
Fault-Tolerant Computation in Semigroups and Semirings

by

Christoforos N. Hadjicostis

B.S., Massachusetts Institute of Technology (May 1993)

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

February 1995

Copyright 1995 Christoforos N. Hadjicostis. All rights reserved.

The author hereby grants to MIT permission to reproduce
and to distribute copies of this thesis document in whole or in part,

and to grant others the right to do so.

Author V . ,...............
Department of Electrical Engineering and Computer Science

January 27, 1995

Certified by
George C. Verghese

,V! . n I Thesis Strvisor

Accepted by 4.
F .R'.orgenthaler

04IASSAGHLUSETTS INS!TUT Chairman, Department Committee on !{raduate Theses
OF TECHNOLOGY

AUG 1 0 1995

LIBRARIES

Fault-Tolerant Computation in Semigroups and Semirings

by

Christoforos N. Hadjicostis

Submitted to the
Department of Electrical Engineering and Computer Science

January 27, 1995

In partial fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT
The traditional approach to fault-tolerant computation has been via modular redun-
dancy. Although universal and simple, modular redundancy is inherently expensive
and inefficient. By exploiting particular structural features of a computation or al-
gorithm, recently developed Algorithm-Based Fault Tolerance (ABFT) techniques
manage to offer more efficient fault coverage at the cost of narrower applicability
and harder design. In the special case of arithmetic codes, previous work has shown
that a variety of useful results and constructive procedures can be obtained when the
computations take place in an abelian group. In this thesis, we develop a system-
atic algebraic approach for computations occurring in an abelian semigroup, thereby
extending to a much more general setting many of the results obtained earlier for
the group case. Examples of the application of these results to representative semi-
groups and higher semigroup-based algebraic structures, such as a semiring, are also
included.

Thesis Supervisor: George C. Verghese
Title: Professor of Electrical Engineering

Acknowledgments

I would like thank my thesis supervisor, Professor George Verghese, for the excel-

lent advice and the unlimited help and support that he has provided to me during

my time as a graduate student. The successful completion of this thesis would not

have been possible without his enthusiasm for my work and his encouragement and

patience whenever I reached a point of difficulty.

I am also equally grateful to Professor Alan Oppenheim for his direction and help

over these last two years. Not only did his support and guidance make this thesis

possible, but also, by including me in the Digital Signal Processing Group (DSPG),

he gave me the opportunity to work in an excellent academic environment that helped

me mature both as a graduate student and as a person.

I would like to thank all members of the DSPG for the help and advice they have

given me. Their friendship was also invaluable. My special thanks to Haralambos

Papadopoulos for his patience and guidance at the numerous instances I turned to

him for help.

Contents

1 Introduction 1

1.1 Definitions and Motivation 1

1.2 Main Approaches to Fault Tolerance 2

1.2.1 Modular Redundancy 2

1.2.2 Arithmetic Codes . 4

1.2.3 Algorithm-Based Fault Tolerance 7

1.3 Scope and Major Contributions of the Thesis 11

1.4 Outline of the Thesis 12

2 Group-Theoretic Framework 14

2.1 Introduction 14

2.2 Computational Model 15

2.2.1 General Model of a Fault-Tolerant System 15

2.2.2 Computation in a Group 16

2.2.3 Computational Model for Group Operations 17

2.3 Group Framework 20

2.3.1 Use of Group Homomorphisms 20

2.3.2 Error Detection and Correction 22

2.3.3 Separate Codes 24

2.4 Applications to Other Algebraic Systems 27

2.5 Summary 27

3 Semigroup-Theoretic Framework 29

i

3.1 Introduction.

3.2 Computation in a Semigroup

3.2.1 Introduction to Semigroups

3.2.2 Computational Model for Semigroup Operations

3.3 Use of Semigroup Homomorphisms

3.4 Redundancy Requirements

3.5 Separate Codes for Semigroups

3.5.1 Description of the Model for the Codes

3.5.2 Analysis of the Parity Encoding

3.5.3 Determination of Possible Homomorphisms . . .

3.5.4 Comparison with the Group Case

3.6 Summary

4 Protecting Semigroup Computations: Some Examples

4.1 Introduction.

4.2 Examples of Separate Codes

4.2.1 Separate Codes for (No, +)

4.2.2 Separate Codes for (N, x)

4.2.3 Separate Codes for (Z U {-oo}, MAX)

4.3 Examples of Non-Separate Codes

4.4 Summary

5 Frameworks for Higher Algebraic Structures

5.1 Introduction.

5.2 Ring-Theoretic Framework

5.2.1 Computation in a Ring

5.2.2 Use of Ring Homomorphisms

5.2.3 Separate Codes for Rings

5.3 Examples in the Ring-Theoretic Framework

5.3.1 Examples of Non-Separate Codes . . .

5.3.2 Examples of Separate Codes

ii

29

30

30

31

35

39

41

42

43

44

48

50

52

52

53

53

58

61

63

63

65

.65

............ . .66

............ . .66

.69

.70

.73

.73

.74

5.4 Semiring-Theoretic Framework

5.4.1 Computation in a Semiring

5.4.2 Use of Semiring Homomorphisms.

5.4.3 Separate Codes for Semirings

5.5 Examples in the Semiring-Theoretic Framework .

5.5.1 Separate Codes for (No, +, x) .

5.5.2 Separate Codes for (Z U {±oo}, MIN, MAX)

5.5.3 Separate Codes for (Z U {-oo}, MAX, +).

5.6 Summary

6 Summary of Contributions, and Suggestions for Future

6.1 Contributions and Conclusions

6.2 Future Research Directions

6.2.1 Hardware Implementation and the Error Model

6.2.2 Non-Abelian Group or Semigroup Computations .

6.2.3 Realizability of Arithmetic Codes

6.2.4 Development of a Probabilistic Framework

6.2.5 Subsystem Decomposition and Machines

6.2.6 Links to the Theory of Error-Correcting Codes ..

Research

A Proofs of Theorems

A.1 Enumerating all Separate Codes for (No, +)

A.2 Equivalence of Semiring Congruence Classes and Semiring Complexes

iii

75

75

78

79

84

84

88

88

89

91

91

93

93

94

94

95

96

97

99

99

103

List of Figures

1-1 Fault-tolerant system design using Triple Modular Redundancy (TMR). 3

1-2 Protection of operation o through the use of arithmetic codes 4

1-3 A simple example of an aN arithmetic code for protecting integer

addition 7

1-4 ABFT technique for matrix multiplication. 9

2-1 Model of a fault-tolerant system as a cascade of three subsystems. . . 15

2-2 Model of a fault-tolerant computation for a group product 18

2-3 Model of a fault-tolerant computation for a group product under an

additive error model. 20

2-4 Fault tolerance in a computation using an abelian group homomorphism. 22

2-5 Structure of the redundant group H for error detection and correction. 24

2-6 A simple example of a separate arithmetic code 25

2-7 Fault-tolerant model for a group operation using a separate code. . . 26

3-1 Fault-tolerant model for a semigroup computation. 32

3-2 Structure of the redundant semigroup for error detection and correction. 40

3-3 Model of a fault-tolerant system that uses separate codes 42

3-4 Structure of the parity group in separate codes. 49

3-5 Structure of the parity semigroup in separate codes 50

4-1 Example of a parity check code for the group (Z, +). 54

4-2 Example of a parity check code for the semigroup (No, +) 55

4-3 Example of a parity check code for the semigroup (No, +) 56

iv

4-4 Example of a parity check code for the semigroup (N, x).

4-5 Example of a parity check code for the semigroup (N, x).

Fault-tolerant model for a ring computation.

Fault-tolerant model for a semiring computation

Example of a residue check mod 4 for the semiring (No, +, x) ...

Example of a parity check code for the semiring (No, +, x).

v

5-1

5-2

5-3

5-4

. 59

...... . .. 60
68

78

85

86

List of Tables

5.1 Defining tables of the operations and 0 for the parity semiring T..

vi

87

Chapter 1

Introduction

1.1 Definitions and Motivation

A system that performs a complex computational task is subject to many different

kinds of failures, depending on the reliability of its components and the complexity

of their subcomputations. These failures might corrupt the overall computation and

lead to undesirable, erroneous results. A system designed with the ability to detect

and, if possible, correct internal failures is called fault-tolerant.

A fault-tolerant system tolerates internal errors (caused by permanent or tran-

sient physical faults) by preventing these errors from corrupting the final result. This

process is known as error masking. Examples of permanent physical faults would

be manufacturing defects, or irreversible physical damage, whereas examples of tran-

sient physical faults include noise, signal glitches, and environmental factors, such

as overheating. Concurrent error masking, that is detection and correction of errors

concurrently with computation, is the most desirable form of error masking because

no degradation in the overall performance of the system takes place.

A necessary condition for a system to be fault-tolerant is that it exhibits redun-

dancy, to allow it to distinguish between the valid and invalid states or, equivalently,

between the correct and incorrect results. However, redundancy is expensive and

counter-intuitive to the traditional notion of system design. The success of a fault-

tolerant design relies on making efficient use of hardware by adding redundancy in

1

those parts of the system that are more liable to failures than others.

The design of fault-tolerant systems is motivated by applications that require high

reliability. Examples of such applications are:

* Life-critical applications (such as medical equipment, or aircraft controllers)

where errors can cost human lives.

* Remote applications where repair and monitoring is prohibitively expensive.

* Applications in a hazardous environment where repair is hard to accomplish.

The more intensive a computational task is, the higher is the risk for errors. For

example, computationally intensive signal processing applications and algorithms are

at high risk for erroneous results. As the complexity of Discrete Signal Processing

(DSP) and other special-purpose integrated circuits increases, their vulnerability to

faults (either permanent or transient) increases as well. By designing fault-tolerant

integrated circuits, we can hope to achieve not only better reliability, but also higher

yield during the manufacturing process since manufacturing defaults (a form of a

permanent fault) can be accepted up to some degree.

All of the above examples show the importance of fault tolerance and underline

the increasing need for fault-tolerant design techniques.

1.2 Main Approaches to Fault Tolerance

1.2.1 Modular Redundancy

The traditional approach for achieving fault tolerance has been modular redundancy.

An example of Triple Modular Redundancy (TMR) is shown in Figure 1-1. Three

identical modules perform the exact same computation separately and in parallel.

Their results are compared by a voter, which chooses the final result based on what

the majority of the modules decide. For example, if all the modules agree on a result,

then the voter outputs that result. If only two of the them agree, then the voter

outputs the result obtained by these two processors and declares the other one faulty.

2

Uncorrectable Error
Module 1 Output

Module 2 Voter -·-1 Output 2 V- Final Output

Figure 1-1: Fault-tolerant system design using Triple Modular Redundancy (TMR).

When all processors disagree, the voter signals an error in the system. It is worth

mentioning that a variety of other approaches towards voting exist.

This methodology can easily be extended to N-Modular Redundancy by using

N different identical modules that operate in parallel, and majority voting to distin-

guish and decide about the correct result. By using majority voting we can detect

(but not correct) D errors and correct C errors (D > C), if N>D + C + 1. In fact, if

the modules are self-checking (that is, they have the ability to detect internal errors),

then we can detect up to N and correct up to N- 1 errors [1].

N-Modular Redundancy has traditionally been the primary methodology for fault-

tolerant system design, mainly because it can be applied in a very simple and straight-

forward way to any kind of computational (or other) system. A very desirable feature

of modular redundancy is that it effectively decouples the system design from the fault

tolerance design. However, it is usually prohibitively expensive because it involves

replicating the system N times. For this reason, a variety of hybrid methods has

evolved, involving hierarchical levels of modular redundancy: only the parts of the

system that are more vulnerable to faults are replicated. When time delay is not an

issue, we can afford to repeat a computation. Therefore, another approach is possible:

rather than having N different modules perform the same computation at the same

time, we can afford to have one system that repeats the same computation N times.

3

gi
---l --

.I Unit

rf r r

Encoder-2 * Encoi/Error Decoder92E Detectorl
Corrector

Figure 1-2: Protection of operation o through the use of arithmetic codes.

The effect is exactly the same as N-Modular redundancy as long as no permanent

faults have taken place.

Examples of commercial and other systems that use modular redundancy tech-

niques are referenced in [1].

1.2.2 Arithmetic Codes

While universally applicable and simple to implement, modular redundancy is inher-

ently expensive and inefficient. For example, in a TMR implementation we triplicate

the whole system in order to detect and correct a single error. This is prohibitively

expensive. A more efficient approach towards fault-tolerant computation is the use

of arithmetic codes, although this is more limited in applicability and possibly harder

to implement.

Arithmetic codes are used to protect simple operations on integer data, such as

addition and multiplication. They can be thought of as a class of error-correcting

codes whose properties remain invariant under the operation that needs to be made

robust. Figure 1-2 provides a graphical illustration of the general operation of an

arithmetic code. In this case, the desired, error-free result is: r = gl o g2. In order

to achieve this result, while protecting the operation o, the following major steps are

taken:

* Encoding: First, we add redundancy to the representation of the data by using

4

a suitable and efficient encoding:

g = q(gi)

92= q/(92)

* Operation: The operation on the encoded data does not necessarily have to be

the same as the desired operation on the original data. In terms of Figure 1-2,

this modified operation is denoted by o:

r' = 1' og2'

where r' is the actual result that the modified operation give under fault-free

conditions. In reality, one or more errors {et} can take place, and the result of

the computation of the encoded data is a possibly faulty result rf, which is a

function of the encoded data and the errors that took place:

rf = f(gl', g2', e)

* Error Detection and Correction: If enough redundancy exists in the encoding

of the data, we hope to be able to correct the error(s) by analyzing the way

in which the properties of the encoding have been modified. In such a case, rf

can be masked back to r'. In Figure 1-2, this is done by the error correcting

mapping a:

r = a(rf)

* Decoding: The final, error-free result r can be obtained using +- 1 as an inverse

mapping. Note that the use of +-1 is a possibility if is a one-to-one mapping;

however, in general, there are a lot of other alternatives since the result r does

not necessarily lie in the same space as the operands gl and g92. Therefore, in

order to have a more general model of arithmetic codes we denote the inverse

mapping as -1:

r= - (')

5

An arithmetic code that can be formulated in the above four steps is not necessarily

a useful one. Two further requirements need to be satisfied: first, it must provide

sufficient protection for the faults that are likely to occur in the specific application,

and second, it must be easy to encode and decode. If the above requirements are not

met, then the code is not practical. It is either insufficient, or it is computationally

intensivel .

