
Design and Implementation of the Alewife Startup Module

by

William K. Chan

S.B., Electrical Science and Engineering
Massachusetts Institute of Technology

Submitted to the
Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements of the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology

June 1995

© 1995 William K. Chan. All rights reserved.

The author hereby grants to MIT permission to reproduce and to
distribute publicly paper and electronic copies of this thesis

document in whole or in part.

Author
Department

Certified by

Accepted by

of Electrical Engineering and Computer Science
iMay25, 1995

· !4 ' '~ Anant Agarwal
Thesis Supervisor

| ''~r<e ic R. Morgenthaler
C j'Sk~t Commi tee n Graduate Theses

OF TECHNOLOGY

AUG 1 01995

Barker Eng
LIBRARIES



Design and Implementation of the Alewife Startup Module

by

William K. Chan

Submitted to the
Department of Electrical Engineering and Computer Science

May 25, 1995

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

The Alewife prototype uses a host connected via a VME bus for its communi-
cations. This configuration is a bottleneck for operations which require exter-
nal devices. A method to use SCSI has been developed, but it cannot fully
replace the startup sequence generated by the VME-based host. The focus of
this thesis is to design and implement the necessary hardware and software to
perform the startup sequence, allowing the removal of the VME interface. In
addition, the clock synthesizer from the VME transceiver board will be
enhanced and incorporated into the startup module to consolidate hardware.
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Chapter 1
Introduction

Background
The Alewife machine is a large-scale distributed-memory multiproces-

sor organized as a set of processing nodes connected in a mesh topology. Each

node consists of a processor, a cache, a portion of globally-shared distributed

memory, a cache-memory-network controller, a floating-point coprocessor,

and a network switch. Free network ports on peripheral nodes of the mesh

are used for I/O, monitor, and host connections. The Alewife prototype

attaches to a host Sun 4/110 by interfacing a network switch to the VME bus.

A block diagram of the Alewife prototype is shown in Figure 1-1 [1].

This configuration is a bottleneck for operations which require external

devices since all external access is handled through the host computer. Thus,

the next step in the development of Alewife is to improve its communications

capabilities. One method involves the addition of new non-processing nodes

capable of SCSI communication. This not only enhances the communications

capabilities of the machine by increasing connections, but also provides a

more common interface standard by using SCSI rather than VME.

The addition of the SCSI nodes provides an opportunity to enhance the

Alewife environment. With the presence of the SCSI interface, there is very

little use for the old VME interface. In fact, the only task that does not have a

SCSI equivalent is the startup sequence since it depends on the direct link
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Mesh of Alewife Nodes

Figure 1-1: Block Diagram of Alewife Prototype

between the mesh network switch and VME bus. SCSI nodes can be consid-

ered to be specialized processing nodes and need to receive startup informa-

tion themselves so they cannot initiate the startup sequence. However, it is

unreasonable to maintain a VME-based host for the sole purpose of starting

up the machine.

The focus of this thesis is the design and implementation of hardware

and software to support the SCSI-capable Alewife machine such that it can

function without a VME interface. This includes performing the startup

sequence and generating the system clock which are functions of the VME

interface.
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Overview
The startup module is a stand-alone hardware and software unit which

enhances the Alewife machine by allowing it to startup without external

resources. In particular, it eliminates the need for a VME-based host com-

puter to execute the startup sequence. Instead, it contains a startup engine in

hardware and interfaces directly to a peripheral node of the Alewife machine

through an unused network switch port. In addition, an improved version of

the clock synthesizer located on the VME transceiver board is included to con-

solidate hardware. A block diagram of the new Alewife system is shown in

Figure 1-2.

Startup Module

lost

Mesh of Alewife Nodes SCSI Node

Figure 1-2: Block Diagram of New Alewife System

The startup engine is designed to be invisible to the user in its opera-

tion. It automatically sends startup information to the node whenever the

Alewife machine is reset. Its major components are a microcontroller unit

(MCU) and an electrically-erasable programmable read-only memory

(EEPROM). The EEPROM contains both the software for the MCU and the

startup information for the Alewife machine. The EEPROM can be changed
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easily, making it simple to add software features to the startup module and

update the Alewife startup information.

The clock synthesizer in its default mode of operation is also transpar-

ent to the user. It is responsible for providing the system clock for the Alewife

machine as a differential positive ECL (pECL) signal. The system actually

consists of a MCU-controlled phase-locked loop (PLL) which generates a stan-

dard ECL signal at a default frequency of 40 MHz. The clock frequency can be

adjusted within a range of 5 MHz to 80 MHz by the user. Control is accom-

plished through the clock synthesizer software in the MCU.
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Chapter 2
System Requirements

Startup Engine
The purpose of the startup engine is to send startup information

directly to an Alewife processing node. It consists mainly of a Motorola

68HCll MCU and an EEPROM. A block diagram of the startup engine is

shown in Figure 2-1. The 68HCll operates in its expanded multiplexed mode

in order to access the EEPROM. The EEPROM contains both the software for

the 68HCll and the Alewife startup information. In expanded multiplexed

mode, the 68HCll is capable of fetching its instructions directly from the

EEPROM, making software updates to the 68HCll very easy.

Figure 2-1: Startup Engine Block Diagram

The operation of the startup engine requires a direct connection to an

unused network switch port. The network switch used for Alewife processing

nodes is the Elko Mesh Routing Chip (EMRC) from the California Institute of

Technology [2]. The EMRC uses eight-bit channels and operates asynchro-

nously, requiring three additional bits for handshaking. In addition, the star-
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tup engine needs to be able to reset the Alewife machine, requiring one

additional signal. The hardware interface from the 68HCll cannot be accom-

plished by only using its built-in ports. Expanded multiplexed mode occupies

16 I/O pins, leaving only eight digital pins available and the interface requires

at least ten outputs. In order to solve this, a latch connected to the data bus

can be used to provide additional outputs. The latch can load values from the

data bus to use as outputs. However, this method of generating outputs is not

glitch free, but it is sufficient for the 8-bit EMRC data channel which is not

continuously sampled.

