
Feedback-Directed Specialization of C

by

Jeremy H. Brown

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degrees of

Bachelor of Science in Computer Science and Engineering
and

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1995

0 1995, Massachusetts Institute of Technology. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly
paper and electronic copies of this thesis document in whole or in part, and to grant

others the right to do so.

Author ..... T.J..
De enr t A...\. ment of a1 ·..n n- ad-.--
Dep rtment' of Eewtrical Engineering and

A7 /

Certified by..... Principal Research. .... .Sci. . entist, MIT

Principal Research Scientist, MIT

Computer Science
May 26, 1995

...{· e, o o .. ...

/ Thoas Knight, Jr.
Artificial ntelligence Lab

All ?.? 

Thesis Supervisor
A

A ccepted by ................. .. .. · . ......... ..................
Accepted-'.. by. .F. R. M orgenthaler

Cly b* t~,l Committee on Graduate Theses
OF TECHNOLOGY

AUG 1 0 1995

L.DRARIE :

Barker Eng

.t



Feedback-Directed Specialization of C

by

Jeremy H. Brown

Submitted to the Department of Electrical Engineering and Computer Science
on May 26, 1995, in partial fulfillment of the

requirements for the degrees of
Bachelor of Science in Computer Science and Engineering

and
Master of Engineering in Electrical Engineering and Computer Science

Abstract
Abstraction is a powerful tool for managing program complexity; well-abstracted source
code is far more comprehensible, maintainable, and reusable than less abstract, specialized
source code. Unfortunately, with traditional compiler technology, executables produced
from hand-specialized source code generally run faster than executables produced from
abstract source code; as a result, programmers frequently sacrifice abstraction's maintain-
ability in favor of execution-speed. In this thesis I introduce a potential solution to this
problem called feedback-directed specialization, a process of profile-directed specialization.
Throughout its lifetime, a program is adapted to changing usage patterns through occa-
sional recompilations. The primary contribution of this thesis is fedsocc, a strong founda-
tion for future implementation of fully automatic feedback-directed specialization for the C
programming language.

Thesis Supervisor: Thomas Knight, Jr.
Title: Principal Research Scientist, MIT Artificial Intelligence Lab



Acknowledgments

This research and the Reinventing Computing group of the MIT Artificial Intelligence Labo-
ratory are supported in part by the Advanced Research Projects Agency of the Department
of Defense under Rome Labs contract number F30602-94-C-0252.

This material is based upon work supported under a National Science Foundation Grad-
uate Research Fellowship. Any opinions, findings, conclusions or recommendations are those
of the author and do not necessarily reflect the views of the National Science Foundation.

Thanks are owed to a number of people and organizations. This thesis has been de-
veloped and written under the auspices of the Reinventing Computing group at the MIT
Artificial Intelligence Lab; thanks go to all the members of the RC group. Particular thanks
are owed to fellow RC group members Andre DeHon, Ping Huang and Ian Eslick, for many
discussions which generated ideas for improvements. Andre, the RC group's spiritual leader,
deserves particular thanks for developing the notion of feedback-directed specialization in a
larger framework, and thereby leading me to this particular thesis. And particular thanks
also go to Tom Knight, my thesis advisor, who had the faith to give me complete freedom
in choosing and developing my thesis topic.

In a less academic vein, thanks go to Michelle Goldberg for food and cookies, and for
continuous moral support. My cooking group, Spork Death, has continued to feed me even
though I have been failing of late to reciprocate; thanks go to all of the Spork membership
for their tolerance.

For providing random distractions from classwork over the years, thanks go to the
residents of my undergraduate dormitory, Senior House; Sport Death Forever! For similar
reasons, thanks go also to the members of the MIT Assassins' Guild.

For helping me recover from repetitive strain injuries of the arms and wrists, thanks
go to Dr. David Diamond at the MIT Medical Center, and to the occupational therapy
department at Mt. Auburn Hospital. Without them, I would have been physically unable
to write this thesis.

And finally, for their faith in me, and for making it possible for me to attend MIT,
thanks go to my parents.



Contents

1 Overview

1.1 Motivation ....................

1.2 Research Contribution.

1.3 Related Work.

1.3.1 Automated Specialization.

1.3.2 Profile-Directed Specialization .....

2 The Feedback-Directed Specialization Model

2.1 Description ....................

2.1.1 Comparisons and Further Details ....

2.2 Foundational Hypotheses ............

3 Fedsocc: a Basis for Feedback Directed Specialization of C

3.1 Overview.

3.1.1 The Choice of C .............................

3.1.2 Software Dependencies .

3.2 The Feedback Loop .

3.3 Feedback Mechanisms . . . . . . . . . . . . . . . . . .

3.3.1 Primary Methods .

3.3.2 Derived Methods .............................

3.4 Specialization Mechanisms ............................

3.5 Staged Implementation .

3.5.1 Manual Hypothesizing and Experimentation ..............

3.5.2 Automating Experimentation.

3.5.3 Automating Hypothesizing.

4

7

7

8

10

10

12

14

14

15

17

20

20

21

21

22

25

25

30

32

36

36

38

39

................................

................

................

................

. . . . .
. . . . . . . . . .



3.6 Fedsocc Implementation Status .....

4 Conclusions

4.1 Analysis.

4.2 Future Work.

4.2.1 Complete FDS Implementatiol

4.2.2 Collaboration .........

A Fedsocc Implementation Details

A.1 SUIF .

A.2 Fedsocc Processes ...........

A.2.1 Initially Generating SUIF fron

A.2.2 The Feedback Loop .....

B Source Code

B.1 fedsocc library routines .......

B.1.1 Interface ...

B.1.2 Profiling Mechanisms . .

B.1.3 Specialization Mechanisms..

B.1.4 Miscellaneous.

B.2 Initialization .............

B.2.1 feedinit ............

B.2.2 fds.c ..............

B.3 feedback collection.

B.3.1 PC Sampling.

41

..................... . .41
...................... 42

.n . ..................... ... . 42

..................... . .44
45

45

...................... 46
nC .....· ..... . .. .·.·..... 46
..................... . .48

50

. . . . . . . . . . . . ....... ... 51

...................... . ........51

..................... . .65

... ......... ... .. .... . .77
... .. . . .. . .. ... .. .. . .. 100

... ... . .. . .. .. . .. .. . . . 104

... ... .. . . .. ... .. . .. .. 104

. . . . . . . . . . . . . . . . . . . . . . 110

. . . . . . . . . . . . . . . . . . . . . . 112

. . . . . . . . . . . . . . . . . . . . . . 112

5

40



List of Figures

1-1 Approaches to automated specialization using only immediately available data.

1-2 Approaches to specialization using profiling data from test inputs ......

2-1 The feedback-directed specialization process . ................

Outline of the fedsocc system. ............

Approximate costs of primary profiling mechanisms

A simple function, hello ..............

hello, with an execution-counter ..........

SPARC assembly for an execution-counter .....

Variable profiling instrumentation. .........

SPARC assembly for a variable sampling site....

main calls absqr ...................

absqr inlined into main ................

. . . . . . .SPARC

on a Sun SPARC

A-1 The SUIF copyright file ..................

6

10

12

15

3-1

3-2

3-3

3-4

3-5

3-6

3-7

3-8

3-9

22

25

26

26

27

28

29

32

33

46



Chapter 1

Overview

3. ab.stract or ab.stract.er \ab-'strakt, 'ab-., in sense 3 usu 'ab-.\ vt
1: REMOVE, SEPARATE 2: to consider apart from application to a particular
instance

- Webster's Online Dictionary

1.1 Motivation

Abstraction in programming is highly regarded. Methods of abstraction help program-

mers manage code complexity; abstract source code is comprehensible and maintainable,

and lends itself to development and reuse. To the programmer, reusable abstract routines

represent a great improvement over multiple, specialized routines, each of which must be

independently written, debugged, and maintained. Unfortunately, with conventional com-

piler technology, abstraction comes at the price of a great deal of run-time overhead; the

cumulative effect of function calls, parameter passing, and using overly general routines is

substantial.

Heavily specialized source code is everything that abstract code is not: it makes minimal

use of abstractions such as functions, its routines are as specific as possible, it isn't general

or reusable, it's hard to comprehend, and it's harder to maintain. But with conventional

compiler technology, an executable produced from specialized source code is usually faster

than one produced from abstract, general, reusable, maintainable source code.

The result is that programmers are often forced to choose between the maintainability of

abstraction and the runtime performance of specialization. Unfortunately, this often means

7



that the source-code of very large, complex, long-running applications gets specialized into

near-incoherency.

One means of resolving the dichotomy between abstraction and specialization is to auto-

mate specialization - that is, to automatically produce faster but more limited (specialized)

code from slower but more general (abstract) code. Sufficiently powerful automated spe-

cialization would enable programmers to write abstract code without sacrificing speed.

It must be noted that traditional compilers already make use of simple automated

specializations such as constant propagation. These commonly-used specializations are

attractive because they don't generally increase program size or runtime; indeed, they very

nearly guarantee improvements in code size and speed. However, the code speedups they are

able to achieve are modest at best; thus, more aggressive specializations must be employed

in order to recover the speed lost to abstraction.

However, more aggressive specializations (inlining, for example) frequently involve du-

plicating code, and therefore cannot make guarantees about improving code speed - as

code-size increases, hardware caches or main memory may overflow, and thus a special-

ization which static compile-time analysis indicates should improve execution time may

actually worsen it. Therefore, code-expanding specializations must be judiciously employed

if they are to be fully effective.

1.2 Research Contribution

It is with the goal of recovering speed lost to abstraction that I present a model for compi-

lation which I call feedback-directed specialization.

Feedback-directed specialization, or FDS, automatically employs aggressive specializa-

tions based on continual profiling and recompilation of a program throughout its lifetime.

In an FDS system, compile-time, profiles of the program from previous runs is provided

to the compiler. The compiler uses the profiles to control the specialization process: the

program is specialized to run most rapidly under usual usage patterns. If the conditions of

a program's use change, whether due to changing user behavior, new hardware, etc., recom-

pilations will re-adapt the program to perform optimally under the changed average-case

usage patterns.

8



Feedback-directed specialization is a specific idea arising from a number of concepts

being developed by the Reinventing Computing group at the MIT AI lab. Foundational

material may be found in technical reports from that group, particularly [12], [8], [2], [10],

[3], and [11].

My contribution in this thesis is twofold: first, I have defined a complete model for

feedback-directed specialization; and second, I have implemented a foundation for develop-

ing fully automated feedback-directed specialization of C programs. (It is beyond the scope

of this thesis to prove or disprove the utility of feedback-directed specialization with a fully

operative implementation.)

The remainder of this presentation is structured as follows:

To conclude this chapter, in Section 1.3, I will review related work on automated and

profile-directed optimization techniques.

In Chapter 2, I will develop the concept of feedback-directed specialization in some

detail. I will discuss the anticipated benefits and drawbacks of FDS. Finally, I will present

several as yet unproven hypotheses upon which the utility of FDS depends.

In Chapter 3, I will present fedsocc, the FEedback-Directed Specializing C Compiler.

Fedsocc does not, by itself, perform feedback-directed specialization; instead, it is intended

to be a foundation upon which to build a fully automated FDS system for C. Also in this

chapter, I will propose a staged approach to implementing an FDS system based on fedsocc;

stages progress from being heavily dependent on programmer annotation of source-code to

being fully automatic.

Finally, in Chapter 4, I will relate the hypotheses underlying FDS specified in Chapter

2 to the three-stage development plan proposed in Chapter 3. I will conclude by proposing

several avenues for further research.

9



(a)

Ellipses indicate data; rectangles indicate data-consumer/producers.

Figure 1-1: Approaches to automated specialization using only immediately available data.
a) standard compilation with an optimizing compiler; b) compilation with partial evaluation.

1.3 Related Work

Many approaches to alleviating the overhead of abstraction have been presented in the past.

Some use statically available information to direct automated specialization, while others,

more ambitious, use profiles of programs run on test data to direct the optimization process.

1.3.1 Automated Specialization

Most conventional compilers attempt to improve executable performance and reduce

executable size by using compile-time optimizations based on static program analyses. Fig-

ure 1-l.a shows the process of compilation associated with such standard compilers. [1]

presents a thorough discussion of most conventional optimizations and supportive static

program analysis techniques.

Where traditional compile-time specialization makes use only of information derived

directly from a program's structure, partial evaluation [16] specializes a program (or smaller

functional unit) with respect to some amount of known input data. Figurel-l.b illustrates

the process of compile-time partial evaluation. In this process, a subset of a program's

inputs are provided statically (i.e. at compile time), and the program evaluated as much

as possible with respect to those known inputs - hence the name partial evaluation. The

resulting, specialized executable requires correspondingly fewer inputs than the original

10

(b)



program. Since substantial compile-time is spent evaluating the program with respect to the

fixed inputs, the executable should have relatively little work to perform when provided with

values for its remaining inputs; it should therefore take relatively little time to run. Although

most work on partial evaluation has focused on functional programming languages, some

recent work [17] has focused on partial evaluation of imperative programming languages.

A major disadvantage of compiling with partial evaluation is that a specialized version

of a program is useless for any set of inputs which includes elements differing from those

against which the program was specialized. However, this problem seldom has a chance to

manifest, being overshadowed by the problem that the inputs to most programs are usually

completely unknown at compile-time.

These problems are avoided by forms of run-time partial evaluation known variously as

deferred compilation, dynamic code generation, and runtime code generation, which delay

generation of critical portions of a program until run-time. In these methods, critical pieces

of code are not generated at compile time, but are instead preserved as templates; when an

executable version of one of these pieces of code is required, it is generated by evaluating

its template with respect to data values discovered exactly at the moment of need. The

resulting executable code is precisely tailored to the operating conditions of the program.

A number of examples of run-time code generation are available. [19] presents a system

which completely automates deferred compilation on an imperative language. [13] presents

an interface for programmers to explicitly employ dynamic code generation in their pro-

grams. The SELF compiler ([4]) employs run-time compilation to double the performance

of programs written in SELF, a dynamically typed, object-oriented programming language.

The Synthesis operating system kernel ([20]) employs dynamic code generation to provide

an extremely fast, high-level operating system interface.

11



(b)

Ellipses indicate data; rectangles indicate data-consumer/producers.

Figure 1-2: Approaches to specialization using profiling data from test inputs
a) hand-specialization; b) automated specialization.

1.3.2 Profile-Directed Specialization

In a 1971 paper [18], Donald E. Knuth asserts that "[t]he 'ideal system of the future'

will keep profiles associated with source programs, using the frequency counts in virtually

all phases of a program's life."

In a general sense, profiling a program consists of monitoring its behavior as it is ex-

ecuted, and producing a description, or profile, of that behavior. Profiling has evolved

since Knuth's 1971 statement; modern profiling tools commonly provide function execution

times, function or basic-block execution counts, or even call-graph arc-counts. One very

popular profiling tool, gprof [15], provides function execution times and counts, as well as

call-graph arc-counts, for C programs.

Unfortunately, profiling a program tends to substantially slow its execution due to the

overhead of conventional profiling mechanisms. Progress has been made toward reducing

this overhead, however. [21] presents an efficient algorithm for instrumenting code to collect

execution and call-graph information; the algorithm utilizes any previous profiling informa-

tion to further optimize the placement of profiling instrumentation. On a different tack,

[7] presents a method for using hardware to generate profiling information at relatively low

overhead.

12

(a)



Traditionally, profiling tools are used to direct hand-optimization of programs under

development; this process is illustrated in Figurel-2.a. In this traditional model, a pro-

grammer compiles a program, then runs it on test data to produce a profile; the profile

indicates "hotspots", that is, portions of code that are executed with great frequently or

are otherwise responsible for a significant fraction of the program's running-time. Guided

by the profile, the programmer can focus hand-optimization efforts on hotspots, thus alter-

ing a minimum of code for a maximum of effect. The process may be iterated several times,

but eventually the program source is declared "frozen", and the corresponding, end-user

executable permanently installed.