A very simple example of an arithmetic code is presented in Figure 1-3. In this

case, we are trying to protect integer addition. The encoding simply involves multi-

plication of the operands {u, v} by a factor of 10. The operation on the encoded data

is again addition. Error detection is simply division by 10: if the result is corrupted,

we hope that it will not be divisible by 10, in which case we will be able to detect

that an error took place2. However, error correction is impossible under this kind

of arithmetic coding, unless a more detailed error model is available. Decoding is

performed at the same time as we perform error detection. This specific example is

an instance of an aN code [2] where a = 10. Under certain conditions and certain

choices of a, aN codes can be used to correct a single error. Note that in the case

of caN codes, redundancy is added into the computational system by increasing the

dynamic range of the system (by a factor of a).

Arithmetic codes do not always have the simple structure of the example above.

More advanced and more complicated schemes do exist. In fact, there exist arithmetic

codes that are able to protect real or complex data (which is not true in the above

example) and more elaborate computations than simply addition. Methods to protect

entire arrays (sequences) of data have been developed as well. This more advanced

form of arithmetic coding is usually referred to as Algorithm-Based Fault Tolerance,

and is discussed briefly in the following section.

1An extreme example would be an encoding that is three times more complicated than the actual
operation we would like to protect. In such a case, it would be more convenient to use TMR rather
than this complicated arithmetic code.

2 Note that an error under which the result remains a multiple of 10 is undetectable.

6

F-
U

x10
\L----, Error Detection

U+V

10

Error
Error e

Figure 1-3: A simple example of an aCN arithmetic code for protecting integer addi-
tion.

1.2.3 Algorithm-Based Fault Tolerance

Algorithm-Based Fault Tolerance (ABFT) schemes are highly involved arithmetic

coding techniques that usually deal with real/complex arrays of data in multiprocessor

concurrent systems. The term was introduced by J. Abraham and coworkers [3]-[9] in

1984. Since then, a variety of signal processing and other computationally intensive

algorithms have been adapted to the requirements of ABFT.

As described in [5], there are three key steps involved in ABFT:

1. Encode the input data for the algorithm (just as in the general case of arithmetic

coding).

2. Reformulate the algorithm so that it can operate on the encoded data and

produce decodable results.

3. Distribute the computational tasks among different parts of the system so that

any errors occurring within those subsystems can be detected and, hopefully,

corrected.

A classic example of ABFT is the protection of N x N matrix multiplication on

an N x N multiprocessor array [3]. The ABFT scheme detects and corrects any

single (local) error using an extra checksum row and an extra checksum column.

7

The resulting multiprocessor system is an (N + 1) x (N + 1) multiprocessor array.

Therefore, the hardware overhead is minimal (it is of ()) compared to the naive

use of TMR, which offers similar fault protection but triplicates the system (0(1)

hardware overhead). The execution time for the algorithm is slowed down negligibly:

it now takes 3N steps, instead of 3N - 1. The time overhead is only O(-).

Figure 1-4 is an illustration of the above ABFT method for the case when N = 3.

At the top of the figure, we see how unprotected computation of the product of two

3 x 3 square matrices A and B takes place in a 3 x 3 multiprocessor array. The data

enters the multiprocessor system in the fashion illustrated by the arrows in the figure.

Element aij corresponds to the element in the i-th row and j-th column of the matrix

A, whereas bij is the corresponding element of the B matrix. At each time step n,

each processor Pij (the processor on the i-th row and j-th column of the 2D array)

does the following:

1. It receives two pieces of data, one from the processor on the left and one from

the processor on top. From the processor on the left (i(j-1)), it gets b(n(j+i-l))i

whereas from the processor on top it gets aj(n-(j+i-l)). Note that if (n-(j+i-1))

is negative, no data has been received yet.

2. It multiplies the data received and adds the result to an accumulative sum s

stored in its memory. Note that s is initialized to 0. If no data was received in

the previous step, nothing is done at this step.

3. It passes the data received from the left to the processor on the right, and the

data received from top to the processor below.

It is not hard to see that after 3N - 1 steps, the value of sji is:

wheri = abn= ai(n-(j+i-)) b(n(j+i-1)j Notethat C is the element in the

where akl, bkl are 0 for k, < 0 or k, 1 > N . Note that Cij is the element in the

i-th row and j-th column of the matrix C = A x B. Therefore, after 3N - 1 steps,

processor pji contains the value Cij.

8

Unprotected Computation a33
for a 3x3 Matrix a23 a32
Multiplication a13 a22 a3

on a 3x3 Processor Array a12 a2
a,,

b3l b21 b.i * o - -10

b32 b22 b12 --

b33 b23 b13 --

ABFT Scheme
Protected Computation
for a 3x3 Matrix
Multiplication
on a 4x4 Processor Array

Ci4 are Row Checksums

C4j are Column Checksums

b31 b2 bl

a13

a12

all

a23

a22

a21

a33

a32

a3l

C43

C42

C41

+ * +
+

b32 b22 bl2

b33 b23 bl3

C34 C24 C14

Figure 1-4: ABFT technique for matrix multiplication.

9

+

Protected computation is illustrated at the bottom of Figure 1-4. It uses a (3 +

1) x (3 + 1) multiprocessor array. Both matrices A and B are encoded into two new

matrices, A' and B' respectively, in the following fashion:

* An extra row is added to matrix A, consisting of column sums, that is:

C4j = 3 =1 aij

A' is now an (N + 1) x N matrix.

* An extra column is added to matrix B, consisting of row sums, that is:

Ci4 = jl bij

B' is now an N x (N + 1) matrix.

The computation is executed in the usual way on a 4 x 4 multiprocessor array.

The resulting matrix C' = A' x B' is a 4 x 4 matrix. If we exclude the last row and

the last column from C', we get the original result C = A x B. Moreover, the last

row and column of C' consists of column and row checksums respectively. If one of

the processors malfunctions, we can detect and correct the error by using the row and

column checksums to first pinpoint the location of the error and then correct it. The

basic assumption here is that no error propagates or, equivalently, the propagation

of the data in the system is flawless. This is where TMR offers more coverage than

this scheme: a single data propagation error will be caught by a TMR system, but

not by this ABFT scheme.

The above example shows the superiority of ABFT over naive modular redundancy

methods. By exploiting particular structural features of an algorithm or a computa-

tional system, ABFT achieves efficient fault protection at a much lower cost. Other

examples of ABFT techniques involve other matrix arithmetic and signal processing

applications [3] [4], fault-tolerant FFT computational systems [6], A/D conversion

[10], and digital convolution [11].

10

1.3 Scope and Major Contributions of the Thesis

Arithmetic codes and ABFT techniques have been studied extensively by a lot of

researchers for a variety of applications, such as those presented in [3]-[14]. All these

cases involve efficient fault-tolerant schemes for protecting the specific application

that was under consideration. However, until recently, no systematic and general

way for developing arithmetic codes and ABFT techniques had been developed. The

detection of exploitable structure in an algorithm, in a way that can provide efficient

fault coverage, was more of a "black magic" technique than an engineering discipline.

In [1], an attempt to unify all of the above mentioned methods was made by

developing a general framework that is extremely useful in analyzing, constructing

and using arithmetic codes as a tool for protection against computational faults. Most

known arithmetic codes and ABFT techniques can be encompassed in this framework.

What is required by [1] is that the operation (or, more generally, the computational

task) can be modeled as an abelian group operation3 .

The framework extends naturally to other algebraic structures that have the un-

derlying characteristics of an abelian group, such as rings, fields, modules and vector

spaces. Therefore, even though the analysis started with a seemingly limited set of

computational tasks that could be modeled using this framework, it has now been

extended enough to include many of the examples of arithmetic codes and ABFT

techniques that have been mentioned earlier and have been developed on an individ-

ual basis, for instance aN codes, matrix multiplication in the ring of matrices, and so

on. A more detailed discussion of the results obtained in [1] is presented in Chapter 2

as an introduction to the topic of this thesis.

In this thesis, we extend the results obtained in [1]. We relax the requirement

that the computation occurs in an abelian group, to the less strict requirement of an

underlying abelian semigroup structure. The result is a much more general framework

for investigating fault-tolerant systems in a mathematically rigorous and complete

way. Important results from group and semigroup theory can directly be applied

3 The definition of a group is given later in Chapter 2.

11

in systems of interest that comply to our requirements. Moreover, we manage to

rigorously extend this framework to higher algebraic systems with an underlying

group or semigroup structure, namely the ring and semiring structures.

Detailed connection to actual hardware realizations and their failure modes is not

addressed in this thesis. There are many research issues that arise in making this

hardware connection in a systematic and general way, and we intend to pursue these

questions in follow-on work.

1.4 Outline of the Thesis

This thesis is organized as follows:

Chapter 2 provides an overview of the basic assumptions, techniques and results

that were used in [1]. This chapter not only serves as a valuable introduction, but

also provides the basic definitions that we need, the descriptions of the models that

we use, and the assumptions that we make.

Chapter 3 rigorously extends the results of Chapter 2 to the semigroup setting.

The analysis starts by defining the error and computational models that we use, and

then proceeds to analyze arithmetic coding as a semigroup mapping. This analysis ar-

rives at the important conclusion that the arithmetic code corresponds to a semigroup

homomorphism. Thus, it provides us with a variety of algebraic tools that we can use

in our subsequent analysis. The redundancy conditions for the mapping to provide

sufficient fault tolerance under an additive error model4 are derived next. A brief

comparison with the corresponding conditions for the group case follows. Finally, a

constructive procedure for the special case of separate codes5 is presented.

Chapter 4 demonstrates the use of the semigroup-theoretic framework that is de-

veloped in Chapter 3 by presenting a variety of examples of arithmetic codes for

simple semigroup-based computations. In some cases, we achieve a complete charac-

terization of all possible separate codes for a semigroup.

4 The definition of the additive error model is given in Chapters 2 and 3.
5 Separate codes are also known as "systematic separate codes". However, since a separate code

is necessarily systematic [2], we will simply refer to them as "separate codes".

12

The results are extended in Chapter 5 to higher algebraic structures that admit

two operations, namely the ring and semiring structures. In order to demonstrate the

use of the framework, we also present a variety of examples of arithmetic codes for

these structures.

Chapter 6 concludes the thesis with a summary of its major contributions and

results. Moreover, we make suggestions for possible future directions and potentially

interesting areas where research could be made.

13

Chapter 2

Group-Theoretic Framework

2.1 Introduction

The development of a suitable arithmetic code for a given computational task can be

very difficult, or even impossible. Arithmetic codes and ABFT techniques have been

constructed for particular algorithms, but a systematic and mathematically rigorous

way of addressing the design of arithmetic codes for a general computational task still

needs to be developed.

A considerable step in this direction has been taken in [1]. By concentrating

on computational tasks that can be modeled as abelian group operations, one can

impose sufficient structure upon the computations to allow accurate characterization

of the possible arithmetic codes and the form of redundancy that is needed. For

example, it turns out that the encoding has to be an algebraic homomorphism that

maps the computation from the original group to a homomorphic computation in a

larger group, thereby adding redundancy into the system.

Computational tasks with an underlying abelian group structure are not a limited

set of computational tasks, since many arithmetic operations are, in fact, abelian

group operations. Moreover, once the framework for group-like operations is available,

we can extend the domain of applications to algebraic systems with an underlying

group structure, such as rings, fields, modules, and vector spaces.

In what follows, we give a brief introduction to the above results. We also describe

14

Reduntant Error
Computation Corrector Decoder
Unit Detector

Actual Actual
Operants Results

Fault-Tolerant Uniterror e

Figure 2-1: Model of a fault-tolerant system as a cascade of three subsystems.

the computational model and the basic assumptions that were made.

2.2 Computational Model

2.2.1 General Model of a Fault-Tolerant System

In [1], a general fault-tolerant system is modeled as shown in Figure 2-1. It consists

of three major subsystems:

* Redundant Computation Unit: The actual computation takes place here in a way

that incorporates redundancy. By redundancy we mean that the computation

unit involves extra states that only arise when an error occurs. Under fault-free

operation these states are never involved; thus, we call them redundant.

* Error Detector/Corrector: By examining the state of the system after the out-

put is produced, we can decide whether the output is valid or not. If the output

is invalid, we might be able to use information about the particular state of the

system to correct the error. However, this may not be always the case.

* Decoder: Once the result is corrected, all that remains is to map it to its non-

redundant form. This is done at the decoder stage.

For example, in terms of this model, the aN arithmetic coding example of Fig-

ure 1-3 consists of the following subsystems:

15

* The units that perform the multiplication by 10 and the unit that performs the

addition comprise the redundant computation unit.

* The unit that divides by 10 performs the error detection and/or correction; at

the same time, it performs decoding.

Another example that can be viewed in terms of this model is the TMR system

shown in Figure 1-1. The 3 copies of the system form the redundant computation

unit, whereas the voter forms the error detector/corrector and the result decoder.

As can be seen in the above examples, some of the subsystems shown in Figure 2-1

might end up being indistinguishably combined. However, the model clearly presents

the basic idea of a fault-tolerant system: at the point where the error takes place,

the representation of the result involves redundancy. This redundancy gives us the

ability to detect and/or correct the error in later stages.