The specifics of the network switch protocol are handled by the 68HC 11

software. The primary concern in communicating with the EMRC is the

handshaking protocol since the EMRC operates asynchronously. In particu-

lar, the protocol expects a data transfer at each transition of the handshake.

Clock Synthesizer
The clock synthesizer is responsible for providing the clock signal for

the entire Alewife machine. The signal generated conforms to pECL voltage

levels and is configurable from 5 MHz to 80 MHz. The synthesizer is built

around a programmable PLL which interfaces directly with a 68HC11. The

68HCll provides the user interface to adjust the frequency of the clock signal.

The PLL generates a signal at standard ECL voltage levels and requires con-

version to the pECL levels expected by the Alewife machine. A block diagram

of the clock synthesizer is shown in Figure 2-2.
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Figure 2-2: Clock Synthesizer Block Diagram

The clock synthesizer is based on the one located on the VME trans-

ceiver board [3]. Its design centers around the Motorola 145170 PLL Fre-

quency Synthesizer with Serial Interface. The 145170, along with a VCO and

a low pass filter, form the PLL which is interfaced serially to the 68HC11.

The 68HCll adjusts the frequency of the PLL by changing the value of a con-

trol register in the 145170.

The PLL is not capable of generating the entire frequency range desired

due to the limits of the VCO. In order to ensure a valid signal throughout the

desired range, the PLL is only designed to generate signals from 20 MHz to 80

MHz. The frequencies from 5 MHz to 20 MHz are then generated by dividing

the PLL output by four using an ECL divider. The desired signal is then

selected with a multiplexer. The accompanying software makes the entire fre-

quency range appear continuous to both the Alewife machine and the user.

The clock synthesizer also has voltage requirements unique to the Ale-

wife environment. The CMOS and TTL parts use +5 V and ground, but the

ECL parts require -5 V. Although the power supply for the startup module
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does not generate -5 V, it does provide -12 V. A voltage regulator is used to

generate the appropriate voltage level for the ECL parts.

System Issues
Both the design of the startup engine and the clock synthesizer utilize

the 68HC11. Therefore, it is logical to try using the same part for both sys-

tems. From the software perspective, this is not a problem since each one uses

minimal 68HCll resources. However, there is hardware limitation in the

number of output pins available. This can be alleviated by adding another

latch to capture values from the data bus, similar to the latch used for the

EMRC data in the startup engine. This provides eight additional outputs for

general use. These outputs can only be used for signals which can tolerate

glitches. Otherwise, a direct interface to the 68HCll is required.

In addition to the startup engine and the clock synthesizer, several sup-

porting applications can be developed for the startup module. In particular, a

power supply controller requires only six I/O signals and which can be con-

trolled through software by the 68HC11. Also, the Port E of the 68HCll is

available for the development of analog applications.
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Chapter 3
Hardware Design and Implementation

Startup Engine
The startup engine is comprised mainly of the 68HC11, an EEPROM,

and various parts for use in inputs and outputs. Specific parts used are the

28F512 EEPROM, 22V10 programmable array logic (PAL), LS244 buffer, and

LS373 latch. All of the general logic necessary in the startup engine can be

implemented within the PAL, saving many general logic parts. The schematic

for the startup engine is shown in Figure 3-1.

)ata

Figure 3-1: Startup Engine Schematic

In the normal operation of the startup engine, the 68HCl11 is in its

expanded multiplexed mode [4]. This allows it to access the EEPROM by

using only eighteen bits for address, data, and bus control. The address is 16
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bits and the 8-bit data is multiplexed with the lower eight bits of the address.

The address, R/W, and AS are active and valid for all bus cycles including

accesses of internal addresses.

The address decoding in expanded multiplexed mode is essentially han-

dled by one signal. The AS signal from the 68HC11 is used as the trigger of a

LS373 latch. This LS373 latches the lower address bits when AS is high,

ensuring its availability during the data portion of the cycle. The R/W signal

is used to determine the direction of data transfer on the bus.

A timing diagram for a typical 68HCll bus transaction is shown in Fig-

ure 3-2 [5]. The E clock generated by the 68HCll establishes the rate for bus

cycles. In the startup module, the E clock frequency is 2 MHz. The address

bits are available each E clock cycle while the clock is low. The AS occurs dur-

ing this half cycle, allowing the LS373 to latch the lower address bits. In the

next half cycle while the E clock is high, the data is active and can be consid-

ered valid at the falling edge of the E clock.

E

R/W, Address< >

Address/Data Read Address 

Address/Data Write 8 Address 

AS

Figure 3-2: Data Bus Timing Diagram

The LS244 is used for buffering inputs and outputs between the

68HC11 and external elements. By buffering outputs, the LS244 becomes the

part driving and receiving signals, insulating the 68HC11 from abnormal volt-
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age levels. This is especially useful for signals which interact with other com-

ponents of the Alewife machine not resident on the startup module.

The two LS373 latches which are used as additional outputs are con-

nected directly to the data bus. The latches capture values from the data bus

which are used as outputs to devices which are not glitch sensitive. The trig-

gers to these latches are generated from the PAL. These triggers are based on

the address targeted when the data is placed on the bus, as well as the R/W

signal and the E clock. Depending on the particular address, either latch may

be activated to capture the values from the data bus. The implementation

only requires two address bits to decode which latch, if either, should be trig-

gered.