The great advantage of profile-directed hand-optimization is that a human programmer

can change a program in arbitrarily complex and intelligent ways; optimizations may be

as severe as a complete change of algorithm. The disadvantage, of course, is that overly

optimized source code often becomes so messy that it becomes very hard to comprehend,

maintain, or reuse. The more hand-optimized the code, the more likely it is to be unmain-

tainably complex. Once again, automated specialization appears highly desirable.

It has already been mentioned that many potentially beneficial specializations increase

code-size, and must therefore be judiciously employed. A number of approaches have chosen

to use profiling information to direct the judicious application of specializations toward pro-

gram hotspots. The common outline of these approaches is shown in Figure 1-2.b. Trace

scheduling [14] uses execution frequencies to sequentially arrange the blocks of assembly

code that are most likely to be executed. Superblocking [5] uses execution frequencies to

arrange blocks of C code much as trace scheduling arranges assembly code blocks. Su-

perblocking also arranges code such that a conglomerate block is only entered at a single

point; this arrangement frequently requires code duplication. [6] provides an interesting

twist by demonstrating that code-expanding optimizations employed on the basis of basic-

block profiling sometimes actually improve cache performance by improving code locality

and/or sequentiality.

In contrast to this array of profile-directed specializations, Typesetter, described in [21],

is a system which selects implementations for abstract data types on the basis of execution

counts and call-graph arc-counts. However, since Typesetter requires a programmer to

provide the multiple data type implementations, it is not as attractive as potentially fully

automatic techniques involving no overhead for the programmer.

13



Chapter 2

The Feedback-Directed

Specialization Model

In this chapter, I will explore the concept of feedback-directed specialization (FDS).

In Section 2.1, I will describe the FDS model of program development, and compare it

against other methods of automated and profile-directed specialization. In Section 2.2, I

will present several hypotheses, as yet unproven, which must be true if the FDS model is

to prove advantageous.

2.1 Description

The goal of feedback-directed specialization is to eliminate abstraction-barrier overhead.

The tools FDS employs are speculative specializations - specializations which might speed

up a piece of code at the cost of increasing its code size, or might speed up some portions

of a piece of code at the cost of slowing down others. To determine when such speculation

is profitable, FDS uses profiling information resulting from end-user program usage. The

feedback-directed specialization process is illustrated in Figure 2-1.

In the FDS process, every program is repeatedly recompiled over its lifetime. When

a program is recompiled, the FDS compiler receives feedback consisting of profiling data

from all the program's runs since it was last recompiled. The compiler uses the feedback to

direct the use of speculative specializations on the program, and to direct the placement of

profiling instrumentation in the resulting executable.

14



Ellipses indicate data; rectangles indicate data-consumer/producers.

Figure 2-1: The feedback-directed specialization process.

Over several recompilations, the FDS compiler is able to experimentally optimize the

program. In a single recompilation, the compiler uses its feedback as the basis for theories

as to which areas of the program might benefit from various speculative specializations.

Where possible, the resulting executable is specialized according to these theories; the exe-

cutable includes custom profiling instrumentation to determine the success of each specula-

tive specialization. In cases where profiling feedback from previous runs provides inadequate

information for theorizing, the compiler instruments the new executable for more thorough

profiling.

2.1.1 Comparisons and Further Details

The feedback-directed specialization process offers several advantages over other approaches

to automated and profile-directed specialization.

All profile-directed optimization techniques are aimed at improving usual-case program

performance. Where previous profile-directed techniques have used profiles from test data

to direct program optimization, FDS uses profiles from end user program runs. Also,

where previous techniques eventually produce a final, static executable, in an FDS process

programs are repeatedly recompiled in order to respond dynamically to changing usage

patterns; thus, programs maintained in an FDS process adapt to real end usage conditions,

rather than being statically optimized to conditions imposed by possibly unrepresentative

test data.

15



In contrast to the restricted program resulting from compile-time partial evaluation,

programs specialized with FDS retain their generality; although optimized to empirically

discovered usual-case program behavior and data values, they will still run (albeit possibly

slower than an unspecialized program) in atypical cases.

As in previous methods of profile-directed compilation, with FDS, a program's struc-

ture is specialized in response to control-flow profiling; thus, an FDS compiler is able to

employ a variety of control-flow-optimizing specializations. However, while previous meth-

ods of profile-directed compilation have performed only control-flow based optimizations,

in feedback-directed specialization, optimization is also performed according to program

data behavior. In particular, an FDS compiler is able to duplicate critical branches of code,

then partial evaluate each duplicate with respect to a frequently discovered data pattern;

the compiler maintains general version of the code being maintained to deal with unusual

cases. The program produced by an FDS compiler is therefore specialized both according

to control flow and data behavior.

Traditional profiling models control-flow with execution counters and call-graph arc-

counting. In order to support data-based specialization, FDS profiling must gather not

only control-flow information such as execution frequencies and times, but also information

about the values taken on by program variables.

Traditional profiling methods are either on or off, covering an entire program when on.

An FDS compiler has direct control over profiling instrumentation so that it can perform

aggressive profiling of items of interest (i.e. program hotspots, critical variables), and ignore

items of little interest in order to keep profiling overhead to a minimum.

Profiling methods available to an FDS compiler should be as varied as possible, with

particular focus on being able to profile real-time program behavior, and on being able to

profile variable values. The focus on real-time is important because code-expanding opti-

mizations employed only on the basis of program-time profiling (i.e. all profiling methods

using only on execution-counters) may increase code-size so much that additional paging

slows real-time execution.

FDS has two advantages and one disadvantage compared to run-time code generation.

In run-time code generation, particular portions of code may be generated with great fre-

quency because of characteristic user behavior; exacerbating this inefficiency, aggressive

optimization takes too much time to perform at runtime on dynamically generated code.

16



The result is that critical code may be generated in nearly every run of a program, but

will never be fully optimized. By contrast, FDS specializes at compile-time on frequently-

occuring conditions; it therefore does not repeat effort on frequently occuring conditions,

and because it operates at compile-time it can spend time optimizing aggressively. The

relative disadvantage of FDS is that an FDS-compiled program must fall back on general

routines when unusual runtime conditions occur, where a program using run-time code

generation could produce a routine specialized to the unusual event.

2.2 Foundational Hypotheses

The utility of the feedback-directed specialization model depends upon several hypotheses.

FDS's use of profiling information collected from end-user program runs to guide optimiza-

tions leads to the first two hypotheses:

Hypothesis 1 Programs frequently have characteristic behaviors which can be exploited at

compile-time to improve expected running time.

Hypothesis 2 Characteristic program behaviors are frequently attributable to typical user

inputs (and other environmental factors), rather than to intrinsic program characteristics.

Hypothesis 1 must prove true if FDS's use of profiling information to direct specialization

is to be meaningful; in particular, it must be true in regard to program data behavior as

well as control-flow behavior if data-based specializations are to prove advantageous.

Hypothesis 1 is partially verified by [14], [5], and [6], all of which describe success in

using block and function execution counting to guide code-reorganizing optimizations (trace-

scheduling, superblocking, inlining, etc.) Similarly, [21] describes success using basic-block

execution counting to select alternative implementations of abstract types. However, the

scope of these works is limited by their reliance solely on counter-based (i.e. control flow

based) profiling; none consider any data behavior based optimizations.

On the other hand, [19], [13], [4], and [20], all indicate that data behavior can successfully

be exploited to improve program performance at runtime, but none indicate whether or not

program data tends to have characterizable behavior.

If Hypothesis 2 is true, programs optimized against test input by non-FDS techniques

may run relatively poorly on user input that differs substantially from the test data. On

17



the other hand, under FDS, programs are profiled while running actual user input, rather

than on programmer-provided test input; also, programs are recompiled throughout their

lifetimes, rather than being "orphaned" from the profiling/optimization loop. If Hypothesis

2 is true, then, programs maintained under the FDS model will adapt to changing user

needs, changes in hardware, and other environmental changes. f it is not true, however,

the overhead of constantly profiling end-user executables will not pay for itself since no

information will be gained that could not have been gained with test input, and no additional

optimization gained from the continuing feedback loop.

The duties of the FDS compiler are to instrument a program for lightweight profiling,

and to specialize it in response to profiling feedback from previous runs. The first duty

leads to the following hypothesis:

Hypothesis 3 Runtime profiling instrumentation as tailored by a compiler can be very low

overhead.

Hypothesis 4 Automated compile-time specialization based on profiling from end-user runs

is sufficiently profitable to overcome profiling overhead and still be competitive with runtime

code generation, hand specialization, etc.

Hypothesis 3 is necessary if FDS is to be usable; since end-user executables will always

be instrumented for profiling, the impact on program performance must be small - even if

FDS is quickly able to improve program performance on the basis of the gathered profiling,

initial program runs will move intolerably slowly if instrumentation overhead is too great.

Some hint as to the veracity of this hypothesis may be derived from two datapoints.

First, informal experiments performed by members of the Reinventing Computing group

indicate that program-counter sampling, a method used by the profiling tool gprof for

determining where program-time is spent, incurs an overhead of less than three percent

of a program's running time. However, [15] states that the runtime overhead of profiling

instrumentation for gprof is anywhere from five to thirty percent. The logical conclusion is

that nearly all of gprof's overhead is due to the runtime value sampling used to determine the

calling-arcs on a program's dynamic call-graph. Inspection of the code used to perform this

sampling under the SunOS 4.1.3 operating system has convinced me that it is not terribly

efficient. Thus, PC sampling is definitively cheap, and the cost of rather indiscriminate

18



value profiling (i.e. profiling every function) is at the very least significantly less than a

factor of two.

More support for Hypothesis 3 is given by [21], which describes a method for lightweight

call-graph arc-counting called greedy-sewing. Greedy-sewing involves instrumentation of a

subset of the arcs in the call-graph. Which arcs are instrumented is flexible; thus, the

runtime overhead of the profiling can be minimized by placing instrumentation on arcs that

profiling information from previous runs have shown to be least-frequently traversed.

Hypothesis 4 is the final requirement for FDS to be more than an academic curiousity.

It specifies that specialization, in particular, when driven by feedback is profitable.

19



Chapter 3

Fedsocc: a Basis for Feedback

Directed Specialization of C

3.1 Overview

In this chapter I describe fedsocc, a system I have implemented to serve as a basis for

gradual implementation of feedback-directed specialization of C programs. Fedsocc stands

for the FEedback-Directed Specialization Of C Compiler.

Fedsocc provides three elements required to implement FDS:

1. fedsocc provides the feedback-loop that is the heart of FDS; a drop-in FDS transform

engine performs the actual specialization and profiling. Details of the feedback loop

are presented in Section 3.2.

2. Fedsocc provides a variety of profiling primitives. Primary primitives include PC sam-

pling, execution counters, and variable sampling; derived primitives include block and

function execution counting, and dynamic call-graph determination and arc-counting.

These primitives are described in are described in Section 3.3.

3. Fedsocc also provides a range of semantics-preserving specializations: inlining func-

tions; producing specialized versions of a function based on calling-site parameters

determined to be constant at compile-time; and producing multiple versions of criti-

cal code-blocks, each specialized for different constraint. Section 3.4 describes these

primitives.

20



In addition to these required elements, fedsocc allows programmers to annotate source

code with suggestions for FDS transform engines that are not fully automatic. In Section

3.5, I present these annotations in the context of a proposed approach to implementing FDS

in stages, with each stage making progressively less use of annotations than its predecessor.

Finally, in Section 3.6, I discuss the current state of implementation of fedsocc's features.

3.1.1 The Choice of C

I chose to target an implementation of FDS at the C programming language for several

reasons. Primary among them is that C has a large user base; thus, improved optimization

of C programs is extremely useful. Also, C is a very low-overhead programming language;

as a result, FDS can focus on recovering speed lost to basic abstractions and generalities,

rather than first having to compensate for the overhead associated with higher-level lan-

guages. Finally, a variety of powerful, freely available tools for C were available to provide

a foundation for my development efforts.

Unfortunately, C turns out to have a problem which, in hindsight, could probably have

been predicted. Since C is a language of choice for programmers who want fast programs,

the source code for many programs with long running times has already been heavily hand-

specialized, leaving relatively little room for automated improvement or experimentation

with alternative specializations.

However, an equally hindsight-predictable benefit has also emerged: many high-level

languages (scheme and CLU, for instance) can be compiled to C. The resulting C code

tends to be convoluted by a combination of the abstract form of the original source code,

and the additional complexities needed to represent features of the source language in C. I

suspect that code of this nature provides a great deal of room for automated specialization.

3.1.2 Software Dependencies

Fedsocc is built primarily on top of the SUIF Compiler System[24], a freely available re-

search compiler suite created by the Stanford Compiler Group. The SUIF Compiler System

operates as a series of passes, each of which is an individual program which reads from

and writes to SUIF (Stanford University Intermediate Format) files. The SUIF distribution

includes a library of routines for reading and writing SUIF files, and for manipulating SUIF

data structures while they are in memory; this library greatly eases the process of develop-

21



Ellipses represent data (files);
rectangles represent consumers/producers of data (readers/writers of files).

Figure 3-1: Outline of the fedsocc system.

ing additional compilation passes. Also, SUIF comes with a linker which supports multi-file

optimization, making interprocedural analysis and optimization much more tractable.

Fedsocc also uses gcc[22], the GNU C Compiler; the GNU version of gprof[15], a PC-

sampling-based profiling tool; nm, a standard UNIX tool for examining program symbol

tables; and the Perl [23] scripting language. For details of how these tools are employed,

see AppendixA.

3.2 The Feedback Loop

An outline of the fedsocc system is shown in Figure 3-1. The form, of course, is similar to

the generic model of feedback-directed specialization shown in Figure 2-1, in that a feedback

loop insures that any program compiled with fedsocc is continually recompiled to take into

account empirical measurements of program behavior. However, Figure 3-1 is considerably

22



more detail-oriented than Figure 2-1; in this section, I will discuss those details at some

length.

Initial Compilation

In initially compiling a program, fedsocc uses the SUIF-supplied front-end to convert the

source from C to SUIF representation. The SUIF resulting SUIF files are maintained for

the life of the program; they serves as a repository both for the program structure itself,

and for the profiling feedback that is gathered during program runs.

I should perhaps mention here that I have modified the SUIF front-end to understand

the annotations described in Section 3.5, and represent them in the resulting SUIF files.

In the Feedback Loop

Once a program enters the feedback loop, it goes through the following cycle:

1. First, an FDS transform engine operates on the SUIF version of the code, using

profiling feedback to direct use of specializations and instrumentation of the program

for future profiling. fedsocc is designed to support drop-in FDS transform engines;

since the bulk of the work of implementing fully automatic FDS lies in developing

heuristics to drive an FDS transform engine, it is advantageous to be able to easily

select between transform engines using differing heuristics.

2. Next, fedsocc uses a SUIF-supplied back-end to convert the SUIF program represen-

tation back into C.

One disadvantage to this approach is that C is not capable of expressing some infor-

mation which might be useful at compile time. For instance, it is impossible in C to

represent the fact that two variables are guaranteed not to be aliased.

On the other hand, these source-to-source (C-to-C) transforms have the distinct ad-

vantage that benchmarking is very simple; an original C program and a transformed

C program can both be compiled to executable form by the same compiler, making

it easy to measure differences in each program's performance. Additionally, by using

a conventional C compiler, fedsocc gains the benefit of that compiler's conventional

optimizations being applied to the transformed C output.

23



3. gcc compiles the specialized C to executable form.

4. Each time the executable runs, it produces profiling information; the profiling is col-

lected in the SUIF program representation for use as feedback by the transform engine

in future passes through Step 1.

5. At the moment, a fedsocc user must explicitly initiate recompilation (i.e. a return to

step 1). See the discussion of possible alternatives in Chapter 4.

