the actual values loaded into the configuration

registers. Each of arctic's input ports has five 32-bit configuration registers, and one
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start_sequence("../sequences/testOO3/testO03.config",

"../sequences/testOO3/testOO3.log.pkts",

"../sequences/testO03/testO03.log.stats",

"../sequences/testO03/testOO3.log.errs",'SPEED,'TIMED);

in.sendpackets("../sequences/testOO3/testOO3.a.pkts");

lclk_delaycycles(100);

end_sequence;

Figure A-2: test003.code file

32-bit datum is given for each of these registers. The 00000001 that appears at the

top indicates that these values should be copied into the configuration registers of

every arctic input port. If this value were a 00000000, then five 32-bit values could

be listed for each of the four input ports. I will not detail the meaning of each bit in

the configuration information. Suffice it to say that RULE_MASK, RULE2_MASK,

RULEL_REF, and RULE2_REF are all set to 0.

Now that the initial configuration has been specified, the list of actions needs to

be specified in test003. code, which appears in Figure A-2. The only action taken

in this test group is the sending of a set of packets, and, as a result, this file is very

simple. The first line carries out the configure phase of the test group. (The function is

called start_sequence because test groups were originally called test sequences.) The

arguments to start_sequence are the file names of the log files that will be output at

the end of the test, plus the SPEED argument mentioned in Section 4.3, plus another

flag that we shall discuss in Section A.5. Following this action is a send_packets

command and an lclk_delay_cycles command that makes the system wait for 100

local clock cycles before entering the check phase. The final command carries out the

check phase. This is all that is needed for a very simple test such as this, and this

file is about as simple as a . code file gets.

Next we need to specify the packets that are going to be inserted into the system.

Commands that will direct the system to insert a packet will be kept in a file named

test003.a.pkts (shown in Figure A-3), which is the argument to the procedure

send_packets. For this test, test003. a. pkts contains only eight commands, one for
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00000000000000008

00000000040081080

00000000040081082

00000000040081084

00000000040081086

00000005040081f80

00000005040081f82

00000005040081f84

00000005040081f86

Figure A-3: testOO3.a.pkts file

040081081000000000

040081081000000000

040081081000000000

040081081000000000

040081f81000000000

040081f81000000000

040081f81000000000

040081f81000000000

if0000000000000000

Figure A-4: test003.chk.pkts file

each packet inserted into Arctic. The value at the beginning of the file is the number

of packet send commands contained in the file, and it is followed by the commands

themselves. Each of these commands consists of three fields. The left most field

is a 32-bit number specifying the number of cycles after calling sendpackets that

the transmission of the packet should begin. The middle field is the 32-bit packet

identifier, and the last four bits specify which input port the packet should be sent to

(shifted left by one bit). In this packet insertion file, the first half of the commands

insert packet 04008108, and the last half insert packet 040081f8. The first four are

sent to each of the four input ports at cycle 0, and the next four are sent to each

input port at cycle 5.

With all the inputs to the system specified, all that remains is to create the

check files which will determine what the generated log files should look like. The
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000000000

Figure A-5: testOO3.chk.stats file

0000000000000000

Figure A-6: test003.chk.errs file

file test003. chk. pkts appears in Figure A-4 and consists of eight lines specifying

the packets that should come out of Arctic during the test followed by a unique

value, if0000000000000000, that marks the end of the file. The lines that specify

how packets should be received are made up of four fields. The left most field is

the packet identifier, and it is followed by a four-bit field specifying the output port

the packet was sent from, and another four bit field which is 1 if every bit in the

received packet should match every bit of the sent packet. The right most 32-bit field

corresponds to the time that the packet is sent out, but we will ignore this field until

Section A.6. In this file, we have one entry for each packet, each of which should be

received from output port 1, and none of which should match the transmitted packet

bit-for-bit, because a new checksum word should be inserted at the end.

The files test003. chk. stats and test003. chk. errs appear in Figures A-5 and A-

6 respectively. Both consist of nothing but trailer words of all zeros that signal the

end of the files, because during this test, neither the statistics information nor the

errors and control information was ever read from Arctic.

We have completed the last step in specifying this test. The test exercises a

specific part of the routing logic, and at the same time gives a nice, basic test to see

if the packet transmission mechanisms are working correctly. The reader may note

that specifying this test was a very involved and time-consuming process, because of

both the complexity of Arctic and the cryptic format of the files. The time needed

to create a test can be reduced by duplicating and modifying old tests to make new

ones, rather than creating new ones from scratch, but this is still rather complicated

because the test is spread over so many files. In Section 6.6, I explore just how much
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start_sequence("../sequences/testO60/test060. config",

"../sequences/testO60/test60.log.pkts",
"../sequences/testO60/testO6.log.stats",

"../sequences/testO60/testO60.log.errs",'SPEED,'TIMED);

mn.clear_stats('SPEED); //clear statistics

in.sendpackets("../sequences/testO60/testO60.a.pkts");

lclk_delay_cycles(100);

write_stats(O,'SPEED);

writestats(1,'SPEED);

endsequence;

Figure A-7: test060.code file

of a burden this complexity is.

A.2 Statistics

Let's take a briefer look at test060, which runs some basic tests of Arctic's

statistic's counters. The file test060. code is shown in Figure A-7. After the initial

start_sequence command, the statistics are cleared with the command clear_stats.

