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Abstract

This thesis addresses a problem which arises when different computer systems

attempt to share data through an interchange format. Let us suppose that the format has a

provision for storing system-specific data. After one system exports a file in this format, a

second system importing the file may find it inconvenient or impossible to accommodate

data specific to the first. While this loss of information is understandable in a one-way

exchange, the real problem occurs when the data is reimported into the originating system.

When a file is exported by the second for import by the first, we will have lost any system-

specific data with which we began. This is the "round trip problem," the loss of

information during the exchange of data between two systems.

In this thesis, I describe the round trip problem as it is encountered in the Process

Handbook project, where process data is exchanged between handbook prototypes using

the Process Interchange Format (PIF). I propose a solution based on the concept of the

companion file. I then describe the PIF toolkit, a code library that serves as the foundation

for translators that apply this solution. Finally, I demonstrate the feasibility of the solution

through PIF translators built using the toolkit.

Thesis Supervisor: Dr. Thomas W. Malone

Title: Patrick J. McGovern Professor of Information Systems

Director, Center for Coordination Science
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1 Introduction

Given an interchange format for computer data of a certain domain, its users are

likely to run into the following problem. Suppose a user wants to share data between two

different computer systems, X and Y, which can read from and write to this format. This

may involve the use of a separate translator program that works with each system's native

files. After creating data with system X, the user exports this data to the interchange

format. By its very nature, an interchange format for a particular industry or field of
research is designed to contain generalized data applicable to many, if not most, systems.

So, on the export from X, data specific to system X may be left out. Let us optimistically

suppose that the interchange format is able to accommodate such data. Upon importing this

first interchange file into system Y, however, only that which is relevant to Y will be

translated. Thus, some of the system X data will be ignored.

Though not ideal, this is to be expected. While the phrase "lost in translation"

summarizes the difficulties of any one-way exchange, the real problem occurs on the data's

return trip from system Y to system X. After using system Y, the user exports this data to

a second interchange file. This will contain general modifications made in system Y and,

perhaps, some Y-specific data. Then, when this file is translated back into system X, the

user will have lost any X-specific data with which he or she began. It is this loss of

information which we characterize as the "round trip problem." In any sharing of data

through an interchange format that completes a cycle between multiple systems, we would

like to be able to preserve as much system-specific data as possible.

This paper describes a solution to the round trip problem for the Process Handbook

project at MIT's Center for Coordination Science (CCS). The goal of this project is to help

organizations redesign their existing processes and to invent new organizational processes

that take advantage of information technology. The round trip problem arises when using

the Process Interchange Format (PIF) to exchange data between different handbook

prototypes. Originally developed for the handbook, PIF is a translation language for

sharing business process descriptions among diverse representations.

In the next section, we provide background material on the handbook, PIF, and the
relationship between the two. In Section 3, we analyze the round trip problem in PIF and
categorize exactly what information can be lost in a PIF translation. We can then present
our solution framework, as well as identify the solution's requirements and assumptions.
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Section 4 describes the PIF toolkit, the foundation for translators that preserve system-

specific data in exchanges. We also outline the toolkit's import and export algorithms, the

steps taken to solve this problem. In Section 5, we discuss the implementation of

translators based on the toolkit for various systems. Prototypes of the handbook are the

primary testing grounds for the solution. Finally, we arrive at some conclusions

concerning our solution framework and see how it could be applied to other situations.
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2 Background

2.1 The Process Handbook

2.1.1 Project Overview

This project seeks to collect examples of business processes and represent them in

an electronic handbook (Malone et al 1993). This handbook will help in managing

organizations by displaying alternatives to how a given process could be performed with

their relative advantages. This on-line tool allows the user to compare and contrast related

processes based on factors such as cost, time, etc. By learning how different organizations

perform similar processes, one can redesign existing processes or invent new processes.

With our methodology for representing organizational practices and our extensive collection

of examples from the field, our goal is to provide a firmer theoretical and empirical

foundation for tasks such as enterprise modeling and business re-engineering.

The project's key intellectual challenge is developing techniques for representing

these processes. Our research on this subject draws upon ideas from computer science

about inheritance and from coordination theory about managing dependencies. Our goal

was to develop a handbook where a user would not have to analyze every new

organizational process "from scratch." For example, assuming the handbook had a

representation of a generic "sales process," someone studying a specific sales process

should be able to focus on what is novel about the new situation. Thus, we have
developed a language that explicitly represents the similarities and differences among

related processes. This facilitates the display of alternatives which might be appropriate for

a given scenario.

The novelty of the handbook's approach lies in its representation of processes at

varying levels of abstraction. The handbook is arranged in a hierarchy of increasingly

specialized processes, with the more generic at the top of the tree and the more specific

toward the bottom. Similar to object or type hierarchies in object-oriented programming

and knowledge representation, processes at any level "inherit" attributes or characteristics

from higher levels by default. In addition, a process can add or change their own

1 More precisely, this "tree" is a directed acyclic graph (or "dag") since an activity can be a specialization of
multiple activities. In other words, a node in the hierarchy can have multiple parents.
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attributes, perhaps for more specialized processes to inherit. The advantage of this

approach is that it empowers users to only represent what is different about a new situation.

Also, the amount of work necessary to document a new process is significantly reduced

from having to start at "ground zero." Most importantly, this specialization hierarchy gives

the handbook a structure where numerous examples collected from the field can be

organized effectively.

Additionally, the handbook represents the concept of process decomposition in a

second, orthogonal hierarchy. In contrast to the "is a kind of' relationship linking nodes in

the specialization hierarchy, parent and child nodes have a "is a part of' relationship in this

decomposition hierarchy. To see the complementary relationship between these two

hierarchy trees, we look at a small example concerning sales activities in Figure 1 (a

simplified version of Figure 1 from Malone et al 1993). At the first level, the more general

"Sell product" activity specializes into the "Direct mail sales" and "Retail storefront sales"

activities. Each of these three has, in turn, a set of subactivities representing its

decomposition.

Though reminiscent of object-oriented inheritance in computer science, inheritance

in the handbook is uncommon in the following two ways. First, upon the creation of a

specialization, say "Direct mail sales," the new activity inherits not only the simple textual

attributes but also the complex decomposition attribute of the parent.2 As expected,

changes can be made to a child's decomposition, such as the replacement of "Identify

prospects" with "Obtain mailing lists" in "Direct mail sales." Second, a user can represent

the omission of a subactivity in a specialization, such as the lack of need to identify

prospects in "Retail storefront sales." In a more rigid, traditional object hierarchy, this is

not possible. Every attribute of a base object is relevant in more specialized objects. For

example, every attribute of a "Vehicle" object, such as its weight, should pertain to a

specialized object like "Automobile." A current topic of research is a more formal

description of handbook inheritance and its differences, if any, from traditional notions of

inheritance (Wyner and Lee 1995).

2With multiple inheritance, the more accurate term should be "parents." The composition of multiple
decompositions (or, in more general terms, the semantics of multiple inheritance) is a topic that has not
been investigated fully. Currently, we use a simple "union" operation, supplemented by human interaction
to add or delete process steps and reconnect dependencies (described later).

14
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Related to inheritance is the concept that changes made to the handbook must have a

context. As the handbook classifies processes at various levels of abstraction, the context

represents the level of abstraction at which a change should be made. This context is

important because it determines the scope of activities that are affected when the change is

propagated by inheritance. If we would like to further decompose the subactivity "Deliver

product," we must first determine whether this decomposition is specific to "Direct mail

sales," general to all sales processes, or even, perhaps, global to all activities where a

product is delivered. For example, the subactivity "Track shipment" only makes sense in

the context of product delivery for mail order sales, but "Confirm delivery" might be more

appropriate at the generic "Sell product" level.

Though not covered in depth here, much of the research on the handbook involves

coordination theory or the management of dependencies between activities. In Figure 1,

the two specialized sales processes have prerequisite dependencies, a constraint that one

subactivity must take place before another. Adding a dependency is an example of a

change to the handbook that requires a context. For example, in the context of "Direct mail

sales," the payment must be received before the product is shipped. In other contexts, such

as a promotional offer where the customer has a free trial period, the product may be

shipped before payment is received. Thus, these dependencies are not displayed at the

generic "Sell product" level because the constraints on delivering and paying are not

universal to all sales processes. They are also not an intrinsic property of delivering a

product, so we consider the dependency to be a property of, or belong to, the ancestor

activity instead of the participating activities.

With the goal of allowing the user to compare alternatives, related specializations in

the handbook can be grouped together to form a "bundle." Then, given this refinement,

comparisons will be most appropriate between activities in the same bundle. For a given

activity, a bundle can be thought of as an axis or direction along which further

specializations can be added. Displayed graphically in a tree, these bundles appear as an

intermediate layer between an activity and its specializations. In Figure 2, "Direct mail

sales" and "Retail storefront sales" belong to the "How sold?" bundle. "Sell product" also

has bundles grouping specializations based on what is sold or to whom the product is sold.

As an example with multiple parents, "Sell clothes by mail order" is of special interest. It

should inherit the attributes and subactivities of both the "Sell clothing" and "Direct mail

sales" activities.

16
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Figure 2: The bundles of specializations for "Sell product."

2.1.2 Architecture Requirements3

Before drawing up any plans for a system architecture, we should analyze the

variety of usage scenarios we envision for the handbook. Initially, a group of qualified

individuals (the "founding fathers" of the handbook) will organize their collective

knowledge about basic business and coordination processes into the aforementioned

specialization and decomposition hierarchies. Given this skeleton tree of generic activities

such as "Sell clothes by mail order," a field investigator studying a specific situation (e.g.,

Lands End) will first add his or her description as a new leaf (specialization) where

appropriate. Then, he or she will edit the inherited decomposition of the new process to

reflect its uniqueness. At some later stage, a qualified editor will review and approve new

additions to the handbook. Finally, with a populated handbook, one should be able to
learn from and compare actual process examples, perhaps even through a workflow viewer

or a simulation engine.

The handbook can be viewed as a collection of services, and our architecture must

accommodate the needs of a diverse set of users. Still, all these different needs impose a
few common requirements. First, our system needs a storage facility that can handle our

3Narasimha Rao, a former research assistant at CCS, performed much of the investigation of the
architecture requirements.
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process representations. This database package must have a programming interface

whereby "process inheritance" could be implemented. Though an object-oriented database

may seem like a natural choice, inheritance in the handbook has some additional caveats as

discussed earlier. Furthermore, the arbitrary specialization of activities requires a dynamic

object system, either built in to the database or simulated by meta-objects. Lastly, a

thorough process description consists of much more than just its decomposition, so we

should be able to include types of data other than just plain text (formatted text, diagrams,

pictures, tables, links to longer reports, etc.).

Second, we would like the development of the handbook to operate in a distributed

environment. Multiple users will access the database at the same time, and they will make

changes interactively as well as remotely.4 Having a central repository facilitates the

maintenance of the data and the review of handbook submissions. Those in the field

mapping new processes will most likely be working on stand-alone (non-networked)

environments, such as a personal computer laptop. However, they will still need to

connect to the central server from time to time. After having previously downloaded some

subset of the handbook data, field investigators will eventually replicate their new entries

back to this repository. This raises the standard issues of data consistency and version

management, mainly when two users separately modify the same data and then hope to

combine their changes.

Third, all users of the handbook must have tools to view and edit process

descriptions. These tools should be able to operate on any size subset of the database.

They should also have some provision for displaying and storing the heterogeneous data

found in complete process descriptions. Editors must be able to display changes from and

write changes to the repository. A seemingly simple edit of a high-level process may affect

many other activities due to inheritance calculations and propagations.

Most importantly, these viewers and editors must allow navigation within and

between the two types of process hierarchies. There are two different patterns of handbook

usage that lead to this requirement. Those browsing the handbook will likely begin at the

root of the specialization hierarchy (the most generic activity) to find an activity of interest,

then investigate its decomposition (a top-down approach). On the other hand, those

4 Remote collaboration is especially important in the handbook project since the four principal investigators
(Profs. Malone, Crowston, Lee, and Pentland) are conducting research at different universities across the
United States of America (M.I.T., University of Michigan, University of Hawaii, and University of
California at Los Angeles, respectively).
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entering in a new process may prefer to first think in terms of its steps or subactivities, then

find a place in the specialization hierarchy where it belongs (a bottom-up approach).

Finally, as a practical consideration, our system should be designed to be usable on

laptops given the usage scenario for field investigators. First, this implies that, with the

current state of computer technology (i.e., with only personal computer laptops), a

handbook implementation should not solely exist on workstation platforms (e.g., UNIX).

Second, as mobile computing is currently no complete substitute for desktop computing,

we must be sensitive to the issues of screen real estate and processing power, especially

with inheritance computations.

2.1.3 Prototype Implementations

Initially, we sought a single system on which to build the handbook. The first

major handbook prototype was built by Chris Dellarocas, a CCS doctoral student, in

Kappa-PC, a knowledge-based software tool from Intellicorp. As a "proof of concept,"

this prototype demonstrated much of the intended functionality in process inheritance and

hierarchy browsing. However, its capabilities for handling large numbers (hundreds) of

processes and structured text descriptions were limited. Also, the Kappa-PC tool had no

provision for multi-user access other than passing around the prototype's database from

user to user like a baton.