The PAL is used for general combinational logic. Signals with a direct

influence on the startup engine are the Alewife reset signal, the latch triggers,

and the EEPROM output enable signal. The Alewife reset signal is generated

by the 68HCll and initialized low when the startup module is turned on.

However, the signal should be initialized high so the PAL inverts the 68HCll

signal before it is driven to the EMRC. The latch triggers and the EEPROM

output enable signal are all designed to be active during the data portion of

the E clock cycle. The EEPROM output enable is activated whenever it is a

read operation, and the latch triggers are active on write operations to partic-

ular address locations. The exact implementation of each of these signals is

included in Appendix A.
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Clock Synthesizer
The clock synthesizer generates the signal used as the Alewife system

clock. Frequencies from 5 MHz to 80 MHz are supported by the synthesizer.

Voltage levels produced are designed to meet pECL standards. Frequency

changes by the synthesizer are smooth enough so that it can be changed while

the machine is running without causing harm.

The clock synthesizer is built around a configurable PLL which gener-

ates an ECL signal between 20 MHz and 80 MHz. The output of the PLL is

divided by four in order to generate frequencies between 5 MHz and 20 MHz.

The combination of these two outputs provides the full frequency range speci-

fied. The desired signal is selected using an 2-to-1 multiplexer. The output is

then converted to pECL voltage levels in two stages. A schematic of the clock

synthesizer is shown in Figure 3-3.

The main component of the PLL is the 145170 [6]. This application-

specific part contains most of the circuitry necessary for a configurable PLL,

including a built-in serial interface compatible with the 68HC11. The PLL is

completed with the addition of a VCO and a low pass filter. In this case, the

VCO is the Motorola 1658 and the low pass filter is an active integrator built

around a LF353 operational amplifier. The design of the PLL follows an

example in the Motorola data book closely [7]. One of the important parame-

ters is the resulting jitter in the PLL. This will provide a better signal,

although it may result in a very long time-to-lock. However, the time-to-lock

is not very critical in the case of the clock synthesizer allowing some flexibility
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Figure 3-3: Clock Synthesizer Schematic

to minimize jitter. The details of the calculation of the PLL parameters are

included in Appendix B.

Dividing the output of the PLL to generate the 5 MHz to 20 MHz range

is straight forward with a good selection of ECL parts available. A simple

method is to use the 10136 universal hexadecimal counter. By using the PLL

output as the clock input to the 10136, the second least significant bit is equiv-

alent to the clock divided by four when the counter is configured to count con-

tinuously [8].

The next step is to select the appropriate clock with a 2-to-1 multi-

plexer. Since the select signal will be at TTL voltage levels, the easiest

17



method is to build a special multiplexer from standard logic parts. As a

result, a 10105 triple 2-3-2 input OR/NOR gate and a 10124 TTL to ECL

translator were used. The 10124 is capable of providing both the translated

value and its complement, making the design of the multiplexer a little sim-

pler. The two 2-input OR/NOR gates are used to select the signal to be passed

through, and the remaining 3-input OR/NOR is used to combine the two sig-

nals. Both the output signal and its complement are used for the conversion

to pECL voltage levels.

The converter to pECL voltage levels is built in two stages. The first

stages uses the 10125 ECL to TTL translator. The 10125 requires both the

input signal and its complement to function optimally. Fortunately, the

10105 is capable of providing the necessary signals. The output of the 10125

is then input into the AT&T 41MM transceiver. The 41MM converts from

TTL to pECL voltage levels and outputs both the signal and its complement

[9]. The result is a differential clock for the Alewife machine at pECL voltage

levels.

By using ECL parts in the implementation of the clock synthesizer, it is

also necessary to provide the appropriate voltage levels. The power supply for

the startup module happens to provides -12 V for its negative voltage source.

It is necessary to build a voltage regulator to provide the -5 V supply needed

for ECL logic. In this case, the LM337 adjustable regulator is used to perform

the conversion. The design is based on an example obtained from the LM337

data sheet [10]. The schematic for the voltage regulator used is shown in Fig-

18



ure 3-4. The first step in the conversion is a series of five diodes, providing an

initial voltage change to approximately -8 V from the original -12 V. The

LM337 is then used to regulate the voltage more precisely. The voltage

change provided by the diodes reduces the voltage change required for the

LM337, distributing the power dissipation among the parts.

V Output

Figure 3-4: Voltage Regulator Schematic

Additional Hardware
There are several pieces of supporting hardware which are also critical

to the overall operation of the startup module. These include the EMRC con-

nector, RS-232 serial interface, the reset circuitry, and the hardware mode

selector. In addition, hardware support for a power supply controller and the

use of the analog port of the 68HCll have been implemented on the startup

module.

EMRC Connector

The connector which interfaces with the Alewife node is a 60-pin ribbon

cable connector. It contains connections for the EMRC communications proto-

col, the Alewife reset signal, and the differential clock signal generated by the

19
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clock synthesizer.

RS-232 Serial Interface

The RS-232 serial interface is a fairly simple design. In this particular

case, the Maxim 233A is interfaced directly with the 68HCll [11]. The 233A

is capable of converting between TTL and RS-232 voltage levels and is an

ideal one-part solution. The 68HCll uses only two lines for its serial inter-

face. One line is for transmitting and the other is for receiving. The RS-232

interface requires a third line for reference which is connected to ground. The

startup module uses a 26-pin ribbon cable connector for connecting to the

serial port. The pins are chosen such that it converts directly to a standard

RS-232 25-pin connector when pin 26 is omitted.

Power-up Reset

The power-up reset circuitry is necessary to ensure the 68HC11 runs

properly when the power is first turned on. This can be accomplished using

an RC circuit which slowly raises the 68HCl1's active-low reset line when the

board is first turned on. This guarantees that the 68HC11 is in reset until the

power supply has stabilized. A diode bypasses the resistor to allow the capac-

itor to discharge when power is turned off.