This needs to be done first because resetting Arctic does not clear the statistics

counters. After this is done, a set of eight packets is sent into Arctic, and the system

waits 100 cycles before starting to read out statistics information. The statistics are

then read out twice, first non-destructively, and then destructively (this is determined

based on the value of the first argument to write_stats). A destructive read clears

a statistics counter when it is read, so in this test, the first set of statistics should be

nearly identical to the second.

The file test060.chk.stats appears (in part) in Figure A-8. Since statistics

information is read out twice, this file contains two reports of the statistics information

(though only one is shown because the second is exactly the same as the first). Each

report contains a header word, 000000001, followed by each of the 24 statistics values,

arranged in order of increasing address, as specified in the Arctic User's Manual [5].

The statistics specified as "x" are all idle statistics that increment once for every three

cycles that an output port is not busy or waiting. We put an "x" in these locations
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000000001
000000000
000000000
000000000
000000000
OOOOOOxxx

000000000
000000000
000000000
000000000
000000000

OOOOOOxxx

000000000
000000004

000000000
000000000
000000004

OOOOOOxxx

000000000
000000004

000000000
000000000
000000004

OOOOOOxxx

000000000

<All the above text is repeated here>

000000000

Figure A-8: testO60.chk.stats file
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because we are not interested in these statistics during this test. At the end of the

file is a trailer word of all zeros, as in the previous test group.

Each of the statistics locations must be read independently through Arctic's main-

tenance interface. Even ignoring configuration time, this test group can take over an

hour to run, even on the fastest computers this group has available. Fortunately, if

someone is trying to debug the statistics counters, it is possible to run the test in

quick mode, in which case the test will run in about five minutes. For this test, quick

mode is even more helpful than usual.

A.3 Errors

Now we will look at a test group that demonstrates the benefits of using actual Verilog

code to specify inputs to Arctic. testO52 sends a number of packets into Arctic and

then forces values onto the wires that are transmitting these packets to generate link

errors (errors that are signalled when a link is not functioning or is transmitting an

incorrectly encoded signal). The file testO52.code appears in Figure A-9. Notice

that after the packets are sent, specific wires are forced to have specific values at

specific times. This precise control is needed because a link error can be caused by an

incredibly wide variety of patterns, and the user needs to be aware of exactly what

kind of input pattern causes certain errors to be detected.

The first error is generated when a bad value is forced on input port 3's data

transmission line at a moment when no packet is being transmitted. This should

cause Arctic to increment port 3's idle error count. Next, a value is forced on input

port 2's data line at the moment a packet's length field is being transmitted. This

should cause Arctic to increment the length error counter for port 2. Finally, the

frame wire for input port 0 is given a bad bit, so that the frame error counter for port

0 will increment.

By the end of this test, four errors should have been detected (the above three plus

a checksum error because one of the packets transmitted had a bad checksum word).

The file testO52. chk. errs in Figure A-10 reflects these errors. This file consists of
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start_sequence("../sequences/testO52/test052. config",

"../sequences/testO52/testO52.log.pkts",

"../sequences/testO52/test052.log.stats",

"../sequences/testO52/testO52.log.errs",'SPEED,'TIMED);

in.send_packets("../sequences/testO52/testO52.a.pkts");

begin

#12 force datani3[0] =1;

#10 release data_ni3[0];

end

begin

#352 force datani2[0] = 1;

#10 release data_ni2[0];

end

// this should cause an idle error

// and a freeze before either of two

// packets arrive on input 3

// This should cause a length error on

// input 2 (but no checksum error

// because the checksum of this packet

// assumes this force). A freeze should

// occur before input 2 receives a

// second packet. The second packet is

// addressed to output 2.

// Packet with bad checksum is being inserted on input 1.

// It should cause input to get a checksum error and

// freeze (before getting a second packet and the second

// packet is addressed to output 2).

begin

#382 force frame_niO = 1;

#10 release frameniO;

end

// This should cause a 11 pattern where a

// 10 is expected. That in turn should

// cause a frame error on input 0. A

// freeze should occur before input 0

// receives a second packet and the

// second packet is addressed for output 2

join

#2000 writeerrs_contr(0,'SPEED);

end_sequence;

Figure A-9: test052.code file
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00000000000000001
00000000000010000
00000000000000001
00000000001000000
00000000100000000
11000000000000000
00000000000000000
XXXXXXXXXXXXXXXXX

00000000000000000

Figure A-10: test052.chk.errs file

one report of the errors, control, and free buffer information, which is generated by

the line write_errs_contr(0, 'SPEED) in the file test052. code. The "O" argument

indicates that the error counters should be read non-destructively, and "'SPEED" is

the familiar quick mode flag. Each report contains 8 binary words. The first is simply

a header. The next four are the error counters for each port, in order, with the bits

arranged as specified in the Arctic User's Manual [5]. These are followed by the first

half and then the last half of the value stored in Arctic's control register. The last

line contains the free buffer counters, also encoded as specified in the Arctic User's

Manual. In this file, the final line consists only of "x" entries, because free buffer

information is not important to the test. As before, the last line of the file consists

entirely of zeros.

Tests like this one are very precise, but they do take a very long time to generate.

This is one of the prime motivations for the creation of a randomized tester presented

in Chapter 5.