George Wyner, also a doctoral student at CCS, then built the second major

prototype in Lotus Notes, a groupware software package, to answer some of these

shortcomings. With a framework designed for collaboration, this version easily allowed

contributions from all handbook researchers. Remote participants replicated their work via

modem or network connection back to the Notes server physically residing at our research
center. Plus, each entity (activity, bundle, or dependency) was treated as a document

generated from a form or template. Because each document could then hold "rich"

(formatted) text and embedded graphics, they more strongly resembled full process

descriptions. Though a user could browse through outline views of the specialization and

decomposition hierarchies, this prototype did not have inheritance, unfortunately. In other

words, activities did not inherit the properties and subactivities of their ancestors.

With time, the handbook architects concluded that no single, existing system could
meet all our architecture requirements. Nevertheless, for the handbook to be most useful, it

would need capabilities in a broad spectrum of areas: object-oriented inheritance,

distributed database access, semistructured multimedia editing, hypertext, flow-charting,

19



and others. Without the human resources of a commercial software house, we could not

afford to build such a handbook "from the ground up." We then pursued a "component-

ware" approach in the hopes of making the most of existing technology, as opposed to

trying to compete with it.

We chose to develop a three tier architecture (Figure 3) with the following

components: a process repository, various handbook applications and graphical user

interfaces, and a database access layer for application developers. Erfan Ahmed, a CCS

research assistant, has thoroughly analyzed this decision and described an implementation

of the intermediary layer (Ahmed 1995). Having this middle layer (also known in some

circles as the business logic) gives us two advantages. First, for any component, we can

choose to build upon the packages that have the desired functionality in a specific area. The

two previous prototypes, each built upon a single software development tool, were

constrained by having the database inseparable from the application. With the choice of

one no longer binding the choice of the other, we can hope to have the best of both worlds.

Second, by incorporating the logic of process inheritance within the "middleware," we can

eliminate code duplication and ensure consistency in inheritance operations across all

editors.

Database
Access

Process gtLayer Handbook
Repository (with
(Database) inheritance Applications

logic)

Figure 3: The three tier handbook architecture (Ahmed 1995).

On the down side, the savings in development work from using existing products is

lessened by the additional effort needed to integrate these multiple components. Also, a

prototype created from this architecture will most likely not have the tightly integrated look

of the original prototypes created from "all-in-one" systems.
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2.2 The Process Interchange Format

2.2.1 Motivation and History

Thus, instead of the daunting task of building a single, monolithic system to

support all possible uses, our research team has chosen to extend existing systems with

handbook functionality. A key element of such a plan is a mechanism for exchanging

process descriptions between different tools. Thus, we began developing the Process

Interchange Format (Lee and Yost 1994), an effort led by Jintae Lee, one of the principal

investigators in the handbook project. This approach allows us to view the handbook as a

collection of specialized tools bonded by the glue of PIF. Just as importantly, we aimed to

preserve the data entered in previous prototypes for our current and future tools.

As we proceeded, we realized that a standard format of process representations

could be valuable to others. The business process descriptions found in our project have a

wide variety of applications: process re-engineering, workflow management, simulation,

etc. With different kinds of systems exchanging data through the PIF, these systems could

interact much more easily. Consequently, we formed a working group in October 1993

consisting of representatives from several universities and companies to develop the format

(the most active being University of Hawaii, Stanford University, University of Toronto,

and Digital Equipment Corporation).

There are two goals for this PIF project. First, we sought to automatically

exchange process descriptions between systems of the working group members. To

achieve this goal, each system only needs to have translators to convert data between its

native format and the common interchange format. For "n" number of systems, the

number of translators (or translation directions) will only grow linearly (n*2: for each

systemi, PIF-->systemi and systemi-->PIF) instead of quadratically (n*(n-1): for each

systemi, systemi-->systemj, where i j). The second and larger goal is to arrive at a

foundation for what might eventually become a standard for exchange among researchers,

corporations, and users of commercial products. By supporting interchange between

different process representations, we also promote the sharing of related work, and this

would be beneficial to all parties.

To develop PIF, the group members began by examining their respective projects to

find commonalities for an interchange format. We analyzed the types of objects

represented in process descriptions, such as activities and resources, along with their
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attributes and relationships. In addition to our handbook, the two other most prominent

systems were the Spark project at Digital Equipment Corporation and the Virtual Design

Team (VDT) project at Stanford University. The Spark project, represented by Gregg

Yost, aims to create a tool for creating, browsing, and searching libraries of business

process models. The VDT project, represented by Yan Jin, aims to model, simulate, and

evaluate process and organization alternatives.

After the group explored the similarities in their systems, the main challenge was to

define the minimal ontology (specification of our object model) of constructs in existing

business process descriptions which is still rich enough for meaningful exchange between

various systems. Some, like the notion of an "activity," were present in all three systems,

so these were good candidates for the common ontology. On the other hand, most of those

that existed in only one system, such as the handbook's "bundle," were considered too

project-specific. More interestingly, groups sometimes had different names for similar (if

not identical) objects; "actor" and "agent" can both refer to a human resource. Similarly,

we occasionally had different interpretations for an object of a particular name.

These more tangible objects did not present as much of a problem as relationships

between objects. The group had to determine if any given relationship should be an

attribute of one of the entities involved (i.e., a link or "pointer" from one object to another)

or a separate entity in itself. For example, if an activity "requires" a certain resource, this

may be represented as a property of the activity, a property of the resource, or a "relation"

object. These differences in representation are known as "category differences" (Tse

1991). For the interchange format, we decided to package a relationship as a separate

object only if we could envision it having attributes of its own. Even with this decision for

PIF, the relationship may be represented differently in any particular system. This means

that translators may have to convert between these different approaches when mapping a

file of PIF objects to a system (or vice versa).

2.2.2 Description

The working group finalized the first version (1.0) of a PIF ontology in November

1994 (Lee and Yost 1994). The philosophy of the group was to start with the minimal

ontology and only expand through proposals accompanied by concrete examples

illustrating the need. (The ontology is undergoing further refinement and will likely be

extended for a second version in 1995.) This "core" ontology is arranged in a class (or

type) hierarchy (Figure 4). At the root is the ENTITY class, which defines some basic
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attribute slots such as "Name" that are relevant to all PIF entities. Each class has a set of

attributes defined specifically for itself, and, as in traditional type hierarchies, it inherits the

attributes of its parent. For example, we consider a decision to be a subclass5 (or subtype)

of activity, so a DECISION type inherits all the ACTIVITY attributes. An actual PIF

process description consists of a file of these kinds of objects.

( ENTITY )
A

ACTIVIY )
( DECISION 3~~~·~~

A

RPT ATonV 
hAA I

ACTOR

qT TIGROUP

A
f ( r CREATES

( USES

\1 MODIF 

r ~ PERFORMS
r ~ SUCCESSOR

r PREREQUISITE )

r AT-nf'T_-R-T:!I.T'rfT TID D ~Tj -)
I==)~.IkAA-L'i4-%,/.%.%.A~.~J.

\- LL s ' A I - L '..JCsI 1 A J

Figure 4: The PIF class hierarchy (Lee and Yost 1994).

In addition to the core set of object types, PIF provides a framework for extending

this set of types to include additional information needed in specific applications. No

interchange format, including PIF, is likely to completely meet the needs of the systems

that use it. On one hand, the supplemental data may be system-specific attributes for a core

class, such as graphical layout information for how an activity should be drawn. On the

5 We refrain from using the term "specialization" here, reserving it for the Process Handbook. Of course,
we still consider a decision to be a special kind of activity. Whether or not to treat process specialization
and class subtyping as the same is discussed in section 5.2.2. For now, we maintain the distinction.
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other hand, this data may also come in the form of extensions to the ontology (i.e., new

subclasses). For example, in light of the handbook, we would like to represent objects of

the bundle type and various dependency types in a PIF file.

To accomplish this, PIF employs the Partially Shared Views (PSV) scheme for

communicating among groups that use different type hierarchies (Lee and Malone 1990).

For our framework, PSV attempts to maximize the level of information sharing among

groups that have extended the core ontology. With many systems requiring extensions to

various parts of the core class hierarchy, differences in granularity will be inevitable. Some

will find it necessary to represent multiple types of actors, while others will find the core

ACTOR class to be sufficient for their needs.

Though the details of PSV are explained elsewhere, here is the basic idea: an object

of an extended type that is not recognized (not "in view," so to speak) should be translated

as an object of the nearest parent type that is in view.6 Unless two systems happen to share

a view of a set of subtype extensions, this parent will be a core PIF type. Suppose that a

system which has a type extension of ACTOR named EMPLOYEE exports a process

description. Upon importing this PIF file into a system that does not support this

extension, EMPLOYEE objects should be converted to ACTOR objects. Thus, this

mechanism allows objects to be translated with as little loss of meaning as possible, as an

employee is just a kind of actor. It also brings an "expand on need" philosophy to PIF,

preventing the core ontology from being infested with types that are not used in practice but

only seem potentially beneficial.

The syntax of PIF is built upon the Knowledge Interchange Format (KIF)

(Genesereth and Fikes 1992), a language designed for sharing knowledge among computer

systems. Much effort has gone into making KIF a good general-purpose format, and we

feel it is as good as, if not better than, anything else. For our purposes, any syntax that can

specify classes and instances (object types and actual objects) as well as their attribute types

and values will suffice, and KIF is well suited to do that with little overhead.

In particular, PIF adopts Ontolingua's frame syntax, an extension of KIF for

representing object-based knowledge. Ontolingua itself is a system for analyzing and

6 PIF version 1.0 does not support multiple inheritance. However, it is possible that a future version of
PIF will. With multiple inheritance, a more complicated PSV mechanism will be necessary to translate
objects into their nearest parent types in view.
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translating ontologies through higher-level KIF constructs (Gruber 1993). Along with the

grammar for PIF syntax, version 1.0 of the core ontology in frame syntax can be found in

the appendix. As an example, the class frame for ACTIVITY follows (Frame 1). "Own-

slots" are attribute values of the frame itself, but "template-slots" define attribute slots for

all instances of the frame. The specific meanings of these template-slots is discussed later

in section 4.2.2, but their general purpose is to specify constraints on actual ACTIVITY

objects. Thus, both classes and instances can have own-slots, but template-slots are only

allowed in classes. Though not displayed in this example, any actual values in a template-

slot are inherited. Suppose we wanted all ACTIVITY instances to have a default Status

value. This value would be part of the Status template-slot in the ACTIVITY class.

; Frame 1: An example class frame, the ACTIVITY class.

(define-frame ACTIVITY
:own-slots (

(instance-of CLASS)
(subclass-of ENTITY)

:template-slots
(Component (slot-value-type ACTIVITY))
(Precondition (slot-value-type RESTRICTED-KIF-SENTENCE)

(maximum-slot-cardinality 1))
(Postcondition (slot-value-type RESTRICTED-KIF-SENTENCE)

(maximum-slot-cardinality 1))
(Status (slot-value-type SYMBOL))

Though KIF is based upon Lisp (Steele 1990), this should not be a cause for

concern to those not accustomed to the language. We are mainly using Lisp to provide a

structure for our information. In addition to the number, symbol, and string literal types,

PIF allows sentences of a subset of KIF, named a RESTRICTED-KIF-SENTENCE in our

syntax. The idea here is to provide some of KIF's expressive power without requiring

every PIF translator to be able to parse everything in Common Lisp.

2.2.3 Additional Issues

This section is a discussion of other PIF issues that are relevant to either the

handbook or the round trip problem.

After much debate, the working group decided that PIF files should only contain

instances. In other words, they should not have definitions of any new class types. As

with the creation of the RESTRICTED-KIF-SENTENCE, our main motivation was to

reduce the complexity of the translators. Allowing new classes in process descriptions
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would require translators to have a dynamic object system to process the class and attribute

type (template-slot) definitions. The group members felt that some potential PIF users,

many of whom are from industry instead of academic research environments, would be

reluctant to participate if such a system (perhaps Lisp-based) was necessary.

This decision had two immediate consequences for our format. First, translators

would still require some class information about ontology extensions. More specifically, in

PIF's version of the PSV scheme, they still need a class hierarchy to find nearest visible

parents. For example, in order to correctly import an EMPLOYEE object into a system that

did not support this type extension, we must at least know that the type was a subclass of

ACTOR. Thus, at the beginning of every file of objects, before all the "define-frame"

instance definitions, PIF requires a simple "define-hierarchy" construct. Essentially a

textual representation of the tree of Figure 4, a sample hierarchy with the EMPLOYEE

extension follows in Frame 2.

; Frame 2: An example define-hierarchy construct with the EMPLOYEE
; extension.

(define-hierarchy
(ENTITY

(ACTIVITY
DECISION

(RESOURCE
(ACTOR

GROUP
EMPLOYEE

SKILL

(RELATION
CREATES
USES
MODIFIES
PERFORMS
SUCCESSOR
PREREQUISITE
CANNOT-BE-CONCURRENT

The difference between full class definitions and this single hierarchy definition is

the amount of information known about type extensions. For the PSV scheme, it is not

necessary to know what kinds of slots EMPLOYEE objects have. Instead of parsing and

storing a full EMPLOYEE frame like the ACTIVITY example (Frame 1), all a translator

needs to know is that an EMPLOYEE is a subtype of ACTOR. This uncomplicated,
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minimalist approach meets the need of finding an ancestor. It also suits the working

group's desire to have PIF files self-contained, so they can be shared without additional

information. Thus, PIF allows type extensions but not full type definitions. However, we

will later reintroduce these definitions in section 4.2.2 for the solution to the round trip

problem.