An implicit assumption in the model is that no error takes place during error

correcting and decoding. In a real system, we would need to protect the error correc-

tor/detector and the result decoder using modular redundancy, or by making these

subsystems extremely reliable. This is a reasonable assumption as long as the error

detector/corrector and the result decoder are simple enough compared to the compu-

tational unit, so that replicating them will not add a significant amount to the overall

cost of the system. In fact, in the opposite case, when these units are expensive, it

is probably preferable not to follow the approach outlined here and to simply use

modular redundancy for the overall system .

2.2.2 Computation in a Group

For the rest of this chapter, we will focus on computational tasks that have an under-

lying group structure. The computation takes place in a set of elements that forms a

group under the operation of interest. We start by the definition of a group (as given

in [15]):

'The voter circuitry, which performs error detection and correction in the modular redundancy
case, is usually simple enough to allow us to make it reliable easily.

16

Definition: A non-empty subset of elements G is said to form a group 6 = (G, o)

if on G there is a defined binary operation, called the product and denoted by o, such

that

1. a, b E G implies aob E G (closure).

2. a, b, c E G implies that ao(boc) = (aob)oc (associativity).

3. There exists an element e E G such that aoe = eoa = a for all a E G (e is called

the identity element).

4. For every a E G there exists an element a- 1 E G such that aoa-1 = a-loa = e

(the element a-1 is called the inverse of a).

Furthermore, if the group operation o of G is commutative (for all a,b E G,

aob = boa), then G is called an abelian group [15]. In an abelian group, because of

the associativity and commutativity, the order in which a series of group products is

taken does not matter:

gl og2 ... ogp = gi i2 o, ... ogip

where {ik} for k E {1, 2,...,p} is any permutation of {1, 2 ,...,p}.

A simple example of a group is the set integers under addition, usually denoted by

(Z, +). The four properties denoted above can be verified very easily. Specifically, in

this case, the identity element is 0, and the inverse of an integer a is the integer -a.

Another example, of a group is the set of non-zero rational numbers under multiplica-

tion, usually denoted by (Q - {0}, x). The identity element in this case is 1 and the

inverse of a rational number q = ' (where n, d are integers) is the rational number

q-1 = dn

2.2.3 Computational Model for Group Operations

Assume that the computation we want to protect can be modeled as an abelian group

operation o with operands {gl,g2, ... ,gp}. Then, the desired result r is:

r = gl og 2 ... gp

17

Operands

-- ----- ------- _ - _ -

gl

g2

g,

O.

r O'd

- - -- - - - - - - - - - --I--' li-
'. ~~~~~~~~~~~~~~~~~~~~~~~~~~

Error Detected

Error Result
Corrector/ Decoder
Detector

Result

errors { ei)

Figure 2-2: Model of a fault-tolerant computation for a group product.

(any order of the {gi} will do). The fault-tolerant system for protecting this group

product can be described as shown in Figure 2-2. The error corrector and the result

decoder are exactly the same as in Figure 2-1. We assume that these units and the

encoders {qi} are error-free. The redundant computation unit decomposes into a set

of encoders (encoder bi corresponds to operand gi), and a unit that performs a new

redundant group product.

Essentially, as shown in [1] and discussed here later, this amounts to mapping the

computation in the abelian group (G, o) to another abelian group (H, o) of higher

order, so that we are able to incorporate redundancy in our system. Note that the

operation of the redundant group is not necessarily the same as the operation of the

original one.

The desired result r is given by decoding (using a decoding mapping denoted by a)

18

the result rH of a redundant computation that took place in H:

r = 9g og 2 o ... o gp = (rH)

where rH = 1(gl)002(g2)0...kOp(gp)

In [1] an additive error model is assumed. Errors {es} are modeled as elements

of H and are assumed to corrupt rH in an additive 2 fashion. The possibly corrupted

redundant result r is given by:

r = () 2(92. . (.oe

rHOelo e2a...o eA

The underlying assumptions of the additive error model are that errors are inde-

pendent of the operands (which is a very realistic assumption for reasons explained

in [1]), and that the effect of any error on the overall result is independent of which

stage in the computation it occurs in. This last assumption is realistic because we

have limited ourselves to associative and abelian operations. In such a case, the ex-

pression above is well-defined and its result is the same, irrespective of the order and

the position in which the operands are evaluated.

We can simplify notation if we define the error e = eloe2o...oe:

IrH = rH e

where e £(X) = E o o ... o £ (times). If no error took place, e is the identity

element.

Note that we can view the errors el, e2, ..., e)} as regular operands that corrupt

the product when a fault takes place during the computation. The computational

model then becomes as shown in Figure 2-3. Under fault-free computation:

el = e2 = ... = e = 0,

2 The term "additive" makes more sense if the group operation o is addition.

19

Operands

g2 , C-

e. em.

Figure 2-3: Model of a fault-tolerant (
additive error model.additive error model.

rror Detected

Error Result
Corrector/ Decoder
Detector Result

computation for a group product under an

where Oo is the identity element of the redundant group.

2.3 Group Framework

2.3.1 Use of Group Homomorphisms

Once we have defined the computational and error models, we are ready to proceed

with the analysis of the system. The subset of valid results Hv, which is obtained

under error-free computation, can be defined by

Hv = {(i(g9) 0 2(g2) ... 0 p(gp) I 91,g 2 , ...,gp E G}

20

Recalling that a: Hv -+ G denotes the mapping used by the decoder unit to map

the set of valid results in Hv to elements of G, we have:

r = g o g2 o ... o gp = a(sl(gl) ° 2(g2) 0... O 4p(gp)) (2.1)

If we require this mapping to be one-to-one3 , then a - l is a well-defined mapping and,

as shown in [1], all encoders {qO} have to be the same and satisfy

where the symbol b will be used from now on to denote the encoding function. Equa-

tion (2.1) then reduces easily to:

(gl o g2) = q(gl) o (g2)

which is the defining property of a group homomorphism. This establishes a one-to-

one correspondence between arithmetic codes for groups and group homomorphisms.

Therefore, the study of group homomorphisms can greatly facilitate the development

of fault-tolerant systems when the computations have an underlying abelian group

structure.

In Figure 2-4, we visualize schematically how fault tolerance is achieved: the

group homomorphism 4 adds redundancy to the computation by mapping the abelian

group G, in which the original operation took place, to a subgroup G' of a larger

(redundant) group H. (It is interesting to note here that G' is exactly the subset of

valid results defined earlier as Hv.) Any error e will be detected, as long as it takes us

out of the subgroup G' to an element h not in G'. If enough redundancy exists in H,

the error might be correctable. Details about the error detection and error correction

procedure are presented in the next section.

3 This is a very reasonable assumption, because it corresponds to efficient use of the elements in
the redundant group H.

21

Figure 2-4: Fault tolerance in a computation using an abelian group homomorphism.

2.3.2 Error Detection and Correction

In order to be able to detect an error ed E £(X) C H, we need every possible valid

result g' E G' C H to be an invalid result when corrupted by ed $ 0,. Mathematically,

this can be expressed by:

{g' oed I g' e G'} nG' =

If we use the set notation G' o ed {g' o ed g' E G'}, then the above equation

becomes:

(G' oed) n G' = 0 (2.2)

Similarly, for an error e E () (ec#:O.) to be correctable (and a fortiori de-

tectable), we require that it satisfies the following:

(G' o e) n (G' o e) = 0 V e e E E (*) (2.3)

In group theory ([15] or any other standard textbook can be used as a reference),

the sets (G' o e) for any e E H are known as cosets of the subgroup G' in H. Two

22

cosets are either identical or have no elements in common. Therefore, they form an

equivalence class decomposition (partitioning) of H into subsets4 . This collection of

cosets is denoted by HIG' and it forms a group, called the "quotient group of H

under G' ", under the operation:

A B = {a o b a E A, b E B}

where A and B now denote sets of elements of H rather than single elements of H.

Since two cosets are either identical or have no elements in common, Equations

(2.2) and (2.3) become

(G'o ed) G', for edO,

(G'oec) o (G'oe) V e eE g()

Therefore, error detection and correction can proceed as shown in Figure 2-5. Any

error, such as el, e2, and e3 in the figure, that takes us out of the subgroup G' to

an element hi (i = 1, 2, 3) of the redundant group, will be detected. Furthermore, if

enough redundancy exists in H, some errors can be corrected. For example, the error

el that takes us to h is correctable because the coset G' o el is not shared with any

of the other errors e. Once we realize that h lies in the coset of el, we can get the

uncorrupted result r' E G' by performing the operation h o e1 l. If hi lies in a coset

shared by more than one error (which is the case for h2 and h3), the corresponding

errors are detectable but not correctable. Errors that let the result stay within G',

such as e4, are not detectable.

To summarize, the correctable errors are those that force the result into distinct

4In [15], an equivalence relation on a subset A of a set H is defined as a binary relation that
satisfies the identity, reflexivity, and transitivity properties, that is, for all elements a, b, c E A the
following hold:

a a (identity)

a b implies b a (reflexivity)

* a b and b c implies a c (transitivity)

The subset A is called an equivalence class.

23

Figure 2-5: Structure of the redundant group H for error detection and correction.

non-zero cosets5 . In order for an error to be detectable, it only has to force the result

into a non-zero coset.

2.3.3 Separate Codes

If we focus on the so-called separate codes, we can obtain some extremely useful re-

sults. Separate codes [2] are arithmetic codes in which redundancy is added in a

separate "parity" channel. Error detection and correction are performed by appro-

priately comparing the results of the main computational channel, which performs

the original operation, with the results of the parity channel, which performs a parity

computation. No interaction between the operands and the parity occurs.

A simple example of a separate code is presented in Figure 2-6. The operation that

we would like to protect here is integer addition. The main computational channel

performs integer addition, whereas the parity channel performs addition modulo 4.

The results of these two channels, g' and t' respectively, are compared. If they agree

modulo 4, then the result of the computational channel is accepted as fault-free. If

5 By a non-zero coset we mean a coset other than G'.

24

' Main Computational Channel

I---- --F- '
91~ ·--- -''~g 9'=g + g2

92 - -

i Parity Channel

1 gl mod 4
gi - mod4

t'(gl+g2)mod4

mod4 +mod4

Yn -'C miuA -

C'-

II

0
E

U0C,)

YES
.9I

NO

Error Detected

Figure 2-6: A simple example of a separate arithmetic code.

they do not agree, then an error has been detected. This figure also shows one of the

important advantages of separate codes over other codes, such as the aN code shown

in Figure 1-3, namely that if we know the result to be error-free then we can output

it without any further processing or decoding.

When we restrict ourselves to separate codes, the computational model of Figure 2-

2 reduces to the model shown in Figure 2-7. For simplicity, only two operands are

shown in this figure, but the discussion that follows analyses the general case of p

operands.

In the case of separate codes, the group homomorphism maps the computation

in the group G to a redundant group H which is the cartesian product of G and a

parity set that we call T, that is

H=GxT

The homomorphic mapping satisfies qb(g) = [g, O(g)], where 0 is the mapping that

creates the parity information from the operands (refer to Figure 2-7). The set of

25

Main Computational Channel

-- ' '

eGg2

Parity Channel

eT

Error
Detection
and
Correction

9
.PI

Figure 2-7: Fault-tolerant model for a group operation using a separate code.

valid results Hv is now the set of elements of the form [g, 0(g)]. In [1], it is shown

that T is a group and that 0 is a group homomorphism from G to T.

If we require that 0 is onto T6, then the problem of finding suitable separate

codes reduces to the problem of finding suitable epimorphisms7 0 from G onto T.

A theorem from group theory [15] states that there is a one-to-one correspondence

between epimorphisms 0 of the abelian group G onto T and subgroups N of G. In

fact, the quotient group G/N, constructed from G using N as a subgroup, provides

an isomorphic image of T. Therefore, by finding all possible subgroups of G, we can

find all possible epimorphisms 0 from G onto T, and hence all possible parity checks.

Finding the subgroups of a group is not a trivial task but it is relatively easy

for most of the groups we are interested in protecting. By finding all subgroups

of a given group, we are guaranteed to find all possible separate arithmetic codes

that can protect a given group computation. This is the first systematic procedure

that can construct arithmetic codes in the group setting. It results in a complete

characterization of the possible separate codes for a given abelian group. The result

6 This is a very reasonable assumption because it corresponds to efficient use of the parity symbols
in the group T.

7In the group case, an epimorphism is equivalent to a surjective homomorphism.

26

is a generalization of one proved by Peterson for the case of integer addition and

multiplication [16], [17].

2.4 Applications to Other Algebraic Systems

The analysis presented so far for the group setting extends naturally to other algebraic

systems with the underlying structure of a group, such as rings, fields and vector

spaces [1]. By exploiting the abelian group structure in each of these other structures,

and by assuming an error model that is "additive" with respect to the group operation,

we can place the construction of arithmetic codes for computations in them into the

group framework that we have developed.

Therefore, even though the analysis in [1] starts with a seemingly limited set of

computational tasks, it can be extended sufficiently to include a variety of previously

studied examples, such as Integer Residue Codes, Real Residue Codes, Multiplication

of Non-Zero Real Numbers, Linear Transformation, and Gaussian Elimination [1].

A complete development of the ring-theoretic framework for computations that

have an underlying ring structure as well as examples can be found in Chapter 5.

2.5 Summary

This chapter presented the group-theoretic framework that was developed in [1] for

the analysis of arithmetic codes. We discussed the assumptions that were made, the

error and computational models that were used, and the results that were obtained.

An one-to-one correspondence between arithmetic codes and group homomorphisms

was established first. Since algebraic homomorphisms are a well-studied topic in

algebra, this facilitated the study of arithmetic codes and helped define a natural

error detection and correction procedure, based on the construction of cosets in the

redundant group. Then, a procedure for constructing separate codes for a given

computation was developed, and finally, the results were extended to higher algebraic

systems with an underlying abelian group structure, such as rings, fields and vector

27

spaces.

In the next chapter, we show how the results obtained for the group case extend

naturally, under the same model and assumptions, to the less constrained setting of

semigroup operations.