A.4 JTAG

The JTAG test features in Arctic are some of the most difficult to test because they

are so unlike any other function of the chip. They are included in Arctic because of

the JTAG standard which was formed by the Joint Test Action Group in hopes that
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VLSI designers would give their chips a common set of connectivity test functions.

These functions, defined in IEEE standard 1149.1 [4], test whether or not integrated

circuits are connected properly by their system boards. Each chip has a boundary

scan ring with one register for each of the chip's pins. These registers can force values

onto output wires, capture values from input wires, and have their values scanned in

and out via a Test Access Port. Arctic has a boundary scan ring and is capable of

performing most of these functions through its Test Access Port, which we have been

calling its maintenance interface.

These functions are important, but they are not commonly used during normal

operation of the chip. Building complex functions into the functional testing system

to test these functions, therefore, seems a bit wasteful. Unfortunately, they are hard

to test by brute force using Verilog commands in a .code file, because they require

coordination between at least 175 of Arctic's pins. For this reason, we compromised

our testing standards for JTAG functions, and wrote special procedures that execute

them, but do not verify that they complete correctly. This way, the user can let

the system worry about executing the JTAG functions, but still needs to watch the

output pins of Arctic to verify that the functions are working properly.

As an example, the extest (vector) procedure can be placed in a .code file, and

cause the system to carry out an Extest function with the given vector. The vector

has one bit for each register in the boundary scan ring and is split up, at the beginning

of the function, into bits corresponding to input pins and bits corresponding to output

pins. The next step is to force the input values onto Arctic's input wires and begin

the Extest function by capturing input values. Then, a vector that contains the

appropriate output bits is scanned into Arctic, and at the end of the test, the user

must verify that the correct input bits were captured and scanned out of Arctic, and

the correct output bits are being output from the appropriate output pins. This

seems like quite a task for the user, but it can be done fairly easily for some simple

input patterns, such as all O's, l's, or checkerboard patterns.
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A.5 Randomly Inserted Packets

In the system I have described, all packets are sent at the specific time that is listed

in the file testxxx.a.pkts, but as we have noted, this can be a very cumbersome

way to list packets. Sometimes, a set of packets needs to be sent into Arctic, but the

user does not care what the packets are and would rather not have to think about

it. One possibility would be to use a set of packets that was created for another test.

This could result in the same packets being used for every test, however, which would

not be wise since subtle bugs that are not triggered by that set of packets could creep

into the system.

Some kind of randomized generation of packets is needed to take this burden off the

user and guarantee that a wide variety of packets are being sent through the system.

Our first attempt to solve this problem was to create programs that generated packet

libraries and packet insertion files randomly. This works well up to a point, but since

it is very hard to determine exactly when packets will leave Arctic without running a

simulation, it is very hard to predict when buffers will free so that new packets can be

transmitted to Arctic. Remember that each packet insertion command must specify

exactly when each packet is transmitted.

To solve this problem, we introduced another mode of operation to the testing

system, randomized insertion mode. In this mode, each stub keeps a count of the

number of free buffers in the input port it is connected to, just as an Arctic output

port would. With this ability, the stubs can handle flow control themselves and

send packets as fast as possible. This mode is chosen with the last argument to

start_sequence, which is TIMED if the original insertion method is used, and PACKED

if this newer method is used.

testO32 is the only test we created which uses this mode, and the file testO32. code

appears in Figure A-11. A library of random packets and a random packet insertion

file were generated with utility programs. This was a useful test because it sent a

large number of widely varied packets through Arctic, but even before it was com-

pleted, we realized that it was still very cumbersome and did not greatly simplify test
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start_sequence("../sequences/testO32/testO32. config",

"../sequences/testO32/testO32.log.pkts",

"../sequences/testO32/testO32.log.stats",

"../sequences/testO32/testO32.log.errs",'SPEED,'PACKED);

in.send_packets("../sequences/testO32/testO32.a.pkts");

lclk_delay_cycles(2450);

end_sequence;

Figure A-11: testO32.code file

generation in general. The use of packet library and insertion file generation programs

was awkward and did not allow us to generate an unlimited number of random tests.

This was another motivation for building the random tester described in Chapter 5.

A.6 Packet Ordering

Arctic guarantees that all packets entering port A and leaving port B will be sent

out in the order received, for any pair of ports A and B. This was not the case in the

original design, however. Early designs of Arctic sent out packets "mostly in order,"

a specification that allowed for simpler scheduling algorithms but still guaranteed no

packet was trapped in Arctic for an "unreasonable" amount of time. Such a vague

specification is very difficult to test, but we attempted to address the problem in

earlier versions of Arctic by adding some unusual abilities for checking the order of

packets.

Up to now, we have not discussed how this functional testing system checks the

timestamp for each received packet recorded in the testxxx. log.pkts files. This is

because there were no facilities for checking this field until we addressed this problem.

We decided that each received packet should be given a rank in the check file that

would determine when the packet should arrive. This rank would be stored in the

part of the received packet check file that corresponded to the time of receipt in the

log file. Instead of checking the exact time of receipt, the system would check that

all packets of rank 1 were received before any packet of rank 2 and so on. This would
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make it possible to determine the order of packets, either individually or for very

large groups. In addition, a rank of 0 would indicate that a packet could be received

at any time, giving the user the ability to mark some packets "don't care" if the order

of these packets was unimportant.