The second consequence of not allowing classes is that attribute values must be

"flattened." That is, an object must explicitly contain all its attributes and values, including

those inherited without modification from its class and ancestor classes.7 Originally, a

possible alternative would be to have "non-flattened" attributes, where an object only

contains those attributes and values that are different from its parent classes. In some

systems, it may be useful to assign a default value for a particular attribute in a class, such

as a default "Salary" value for the EMPLOYEE type. Then, actual instances of the

EMPLOYEE type and subtypes would not have to explicitly contain this attribute unless

they had a different "Salary" value.

However, without class definitions, a translator has no way of determining what

values should be inherited for any given instance in a PIF file. For example, when the

EMPLOYEE object is imported into another system, there is no way of knowing the first

system's default value for "Salary." Therefore, an EMPLOYEE object should have all
such inherited values when it is exported to PIF since the class definition will no longer be

available. Having flattened attributes also eliminates the need for PIF translators to perform

inheritance operations, partially a result of not having or requiring a dynamic object system.

Of final note, our framework has a provision for storing any attributes of an object

that are not part of its type definition. Every PIF entity can have an additional "User-

Attribute" which itself consists of attribute name and value pairs. As opposed to type
extensions, this is an alternative method of including system-specific information. In our

experience, we have used this method either before the proposal of a subtype or when we
do not feel that the object warrants such a distinction. For example, this ordinary ACTOR

object has two extra fields (Frame 3).

; Frame 3: An example instance frame, an ACTOR object with two user
; attributes.

7 Currently, no class in PIF 1.0 has a default value. If a system's classes do not have any such values
either, this issue of "flattening" does not exist since instances will have no values to inherit. This implies
that all instances will be necessarily flat.
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(define-frame 720909171700FYC
:own-slots (

(instance-of
(Name
(User-Attribute

ACTOR)
IFrank Chanl)
'(Age
'(E-Mail-Address

22)
"mickeymit.edu"))

Besides the storage of "ad hoc" attributes, another use of this slot involves our PSV

scheme. Suppose that a system's EMPLOYEE class defined a couple of slots, say

"Medical-Plan" and "Salary." An EMPLOYEE object in this system appears in Frame 4.

Upon translating to a different system that did not share the view of the EMPLOYEE type,

the "Medical-Plan" and "Salary" attributes would be relocated to the user attributes

repository as displayed below. The converted ACTOR object in the second system is

displayed in Frame 5. Even if an importing system cannot make use of the these attributes,

we aim to preserve them in the hopes that the translator can add them back to the process

description when exporting back into PIF. Unfortunately, not every system has a place for

these arbitrary attributes, and this is part of what leads us to seek a more universally

applicable solution to the round trip problem.

; Frame 4: Before PSV conversion, an EMPLOYEE object in a system with
; the EMPLOYEE type extension.

(define-frame 720909171700FYC
:own-slots (

(instance-of
(Name
(Medical-Plan
(Salary

)

EMPLOYEE)
IFrank Chanl)
"Prudential")
1.99)

; Frame 5: After PSV conversion, the same object as an ACTOR in a system
without the EMPLOYEE type extension.

(define-frame 720909171700FYC
:own-slots (

(instance-of
(Name
(User-Attribute

ACTOR)
IFrank Chanl)
'(Medical-Plan
'(Salary

"Prudential")
1.99))
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3 The Round Trip Problem in PIF

As suggested earlier, part of the motivation for having the "User-Attribute"

repository was to preserve all attributes of the original objects not in view. Just as the PSV

scheme aims to minimize the loss of meaning in a single translation between

representations, one of the objectives of the PIF project is to retain as much information as

possible over multiple translations. We aim to share process descriptions such that:

* Upon the import of a process description, we would like to represent any untranslatable

data in a viewable manner. Even if the data only appeared as a textual comment, this

will allow a user to see the problem and, perhaps, complete the translation manually if

possible and desired. Our intent is to have a graceful degradation in the quality of

translation.

* For the following export back to a PIF file, we would like to save these uninterpretable

parts in the system so that the translator can later add them back to the description,

restoring those attributes not explicitly edited.

After a description of the problem and solution framework, we will discuss quite a

few issues including preserving the identity of objects, naming conflicts, multiple imports

and exports, and the practicality of the solution. We first focus on a general strategy for

solving the heart of the problem and deal with these secondary issues later.

3.1 Two Aspects of the Problem

3.1.1 Loss of Attributes

Given the context of the Process Handbook, we can now look at a particular

scenario with two systems, a graphical viewer and a workflow management tool (Figure

5). Suppose that in the graphical viewer (abbreviated as V), a handbook user models his

sales organization by creating the three familiar activities: "Sell product" and two

specializations, "Direct mail sales" and "Retail storefront sales." This graphical viewer

allows him to neatly position these activities in a tree-like structure. Now, the user wishes

to use the workflow management tool (abbreviated as W). On export to PIF, the graphical

layout coordinates of each activity (system-specific data) are included as "user attributes."

While importing these objects into system W, the system-V layout information is

ignored, as the PIF translator would only be looking for system-W attributes. If we are
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fortunate, there will be some way to store foreign user attributes in system W. However,

we will proceed without making this assumption. In the workflow tool, the user creates an

actor, "Frank," and experiments with assigning "Frank" to different sales tasks. After

determining that "Frank" is best at "Retail storefront sales," this user decides to return to

the viewer to create some further specializations of retail sales processes. In loading the

second PIF file (exported from system W) into the viewer, the translator finds no graphical

coordinates but only some workflow data irrelevant to system V, possibly sales

performance statistics of "Frank." Hence, in the round trip from V to W back to V, the

user has lost his layout information. 8 One can also see that if the user were to return to

system W through a third PIF file, the previous system-W data would also be lost.

Graphical Viewer

Graphical Viewer

PIF File 1
Viewer
export
to PIF

N-

3 Activities

Viewer-
specific

data
I ......

PIF File 2

_-q

Viewer
import

from PIF

3 Activities
1 Actor

Workflow-
. specific

data
II,,,

Workflow
import

from PIF

Workflow Management Tool

Workflow
export
to PIF

Figure 5: A scenario of the round trip problem in the Process Handbook.

At first glance, one might propose that all systems be able to store arbitrary

attributes for all types of objects to solve this problem. Besides the disadvantages of that

8 For this exercise, we will ignore the possibility that the graphical viewer has an intelligent algorithm for
laying out objects based on the handbook specialization hierarchy. The point is that viewer-specific
attributes will no longer be present.
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approach (to be discussed later in section 3.2), it does not solve a similar yet more severe

problem when PIF users attempt to share data after extending the core ontology.

3.1.2 Loss of Type

Revisiting the EMPLOYEE situation from section 2.2.3, suppose we have two

systems: X, which supports the subtype, and Y, which does not. While the

X-->PIF1-->Y translations take place as expected with PSV conversions to the parent

ACTOR type, it is the return trip that yields a disagreeable result. The second PIF file,

resulting from a system-Y export, will contain ACTORs (like Frame 5) instead of

EMPLOYEEs. When importing the file back into system X, the user will find data that no

longer makes use of the type extension. This implies that even if system Y was able to

save the EMPLOYEE-specific attributes, these fields would now be considered user

attributes of ACTOR objects, strictly speaking. While this does not preclude system X

from making use of the attributes, it would be incorrect to restore the EMPLOYEE type as

in Frame 4. Without any further information, we cannot assume that just because an

ACTOR has "Medical-Plan" and "Salary" data, it was originally an EMPLOYEE. The

ACTOR could have these attributes by coincidence.

Thus, the round trip problem in PIF boils down to preserving the type of an object

and all of its attributes. Actually, we can look at the type as just another "attribute" of the

object except that this particular attribute affects the interpretation of all others. As the core

ontology only has the most basic types, we do expect most PIF users to have local type

extensions to better suit their needs. At the very least, they will have additional attributes

relevant to their respective systems for core classes. Hence, translators will encounter

process descriptions which are only partially interpretable. If PIF users only wish to learn

from other people's data (i.e., a one-way exchange), the status quo is acceptable. In order

for anyone to fully and most easily benefit from running their process descriptions on any

other system, however, we ought to find a solution to this problem. Otherwise, a PIF user

may have to manually combine results generated from multiple systems.

3.2 The Solution Framework

In developing a solution to prevent the loss of attributes and the loss of type, we

recognize that there are other types of knowledge worth preserving in a round trip. For

example, there may be various relationships or invariants between attributes of the same or

different objects. As a very simple example, suppose one system exported a "Name" and a

system-specific "Initials" attribute for an ACTOR instance. If only the object's name was

31



changed in another system, the two attributes may be inconsistent upon return to the

original system. As discovered in writing actual translators (section 5.1), redundancy in

PIF files should be avoided even if it requires more processing in translation. Here, the

first system would be better off not exporting the "Initials" attribute but calculating it upon

import of the "Name." In any case, maintaining such invariants is not in the scope of this

work. We figure that if this solution provides a way to return data that would otherwise be

lost, system architects will be more than willing to check the information's validity.

Before presenting a scheme, we review the main stipulation for any solution. With

the goal of universality, the solution should not require any system which imports or

exports PIF files to store foreign user attributes, i.e., data specific to other systems. This

is too much to expect of those who wish to share process descriptions, especially since it

will likely necessitate modification of existing systems. On the other hand, if a system can

store this data, PIF translators can make use of this capability.

Even so, there are several reasons why this may be undesirable. First, this may

bloat files or databases with data that has nothing to do with the particular system. Though

small strings like "mickey@mit.edu" may not pose a problem, encoded picture attributes

and other potentially large forms of binary data will. Second, unless it is the intention,

there are dangers in allowing one system the right to read and modify data specific to

another. While the concern is obviously not security in this spirit of sharing process

descriptions, we could no longer guarantee that the interpreted data is not corrupt when

written back out. One system may modify an object's attributes in a manner that violates an

invariant of another system. If desired, the following scheme can ensure that system Y

never touches data specific to system X. Nevertheless, we can still include the foreign user

attributes as a comment but draw upon a more reliable source for the return trip.

3.2.1 The Companion File

Our solution to the round trip problem is based on the concept of the companion

file. When unrecognized attributes cannot be imported in a system, these companion files

serve as repositories for such data in the translation process. Let us now reexamine the

round trip scenario of interchange between a viewer (V) and workflow (W) tool in the

handbook (Figure 6).

If a tool, the viewer in this case, creates a PIF file for the first time, the translation

occurs as before. There is no companion file for this export. Upon import into the

workflow tool, the "new and improved" translator prompts the user to leave a companion
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file of all data which could not be incorporated in system W. In this case, such data would

be the layout information used by the viewer (V-data). Then, on the workflow tool's

export to PIF, the translator will prompt the user for a companion file which should

supplement this system-W data. The data in the companion file will then be merged with

the data to be exported, resulting in a complete PIF file with system-specific data for both

systems V and W. On the fourth translation of the round trip, the viewer reads the V-data

of the PIF file, so the loss of information has been avoided. For any future exports from

the viewer, the importing translator prompts the user to leave another companion file, this

time containing W-data.

PIF File 1

3 Activities Workflow import

I r a-- I S%% 

.11 v Workflow Tool
Companion File F SP

DMS

, V-data | RSS
PTF File v

Viewer import

Companion File

I W-ata 

Figure 6: The solution for the earlier scenario.

3.2.2 The Genealogy Attribute

The solution to the second aspect of the problem, preserving type extensions,

involves a new "Genealogy" attribute. We introduce this special attribute which documents

the class information of the object before and after PSV conversion. Though discussed in

more depth in section 3.3.3, it contains a list of types representing the path of conversion.

Again analyzing the EMPLOYEE example (of Frame 4), there are two main possibilities

when loading the EMPLOYEE object from system X into system Y. If system Y can
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handle arbitrary attributes reliably, the companion file is not necessary. For the solution in

this case, the only new item of data required is a "Genealogy" attribute with the value

(EMPLOYEE ACTOR). Thus, the converted ACTOR object will have three foreign

attributes in the system: "Medical-Plan," "Salary," and "Genealogy."

However, if system Y cannot accept them, or the user does not wish to burden it

with them, the translator must employ the scheme diagrammed above. The converted

ACTOR object represented by Frame 6 is stored in system Y. However, the three foreign

attributes are now saved in the companion file as in Frame 7. Technically, there are two

frames below with the same identifier, but the whole entity is considered to be the (disjoint)

union of both sets of own-slots. Perhaps system Y can only write the user attributes in as a

comment to the user, but the second frame holds the only official version. Between the

system and the companion file, each piece of data must be represented exactly once.

; Frame 6: After the X-->PIF1-->Y translations, the data of the

; PSV-converted ACTOR object represented in system Y.

(define-frame 720909171700FYC
:own-slots (

(instance-of ACTOR)
(Name [Frank Chani)

; Frame 7: After the X-->PIF1-->Y translations, the data of the
; converted object in the companion file.

(define-frame 720909171700FYC
:own-slots (

(User-Attribute '(Genealogy EMPLOYEE ACTOR)
'(Medical-Plan "Prudential")
'(Salary 1.99))

To begin the return trip, the intermediate system-Y export will be combined with the

companion file to yield the complete export. The overall theme in this merge operation is

that the companion file is subordinate to the system's representation. Basically a task of

version management, there are five cases of interest:

If an attribute was created in system Y, like "E-Mail-Address," it should be

incorporated as in the merged example that follows (Frame 8). Of course, the attribute

may have the same name as one already in the companion file, such as "Salary."