24



Figure 3-2: Approximate costs of primary profiling mechanisms on a Sun SPARC

3.3 Feedback Mechanisms

fedsocc makes a number of different profiling mechanisms available to FDS transform en-

gines. When run, a fedsocc-compiled program produces two files of profiling data. The

usual model for running such a program is to call it via a wrapper which, upon termination

of the program, automatically processes the profiling data files and insert the results into

the program's source SUIF file; the wrapper can be omitted and the data-processing invoked

by hand if desired. See Appendix A for more details on the feedback process.

In choosing what sorts of feedback to implement, I was motivated first by the desire to

at least match, if not surpass, the control-flow analyses provided by the popular profiling

tool gprof [15], and second, by the desire to be able to sample data values.

3.3.1 Primary Methods

Primary feedback mechanisms are very low-level mechanisms which can either be used in

their own right, or used indirectly through derived feedback mechanisms3.3.2. There are four

primary feedback mechanisms in fedsocc's profiling repertoire: function-size calculation, PC

sampling, counters, and variable value sampling. A fifth, stopwatching, has not been added

due to an inability to implement it both economically and portably. The code-size and

run-time costs of each are listed in Table 3-2.

Function-Size Calculation. Function-size calculation is performed once per compila-

tion, and involves no run-time overhead. After final compilation with gcc, the size of each

function is determined from the executable's symbol table. Although the information gath-

ered does not reflect actual run-time program behavior, it is still information which is not

25

IFeedback Type I Code-size increase Run-time overhead
Function-size calculation none none
PC Sampling small constant < 3%
Execution Counter 4 machine-instructions 1 memory read/write
Variable Sampling 33 machine-instructions for N counters: K memory

reads, 4 < K < 3N + 1
and 1 or 2 memory writes



void hello()
{

printf("hello %d\n");
}

Figure 3-3: A simple function, hello

extern void hello()
{

unsigned long long *suiftmpO;

suif tmpO = &fdscounters[2u];
*suif tmpO = *suif tmpO + (unsigned long long)1;

10

printf( "hello\n")
I

Figure 3-4: hello, with an execution-counter

traditionally available to a compiler. On its own, function-size calculation is useful in esti-

mating the code-size increase due to certain specializations such as inlining. In conjunction

with other forms of profiling, function-size calculation can help determine when a piece

of code becomes too large for the hardware's instruction cache (i.e. when theoretically

beneficial but code-size-increasing specializations bloat the code too much.)

Program Counter (PC) Sampling. PC sampling is always performed on fedsocc-

compiled programs. When a program is run, an interrupt occurs at operating-system-

specified intervals (10 microseconds under most UNIX variants); with PC sampling en-

abled, the program counter is sampled at each occurrence of the interrupt. The result

is a statistical profile indicating how much program time is spent in each function of the

program. Some informal experiments (previously mentioned in Chapter 1) by Reinventing

Computing group members indicate that the run-time cost of PC sampling is generally less

than three percent - the cost of the sampling process is presumably dwarfed by the cost of

the interrupts, which would happen in any event. Program counter sampling returns only

program-time - its numbers reflect do not reflect paging, swapping, I/O, or other elements

of machine load, although they do reflect cache performance.

26



sethi /hi(__fds_counters+16),%o2

ldd [%o2+%lo(__fdscounters+16)],%oO

addcc %ol,1,%ol

addx %oO,O,%oO

std %oO,[%o2+%lo(__fdscounters+16)]

SPARC assembly for the execution-counter in hello, produced with gcc -02.

Figure 3-5: SPARC assembly for an execution-counter

Execution Counters. An execution counter does exactly what one might expect - counts

the number of times control-flow passes through it in a given program run. Execution

counters may be placed anywhere in a program. Execution counters are implemented as

64-bit unsigned integers; since a 64-bit counter incrementing at 1 gigaHertz would take well

over five hundred years to overflow, 64 bits is deemed quite sufficient for counting purposes.

Figures 3-3 and 3-4 show a simple function unaltered and instrumented with an execution-

counter, respectively. SPARC assembly for the counter is shown in Figure 3-5.

Variable Sampling. A variable sampling directive specifies a variable to sample, and a

number, N, of unique counters.

The variable specified may be any form of integer, floating-point, or pointer variable.

Variable-sampling directives may be placed anywhere in a program; the chosen variable is

sampled each time control-flow passes through a sampling-site.

When the program runs, the first N unique values taken on by variable at the sampling

point each are assigned one of the counters; subsequent values that do not fall into that set

are counted collectively on a miss-counter. In general, if it is determined that the number

of misses at a site is too high, the number of counters should be increased in a subsequent

recompilation.

The counters associated with a variable-sampling site may be dedicated to specific values

of the target variable (i.e. they may be seeded) at compile-time. Seeding guarantees that

values of interest get counted individually, even if they do not appear in the first N samples.

It should be noted that a variable-sampling site also serves as an execution counter; the

sum of all the counters, including the miss-counter, is the number of times execution has

'1 GHz is four or five times faster than the most aggressive microprocessor's clock speed at the time of
this writing.

27



extern int dump(char b)

struct _BLDRstruct_001 *fds_tmpO;
int *tmpcntptrl;
int tmpcnt2;
unsigned long long *tdllvptr3;

fdstmp0 = _fds_samples; 10
lupll:

tmpcntptrl = &fds.tmpO->cnt;
tmpcnt2 = *tmpcntptrl;
if (!tmpcnt2)

goto postlup22;
if (!((unsigned long long)(unsigned char)b == fds_tmpO->data.ll))

goto tmpplusplus33;
*tmpcntptrl = tmpcnt2 + lu;
goto done44;

tmpplusplus33: 20

fds_tmp0 = fdstmpO + 1;
goto lupll;

postlup22:
if (fds_tmpO < &_fdssamples[llu])

{
fdstmpO->data.ll = b;
*tmpcntptrl = tmpcnt2 + lu;

}
else

{ 30
tdllvptr3 = &fds_tmpO->data.ll;
*tdllvptr3 = 1 + *tdllvptr3;

}
done44:;

}

Figure 3-6: Variable profiling instrumentation.
The argument b to function dump is sampled; 10 unique counters are assigned. No seeding
is performed. The body of dump is omitted in an attempt at clarity; however, the sampling
code is automatically generated and remains very hard to read.

28



sethi hi(__fds_samples),%oO
or %oO,%lo(__fdssamples),%o3

L3:

ld [%o3l,%ol

cmp %ol,O

be L5

and %il,Oxff,%o5

ld [%o3+8],%oO

mov 0,%o4

cmp %o4,%oO

bne,a L3

add %o3,16,%o3

ld [%o3+12],%oO

cmp %05,%00
bne,a L3

add %o3,16,%o3

add %ol,1,%oO
b L9

st %oO,[%o3]
L5:

sethi %hi(__fds_samples+176),%oO

or %oO,%lo(__fdssamples+176),%oO

cmp %o3,%oO

bgeu LO
sll %il,24,%o2

sra %o2,24,%ol

sra %o2,31,%oO

std %oO,E%o3+8]

mov 1,%oO0

b L9

st %oO,[%o3]

L10:

ldd [%o3+8],%oO

addcc %ol,1,%ol

addx %oO,O,%oO
std %oO,[%o3+8]

L9:

29

Figure 3-7: SPARC assembly for a variable sampling site.



passed through that point. However, variable sampling is considerably more expensive than

using an execution counter, and thus should never be used when an execution counter will

do.

Figure 3-6 shows a function instrumented for variable-sampling of its only argument.

SPARC assembly code for the variable sampling is shown in Figure 3-7.

Stopwatching is a method for measuring elapsed real-time between two points of execu-

tion. Although stopwatching is attractive, fedsocc does not provide a stopwatching mech-

anism; I was unable to find a portable implementation which did not have unacceptably

high runtime overhead costs.

3.3.2 Derived Methods

Derived methods of feedback are compositions of the primary methods aimed at performing

more complex profiling tasks; while each FDS transform engine could derive its own complex

profiling mechanisms, the ones here are sufficiently useful to merit implementation in the

fedsocc library of feedback methods. Block and function execution-counts derive from

counters; dynamic call-graph arc-counting derives from counters and variable sampling.

Block Execution-Counting. Block execution-counting places an execution counter in

each block of code. For this purpose, blocks are not the same as basic blocks; instead,

they contain the same bodies of code as would normally be delineated by {} pairs in C. In

addition, the then/else clauses of if-statements, and the bodies of while or do-while loops,

are considered blocks even if they are single statements.

Function Execution-Counting. Function execution-counting places an execution counter

at the beginning of every function in a program. Function execution-counting, combined

with the omnipresent PC sampling, provides information identical to that provided by stan-

dard prof-style profiling, at what I believe should be a somewhat lower runtime overhead.

Unfortunately, I have not yet been able to perform comparison tests to verify this belief.

Dynamic Call-Graph Arc-Counting. Dynamic call-graph arc-counting operates on a

per-function basis. For each target function, a counter is placed immediately preceding

any call directly to that function. These counters serve to determine how frequently arcs

30



on the static call-graph are taken. For each anonymous function call in the program, the

variable pointing to the called function is sampled immediately before the call; a temporary

variable is created if needed. Each sampling site has a counter seeded for each function

whose call-graph is being observed.

This method provides gprof-style functionality, available on a per-function, rather than

per-program, basis. While I believe that the overhead of this method should be substantially

less than that incurred by gprof, I have not yet been able to test this belief.

31



int absqr(int y) {
if (y > 0) return (sqrt(y));

else return (sqrt(-y));

main ()

int x;
int z;

[...]

z = absqr(x);

...]
}

Figure 3-8: main calls absqr

3.4 Specialization Mechanisms

The specializations fedsocc provides fall into two categories: specializations made practical

by knowledge of program control-flow, and specializations made practical by knowledge of

data behavior.

All of the specialization mechanisms provided can be undone so that FDS transform

engines may back out of unprofitable experimental specializations.

Control-Flow-Behavior Enabled Specializations

Knowledge of how a program's control-flow actually behaves enables judicious use of special-

izations which are static but expensive. By static, I mean that the mechanical specialization

can be performed with information present statically in the program itself; by expensive,

I mean that the specialization increases code-size, possibly substantially. The two expen-

sive, static specializations available to FDS transform engines are inline function expansion

(inlining), and generating specialized versions of general functions.

32



int absqr(int y) {

if (y > O) return (sqrt(y));

else return (sqrt(-y));

}

main ()

{

int x;
int z;

int y;

int suiftmpO;

int suiftmpl;

y = x;
if (O < y)

{

suiftmpO = sqrt(y);

z = suiftmpO;

goto retpointl2;

}
else

suiftmpl = sqrt(-y);

z = suif_tmpi;

goto retpointl2;

}

retpointl2:;

}

[...]

}

Figure 3-9: absqr inlined into main

33



Inlining. Inlining, or inline function expansion, is the process of replacing a call to a

function with the body of the function being called. The immediate benefit of inlining is

the elimination of function-call overhead - i.e. parameter-passing and non-linear control-

flow branching to and from the called function. The followup benefit is that conventional

local optimizations are able to operate on the straight-line code created by inlining the

call; for example, constant propagation may push constant parameters through the inlined

function-body, replacing variable references; dead-code elimination may be able to remove

branches within the inlined function-body that are never taken; and register allocation can

take the inlined function-body into account. If every possible call to a function is inlined,

the "source" function is no longer necessary and can be discarded.2 Figures 3-8 and 3-9

demonstrate a simple inlining.

Many traditional compilers allow for limited forms of inlining. gcc, for instance, allows

the programmer to mark functions with an "inline" directive; such a marked function be

inlined everywhere it is called. Most traditional compilers follow a similar model if they

permit inlining at all.

In contrast, fedsocc provides inlining by call site. A transform engine can choose whether

or not to inline a function of arbitrary size at any given call-site; thus, very large functions

can be inlined at one or two points within the program if the guiding heuristic determines

that a substantial speedup is likely as a result.

The program-size-increase due to an inline function expansion is always at least slightly

less than the size of the function being inlined, since the calling-instructions, if nothing

else, may be omitted. If enough conventional optimization is enabled by the inlining, the

program-size-increase due to the operation may be much less than the original size of the

function.

Generating Specialized Versions Of General Functions. Generating a specialized

version of a general functions can be performed when constraints on the function's calling-

parameters are known. The function is copied, and the copy is specialized with respect

to the constrained parameters. The program-size-increase due to generating a specialized

version of a function is equal to or less than the size of the original function.

2 This does not currently happen automatically.

34



Although in concept, parameter-constraints could include ranges or sets of values, in

fedsocc only constants can be used as constraints. Usually, this sort of specialization hap-

pens on the basis of constant arguments at a call-site; the constants replace the parameters

in a copy of the function, then conventional optimizations (constant propagation, constant

folding, dead code elimination) operate to actually derive benefits from the presence of the

constants.

The disadvantage of generating a specialized version of a function instead of inlining

it is, of course, that the function-call overhead is not eliminated - it must still be called.

The advantage, however, is that the specialized version can be called in place of the general

function from every call-site in the program that shares the constraints under which it was

specialized; thus, the cost in terms of program-size due to the new version is amortized

across all the sites that end up sharing that version.

Data-Behavior Enabled Specializations

Fedsocc provides only one form of data-based specialization, code-block duplication and

specialization. This form of specialization operates as follows:

1. A block of code is selected for specialization.

2. Sets of constraints on variables used in the block are generated. In fedsocc, each

constraint assigns a variable a constant value, since while more complex constraints

might prove beneficial, using constant values allows fedsocc to leverage the conven-

tional optimizations provided by using gcc as a back-end.

3. The block of code selected is duplicated once for each constraint-set.

4. Each duplicate is partial-evaluated with respect to the constant values in its associ-

ated constraint-set; the original block is left general. In the current implementation

of fedsocc, this step consists only of setting the variables to their corresponding con-

stant values at the beginning of each duplicate block; gcc's conventional optimizations

(constant propagation, constant folding, dead code elimination) are assumed to take

care of the partial evaluation process.

5. Finally, a decision-tree is composed to select the appropriate, specialized block at

run-time based on the actual variable values.

35



3.5 Staged Implementation

Of all the components involved in the fedsocc feedback cycle, the FDS transform engine is

the pass that does the bulk of the work. To implement full FDS, this pass must contain

heuristics able to use profiling information from previous runs of a program to guide further

program specialization and de-specialization, and also to guide placement of new profiling

directives into the program. In particular, the FDS transform engine must be able to analyze

profiling data, hypothesize as to where specialization is called for, and then experimentally

verify the generated hypotheses.

With this goal in mind, in this section I will present a staged approach to implementing

fully automated feedback-directed specialization in the fedsocc framework. The first two

stages rely on programmer annotation of source-code; the annotations serve to assist a

less-than-fully-automatic FDS transform engine in specializing and profiling the program. I

have modified the SUIF system's C-to-SUIF front-end to understand the suggested keyword-

syntax for each annotation, installing each suggestion on the SUIF representation of the

program. It is entirely up to a given FDS transform engine whether or not to obey any or

all of these directives.

Note that at the time of this writing I have not performed any of the implementation

stages described below; they represent a plan for further work. Thus, the FDS transform

engines referenced within are, for the moment, hypothetical.

3.5.1 Manual Hypothesizing and Experimentation

The first four annotations correspond to a first-stage implementation FDS, providing direct

orders to an otherwise completely passive FDS transform engine. The first three directly in-

voke the three specialization mechanisms of fedsocc; the fourth invokes the variable profiling

mechanism of fedsocc.

Using these annotations in conjunction with a control-flow profiling tool such as gprof,

a programmer should be able to simulate arbitrary heuristics for feedback-directed special-

ization by hand. This should be useful in developing heuristics, but is clearly impractical

for general application to large programs. Note that the model here is that the programmer

is performing all of the profile-based hypothesizing and experimenting with specialization.