These ranks were used in testO30 to test the ordering of packets. In this test,

80 packets were sent into Arctic in 10 groups of 8. The first group was given rank

1, the second group rank 2, and so on, as can be seen in the abbreviated version

of the testO30.chk.pkts file in Figure A-12. While it was not the case that all

packets had to emerge exactly in order, each packet of one group had to be received

before any packet of another group. If the test did not generate an error, then it

could be said that Arctic was working well. If some packets did leave Arctic out of

order and cause an error, however, the send times and receive times of each of these

packets would have to be checked to make sure that they did not stay in Arctic for

an "unreasonable" amount of time.

This was imprecise solution to an imprecise problem. The test was not by any

means guaranteed to find every bug in the output ports' scheduling algorithm, but it

did give some idea of how well the system was working. This was a very troublesome

test, however, because every packet that was a potential problem had to be tracked

down. Fortunately, the specifications for Arctic were later changed, and packets

delivered from any point to any other point were guaranteed to be kept in first-in-

first-out order, which is a much easier ordering to test. We decided to implement

routine checks for this ordering in our randomized tester.

This long list of tests has been included to give some impression of the huge amount

of effort it takes to test a chip as large and complex as Arctic. The wide variety of

features necessitates a very flexible system, which should help to explain why the

user is given such precise control over this system. For those readers desiring even

more detail about Arctic's testing system, Appendix B contains the system's user's

manual, which presents every detail about the system that the user could possibly

need.
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048111e80100000001

048111e80100000001

048111e80100000001

048111e80100000001

04811e80100000001

048111e80100000001

048111e80100000001

048111e80100000001

048111e80100000002

048111e80100000002

048111e80100000002

048111e80100000002

048111e80100000002

048111e80100000002

048111e80100000002

04811e80100000002

e4811le87100000008

e4811le87100000008

e4811le87100000008

e4811le87100000008

e4811le87100000008

e4811le87100000008

e4811le87100000008

e4811le87100000008

e40111e87100000009

e40111e87100000009

e40111e87100000009

e40111e87100000009

e40111e87100000009

e40111e87100000009

e40111e87100000009

e40111e87100000009

if0000000000000000

Figure A-12: test030.chk.pkts file
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Appendix B

The User's Manual for Arctic's

Functional Testing System

This manual was first prepared before Arctic's functional testing system was imple-

mented, and it has been updated over the life of the project. Its purpose is to define

all the details of the original testing system that a user might ever need to know. The

first few sections give an overview of the system and describe exactly how to run it.

The later sections explain every detail of how to manage data structures and how to

format the test files. Note that this manual does not cover the randomized testing

system at all. Also note that "test groups" were originally called "test sequences,"

which is why the word "sequence" is used so often in this manual.

The original document begins with a short introduction and the following list of

sections. From this point on, very little has changed from the original document.

1. Directories

2. General Structure

3. Running the System

4. Data Structures

5. Files
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· Packet Library

* Packet List File

* Packet Log File and Packet Check File

* Stats Log File and Stats Check File

* Errs&Control Log File and Errs&Control Check File

* Configure File

B.1 Directories

The following directories are needed by this testing system.

run_test will contain all the top level descriptions of tests (each in a file), and will

contain the program run_test that will run the test specified in a file when

given that file as an argument.

test_drv will contain the files for our current version of the testing system.

arctic will contain any files from the current release of Arctic that have been mod-

ified to make the system work.

sequences will contain a directory for every test sequence.

specs will contain this file and any other documentation for the system.

packets will contain the Packet Libraries, which will hold all the packets we need

for the test. This directory will also hold some programs used to generate those

packets.

B.2 General Structure

In this testing system, the Arctic module will be instantiated once, and several mod-

ules will be created to connect to it. One module will be connected to each input port
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and will be capable of doing anything necessary to insert packets, cause link errors,

and generate an independent clock. One module will be connected to each output

port and will be capable of detecting link errors, receiving packets, and storing infor-

mation about received packets in a log file. It will also check received packets against

the packet sent to make sure the packet was not changed (if it was changed, the packet

will be stored in a log file). Another module will be connected to the maintenance

interface which will facilitate communication with Arctic's configuration/control bits

and test rings. The top level module will contain Arctic and connections to all these

modules. It will also contain a list of test sequences.

Testing will be accomplished by running a number of test sequences. Each se-

quence will test a few functions of the chip, and, hopefully, nearly all functions of the

chip will be tested thoroughly by at least one of these test sequences. At the end of ev-

ery simulation (i.e. every set of sequences) the errors detected during that simulation

will be written to a file, Simulation_Errs_File (specified in the test_template.h

file).