Perhaps, an ideal translator would alert the user and rename the older attribute.

Otherwise, the newer value from the system should override the previous value.
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· If an object was created in system Y, it will simply be included in the resultant PIF file.

There will be no companion data for that object to merge.

· If an attribute was modified (i.e., the object was modified), this change will be

displayed after the merge also. Not only was the attribute in the system a "live" copy -

it was the only copy. (This is why each item of data is represented only once.) In

Frame 8, we display such a modification by adding a middle initial to the "Name" field

of the ACTOR.

· If an attribute was deleted in system Y, it will not appear in the complete export file.

Similar to the previous case of modification, deletion is a necessary power given to the

system by entrusting it with the only representation of the attribute.

· If an object is deleted in system Y, the object's user attributes in the companion file will

be ignored. Because the system representation is the primary source of data, the

translator will only seek to merge companion data for objects that still exist in the raw

Y-export. 9 Looking back at the handbook example (of Figure 6), if "Direct Mail Sales"

is deleted in the workflow tool, the activity's graphical layout information from the

viewer should also be deleted in this merge operation.

; Frame 8: The object exported from system Y (Y-->PIF2 translation),
; after the merge of the companion file.

(define-frame 720909171700FYC
:own-slots (

(instance-of ACTOR)
(Name JFrank Y. Chanl)
(User-Attribute '(Genealogy EMPLOYEE ACTOR)

'(Medical-Plan "Prudential")
'(Salary 1.99)
'(E-Mail-Address "mickey@mit.edu"))

In the fourth and final stage, we look to reinstate the system-X class extensions of

the ACTOR objects. Upon import into system X, the translator first checks for objects of

types not in view, namely, objects of system-Y extensions not used in system X. As

before, these objects will be converted to ancestor types according to the familiar PSV

scheme. Among the objects of recognized types, the translator then searches for the

9The assumption made here is that every object was translated to system Y, even if only as an ENTITY. In
practice, we may want to exclude or only include certain types of objects. Those objects not imported can
be stowed away in the companion file and tagged as excluded on import and complete, so as not to give the
appearance that they were deleted in system Y.
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"Genealogy" attribute. Since the subtype EMPLOYEE is in view, we can restore the

object's original type and reinterpret the user attributes in this context (Frame 9). In

anticipation of a second export from system X, a second companion file preserves those

attributes that are not part of the EMPLOYEE type (Frame 10).

; Frame 9: After the PIF2-->X translation, the data represented back in
; system X.

(define-frame 720909171700FYC
:own-slots (

(instance-of EMPLOYEE)
(Name IFrank Y. Chanl)
(Medical-Plan "Prudential")
(Salary 1.99)

; Frame 10: After the PIF2-->X translation, the data in the second
; companion file.

(define-frame 720909171700FYC
:own-slots (

(User-Attribute '(E-Mail-Address "mickey@mit.edu"))

3.3 Discussion

Upon further analysis of this solution framework, we answer some concerns and

make a few additional requirements and assumptions.

3.3.1 Preserving Identity

First, each PIF object must have an identifier (ID) that uniquely identifies it across

all systems so that other objects can refer to it with certainty. These object IDs should be

assigned upon creation and preserved over time and translations. This is most necessary

when merging exported objects with their "companion" objects. An additional stipulation

is that they cannot be modified within a system. Otherwise, such a change will be

interpreted as the deletion of the object with the old ID, followed by the creation of an

object with a new ID.

Currently within the handbook, we are using what appears to be a satisfactory

scheme (locally, at least) that consists of a time stamp (twelve digits in the format
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"yymmddhhmmss") concatenated with the user's initials.1 0 Of course, the danger in just

using initials is the possibility that two users with the same initials will create objects in the

same second. Alternatives that are more likely to be universally unique include the full

name, phone number, Internet e-mail address, or Internet host address. In any case, the

time/user combination has the supplemental feature of providing some documentation about

when the object was created, as well as where or by whom. Even with this user

information, a more likely scenario for conflicts occurs when two people are both operating

in a system environment configured for the same person, accidentally or intentionally.

Thus, the underlying need is to capture the uniqueness either in each client that creates PIF

objects or in each instance of code that generates IDs.

In some respects, the ID is just another attribute of the object, so this requirement

can pose a problem if it cannot be stored. However, since it is a special attribute essential

for reidentification, we take extra measures to preserve it within a system. In decreasing

order of preference, here is the decision tree for choosing an importing translator method:

1. Can the target system use PIF IDs to identify objects internally? If yes, this is the ideal

situation, as objects can be exported again with this ID. If no, proceed to step (2).

2. Can the target system store PIF IDs as a user attribute? If yes, this is almost as good,

as the exporting translator will just have to find this attribute. If no, move to step (3).

3. Does the target system have its own method of identifying objects? This ID scheme

must be at least locally unique, ensuring a one-to-one mapping between local IDs and

PIF IDs. If yes, continue with step (4). If no, skip to step (5).

4. Does the target system allow the translator to access to this information? This may

involve a "second pass" of the translator to go back and see what IDs were generated.

If yes, each object's local ID is stored as a user attribute in the corresponding

companion object, which has its own PIF ID. On export, we can reidentify objects by

their local IDs but use the PIF IDs in the resulting file of frames. If no, the local ID is

not useful since it is kept internal, so try step (5).

5. Can the target system can store PIF IDs as part of the name or some other attribute? If

yes, the import proceeds with the assumption that they will be preserved. We can even

append a checksum to the ID to guard against its corruption. When an object is

10 In some cases, an additional counter (within each second) was necessary since more than one object could
be created in a second, such as in a batch operation or the duplication of a subtree.
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exported from the system, the translator will have to extract the ID from the attribute in

which it was stored. If no, go to step (6).

6. What we have is a system that cannot even store one attribute value of reasonable length

(i.e., long enough for a PIF ID) for each object. While other system-specific "work-

arounds" may be possible, we give up on such an unlikely system for now. If there are

no means for reidentifying an object after it passes through a system, there is no round

trip solution in this case. Of course, the user will probably still want to import the file

of objects, but there will be no guarantee of matching them with their companion

objects on export.

For systems that do not use a globally unique ID scheme, an exporting translator

should assign time/user PIF IDs to newly created objects or objects that do not have a PIF

ID preserved in one of the measures above. If necessary, an object's local ID can be stored

as a user attribute and reused when the object is reloaded back into the non-conforming

system. The disadvantage of this approach is that the same set of system objects exported

twice will have different PIF IDs. While it is possible to intelligently guess (perhaps based

on their local IDs or name) if two such sets of exported objects came from the same set of

system objects, one cannot say with certainty. This should provide an incentive for

systems to have a scheme which stamps each object with a unique ID at creation.

3.3.2 Naming Conflicts

While systems that strive for ID uniqueness should not encounter conflicts, name

clashes in type extensions and attribute names are more likely to occur. However, PIF's

naming problem is not much different from others in information systems. The namespace

of classes can be treated like that of procedures in any programming language. Parties who

wish to share views of subclasses should come to an agreement on their names and

meaning. This situation is reminiscent of the task of defining an interface between two

code modules in software engineering. On the other hand, those that wish to just create

system-specific subtypes can prefix their names with the initials of their system, as in PH-

BUNDLE, for singularity.

As in the merge of a newly created attribute described earlier, there can also be

name clashes at the slot level. While similar steps can be made for sharing specific fields,

accidental conflicts are more likely due to the "catchall" nature of the "User-Attributes" slot.

When two systems use an attribute name, like "Salary," with the same meaning in mind,

the replacement of the older value with the newer one is generally the intention. Of course,

38



systems that actually plan to perform calculations with the value should agree on its

semantics (hourly, monthly, yearly, etc.) or rename the attribute to be more specific (e.g.,

"Monthly-Salary").

However, when there is one name for two entirely different meanings, perhaps a

"Compass" slot of an activity in both navigational and drawing contexts, we have no choice

but to rename one of them. On the flip side, a related problem occurs when there are two

names with essentially the same meaning. 1l Even within our handbook, we use the terms

"decomposition" and "subactivities" interchangeably. We will later introduce a way for

PIF slots to have aliases (section 4.2.2).

3.3.3 Genealogy Issues

As stated earlier, the genealogy attribute records class information from PSV

conversions. This consists of a list of types starting with the object's original, most

specific class and ending with its current, most general class. This complete list permits

translators to later reinstate an object to some subtype in view even if the most specific

subtype is not in view. Just saving the most specific class would imply an "all or nothing"

approach, only allowing a return to the original type.

To show the operations performed on this list of types, here is an example of how it

evolves in translations across three systems. Suppose the first system has an ENGINEER

class, a subtype of EMPLOYEE. In a second system with only the EMPLOYEE type, the

translator creates the genealogy when an ENGINEER object is generalized. Then, in a

third system where neither ENGINEER nor EMPLOYEE are in view, the translator

appends to this attribute when the object is further generalized to an ACTOR. Later, if we

can only reinstate the object to the EMPLOYEE type in the second system, a substring of

the genealogy still applies. Finally, when the object has its original type back in the first

system, there is no need for a genealogy.

ENGINEER (1): ; original type
EMPLOYEE (2): (Genealogy ENGINEER EMPLOYEE) ; generalized once
ACTOR (3): (Genealogy ENGINEER EMPLOYEE ACTOR) ; generalized again
EMPLOYEE (2): (Genealogy ENGINEER EMPLOYEE) ; specialized once
ENGINEER (1): ; specialized again

l These two problems (same name with two meanings, two names with the same meaning) are the subject
other research, such as MIT's Context Interchange Project (Goh et al 1994).

39



Though one might question whether storing the current class in the genealogy is

necessary, this seeming redundancy is used to confirm the object's type on export.

Suppose an engineer object is imported into the third system (from above) as an ACTOR

with an appropriate genealogy attribute (either stored in the system or in a companion file).

If the object's type is changed in that system to a different local extension of ACTOR, say

LABORER, the object's genealogy becomes invalid. This is because the ENGINEER and

EMPLOYEE types are no longer valid subclasses of the new type LABORER.

Therefore, if a converted object does not have the same type on export from a

system as it did on import, its genealogy information must be discarded. In other words,

the object's new type becomes its original type. Otherwise, if the genealogy was

preserved, the object's type would be ambiguous in yet another (fourth) system that shared

both the EMPLOYEE and LABORER extensions of ACTOR. This genealogy deletion

applies not only to type extensions but also to core types. Suppose the type of a relation

was changed from USES to MODIFIES in a system. Then, its genealogy attribute

containing foreign extensions of USES would have to be deleted.

While an object's type is not required to be fixed at creation like its unique

identifier, changes in type are not recommended. In this paper, we do not question if one

system should have the ability to change the type of an object created in another system.

We just assume that such a change, perhaps a legitimate correction, is in the best interests

of all parties sharing the data. Even if they do occur, this framework still prevents the loss

of attributes since the change in type does not preclude the merging of other companion

data.

One possibility would be to store a genealogy for every system whereby importing

translators would only use the genealogy of the destination system. Since we only know

the name of the system which creates a PIF file on export, the genealogy would now be

created by exporting translators. Suppose there is an X-->Y-->X translation scenario

where system X has the EMPLOYEE extension and system Y uses the LABORER type.

Upon export from system X, EMPLOYEE objects are converted to ACTORs through PSV,

and this conversion is recorded in the "X-Genealogy" attribute. When in system Y, the

type of these ACTOR objects can be freely changed to LABORER objects. On the second

PIF export, the LABORERs are converted to ACTORs, and this is noted in the "Y-

Genealogy." Then, when the objects return to system X, the EMPLOYEE type can be

restored since the X-import translator looks for the genealogy of its system.
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While multiple genealogies would allow type changes and prevent the loss of local

subtypes upon return to a particular system, this plan conflicts with the goal of having type
extensions for sharing among different systems. Suppose we now have an extended round

trip X-->Y-->Z-->X, where system Z also has the EMPLOYEE extension. Then,

EMPLOYEEs created in system X will only appear as ACTORs in system Z since the Z-

import translator does not use the "X-Genealogy" attribute.

Generally speaking, the disadvantage of using a genealogy attribute is that it can

create maintenance problems. By potentially having hierarchy fragments in every object,

there can be significant redundancy within a PIF file. The many versions of type

information will introduce some danger of inconsistency among the genealogies of different

objects. If the class hierarchy of a system is changed, there will be many locations where

these changes should appear. Suppose that the EMPLOYEE extension was created later

and inserted between the two existing classes, ENGINEER and ACTOR. Then, all

existing engineers which had been previously converted to ACTORs would have

genealogies (ENGINEER ACTOR) that need to be updated to (ENGINEER EMPLOYEE

ACTOR). Otherwise, they could not be specialized from ACTORs to EMPLOYEEs in a

system with only the newer EMPLOYEE extension.

An alternative would be to retain the "define-hierarchy" structure after importing a

PIF file. In this approach, genealogy information would only appear once in this class tree

instead of having redundant hierarchy paths in converted objects. Unfortunately, this does

not eliminate the need for some form of a genealogy attribute. Translators still need to

know both an object's original (most specific) type and its converted type for the reasons

discussed earlier. Also, objects would be less self-contained, as their genealogies would

be dependent on the external hierarchy structure. Even when importing into systems that

can handle arbitrary attributes of objects, the companion file would be necessary if only to

store the hierarchy tree. As described later in section 4.3.1, the define-hierarchy structure

is generated for PIF files based on the ontology of the exporting system. Similar to the

merge of attributes from the exporting system and companion file, this approach would

also require the merge of the two type hierarchies on export.