Hardware Mode Selector

The 68HC ll1 reserves two pins for mode selection during reset [4]. Nor-

mally, the startup module operates with both of these pins high, enabling the

expanded multiplexed mode. However, if it becomes necessary to debug soft-

ware or change the configuration of the 68HC11, it may be helpful to use one

20



of the special modes. As a result, jumpers are included to provide access to

the special modes. Table 1 shows which modes are activated with each

jumper combination.

Table 1: Jumpers for Hardware Mode Selection

MODA MODB 68HC11 Mode

Expanded Multiplexed
(Startup Module Default)

V v' Special Bootstrap

SV Single Chip

V Special Test

Power Supply Controller

The startup module is also the ideal location to place the Alewife power

supply controller. The power supply can be observed and controlled using six

signals. There is no external logic needed for decoding these signals so the

remainder of the system can be implemented in software for the 68HC 11. The

connector for the power supply controller is provided on the board.

Analog Applications

Port E of the 68HCll is capable of capturing analog information. By

using latches to extend the output capabilities of the 68HC11, it has allowed

Port E to be reserved for analog applications. Potential applications such as

temperature sensing can be useful in examining real-world aspects of the Ale-

wife machine such as temperature.
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Board Design and Layout
The final design for the startup module was built on a four-layer board.

Two layers were used as power planes, leaving two for use in routing. One

power plane was used for ground and the other plane was shared by both +5 V

and -5 V. The ECL parts in the clock synthesizer which required -5 V were

placed in a cluster, allowing the use of a small portion of the plane as the -5 V

supply. The remainder of the plane was used for +5 V.

In addition to the circuitry for the startup engine and the startup mod-

ule, extra connectors were included to support the power supply controller and

P6rt E of the 68HC11. A large prototype area was also included on the board

in case any additional circuitry is necessary. A picture of the assembled board

is shown in Figure 3-5.

Figure 3-5: Alewife Startup Module Board

22



Chapter 4
Software Design & Implementation

The software for the startup module consists of several major routines.

First, the setup routine initializes the 68HC 11, I/O ports, and variables for the

other routines. Then, there are two independent controls for the startup

engine and the clock synthesizer. A flow chart of the software is shown in Fig-

ure 4-1. The actual code implemented for the startup module is included in

Appendix C.

Global Setup
The setup routine prepares the 68HCll for operation of both the star-

tup engine and the clock synthesizer. Its primary purpose is to prepare the

serial ports, set defaults for the startup engine, enable the proper I/O ports,

and initialize the clock synthesizer to its default frequency.

The serial ports are initialized by setting the appropriate bits in the

registers which control them. Features such as baud rate can be adjusted to

allow optimal performance of the serial interface.

There are only two defaults for the startup engine. These are the X and

Y offsets designating the target node for the data transfer. The default is for

the offsets to be zero, thus sending the startup information to the node which

the startup module is attached to directly.

23



Figure 4-1: Software Flow Chart

Certain I/O ports need to be reconfigured from their default operation

in order to perform as desired. This is usually the case where a particular pin

can act as both an input and output. Changing parameters in the control reg-

isters allow the reconfiguration.

As the final setup procedure, the clock synthesizer is initialized with its

default frequency. There are three variables which control the performance of

the PLL. Two of these values remain constant throughout the operation of the

synthesizer. The third is varied to adjust the frequency of the system. In

addition to the PLL control, the signal controlling the multiplexer is also ini-

tialized to select the proper frequency range.
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Startup Engine
The software design for the startup engine involves the implementation

of the EMRC protocol. In addition, it includes the development of a standard

technique for utilizing the output latches residing on the data bus.

The EMRC protocol calls for a simple handshaking protocol. The star-

tup engine toggles the request line and the EMRC responds with the acknowl-

edge line. The data to be transferred should be in the EMRC latch before the

request signal is toggled. On the final byte to be transferred, the tail bit

should be set. This signals the EMRC that the transfer is complete and the

next request will be the beginning of a new packet.

The request and acknowledge lines are active on each transition, mean-

ing that a change from low to high is a trigger, as well as a change from high

to low. This saves time in the handshaking, but it complicates the code a little

since the behavior of the instruction set routines used need two separate

blocks to handle each direction of the signal transition.

The transfer of data begins with a few standard values. These include

the X and Y offsets which determine the target node for the transfer in addi-

tion to the standard header and initial address for the node. This information

is then followed by the startup information stored in the EEPROM beginning

at location 0x1050. The X and Y offsets are both initialized to zero by the

setup routine, but can be changed when using the restart function.

This hardware implementation of the startup engine is essentially use-

less if a good methodology cannot be developed for using the output latches.
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The latches are triggered during a store operation to particular addresses by

the 68HCll. Data for the store operation is visible on the data bus when the

address being accessed is not considered an internal address such as RAM or

registers. On writes to internal addresses, the values on the data bus are con-

sidered invalid. Therefore, the latches are only useful for capturing data on

external address values.

In the implementation, the latches are triggered based on two address

bits, the R/W signal, and the E clock. The two address bits are A15 and A13,

both in the higher eight bits of address so they are not related to internal

addresses. The latch for the EMRC data triggers when A15 is high and A13 is

low. The other latch, used for supplemental outputs like LEDs and the EMRC

tail bit, is triggered when both A15 and A13 are high. In order to generate

these bit patterns, the EMRC data latch can be considered to be at the OxD000

location in memory and the supplemental latch is considered to be at OxF000.

Of course, any addresses with the same values for A15 and A13 will work. In

addition to the address bits, the latch triggers are active only when the E clock

is high and the R/W signal is low. A high E clock represents the data portion

of the cycle and the low R/W signal signifies a write operation.