36



specin(function(args), int)

The specin keyword is used as if it were a function of two arguments: the first is a

function call, and the second is a non-negative integer. A programmer may "wrap" any

function call in a specin; the value of evaluating a specin expression is the value of evaluating

the wrapped function call.

Specin stands for "specialize-inline"; an FDS transform engine should interpret it as a

directive to inline the wrapped function call. The integer is a depth count; in the event that

the function is recursive, it specifies the number of times the recursion should be unrolled.

specnoin(function(args)) I
As with specin, a programmer may wrap any function call with specnoin. Specnoin

stands for "specialize-no-inline"; an FDS transform engine should interpret it as a directive

to generate a specialized version of the wrapped function, optimized based on any constraints

on the arguments to the call (i.e. any constant arguments). As with specin, the value of

evaluating a specnoin expression is the value of evaluating the function call it contains.

blockspec(varnamel, constantvaluel, . . ,varnameN, constantvalueN); l

The blockspec ("block-specialize") keyword is employed as a C-style statement. Its

arguments are an arbitrary number of variable/value pairs. Multiple blockspecs may appear

in a block of code; the order in which they appear is important. Blocks for this purpose

are not basic blocks, but program blocks as described in the section on fedsocc's data-based

specialization mechanism.

A blockspec statement represents a constraint-list mapping each variable in its argu-

ments to the immediately following constant value. Given a sequence of blockspec state-

ments in a block, an FDS transform engine should use the fedsocc code-block duplication

and specialization mechanism to generate one specialized version of the containing block

for each blockspec. The lexically first blockspec is assumed to specify the most likely case,

and so forth. The specialization mechanism automatically constructs a light-weight version-

selection mechanism to pick the right version of the block at run-time.

37

I sample(varname, int) ;



The sample keyword is employed as a C-style statement. It instructs an FDS transform

engine to sample the named variable, using int unique counters.

3.5.2 Automating Experimentation

The next two annotations correspond to a second-stage implementation of FDS; they are

used to suggest regions of interest to an FDS transform engine which then has the respon-

sibility for deciding how to instrument marked region for profiling, and how to specialize

the regions in response to profiling feedback.

The assumption is that now the programmer is only responsible for providing hypotheses

about program behavior; the FDS transform engine has become responsible for verifying

the accuracy of these hypotheses and specializing accordingly.

specauto (function(args))

Specauto, for "specialize-automatically", is employed identically to specnoin. However,

rather than requiring a particular specialization from the transform engine, it merely indi-

cates that the call is of sufficient importance to be considered for optimization.

The transform engine is thus responsible for determining the tradeoffs between inlining

the call, generating a specialized version of the called function, or leaving the call alone.

Issues that it may want to consider include:

* How many sites is the called function called from, and how often?

* What are the common characteristics of those calling sites? (I.e. how many could

share a version of the function specialized to the constraints of the call under consid-

eration?)

* What is the contribution of this function as called from this call-site on overall program

running-time? Impact of the calling function?

* How large is the function being called? How large is the function that is calling it?

* How much has the code grown due to specializations so far?

This is, of course, a var from comprehensive list.

38

autoblockspec(varnamel, constantvaluel, . ,varnameN, constantvalueN); I



Autoblockspec is employed identically to blockspec; however, the ordering of autoblock-

spec statements within a block does not matter - the FDS transform engine is responsible

for deciding which of the suggested constraint sets are worth using to generate specialized

versions of the containing block, and in what order. Strategies for making these decisions

may include generating all suggested specialized blocks and profiling their performance,

and/or profiling variables listed in the constraint lists to see how frequently they take on

the suggested values.

3.5.3 Automating Hypothesizing

The third stage is to remove the burden of hypothesizing about program behavior from

the programmer, and place it on the FDS transform engine. If this can be accomplished,

the programmer will no longer need to perform any annotation of source-code; instead, the

FDS transform engine will be fully responsible for completely automated feedback-directed

specialization of a given program.

Taking this final step with respect to control-flow based specialization should not be

terribly difficult. In the previous stage, function calls marked by specauto annotations

were considered for each type of control-flow optimization available from fedsocc. In this

stage, all call sites will receive the same consideration. Many call-sites should quickly

be eliminated from serious consideration by virtue of occuring in relatively infrequently

executed or otherwise non-time-consuming code; calls in more critical segments of code

will, however, be examined in greater depth.

Eliminating human hypothesization with respect to data-value based specialization will

present more of a challenge. First, blocks of interest must be identified; in general, these

will be blocks which are frequently executed and/or particularly time-consuming, and which

rely on variable values sufficiently that block specialization is potentially profitable.

Once these blocks are discovered, critical variables must be profiled in order to determine

frequent-case values to use as constraints. Since fedsocc provides no provisions for profiling

the relationships between variable values, either: one, the transform engine will have to try

randomly collecting constraints together and testing the utility of the generated constraint

sets; or two, the transform engine will have to specialize based on a single variable, then

profile other variables within the specialized versions of the original block, thus gradually

39



generating more complex constraint-sets. The second option appeals to my intuition, but

both options merit investigation.

3.6 Fedsocc Implementation Status

Most of the basic modules composing the fedsocc system are functional. The major excep-

tion to this is the profiling-collection module, which at this point can only store PC sampling

information into the SUIF representation of a program. Also, the modules must currently

be invoked sequentially by hand. Eventually three scripts will automate the process: one

will automate the process of generating initial SUIF files from C files; one will automate the

process of running a program and then collecting the resulting profiling information into

the SUIF program representation; and one will invoke program recompilation.

Of fedsocc's library of feedback mechanisms, all the primary methods (PC sampling, ex-

ecution counters, and variable sampling) are implemented, although variable sampling does

not yet support seeding. The derived methods, on the other hand, are not yet implemented.

All of fedsocc's library of specialization mechanisms are implemented; the mechanisms

for "backing out" each of the specializations, however, are not yet implemented.

Finally, the front end has been modified to support most of the annotations for staged

implementation; the keywords "sample" and "autoblockspec" are not yet recognized, how-

ever.

40



Chapter 4

Conclusions

4.1 Analysis

In Chapter 2, I presented the concept of feedback-directed specialization. I explained its

advantages and disadvantages, and in particular, I described the four unproven hypotheses

upon which its utility depends.

In Chapter 3, I described fedsocc, a platform providing a framework within which to

develop fully automated FDS for C. I described a three-stage process for developing FDS-

driving heuristics.

At this point I will explain how each of the four hypotheses underlying FDS is demon-

strated in the proposed stages of implementation.

The first unproven hypothesis states that programs frequently have characteristic be-

haviors which can be exploited at compile-time to improve expected running time. Previous

work illustrates that program control-flow does indeed frequently have characteristic behav-

ior which can be exploited at compile time. However, there is no evidence as to whether or

not program data tends to have exploitable characteristic behavior.

In the first of the proposed stages of implementation, programmer source-code annota-

tions completely control profiling and specialization; these annotations include control over

variable value sampling, and variable-value-based specialization. Thus, a programmer using

these annotations should be able to gather evidence as to the truth of the first hypothesis:

if they prove useful, then the hypothesis is almost certainly true.

41



The second unproven hypothesis states that program behaviors are frequently attributable

to typical user inputs and other environmental factors, rather than to intrinsic program

characteristics.

In the second proposed stage of implementation, programmer source code annotations

mark regions of interest; the FDS transform engine is responsible for profiling these regions,

and specializing them appropriately. Thus, in this stage, programs will be specialized

differently for different characteristic behaviors; therefore, if changing the usage pattern of

a program results in its being respecialized differently on the next compilation, the truth of

the second hypothesis will be confirmed.

The third unproven hypothesis is that run-time profiling instrumentation as tailored by

a compiler can be very low overhead. The truth of this hypothesis may be partly determined

by the second stage of implementation, since at that stage the compiler is responsible for

profiling regions of interest. Full determination of the truth of this hypothesis, however,

must be delayed until the third stage of implementation, in which programmer source-code

annotations are no longer used, and the compiler is responsible for profiling to discover

regions of interest. Only at that point will the compiler be making full use of profiling, and

thus only then can definitive judgements be made about the resulting overhead.

The fourth and final unproven hypothesis is that automated compile-time specialization

based on profiling from end-user runs is sufficiently profitable to overcome profiling over-

head and still be competitive with runtime code generation, hand specialization, etc. The

determination of the truth of this hypothesis must clearly be delayed until the third and

final stage of implementation; only when fully automated FDS has been implemented can

such comparative measurements be made.

4.2 Future Work

4.2.1 Complete FDS Implementation

The concept of feedback-directed specialization has a number of very attractive features.

FDS seems to address the overhead of abstraction very successfully, certainly more suc-

cessfully than hand-specialization of program source code. In particular, FDS maintains

a dynamic balance between abstraction and specialization by automatically re-specializing

programs in response to changing usage patterns; thus, with FDS specialization is applied

42



as needed, where needed, rather than at fixed places within a program as with hand-

specialization. In fact, the flexibility available to the FDS process actually increases with

the abstraction level of the code.

Given these attractions, the obvious first task is to complete full implementation of FDS

to verify its utility. Fedsocc is designed to be a foundation for this task; it seems likely that

the proposed, staged development will lead to a successful implementation of FDS for C.

The benefits of a successful implementation have already been stated. However, should

an implementation of FDS built on the foundation of fedsocc fail to prove profitable, fedsocc

should be considered the limiting factor before FDS as a concept. Indeed, even if an

implementation of FDS based on fedsocc is successful, it might be further improved by the

addition of new features to fedsocc.

Improvements to fedsocc could take a number of forms. New types of specializations

could be developed. Better constraint models could be employed; for instance, variables

could be constrained to ranges or sets, rather than just constants. New methods of variable

profiling could be added; for instance, variables could be modeled as gaussian distributions.

The translation of specialized code back to C could be replaced with direct compilation,

enabling back-end code-ordering, variable aliasing detection, etc. Hardware assistance could

be very useful in gathering profiling information at very low overhead.

Finally, if FDS proves viable, there are a number of issues that will need to be addressed

before it can become generally used.

The process of recompilation will need to be automated. One approach is to simply

recompile a program after a set period of time, or a set number of runs. A more sophisticated

approach might allow the FDS compiler to specify conditions under which a program should

be recompiled; the feedback collection mechanisms then would be responsible for detecting

these conditions, and initiating recompilation. More sophisticated models can be imagined

at an operating-system level.

Methods for dealing with programs used under widely varying circumstances will need

to be developed; if different users employ a program very differently, or if a single user

employs a program from multiple hardware platforms, profiling information may take on a

schizophrenic appearance.

The mechanics of profiling must be transparent to end-users; files of information should

not appear each time they run a program, nor should they have to explicitly invoke col-

43



lection. In addition, if a large number of programs come to rely on FDS, the amount of

profiling information collected may become unwieldy.

4.2.2 Collaboration

If FDS proves profitable in its own right, combining it with other forms of optimizations

should prove additionally profitable. For instance, FDS with runtime code generation tech-

niques seems profitable; compile-time specialized routines generated with FDS could handle

frequent case program behavior with heavily optimized routines, and run-time generated

routines could handle unusual case program behavior rather than requiring control-flow to

fall back on some general piece of code as in standalone FDS.

Finally, other work in the Reinventing Computing group may work well with FDS.

In particular, Global Cooperative Computing [9] proposes several ways of computing over

networks; collecting feedback information from a single program being used at multiple

sites could provide valuable insight into how it is actually being employed, guiding both

automated and human optimization.

44



Appendix A

Fedsocc Implementation Details

.fedsocc has been developed entirely on Sun SPARC workstations running SunOS 4.1.3;

although it should eventually be portable, at the time of this writing it probably contains

several platform-dependent artifacts.

A.1 SUIF

My original intent was to build fedsocc on top of the GNU C Compiler [22]; however, gcc's

internals are hideously contorted and poorly documented, so I sought an alternative, and

found it in the SUIF compiler suite [24] from the Stanford University Compiler Group.

The SUIF compiler suite has a number of advantages over other compilers, the foremost

of which is that it is designed to be easily extended. The SUIF compiler operates as a

sequence of individual programs which take as input files of, operate on, and write out

files of, programs represented in the Stanford University Intermediate Format (SUIF); a

well-documented library of C++ routines make it easy to develop additional programs, or

passes, to add to the compilation sequence. The SUIF format supports annotations that

let developers add nearly arbitrary data structures to SUIF structures; fedsocc state is

maintained between recompilations of a program entirely within these annotations.

Another major advantage of the SUIF compiler system is that it can perform compile-

time linking'; this makes interprocedural optimizations such as inlining much, much easier

1This is not entirely true. The SUIF compiler system is advertised as being able to perform compile-time
linking, but at the time of this writing, the available linker is very preliminary, entirely unsupported, and so
buggy as to be unusable.

45



/* "suifcopyright.h" */

/*

Copyright (c) 1994 Stanford University

All rights reserved.

Permission is given to use, copy, and modify this software for any

non-commercial purpose as long as this copyright notice is not

removed. All other uses, including redistribution in whole or in

part, are forbidden without prior written permission.

This software is provided with absolutely no warranty and no

support.

Figure A-1: The SUIF copyright file.

to implement for programs with multiple source-files. And finally, all of SUIF's source-code

is available, so existing passes can be used as models for writing new ones, and even as

sources for needed routines.

My work has been with SUIF version 1.0. The SUIF copyright is reproduced in Figure

A-1.

A.2 Fedsocc Processes

A.2.1 Initially Generating SUIF from C

Five passes are actually performed to convert a set of C files into SUIF files suitable for the

fedsocc specialization and feedback routines to operate on. A simple wrapper script will

eventually be written to run all the necessary passes when invoked with the names of the

C source files for a program as command-line arguments; until that time, the passes must

be run by hand.

The first three passes can actually be invoked in one command using scc, the default

SUIF driver. scc runs the first three passes: cpp, the system C preprocessor; snoot, the

46



C-to-SUIF front-end from the SUIF distribution; and porky, a package of various code

transforms, also from the SUIF distribution. scc is invoked as follows:

scc -option SOOT -Tsparc -option PORKYDEFAULTS -no-call-expr -.spd\

fool.c ... fooN.c

snoot translates each preprocessed .c C file to a .snt SUIF file. The -Tsparc option causes

snoot to define the sizes of types according to a template for SPARC computers; I have

altered the template locally to support 64-bit long long integers, which I use as counters in

profiling. (The C++ compiler I am using, g++, can support integers of that length.)

Ordinarily, scc just uses porky to correct some improper SUIF forms emitted by snoot;

the addition of the -no-call-expr option causes porky to separate function calls from expres-

sion trees. This separation makes inlining much easier. The -.spd option tells scc to stop

after porky has generated correct SUIF files; without it, scc would go on to transform the

SUIF files back to C and then invoke /bin/cc on them.

The fourth pass is invoked to link the SUIF files' global symbol tables so that they can

be used jointly by future passes:

linksuif fool.spd fool.lnk ... fooN.spd foo.lnk

The .spd files are the the input SUIF files; the corresponding .Ink files are the output

SUIF files. Linksuif is a program from the SUIF distribution which unifies the global symbol

tables stored in each SUIF file; it is a prerequisite to running passes which involve processing

multiple SUIF files in the same run (i.e. anything involving interprocedural analysis or

optimization.) Unfortunately, the version of linksuif I am using is an unsupported pre-

release, and many legal C constructs seem to cause it to crash.

The fifth and final pass must be invoked to prepare the program for general use with

fedsocc:

feedinit fool.lnk fool.glb ... fool.lnk fool.glb

feedinit is a program I wrote to prepare a program for FDS with fedsocc: first, it converts

all static functions into global functions, alpha-renaming where necessary; and second, it

installs some initial data structures (in the form of annotations) needed by the profiling

primitives fedsocc provides. The .Ink files files are the input SUIF files; the corresponding

.glb files are the output SUIF files, and are suitable for processing by fedsocc profiling and

specialization primitives.