3.3.4 Multiple Imports and Exports

Earlier, the feasibility of the solution framework was explored in a simple four-
translation scenario between two systems. In these translations, a single file of objects
represented the entire state of the system. For systems designed to operate on large
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databases, this is impractical. We now look at more complex, yet more realistic, scenarios

of exchange involving multiple imports and exports of PIF files.

When reimporting the same set of objects into a system, the translator must have a

replacement strategy. That is, one must decide how a system should handle the import of

data already present in some form. Though version management is certainly not the focus

of this thesis, we outline three options: object replacement, slot replacement, and slot value

addition. Besides not importing preexisting objects, the translator's most basic plan

replaces the old object and its attributes with a new one from the imported PIF file. While

this would purge the previous object and any accumulated attributes, any references in the

system to it may have to be updated to the new object. A more sophisticated procedure

keeps the existing system object and operates on each slot independently. Here, we only

replace an object's attribute if the slot is defined in the new PIF object. Stepping one level

deeper, a third scheme just adds attribute values if they were not already present in the

object's slot. We leave the choice to the person writing the translator. 12

When we import different sets of objects into a system, we have two options in

dealing with multiple sets of companion data. We can maintain the status quo and leave a

companion file on each import. Then, instead of just merging a single companion file, the

exporting translator can draw system-specific data from as many companion files as the

user provides. Unfortunately, this will be a burden for the user if he or she must keep

track of all these files. Suppose a user imports five sets of objects and later decides to

export one object from each of the five sets. In order for a translator to combine the data of

foreign systems, it must have access to all five companion files. More importantly, while

the companion data is clearly subsidiary to the system data, there is no such relationship

between various companion files. We will either need a more complicated replacement

strategy or a chronological ordering of the companion files.

Instead of postponing the merge of companion data until export, the alternative

method would merge on import. By adding to a single companion file on each import, we

have a chronological ordering on what would otherwise be multiple companion files. This

allows the translator to enforce a replacement strategy when we again import those objects

whose companion data has already been saved. In effect, we could have a single

12The real problem seems to be that the meaning of the absence of a slot has not been defined in PIF. It is
not certain whether this reflects a null value or a lack of information. If an ACTOR instance does not have
a name slot, for example, we are unsure if the actor has no name or if the name is just not known or
available.
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companion data repository for each database or system. The disadvantage of this approach

is that this repository can become bloated with the data of foreign systems for every object

ever imported into a system. It may be useful to occasionally perform some form of

"garbage collection" on the repository for objects that have deleted from the system. A

companion file should only be deleted when all its objects have been deleted or the user is

sure that the system objects will never be exported again.

In section 3.3.1, we have already realized the ramifications of multiple exports from

systems that only use local, non-unique IDs. If new PIF IDs are created on each export, it

will be difficult to recognize that they are actually the same objects.

When we import the same set of objects into multiple systems, we encounter a

whole new set of potential problems. Suppose a system X exports an EMPLOYEE object

(as in Frame 4) for import by system Y and Z. A user in system Y then changes the

employee's "Medical-Plan," while another user in system Z raises the employee's "Salary."

When the two resultant PIF files are imported back into system X, only one update will

persist if all fields are updated according to one of the replacement strategies above.

Despite the need for some form of concurrency control, we do not deal with this problem

here. Replication issues in distributed databases have been given much more thought

elsewhere. For the purposes of this thesis, if we can prevent system-specific data from

being lost, we have accomplished our goal. Without this solution, there may not be

"Salary" and "Medical-Plan" attributes to update.

3.3.5 Practical Considerations

One can foresee that in a longer round trip, say V to W to X to Y to Z back to V, the

resulting PIF and companion files will contain a great deal of "baggage," mainly user

attributes for as many systems with which the PIF file comes in contact. When importing

this file into a particular system, the companion file may have to contain all data from other

systems accumulated from previous translations. However, the user can always choose to

start "fresh" by either declining to leave a companion file on import or ignoring it on the

ensuing export. Though not discussed here, this raises an interesting issue about what

incentive does a PIF user have to preserve data from other systems. Nevertheless, when

one party is using multiple systems on the same set of objects, the benefits are more clear.

The user will not have to manually merge system-specific data that would otherwise be lost

in translations.
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On a related note, we will not view storage space as a major concern. This

approach to the problem might not be well suited for the interchange of large picture files,

where file size and compression are crucial. Given our focus on the handbook, this

currently does not appear to be an issue since exchanged files have generally been text-

based. On the other hand, this solution should encourage the inclusion of other forms of

data. If PIF users know that these forms of data can be preserved in a round trip, they will

be more inclined to include them in their descriptions. We hope this leads to the exchange

of richer business process descriptions.
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4 The PIF Toolkit

4.1 Purpose

We now look to build translators that employ this solution framework, and the PIF

toolkit is the foundation of all such translators. Development on this code library began as

an outgrowth of writing the first PIF translators for a couple of handbook prototypes. As

one might have guessed, we first encountered the round trip problem when sharing process

descriptions between these two prototypes. A simpler solution suited just for this pair

could have been developed. Perhaps we could have even modified the systems to be more

similar or to accommodate the data of the other. However, we sought a more systematic

way to preserve data in exchanges, not only between other handbook tools but also non-

handbook systems.

In fact, solving the problem at hand was not the initial goal of the toolkit. Our first

motivation was to consolidate the common elements of all current translators, making it

easier to accommodate changes either in the PIF ontology itself or the tools that use PIF

files. From conception to the release of version 1.0, PIF has undergone changes at all

levels, from the meanings of various classes all the way down to the smallest of syntactical

details. Moreover, system architects have worked and will continue to work on the tools

that read and write PIF files even if the format were completely frozen. We would like for

changes in either domain to require as little modification as possible of past translators.

In the larger scope of the PIF working group, we have also performed experimental

translations with the systems developed by the other research groups. Having a common

code base to encompass all the PIF data structure manipulations, such as parsing and

output, saves on the collective development effort of writing translators. Besides

smoothing the standardization effort (for example, ensuring the same syntax), this permits

members to focus more on furthering the format. Outside the working group, we hope that

this toolkit will promote the sharing of process data through PIF, helping to establish PIF

as a standard. It will simplify the task of writing future translators, not only for our group
but also for anyone who would like to share business process descriptions. Even if the

toolkit did not incorporate a round trip solution, it would still be beneficial to our project.
Each additional system that can export PIF files brings a world of process descriptions to
the handbook.
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Finally, we are obligated to define the scope of the toolkit. First, just as PIF is not

meant as a replacement for KIF, this is not a substitute for more general knowledge

representation tools. It is designed specifically for building PIF translators, as opposed to

a general-purpose development environment or programming language like Common Lisp.

Second, this toolkit does not operate on the semantics of PIF entities like an inference

engine. For example, in addition to "own-slots" and "template-slots," Ontolingua also

gives frames "axioms," which are KIF sentences to say things that cannot be expressed in

terms of the slots (Gruber 1993). Axioms could be used to express invariants between

attributes as first encountered in section 3.2. Besides the additional code complexity such

analysis would demand, there are currently no formal semantics for (or constraints on the

interpretation of) PIF objects. Thus, one can express an ACTIVITY that is a "Component"

of itself or the pair of objects PREREQUISITE(A, B) and PREREQUISITE(B, A), for two

activities A and B.13 Other than type checking, this toolkit does not pretend to detect these

seemingly illogical constructs.

4.2 Toolkit Design

4.2.1 Building Blocks

The objective of translation was the primary factor in the choice of the

implementation environment. Considering the relationship between KIF and Lisp and the

existence of systems like Ontolingua, it might seem that the natural choice of programming

language would be Common Lisp (perhaps with CLOS, the Common Lisp Object System).

However, for the toolkit to be usable by as wide an audience as possible, we had to choose

a language that would interface smoothly with systems in both academic research and

commercial environments. Currently, "C" (Kernighan and Ritchie 1988) is the most

widely accepted and most easily accessible software development environment. Some

systems, like Lotus Notes, have an API (application program/programmer interface) only

available in C. We would like to avoid the often tricky task of linking code of different

languages together. However, we still sought some of the features of a higher-level

language, namely ease of expression. We settled on C++ (Stroustrup 1991), an object-

oriented superset of C, as a suitable middle ground. Though the use of C++ is not as

widespread as that of C, it is becoming almost as accessible. We shall see later in section

4.2.2 that C++ is not as sophisticated as CLOS in some ways.

131n the latter case, this freedom of expression may be useful in describing a process in deadlock.
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After the choice of language, we had to determine the toolkit's implementation

target. As a building block for translators, the toolkit itself is not an executable program

and has no graphical user interface. Rather, it is a code resource of generic C++ for

maximum compatibility. More specifically, it is implemented as a platform-independent

library of C++ classes. The C++ notion of "class" refers to a programming language

object, not to be confused with a class in the ontology hierarchy.14 Figure 7 displays the

relationships between the building blocks of the PIF specification and the toolkit

implementation. The toolkit also makes use of lex, a lexical analyzer generator, and yacc, a

parser generator, which both generate C code. 15 Later, we will see how the specification

of PIF and its extensions are inputs to the toolkit, as shown by the arrows.

Specification Implementation

Figure 7: The building blocks of PIF and the toolkit.

4.2.2 The Metaclass Mechanism

The first translators for the handbook were built upon a set of classes which

modeled the entities in PIF. In other words, there was originally a one-to-one

correspondence between ontology classes and C++ classes. This design works best for an

object model that is relatively fixed, such as that of a particular project. One can assign

special methods to different objects. Unfortunately, it is not well suited for the PIF
translation, where the main focus is on input and output. Unlike CLOS, which can create

14 For those readers not familiar with C++ but proficient with C or other procedural programming
languages, a C++ "class" consists of an object's data structure and associated methods. More primitively,
this kind of class can just be thought of as a set of related procedures. To avoid confusion between the two
kind of "classes" discussed in this paper, we will refer to the earlier kind as ontology or PIF classes and to
the later kind as C++ or code classes.
15Actually, the GNU Project's flex and bison, respectively, were used. These versions are available from
the Free Software Foundation via anonymous ftp at prep.ai.mit.edu.
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classes dynamically or at "run-time," C++ classes are static or frozen at "compile-time."

This would mean that changes or extensions to the PIF ontology would require

recompilation of the toolkit due to code modifications of the corresponding C++ classes.

To overcome this serious limitation of previous translators, this toolkit has a

metaclass mechanism. Booch defines a metaclass as "a class who instances are themselves

classes" (Booch 1994). This definition fits our design perfectly because instances of one

of the toolkit's C++ classes (naturally named "Class") represent PIF classes. The toolkit

does not model the particular classes of the PIF ontology but has the capacity to describe

any ontology class. With meta-objects, we can reproduce the previously mentioned ability

of CLOS here in C++.

Though more complicated, this design allows us to dynamically load the PIF class

hierarchy as well as any subtypes. The arrows in Figure 7 represent how the ontology and

its extensions are now considered inputs to the toolkit. Besides the added complexity, the

main drawback is that we sacrifice the ability to attach special methods to a particular PIF

class. By abstracting away from specific object types, though, we treat them much more

uniformly. Hence, the toolkit and the translation mechanisms will also function on a

hierarchy of message types, as in the PSV paper (Lee and Malone 1990), or even animals.

In order to set the class hierarchy dynamically, the toolkit will load one or more

ontology files, only containing PIF classes (like Frame 1), as a secondary input. We are

still not introducing classes into the format itself, as these class files are loaded separately

from the instance files, the primary input. PIF files themselves still only contain instances.

To specify either the set of core types or type extensions, frame syntax is used again. As

discussed earlier, classes have template-slots as well as own-slots, unlike instances.16 In

this toolkit, template-slots can only contain facets. 17 A facet describes a property or

constraint on all instances of a given class. Each slot can have any number of facets which

together define the type of values allowed. Here are the five facets recognized by the

toolkit - the first four come from Ontolingua, the last one was created for the toolkit.

16In the toolkit, we only make use of two types of own-slots for classes: "instance-of," which is always set
to CLASS, and "subclass-of," which refers to the parent class. In addition, the "documentation" slot may
be useful. Ontolingua recognizes many other own-slots.
1 7More generally, template-slots of classes can also contain values. These become default values of
instances of the particular class. In other words, any such values are downward inherited to all instances.
This has the same effect as the inherited-slot-value facet introduced by Ontolingua but not supported here.
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* (slot-value-type ?type) - Slot values must be of type ?type, where ?type is one of the

following: a literal data type, the symbol CLASS, or a symbol specifying a class. If a

slot has a (slot-type-value CLASS) facet (e.g., the core PIF class GROUP), the slot

values must be classes. Otherwise, and more commonly, the slot values must be

instances.

* (slot-cardinality ?integer) - The number of slot values must be exactly ?integer.

* (minimum-slot-cardinality ?integer) - The number of slot values has the lower

bound ?integer.

* (maximum-slot-cardinality ?integer) - The number of slot values has the upper

bound ?integer.

* (slot-alias ?symbol) - The slot is also recognized under the name ?symbol for input.

However, on output, the actual slot name is used.

The following example (Frame 11) displays the EMPLOYEE class definition that

would be used by a translator constructed with the PIF toolkit. In the example of section

3.2.2, this information will be used when the EMPLOYEE object is reinstated back to its

original type in system X. Given this definition, the translator will know which attributes

are a real part of the type extension (as in Frame 9) and which are just user attributes (as in

Frame 10). Each attribute has a facet with applies a constraint on the type of values which

can appear in EMPLOYEE objects. There is also a second facet, a cardinality restriction,

for the "Salary" attribute because it only makes sense for an employee to have one salary.