28

Chapter 3

Semigroup-Theoretic Framework

3.1 Introduction

The framework developed in Chapter 2 deals with computations that have an un-

derlying abelian group structure. In this chapter, we show how the results obtained

there can be extended in a very natural way to computations with an abelian semi-

group structure. We thereby relax the requirements that the computations need to

satisfy, and have available a framework that provides a systematic algebraic approach

to arithmetic coding and ABFT for a much broader class of computations.

Our analysis follows closely the analysis for the group case in [1] that was explained

briefly in Chapter 2. We develop our framework in the following way. In Section 3.2,

we describe the model of the semigroup computation. Then, in Section 3.3, we derive

the conditions under which the mapping from the original computation to the fault-

tolerant computation will correspond to a semigroup homomorphism. This places the

analysis in a well defined algebraic framework. In Section 3.4 we adopt the additive

error model, and proceed to analyze the requirements for redundancy in the semigroup

case and compare the results with the corresponding results in the group case. A

framework for separate codes is developed in Section 3.5 and then a constructive

procedure that generates all separate codes for a semigroup computation is presented.

A comparison of the constructive procedure for such codes between the semigroup

and the group case is also made. Finally, Section 3.6 provides a summary of the

29

results that were obtained and discusses the tradeoffs that emerged in transitioning

from computations with an abelian group structure to computations with an abelian

semigroup structure. The treatment of specific classes of semigroups is deferred to

Chapter 4.

3.2 Computation in a Semigroup

This section defines the model that we use for performing a computation with an

underlying semigroup structure. We first provide an introduction to the notion of a

semigroup and then proceed to the computational and error models.

3.2.1 Introduction to Semigroups

The following is the definition of a semigroup (taken from [18]):

Definition: A semigroup S = (S, o) is an algebraic system that consists of a

set of elements S, and a binary operation o, called the semigroup product, such that

the following properties are satisfied:

1. For all 8l, 2 E S, 81 0 2 E S (closure).

2. For all s, , 3 e S, (S1 o S2) 0 83 = S1 o (S2 o S3) (associativity).

If the binary operation o is obvious from the context, then we usually denote the

semigroup simply by S. If the operation o is commutative, that is:

Sl o s2 = s2 o sl for all sl,s2 E S

then the semigroup is called an abelian (or commutative) semigroup.

A familiar example of a semigroup that is not a group is the set of positive integers

under the operation of addition, usually denoted by (N, +). The two properties above

can be verified easily since addition is an associative operation. In fact (N, +) is an

abelian semigroup (since addition is a commutative operation). Other examples of

abelian semigroups that are not groups are the set of integers under multiplication

(usually denoted by (Z, x)), and the set of polynomials with real coefficients under

30

the operation of polynomial multiplication. Examples of non-abelian semigroups are

the set of N x N matrices under matrix multiplication, and the set of polynomials

with real coefficients under the operation of polynomial substitution. More examples

of semigroups can be found in [18].

From the above definition and examples, one sees that a semigroup, unlike a

group, is an algebraic structure with minimal requirements: other than closure and

associativity, there is not any other requirement. However, under certain assumptions,

this minimal structure allows us to achieve extremely useful results. In order to

proceed to the examination of these results we will need some more terminology.

If an element 00 E S exists such that:

s oO = 00o s = for all s E S

then the element 00 is called the identity element and the semigroup is called a

monoid. For example, the semigroup (N U {0}, +) (usually denoted by (No, +))

is a monoid with 0 as the identity element. In fact, any semigroup that does not

possess an identity element can be made artificially into a monoid simply by adding

an element 00 to it, and defining that element to behave just like an identity element.

The union of the original semigroup S with this identity element is a monoid. Note

that the identity can easily be shown to be unique (see for example [18]) and therefore

the addition of an identity element is well-defined and it is only possible when the

semigroup is not a monoid.

Since any semigroup can be easily modified to be a monoid, we will assume without

loss of generality that we are dealing with a monoid. For the rest of this chapter we

restrict our attention specifically to abelian monoids.

3.2.2 Computational Model for Semigroup Operations

We assume that the computation we want to protect can be modeled as a semigroup

operation with p operands:

r = s 0 S2 0 ... O sp

31

Operands

Detectable or
~~S~~~~~~~~i ~Irreversible Error

s2

sr rI mapping , triresult

Errors (ei)

Figure 3-1: Fault-tolerant model for a semigroup computation.

where r is the desired fault-free result. The model of the fault-tolerant computational

unit can be seen in Figure 3-1. The operands sl, s2, , by are encoded via the encoders

elements in the set, which map the operands to a higher order monoid (H,o). The computation

takes place in the redundant computational unit where additive (or other) errors ei}

might be introduced.

The output of the redundant computation unit is a possibly corrupted result

which we denote by r . The error corrector, through the use of the error correcting

mapping a, tries to map rw to the fault-free redundant result rH. However, this might

not be always possible, as for example when the error that took place is irreversible.

In such a case, the error corrector signals that a detectable or an irreversible error took

place. Finally, the decoder maps the fault-free redundant result rH to its desirable,

unencoded form r. The decoding mapping is denoted by o : Hv S and maps the

elements in the set of valid results (which we call H) back to the original monoid S,

that is

= S10 S2 ... Sp = -rfrH

where rH = 1(S1)>O2(S2)<>...<>p(Sp) .

Just like the model for the group case, an implicit assumption in this diagram

32

is that the encoders, the error corrector and the result decoder are fault-free. If

necessary, they have to be protected using modular redundancy.

If we adopt the additive error model that was introduced in Chapter 2, the errors

{ei} will be elements of H. We assume that they corrupt rH in an additive fashion.

The possibly corrupted redundant result r is given by:

rH =rH = 01(S1)*02(S2)* ... *0p(Sp)*2oe ... eA

= rHoeloe2... oe

The underlying assumptions of the additive error model are that errors are in-

dependent of the operands, and that the effect of any error on the overall result is

independent of the point in time where it took place during the computation. This last

assumption is realistic because we have limited ourselves to associative and abelian

operations. As mentioned in Chapter 2, in such a case, the above expression is well-

defined and its result is the same, irrespective of the order and the position in which

the operands are evaluated.

At this point, we would like to make an important distinction between the actual

faults that influence the result of the computation and the modeled errors {el} that

we use in our additive error model. An actual fault is a hardware failure and can

have any effect on the result. More specifically, it need not affect the result in an

inherently "additive" way. However, as long as we can model the effect of a fault on

the result as an additive error, then we expect the additive error model to be valid.

As an example, consider a computation unit that performs addition modulo 64. It

represents each valid result as a 6-bit binary number. Furthermore, assume that a

single fault forces a 1 ("high") at one of the six binary digits. Then, a single fault

produces an additive error of the form 2i for i E {0, 1, 2, 3, 4, 5}. If our additive error

model protects against errors of the above form, then it effectively protects against

any single fault that takes place during the computation. Of course, the more closely

we can exploit the actual error structure, the more efficient our fault-tolerant scheme

will be.

33

The error correcting mapping a in Figure 3-1 should map r to rH, so that

rH = a(r') (except when this is not possible). We can simplify notation if we define

the overall error e = eloe2o...oe :

rH = rH ° e

where e E () = o 8 o ... o £ (A times). If no error took place, e is the identity

element.

We draw attention now to the important distinction between the group and the

semigroup cases. In a semigroup setting, inverses are not guaranteed 1. If an error e

occurs, then the result is not necessarily correctable. Even if we identify the error e

that occurred, we might not be able to correct the corrupted result r. In the group

case this was not a problem; since e was invertible, all we needed to do after identifying

the exact error that occurred was to compose the corrupted result r with the inverse

e-1 of the error:

r H = r O e-1

However, when the error is not invertible, we cannot in general expect anything more

than detecting that error. If the error is invertible, then we can correct it provided

that enough redundancy exists in our coding.

Other Error Models

Throughout our analysis in this chapter, we adopt the additive error model which

was used in [1] and was presented in Chapter 2. However, it is important to clarify

at this point that the error model does not really impact most of the results that

we obtain in the group- and semigroup-theoretic frameworks. For example, the use

of algebraic homomorphisms in these frameworks does not depend in any way on

whether the error model is additive or not. In fact, the only point where the error

model enters the analysis is when we consider the redundancy requirements and the

1An element s -1 E S is the inverse of s E S if and only if s o s- 1 = s - 1 o s = 0o. Of course, this
can only be defined in the monoid case.

34

error-correcting capabilities of our codes (refer to Section 3.4).

The additive error model has some advantages when considering the redundancy

requirements in the group case (see [1], as well as the brief discussion in Section 3.4),

but it is not clear that this is the best choice, especially when we move to higher

algebraic structures with additive as well as multiplicative operations. Moreover,

hardware considerations might make the choice of a different error model more sen-

sible.

3.3 Use of Semigroup Homomorphisms

The computational model described in the previous section achieves fault tolerance

by mapping (through the {qi} mappings) the computation in the original abelian

monoid S = (S, o) to a redundant computation in a larger monoid 7 = (H, o). The

additional elements of H will be used to detect and correct erroneous results. Under

the additive error model, faults introduce errors that have an additive effect on the

result.

The analysis in this section investigates the properties that the set of mappings

{b O} needs to have in order to satisfy the computational model that we have adopted.

We show that under a few reasonable assumptions, all mappings have to be the same.

Furthermore, this mapping is a semigroup homomorphism.

Let { 1, 4b2, ... , p} be the set of mappings used to map elements of S to elements

of H (refer to Figure 3-1):

01 :S- >H

2 : S H

Op : S, H

Then the computation of the product Slos10520...osp in S takes place in H in the fol-

35

lowing form:

r = 1(sl)o02(s2)o...oop(sp)oe

where r' is a possibly corrupted result in H and e E E(X).

When r' is not corrupted (let us denote the uncorrupted result in H by rH), we

require that it maps back to the correct result in the original set S via the mapping

a (refer again to Figure 3-1):

r = S 1oS20...oS, = (rH) = o(k1(Sl) o 02(S2) o ... O Op(sp)) (3.1)

Now we have the tools to prove the following claim:

Claim: When S and H are monoids, under the assumptions that:

1. The mapping a is one-to-one, and

2. 1 (0o) = 2(0o) = ... = qp(0o) = Oo (that is, all encodings map the identity of

S to the identity of H),

all Oi's have to be equal to the same semigroup homomorphism . Moreover for all

s e S,

r-l(s) = Xl(S) = +2(S) = ... = Op(S)-O(S)

Proof: The mapping a maps elements of Hv to S:

a: Hv -4 S

where Hv is the set of valid results in H defined as:

Hv = fO1 (1)0)o2(s,)o...op(sp) I S1, 2 , ... , Sp E S} (3.2)

By our first assumption, a is one-to-one; therefore, its inverse function:

36

is well-defined. Moreover, from (3.1):

a-1(10520...osp) = l1(1)*o2(s 2)o ... Op(p) (3.3)

When s = 0 for all i except i = 1 we have:

a- 1 (s81) = 0l(1)o 2(0o)... p(Oo)

0.-1(S) = 1(S), S E S

since qi(Oo) = Oo was part of our second assumption.

Similarly, we get:

a-1(s) = i(s), for all s E S, i = 1,2,...,p

Therefore, -1(s) = qi(s) = +2(s) = ... = p(s), for all s E S. Let 0a-L = Xl =
02 = ... = Op. Then, from (3.3) we get:

O(slos20...osp) = (s1)0(s 2)...c(sp)

If we let s = 0 for i = 3,4,..., p , we have the defining property of an algebraic

homomorphism:

+(S1082) = (S1)+(S2)

Therefore, all { i} are equal to the semigroup homomorphism 4 (or, equivalently, to

a-1) v/

We have shown that, under the assumptions that the decoding mapping 0 is

one-to-one, and that each encoding mapping i maps the identity element of S to

the identity element of H, the mappings {i} turn out to be the same semigroup

homomorphism, which we will call 4. Moreover, is simply the inverse of a. Note

that the derivation requires neither the error model to be additive nor the operation o

to be abelian.

37

The question that still remains to be answered is whether these assumptions are

reasonable:

* By requiring that the decoding mapping a be one-to-one, we essentially require

that it is not many-to-one (since it does not make sense to have one-to-many

or many-to-many "decoding" mappings). If a was many-to-one, then different

operands that arrive at the same result s (s E S) would produce different results

rH (rH E Hv, where Hv is the set of valid results). In such a case, redundancy

would be utilized in an inefficient way, since each way of arriving at a result

would involve different redundancy conditions. Therefore, the requirement that

o is a one-to-one mapping is essentially a requirement that the fault-tolerant

arithmetic code is efficient.

* Now suppose that we need to operate on less than p operands. We would like

to treat such a calculation in exactly the same way as a calculation with p

operands. The natural way to do that would be to use the identity element

for operands that do not appear in the calculation. For example, if we want to

operate on only 3 operands, we would actually be calculating the following:

S1 0 S2 0 S3 0 o 0 o ... o 0o

Therefore, it seems reasonable to require that

+1(1) o 02(S2) o ... o i(Si) = 1(S1) o 02 (S 2) o ... o i(Si) ° oi+ (0o) o ... o p(o)

for each i E {1, 2, ... ,p}. A stronger requirement (but one that simplifies things

a lot) would be qi(0o) = O,. This requirement does restrict the number of

mappings; on the other hand, however, it is efficient because the redundancy in

the mapping is independent of the number of operands.

38

3.4 Redundancy Requirements

In this section we adopt the additive error model in order to analyze the redundancy

requirements on the encoding mapping. The elements of the original semigroup S are

mapped through b to elements of the redundant semigroup H. We denote detectable

errors by ed E Ed and correctable errors by e E Ec. Note that correctable errors are

also detectable.