Clock Synthesizer
The core of the clock synthesizer routine is a loop which waits for serial

input from the RS-232 port. Input can come in many forms as described in

Table 2. There are basically two types of inputs expected. The first type is for
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an interactive user and used mainly for debugging purposes. The other is

intended for software control from a host computer and does not provide feed-

back.

Table 2: Startup Module Control Keys

Key(s) Effect

= Echo Frequency

+ Increment 1 MHz

- Decrement 1 MHz

1-8 Frequency = <Input> X 10 MHz

Captures next 24 bits defining
the new clock frequency

Captures following two bytes as
X & Y offsets for Alewife reset

The user functions include displaying the current frequency, changing

the frequency to a multiple of 10 MHz, incrementing the frequency by 1 MHz,

and decrementing the frequency by 1 MHz. Each of these operations echoes

the frequency to the RS-232 port for display on the user's terminal.

The host functions are less interactive and provide more control over

the system. The load routine allows the host to load a 16-bit value into the

145170 control register. The load routine first loads an 8-bit flag to check if

the clock signal selected should be in the 5 MHz to 20 MHz range or the 20

MHz to 80 MHz range. When the clock synthesizer is in the 20 MHz to 80

MHz range, the 16-bit value is directly related to the actual clock frequency.

The other host function is not directly related to the clock synthesizer,

but is a useful addition to the software control. It allows the host to restart

the Alewife machine and redefine the X and Y offsets for the reset. This does
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not cause the clock synthesizer to reset. By redefining the X and Y offsets, it

is possible to startup the machine beginning with a different node.

One important aspect of the clock synthesizer is its smooth switching

when changing frequencies. However, it is not as smooth when switching

from frequencies in the 5 MHz to 20 MHz range to ones in the 20 MHz to 80

MHz range. In order to guarantee a safe frequency switch, it is necessary to

make some software adjustments. The primary concern when switching fre-

quencies is a momentary glitch when the clock becomes much faster than

expected. In this case, it can be resolved by forcing the clock to be much

slower while adjustments are made and then placing the clock at its new fre-

quency.

The situation is most easily seen when switching from a 19 MHz to 20

MHz clock. The 19 MHz clock is generated using a 76 MHz PLL signal which

is divided by four. The 20 MHz clock is generated directly by the PLL, and its

divide-by-four counterpart is only 5 MHz. The PLL signals and their associ-

ated divide-by-four signals are multiplexed together to select the proper signal

for the clock. In the transition from 19 MHz to 20 MHz, the 76 MHz PLL sig-

nal is enabled by the multiplexer before the transition to 20 MHz has begun.

This is a problem especially when the devices using the clock are not able to

handle it.

The solution is to force the multiplexer to select the slow signal while

changes to the PLL are made. In addition, a short delay is required after

changes are made to allow the PLL time to lock in the new frequency. Then,
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the multiplexer can be set to select the proper signal for the clock. This guar-

antees the switch from 19 MHz to 20 MHz will actually change to 5 MHz

before becoming 20 MHz. Changes from 20 MHz to 19 MHz will first slow to 5

MHz and then increase to 19 MHz. Finally, changes from 20 MHz to 21 MHz

will slow to 5 MHz before increasing to 5.25 MHz and then 21 MHz. The

slower clock signal during the transition period does not have any negative

effects on the devices using the clock.
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Chapter 5
Testing

Startup Engine
The startup engine was tested by attempting to download a simple

piece of code to an Alewife node. The code causes the node's display to cycle

through the hexadecimal numbers. Successful execution of the code is suffi-

cient to fully test the startup engine. Of course, several obstacles were

encountered in the process of testing.

The main problem involved the use of the output latches connected to

the data bus. Apparently, the latches were not loading the proper values.

Through further testing, it appeared the latches were capturing the lower

address bits of the next bus operation. The problem was solved when the trig-

ger signal was modified to include the E clock, guaranteeing the trigger would

complete while data is still valid. The original trigger did not include the E

clock and apparently remained active until the beginning of the next bus

cycle.

The other problem is related specifically to the EMRC latch. In the ini-

tial hardware implementation, only one address line is used to control the

triggers for the two latches. However, it is not sufficient to use only one

address bit to select the proper latch since writes to internal addresses are vis-

ible externally. As a result, an additional address line is required for decoding

the triggers for the two output latches, guaranteeing that the correct values
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are loaded into the proper latches each time and avoiding all potential con-

flicts with internal addresses.

Clock Synthesizer
Testing for the clock synthesizer was conducted by attaching the output

signals with an oscilloscope and verifying that the signal satisfied the pECL

voltage characteristics. In addition, the exact frequency of the signal is com-

pared to the frequency set by the 68HCll to verify its accuracy. A couple

problems were encountered in the testing.

One ECL logic problem in the clock synthesizer was discovered during

testing. The problem was the absence of the 5 MHz to 20 MHz clock. The

cause was traced back to an error in wiring the 10136 counter. The carry-in of

the device should have been connected to -5 V instead of ground to enable the

counter to count continuously. Instead, by grounding the input, the counter

had been configured to count once and stop.

In addition to the ECL logic problem, the PLL experienced some prob-

lems relating to jitter and time-to-lock. The original circuit implemented

would not lock to any frequency. The parameters chosen were aimed at mini-

mizing jitter, but the resulting time-to-lock was too large. After selecting new

parameters and recalculating component values, time-to-lock is no longer an

issue. Unfortunately, the solution to the locking problem is causing the PLL

to jitter at certain frequencies. The jitter is most noticeable around 70 MHz

and is also slightly visible at 27 MHz. Another evaluation of the PLL parame-
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ters is necessary to find the best compromise between the time-to-lock and jit-

ter problems.
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Chapter 6
Startup Module Operation

The original intention of the startup module is to be able to startup the

Alewife machine independently. This implementation realizes its goal. When

power is first applied to the system, the 68HCll comes out of reset after a

slight delay and establishes a default clock frequency. The startup module

then pauses approximately one second to allow the Alewife machine to stabi-

lize before attempting communication with the nodes. The startup engine

then begins to transfer the startup information to the Alewife node.