47



A.2.2 The Feedback Loop

The fedsocc feedback loop involves several programs, and can generally be broken into

two sections: producing an executable using gathered feedback; and running the resulting

executable, collecting new profiling feedback.

Producing an Executable

There are four programs involved in producing a specialized, profiling-instrumented exe-

cutable. The first is the FDS transform engine, which must be provided by the programmer.

The engine is responsible for performing the actual feedback-directed specialization of the

code, including specializing and despecializing as well as inserting and removing profiling

directives. See Chapter 3 for an overview of the primitive operations available to authors

of transform engines. The engine is invoked as:

<engine> fool.glb fool.out ... fool.glb

where engine is its name. The .glb files are the SUIF files representing the program;

the .out files receive the specialized, profiling-instrumented output of the transform engine.

The .out files should immediately be moved to replace the .glb files; they are the new

representation of the program until the next compilation cycle.

I have considered adding another pass which would produce temporary SUIF files from

the .glb files, eliminating any functions which are never called; such functions should not be

eliminated from the .glb files, as they could be needed to back out an inlining specialization

in some future compilation. For the moment, no such pass exists.

The SUIF compiler system ships with two back-ends; one produces MIPS assembly code

files from SUIF files, the other produces C code files from SUIF files. Since fedsocc was

developed on Sun SPARCs, the third program that needs to be invoked is s2c, the SUIF to

C back-end:

s2c fool.glb fool.out.c ... fool.glb fooN.out.c

In the next pass, the GNU C Compiler [22], gcc, should be used to generate object (.o)

files from the C (.out.c) files:

gcc -c -0 fool.out.c ... foo'.out.c

48



The -c option to gcc causes it to generate .o files without trying to perform final linking

of the program.

Finally, in the fifth and final pass, the .o files must be linked together:

id /lib/gcrtO.o fds.o fool.out.o ... fooN.out.o -lgcc -lc -lgcc execname

Execname should be the name of the program being generated. Linking against /lib/gcrtO.o

provides execname with a startup routine that activate PC sampling, and a shutdown that

writes the results to a file called gmon.out. fds.o is part of fedsocc, and includes a routine,

automatically called at program termination, to write the results of fedsocc profiling direc-

tives to a file called fdsmon.out. -lgcc and -lc are standard libraries. A number of other

standard d options probably also need to be included in the ld invocation, but are omitted

here for the sake of clarity of presentation.

Collecting Profiling

After running a program compiled with fedsocc profiling directives, the data in gmon.out

and fdsmon.out need to be collected into the SUIF representation for the program. Un-

fortunately, the process of collecting data from fdsmon.out has not yet been implemented;

collecting the data from gmon.out is invoked:

gprof execname gmon.out I pcback fool.glb fool.tmp ... fool.glb fooN.tmp

gcc -c - fool.out.c ... fooN.out.c

49



Appendix B

Source Code

50



B.1 fedsocc library routines

B.1.1 Interface

51



interface.h

/ * All operate on call- isolated expr-form suif trees */

/* Inlining ----- 

tree_block *startinline(in cal *thecall);

/ * Returns the block which represents the to-be-inlined piece. */

void endinline(in cal *thecall, tree_block *theblock);

/* Finishes the inlining job, replacing thecall with theblock and doing 10

relevant cleanup. /

/* the above two functions are separate in order to give the

programmer the option of recursing on the inline-block before it's

inlined (necessary when recursive situations are present to avoid

exponential code growth!)*/

/ * Specialization …*-------------____________________- _*/-

20

int fullspec(in cal *thecall, sym_node_list *newlist);

/ * Replaces thecall with a call to a fully specialized version of the function.

Deals with unification issues: generates new spec'ed version if needed,

uses pre-created one if possible. Int = 0 if no spec possible;

1 if old one used; 2 if new one made $/

int tryspec(incal *thecall);

/ * Attempts to replace thecall with a call to a more specialized version --

draws from already-created spec'ed versions, but does NOT create new ones.

Picks strongest form -- alg needed here, probably most args. / 30

/* block specialization…----------------------------------------$ /

void dumbblockspec (treeblock *theblock, constraint_list *conlist);

/ * replaces theblock with a suite of specialized blocks --

order of blocks is direct from conlist /

52



/ $ a constraint is a list of conditions, and a frequency. */

/ * (the frequency is ignored by dumbblockspec, and may not be needed 40

at all, but I figure what the heck) */

/$ a condition is a class; for purposes of this thesis, it will

support a variable equaling a constant, but should be eensible

later without too much pain */

#include "condition.h"
#include "constraints.h"
#include "funcspec.h"

#include "blockspec.h"

#include "uyutils.h" 50

#include "feedback.h"

53



condition.h

/ * What's a condition, anyhow? */

extern char *k funcspec;

enum cond_type {CONST_VAL};

template<class T> class condition {

private:

r parmid; 10

immed constval;

int useless;

public:

condition(T p, immed c) {parmid = p; constval = c; useless = 0;}

condition() {useless = 1;}

cond type mytype( {return CONSTVAL;}

immed constv( { return constval;}

r parm() {return parmid;}

20

boolean operator==(condition<T> &r) {return (parmid == r.parm()) &&

(constval == r.constvO);)

boolean operator!=(condition<T> &r) { return !(*this == r); }

54



constraints.h

enum relenum {

r_strict_subset,

rstrict_superset,

r_equal,

r_disjoint};

#if 0 / * Interface -- actual code is under this */

template<class type, class list, class iter>

class constraints { 10

public:

/ * create */

constraints() conds = new list();}

/ * destroy */

constraints() {delete conds;)

/ * is there a definition for a particular parameter number? */

int isdef(type parmnm);

20

/ * return def. for particular parameter. +/

condition<type> deflookup(int parmnm, int usecache = 0);

/ * determine the setwise relationship between this and that */

relenum relationto(constraints* that);

/* obvious */

int subsetof(constraints *foo) {relenum r = relationto(foo);

return ((r == r_strict_subset) II (r == requal));)

int supersetof(constraints *foo) {relenum r = relationto(foo); 30

return ((r == r_strictsuperset) 11 (r == r_equal));}

int equalto (constraints *foo) {return (relationto(foo) == r_equal);}

int disjoint (constraints *foo) {return (relationto(foo) == rdisjoint);}

list *condlist() return conds;)

};#endif interface

#endif / * interface */

55



template<class type, class list, class iter> 40

class constraints {

private:

condition<type> cache;

protected:

list *conds;

public:/' * create */ 50

constraints() {conds = new list();}

/ destroy */

^constraints() {delete conds;}

/' is there a definition for a particular parameter number? $/

int isdef(type parmnm) {

iter ilit(conds);

while (!ilit.is_empty() {

if (ilit.peek().parm() == parmnm) { 60

cache = ilit.peek(); return 1;)

ilit.step();}

return 0;

/ * return def. for particular parameter. */

condition<type> deflookup(type parmnm, int usecache = 0) {

if (usecache && (cache.parm() == parmnm)) return cache;

iter ilit(conds);

while (!ilit.isempty() { 70

if (ilit.peek().parm() == parmnm) return ilit.peek();

ilit.step();}

return condition<type>();

/ * determine the setwise relationship between this and that $/

56



relenum relationto(constraints* that) {

int subset = 1, superset = 1, equal = 1;

iter thisiter(conds);

80

while (!thisiter.is_empty())

if (!that->condlist()->lookup(thisiter.stepO)) {

equal = 0; subset = 0;)

iter thatiter(that->condlistO);

while (!thatiter.isempty()) {

if (!conds->lookup(thatiter.step())) 

equal = 0; superset = 0;)

90

if (equal) return r_equal;

if (subset) return rstrict_subset;

if (superset) return r_strict_superset;

return rdisjoint;

/ * obvious */

int subsetof(constraints *foo) {relenum r = relationto(foo);

return ((r == r_strict_subset) II (r == r_equal));)

int supersetof(constraints *foo) {relenum r = relationto(foo); 100

return ((r == rstrictsuperset) II (r == r_equal));}

int equalto (constraints *foo) {return (relationto(foo) == requal);)

int disjoint (constraints *foo) {return (relationto(foo) == rdisjoint);)

list *condlist() {return conds;)

57



funcspec.h

/ * conditions for function specialization */

typedef condition<int> funccond;

/ * List of function-specialization conditions */

DECLARE_LIST_CLASS(funccond_list, funccond);

int foo;

/ * function-specific constraints */

typedef constraints<int,funccond_list, funccond_list_iter> funconstraints; 10

class funcspec: public funconstraints {

public:

proc_sym *root, *next, *prev;

procsym *self;

/ * create from a list of immediates */

funcspec(immed_list *srcmat, proc_sym *slf);

20

/* create more normally */

funcspec(procsym *rot = NULL, proc_sym *slf = NULL,

proc_sym *nxt = NULL , procsym *prv = NULL)

: funconstraints() {

root = rot; self = slf; next = nxt; prev = prv;}

/ * create based on a call */

funcspec(in cal *thecall);

/ * destroy */ 30

~funcspec() {}

/ * translate to list of immeds */

immed_list *unparse();

/ * complex operations */

/ * if there's a version of the root function that matches _this_,

58



return the funcspec associated with it. */

funcspec *equivproc();

40

/ return the closest existing match to this that's been instantiated /

funcspec *closest();

/ * generate a version of the root function tailored to these specifications;

give it its own copy of this funcspec, and return that copy */

funcspec *instantiate(sym_node_list *addlist);

/* changes the call such that it calls sfunc. NOTE: thecall probably

doesn't exist when this comes back!!! It'll have been replaced

in its tree instr. 50

tailor returns I if the tailoring is successful; 0 if not.

(most likely reason for 0 is that the call is already tailored to that

function) */

int tailor(incal *thecall);

};

59



blockspec.h

/ * conditions for blocktion specialization */

typedef condition<varsym *> blockcond;

/ * List of block-specialization conditions */

DECLARE_LISTCLASS(blockcond_list, blockcond);

/ * block-specific constraints +/

typedef constraints<var_sym *,blockcond_list, blockcond_listiter> blockconstraints;

10

class blockform: public blockconstraints {

private:

tree block *orig;

public:

/ * creators */

blockform(treeblock *src) {orig = src;)

blockform(immed_list_iter &iliter, tree_block *src);

void unparseto(immed_list *iml); 20

/* create a version of the original block as constrained by this */

treeblock *instantiate();

/ * create a conditional expression representing the constraints */

treenode_list *preconds(label_sym *jumplab);

DECLARE_LIST CLASS(blockform_list, blockform*); 30

class blockspec {

private:

treeblock *orig;

tree_node *rootpoint;

blockform_list *possible, *actual;

60



public:

/ * creators */ 40

blockspec(treeblock *src) {rootpoint = orig = sc;

possible = new blockformlist();

actual = new blockform_list();}

blockspec(immed_list *il, treeblock *src);

blockform_list *poslist() {return possible;}

/ * turn into immed_list */

immed_list *unparse();

50

/ * add a possible form */

void add_possible(blockform *poss) {possible->push(poss);}

/ * realize a possible form on top of the currently realized forms */

int add_actual(blockform *act);

/ * remove the possibility of a form -- resets the actual form, as

well, if done to a currently-realized form */

void remove_possible(blockform *poss);

60

/ * resets the set of forms to just the original treeblock --

no specializations *t

void reset_actual();

61



myutils.h

void procreadall(int argc, char * argv0,

boolean writeback=FALSE,

boolean exp_trees=TRUE,

boolean use_fortran_form=TRUE);

void proc_processall (prociter f fun);

typedef void (*procsymiterf)(procsym *);

void procsym_processall (procsymiterf fun); 10

void procsaveall();

62



feedback.h

/ * routines for manipulating various feedback things */

treeinstr *newcounter();

class feedstate {

private:

/ *for counters */

var sym *counters; 10

var_sym *numcounters;

int freecounters;

array_type *arrtype;

type_node *cnttype;

ptr_type *cntptrtype;

ptr_type *arrptrtype;

int newcountnum();

/ * for samples */ 20

varsym *samples;

va sym *numsamples;

array_type *sarrtype;

structtype *sampletype;

ptr_type *sampleptrtype;

ptr_type *sarrptrtype;

int samplesize();

int addsamples(int numbuckets); 30

public:

feedstate(immed_list *il);

immed_list *unparse();

treeblock *newcounter(block_symtab *bs);

treeblock *varsample(block symtab *bs, varsym *var, int numbuckets,

63



treeproc *procin);

1;

40

void *feedstateparse(char *name, immedlist *il, suifobject *obj);

immed_list *feedstate_unparse(char *name, void *data);

extern feedstate *fbstate;

64



B.1.2 Profiling Mechanisms

65



feedback.cc

#include "suif. h"

#include "feedback.h"

#include "builder.h"

extern char *k_fdscounter;

feedstate *fbstate;

/ * hacks to deal with struct_annote requirements */

void *feedstateparse(char *name, immed list *il, suif_object *obj) { 10

return (void *)new feedstate(il);)

immed_list *feedstate_unparse(char *name, void *data) {

return ((feedstate *)data)->unparse();}

/ * create from immed_list */

feedstate::feedstate(immed_list *il) {

counters = (var_sym *) il->pop().symbol();

numcounters = (var_sym *) il->pop(.symbol(); 20

freecounters = il->pop(.integer();

samples = (var_sym *) il->pop().symbol();

numsamples = (var_sym *) il->pop(.symbol();

fbstate = this;

arrtype = (array_type *) counters->type();

cnttype = arrtype->elem_typeO;

cntptrtype = (ptr_type *) cnttype->parent()->installtype(new ptr_type(cnttype));

arrptrtype = (ptrtype *) cnttype->parent()->installtype(new ptrtype(arrtype)); 30

sarrtype = (array_type *) samples->type();

sampletype = (structtype *) sarrtype->elem_type();

sampleptrtype = (ptr_type *) sampletype->parent(->install type(new ptr_type(sampletype));

sarrptrtype =(ptr_type *) sampletype->parent()->install_type(new ptrtype(sarrtype));

}

66



/ * TODO: gc unused numbers */

int feedstate::newcountnum() {

/ * fix the type of counters */ 40

immed_liste *ncvale = ((immedlist *) numcounters->definition ()->peekannote(krepeatinit))->tail();

int newsize = ncvale- >contents.integer()+ 1;

ncvale->contents = immed(newsize);

arrtype->set_upperbound(array_bound(newsize));

return newsize-1;

50

tree_block *feedstate::newcounter(block_symtab *bs) {

treenode_list *tnl = new treenodelist();

tree_block *tb = new tree_block(tnl, bs->newunique_child("fdscounterblock"));

/* create the new counter, store it in new var */

varsym *cv = tb->symtab(->new_unique_var(cntptrtype);

in_array *ia = new inarray(cntptrtype,

operand(cv), 60

operand(new inldc(arrptrtype, operand(),

immed(counters))),

cnttype- >size(),

1);

int nc = newcountnum();

ia->set_index(O,operand(new in ldc(type_unsignedlong, operand(, immed(nc))));

/ * Create the actual increment instruction */

in_rrr *incr = new inrrr(iostr, typevoid, operand(),

operand(cv), 70

operand(new in_rrr(ioadd, cnttype, operand(),

operand (new inrrr(iolod,

cnttype,

operand(),

operand(cv),

operands)),

67



operand (new in ldc(cnttype,

operand(),

immed(1)))

))); 80

/ Glom them into a tree_block and return */

tnl->append(new treeinstr(ia));

tnl->append(new tree-instr(incr));

/ * annotate the block before releasing it */
immedlist *inl = new immed_list();

inl->push(nc);

tb->set_annote(k_fds_counter, (void *)inl);

return(tb); 90

immed_list *feedstate::unparse() {

immedlist *il = new immed_list();

il->append(immed(counters));

il->append(immed(numcounters));

il->append(immed(freecounters));

il->append(immed(samples));

il->append(immed(numsamples));