Using the same approach as the approach in Chapter 2 and in [1], we conclude

that in order for an error ed to be detectable, we need the following condition to be

satisfied:

rHoed $ h for all hrH, h, rH E Hv, ed E Ed

which essentially requires that any detectable error ed corrupts the actual result rH

in an additive fashion such that it takes us out of the set of valid results (otherwise,

we would think that no error took place). In order for an error e to be correctable,

the following condition needs to be satisfied:

rHoec hoed for all h#rH, h, rH E Hv, ec E E~, ed E Ed

which essentially requires that any correctable error corrupts the actual result in

a unique way that no other error shares (remember that detectable errors are also

correctable).

Now, suppose that £ = ei) is the set of possible single errors (including the

identity 0) and that our objective is to detect a total number of D errors and to

correct a total number of C errors (C < D). Then, ed e £(D) and e E £(C). The

above redundancy conditions can then be combined into one:

Redundancy Condition: In order to detect D errors and correct C errors, the

structure of the redundant semigroup H has to satisfy the following requirement:

hloed $ h2oec for all hl$h 2, hi, h2 E Hv, e E E(C) , ed E £(D)

39

Figure 3-2: Structure of the redundant semigroup for error detection and correction.

where Hv (defined in (3.2)) is a subsemigroup of H2 .

If we use the set notation x o A = {xa a E A}, we can simplify the above

expression:

(hioE(D)) n (h20o(C)) = 0 for all hlih 2, hl,h 2 E Hv (3.4)

Because semigroups have a weaker structure than groups, the analysis cannot

follow the exact same path as the analysis for the group case in [1]. In particular,

the coset-based error detection and correction that was developed in the group case

(Figure 2-5) is typically not possible now. However, under the assumption that both

detectable and correctable errors are invertible, we can transform the above into a

more intuitive form as follows:

hloed y h2oec for all hlAh 2 E Hv, ec E E(C), ed E £(D)

hloedoec-l h2 for all hly7 h2 E Hv, e E £(C), ed E 6(D)

hloCedoecl $ h2 for all hi,h 2 E Hv, ec E (C), ed E g(D) so that edoe$-l~0O

hloCedoecl 4 h 2 for all hi, h 2 E Hv, e E £(C), ed E £(D), ec#ed

2The fact that Hv is a subsemigroup of H can be proved easily. The proof is straightforward
and uses the fact that the mapping 0 is a homomorphism.

40

Using set notation we can write the above expression as:

(Hvoec) n (Hvoed) = 0 for all e E E(C), ed E g(D), ecZed (3.5)

Note that the above equation is quite different from Equation (3.4): under the as-

sumption that all errors are invertible, we only need to check that, for each pair of

different correctable and detectable errors, each error "shifts" the set of valid results

Hv to a different set in the redundant space. In Equation (3.4) we do a similar check

for every pair of different operands. The two situations are quite different since, in

general, we expect that the set of operands contains many more elements than the

set of errors.

Equation (3.5) parallels the result that was shown in Chapter 2 for the group case.

However, since the concept of a coset cannot be extended to the general semigroup

case3 , the coset-based error detection and correction cannot be extended to the semi-

group case. Figure 3-2 shows the structure of the redundant semigroup. The major

difference of the semigroup from the group case is that error correction is now based

on disjoint sets of elements (one for each different error), whereas in the group case

error correction is based on having a different coset for each error. This evidently

makes things a lot more complicated in checking for sufficient redundancy require-

ments in the semigroup case. However, as the examples that we present in Chapter 4

show, we now have more flexibility in choosing arithmetic coding schemes.

3.5 Separate Codes for Semigroups

In this section, we focus on the special case of separate codes. We will show that, by

restricting ourselves to these codes, we can obtain extremely interesting results that

parallel the ones obtained for separate codes in the group case:

* A complete characterization of separate codes will be possible.

3 The lack of inverses causes this problem.

41

Main Computational Channel

S2 -

es

Parity Channel

C) >1

S2 o

eT
........................

Error
Detection
and
Correction

S

Figure 3-3: Model of a fault-tolerant system that uses separate codes.

* Moreover, we will be able to outline a systematic algebraic procedure that can

generate all possible such codes.

As explained in Chapter 2, separate codes are a class of arithmetic codes that

protect computation using an independent "parity" channel. No interaction between

the original codeword and the parity information occurs during computation. Fig-

ure 3-3 shows a typical example of a computational unit that achieves fault tolerance

through a separate scheme. For simplicity of presentation, in this figure, as well as

in the discussion that follows, we focus on separate codes with two operands. The

analysis can be extended easily to the general case of a system with p operands.

3.5.1 Description of the Model for the Codes

The codeword of a separate code consists of two parts: the original unencoded data

(which is operated upon by the main computational channel in the exact same way

as the original data) and the "parity" information (which provides the necessary

redundancy for fault tolerance, and which is operated upon by the "parity" channel).

As shown in Figure 3-3, errors can now take place during computation in the main

42

I------------------------I

channel (as for example es), or the parity channel (for example eT), or in both4 .

As was the case in the general analysis of a semigroup computation, an implicit

assumption of the system in Figure 3-3 is that the parity encoders (denoted by the

mapping 0), as well as the error detector and corrector, are error-free5 .

It has already been shown in this chapter, that any arithmetic code for a com-

putation with an underlying semigroup structure corresponds to a homomorphism q.

For the special case of a separate code, the homomorphism 4 is as follows:

S > H = SxT

where the only difference now is that H is the cartesian product of two other semi-

groups, the original semigroup S and the parity semigroup T. Therefore, we can

denote the mapping as the pair:

(s) = [, (S)] (3.6)

where [s, 0(s)] is an element of H (in fact, an element of Hv C H, which was defined

as the subsemigroup of valid results).

3.5.2 Analysis of the Parity Encoding

Let us now analyze the structure of the mapping 0 that is used to construct the

parity of a codeword. We use the symbol o to denote the binary operation in the

semigroup S, the symbol o to denote the binary operation in the semigroup H and the

symbol 0 to denote the binary operation in the semigroup T. The relation between

these three binary operations is straightforward. To see this, let

hi = 0(s) = [si,(sl)]

h = 0(s2) = [, 0(S2)]

4 Although the errors in Figure 3-3 are modeled as additive, this assumption is again unnecessary
for the analysis in this section.

5If these subsystems are not reliable enough, we can use N-Modular redundancy to protect them.

43

where hi,h 2 E H, s1, 2 S, and (sl),0(s2) E T. By definition of separate codes,

the computations in the main and the parity channels do not interact. Therefore,

under error-free operation we require that

hoh 2 = [S1, (I)] o [S2, (S2)] = [slos 2, (S1)O0(S 2)] (3.7)

We now have the necessary tools to prove the following claim:

Claim: If the mapping b is a homomorphism, then the mapping 0 has to be a

homomorphism as well.

Proof: Using the fact that the mapping b is a homomorphism and the defining

Equation (3.7), we get:

O(S1 2) = (S1) o0 (S 2)

= [S1 0 2, o0 (s) 0 o(S2)]

Moreover, by definition of 0 in Equation (3.6):

(,1 o0 S2) = [S1OS2, 0(S1S2)]

Therefore, for all sl, in S:

0(S102) = 0(s1)00(s 2) (3.8)

Equation (3.8) is the defining property of a homomorphism, so we conclude that is

a homomorphism. V

3.5.3 Determination of Possible Homomorphisms

Having established that is a homomorphism, we realize that in order for the cor-

responding separate code to be efficient, we need to require that 0 is onto T. The

reason is simply to ensure that the arithmetic code makes use of all elements of the

parity semigroup T. Therefore, this essentially requires that efficient use of the parity

44

symbols is made and none of them is wasted.

An onto homomorphism is called a surjective homomorphism 6. When we restrict

0 to be a surjective homomorphism, we have a systematic algebraic way of generating

all possible separate codes. In the process of developing this method, we make use of

the following definitions and theorems 7 in [18]:

Definition: An equivalence relation on the elements of a semigroup S is called

a congruence relation if it is compatible with o (the binary operation of S), that is:

For a, b, a', b' E S we have: If a - a', b b' = aob a'ob'

An equivalence class under a congruence relation is called a congruence class. Let

the set S/' denote the set of congruence classes of S under the congruence relation -.

For the congruence classes [a], [b] (congruence class [a] is the congruence class that

contains the element a) we define the following binary operation:

[a]®[b] = [aob]

Claim: Operation 0 is well-defined and S/' is a semigroup.

Proof: If [a] = [a'] and [b] = [b'] then a - a' and b b'. Therefore, a o b - a' o b'

which means that a o b and a' o b' belong to the same congruence class. Moreover,

operation 0 inherits associativity from o. We conclude that S/. is a semigroup. V
Theorem: Let 0: S F-+ T be a surjective homomorphism. Let - be defined by:

xy ': 0O(x) = O(y)

Then - is a congruence relation and S/ is isomorphic to T. Conversely, if is a

6 Many authors, including [18], like to use the name epimorphism for a surjective homomorphism.
However, strictly speaking, an epimorphism from a semigroup S to a semigroup H is a homomor-
phism such that for any two homomorphisms 01 : H '- T and 02 : H T, if for all s S
01(q(s)) = 02(q(s)), then 01 = 02. Any surjective homomorphism is an epimorphism, but the con-
verse is false in the semigroup case [19]. A discussion on this issue as well as counterexamples can also
be found in [20]. We will be using the correct term surjective homomorphism instead of epimorphism,
but keep in mind that the two terms are sometimes used interchangeably in the literature.

7In [18], the claim and the theorem that we use and prove here are stated without a proof.

45

congruence relation on S, then the mapping 7r: S -+ S/I such that for s E S

7r(s) = []

is a surjective homomorphism.

Proof: First, we prove the first statement. Let the binary operation in S be o,

the binary operation in T be , and the binary operation in S/' be 0. Furthermore,

let:

Xl Yl

X2 Y2

From the definition of - we have:

0(X2)

= 0(yl)

= (Y2)

So,

0(Xl)0(X2)

0(xlox2)

X 1 OX2

= O(yl)®O(y2)

= O(yloy2)

, Y1 Y2

Therefore, ,,, is a congruence relation.

Now, we need to prove that S/. is isomorphic to T. All we need to do is find a

mapping : S/- -+ T that is a bijective (one-to-one and onto) homomorphism. In

fact, the following mapping will do:

b([x]) = O(x) for some x e [x] (3.9)

46

Note that this mapping is one-to-one and onto:

* Let [x] be an element of SI/. For all x E [x], O(x) is the same (by definition of

the congruence relation), therefore each [x] maps to one element of O(x) e T.

* Since 0 is onto, each element of T has a non-empty inverse image in S. That

is, for all t E T there exists s E S such that t = O(s). Therefore, there exists at

least one congruence class, namely [s] E S/- such that 0([s]) = O(s) = t . The

mapping , is onto.

* If [x] and [y] map to the same element of T, then (x) = 0(y). Evidently, in

such a case, [x] = [y] (by the definition of -).

Now, we proceed to show that 7I is a homomorphism. For [x], [y] E S/- we have:

([x]D) ([y]) = O(x) (y)

= (x o y)

= ,([x o y])

= ([x] 0 [y])

where we have used in the first step the definition of ¢ from (3.9), in the second step

the fact that 0 is a homomorphism, in the third step the definition of 4' again, and

in the fourth step the defining property of S/.

We have proved that 4 is a bijective (one-to-one and onto) homomorphism. There-

fore, we may conclude that T S/-.

The proof of the converse is less work. The mapping r is clearly onto: for any

congruence class [x] S/- we know that 7r(x) = [x], so there is at least one element

that maps to [x]. Moreover, for sl, S2 E S:

7r(sl) 0 7r(S2) = [S1] 0 [S2]

= [81 0 S2]

= 7r(s 1 0 S2)

47

Therefore, 7r is a surjective homomorphism.

At this point, the proof of the theorem is complete. /

The above theorem states that all surjective homomorphic images T of an abelian

semigroup S can be found (up to isomorphism) by finding all congruence relations -

within S. Therefore, all separate codes that protect a computation in a semigroup

S can be enumerated by finding all congruence relations that exist within S. In

each case, the semigroup T that provides the parity information is isomorphic to S/,

and H is isomorphic to S x S/ . Of course, the enumeration of all congruence

relations of a semigroup might not be an easy task. However, we still have a complete

characterization of all separate codes for a computation in a semigroup and, moreover,

we have an algebraic framework that we can use in order to enumerate or search

through all possible such codes for a given semigroup computation. Examples of such

techniques and ways to approach this problem can be seen in Chapter 4.

3.5.4 Comparison with the Group Case

When comparing the results above with the separate code case for a computation

with an underlying abelian group structure, we see a major difference: in the group

case, finding a (normal8) subgroup N of the original group G completely specifies the

homomorphism 0 in the sense that the inverse images of the elements of the parity

group T are exactly the cosets of G with respect to the subgroup N. Figure 3-4

shows the structure of the parity group T which is isomorphic to GIN. The normal

subgroup N corresponds to the inverse image of the identity of T (defined as the

kernel of the homomorphism 0).

In the more general setting of a semigroup, however, specifying the kernel of

a homomorphism 0 does not completely determine the structure of the parity semi-

group T. In order to define a homomorphism from a semigroup S onto a semigroup T

8 Since we are dealing with abelian groups and semigroups, the term normal is not really necessary.
We put it in parentheses though, in order to emphasize that in most group and semigroup theory,
these facts are stated for normal subgroups, normal subsemigroups and normal complexes. Note
also that, even in the abelian monoid case we are dealing with, a subsemigroup is not necessarily a
normal subsemigroup.

48

Original
Group G' -S

Homomorphism

Paril
Groi
(_=G

Figure 3-4: Structure of the parity group in separate codes.

(or, equivalently, in order to define a congruence relation on a semigroup S) we

need to specify all congruence classes. Each congruence class is the inverse image of

an element of the semigroup T under the homomorphism 0.