Each sequence will be divided into three parts:

* Start Sequence

* Run Sequence

* End Sequence

Starting the test sequence is done with the function

start_sequence("configurationfile_name", "packets_log_filename",

"statslogfilename", "errs_contr_logfilename",

<quick>, <fastins>)

which will do two things. First, it will put Arctic in configuration mode and set it

up according to what is specified in the file "configuration_filename", or it will

skip configuration altogether if "configuration_file_name" has a value of zero. The

<quick> argument is a flag that will "cheat," i.e. configure Arctic without using the

maintenance interface, if set to 1. Secondly, the task opens all the files to which
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data will be written during the test sequence. These files will be accessed with three

Verilog "Multi Channel Descriptors."

packets_log-mcd - the stream packets log information will be stored to, under the

name "packets_log_filename"

stats_log-mcd - the stream to which stats log information will be stored, under the

name "stats_log_filename"

errs_log-mcd - the stream to which errors, control, and buffer free log information

will be stored, under "errs_contr_log_file_name"

There will actually be three other MCDs.

packet_errmcd - the stream changed packets will be written to. This has the file

name Packet_Err_File, specified in test_template.h. There is one of these

per simulation (not per sequence).

sim_err-mcd - the stream error messages are written to. This has the file name

Simulation_Errsfile, also specified in testtemplate.h. There is one of

these per simulation (not per sequence).

time_data-mcd - the stream timedata is written to. If Arctic is inserting packets

in PACKED rather than TIMED mode, information about when each packet is

inserted into the system is kept here. There is one of these per test sequence,

stored in the sequence's directory under the name time_data.

The <fast_ins> bit configures the system to insert as fast as it can, or based on

timing information given in the packet insertion file. Each packet insertion command

begins with a number specifying when the packet is to be inserted into the system. If

<fast_ins> is set to 1, the system will ignore these times and insert packets as fast

as it can, in the order they appear in the insertion file.

Running the test will involve alternating run and store procedures. A number of

actions will take place, and then the current state of the system will be stored. After
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that, new actions can take place and the current state will be appended to the files

created before.

"Actions" refer to any data or information sent into the chip after configuration.

Each action in this system is performed with a Verilog function call. Some of these

actions have prefixes such as "mn" or "in" because they are defined within a Verilog

module by that name. At this time, there are seven different kinds of actions:

in.send_packets("packet_list_file_name") will insert all the packets listed in

"packet_list_file_name" into the specified Arctic port at the specified time.

lclk_delay_cycles(<cycles>) will cause the system to do nothing for <cycles>

clock cycles.

mn.write_control_reg(<value>,<time>,<quick>) will change the Arctic control

register to contain the value <value>. The <time> is the number of cycles after

being called that the changing process will begin, and <quick> again is set to

1 if the maintenance interface will not be used.

mn. write_reset_reg(<value>,<time>, <quick>) will write <value> to the reset reg-

ister <time> cycles after being called. If <quick> is 1, the maintenance interface

will not be used.

mn.changemode (<value>,<time>, <quick>) will change Arctic's mode to <value>.

The change will start <time> cycles after being called and if <quick> is 1 the

maintenance interface will not be used.

mn. clear_stats(<quick>) will write to the location that clears Arctic's statistics.

If <quick> is 1, the maintenance interface will not be used.

mn. extest (<vector>) will carry out the JTAG Extest function with the given vec-

tor. Those parts of the vector corresponding to input pins will be applied at

the inputs. After the input is captured, those values should be at the input pin

registers. After the vector has been scanned in, the outputs of the chip should

have the values in those registers connected to the outputs.
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mn. intest_start (<cycles>) will setup the test system to have all inputs and out-

puts of the chip run through the Arctic's version of the JTAG Intest function.

This should be slow as molasses. The <cycles> argument tells the system how

long after an Intest starts that it should be stopped. During an Intest, packet

sending and receiving will work as before but until the Intest stops, no other

instructions can be given to the system without majorly weird things happening

except for the following instruction.

mn.intest_control(<value>,<cycles>) This function, designed to be used with

intest_start, will put <value> in Arctic's control register <cycles> cycles

after the beginning of the Intest. To execute this function, it must appear after

an inteststart instruction, and both it and the intest_start instruction

must appear between a fork/join pair.

mn.bypass (<vector>, <time>) scans the given 32 bit vector through Arctic's bypass

register. The instruction will start <time> cycles after being called.

mn. simple_llm_test() This function puts the chip in low level test mode, scans out

the current state, scans it back in, and resumes chip functions. If everything

works correctly, the chip should not even notice that anything has happened.

Storing state will be done with one of two functions; one stores statistics infor-

mation, and the other stores errors, control and any other information. The received

packets must also be stored, but that is done without making an explicit call to a

function. A log entry is is also stored for every buffer free signal received from every

input port. This is also done automatically. Each output port module continually

stores a Packets Log File entry for every packet received. Also, any packet received

is checked against the packet that was sent into the system to make sure it emerged

unadulterated. If the packet was modified, the packet itself is stored in another log

file. Each packet will have a text header giving a little information about when the

packet was received. There will be no further specification of this file, because it will

not be read again by the system.
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write_stats(<clear>,<quick>) will store all current statistics information in the

file stats_log_file_name (given above as an argument to start_sequence). If

<clear> is set to 1, all statistics will be cleared when they are read. Again,

<quick> allows the stats to be read without using the maintenance interface.

write_errs_contr(<clear>,<quick>) will store all current errors and control in-

formation and the buffer free counters in the file errs_contr_log_file_name

(given above). If <clear> is set to 1, the errors are cleared when they are read.

Again, <quick> allows the errors and control info to be read without using the

maintenance interface.

To end the current sequence, call the function end_sequence. This function will

close the necessary log files (packets, stats, and errs), and will compare all these logs

with corresponding "check" files that are created before the test is run. There is a

check file corresponding to each log file. Each piece of information in the log files

must have a corresponding piece in the check file or at least a "don't care" field must

appear in an appropriate place.