100

return il;

tree_block *feedstate::varsample(blocksymtab *bs, varsym *var,

int numbuckets, tree_proc *procin) {

/* here's a model for what we're trying to produce $/

#if 0

{ 0

sampletype *tmp = &(samples[15]); 110

while(tmp->cnt) {

if (v == tmp->data.i) {

(tmp->cnt)++;

goto done; 5

}

68



tmp++;

}

if (tmp < &(samples[19])) {

tmp->data.i = v; 10

(tmp->cnt)++; 120

}

else

tmp- >data.ll++;

done:; 15

#endif

/ * containing block */
tree node list *tnl = new tree node list;

blocksymtab *tbs = bs->new unique_child("fdssampleblock"); 130

tree_block *tb = new tree_block(tnl, tbs);

/* tmp->data.vartype, convert var to match vartype */

char *vname;

type_node *dvt;

in_rrr *varcast;

switch (var->type(->opO) {

case TYPE INT: 140

dvt = type_unsigned_longlong;

vname = "11";

if (((basetype *) var->type())->issignedO) {

basetype *tn = (base_type *) var->type()->copy();

tn->setsigned(FALSE);

tn = (basetype *) var->type()->parent()->installtype(tn);

varcast = new in_rrr(iocvt, typeunsignedlonglong,

operand(),

operand(new inrrr

(io cvt, tn, operand(, operand(var), 150

operandO)),

operands);

} else

varcast = new in rrr(iocvt, type_unsignedlonglong,

69



operand(),

operand(var),

operand());

break;

case TYPE FLOAT:

dvt = type longdouble; 160

vname = "d";

varcast = new in rrr(io cvt, type longdouble,

operand(),

operand(var),

operand());

break;

case TYPE PTR:

dvt = type_ptr;

vname = "v";

varcast = new in_rrr(io cvt, type ptr, 170

operand(),

operand(var),

operand());

break;

default:

assert(FALSE);

}

180

/ $ Okay, let's take it line-by-line */

/ * first, a mark just to keep things from crashing */

in rrr *marker = new in_rrr(iomrk);

tnl- >append(new tree instr(marker));

immed list *anlist = new immed list;

marker->set_annote(k line, (void *)anlist);

anlist- >append(immed(0));

anlist- >append(immed( "fdssaaple"));

/* line 1 / 190

varsym *tmp = tb->symtab()->new unique var(sampleptrtype, "fdstmp");

in array *tmpasgn = new in array(sampleptrtype,

operand(tmp),

70



operand(new in_ldc(sarrptrtype,

operand(),

immed(samples))),

sampletype->size(),

1);

tnl->append(new treeinstr(tmpasgn));

tmpasgn->set_index(O,operand(new in_ldc(type_unsignedlong, 200

operand(),

immed(samplesizeO))));

/ lup:#/

label-sym *lup = tbs->newuniquelabel("lup");

tnl->append(new treeinstr(new in lab(lup)));

/ * tmpcntptr = &(tmp->cnt); */

int cntnum = sampletype->findfieldby_name("cnt');

var sym *tmpcntptr = tbs->new_unique_var 210

(tbs->install type

(new ptr_type(sampletype->field_ type(cntnum))),

"tmpcntptr");

in rrr *ir = new inrrr

(ioadd,

tmpcntptr->type(),

operand(tmpcntptr),

operand(tmp),

operand(new in_ldc 220

(type_unsigned_long, operand(),

immed(sampletype->offset(cntnum)/8))));

immed_list *iltmp = new immed_list;

iltmp->push(immed("cnt "));

ir->set_annote(k_fields,(void *)iltmp);

tnl->append(new treeinstr(ir));

/ * tmpcntval = *tmpcntptr */

var_sym *tmpcntval = tbs- >new_unique_var

(((ptr type *)tmpcntptr->type())->reftype(,"tmapcnt ; 230

tnl->append(new tree_instr

(new inrrr

71



(iojlod,

((ptrtype *)tmpcntptr-.>type())->ref type(),

operand(tmpcntval),

(tmpcntptr))));

,/ * if (!tmpcntval) goto postlup */

labelsym *postlup = tbs->new uniquelabel("postlup");

tnl->append(new tree instr 240

(new inbj

(io_bfalse, postlup,

operand(tmpcntval))));

I/* if (!(v == tmp->data.vartype)) { */

i/ * tmp->data.vartype */

cntnum = sampletype->find_fieldby_name( "data");

struct_type *un = (struct_type *)sampletype->field_type(cntnum);

int uncntnum = un->findfield_by_name(vname);

in_rrr *tmpdatavaraddr = new inrrr(ioadd, 250

tb->symtab()->install type

(new ptr_type

(un->field_type(uncntnum))),

operand(),

operand(tmp),

operand(new in ldc

(type_unsigned_long, operand(),

immed(sampletype->offset(cntnum)/8))));

iltmp = new immed_list;

iltmp->append(immed( "data")); 260

iltmp->append(immed(vname));

tmpdatavaraddr->set_annote(kfields, (void *)iltmp);

inrrr *tmpdatavar = new in_rrr(iolod, un->fieldtype(uncntnum),

operand(),

operand(tmpdatavaraddr- >clone(tbs)));

label_sym *jt = tbs->new_unique_label("tmpplusplus");

' * if .... goto tmpplusplus; */

tnl->append(new treeinstr

(new in_bj

(iobfalse, jt, 270

operand(new inrrr(io_seq,

72



type_signed,

operand(),

operand(varcast- >clone(tbs)),

operand(tmpdatavar->clone(tbs)))))));

/* tmp-->cnt++; */

inrrr *tmpcntplusplus = new in_rrr

(iostr,

type_void, 280

operand(),

operand(tmpcntptr),

operand(new in_rrr

(io add, tmpcntval->type(),

operand(),

operand(tmpcntval),

operand(new inldc

(type_unsigned, operand(, immed(l))))));

tnl->append(new treeinstr(tmpcntplusplus->clone(tbs)));

290

/* goto done; */

labelsym *donept = tbs->new_uniquelabel("done");

tnl->append(new treeinstr

(new inbj(iojmp, donept)));

/ * tmpplusplus: */

tnl->append(new treeinstr(new inlab(jt)));

/* tmp++; */

tnl->append(new treeinstr

(new inrrr 300

(ioadd,

tmp->type(),

operand(tmp),

operand(new inldc(type_signed, operand(),

immed(sampletype->size()/8))),

operand(tmp))));

/* goto lup; */

tnl->append(new treeinstr

(new in bj(iojmp, lup))); 310

73



* $ postlup: */

tnl->append(new tree_instr(new in_lab(postlup)));

/ * if (tmp < samples[highend]) { */

label sym *jumpto = tbs->new_unique_label("jumpto");

t;ree-node-list *header = new tree node list;

treenodelist *thenpart = new tree node list;

treenode list *elsepart = new treenodelist;

t;nl- >append(new treeif(jumpto, header, thenpart, elsepart)); 320

in_array *tmpcmp = new in_array(sampleptrtype,

operand(),

operand(new in_ldc(sarrptrtype,

operand(),

immed(samples))),

sampletype->size(),

1);

tmpcmp->set index(O,operand(new inldc(type_unsignedlong,

operand(),

immed(addsamples(numbuckets))))); 330

header->append(new treeinstr

(new in_bj

(iobfalse,

jumpto,

operand(new in_rrr

(iosl,

type_signed,

operand(),

operand(tmp),

operand(tmpcmp)))))); 340

,/* then: tmp->data.vartype = v; */

I * note: we use up tmpdatavaraddr and varcast here $/

thenpart->append(new treeinstr

(new in_rrr(iostr,

tmpdatavaraddr->result_type(),

operand(),

operand(tmpdatavaraddr),

operand(varcast))));

74



350

/* then: tmp->cnt++; */
/ * uses up tmpcntplusplus $/

thenpart->append(new treeinstr(tmpcntplusplus));

/* else tmp->data.ll++ */

uncntnum = un->find_field_by_name("11");

var-sym *tdllvptr = tbs->new_unique_var(tb->symtab(->installtype

(new ptrtype

(un->field_type(uncntnum))),

"tdllvptr"); 360

in_rrr *tmpdatallad = new in-rrr(ioadd,

tdllvptr->type(),

operand(tdllvptr),

operand(tmp),

operand(new inldc

(type_unsigned_long, operand(),

immed(sampletype->

offset(cntnum)/8))));

iltmp = new immedlist;

iltmp->append(immed( "data")); 370

iltmp->append(immed( "11"));

tmpdatallad->set_annote(k_fields, (void *)iltmp);

elsepart->append(new treeinstr(tmpdatallad));

elsepart->append(new treeinstr

(new inrrr(iostr,

type_unsigned_longlong,

operand(),

operand(tdllvptr),

operand(new inrrr

(ioadd, 380

type_unsignedlonglong,

operand(),

operand(new in-ldc

(type_signed,

operand(), immed(1))),

operand(new in_rrr

(io_lod,

type_unsigned_longlong,

75



operand(),

opera.nd(tdllvptr)))))))); 390

/* done: ;*/

tnl->append(new tree instr(new in lab(donept)));

return(tb);

}

int feedstate::samplesize() (
immedliste *ncvale = ((immed list *) numsamples->definition()->peek annote(k_repeatinit))->tail();

return(ncvale->contents.integer()); 400

int feedstate::addsamples(int numbuckets) (

i/ * fix the type of samples */

immed list e *ncvale = ((immed list *) numsamples->definition()->peekannote(k_repeat init))->tail();

int newsize = ncvale->contents.integer(+numbuckets+l;

ncvale->contents = immed(newsize);

sarrtype- >set upperbound(array_bound(newsize));

return(newsize); 410

}

76



B.1.3 Specialization Mechanisms

77



inline.cc

#include <stdlib.h>

#include "suif. h"

/* grunge support */

/ * holds the label to which to jump and the variable into which to store

a return value when converting returns into store-and-jumps in inlined

procedures $/

struct sjpack {

labelsym *jlab; 10

var_sym *rlab;

sjpack(labelsym *jl, varsym *rl) {jlab = j; rlab = rl;)

};

void storjmp (treenode *tn, void *data);

void justjmp (treenode *tn, void *data);

/ * Inlining ----------------------------------------

treeblock *startinline(in_cal *ic) { 20

treeinstr *t = ic->parentO;

,/* make sure it's not an anon. func. call */

operand adop = ic->addr_op();

if (adop.instr(->opcode() != ioldc) return NULL;

in_ldc *adopldc = (inldc *)adop.instr();

* I think this has to be a symbol, so we won't check it. */

procsym *calledptr = (proc_sym *) adopldc->value().symbol();

/ * function is in fileset? */ 30
if (calledptr->is_extern()) return NULL;

/* Okay, let's do it... */

i * Step 1: pretend it's just a block of code */
/ + Step 2: create a clone of the proc blocks */

/* because we're converting from proc to block, we have

to do a lot by hand here. */

78



treeproc *src = calledptr->block();

replacements r; 40

src->findexposed refs(t->scope(), &r);

t->scope()->resolve exposed refs(&r);

block symtab *newsymtab = src->symtab(->blocksymtab::clonehelper(&r, FALSE);

treenode-list *newbody = src->body()->clonehelper(&r);

treeblock *cln blk = new treeblock(newbody, newsymtab);

src->cloneannotes(clnblk, &r, FALSE);

/ * Step 4: assign formals from call... */

if (!getenv("INLINEINHIBIT_1")) {

sym_node_list *parmlist = ((proc_symtab *)src->symtab() ) - >params(); 50

sym_node_liste *curr, *next = parmlist->head();

int parmcnt = 0;

while (next) {

curr = next;

next = curr->nextO;

/ * formal receiving a value */

var sym *parm = (var_sym *)

((varsym *) curr- >contents)->clone-helper(&r); 60

/* while we've got it: tell it it's not a parameter anymore. */

parm->reset_param();

/ * The argument that would've been passed... */

operand rval = ic->argument(parmcnt++);

/ * ... gets freed from the clutches of the call statement... */

rval.remove();

70

/ * ... and subsequently is bound to the variable that used to be

the formal parameter. */

switch (rval.kindO) {

case OPERSYM:

if (!getenv("INLINESYlIHIIT")) {

/ * type conversions look like instructions, not syms,

79



so if we made it here, typing already works okay */

cln_blk->body()->push

(new tree instr

(new inrrr(iocpy, parm->type(, operand(parm), 80

rval)));)

break;

case OPER INSTR:

if (!getenv("INLINEINSTRINHIBIT")) {

/* typing is dealt with already, again... */
instruction *expr = rval.instr();

/ * dst should be blank by now */

expr- >set_dst(operand(parm));

/ * overkill checking -- shouldn't be a parent problem */

if (expr->parent()) 90

if (expr->parent()->instr() == expr) {

treeinstr *dead = expr->parentO;

dead- >removeinstr(expr);

dead->parent()->remove(dead->list_ eo);

delete'dead;

cln_blk->body()->push

(new tree_nodelist_e

(new treeinstr(expr)));

} 100

break;

default:

assert_msg(FALSE,("This expression is incapable of having a dest?!?"));

}

return clnblk;

110

/* Finishes the inlining job, replacing thecall with theblock and doing

relevant cleanup. */

void endinline(in cal *ic, treeblock *clniblk) {

80



treeinstr *t = ic->parent();

/* Step 3: insert the copy... */

t->parent()->insert_before(new tree_node_list_e(clnblk), t->list_e());

120

if (!getenv("INLINEINHIBIT_2")) {

/ * Now it's time to turn returns into assigns and jumps */

/ * step 1: put label at end of block to jump to */

/* First, put it into the symbol table */

labelsym *retpoint = cln_blk->symtab()->new_unique_label("retpoint");

/ * Now put it at the tail of the body */

clnblk->body(->append(new treeinstr(new inlab(retpoint)));

/* step 2: if the return value is used: */ 130

if (!ic->dstop(.iss nullO) {

assert(ic->dst_op(.is_symbol();

/ * step 2.tl: retval is the variable to which things were assigned */

var sym *retval = ic->dstop(.symbol();

/ * step 2.t2: now, convert each return into store/jump */

sjpack *sj = new sjpack(retpoint,retval);

clnblk->map(storjmp, (void *) sj, FALSE);

delete sj;

} 140

else

/ * step 2.fl: otherwise convert each return into jump $/

clnblk->map(justjmp, (void *)retpoint, FALSE);

/* Step 5: nuke the call */

/* a) remove from list */

tree_nodeliste *dying = t->parent()->remove(t->list_e0);

150

/* b) destroy call node itself... -- this takes out the Idc also

since we're assuming exprs */

delete t;

/* c) destroy the list_e that held it */

81



delete dying;

/* more grunge support */

160

void storjmp (treenode *tn, void *data) {

sjpack *labs = (sjpack *)data;

if (!tn->isinstr()) return;

treeinstr *ti = (tree instr *)tn;

instruction *in = ti->instr();

/ * Specifically, a return? */

if (!(in->opcode() == ioret)) return;

in rrr *ret = (inrrr *) in; 170

operand srcop = ret->srcl_op();

srcop.remove();

type_node *rtyp;

switch(srcop.kind() 

case OPER_NULL: rtyp = NULL; break;

case OPERSYM: rtyp = srcop.symbol()->type(; break;

case OPERINSTR: rtyp = srcop.instr(->result type(; break;

180

in_rrr *asgn = new inrrr(iocpy,rtyp,operand(labs->rlab),

srcop);

tn- >parent()- >insert before(new tree_node_list_e(new treeinstr(asgn)),

tn->list_eO);

tn->parent(-)->insert_after(new tree_node_list_e(new treeinstr

(new in bj(iojmp,

labs->jlab))),

tn->liste());

/'* a) remove from list */ 190

tree_node_list_e *dying = tn->parent()->remove(tn->liste());

/ * b) destroy call node itself... */

82



delete tn;

/ * c) destroy the list e that held it */

delete dying;

void justjmp (treenode *tn, void *data) ( 200

label sym *jumppoint = (label sym *)data;

if (!tn->isinstr()) return;

tree instr *ti = (tree instr *)tn;

instruction *in = ti->instr();

/ * Specifically, a return? */

if (!(in->opcode() == io ret)) return;

inrrr *ret = (in rrr *) in;

operand srcop = ret->srcl_op(); 210

srcop.remove();

tn->parent()- >insert after(new tree node list_e(new treeinstr

(new inbj(iojmp,

jumppoint))),

tn->list e());

/* a) remove from list /

tree nodelist_e *dying = tn->parent()->remove(tn->list_e());

/* b) destroy call node itself... */ 220

delete tn;

/ * c) destroy the list_e that held it */
delete dying;

}

83



specnoin.cc

#include <stdlib.h>

#include "suif.h"
#include " interface .h"

int fullspec(in_cal *thecall, sym_node_list *newlist) {

/ Replaces thecall with a call to a fully specialized version of

the function. Deals with unification issues: generates new spec'ed

version if needed, uses pre-created one if possible. returns 0 if no

(further) spec possible, 1 if used old one, 2 if made new one. */ 10

filncspec *sfunc;

/$* describe the call's constraints, etc. */

funcspec callform(thecall);

/ * if a version already fits the requirements, just tailor the call to it.