After the transfer is complete, the startup module contains the ability

to change the clock frequency and restart the machine. In most cases, there

will be a host machine connected to the startup module via the RS-232 port.

The host has precise control of the clock frequency and can also restart the

Alewife machine using a particular node. In addition, the clock frequency can

be adjusted by a user from a terminal using only a few keystrokes. The con-

trol is not as precise as that of the host interface, but it is sufficient for simple

testing.

33



Chapter 7
Conclusion

Summary
The startup module satisfies the goal of being a stand-alone unit to

startup the Alewife machine. Together with a fully functional SCSI node, the

VME interface will no longer be necessary. In addition, the frequency range of

the clock synthesizer provides a much wider and more useful range for testing

the Alewife prototype. This allows for the low-speed examination of some of

the details of the Alewife architecture.

Future Work
There are many areas in which the functionality of the startup module,

and the environment it supports, can be explored further. The immediate

future is the development of the hardware interfaces already built into the

startup module such as the power supply controller and the analog port of the

68HC11. The power supply controller can be completely implemented in soft-

ware for the 68HC11. In addition, many analog applications can be developed

using Port E of the 68HC11. A prototype area was included on the startup

module for the development of new hardware and the 68HCll includes many

functions designed for the analog interface.

There are also many issues to be examined for the long-term future of

the Alewife machine. Some of these include the reliability of the startup mod-
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ule, a redesigned startup sequence to take advantage of the startup module

and SCSI interface, and an improved host interface.
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Appendix A

File: startup.abl

nmodule startup

title 'Startup Module PAL'

startup device 'p22v10';

"Inputs

e

reset_cir

ra4, runa5

adrl3, adrl5,, r_w

pin

pin

pin

pin

'Outputs

run_pal

r_pal

rom_oe

wi_e

out_e

reset

1;

2;

3,4;

10,11,13;

pin 14;

pin 15;

pin 16;

pin 17;

pin 18;

pin 19;

equations

_reset = reset_cir;

out_e = adr13 & adrl5 & !r_w & e;
wi_e = !adrl3 & adr15 & !r_w & e;
rom_oe = !(rw & e);
rpal = !ra4;

run_pal = !runa5;

end
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Appendix B

Phase-Locked Loop Design Calculations

1. Choose fref = 2 KHz

This provides good signal resolution

2. Nmax = fmax / fref = 80 MHz /2 KHz = 40000

Nmin = fmin / fref = 20 MHz /2 KHz = 10000

3. Choose = 2.0

The recommended is 0.5, but to minimize jitter, 2.0 is used.

4. (on = (Ont / t = 3.0 / 0.01 s = 300 rad/s

This for a lock-time of 10 ms.

5. K = 0.8 V/rad

Kvco = 5.26E7 rad/s/V

C = 0.8 X 5.26E7 / 40000 / 300 / 300 / 540000 = 0.021 RtF

Guess R1 is 540 K12 (same as original)

Closest C is 0.01 RF

6.. R2 = 2min / (nC = 4 / 300 / 0.01E-6 = 1.33 MQ

Closest value available is 1 MQ2

Values Used in Implementation

R1 = 540 KQ

R 2 = 1 MQ

C = 0.01 tF

Slight changes in the selection of parameters may solve the jitter problems.
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Appendix C

File: startup.azm

! startup.azm: startup module

! wkchan@lcs.mit.edu

.inc define

.ent FFFEh

.word code

vector

data

saved_N

slow_clock

X_offset

Y_offset

print_templ

print_temp2

code

.ent

.word

.byte

.byte

.byte

.word

.byte

.ent

lds

jsr

jsr

0000h

FFFFh

! Include define.azm

! Reset Vector -> 0200h

! Data at bottom of RAM
! FFFFh for Data I/O Sanity

! Flag for Slow Clock
! X Offset for Alewife Reset

! Y Offset for Alewife Reset

! Temp Storage for printN

! Temp Storage for print_N

0200h

01FFh

setup

engine

! The Real Thing...

i Stack Pointer at top of RAM

! Setup Ports & Stuff

! Startup Engine

! Clock Synthesizer

clock ldd

pshd
ldx

jsr

cmpa

beq
cmpa

beq
cmpa

beq
cmpa

beq
cmpa

beq
cmpa

beq

cmpa

blo

cmpa

bls

_bogus ldaa

jsr

ldaa

jsr

clock

1000h

input_serial

RESTART_CODE

_restart_ptr

PRINT_CODE

_printf_ptr

LOAD_CODE
_load_clk
UP_CODE
_up_clk

DOWN_CODE
_down_clk
'1'
_ten mhz

'2'

_bogus

'8'

_num mhz

'
output_serial

CR
outputserial
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ldaa LF

imp output_serial

_restart ptr

_printf_ptr

_load clk

_slow_set

_load

_tenmhzldab

imp _restart

jmp _printf

jsr

cmpa

beq

ldab

stab

bra

ldab

stab

jsr

tab

jsr

bra

01h

stab

ldaa

bra

input_serial

SLOWCODE
_slow_set

00h

(slow_clock)

load

01h

(slowclock)
input_serial

! Load Flag

! Load 16-bit value

input_serial

_update_clk

! Select slow signal of 40 MHz PLL

(slow_clock)

'4'

calc_N

00h

(slow_clock)
'0' ! Calculate N for new frequency

20

250

_updateclk

_upc 1k

_upmore

ldd

addd

brclr

addd

cpd

blo

ldab

stab

ldd

cpd

bhi

bra

_dowrnclk ldd

addd

brclr

addd

cpd
blo

bra

_down_more cpd

bhs

ldab

(saved_N)