In [21], it is shown that congruence classes correspond to (normal) complexes. The

congruence class that is the inverse image of the identity of T (that is, the kernel of the

homomorphism 0) is a (normal) subsemigroup. The actual definitions of a (normal)

complex and a (normal) subsemigroup, adjusted here from [21] for the abelian monoid

case, provide a clearer picture of what a congruence class is:

Normal Complex: A nonempty subset C of an abelian monoid (S, o) is called a normal

complex if, for any x E S and for any k, k' E C, xok E C always implies xok' E C.

Normal Subsemigroup: A nonempty subset C of an abelian monoid (S, o) is called a

normal subsemigroup if, for any x e S and for any k, k' E C or being empty symbols,

xok C always implies xok' E C.

Note that, in the abelian monoid case we are focusing on, a normal subsemigroup

is simply a normal complex that contains the identity element of the monoid 9 [21].

9In fact, we do not need the monoid to be abelian for this.

49

Coset Coset Coset

(Normal)
Coset Subgroup N Coset

(Kernel of 8)

L Coset /Coset I.

11 - --- A - I - -,

Original
Semigroup S

Home

Figure 3-5: Structure of the parity semigroup in separate codes.

However, as we will see in the examples of Chapter 4, a subsemigroup which is a

normal complex is not necessarily the normal subsemigroup.

Figure 3-5 shows the structure of the parity semigroup. The normal subsemigroup

does not necessarily define the normal complexes; they have to be defined separately.

Clearly, this makes the search for separate codes in the semigroup setting much harder

than the search for such codes in the group setting. However, as some of the examples

that are presented in Chapter 4 show, we actually have a greater variety of possible

separate codes and more freedom to choose the kind of code that we want.

3.6 Summary

In this chapter we developed a semigroup-theoretic framework for studying arithmetic

codes for semigroup computations. We have thereby successfully extended the group-

theoretic framework that was developed in [1] to a much more general setting. The

hope is to be able to use this generality to provide fault tolerance to non-linear

systems, such as non-linear signal processing applications and matrix multiplication.

50

Due to the lack of inverses, these systems fit more easily into a semigroup, rather

than a group framework.

More specifically, in this chapter we have showed that arithmetic codes that pro-

vide fault tolerance to a semigroup computation need to be a semigroup homomor-

phism. Through this result, we established an algebraic framework for the study

of arithmetic codes not only at the semigroup level (refer to the examples in Chap-

ter 4) but also for higher semigroup-based algebraic structures (refer to the semiring-

theoretic framework of Chapter 5). Moreover, in the special case of separate codes

we were able to construct a procedure that enumerates all such codes for a given

semigroup computation.

As the next chapter shows, there is always a tradeoff. A semigroup is less struc-

tured and allows for more possibilities when developing arithmetic codes. On the other

hand, exactly because of this flexibility, codes are harder to study in the semigroup-

theoretic framework. The examples in the next chapter make this tradeoff more

concrete.

51

Chapter 4

Protecting Semigroup

Computations: Some Examples

4.1 Introduction

The analysis in Chapter 3 produced a framework that can be used for constructing

arithmetic codes for computations with an underlying semigroup structure. Here,

we use the results and methods developed there to construct and analyze arithmetic

codes for some typical semigroups, such as the set of non-negative integers under

addition (No, +), the set of positive integers under multiplication (N, x), and the

set of integers under the MAXIMUM operation (Z, MAX). The objective in studying

these simple semigroups is to gain more insight on arithmetic codes for semigroup

operations.

This chapter is organized as follows. In Section 4.2 we make extensive use of the

results obtained for separate codes in Chapter 3 and give a complete characterization

of all possible separate codes for the (No, +) monoid. We also present an extensive list

of examples for (N, x), as well as a brief (but complete) description of separate codes

for the (Z, MAX) semigroup. In Section 4.3 we discuss possibilities for non-separate

codes for various semigroups. Finally, Section 4.4 summarizes the conclusions that

we have reached from the study of these examples.

52

4.2 Examples of Separate Codes

In this section, we develop separate codes for (No, +), (N, x), and (Z, MAX). The

analysis for (No, +) and (Z, MAX) will be complete in the sense that we get a complete

characterization of all possible separate code for these semigroups. The analysis for

(N, x) results in a variety of examples and possibilities for separate codes.

4.2.1 Separate Codes for (No, +)

The set of natural integers under the operation of addition forms a very simple abelian

semigroup. This semigroup is cyclic: it is generated by a single element', namely {1}.

In fact, since all other infinite cyclic semigroups have to be isomorphic to it, (N, +)

is the unique infinite cyclic semigroup. If we choose to insert the identity element 0,

we have the (No, +) monoid. In fact, (No, +) is what we will be dealing with for the

rest of this section.

Before focusing on the (No, +) monoid, let us revisit the corresponding group

case: the set of integers (positive and negative) under the operation of addition

forms a cyclic abelian group. This group is usually denoted by (Z, +). Since all

other infinite cyclic groups are isomorphic to it, (Z, +) is the unique infinite cyclic

group [22]. Moreover, as shown in [1] and [22], all possible surjectively homomorphic

images of (Z, +) (other than itself) are finite cyclic groups. A finite cyclic group of

order m is isomorphic to the additive group of integers mod m. Therefore, using the

results obtained in [1] and summarized in Chapter 2 of this thesis, we can achieve

a complete characterization of the separate codes for the (Z, +) group. The parity

group (denoted by T) is isomorphic to the group of integers mod m, where m is an

arbitrary integer. Therefore, the only possible parity channel operations for protecting

addition of integers is addition modulo some integer m. This result was also obtained

by Peterson [17] under a different framework.

Figure 4-1 presents an example of a parity check for (Z, +). (Equivalently, we

1An element a is a generator of a cyclic semigroup (S, o) if S = {a o a o a o ... o a (p times) I p E
{1,2,3, ... }}.

53

Group (Z, +)

Figure 4-1: Example of a parity check code for the group (Z, +).

can think of it as an example of a surjective homomorphism for (Z, +).) The parity

group T is simply the set {0, 1, 2, 3} under the operation of addition modulo 4, which

is denoted by +mod4 In the figure, we can see which elements of the original group Z

map to which elements of the parity group T. As analyzed in Chapter 2, the (normal2)

subgroup of multiples of 4, {4k I k E Z}, maps to the identity of the parity group T,

whereas the three cosets that remain map to the remaining elements of T in a regular

way. In terms of the fault-tolerant model, the parity channel simply performs addition

mod 4.

Clearly, addition mod m could also serve as a parity check in the case of the

monoid (No, +). Such an example (for the case when m = 4) can be seen in Figure 4-

2. The (normal) subsemigroup is the set of positive multiples of 4: {4k I k E No},

whereas the (normal) complexes consist of "shifted" versions of the subsemigroup:

{i + 4k k E No} for i = 1,2,3. Clearly, this situation is very similar to the

corresponding group case we have just discussed. The inverses (negative numbers)

are missing; however, the parity semigroup T is still the exact same finite cyclic group

2In the abelian case we are dealing with, the term "normal" is redundant.

54

Semigroup (No, +)

(I, +moa4)

Figure 4-2: Example of a parity check code for the semigroup (No, +).

of order 4.

Whereas in the (Z, +) case the above parity checks were the only ones possible,

for the semigroup (No, +) other kinds of surjective homomorphisms exist. Because

a semigroup is not as structured as a group, parity checks that protect addition in

(No, +) and differ from the parity checks for (Z, +) can be constructed.

An example of such a parity check can be seen in Figure 4-3. The parity semi-

group (T, o) is not a group anymore. It is simply a finite semigroup of order 8. The

table that defines how the binary operation o of T takes place under all possible pairs

of operands is given in the figure as well3. It can be easily checked that the defining

table implies the operation o is associative and abelian, so that T is indeed an abelian

semigroup. The corresponding surjective homomorphism breaks (No, +) into eight

normal complexes. Four of them (including the normal subsemigroup) consist of a

single element. The other four consist of an infinite number of elements each.

3 A table is the standard method to define finite semigroups. Note that this defining table cannot
be arbitrary: not only has it to imply closedness, but it also has to satisfy the associativity of the
binary operation of the semigroup. Moreover, if the semigroup is abelian, the defining table should
be symmetric along the diagonal that runs from the top left to the bottom right.

55

Semigroup (No, +)

I I1 0 1 112[1° 1 041 14 24 34

0 0 1 2 3 04 14 24 34

1 1 2 3 04 14 24 34 04

2 2 3 04 14 24 34 04 14

3 3 04 14 24 34 04 14 24

04 04 14 24 34 04 14 24 34

14 14 24 34 04 14 24 34 04

24 24 34 04 14 24 34 04 14

34 34 04 14 24 34 04 14 24

Figure 4-3: Example of a parity check code for the semigroup (No, +).

56

In terms of the fault-tolerant model, the operation of the parity channel can be

explained very simply: if the result of the addition is less than 4, then the parity chan-

nel duplicates the computation of the main channel; otherwise it performs addition

mod 4 (just as in the previous examples we have seen). Duplicating the computa-

tion if the result is less than 4 was a choice made to simplify the example that we

presented. In exactly the same way, we could have duplication of the computation if

the result is less than 8, or 12, or any multiple of 4. Of course, that would correspond

to a parity semigroup T of higher order.

If we try to apply a parity check like the above for addition in the group (Z, +)

we fail. The problem is that, once we have exceeded the threshold and we have

started performing addition mod m (where m is the integer that we chose), we do not

have enough information to return back to duplicating the result of the computation.

However, the existence of the inverses (negative numbers) makes it possible for a

computation that starts with the operands lying outside the threshold to result in

a value less than the threshold. In such a case, we have to duplicate the result in

the parity channel, but we do not have enough information to do so. For example,

suppose that we decide to have a threshold of ±12 and that once the result exceeds

this limit we perform addition mod 4. Then 20 + (-16) = 4 would be represent by

something like (Omod4 + Omod4). Since interaction between the parity and the main

channel is not allowed, there is no way for the parity channel to know whether the

result of this computation should be 0, or 4, or 8, or Omod4-

Enumerating all Separate Codes for (No, +)

Here, we show that all possible parity checks for the (No, +) semigroup are in either

of the two forms (Figures 4-2 and 4-3) that were mentioned above. (The proof is

rather long and is included in Appendix A.)

Specifically, we make the following equivalent claim:

Claim: All possible surjective homomorphisms 0 from the semigroup (No, +)

onto a semigroup T have one of the following two forms:

1. For n E No, (n) = n mod M, where M is any finite integer (if M is infinite,

57

then 0 can be thought of as an isomorphism). This kind of homomorphisms

map (No, +) onto a finite cyclic group of order M.

2. For a finite integer M, for n E N we have:

O(n) = n if n < kM (for a fixed positive integer k)

O(n) = n mod M, otherwise

This kind of homomorphisms map (No, +) to a finite semigroup of order M +

kM = (k + 1)M.

The proof in Appendix A uses extensively the tools that were developed in Chap-

ter 3 and applies them to the special case of this simple cyclic semigroup. We now

move to a discussion of the more complicated example of (N, x), the set of positive

integers under multiplication.

4.2.2 Separate Codes for (N, x)

The monoid (N, x) is far more complicated than (No, +). It has an infinite number

of generators, namely the set of prime numbers. As a result, a lot more complexity

is involved when attempting to characterize the set of parity check codes for it.

Let us begin our analysis with a simple example of a separate code for (N, x).

In Figure 4-4, we present a naive parity check. The parity semigroup T is a finite

semigroup of order 4 and it is defined by the table in the same figure. We can

easily verify that the operation o, as defined in the table, is associative and abelian,

so that T is indeed an abelian semigroup. The parity check essentially amounts to

checking whether the result is a multiple of 2 or of 3 or of neither. The corresponding

complexes (or, equivalently, the corresponding congruence classes) of (N, x) are also

shown in Figure 4-4. Complex A contains multiples of 2 and 3 (that is, multiples of

6). Complex B contains multiples of 2 but not multiples of 3. Complex C contains

multiples of 3 but not multiples of 2. The (normal) subsemigroup, denoted by I,

contains numbers that are neither multiples of 2 nor multiples of 3. It is interesting

to note here that in the parity semigroup T, the element I is the identity element and

58

Semigroup (N, x)

| oil I I A I B I C
I I A B C
A A A A A
B B A B A
C C AAC

Figure 4-4: Example of a parity check code for the semigroup (N, x).

A is the zero element4 . Similar examples that check for more than two factors (not

necessarily co-prime) can easily be constructed.

Another example, perhaps more familiar to the reader, is the parity check mod m

where m is a positive integer. In Figure 4-5, we see such a case for m = 4. The

parity semigroup T is finite (order 4) and its binary operation Xmod4 is defined by

the table in the figure. Note that the elements 0,1,2,3 of the parity semigroup

should be treated as symbols rather than integers. However, this notation is useful

because the elements of T under the binary operation X mod4 behave like integers

under multiplication modulo 4. Although the parity semigroup T looks very similar

to the one that was used in the previous example, it is in fact different. A parity

check such as the above can be constructed for any integer m. In such a case, the

4A zero element is the unique element z of S (if it exists) such that for all s E S, s o z = z o s = z.

59

Semigroup (N, x)

Xmod4 11 0 1 2 3 0 0 0 0 01 0 1 2 3
2 0 2 0 2
3 03 2 1

Figure 4-5: Example of a parity check code for the semigroup (N, x).

parity channel essentially performs multiplication mod m. In the special case when

m is a prime number p, the parity semigroup T has a very special structure: if we

discard the zero element, (T - {0}, x) is a group s

Another interesting example is the following. Let P denote the set of prime

numbers, that is, P = {2,3,5,7,11,13,...}. Then, (N, x) can be partitioned into a

set of infinite congruence classes as follows:

Co = {1}

C1 = P = {2,3,5,...)

C2 = p2 = (plxp 2 I Pl,P2 E P}

C3 = P3 = {p1Xp2 XP3 l P1,P2, P3 E P

5In fact, T under integer addition and multiplication mod p is the unique finite field of order m.