; Frame 11: The frame for the EMPLOYEE class extension.

(define-frame EMPLOYEE
:own-slots (

(instance-of CLASS)
(subclass-of ACTOR)

:template-slots
(Medical-Plan (slot-value-type STRING))
(Salary (slot-value-type NUMBER)

(maximum-slot-cardinality 1))

A subtype can redefine and thus hide the slot of its parent type, so only the
definition of the most specific class matters to an instance. Thus, facets such as a
cardinality restriction do not "accumulate" and should reappear in the template-slot of the
child. Redefining slots is usually a way of specifying stronger constraints on slot values.
For example, both ENTITY and ACTIVITY in PIF define the "Component" slot to be of
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their own type. This means that entities can be composed of all entity types, but activities

can only be composed of activities (or instances of ACTIVITY subclasses). However, for

any given class, the PIF toolkit does not currently enforce any rules on what kinds of facets

can appear in its subclasses.

4.2.3 Representing Frames in C++

After specifying the type hierarchy (classes) to accompany our process description

(instances), these two collections of PIF frames need to be represented by C++ objects in

preparation for translation. Figure 8 displays the code classes that model ontologies and

PIF files in a table of "what of where" relationships. For example, attributes of actual PIF

objects are modeled by the C++ class OwnSlot. Each row represents a level of aggregation

such that any code object is composed of the code objects below it. Each column

represents a different context in which the code objects are used. The abstract column

contains base code objects from which objects in the other two columns inherit (in the

object-oriented programming sense). Though these twelve are the most important, they are

by no means the only classes in the toolkit. Others include iterator constructs and more

specialized classes for the different kinds of slot values and facets.

Figure 8: The C++ classes of the toolkit.

Though the actual code is not discussed much here, member functions (methods) of

the code objects fall into four categories:
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where abstract objects PIF object types actual PIF objects

what

object collections Collection ClassColl InstanceColl

(i.e., ontology) (i.e., PIF file)

objects Frame Class Instance

attributes Slot TemplateSlot OwnSlot

OwnSlot

attribute values SlotItem SlotFacet SlotValue



* constructors/destructors: These perform the allocation and deallocation of memory, as

well as the initialization of the object's data fields.

* observers: Procedures that do not modify the objects may be as basic as getting the

name of a slot. They can also be more elaborate, such as those involving type-checking

(i.e., verifying that an own-slot matches its corresponding template-slot).

* mutators: Similarly, there are simple and complex operations which do modify the

objects. They range from setting a slot name to converting the type of an object to its

nearest parent in view.

* input/output functions: The most significant of these involves the ability of each object,

from collections to slot values, to be able to print itself in the PIF syntax.

4.3 Translation Algorithms

With an internal object representation for the solution framework, we are now ready

to present a more formal description of how the toolkit exports and imports PIF files.

Steps in these algorithms are performed by some of the objects' more complicated member

functions, which are, in turn, built upon the elementary ones. Both have four general

phases as shown in Figure 9: (1) input of the object "dictionary" (classes), (2) input of

objects to translate (instances), (3) processing, (4) output of translated objects (also

instances). The processing phase is where most of the tasks associated with solving the

round trip problem occur.

Besides these tasks for the round trip solution, the second novelty of the toolkit is

the aforementioned metaclass mechanism. By dynamically loading the type information in

the first phase, translators written with this toolkit become "programmable" since their

behavior can be changed with different sets of classes. Each PIF translator written with

this toolkit will load a file containing the core ontology described in section 2.2.2 for basic

functionality. Similar to computer hardware peripherals, sets of type extensions then act as

"plug-in" cards or modules by which one can customize a translator.

Though the solution framework makes use of partially shared views, one may find

it useful to think of the return trip procedure as the inverse operation of the PSV scheme.

The PSV scheme generalizes objects to more generic supertypes, but the toolkit also

specializes them back to their more specific subtypes when they are again in view. PIF's

"define-hierarchy" structure is used in the former, while genealogy attributes and ontology
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descriptions allow the latter. At the same time, an object's attributes can be demoted to the

user-attribute repository and later promoted back to their original status.

Phase 1:
Input of object type information.

E1 D

Phase 2: Phase 3: Phase 4:
Input of objects to translate. Processing of objects. Output of translated objects.

Key [] I
Class Instance

Figure 9: The four phases in PIF toolkit translations.

4.3.1 Export Algorithm

The PIF export is the simpler of the two operations because we are only working

with one class hierarchy. This working ontology will reflect types used in the exporting

system, the source of the objects. Therefore, all objects will have the correct type for this

context, so there will be no need to specialize or generalize any of their types. The main

"highlight" is the merge of data from the system and the companion file. If the merge is not

necessary, perhaps because the objects were just created, this operation merely becomes an

export of the system's state.

For PIF translators, the first stage will usually entail first loading the core PIF

classes and then any extensions used by the exporting system. However, the toolkit itself

and its metaclass mechanism are neither bound to the hierarchy of PIF nor a single set of

extensions. There may be multiple roots and multiple levels of extensions. The files of

classes are loaded sequentially, though, so each file of classes must be defined in terms of

itself and any types previously loaded. Thus, the first set of classes must be completely

self-contained.

52

PIF
Toolkit---- 40- --88 I



Export Algorithm Stage 1: Building the source ontology (ClassColl).

FOR each file:
* Parse frames (using lex/yacc tools).
* Create (C++) Class objects and add them to ontology.
FOR each class:

· Check values of own-slots.18

* The "instance-of" slot must be the symbol CLASS.
{I.e., frame is a class, not an instance.)

* If it exists, the "subclass-of" slot must contain a class in the ontology.
(We can then build the hierarchy by linking this class with its parent.

If the slot does not exist, this class is a hierarchy root.)
* If it exists, the "documentation" slot must be a string.

FOR each template-slot:
FOR each facet:

* Apply facet, making sure template-slot is not over-constrained.
* Make sure there are no cycles in the hierarchy.

Though a little extra effort is sometimes necessary to preserve PIF IDs, the second

phase reduces to a loop over the objects and a nested loop over the object's attributes,

setting the ID and type in the first and the attribute values in the second. After this, we

have an intermediate collection representing the state of the system. Obviously, the

questions concerning the use of local IDs instead of PIF IDs do not need to be asked every

time an entity is translated. These decisions will probably be made by the translator writer

(i.e., at "compile-time").

Export Algorithm Stage 2: Building the collection of objects (InstanceColl).

FOR each object in the system:
* Create an (C++) Instance and add it to collection.

IF (system object has a PIF ID) THEN
* Create an Instance with this PIF ID.

(the ID having been generated at object creation or
preserved by any of the means discussed earlier)

ELSE
* Create an Instance with a newly generated time/user PIF ID.

(This includes objects with only a local ID.)
· Type must be a Class in the ontology (ClassColl).

FOR each of the object's attributes:
IF (attribute is defined by the Class or its parents) THEN

* Set attribute, making sure value complies (type checks) with facets.
(Only use facets in attribute definition of most specific Class.)

ELSE
* Place attribute in User-Attribute repository.

* If the object uses a local ID instead of a PIF ID, add it as another user attribute.

18Whenever something is checked, we assume for now that an error will be reported if the check fails.
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The third stage concerns the merging of companion data from any number of

companion files. Here, we assume that they are read in chronological order of

modification. Thus, the newest companion file should have the latest system-specific data.

This phase requires an extra step if only local IDs could be stored in the system on import.

Namely, we have to reinstate the PIF ID of objects which could only be reidentified by

local IDs. Now, companion attributes and objects have been merged with the intermediate

collection to yield a complete collection. As determined in section 3.3.3, the genealogy

attribute is discarded if the object's type on export is not the same as its type on import.

This type comparison is performed after the merge because the genealogy attribute may be

stored in the companion file.

Export Algorithm Stage 3: Merging the companion data (another InstanceColl).

IF (there are any companion files) THEN
FOR each companion file:

* Parse frames and add them to companion collection.
FOR each Instance in intermediate collection:

IF (there exists a companion object with the same local ID value) THEN
Change ID of intermediate object to PIF ID of companion object.

in preparation for the next step)
IF (there is a companion object with the same PIF ID) THEN

FOR all attributes in companion object:
Add attribute to intermediate object if not already present.

(Attributes from the system have precedence.)
FOR each Instance in companion collection:

* If marked as "excluded on import," add Instance to intermediate collection.
FOR each Instance in the merged collection:

IF (the genealogy attribute exists) THEN
IF (current type does not equal previous type from genealogy) THEN

* Delete invalid genealogy attribute.

At first glance, it may seem possible to specialize objects with genealogies back to

their original types on export. For example, in the export from system Y in Frame 8, the

ACTOR object could conceivably be reinstated to an EMPLOYEE. However, this step is

postponed until the PIF file is imported because the full class information of genealogy

types is not available. With only the ontology of the exporting system, all that is known

about the foreign EMPLOYEE type is that it is a subtype of ACTOR. In order to fully

specialize the PSV-converted ACTOR in Frame 8 back to an EMPLOYEE, the translator

must have the class definition (of Frame 11) to determine which user attributes can be

promoted back to object attributes (as in Frame 9). To have an EMPLOYEE frame with the

"Medical-Plan" and "Salary" fields as user attributes would be inconsistent.
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In the last stage, we must generate the class hierarchy from the source ontology.

This will allow other systems to use the PSV scheme on any local extensions of this

system.

Export Algorithm Stage 4: Writing the complete collection of objects to PIF.

· From the source ontology, generate and print define-hierarchy structure.
FOR each object in the merged collection:

* Print frame.

4.3.2 Import Algorithm

The import is the more complicated operation because it involves two class

hierarchies: the ontology in which the PIF file was created and the ontology of the system

into which we are trying to import. Though one might think that the import involves

mapping the first to the second, such a class to class assignment is not necessary. More

conveniently, one can understand this task as interpreting a collection of instances in the

context of the destination ontology.

It may be useful to think of an ontology as a colored glass through which a system

views a set of objects. When seen through different colors of glasses (class hierarchies),

objects of various colors (types) can appear differently. In Figure 10, there are two sets of

three objects and four importing systems with different ontologies (represented by the

tags). To the omniscient observer, there is also a simple class hierarchy consisting of an

object type, A, and two subtypes, B and C. In the first set, objects of different colors may

be interpreted as of the same type if the system cannot see the difference. Those that have

been generalized on import are shown dimmed. In the second set, objects of seemingly the

same color can be distinguished by systems which recognize the specialized types in the

genealogy attributes. Those that have been specialized are shown in bold.

Import Algorithm Stage 1: Building the destination ontology (ClassColl).

(same as export algorithm stage 1 except that class definitions of the target system are used)

Import Algorithm Stage 2: Building the collection of objects (InstanceColl).

* Parse define-hierarchy structure of input PIF file.
· Make sure there are no cycles in the hierarchy.
* Parse frames and add them to collection.
FOR each instance:

* Make sure "instance-of" own-slot names a type present in
either the source's define-hierarchy or the destination ontology.

(Otherwise, this is an error - a type unknown to both worlds.)
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Figure 10: Interpreting instances through different class ontologies.

While the two input phases are rather routine, the third phase is where an object's

types and attributes are reinterpreted. Here, a class is "in view" if it exists in the destination
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ontology. In order to specialize an object to a more specific subtype in view, we look to

the genealogy attribute. On the other hand, if we must generalize the object to a supertype

in view, we navigate through the source hierarchy. In both cases, we try to aggressively

specialize or reluctantly generalize the object to the most extended type possible. Given the

new type, the second half of this phase calls for the reinterpretation of all attributes. Both

object and user attributes can be relocated based on the slot definitions of the appropriate

class and any superclasses.

Import Algorithm Stage 3: Promoting and Demoting Types and Attributes.

FOR each Instance in collection:
A. Types.
IF (instance type is in destination ontology) THEN

IF (instance has genealogy attribute) THEN
IF (any subtype from genealogy is in destination ontology) THEN

* Specialize instance type to most specific subtype in view.
IF (new type is also the most specific subtype in genealogy) THEN

* Delete genealogy attribute. (The instance is of its original type.)
ELSE

* Set new genealogy to be the relevant substring of old genealogy.
ELSE

* Leave as is. {The genealogy types are not visible.)
ELSE

* Leave as is. (The instance is of its original type.)
ELSE

* Using source hierarchy, find nearest ancestor type in destination ontology.
* Generalize instance type to most specific supertype in view.
IF (instance already has genealogy attribute) THEN

* Append path of demotion to the old genealogy.
ELSE

* Write path of demotion to a new genealogy attribute.
B. Attributes.
FOR each attribute:

IF (attribute is defined by the Class or its parents) THEN
*Check type of attribute value.

{.e., verify that the own-slot adheres to the template-slot facets)
ELSE

*Demote to user-attributes repository.
FOR each user attribute:

IF (attribute is defined by the Class or its parents) THEN
* Promote to object attribute and check type of value.

ELSE
* Leave as is. (The user attribute belongs there.)

After the semantic mapping of the instances into the local ontology, the fourth and

final phase comprises of the syntactic mapping of these objects into the local representation.