If any log file does not correspond exactly with the appropriate check file (ignoring

don't care fields), error messages explaining the error will be printed to the screen and

to a file, Simulation_Errs_File (which is specified in the test_template.h header).

When errors are detected, the simulation may halt. If HALT_ON_ERR (also defined in

test_template.h) is set to 1, execution of the simulation will halt at the end of a

sequence when errors are detected. If it is 0, the simulation will continue.

Also note that this HALT_ON_ERR bit determines whether or not the system will

halt when link errors are detected. These errors can occur at any time, not just at

the end of a sequence. Error messages caused by link errors will also be written to

Simulation_Errs_File.

end_sequence () will close the log files (Packets Log File, Stats Log File, and Errs&Control

Log File) and check them against all the check files (assumed to have the same

name as the logs, but with a .chk instead of a . log extension). If any check

finds that the two files do not correlate, execution will halt.

83



One additional function remains. Stop_sim ends the simulation.

stop_sim() must be called after an end_sequence and before another start_sequence.

It will close any other unopened files and stop the simulation, taking it to in-

teractive mode.

Hopefully, this structure will be sufficiently general to test most of the chip. It will

continue to be updated. One thing not mentioned is the function that will load all

the packets in the Packets Library and how information in that file will be accessed.

This is addressed in Section 4 of this document.

B.3 Running The System

Executing the command run_test <filename> (where run_test is found in the

run_test directory and <filename> is the name of a test description file) will start

the system running whatever tests are specified in <filename>. The system will stop

when all tests are finished or an error is found. The test description files will have

the following format.

There are two parts to the file. The first part is a list of Packet Library Files.

Each Packet Library that is to be used in the test needs to appear in this file. These

libraries must appear as filenames given relative to the test_drv directory. After all

packet libraries are given, the keyword sequences must appear. This word must be

at the beginning of a line, and it must be on the line by itself. An arbitrarily long

list of test sequences will follow. Please note, while the system allows sequences to be

run without specifying Configure Files (if the user wants to run a sequence without

re-configuring), the system will not be able to run unless the first sequence in the list

configures Arctic.

Each test sequence is specified by number as in test001 or test999 or any other

number. We have specified how the sequences will appear on disk. The program

run_test will enter each test sequence directory and splice the appropriate code into

the right location in test_drv.v, and then run the simulation. The code for each

test sequence is assumed to be in the file test***. code (i.e. for the test sequence
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test004. the code should be in /sequences/test004/test004. code). The format

for a test sequence is given above.

Just to add a little sugar, all white space will be treated equally in the test

description files, so the actual text format does not matter. Just list the packet

libraries, then write the word sequences, and then list all the sequences. Also, on

every line, all text following the symbol "#" will be treated as a comment and will be

ignored.

There is a single command line option. The -b switch tells the system to use a

compiled and back annotated description of the chip rather than a Verilog behavioral

description.

B.4 Data Structures

As has been stated, the packets will be read into an array where they can be ac-

cessed by any part of the system. At the beginning of the simulation the func-

tion read_in_packets will read the packets contained in the packets files into an

array called packet_arr[]. this is an array of 16 bit words. to find where the data

for a particular packet begins, use the packet's 32-bit identifier and the function

get_packet_adder(<packet_id>) in the following way.

integer packet_wordaddr, packetid;

reg [15:0] packet_wordO, packetwordl;

//Assume packet_id has been set to some known value.

//Remember integers function as 32 bit registers in Verilog

packetwordaddr = getpacketaddr(packetid);

packet_wordO = packet_arr[packet_word_addr];

packet_wordl = packet_arr[packet_wordaddr+l];
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In this way, all words in a packet can be accessed. It is up to the module

or task calling getpacketaddr to keep track of how long the desired packet is.

get_packetaddr will return 0 if the given <packetid> is invalid.

B.5 Files

This lists all the files needed for each test sequence and the format each will be stored

in. All numbers are written left to right, most significant bit to least significant bit.

The symbol [31:0], for example, refers to a 32 bit number where the left most bits

are the most significant bits and the right most bits are the least significant bits.

At many places in this section the file names themselves will be specified. Usually,

these are of the form test*.<ext> where "*" is an identifier unique to each test

sequence and "<ext>" is some extension. Here, we specify that this unique identifier,

"*" must be a three digit decimal number ranging from 000 to 999. This is required

because the length of the filenames (in characters) must be kept constant.

B.5.1 Packet Library

These files will contain all the packets to be used in the system. Everything will

be stored in textfiles as hexadecimal numbers. The file will begin with two 32-bit

numbers, each split into two 16-bit parts followed by newlines. The first number

indicates how many 16-bit words are contained in the file (including the header) and

the second indicates how many packets are in the file.

After these two words come the packets themselves. Each packet begins with a

newline followed by a 32-bit packet identifier (also split into two 16 bit parts followed

by a newline) and then the 16 bit words of the packet are given one by one with a

newline after each one. Each new packet follows immediately after the previous one.

No restriction is placed on the what form the packet itself must take, except that the

first 2 data words (the first 32-bit word in the payload) must be the 32-bit identifier

given before. Finally, after the last packet, a 32-bit trailer will follow. This trailer is

also split into 16 bit parts. It is guaranteed to be different from every possible packet
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identifier. The format is further detailed below.