60

Ci = pi = P{pi X2 X ... pi I pl, P2 , .., pi E P

The corresponding parity semigroup T will be isomorphic to (No, +). The congruence

class Co maps to 0, C1 maps to 1, and in general Ci $ i. The mapping 0 is clearly a

homomorphism:

0(CixCj) = 0(C(i+j)) = i + j = 0(Ci) + 0(Cj)

Essentially, the above parity computation checks the total number of primes that are

used in producing a result (including multiple uses of the same prime).

More examples are possible, including cases when the parity channel performs the

exact same computation if the result is less than a threshold (just like the examples

we presented in the previous section for the (No, +) monoid6). However, it is not our

concern here to enumerate all possible separate codes for (N, x) (although that was

easy for (No, +)). The purpose was rather to demonstrate the use of the framework

developed in Chapter 3 for generating separate codes for (N, x).

4.2.3 Separate Codes for (z U {-oo}, MAX)

We conclude our examples of separate codes with a brief analysis of codes for (Z U

{-oo), MAX), the semigroup of integers under the MAX operation. MAX is the binary

operation that returns the largest of its operands.

We will characterize the various forms that a congruence class in (ZU{-oo}, MAX)

can take, by following similar steps as in the analysis of the separate codes for (No, +).

6 For example, this can be achieved in exactly the same way for the parity check mod m. See the
analysis for the (No, +, x) semiring in Chapter 5 for a concrete example.

61

For ease of notation, we will use the familiar notion of inequalities:

x > y X MAX(X, y) = X

From the definition of a congruence class, we can easily conclude the following: If

two elements k, k' (without loss of generality assume k > k') belong to a congruence

class C, then the set {x I k > x > k'} is a subset of C. Therefore, we conclude that

any congruence class consists of consecutive integers in an interval. This immediately

yields a complete characterization of the separate codes for (Z U {-oo}, MAX). The

(normal) subsemigroup is, of course, the congruence class that includes the identity

(which in this case is the symbol -oo).

A simple example would be the following pair of congruence classes:

Co = {...,-2,-1} U {-oo}

C = {0,1,2,...}

The corresponding parity semigroup T is of order 2 and its operation o can be defined

in the following table:

I0 0 11 1 1

Intuitively, all that the parity channel is doing is checking that the sign of the result

comes out correctly.

Other examples do exist. In fact, any subdivision of the [-oo, +oo] interval into

consecutive subintervals will work. For example, consider the following set of congru-

ence classes for some fixed positive integer M:

Ci = {iM, iM + 1,...,iM + (M- 1)} for all i E Z

In this case, the parity semigroup T is isomorphic to the (ZU{-oo}, MAX) semigroup.

However, its "range" and its "precision" are smaller by a factor of M. For example,

62

if the elements of Z are represented as binary numbers and M = 16, then this parity

test ignores the 4 least significant bits and then performs the same comparison as the

main channel.

Before we move to non-separate codes, let us note that, if we slightly modify

the above analysis, we can arrive at similar results for the (Z U {+oo}, MIN), (R U

{-oo}, MAX), and (R U {+oo}, MIN) semigroups.

4.3 Examples of Non-Separate Codes

Just as with the study of non-separate codes for group-based computations, the study

of non-separate codes for semigroup-based computation is hard. There is no way of

associating subgroups or congruence relations to them and, in general, the develop-

ment of non-separate arithmetic codes for these computations is more of an art than

a systematic procedure. Of course, the objective would be to homomorphically map

the original group/semigroup to a larger group/semigroup, but this is not a trivial

task.

For example, the only non-separate codes that are well known for the (Z, +)

group are the aN codes which were mentioned in Chapter 1 (see Figure 1-3). These

codes definitely comprise a class of non-separate codes that can be used for protecting

(No, +), although a natural extension of them for the semigroup case is not clear. A

brief analysis of aN codes can be found in [1] and a more extensive treatment can be

found in [16]. In that case, they are used as arithmetic codes to protect the (Z, +)

group but they can certainly be used in the same way to protect the (No, +) monoid.

4.4 Summary

The main emphasis of this chapter was to demonstrate (through a variety of examples)

the use of the semigroup-theoretic framework for the development of separate codes

for semigroup-based computations. This demonstration focused mainly on simple

semigroups like the semigroup of non-negative integers under addition or multiplica-

63

tion and the semigroup of integers under the MIN and MAX operations.

Having presented a variety of codes for these semigroups (sometimes completely

characterizing all possible separate codes for them), we are now in position to ex-

tend the framework and the tools that we have to higher group- or semigroup-based

structures. In Chapter 5, we develop two such frameworks and use them to analyze

the arithmetic codes for various computations with an underlying ring or semiring

structure 7. Among others, we consider the ring of integers under addition and multi-

plication and the semiring of non-negative integers under addition and multiplication.

The analysis will result in complete characterizations of all possible separate codes

for both of these structures.

64

7 Definitions are provided in Chapter 5.

Chapter 5

Frameworks for Higher Algebraic

Structures

5.1 Introduction

Up to this point, we have dealt exclusively with algebraic structures that permit a

single operation. The focus of the theoretical analysis in Chapters 2 and 3 and of

the examples in Chapter 4 was on group or semigroup computations. In this chapter,

we are concerned with higher algebraic structures that are derived from these simple

ones. Specifically, we rigorously extend the group framework to a ring framework (as

outlined in [1]) and extend the semigroup framework to a semiring framework. Much

of the classical work on fault-tolerant computation is developed for the case of rings,

but the connections to group computations have not been highlighted prior to [1].

Our systematic work on protecting semiring computations appears to be novel.

These extensions to higher structures allow us to protect more complex and more

common computations that comprise two operations associated by some distributive

laws. Moreover, different possibilities are opened up for the resolution of certain

important issues. For example, the error model need not be purely additive anymore;

it can have both an additive and a multiplicative component. By having more options

for modeling the error, we should be able to better approximate the actual faults that

take place in the computational system. This can lead to more efficient arithmetic

65

codes and to error correction techniques that were not possible in the group/semigroup

case.

In this chapter, we limit ourselves to setting the foundations of a ring/semiring

framework for studying arithmetic codes. We formulate the problem mathematically

and, through examples, we study the design of arithmetic codes. The application

of this framework to the analysis of arithmetic codes, the design of efficient error

correction techniques, and so on, is left to future work.

This chapter is organized as follows. In Section 5.2 we formalize and develop the

ring-theoretic framework that was mentioned in [1]. Then, in Section 5.3, we provide

a few examples that fit in this framework. The semigroup framework is extended to

a semiring framework' in Section 5.4. A few examples of separate codes for semirings

are presented in Section 5.5. Finally, Section 5.6 summarizes the results and concludes

the chapter.

5.2 Ring-Theoretic Framework

In this section we extend the results of Chapter 2 for the group case to a higher

group-based structure known as a ring. Because our analysis closely follows the steps

that we took in Chapter 2, we avoid detailed explanations when possible. We begin

with the definition of a ring, and of the associated model for computations in a ring.

5.2.1 Computation in a Ring

The definition of a ring (taken from [23]) is as follows.

Definition: A ring 1R = (R, +, x) is a non-vacuous set of elements R together

with two binary operations + and x (called addition and multiplication respectively),

and two distinguished elements 0+ and 1x such that:

1A semiring is the natural extension of a ring when we relax the requirement that the set forms
a group under the additive operation and, instead, only require it to form a monoid. A formal
definition of the semiring structure is given in Section 5.4.

66

* R forms an abelian group under the operation of addition. The identity element

of the group is 0+.

* R forms a monoid under the operation of multiplication. The identity element

of the monoid is 1x.

* For all a, b, c E R, the following distributive laws are satisfied:

1. a x (b + c) =(a x b) + (a x c), and

2. (b + c) x a =(b x a)+ (c x a)

The most familiar example of a ring is the set of integers under the operations

of addition and multiplication (this ring is denoted by (Z, +, x)). Another familiar

example is the ring (R[z], +, x) of polynomials in the intermediate z. Both of these

rings are abelian rings, because the multiplicative operation is also an abelian oper-

ation. An example of a non-abelian ring, perhaps less familiar, is the set of NxN

matrices under the operations of addition and multiplication (matrix multiplication

is not an abelian operation).

The defining properties of a ring force the additive identity O+ to act like the

multiplicative zero ([15]), that is, for all elements r E R:

r x O+ = O+ x r = 0+

This is a very important property of a ring. In fact, as we will see later on, this is

what forces the kernel of a homomorphism to have the form of an ideal.

Fault-Tolerant Model

The model for fault-tolerant ring computation can be seen in Figure 5-1. Just as

with the previous models we have seen, the operands r1 , r2 , ... , rp are encoded via the

encoders {i}. The computation takes place in the redundant computational unit

that performs operations in a higher (redundant) ring. Errors {ei} are introduced

during this redundant computation.

67

Operands

r I

r2 -- -- 1 =

, :E rH

CCu)

Errors ei)

Detectable or
Irreversible Error

Error Result r
Corrector rH Decoder

a(.) ') Result
Figure 5-1: Fault-tolerant model for a ring computation.

The rest of the fault-tolerant system remains exactly the same as the model for

group computations of Chapter 2. The output of the redundant computation unit is

a possibly corrupted result, which we denote by rH. The error corrector maps r to

the fault-free redundant result rH. In the case of an error that is irreversible or only

detectable, the error corrector signals so. The decoder maps (through the decoding

mapping oa) the fault-free redundant result rH to its desired, unencoded form, r. As

usual, an implicit assumption in this figure is that the encoders, the error corrector

and the result decoder are fault-free.

Error Model

Despite the fact that the choice of error model does not affect the limited analysis

that we present in this thesis, a few remarks on this choice are in order. It should be

clear by now that, in the case of a ring, the additive error model (defined with respect

to the + operation) is not necessarily the best. A multiplicative error model (that

is, an error model that is "additive" with respect to the x operation 2), or perhaps a

2 The use of a multiplicative error model is more sensible if the ring is abelian, that is, the
multiplicative operation is abelian. If the ring is not abelian, then we should be more careful: we

68

combination of a multiplicative and an additive error model, could be a better choice.

Of course, it all depends on the particular computation at hand, the actual hardware

faults that can take place in our computational system, and how efficiently these

faults can be represented by our error model.

Since the choice of the error model does not affect the analysis of arithmetic codes

that we present in the rest of this section, we are content to leave further study of

the error model to future work.

5.2.2 Use of Ring Homomorphisms

Let us now formulate the requirements that emerge from our model in terms of the

original ring (R, +, x), the redundant ring (H,o, o), and the decoding mapping .

The desired result r is found by decoding the uncorrupted result r of a fault-free

redundant computation:

r = rl) r2O ... rp = (rH)

where each (3 could independently be either the additive (+) or the multiplicative

(x) operation of the original ring R, and rH = ql(rx)*0 2(r 2)*...*bp(rp) with * being

either the additive (o) or the multiplicative (o) operation of the redundant ring H.

We are now in position to state the following claim:

Claim: When both (R, +, x) and (H, o, o) are rings, under the assumptions that:

1. The mapping a is one-to-one, and

2. bl(lx) = qb2 (lx) = ... = Op(lx) = 1 (that is, all encodings map the multiplica-

tive identity of R to the multiplicative identity of H),

all the Oi's have to be the same ring homomorphism b = a - l .

Proof: By simply considering R as a group under the additive operation, we can

show (Chapter 2) that all the Xi have to be the same (i(r) = a-l(r) for all r e R)

need to define a left and a right multiplicative error and distinguish between the two.

69

and satisfy:

Oi(ri + r2) = Oq(r1) o k(r2) for all rl, r2 E R

Moreover, by simply considering R as a monoid under the multiplicative operation,

we can show (Chapter 3) that for each encoding, qi(r) = a-l(r) for all r E R, and

also 3:

Oi(rixr 2) = i(rl) Oqi(r2) for all rl,r 2 E R

The above two equations, together with the condition qi(lx) = lo that we have

assumed, are exactly the definition of a ring homomorphism. V

In arriving at this result, we only had to make the same set of basic assumptions

that we made earlier in Chapters 2 and 3 when considering the simpler group and

semigroup structures. The only extra choice we had was whether to associate the

additive operation of R with the multiplicative operation of H (instead of its additive

operation). However, this could not guarantee that the mapping would be compatible

with the associative laws that hold in the original ring R. In fact, the multiplicative

operation in the redundant ring H is not even known to be abelian, whereas the ad-

ditive operation of R is. Therefore, a way to overcome these problems is to associate

the additive (respectively, multiplicative) operation of R with the additive (multi-

plicative) operation of H. Once we decide on this, the mappings {qi} are forced to

be the exact same ring homomorphism .

By studying ring homomorphisms, we can develop and analyze arithmetic codes

for computational tasks that can be modeled as operations in a ring. Moreover, just

as in the group case, there is a systematic way of studying separate codes for ring

computations. This is the theme of the next section.

5.2.3 Separate Codes for Rings

In the special case of separate codes, the ring homomorphism b maps the original

computation in a ring R to a redundant computation in a higher order ring H, where

3In Chapter 3 we assumed that we were dealing with an abelian monoid. However, the proof of
the following relation does not require the monoid to be abelian.

70

H is the cartesian product of R and a parity set (which is also a ring) that we will

call T, that is:

R 4 H=RxT

The homomorphic mapping satisfies b(r) = [r, O(r)], where 0 is the mapping that

creates the parity information from the operands. The set of valid results Hv in H

(that is, the set of results obtained under fault-free computation) is the set of elements

of the form [r, 0(r)], for all r E R.