Similar to the export algorithm, there are additional steps here for systems that cannot use

or easily store PIF IDs. Besides that, the main issue concerns if and where user attributes

are stored. A desire to preserve round trip data may or may not call for leaving a

companion file. When writing to a companion file, we can create a new one or add to an
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existing one, replacing old data if necessary. The toolkit provides the functionality to do

both, but this decision is left to the translator writer.

Import Algorithm Stage 4: Loading the converted objects into the target system.

* If desired or necessary, designate certain types of objects as excluded from import.
FOR all other Instances:

* Create/Update object in system (depending on replacement strategy).
(preserving the PIF ID by any of the means discussed earlier}

IF (PIF ID could not be stored and system has a local ID scheme) THEN
* Save local ID as another user attribute in the instance collection.

* Load/Update object attributes into system.
{If necessary and possible, store PIF ID as part of an attribute.)

IF (user wishes to preserve round trip data) THEN
IF (system can handle arbitrary attributes) AND

(user wishes to load them into the system) THEN
* Save user attributes in the system.

ELSE
* Write user attributes to companion file.

ELSE
* Ignore user attributes.

FOR each excluded object:
IF (user wishes to preserve round trip data) THEN

* Mark object as "excluded on import" and write to companion file.

Similar to stage 2 of the export algorithm, the capability of the system to store PIF

IDs and arbitrary attributes will be known to the translator writer. Thus, the actual

algorithm performed at the time of translation (at "run-time") will be simpler.
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5 PIF Translators

To demonstrate and test our solution framework, we must exchange PIF files

between various systems in a series of round trips. In this thesis, the systems of primary

interest are the various Process Handbook prototypes. Besides the static hierarchy

limitation mentioned earlier (in section 4.2.2), previous handbook translators did not make

any attempt to save the data of other prototypes. Now with the PIF toolkit, we can build

better translators that preserve data specific to other systems. Based on the ontology input

file of the target system, an importing translator can automatically determine which

information cannot be interpreted. If this data is preserved internally or saved externally,

an exporting translator can reassemble the system and companion data to yield a complete

PIF file.

5.1 Two Steps to Build a Translator

To build a translator with this toolkit for any particular system, the first task is to

define the system's ontology file(s). This means determining what types of entities and

attributes of these entities are represented by the system in question. Though unlikely, it is

possible that the set of core PIF objects and their attributes will be adequate. In this case,

no additional work is necessary, as the translator writer can begin with the PIF 1.0

ontology file (in the appendix). More likely, each system will require type extensions,

especially given the PIF working group's goal of having a minimal set of constructs. At

the very least, systems will assign additional attributes to core classes. 19

This difference between adding attributes to a core type and creating a new subtype

with these attributes is subtle. Though the choice is important, it is certainly not

irreversible. For any given core class, extensions are necessary when one has to make a

distinction between different kinds of instances. Within a particular system, there may be

multiple kinds of a core type, such as employee and visitor ACTOR objects. If so, this

system ontology should contain the ACTOR subtypes EMPLOYEE and VISITOR. Then,

after exporting these specialized objects, the importing translator can distinguish between

1 9The intention of the PIF working group was to not allow modifications to core classes. For our
purposes, current and future versions of the core ontology should be published in frame syntax, and toolkit
users will then be free to customize their own copy. Any such local changes will not reflect the official
ontology, of course.
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the two. Otherwise, if employee and visitor objects were only exported as ACTORs

without any differentiation in type, this would constitute a loss of type.

Among two or more systems, new classes should also be created when sharing

objects of more specialized types. The interested parties should jointly arrive at the

definitions of these types for what will act as a supplemental type module for their

translators. For example, the PRODUCER-CONSUMER-DEPENDENCY class is a

relation type used in most handbook tools. If these dependencies were just exported as

RELATION objects, import translators for these tools could not treat them as

dependencies.

On the other hand, if there is no need for distinction, a system should not create a

new type. There would be no additional benefit over adding attributes to a core class. As

an example, handbook translators continue to use the ACTIVITY class instead creating a

type like PH-ACTIVITY. The motivation behind creating a new subtype should be to

denote a genuine difference of meaning from the supertype, not just a difference of system

environment. While doing so anyway does not create a problem on export of PH-

ACTIVITY objects, the real problem occurs on import. If we specialize another system's

ACTIVITY objects to PH-ACTIVITY objects for internal use, we will have to discard any

genealogy information which will likely include more significant subtypes (recall section

3.3.3). As a rule of thumb, if every object of the supertype would end up being specialized

in a system to the new subtype, the subtype should not be created. Referring to the

EMPLOYEE class defined in Frame 11, if every actor in a system was an employee, this

new class would be unnecessary. The importing translator could use following

customization of the ACTOR type (Frame 12) and still know which attributes are specific to

the target system.

; Frame 12: A system's customization of the ACTOR type.
; The Medical-Plan and Salary attributes have been added.

(define-frame ACTOR
:own-slots (

(instance-of CLASS)
(subclass-of ENTITY)

:template-slots
(Has-Skill (slot-value-type SKILL))
(Medical-Plan (slot-value-type STRING))
(Salary (slot-value-type NUMBER)

(maximum-slot-cardinality 1))
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The second task in building a translator is writing the code to extract or load PIF

objects. This corresponds to export algorithm stage 2 and import algorithm stage 4 in

sections 4.3.1 and 4.3.2, respectively. The other stages do not require additional work by

the translator writer. At a superficial level, these two stages have a loop to iterate over all

entities and a nested loop to iterate over all attributes of each entity. In some systems, it

was necessary to create an object before referencing it in another object's attribute. Import

translators for these systems required a two-pass algorithm whereby objects were translated

on the first and their attributes (and references) were translated on the second.

In dealing with the actual objects of the system, there are two general approaches.

If the system has its own file format, translators will perform a mapping between that and

PIF. This may involve the use of existing utilities for parsing and writing to the native

system format. If the system does not have a format or the format is somehow inaccessible

(perhaps proprietary), it will be necessary to call toolkit functions within the system or a

system application. Even with access to a native format, it may be simpler to take the latter

approach.

Once the issues of mapping a native system representation to PIF are resolved,

most of the work to read and write objects and attributes is mechanical and not of much

theoretical interest. In our experience, the primary lesson to acknowledge is that while this

solution framework does preserve system-specific information on a round trip, the task to

build back the system representation from textual attributes is left to the translator writer.

For example, the translators for the Lotus Notes prototypes must encode binary data as

pure text upon export, and this text must be decoded back on import. On a related note, we

found that it was better to export the minimum amount of system-specific information

necessary to restore state, even if it required more processing on import. The presence of

redundant information can lead to inconsistency when another system modifies only one

appearance (as first seen in the "Name" and "Initials" example of section 3.2).

In any case, most issues in this task of translator implementation are specific to the

system. We illustrate some of the issues possible by studying those encountered in writing

translators for the handbook.
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5.2 Translators for the Process Handbook20

5.2.1 Handbook Ontology Extensions

In building translators for the various prototypes with the PIF toolkit, the first step

was to define a set of type extensions that fully represent handbook data. These are found

in the appendix. As established in the project overview (section 2.1.1), bundles and

dependencies are an important part of the handbook's descriptions of business processes.

While the bundle only requires a single definition, there are many types of dependencies

(Malone and Crowston 1994). However, those most often represented can be classified

using the "single resource dependency hierarchy." Developed by Gilad Zlotkin, a post-

doctoral fellow at CCS, this hierarchy appears in Figure 11 (Zlotkin 1994). The most

general dependency, PRODUCERS-CONSUMERS-DEPENDENCY, is at the top, where

a resource can have any number of producing activities and consuming activities. In the

more specialized dependency types, the "Producer" and "Consumer" slots are redefined to

enforce stronger constraints on the number of values allowed.

Producers Consumers

EJ_ O JrI -, 0 -*EJ
EJr IE

Producers Consumer

I- 0 -0EJI=

Producer Consumers

J-0 0 *E

Figure 11: The single resource dependency hierarchy (Zlotkin 1994).

After determining which handbook entities require PIF class extensions, they must

be described in frame syntax to be loaded by the translators. Not formally a kind of

activity, the BUNDLE class is only a subtype of ENTITY. Currently, PIF does not have a

20 Some of the translators for handbook prototypes are still in development.
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way to represent a slot which can have values of either of two types. Therefore, though a

bundle "Belongs-to" and "Contains" only activities and other bundles in theory, the

strongest type restriction possible for these fields in PIF syntax is the ENTITY class.

Though the stronger type check is not performed automatically by the toolkit, it can be done

through other toolkit functions. One unconventional possibility would be to create a new

abstraction ACTIVITY-OR-BUNDLE which has the subclasses ACTIVITY and

BUNDLE. The values of the "Belongs-to" and "Contains" slots would then be constrained

to this new type. However, type extensions are usually leaves on the class hierarchy.

The hierarchy of dependencies also brought some challenges in their representation.

More specifically, it was not immediately clear which core type should be the superclass for

these six new classes. Some people think that a producer/consumer dependency is just

"syntactic sugar" for and could be defined as a set of simpler relations. In other words, for

all producers Pi, consumers Cj, and resource R, a PRODUCERS-CONSUMERS-

DEPENDENCY(Pi, Cj, R) object is composed of a CREATES(Pi, R) relation for each

producer, a USES(Cj, R) relation for each consumer, and a PREREQUISITE(Pi, Cj)

relation for each consumer.21 (Each PREREQUISITE relation can contain all producers

but only one consumer.) Others feel that this dependency type still embodies more, such as

a coordination activity or mechanism. In either case, while one can definitely argue that

dependencies are a useful abstraction, we would like to translate these types to some set of

relations in systems that do not share the handbook extensions.

Unfortunately, there is currently no way to model this complex mapping in PIF

frame syntax without using some of the more sophisticated language found in Ontolingua

or KIF. While it is possible to say that any instance is composed of other instances

(through the ENTITY "Component" slot), one cannot define the dependency class as being

composed of other classes. Even if the type with one producer and one consumer,

PRODUCER-CONSUMER-DEPENDENCY, could multiply inherit from all three

CREATES, USES, and PREREQUISITE relations, our current class syntax does not

allow us to map slots of a subtype to slots of supertypes. Therefore, because of these

representation difficulties and because the composition of dependencies is an open question

in our research group, PRODUCERS-CONSUMERS-DEPENDENCY is currently only a

subtype of the more generic RELATION class.

2 1 In a particular system, we might be able to infer the PREREQUISITE relation from the presence of both
CREATES and USES relations.
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5.2.2 Representing Process Specialization

After defining the handbook ontology, the most important decision was determining

if process specialization should be represented as class specialization in PIF. Again, this is

an open research issue. One school of thought believes that activities in the handbook can

be treated just like class frames. If so, the handbook's specialization hierarchy would

appear as a subtree of types originating from the core ACTIVITY type. Other systems can

then use the handbook's representation of processes at different levels of abstraction.

Also, handbook users can take advantage of other systems that have object-oriented

inheritance by importing these classes.

This approach of representing handbook activities as classes is not without its

disadvantages, however. First, in order for PIF users to make the most out of handbook

data, they will need to share this large set of type extensions. In essence, sharing

handbook data will not involve the exchange of any objects, and this runs counter to the

intended use of PIF. Second, because simulations can only occur on actual instances of

processes, these classes will have to be instantiated for any such operations. When

exporting the instances for even a simple handbook decomposition, either the classes must

also be shared or the "define-hierarchy" structure may have to contain a large part of

specialization hierarchy.

Third, because bundles are not subtypes of the activities to which they belong,

bundle layers must be removed from the specialization hierarchy. Bundles can still exist,

but they must be transparent or supplemental to the activity class definitions. In other

words, "Sell books" must be a subclass of and directly connected to "Sell Product" and not

"How sold?" (in Figure 2). Finally, because PIF currently does not have multiple

inheritance, activities that are specializations of more than one parent cannot be represented

accurately.

The other school of thought maintains that process specialization is less rigid and

more loosely defined than frame specialization and, therefore, should not be treated as

such. Because of this and the difficulties mentioned above, we represent handbook

activities as instances. In the future, with developments in the handbook and PIF,

especially a more formal definition of specialization in the handbook (Wyner and Lee

1995), this decision may change. For now, handbook translators express this relationship

through a "Specialization-of' attribute in ACTIVITY objects.
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By translating the crux of the handbook data as ACTIVITY instances, our

translators operate in stronger accordance with the intended usage of PIF. Until the

specialization hierarchy is more established, the corresponding set of type extensions

would be subject to much more change than those for bundles and dependencies. It would

be inconvenient to load a frequently developing set of activity classes. While translators for

a particular system will process a variety of instances, they are generally tuned for a

relatively fixed set of class extensions. Additionally, because the "Specialization-of' field

is specific to the handbook, it can also contain bundles, reflecting the specialization

hierarchy in our prototypes more strongly. In summary, by sacrificing the conceptual

elegance of equating both forms of specialization, PIF translations of handbook data are

much simpler by not dealing with new classes.
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6 Conclusion

Since the previous PIF translators made little attempt to solve the round trip

problem, there was much room for improvement. The metric of any solution is the degree

with which system-specific data is preserved across translations. With cooperating users

and systems that meet the requirements of section 3.3, our framework allows unmodified

data specific to a particular system to return in the same form. Additional work is

necessary by the translator writer, but the ideal translator would completely reconstruct the

system's representation based on the returned objects and attributes. If its state is not

perfectly restored, however, we still have presented a mechanism whereby a user can

examine the data and complete the translation manually if necessary. The key is that the

data is still available to the importing translator.