500

(x + PORTA),

1500

high_N

_up_more

00h

(slowclock)
low N

highN
bogus

_update_clk

(savedN)
-500

(x + PORTA),

-1500

low N

_bogus

_update_clk

low N

_update_clk

01h

! Increment 1 MHz

CLK_MASK, _upmore
! In the Slow Zone

! 20 MHz

! Decrement 1 MHz

CLKMASK, _down more

! In the Slow Zone
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_num._mhz

_cllc N

ldab

stab

suba

tab

ldaa

mul

ldaa

mul

bra



stab (slow_clock)

ldd high_N - 2000

_update_clk

_update_wait

_printf

bset

std

jsr

ldy

dey

bne

ldab

cmpb

beq
bclr

(x + PORTA), CLK_MASK

(saved_N)

write_N
1000h

_update_wait

(slow_clock)

Olh

_printf

(x + PORTA), CLK_MASK

! Update PLL and Echo Frequency

ldd (saved_N)

jmp print_N

input_serial

(X_offset)

input_serial

(Y_offset)

engine

! Restart Alewife

! Store New Offsets

! Use Startup Engine

! Setup Startup Module

ldx 1000h

ldaa

staa

ldaa

staa

ldaa

staa

ldaa

staa

ldaa

staa

! X points at the registers

BAUD_SETUP

(x + BAUD)

SCCR2_SETUP

(x + SCCR2)

2Fh

(x + PORTD)

DDRD_SETUP

(x + DDRD)

SPCR_SETUP

(x + SPCR)

ldaa PACTL_SETUP

staa (x + PACTL)

! Serial Setup

! Port A Setup

! Set Default X & Y Offsets
! for Alewife Startup

ldaa Oh

staa (slow_clock)

bset (x + PORTA), CLK_MASK

clrb

jsr write_C

ldd OFAOh

jsr write_R

ldd DEFF * 500
std (saved_N)
jsr write_N

bclr (x + PORTA), CLK_MASK
rts

! Slow Clock Flag

! PLL Initialization

! Default Frequency

40

! 19 MHz

_restart jsr

staa

jsr

staa

jmp

setup

ldaa

staa

ldaa

staa

DEFXOFF
(X_offset)

DEFY OFF
(Y_offset)



! SPI Routines for MC145170

write_R bclr (x + PORTD), SS_MASK

clr (x + SPDR)

_wait brclr (x + SPSR), 80h, _wait

write_N bclr (x + PORTD), SS_MASK

staa (x + SPDR)

_wait brclr (x + SPSR), 80h, wait

write_C bclr (x + PORTD), SS_MASK

stab (x + SPDR)

wait brclr (x + SPSR), 80h, wait

bset (x + PORTD), SS_MASK

rts

Serial Port Routines

inDut_serial brclr (x + SCSR), 20h, input

ldaa (x + SCDR)

rts

output_serial psha

_loop ldaa (SCSR)
anda 80h

beq _loop

pula

staa (SCDR)

rts

print_N brclr (x + PORTA), CLK_MASK,
ldx 2000

bra _print_more

_pr int_fast ldx 500

print_more idiv

std (print_templ)

ldaa 1

staa (print_temp2)

bsr putdec

ldaa

jsr output serial

ldd (print_templ)

addd (print_templ)

addd 1000

xgdx

clr (print_temp2)

bsr putdec

ldy _print_units

bsr puts
ldaa CR

jsr output serial

ldaa LF

jmp output_serial

! assert SS*

! wait for SPIF

! assert SS*

! wait for SPIF

! assert SS*

! wait for SPIF

! deassert SS*

_serial

_print_fast

! Compute MHz for Slow

! Compute MHz for Fast

! Save Remainder

! Leading Digit

' Print Quotient

! Retrieve Remainder

! Multiply by 2
! 3 digits

! Print Remainder

! Load "MHz"

! Print Units
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.asciz " MHz"

10

0

_leading

putdec

'0'

output_serial

(print_temp2)

_print

(Y)
_exit_puts

output_serial

puts
! Send Character

_exit_putsrts

! Startup Engine

engine bclr (x + PORTA), WIR_MASK! Clear WIR

ldy FFFFh ! Wait 1 Second for
rwaitl dey I Alewife Power-On

bne _rwaitl
ldy FFFFh ! Each Loop = 0.2 s

_rwait2

FFFFh

_rwait3

FFFFh

_rwait4

FFFFh

_rwait5

(x + PORTA),
0200h

_rloopl

(x + PORTA),
0200h

MRC R MASK

MRC R MASK

! Send Reset

! Clear Reset

_rloop2

ldaa 00h
staa (OUTLATCH)

(X_offset)

(MRC_LATCH)

(x + PORTA), WIR MASK

! Send X Offset
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putdec

__print

_leading

xgdx

.ldx

idiv

cpx

beq

pshb

bsr

pulb
ldaa

aba

jmp
ldaa

bne

rts

put s ldaa

beq

iny

jsr

bra

_rwait2

_rwait3

_nait4

_:ra it5

dey

bne

ldy

dey

bne

ldy

dey

bne

ldy

dey

bne

__rloopl

_rloop2

bset

ldy

dey

bne

bclr

ldy

dey

bne

ldaa

staa

bset

! Clear WIT

_print_units



brclr (x + PORTA), WIA_MASK, _xwait

ldaa

staa

bclr

brset

(Y_offset)

(MRC_LATCH)