It must be stated that the specified fields in the packet identifier are used only to

aid the programmer in differentiating between packets. The only requirement on the

packet identifiers that is needed to make the program work is that all identifiers must

be unique each time the program is compiled.

Following is the exact format of this file with each type of word defined exactly.

[31:16] header 0 \n

[15:0] header 0 \n

[31:16] header 1 \n

[15:0] header 1 \n

\n (added for readability)

[31:16] packet identifier \n

[15:0] packet identifier \n

[15:0] packet word 0 (uproute) \n

[15:0] packet word 1 (downroute) \n

[15:0] packet word 2 (partid & len) \n

[31:16] packet identifier (first data word) \n

[15:0] packet identifier (second data word) \n

[15:0] third data word \n

(next packet)

\n

[31:16] packet identifier \n

[15:0] packet identifier \n

[15:0] packet word 0 (uproute) \n
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(after last packet)

[31:16] trailer \n

[15:0] trailer \n

headerO [31:0]

[31:0] - Total number of 16-bit words in the file

headerl [31:0]

[31:0] - Total number of packets stored in the file

packet_identifier [31:0]

[31] - Unused. Should be set to 0 unless needed for some

reason

[30:29] - Output port number (0-3) out of which the packet is

to leave (or 0 if not needed)

[28:24] - The size of the whole packet in # of 32 bit words.

Note that this is not the number of 16 bit

words. The length field is kept this way to

be consistent with the length field in the

actual packet.

[23] - 1 iff the packet is a priority packet

[22] - iff the packet should generate a crc error

[21] - 1 iff the packet should generate a length error

[20:15] - Identifier saying which packets file this packet's in

[14] - Always 0

[13:4] - Identifier saying which configuration file was used
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to generate this packet (This will be the number of

the first test sequence where this configuration

appears). Alternatively, if this is being used in a

packet library where this field is not needed, it

can be used simply as a generic field to

differentiate packets in any way.

[3] - 0 if this packet was designed to go into a

particular input port.

1 otherwise

[2] - Unused. Should be set to 0 unless needed for some

reason

[1:0] - The input port this packet is meant to be sent into

if one needs to be specified, or 0 otherwise.

trailer [31:0]

[31:0] - Always one value (f00_0000)

B.5.2 Packet List File

These files contain the lists of packet identifiers telling the system when and where it

inserts packets. There will probably be at least one for every test sequence. The name

of this file will be test*.#. pkts where "*" is a number unique to each test sequence

and "#" is a letter (a-z) separating this list from others in the same sequence.

This file is also stored as a sequence of hexadecimal numbers, starting with a

68-bit header, a newline, and a list of 68-bit words (each followed by a newline), one

for every packet to be inserted into the system. Packet insertion commands must be

listed in order of increasing time.
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[67:0] header \n

[67:0] packet insertion command \n

[67:0] packet insertion command \n

[67:0] packet insertion command \n

header [67:0]

[67:32] - Always zero

[31:0] - The number of packets to be inserted into the system

packet insertion command [67:0]

[67:36] - Time (in # of cycles) after starting that the packet

should be sent in.

[35:4] - Packet identifier

[3] - Always zero

[2:1] - Input Port the packet is inserted into

[0] - Always zero

B.5.3 Packets Log File and Packets Check File

There will be one Packets Check File and one Packets Log File for each test sequence.

Both of these files will also be stored as hexadecimal numbers. Their names will be

test*. log. pkts and test*. chk. pkts where "*" is again a unique number identify-

ing this test sequence. The Packets Log File will be a list of 72-bit words (one for each
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received packet or buffer free signal received, each followed by a newline), followed by

a 72-bit trailer (guaranteed to be different from every other word in the file).

[71:0] - received packet record or buffer free record

[71:0] - received packet record or buffer free record

[71:0] - received packet record or buffer free record

[71:0] - trailer

received packet record [71:0]

[71:40] - Packet identifier

[39:38] - Always 0

[37:36] - Output Port packet was sent from

[35:33] - Always 0

[32] - 1 iff received packet matches the transmitted packet

bit for bit

[31:0] - Time in # of cycles after the beginning of a sequence

that the packet was finished being transmitted

from ARCTIC

buffer free record [71:0]

[71:35] - The number leOOOOOO0 (37 bits)

[34] - Always zero

[33:32] - The input port the buffer free signal came from

[31:0] - Time in # of cycles after the beginning of a sequence

that the buffer free signal was given.
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trailer [71:0]

[71:0] - The number lf_0000_0000_0000_0000

The corresponding check file has nearly the same format. Major differences are

as follows:

1. The buffer free records will not be in the check file. The system will make

sure that there are the same number of buffer free records and received packet

records, but will make no other use of these records.

2. Received packet records may be out of order and may contain x's in certain

fields to indicate that some values are not important. These x's can appear

anywhere except bits [31:0] which indicate the timing/order of the packet.

3. Bits [31:0] of a received packet record will not contain timing information.

Instead, this field should hold a number indicating the order the packets are

supposed to emerge from each output port. All packets labeled "1" for an

output port must emerge before any packets labeled "2" and so on. This gives

the ability to check that one group of packets emerges before another. There is

one exception. When the number 0 appears, it is assumed the user does not care

when the packet emerges (it can come out at any time). It is also important

to note that, for each output port, all packets numbered "1" in this fashion

should precede those numbered "2" and so forth, and any O's should appear at

the beginning.