Tailor returns 1 if it actually changes things, 0 if the call was

already tailored to the named site. Not efficient, but a little

cleaner than other options. */

if (sfunc = callform.equivproc()) 20

return (sfunc->tailor(thecall));

/ * otherwise, time to make a new function */

sfunc = callform.instantiate(newlist);

assert(sfunc);

sfunc->tailor(thecall);

return 2;

int tryspec(in_cal *thecall) { 30

/ $ Attempts to replace thecall with a call to a more specialized version --

draws from already-created spec'ed versions, but does NOT create new ones.

Picks strongest form -- alg needed here, probably most args. $/

/ * profile the call */

funcspec callform(thecall);

84



return callform.closest()->tailor(thecall);

}

85



funcspec.cc

#include<stdio.h>

#include"suif .h"

#include " interf ace. h"

#deflne callee(a) ((proc_sym *)((in_ldc *)((a)->addr_op().instr()) ) - >value(.symbol()

proc_sym *unique_proc_sym_copy(proc_sym *src) {

proc_sym *retval = (proc_sym *) src->copy();

10

char bfr[1024];

, * provide a default base for the variable name */

char *base = src->name();

int var_counter = 1;

/ * add a number to the base name and make sure it's unique */

while (TRUE) {

sprintf(bfr, "s_%Yd", base, var_counter++);

if (!((file_symtab *)src- >parent())->lookup_proc(bfr, FALSE)) break; 20

retval->set_name(bfr);

return retval;

I

funcspec *formof(procsym *variant) {

if (!variant) return NULL;

funcspec *compform = (funcspec *) ((variant)->peekannote(k_funcspec));

if (compform) return compform;

30

compform = new funcspec(variant, variant);

variant->set_annote(kfuncspec,(void *)compform);

return compform;

int isconstr(operand foo) {

86



return (foo.is_instr() && (foo.instr(.opcode( == ioldc));}

immed constraint(operand foo) {return((in_ldc *)foo.instrO()).value( );} 40

proc_sym *rootof(proc_sym *variant) {

funcspec *compform = formof(variant);

return compform->root;

/ * create based on a call */

funcspec::funcspec(incal *thecall) {

self = NULL; 50

procsym *called = callee(thecall);

root = rootof(called);

next = prev = NULL;

conds = new funccond list();

funcspec *form = formof(called);

int rootsize = root->block()->procsyms()->params()->count();

int callarg = 0;

60

/ *figure out constraints -- this may have to change when

constraints become more complicated. Inherit from called

function, and then include any new constraints in the call $/

for (int parmcount = 0; parmcount < rootsize; parmcount++) {

if (form->isdef(parmcount))

conds->push(form->deflookup(parmcount));

else if (isconstr(thecall->argument(callarg++)))

conds- >push(funccond(parmcount,

constraint(thecall->argument(callarg-1))));

} 70

/ * create from a list of immediates */

funcspec::funcspec(immed_list *srcmatpt, proc_sym *slf)

: funconstraints(){

immed_list &srcmat = *srcmatpt;

87



int numims = srcmat.count();

assert(numims >= 3);

conds = new funccond_list();

self = slf; 80

root = (procsym *) (srcmat[O]).symbol();

next = (procsym *) (srcmat[1]).symbol();

if (next == root) next = NULL;

prev = (proc_sym *) (srcmat[2]).symbol();

if ((prev == root) && (self == root))

prev = NULL;

int cnt;

for (cnt = 3; cnt < numims; cnt += 2) {

funccond c(srcmat[cnt].integer(),srcmat[cnt+ 1);

conds->push(c);} 90

/ * translate to list of immeds */

immed_list *funcspec::unparse() {

immed_list *il = new immed_list();

il->append(immed(root));

if (next)

il->append(immed(next));

else 100

il- >append(immed(root));

if (prev)

il->append(immed(prev));

else

il- >append(immed(root));

funccond list iter ilit(conds);

while (!ilit.is_empty() {

il->append(immed(ilit.peek().parm()));

il->append(ilit.step().constv()); 110

return il;

}

88



/* complex operations */

/ * if there's a version of the root function that matches _this,

return the funcspec associated with it. */

funcspec *funcspec::equivproc() {

funcspec *cform = formof(root); 120

while (cform) {

if (equalto(dorm))

return dorm;

dorm = formof(cform->next);

}

return NULL;

130

/* return the closest existing match to this that's been instantiated */

funcspec *funcspec::closest( {

funcspec *cform = formof(root);

funcspec *winform = dorm;

while (dorm) {

if (supersetof(dorm)) {

relenum r = cform->relationto(winform);

if ((r == r_strict_superset) 1

((r == r_disjoint) && 140

(cform->condlist()->count() > winform->condlist()->count())))

winform = dorm;

}

cform = formof(dorm->next);

}

return winform;

/ * generate a version of the root function tailored to these specifications;

give it its own copy of this funcspec, and return that copy */ 150

funcspec *funcspec::instantiate(sym_node_list *addlist) {

proc_sym *calledptr = root;

/ * function is in fileset? */

89



if (calledptr->is_extern()) return NULL;

/* Okay, let's do it... */

/ * originating file *$/

file_symtab *myfile = (file_symtab *) calledptr->parent();

160

/ * Step 1: create a clone of the proc /

procsym *newfunc = unique_procsym_copy(calledptr);

/* Here's where we add it to the global symbol table -- is

this what we wanted to do?!? */

myfile->add_sym(newfunc);

/* TODO: should probably change the name here to something

unique */

newfunc->set_block(calledptr->block()->clone(newfunc->parent())); 170

/ * Step 1.1: create a new type for newfunc. */

func_type *newtypi = (functype *) newfunc->type0->copy();

myfile->addtype(newtype); /* it may be a duplicate now, but we're

mutating it, so keep it distinct... $/

ptrtype *newtypeptr = new ptr_type(newtype);

myfile-> add_type(newtypeptr);

newtype- >set_args_unknown();

newfunc- >set_type(newtype); 180

/ * Step 2: assign constant formals from this... */

/ * scan over this, putting constants in. +/

it * iterate over the function's formals */

sym_node_list *parmlist = newfunc->block()->procsyms()->params();

sym_node_list_e *curr, *next = parmlist->head();

int parmcnt = -1;

190

while (next) {

curr = next;

next = curr->next();

90



parmcnt++;

if (!isdef(parmcnt)) continue;

/ * Get the formal receiving a value... */

var sym *parm = (varsym *) curr->contents;

200

/ $ assign the constant to the formal from the proc-block */

in ldc *nl = new in_ldc(parm->type(),

operand(parm),

deflookup(parmcnt).constv());

/ * Now insert it at the proc- block list */

newfunc->block()->body()->push(new treeinstr(nl));

/ * de-formalize the formal, and pull it from the param list */

parm->reset_param(); 210

parmlist->remove(curr);

delete curr;

/ * finally, copy this for the new function, and put it in the variant

list */

funcspec *rootform = formof(root);

funcspec *newbie = new funcspec(root, newfunc, rootform->next, root);

if (rootform->next)

formof(rootform->next)->prev = newfunc; 220

rootform->next = newfunc;

funccond list *lst = newbie->condlist();

funccond_list iter thisiter(conds);

while (!thisiter.is_empty())

lst->append(thisiter.step());

addlist->push(newfunc);

newfunc->set_annote(k_funcspec,(void *)newbie);

return newbie;

230

/* changes the call such that it calls sfunc. NOTE: thecall probably

91



doesn't exist when this comes back!!! It'll have been replaced

in its treeinstr. tailor returns I if the tailoring is successful; 0 if not.

(most likely reason for 0 is that the call is already tailored to that

function) */

int funcspec::tailor(incal *oldcall) {

/* sanity checks */

if (!self) return 0; 240

proc_sym *oldfunc = callee(oldcall);

if (self == oldfunc) return O;

/ * useful info to have around */

funcspec *oldform = formof(oldfunc);

sym_node_list *rootparms = root->block()->proc_syms()->params();

int rootsize = rootparms->countO;

/ * counters */

int oldcnt = 0; 250

int newcnt = 0;

func_type *newtype = self->typeO);

ptr_type *newtypeptr = new ptr_type(newtype);

newtypeptr = (ptrtype *) ((filesymtab *) self->parent())->installtype(newtypeptr);

/ * construct the outline of the new call */

operand calladdr(new inldc(newtypeptr,operand(,immed(self)));

in_cal *newcall = new incal(self->type()->return_type(,oldcall->dstopO,

calladdr,rootsize);

260

t * Iterate through the number of root params.

for each one, here's what we do --

if it's defined by the new function

(if it's defined by the old function ignore it

else advance the counter past that arg in the old call)

else if it's defined by the old function put that def. into the new call

else copy arg from old call to new call */

for (int parmcount = 0; parmcount < rootsize; parmcount++)

/ * defined in new but not old means that we can skip this 270

arg in the old call */

92



if (isdef(parmcount)) {

if (!oldform- >isdef(parmcount))

oldcnt++;}

else

if (oldform->isdef(parmcount)) {

operand parm(new in ldc(((var sym *)(*rootparms)[parmcount])-> type(),

operand(),

oldform- >deflookup(parmcount).constv());

newcall- >set_argument(newcnt++,parm);} 280

else {

operand rval = oldcall->argument(oldcnt++);

rval.remove();

newcall->set_argument(newcnt++,rval); }

newcall- >setnum args(newcnt);

/ * replace old call with new call $/

treeinstr *ti = oldcall->parent();

ti- >removeinstr(eldcall);

ti->set instr(newcall); 290

delete oldcall;

return 1;

}

93



dumbblock.cc

#include <stdlib.h>

#include "suif. h"
#include "interface. h"

/ * replaces theblock with a suite of specialized blocks --

order of blocks is direct from conlist. theblock ceases to exist. */

/ * returned 0 means no specialization occurred */

int dumbblockspec (treeblock *theblock, blockspec_list *conlist) (

/ * sanity check */

if (!conlist->count()) return 0; 10

/ * iterate over the options */

blockspec_list iter bliter(conlist);

tree node *baseblock = theblock->clone(theblock->scopeO);

tree_node *growth = baseblock;

while (!bliter.isempty())

growth = bliter.step(->buildselfon(baseblock, growth);

tree_node_list *tnl = theblock->parent(); 20

tnl->insertafter(growth, theblock->list_e());

tnl->remove(theblock- >liste());

delete(theblock->list_e());

delete(theblock);

}

94



blockspec.cc

#include<stdio.h>

#include"suif. h"

#include" interface. h"

extern char *kblockspec;

/ * reconstruct from a list of immeds */

blockform::blockform(immed list iter &iliter, treeblock *src) {

orig = src;

int numconds = iliter.step().integer(); 10

while (numconds--) {

varsym *sym = (var sym *) iliter.step(.symbol();

conds->push(blockcond(sym, iliter.step()));

}

/ * deconstruct to a list of immeds */

void blockform::unparseto(immed_list *iml) {

/ * number of conditions */

iml->append(immed(conds->count())); 20

/ * now deconstruct each cond and send it... */

blockcond_listiter bliter(conds);

while (!bliter.is_emptyO) 

iml->append(immed(bliter.peek(.parm()));

iml->append(bliter.step() .constv();

}

/ * create a version of the original block as constrained by this */ 30

tree_block *blockform::instantiate() 

treeblock *newblock = orig->clone(orig->scope());

/ * get rid of the annote-clone */

newblock->get_annote(k_blockspec);

treenodelist *bod = newblock->body();

blockcond_listiter bliter(conds);

95



while (!bliter.isemptyO) {

varsym *var = bliter.peek(.parm();

immed val = bliter.step().constv(); 40

tree_instr *asgn = new tree instr(new inldc(var->type(),

operand(var),

val));

bod->push(asgn);

}

return newblock;

/ * create an expression calculating the truth of the conditions of this 50

form */

tree node_list *blockform::preconds(label_sym *jumplab) {

/ * iterator over conditions */

blockcond_list_iter bliter(conds);

,/ * shouldn't do this */

assert (!bliter.is_empty());

/ * tree to return */ 60

treenodelist *condjmp = new treenode_list();

while (!bliter.is_emptyO) {

/ * organize content */

var_sym *var = bliter.peek(.parm();

immed val = bliter.step(.constv();

/ * comparison */

in rrr *cmp = new in_rrr(ioseq, type_s32, operand(, operand(var),

operand(new inldc(var->type(,operand(,val))); 70

/* branch */

in_bj *bf = new in_bj(io bfalse, jumplab, operand(cmp));

/* add to list */

condjmp->push(new treeinstr(bf));

96



}

return condjmp;

80

/* - …-_ _ ---- blockspec ------------- *

blockspec::blockspec( immed_list *il, tree_block *src) (

possible = new blockformlist();

actual = new blockform_list();

orig = src;

90

immed_list_iter bliter(il);

/* int rootnum = */ bliter.step(.integer();

/$ TODO: make this work for real */

rootpoint = orig;

int actcount = bliter.step(.integer();

while (actcount--) {

blockform *newbie = new blockform(bliter, orig);

actual-> append(newbie);

possible->append(newbie); 100

while (!bliter.is_emptyO) 

blockform *newbie = new blockform( bliter, orig);

possible- >append(newbie);

}

immed_list *blockspec::unparse() {

immed list *iml = new immed_list; 110

/* the identity of the rootpoint */

iml->append(immed(rootpoint->number()));

/* now each blockform -- actuals first */
blockform list iter abliter(actual);

97



iml->append(immed(actual->count()));

while (!abliter.is_empty())

abliter.step().unparseto(iml);

,/ then possibles */ 120

/ * no count needed -- last one is last one */

blockform_list_iter bbliter(possible);

while (!bbliter.is_emptyO) {

blockform *cur = bbliter.stepO;

/ * whether or not it's actualized... */

if (!actual->lookup(cur))

cur.unparseto(iml);

return iml;
130

/ * realize a possible form on top of the currently realized forms */

int blockspec::addactual(blockform *act) {

if (actual->lookup(act)) return 0;

if (!possible->lookup(act))

possible->push(act);

actual->push(act);
140

/*prepare the if's args */

label.sym *jumplab = rootpoint->proc(->block(->proc-syms->
n e w -u n iq ue - l ab e l( );

tree nodelist *header = act->preconds(jumplab);

tree node_list *thenpart = new tree nodelistO;

thenpart->push(act->instantiateO);

tree node_list *elsepart = new treenode_list();