Besides having a solution to the round trip problem, this work provides other

benefits to the handbook research effort. Currently, PIF translators are the primary method

of communication for handbook tools operating on different databases or platforms. They

have been used to preserve the data from previous prototypes, and this allows our research

group to continue to innovate and develop new tools. So long as each tool can import and

export PIF files, its data will not be obsolete or inaccessible. This also allows handbook

users to choose the tool that best suits their needs. Also, because the tools have access to

data from others, we can evaluate them solely on their functionality.

Looking beyond the handbook, a toolkit which addresses this problem will promote

the greater use of the PIF and, as a result, more exchange of business process descriptions.

While one-way exchanges are useful for sharing data, this work makes it easier to actually

make use another system and bring the results back. Even without a round trip solution,

the toolkit is still useful. By making the ontology another input of the translators, we hope

this encourages different parties to work together on developing type extensions. With the

round trip solution, the translation process will be more complex not only for the computer

but also for the user. Translators built with the toolkit should standardize the translator

interface, making it as painless as possible. This may include the task of keeping track of

which companion files belong to which system files.

Though the scope of this thesis was to present a solution for the handbook, we

believe that the underlying principles of such a solution can be applied to other interchange

formats and data-sharing scenarios. While the loss of attributes and type are specific to
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PIF, the techniques of preserving data can certainly be used in other formats. For those

formats that do not have a capability for system-specific data like PIF's "User-Attributes"

field, a companion file can still be left on export instead of import. The round trip problem

can still be averted, but the companion file will have to be shared with the interchange file.

In situations where there is no interchange format, pairwise translators for two systems can

still make use of companion files. In general, the companion concept is most useful when

meaning preservation is of the highest priority. What we have is a paradigm where

information that is not of immediate use is saved instead of discarded.
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Appendix

Grammar for PIF files

pif_file: <hierarchy> <instance_frame>*

hierarchy: ( define-hierarchy <hierarchy_level>+ )

The ability to have multiple hierarchy roots is unique to this toolkit.
In strict PIF, there is only one hierarchy root (<hierarchyjevel>).

hierarchy_level: <class_id>
I ( <class_id> <hierarchy_level>* )

The asterisk (*) of hierarchy_level is a correction from (Lee and Yost 1994).

instance_frame:

own_slot:

slot_value:

( define-frame <instance_id>
:own-slots ( <own_slot>* )

)

( <slot_name> <slot_value>+ )

<constant>
I ( setof <constant>* )
I ( listof <constant>* )
I( quote <s_expr> )
I '<s_expr>

constant: STRING
I SYMBOL

I NUMBER

s_expr: <constant>
I (<s_expr>*)

I '<s_expr>

The RESTRICTED-KIF-SENTENCE is a limited subset of symbolic expressions.
See (Lee and Yost 1994)for details.

class_id:
instance_id:
slot_name:

SYMBOL
SYMBOL
SYMBOL
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Grammar for ontology files

ontology_file: <class_frame>*

class_frame: (define-frame <class_id>
:own-slots ( <own_slot>* )
:template-slots ( <template_slot>*)

template_slot: (<slot_name> <facet_orslot_value>+ )

facetor_slot_value: (<facet> <slot_value>*)
I <slot-value>

Default slot values (i.e., <slot-value>) are not supported in this toolkit.

facet: SYMBOL

See section 4.2.2 for the facets supported in this toolkit.
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PIF 1.0 in Frame Syntax

; The core PIF v1.0 ontology
; with corrections to slot tags that were also names of entities
; and aliases for these bad tags

(define-frame ACTIVITY
:own-slots (

(instance-of CLASS)
(subclass-of ENTITY)
(documentation "Many preconditions and postconditions can

be expressed in PIF without using the Precondition and Postcondition
attributes of ACTIVITY. For example, the USE relation between activity
A and resource R implies that one of A's preconditions is that R is
available. In general, the Precondition and Postcondition attributes of
ACTIVITY should only be used to express conditions that cannot be
expressed any other way in PIF. Doing so will maximize the degree to
which a process description can be shared with other people.")

:template-slots (
(Component (slot-value-type ACTIVITY))
(Precondition (slot-value-type RESTRICTED-KIF-SENTENCE)

(maximum-slot-cardinality 1))
(Postcondition (slot-value-type RESTRICTED-KIF-SENTENCE)

(maximum-slot-cardinality 1))
(Status (slot-value-type SYMBOL))

(define-frame ACTOR
:own-slots (

(instance-of CLASS)
(subclass-of RESOURCE)
(documentation "An ACTOR represents a person, group, or

other entity (such as a computer program) that participates in a
process.")

:template-slots
(Has-Skill (slot-value-type SKILL)

(slot-alias Skill))

)

(define-frame CANNOT-BE-CONCURRENT
:own-slots (

(instance-of CLASS)
(subclass-of RELATION)
(documentation "Activities among which this relation

holds cannot be executed concurrently. Conversely, activities without
this relation among them are assumed to be concurrently executable.")

)
:template-slots (

(Has-Activity (slot-value-type ACTIVITY)
(slot-alias Activity))
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(define-frame CREATES
:own-slots (

(instance-of
(subclass-of
(documentation

:template-slots (
(Has-Activity

(Has-Resource

CLASS)
RELATION)
"Activity CREATES resources.")

(slot-value-type ACTIVITY)
(maximum-slot-cardinality 1)
(slot-alias Activity))
(slot-value-type RESOURCE)
(slot-alias Resource))

(define-frame DECISION
:own-slots (

(instance-of CLASS)
(subclass-of ACTIVITY)
(documentation "A DECISION is a special kind of activity

that represents conditional branching. If the RESTRICTED-KIF-SENTENCE
in its If attribute is satisfied, the next activities in the process
flow are those specified in the SUCCESSOR relations in the Then
attribute. If not, the next activities are those specified in the
SUCCESSOR relations in the Else attribute.")

)
:template-slots (

(If

(Then
(Else

)

(define-frame ENTITY
:own-slots (

(instance-of
(documentation

hierarchy.")

:template-slots (
(Component
(Documentation

(Name

(User-Attribute

(slot-value-type RESTRICTED-KIF-SENTENCE)
(maximum-slot-cardinality 1))
(slot-value-type SUCCESSOR))
(slot-value-type SUCCESSOR))

CLASS)
"ENTITY is the root of the PIF class

(slot-value-type ENTITY))
(slot-value-type STRING)
(maximum-slot-cardinality 1))
(slot-value-type SYMBOL)
(maximum-slot-cardinality 1))
(slot-value-type SYMBOLIC-EXPRESSION))

73

)

)
)



(define-frame GROUP
:own-slots (

(instance-of CLASS)
(subclass-of ACTOR)
(documentation "A GROUP is a group of actors. In PIF, a

GROUP is defined to be a special kind of ACTOR. So, for example, one
can specify that some activity is performed by a group of people rather
than a single individual. In the future, PIF will probably support
multiple inheritance. When it does, GROUP will also be a subclass of a
SET type that supports general features of sets of objects. For now, we
define GROUP as a subclass of ACTOR that defines a few additional set-
related attributes such as Cardinality and Member-Type.")

)
:template-slots (

(Cardinality

(Member
(Member-Type

(define-frame MODIFIES
:own-slots (

(instance-of
(subclass-of
(documentation

:template-slots (
(Has-Activity

(Has-Resource

(define-frame PERFORMS
:own-slots (

(instance-of
(subclass-of
(documentation

:template-slots (
(Has-Actor

(Has-Activity

(slot-value-type INTEGER)
(maximum-slot-cardinality 1))
(slot-value-type ACTOR))
(slot-value-type CLASS))

CLASS)
RELATION)
"Activity MODIFIES resources.")

(slot-value-type ACTIVITY)
(maximum-slot-cardinality 1)
(slot-alias Activity))
(slot-value-type RESOURCE)
(slot-alias Resource))

CLASS)
RELATION)
"Actor PERFORMS Activities.")

(slot-value-type ACTOR)
(maximum-slot-cardinality 1)

(slot-alias Actor))
(slot-value-type ACTIVITY)
(slot-alias Activity))
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(define-frame PREREQUISITE
:own-slots (

(instance-of CLASS)
(subclass-of RELATION)
(documentation "This relation represents that the

activities in Required-Activity must be completed before the activity in
Has-Activity can begin. The distinction between the PREREQUISITE
relation and the SUCCESSOR relation is subtle. PREREQUISITE represents
which activities must have been completed before another activity
begins, but does not specify precisely when those activities actually
occur. SUCCESSOR represents the flow of control in a process -- that
is, it represents the precise order in which activities will actually
occur.")

:template-slots (
(Required-Activity (slot-value-type ACTIVITY))
(Has-Activity (slot-value-type ACTIVITY)

(maximum-slot-cardinality 1)
(slot-alias Activity))

(define-frame RELATION
:own-slots (

(instance-of CLASS)
(subclass-of ENTITY)
(documentation "Currently, RELATION objects have no

attributes of their own. PIF uses it as an abstract parent class for
more specific relation classes such as USES and PERFORMS.")

)

(define-frame RESOURCE
:own-slots (

(instance-of CLASS)
(subclass-of ENTITY)
(documentation "A RESOURCE is an entity that is needed in

some way to perform an activity. This includes people (represented by
the ACTOR subclass in PIF), physical materials, time, and so forth. The
PIF Working Group has discussed adding attributes such as Consumable,
Sharable, and so forth, but so far no decision has been made on what
attributes are appropriate.")

(define-frame SKILL
:own-slots (

(instance-of CLASS)
(subclass-of RESOURCE)
(documentation "A SKILL object represents expertise

possessed by actors. As yet, we have not decided on any attributes that
are unique to SKILL objects, as the examples we have used in developing
PIF make little use of skill information.")

)
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(define-frame SUCCESSOR
:own-slots (

(instance-of CLASS)
(subclass-of RELATION)
(documentation "An activity X is a SUCCESSOR of activity

Y if X begins after Y completes and no other activities occur between X
and Y. A successor relation is unconditional (that is, activity X
always immediately follows activity Y) unless it appears as a value of
either the Then or Else attribute of a DECISION object. Intuitively,
SUCCESSOR relations corresponds to the flow arrows in a process
flowchart. The SUCCESSOR and PREREQUISITE relations are subtly
different. See the description of PREREQUISITE for details.")

)
:template-slots (

(Has-Predecessor

(Has-Successor

(define-frame USES
:own-slots (

(instance-of
(subclass-of
(documentation

:template-slots (
(Has-Activity

(Has-Resource

(slot-value-type ACTIVITY)
(maximum-slot-cardinality 1)
(slot-alias Predecessor))
(slot-value-type ACTIVITY)
(slot-alias Successor))

CLASS)
RELATION)
"Activity USES resources.")

(slot-value-type ACTIVITY)
(maximum-slot-cardinality 1)
(slot-alias Activity))
(slot-value-type RESOURCE)
(slot-alias Resource))
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Process Handbook extensions to PIF

; See section 5.2.1 for details.

(define-frame BUNDLE
:own-slots (

(instance-of
(subclass-of

:template-slots (
(Belongs-to
(Contains

CLASS)
ENTITY)

(slot-value-type ENTITY))
(slot-value-type ENTITY))

; Coordinating Resource Based Dependencies

; Gilad Zlotkin

; Process Handbook Research Seminar
; October 14, 1994

(define-frame PRODUCERS-CONSUMERS-DEPENDENCY
:own-slots (

(instance-of CLASS)
(subclass-of RELATION)

)
:template-slots (

(Producer
(Consumer
(Has-Resource

(slot-value-type ACTIVITY))
(slot-value-type ACTIVITY))
(slot-value-type RESOURCE)
(maximum-slot-cardinality 1))

(define-frame PRODUCERS-CONSUMER-DEPENDENCY
:own-slots (

(instance-of CLASS)
(subclass-of PRODUCERS-CONSUMERS-DEPENDENCY)

:template-slots (
(Consumer (slot-value-type ACTIVITY)

(maximum-slot-cardinality 1))
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(define-frame SHARED-OUTPUT-DEPENDENCY
:own-slots (

(instance-of
(subclass-of
(documentation

common object dependency.")
)
:template-slots (

(Consumer

CLASS)
PRODUCERS-CONSUMER-DEPENDENCY)
"This dependency is also known as the

(slot-value-type ACTIVITY)
(slot-cardinality 0))

(define-frame PRODUCER-CONSUMERS-DEPENDENCY
:own-slots (

(instance-of CLASS)
(subclass-of PRODUCERS-CONSUMERS-DEPENDENCY)

)
:template-slots (

(Producer (slot-value-type ACTIVITY)
(maximum-slot-cardinality 1))

(define-frame SHARED-INPUT-DEPENDENCY
:own-slots (

(instance-of CLASS)
(subclass-of PRODUCER-CONSUMERS-DEPENDENCY)

)
:template-slots (

(Producer (slot-value-type ACTIVITY)
(slot-cardinality 0))

(define-frame PRODUCER-CONSUMER-DEPENDENCY
:own-slots (

(instance-of CLASS)
(subclass-of PRODUCERS-CONSUMERS-DEPENDENCY)
(documentation "When PIF has multiple inheritance, this

class should really be a subclass of both PRODUCERS-CONSUMER-DEPENDENCY
and PRODUCER-CONSUMERS-DEPENDENCY classes.")

)
:template-slots 

(Producer

(Consumer

(slot-value-type ACTIVITY)
(maximum-slot-cardinality 1))
(slot-value-type ACTIVITY)
(maximum-slot-cardinality 1))
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