The trailer must be in the same place and must be left unchanged.

B.5.4 Stats Log File and Stats Check File

There will be one Stats Check File and one Stats Log File for each test sequence.

Their names will be test*.log.stats and test*.chk.stats where "*" is again
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a unique number identifying this test sequence. The stats log file is stored as a

textfile with hexadecimal numbers and contains any number of reports of all the

statistics information in Arctic. Each report consists of a newline, followed by a 36

bit value set to 1, followed by 24 36-bit words (one corresponding to each piece of

statistics information in Arctic, each followed by a newline). These 36-bit words will

be arranged starting with output port 0 and moving through to output port 3. The 6

words for each output port will be arranged in the following order: packets, priority,

up, down, idle wait. At the end of the last report, there will be a newline followed by

a 36 bit 0.

\n

[35:0] - header (0_0000_0001) \n

[35:0] - Port 0 packets statistic \n

[35:0] - Port 0 priority statistic \n

[35:0] - Port 0 up statistic \n

[35:0] - Port 3 down statistic \n

[35:0] - Port 3 idle statistic \n

[35:0] - Port 3 wait statistic \n

(If a second report follows ..... these lines are added)

\n

[35:0] - header (0_0000_0001) \n

[35:0] - Port 0 packets statistic \n

[35:0] - Port 0 priority statistic \n
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[35:0] - trailer (0_0000_0000) \n

Again, the check file is the same format, except that x's may be inserted into fields

that are not important.

B.5.5 Errs&Control Log File and Errs&Control Check File

There will be one Errs&Control Check File and one Errs&Control Log File for each

test sequence. Their names will be test*. log. errs and test*. chk. errs where "*"

is again a unique number identifying this test sequence. The Errs&Control Log File

is stored in a textfile with binary numbers. It contains any number reports of Arctic's

errors and control information and buffer free counters.

Each report consists of a newline, followed by a 17 bit value set to 1, followed by

4 17-bit words (each corresponding to the errors information for one port and each

followed by a newline), followed by two 17-bit words giving the status of the control

register (in a weird format), followed by a single 17-bit word holding the buffer free

counters.

The 4 error words will be arranged in port order, starting with port 0 and con-

tinuing to port 3. The control word format is just plain strange because of the move

from an 8-port to a 4-port arctic. The first 2 bits appear at the beginning of the first

word and the last 16 appear at the end of the second. The format for the buffer free

count word is given in the Arctic user's manual. Since this word is only 16 bits long,

we add a 0 in bit location 17. After the last report there is a newline followed by a

17 bit 0.

\n

[16:0] header (0_0000_0000_0000_0001) \n

[16:0] error word for port 0 \n

[16:0] error word for port 1 \n

[16:0] error word for port 2 \n
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[16:0] error word for port 3 \n

[33:17] control status report \n

[16:0] control status report \n

[16:0] buffer free report\n

(If a second report follows ..... these lines are added)

\n

[16:0] header (0_00000000_0000_0001) \n

[16:0] error word for port 0 \n

[16:0] error word for port 1 \n

\n

[16:0] trailer (00000_00000_0000_0000) \n

error word [16:0]

[16:15] - Always set to 0 (unused)

[14:13] - Buffer free error count

[12] - ICLK error

[11:10] - Route error count

[9:8] - Idle error count

[7:6] - Length error count

[5:4] - Frame error count

[3:2] - Overflow error count

[1:0] - CRC error count

control status report [33:0]
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[33:32] - Control Status word bits [17:16]

[31:16] - Always zero

[15:0] - Control Status word bits [15:0]

The format of the control status word is given in the Arctic user's manual as it is

too lengthy to detail here.

buffer free report [16:0]

[16] - Always set to 0 (unused)

[15:0] - Buffer Free Counter Word

The format of the Buffer Free Counter word is given in the Arctic user's manual

as it is too lengthy to detail here.

Again, the check file is the same format, except that x's may be inserted into fields

that are not important.

B.5.6 Configure File

This optional file contains all the information necessary to configure an arctic. The

file name will be written as test*. config where "*" is a number unique to each test

sequence. It is stored in ASCII as hexadecimal numbers, and can have one of two

formats. Both formats begin with a 32-bit header telling which format the file is in.

If the 32-bit header number is 0, then format 0 is used. In this format, configuration

information for each port is given in port order (from 0 to 3). For each port, the five

configuration words are given in order (O to 4).

[31:0] header (0000_0000) \n

[31:0] Port 0 configuration word 0 \n

[31:0] Port 0 configuration word 1 \n
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[31:0] Port 0 configuration word 2 \n

[31:0] Port 0 configuration word 3 \n

[31:0] Port 0 configuration word 4 \n

[31:0] Port 1 configuration word 0 \n

[31:0] Port 1 configuration word 1 \n

A definition of the bits in each of these configuration registers is given in the Arctic

user's manual and is too lengthy to detail here.

If the header contains the value 1, then the file contains only 5 configuration

words. These five words will be broadcast to the entire chip.

[31:0] header (0000_0001) \n

[31:0] configuration word 0 \n

[31:0] configuration word 1 \n

[31:0] configuration word 2 \n

[31:0] configuration word 3 \n

[31:0] configuration word 4 \n
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