(x + PORTA),

(x + PORTA),

ldy base_ROM

cpy high_ROM

beq _tail

ldaa (y)

staa (MRC_LATCH)

brclr (x + PORTA),

! Send Y Offset

WIR_MASK

WIA MASK, _ywait

! Send Startup Data

! Initial Location = base_ROM

! Branch tail on Last Location

WIR_MASK, _rlow

_rhigh bclr
_:rhigh_wia brset

bra

(x + PORTA),

(x + PORTA),

_wia

WIR_MASK ! If WIR High, Change to Low

WIA_MASK, _rhigh_wia

bset (x + PORTA), WIR_MASK ! If WIR Low, Change to High

brclr (x + PORTA), WIA_MASK, _rlow_wia

iny ! Next Location

bra _eloop

(MRC_LATCH)

WIT_CODE_HIGH

(OUT LATCH)

(x + PORTA), 

! Last Location

! Set WIT

WIR MASK, _trlow

t _rhigh
_t_rhigh_wia

bclr

brset

bra

(x + PORTA),

(x + PORTA),

_tail_end

WIR_MASK ! If WIR High, Change to Low

WIA_MASK, _t rhigh_wia

bset (x + PORTA), WIR_MASK ! If WIR Low, Change to High

brclr (x + PORTA), WIA_MASK, _t_rlow_wia

WIT_CODELOW
(OUT LATCH)

! Clear WIT

! Reset Complete

! Header for Alewife Startup

.ent 1040h

.long 42941200h

.long 00030000h

.long 0

.long 0

! BOOTHEADER
! BOOTADDR
! Boot Offset

! Padding
i Code should start at 1050h
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_ywait

_e:loop

_:r:Low
_rlow_wia

_wia

tail staa

ldaa

staa

brclr

t: rLow
t rLow_wia

t:ail _end ldaa

staa

rts

boc t

_xwait



File: define.azm

! define.azm: definitions

! wkchan@lcs.mit.edu
for startup.azm

! Port A Inputs

WIA_MASK .equ 80h ! West In Acknowledge

! Port A Outputs

CLK_MASK

MRC R MASK
WIR_MASK

.equ 08h

.equ 10h

.equ 40h

! Clock Slow / Clock Fast *
! Alewife Reset

! West In Request

! Latch Outputs

WIT_CODE_LOW .equ

WIT_CODE_HIGH .equ

18h

19h

! West In Tail Low

! West In Tail High

! Clock Control

LOAD_CODE

SLOW_CODE

UP_CODE

DOWN_CODE

RESTART_CODE

PRINT_CODE

DEF_F

low_N

high_N

.equ

.equ

.equ

.equ

.equ

.equ

.equ

.equ

.equ

'X'

's'

\+1

'r'
\=,

30

10000
40000

! Load 24 bits (SLOW + 16 bits N)
! For LOAD_CODE

! Up 1 MHz
! Down 1 MHz
! Restart (16 bits for offsets)

! Print Frequency to Serial Port

! Default Frequency
! N minimum
! N maximum

! Latch Control

.equ D000h

.equ F000h

! MRC Latch Address
! Output Latch Address

! Port A Control

PACTL_SETUP .equ 08h ! Direction of PA3 = Output

! Serial Control

SS_MASK

BAUD_SETUP

DDRD_SETUP

SCCR2_SETUP

SPCR_SETUP

.equ

.equ

.equ

.equ

.equ

20h

30h

3ah

Och

5ch

! bit-5 is used as an output

! /13 and /1 = 9600 8MHz in

! SPI and SCI set up.

! changed cpol to 1

! Startup Engine Control

.equ 1040h

.equ 203Fh

.equ 0

.equ 0

! Base Address of Boot ROM

! High Address of Boot ROM

! Default X Offset
! Default Y Offset
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MRC_LATCH
OUTLATCH

base_ROM
high_ROM
DEF X OFF

DEFY OFF



File: init.azm

! init.azm: definitions for MC68HCllE1

' HC11 control/status register definitions:

REG_BASE

PORTA

PIOC

PORTC

PORTB

PORTCL

DDRC

PORTD

DDRD
PORTE

CFORC

OC1M

OC1D

TCNT

TIC1

TIC2

TIC3

TOC1

TOC2

TOC3

TOC4

TIC4

TOC5

TCTL1

TCTL2

TMSK1

TFLG1

TMSK2

TFLG2

PACTL

PACNT

SPCR

SPSR

SPDR

BAUD

SCCR1

SCCR2

SCSR

SCDR

ADCTL
ADR1
ADR2

ADR3

ADR4

BPROT

OPTION

COPRST

.ent

.byte

.blkb

.byte

.byte

.byte

.byte

.blkb

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.word

.word

.word

.word

.word

.word

.word

.word

.word

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.byte

.blkb

.byte

.byte

! start of registers01000h

1

1

3
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! reserved

! reserved

! synonym

! reserved



! character definitions

! XON (^Q)
! XOFF (S)

! abort input line (^X)

! abort input expression (^G)

! recover from infinite loops (^C)

! restart user system (^Y)

! end-of-file for host (^D)

! CR/LF
! double quote

! single quote

! handy definitions

.macro pshd
pshb
psha

.endm

.macro puld

pula

pulb
.endm

! low-order, high-address
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PPROG

HPRIO
INIT

TEST1

CONFIG

.byte

.byte

.byte ,

.byte

.byte

XON
XOFF

LINEABORT

SYNCABORT

ASYNCABORT
HARDABORT

EOF

TAB

SPACE

CR

LF

BS

DEL

EOL

QUOTE

SQUOTE

LPAREN

RPAREN

DOT

11H

13H

18H

7

3

19H

4

9

32

13

10

8

7FH

OAODH

34

39
(I

.equ

.equ

.equ

.equ

.equ

.equ

.equ

.equ

.equ

.equ

.equ

.equ

.equ

.equ

.equ

.equ

.equ

.equ

.equ

NIL .equ 0
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