/* make the if */

tree-if *newif = new treeif(jumplab, header, thenpart, elsepart);

150

rootpoint->parent()->insert.after(newif, rootpoint->liste());

rootpoint->parent()->remove(rootpoint->liste());

/ * now that the old blockspec-tree is free, we can add it to the

98



thenpart of the new if */

elsepart->push(rootpoint->list_e());

rootpoint = newif;

/ * TODO: annotate the new if with something indicating its origin */

return 1;

160

/ * remove the possibility of a form -- resets the actual form, as

well, if done to a currently-realizedform */

void removepossible(blockform *poss) {assert(O);}

/ * resets the set of forms to just the original tree_block --

no specializations */

void reset_actual() {assert(O);}

170

99



B.1.4 Miscellaneous

100



myutils.cc

#include "suif.h"

#include "ayutils.h"

void

proc_readall (int argc, char * argv0,

boolean writeback,

boolean exp_trees,

boolean usefortran form)

extern int optind; lo

if (writeback) {

if (argc-optind == 0)

error line(-1, NULL, "No files given");

if (argc-optind == 1)

error_line(-1, NULL, "No file to write back");

if ((argc-optind)%2 != 0)

errorline(-1, NULL, "File mismatch, file missing to write back");

for (int i = optind; i < argc; i += 2) {

fileset->add_file(argv[i], argv[i+l]); 20

}

} else {

if (argc-optind == 0)

errorline(-1, NULL, "No files given");

for (int i = optind; i < argc; i++) {

fileset->add file(argv[i], NULL);

}

fileset->reset iter(); 30

filesetentry *fse;

while (fse = fileset->next_file()) {

fse->reset_prociter();

procsym *ps;

while (ps = fse->next_proc()) {

101



if (!ps->is inmemory()) {

ps- >readproc(exp trees,

(ps->src lang() == src fortran) ?

use fortranform: FALSE);

void procprocessall (prociterf fun)

{

fileset->resetiter();

file set entry *fse;

while (fse = fileset->next_file()) 

fse->reset_prociter();

procsym *ps;

while (ps = fse->next_proc())

(fun)(ps->block());

void procsymprocessall (procsymiterf fun)

fileset->resetiter();

filesetentry *fse;

while (fse = fileset->nextfile()) {
fse->reset proc iter();

proc sym *ps;

while (ps = fse->next_proc())

(fun)(ps);

void proc saveall ()

'

102

40

50

60

70



fileset->reset_iter();

file_set_entry *fse;

while (fse = fileset->next file()) { 80

fse- >reset_proc iter();

proc_sym *ps;

while (ps = fse->nextproc()) {

ps->block()->body()->cvt to trees();

ps->write proc(fse);

ps->flush_proc();

~~~~~~~~~~~~~~~~} ~~~~90

103



B.2 Initialization

B.2.1 feedinit

104



feedinit.cc

#include<stdio.h>

#include<stdlib.h>

#include "suif. h"
#include "builder.h"
#include "interface .h"

char *k feedstate;

char *kfdscntarr;

/ * globalize all static procedures, alpha- renaming as needed / 10o

void globalize(proc_sym *tp) 

global_symtab *gs = fileset.globals();

if (tp->parent() == gs) return;

/ * gotta globalize local function's types first */
if (tp->type(->parent() != gs) {

tp-> type()->parent()->removetype(tp-> type() );

gs->addtype(tp->type());

20

/ * make sure its name is unique in the global scope*/

if (gs->lookup_proc(tp->name())) {

char bfr[1024];

/ * provide a default base for the variable name */

char *base = tp->name();

int var_counter = 1;

/ * add a number to the base name and make sure it's unique */ 30

while (TRUE) {

sprintf(bfr, "%s_%d", base, var_counter++);

if (!gs->lookup_proc(bfr)) break;

}

tp->setname(bfr);

}

105



/ * now globalize the uniquely-named function. */

tp- >parent()- >removesym(tp);

gs->addsym(tp); 40

procsym *makefeedin() {

global symtab *gs = fileset.globals();

func_type *oetype = (functype *) gs.installtype(new func_type(typevoid));

return gs->new_proc(oetype,srcc, "dsf dainit );

/* TODO: should do something more clever than this --

we're silently relying on canonical names at the moment. * 50

proc_sym *makefeedout() {

/ * find stuff */

global symtab *gs = fileset.globals();

procsym *mn = gs->lookup_proc("uain");

/ * set up for counters --------------------------- */
/ * array of longlongs for the counter -- annote for uniqueness /

array_type *newtype = new array_type(typeunsigned_longlong,

arraybound(O), 60

arraybound(O));

newtype->set_annote(k_fdscntarr,NULL);

gs-> add_type(newtype);

/ * create the new counters... */

varsym *counters = gs- >newvar(newtype, "fdscounters");

' * and define them in main's file */

rnn->file()->symtab()->add_def(new vardef(counters, newtype->size()));

70

/' * same for a variable counting the counters... */

varsym *numcounters = gs->new_var(type_unsigned,

"_fdsnuncounters");

vardef *nd =new vardef(numcounters, numcounters->type()->size());

mn->file()->symtab()->adddef(nd);

immed list *ild = new immed_listO;

106



ild->append(immed(l));

ild->append(immed(numcounters->type()->size()));

ild->append(immed(O));

nd->set_annote(k repeatinit,(void *)ild); 80

/ * set up for variable sampling- -------------------- 

block::set_proc(mn->block()); /* we'll try the builder, what the hell */

type_node *sdata = block::parsetype(gs,"union(XX 11; XX d; void *v; )",

type_unsigned_longlong,

typelongdouble);

type_node *samps = block::parse_type(gs,"struct(%% cnt; %XX data; ",

type_unsignedlonglong, sdata);

90

arraytype *sarrtype = new array_type(samps,

array_bound(O),

array_bound(O));

sarrtype->set_annote(kfds_cntarr, NULL);

gs->add_type(sarrtype);

/ * create the new samples... */

varsym *samparr = gs->newvar(sarrtype, "fdssa mples");

/ * and define them in main's file */ 100

mn->file()->symtab()->add_def(new vardef(samparr, sarrtype->size()));

/ * a variable counting the samples... */

varsym *numsamples = gs->new_var(typeunsigned,

"_fdsnussaxples");

vardef *nsd =new vardef(numsamples, numsamples->type()->sizeO);

mn- >file()->symtab()->adddef(nsd);

immed list *nild = new immed_listO;

nild->append(immed(1));

nild->append(immed(numcounters->type()- >size())); 110

nild->append(immed(O));

nsd->set_annote(k_repeatinit, (void *)nild);

/ * Finally, document this stuff in an annote */

107



immed list *il = new immedlist();

/* final format of ii: counters, numcounters, freecounters */

/ * samples, numsamples *$/

il->append(immed(counters));

il->append(immed(numcounters)); 120

il->append(immed(O));

il->append(immed(samparr));

il->append(immed(numsamples));

/ * hang it on main's proc sym */

mn->setannote(k_feedstate, (void *)il);

func_type *oetype = (func type *) gs.installtype(new func_type(type void));

return gs- >newproc(oetype,src c, "_f ds_feedout");

130

/ * actually put the feedback calls in */

void install feed(proc sym *fbi, proc_sym *fbo) {

/ * first, put the on_exit call in (not very portable) */

global_symtab *gs = fileset.globals();

func type *oetype = (func type *) gs.installtype(new func_type(type_signed));

procsym *oe = gs->new proc(oetype,srcc,"onexit");

140

procsym *mps = gs->lookup_proc("main");

/ * make the call instr $/

ptr_type *oeptr = (ptr_type *) gs.install type(new ptr_type(oetype));

incal *tc = new in_cal(type_signed,operand(),

operand(new in_ldc(oeptr, operand(), immed(oe))),

2);

ptr type *fboptr = (ptr type *) gs.install type(new ptrtype(fbo->type()));

tc->set_argument(O,operand(new in_ldc(fboptr, operand(, immed(fbo))));

tc->set argument(1,operand(new in_ldc(type_signed, operand(), immed((int) 0)))); 150

/* stick it in $/

mps->block()-> body()->push(new tree instr(tc));

108



/* now, put in the call to init */

mps->block(->body()->push(new treeinstr

(new in_cal

(typevoid,operand(),

operand(new inldc

(gs.instailtype 160

(new ptrtype(fbi->type()),

operand(),

immed(fbi))),

0)));

1;

main (int argc, char *argv0) {

startsuif(argc, argv); 170

ANNOTE(k feedstate, "feedback state", TRUE);

ANNOTE(k fds_cntarr, "kfdscntarr", TRUE);

procreadall(argc,argv,TRUE);

procsym_processall(globalize);

procsym *fbi = makefeedin();

procsym *fbo = make_feedout();

install feed(fbi, fbo);

procsaveall(); 180

delete fileset;

}

109



B.2.2 fds.c

110



fds.c

#include<stdio.h>

extern int fdsnumcounters;

extern int fds numsamples;

extern unsigned long long Jdscounterst;

typedef struct fdssampletype (
long cnt;

union {unsigned long long 11;

long double d; 10o

void *v;} data;)

fds_sampletype;

extern fdssampletype fds_samplesO;

void fdsinit() {

/ $ We actually write out accumulated feedback info here */

void dsfeedout(int stat, void *arg) { 20

FILE *outfile = fopen("fdsnon. out","v");

/ * Header: write out counts of types of data */

fwrite((char *) &fds_numcounters, sizeof(int), 1, outfile);

fwrite((char *) &fdsnumsamples, sizeof(int), 1, outfile);

/ * First, write out all counters */

fwrite((char *) _fds_counters,sizeof(unsigned long long), _fdsnumcounters,outfile);

/ * printf("%d\n", (int)jds_numcounters); */

30

/* Now, write out all samples */

fwrite((char *) fds_samples,sizeof(_fds_sampletype), fds_numsamples, outfile);

fclose(outfile);

}

111



B.3 feedback collection

B.3.1 PC Sampling

112



pcback.cc

#include<stdio.h>

#include<stdlib.h>

#include "suif. h"

char *k_pcdata;

main (int argc, char *argvl) {

char buf[1024];

char name[255];

double pertime, cumsecs, selfsecs; 10

start_suif(argc, argv);

ANNOTE(k pcdata, "pcdata", TRUE);

extern int optind;

for (int i = optind; i < argc; i += 2)

fileset->add_file(argv[i], argv[i+l]);

fileset->resetiter();

file set entry *fse; 20

while (fse = fileset->nextfile()) {

fse- >reset_proc_iter();

procsym *ps;

while (ps = fse->next_proc()) {

ps->readproc();

ps->write_proc(fse);

ps- >flush_proc();

} 30

}

// we assume all functions are global, so only look here

global_symtab *gs = fileset->globals();

// nuke header garbage

gets(buf); gets(buf); gets(buf); gets(buf); gets(buf);

113



// process each line of information

while (scanf("%lf Xlf %lf s", &pertime, &cumsecs, &selfsecs, &name) == 4) {

proc_sym *fname = gs->lookupproc(name); 40

if (!fname) {printf("Lib function? s\n",name); continue;}

immed list *il = new immedlist();

il->append(immed(pertime));

il->append(immed(cumsecs));

il->append(immed(selfsecs));

fname->prepend_annote(kpcdata,(void *) il);

}

delete fileset;

114



Bibliography

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools.

Addison-Wesley Publishing Co., 1986.

[2] Jeremy Brown, Andre DeHon, Ian Eslick, Michelle Goldberg, Ahmed Shah, and Mas-

similiano Poletto. The clever compiler: Proposal for a first-cut smart compiler. Transit

Note 101, MIT Artificial Intelligence Laboratory, January 1994.

[3] Jeremy Brown, Andre DeHon, and Massimiliano Poletto. A proposal for first-cut

specialization mechanisms. Transit Note 104, MIT Artificial Intelligence Laboratory,

May 1994.

[4] Craig Chambers, David Ungar, and Elgin Lee. An efficient implentation of self, a

dynamically-typed ojbect-oriented language based on prototypes. LISP and Symbolic

Computation, 4(3), 1991.

[5] P. P. Chang, S. A. Mahlke, and W.-M. W. Hwu. Using profile information to assist

classic code optimizations. Software - Practice And Experience, 21(12):1301-1322,

December 1991.

[6] William Y. Chen, Pohua P. Chang, Thomas M. Conte, and Wen mei W. Hwu. The effect

of code expanding optimizations on instruction cache design. CRHC 91-17, Center for

Reliable and High Performance Computing, University of Illinois, University of Illinois,

Urbana-Champaign, Illinois, 61801, May 1991.

[7] Thomas M. Conte, Burzin A. Patel, and J. Stan Cox. Using branch hardware to

suport profile-driven optimization. In Proceedings of the 27th Annual Symposium on

Microarchitecture, pages 12-21. ACM, November 1994.

115



[8] Andre DeHon. Smart compiler advantages. Transit Note 99, MIT Artificial Intelligence

Laboratory, December 1993.

[9] Andre DeHon, Jeremy Brown, Ian Eslick, and Thomas F. Knight, Jr. Global coop-

erative computing. Transit Note 105, MIT Artificial Intelligence Laboratory, April

1994.

[10] Andr6 DeHon and Ian Eslick. Computational quasistatics. Transit Note 103, MIT

Artificial Intelligence Laboratory, March 1994.

[11] Andre DeHon and Ian Eslick. Starting point for clever-compiler feedback. Transit Note

108, MIT Artificial Intelligence Laboratory, May 1994.

[12] Andre DeHon, Ian Eslick, John Mallery, and Thomas F. Knight Jr. Prospects for a

smart compiler. Transit Note 87, MIT Artificial Intelligence Laboratory, June 1993.

[13] Dawson R. Engler and Todd A. Proebsting. Dcg: An efficient retargetable dynamic

code generation system. contact: todd@cs.arizonda.edu, englerlcs.mit.edu, November

1993.

[14] Joseph Fisher. Trace scheduling: A technique for global microcode compaction. IEEE

Transactions on Computers, 30(7):478-490, July 1981.

[15] Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick. gprof: a call graph exe-

cution profiler. In Proceedings of the SIGPLAN '82 Symposium on Compiler Construc-

tion, pages 120-126. ACM SIGPLAN, ACM, June 1982. SIGPLAN Notices, Volume

17, Number 6.

[16] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation and Auto-

matic Program Generation. Prentice Hall International Series in Computer Science.

Prentice Hall, 1993.

[17] Paul Kleinrubatscher, Albert Kriegshaber, Robert Zchling, and Robert Gliick. Fortran

program specialization. ACM SIGPLAN Notices, 30(4):61-70, April 1995.

[18] Donald E. Knuth. Empirical study of fortran programs. Software - Practice and

Experience, 1:105-133, 1971.

116



[19] Mark Leone and Peter Lee. Deferred compilation: The automation of run-time code

generation. CMU-CS 93-225, Carnegie-Mellon, December 1993.

[20] Calton Pu, Henry Massalin, and John Ioannidis. The synthesis kernel. Computing

Systems, 1(1):11-32, 1988.

[21] Alan Dain Samples. Profile-driven Compilation. PhD thesis, U.C. Berkeley, April 1991.

U.C. Berkeley CSD-91-627.

[22] Richard Stallman. Using and Porting GNU CC. Free Software Foundation, Inc., 675

Massachusetts Avenue, Cambridge, MA 02139, October 1993.

[23] Larry Wall and Randal L. Schwartz. Programming Perl. O'Reilly & Associates, Inc.,

Sebastopol, CA, 1991.

[24] Robert P. Wilson, Robert S. French, Christopher S. Wilson, Saman Amarasinghe,

Jennifer Anderson, Steve Tjiang, Shih-Wei Liao, Chau-Wen Tseng, Mary Hall, Monica

Lam, , and John Hennessy. An overview of the suif compiler system.

i f

117