Let us now show that is a ring homomorphism from R to T. Let the symbols

+, x denote the additive and multiplicative operations of R, the symbols o, o denote

the corresponding operations of H, and the symbols E, 0 denote the corresponding

operations of the parity ring T. Also let:

h = (r1) = [ri, (ri)]

h2 = (r2) = [r2,0(r2)]

where h, h 2 E H, rl,r 2 R, and (rl), O(r2) E T. Since the computations of the

main and parity channels do not interact, we require that under error-free operation:

hl o h 2 = ((rl) o (r2) = [rl+r 2, 0(ril)0(r 2)]

h o h2 = (rl)o q,(r 2) = [rxr 2,0(rl)0(r 2)]

Since the mapping is a homomorphism, we also have:

q(r 1) o q(r 2) = O(r1 + r 2) = [rl+r 2 , 0(rl + r 2)]

((rl) o (r 2) = /(rl xr 2) = [rlxr 2, 0(r xr 2)]

We conclude that

0(rl)eO(r2) = O(rl + r2)

o0(r,)0(r2) = o(rlxr2)

71

The above properties, together with 0(lx) = 1 (a fact that can be shown easily),

establish that the mapping 0 is a ring homomorphism from R to T.

If we require that 0 is onto T, then the problem of finding suitable separate codes

reduces to the problem of finding suitable surjective homomorphisms 0 from R onto

T. Here is where a standard theorem from ring theory (see for example [15]) almost

solves our problem completely. Before we state it, however, we need to define what

an ideal is.

Definition: A nonempty subset U of a ring (R, +, x) is said to be an ideal of R

if4:

1. U is a subgroup of R under the additive operation.

2. For every u E U and r E R, both uxr and rxu are in U.

Theorem: Let R, T be rings and 0 a homomorphism of R onto T with kernel U.

Note that U is an ideal of R. Then T is isomorphic to R/U. Conversely, if U is an

ideal of R, then R/U is a ring and it is a surjectively homomorphic image of R.

The above theorem states that there is an isomorphism between surjective homo-

morphisms 0 of the ring R onto T, and ideals U of R: the quotient ring R/U provides

an isomorphic image of T. Therefore, by finding all possible ideals of R, we can find

all possible surjective homomorphisms 0 of R onto another ring T. Note that once

we decide upon the ideal U, then the construction of the quotient ring R/U only

uses the additive group structure of the ring: R/U is formed by the standard coset

construction for groups. The ring structure is such that the multiplicative operation

only needs to be considered when finding an ideal for the ring R. After that, we only

need to worry about the additive operation.

The problem of finding all possible separate codes for a computation with an

underlying ring structure has been reduced to the well formulated algebraic problem

of finding all possible ideals of a ring. Of course, finding the ideals of a ring is not a

trivial task, but now we at least have a well-defined procedure that can be used to

4Some authors use the term "two-sided ideal" for what we define here as an ideal.

72

construct arithmetic codes. Moreover, it results in a complete characterization of the

possible separate codes for computation in a ring.

5.3 Examples in the Ring-Theoretic Framework

In this section we present some examples (taken from [1]) of already existing arith-

metic coding schemes in the ring framework. We start with examples of non-separate

codes and then move to examples of separate ones.

5.3.1 Examples of Non-Separate Codes

The dominant example of a non-separate arithmetic code comes from the ring of

N x N matrices. The example was presented in detail in Chapter 1 as an instance of

Algorithm-Based Fault Tolerance (ABFT). The set of NxN matrices forms a group

under the operation of matrix addition. If we include matrix multiplication, it forms

a non-abelian ring (known as the ring of matrices). Assuming an additive error model

(with respect to the additive group operation), errors take place as:

R'= R + E

where R' is the possibly corrupted result, R is the error-free result, and E is a matrix

that represents the additive error.

Under these assumptions, a homomorphism that maps the matrix ring to a

larger redundant ring will correspond to an arithmetic code. Therefore needs to

satisfy the following requirements:

O(A + B) = +(A) o (B)

q(A x B) = (A) o +(B)

O(Ix) = Io

where the symbols o and o have been used to denote the operations that take place

73

in the homomorphic ring and are not necessarily the same as the operations of the

original ring. The symbol Ix represents the multiplicative identity (identity matrix)

in the original ring, whereas I, represents the multiplicative identity in the redundant

ring.

In the ABFT example that was presented in Chapter 1, the homomorphic mapping

q maps the N x N matrix to a larger (N + 1) x (N + 1) matrix by adding to it an extra

checksum row and an extra checksum column5 . In order to satisfy the homomorphism

equations above, we need to ensure that we perform the (N + 1)x(N + 1) matrix

product q(A)oq(B) in the following way: we ignore the checksum column of A and the

checksum row of B and then perform regular matrix multiplication of an (N + 1) x N

matrix with an N x(N + 1) matrix. It can be easily verified that the result will

be an (N + 1)x(N + 1) matrix that satisfies the requirements for the mapping to

be homomorphic. The operation of addition on the homomorphic images o remains

the same as regular matrix addition. The last requirement (that the multiplicative

identity Ix maps to I,) is also satisfied by the mapping b and the multiplicative

operation o as defined above.

This scheme was introduced in [3] and provided sufficient error correction as long

as the error matrix E had only a single non-zero entry. When E has more than one

non-zero entry, we need more redundancy. ABFT schemes for exactly this purpose

were developed later in [4]. They were basically a natural extension of the method

described above.

More examples of codes in the ring framework can be found in [1]. Such codes

include linear transformations, codes for finite fields6 and others.

5.3.2 Examples of Separate Codes

Residue codes are separate codes that can be used to protect computation in (Z, +, x),

the ring of integers under addition and multiplication.

5 The element in the lower right corner of the matrix turns out to simply be the sum of all the
elements of the original Nx N matrix.

6 A field is a special case of a ring where the multiplicative operation is abelian and the set of
non-zero elements forms a group under the multiplicative operation.

74

The ideals of (Z, +, x) are known to be of the following form:

U = {O, M, 2M, 3M,...}

for a non-negative integer M. If M = 0 then U = {0} and this corresponds to the

surjective homomorphism 0 being an isomorphism that maps (Z, +, x) onto itself, i.e.

the parity information is just a repetition of the element being coded. If M = 1, then

U = Z and 0 corresponds to the trivial homomorphism that maps Z onto the trivial

ring of a single element7 .

However, for all other M > 1 we get a non-trivial separate code. Given our results

in Chapter 4 on separate codes for (Z, +), it is not hard to convince oneself that

when M > 1, the code corresponds to a parity channel that performs addition and

multiplication modulo M. Therefore, we have arrived at the interesting conclusion

that the only possible non-trivial separate codes for protecting computation in the

ring of integers are residue codes that perform operations modulo an integer M. In

fact, this same result was obtained by Peterson [17].

More examples of separate codes for ring-based computations can be found in [1].

They include examples in the ring of polynomials, linear transformations, real residue

codes, and others.

5.4 Semiring-Theoretic Framework

5.4.1 Computation in a Semiring

In this section we are interested in studying higher semigroup-based structures. More

specifically, we study fault-tolerant computation in a semiring, a simple algebraic

structure that admits two operations. We begin with the following definition of a

semiring, which is a slightly altered version of the definition found in [24]:

7 Technically speaking, our definition of a ring does not allow for this trivial ring.

75

Definition: A semiring R = (R, +, x) is a non-vacuous set of elements R

together with two binary operations + and x (called addition and multiplication

respectively), and two distinguished elements 0+ and lx, such that:

* R forms an abelian monoid under the operation of addition. The identity ele-

ment of the additive monoid is 0+.

* R forms a monoid under the operation of multiplication. The identity element

of the multiplicative monoid is 1 x.

* All a, b, c E R satisfy the distributive laws:

1. a x (b + c) =(a x b) + (a x c), and

2. (b + c) x a = (b x a) + (c x a).

Clearly, every ring is a semiring. The most natural example of a semiring that is

not a ring is the set of non-negative integers under integer addition (additive opera-

tion) and multiplication (multiplicative operation). This semiring is usually denoted

by (No, +, x). One can easily check that the conditions of a semiring are satisfied:

integer addition is abelian and associative, integer multiplication is associative, and

multiplication distributes over addition. In fact, (No, +, x) will be the focus of our

examples in the next section.

Other examples of semirings are (Z U {-oo}, MAX, +), the set of integers under

the operations MAX (additive operation) and + (multiplicative operation) 8 , and (U

{-oo}, MAX, +) (the set of real numbers under the same operations). Clearly, we

can replace the MAX operation with MIN (and include the symbol +oo instead of

-oo) and still get a semiring. Another interesting example of a semiring is (Z U

{+oo}, MAX, MIN) that is, the set of integers under the MAX and MIN operations.

In fact, (Z U { :oo}, MIN, MAX), (R U {±oo}, MAX, MIN), (R U {±oo}, MIN, MAX) are

also examples of semirings. The reader can verify that these structures satisfy the

requirements of our semiring definition.

8This is an interesting example because integer addition behaves like a multiplicative operation.

76

Before we present the general framework for protecting computations with an

underlying semiring structure, we make a comment on the definition of a semiring.

Some authors assume that a semiring is a bit more structured, requiring that in a

semiring (R, +, x) the additive cancellation law is satisfied, that is:

For all a, b, c E R, if a + c = b + c then a = b

Interestingly enough, this assumption forces 0+, the additive identity of R, to behave

as a multiplicative zero9 :

For any element r E R: r x 0+ = 0+ x r = 0+

Some other authors (including [24] and [25]) simply assume that a semiring satisfies

the equation above (and not necessarily the additive cancellation law). As we will

see in our analysis, this assumption simplifies our task slightly. However, we keep the

definition and the analysis of a semiring as general as possible. We begin the analysis

of the fault-tolerant model in the next section.

Fault-Tolerant Model

In order to protect a computation with an underlying semiring structure, we use the

computational model shown in Figure 5-2. We protect a computation in a semir-

ing R by mapping it to a larger (redundant) semiring H. The operands rl, r2 ,..., rp

are encoded via the encoders {i} and the redundant computation takes place in

semiring H. Errors {ei} might be introduced during this redundant computation.

Once again, we assume that the encoders, error corrector and decoder are error-free.

The rest of the fault-tolerant system remains exactly the same as in the model for

semigroup computations in Chapter 3. Let us denote the possibly corrupted output

of the redundant computational unit by r; then the error corrector tries to map r'

to the fault-free redundant result rH. In the case of an irreversible or a detectable

error, the error corrector signals so. The decoder, as usual, performs the decoding of

the fault-free redundant result to its original form, which we denote by r.

9The proof makes use of the distributive and additive cancellation laws. We leave it to the reader.

77

Operands

ri -, - - -- X

r'.1~2$'

C,

I5 - i

Errors {ei}

Detectable or
Irreversible Error

Error ResultCorrector rH Decoder

Result

Figure 5-2: Fault-tolerant model for a semiring computation.

5.4.2 Use of Semiring Homomorphisms

Before we start our analysis, we make a note on semiring homomorphisms: a semiring

homomorphism from (R, +, x) to (H, o, o) is, by definition, a mapping 4 that satisfies

the following rules:

* For all a,b ER:

q(a + b) = s(a) o b(b)

q(axb) = q(a) o (b)

* The mapping should also map the additive and multiplicative identities of R to

the additive and multiplicative identities of H respectivelyl°:

q(0+) = 00

0(lx) = lo

10 If the semiring H satisfies the additive cancellation law, we can easily show that the mapping
has to map the additive identity of R to the additive identity of H. Therefore, in this case, the first
of the two statements is not necessary.

78

By following the steps of Section 5.2, we can easily arrive at the following conclu-

sion:

Claim: Suppose (R, +, x) and (H, o, o) are both semirings, with identities 0+, lx

and 00, 1, respectively. Then, under the assumptions that:

1. The mapping a is one-to-one,

2. 1(0+) = 02(0+) = ... = p(0+) = Oo (that is, all encodings map the additive

identity of R to the additive identity of H), and

3. +1(x) = 2 (lx) = ... = p(lx) = 1l (all encodings map the multiplicative

identity of R to the multiplicative identity of H),

then all di's have to be equal and have to be a semiring homomorphism = a -1.

Proof: The proof is virtually identical to the proof in Section 5.2 and is left to

the reader. /

At this point we have established that the study of arithmetic codes for a given

semiring computation is equivalent to the study of semiring homomorphisms. In what

follows, we use this result to study separate codes for semirings.

5.4.3 Separate Codes for Semirings

In the ring case that we analyzed in Section 5.2, there was enough structure so that a

simple specification of the kernel of a ring homomorphism (which really corresponds

to what was defined earlier as an ideal) was able to determine completely the whole

homomorphism. In the semiring case, we are not as fortunate. As we will see, the

analysis breaks down at two points:

* The kernel of a semiring homomorphism, being a normal subsemigroup under

the additive operation, is not even strong enough to completely specify the

normal complexes of the semiring under the additive operation.

* Even if we are able to specify all possible ways of partitioning the semiring into

normal complexes under the additive operation (given a kernel for a homomor-

79

phism), it is not guaranteed that all of these partitions will comply with the

homomorphic requirement on the multiplicative operation.

The theoretical analysis that follows generalizes the notion of a semigroup con-

gruence relation/class to a semiring congruence relation/class, and the notion of a

normal complex/subsemigroup to the notion of a semiring ideal/complex. The at-

tempt is to provide definitions, tools and methods that enable us to study semiring

homomorphisms.

Parity Encoding for Separate Codes

The model for fault-tolerant computation using separate arithmetic codes remains

exactly the same as the model for a computation that takes place in a ring. By fol-

lowing the steps we followed in Section 5.2, we can show that the encoding mapping 0

has to be a semiring homomorphism from (R, +, x) to (T, E, 0), because it satisfies:

* For all a, b E R:

O(a + b) = (a) O(b)

O(axb) = O(a) (b)

* Also:

0(0+) =

0(1x) = l®

Determination of Possible Homomorphisms

In this section, just as we did in the previous cases, we assume that the semiring

homomorphism is surjective, and outline a systematic approach for enumerating all

such homomorphisms for a given semiring R. In order to achieve that, we look for

semiring congruence relations and attempt to partition the original semiring into

classes based on these relations:

80

Definition: An equivalence relation , on the elements of a semiring (R, +, x) is

called a semiring congruence relation if it is compatible with the two operations

of the semiring in the following sense:

For a, b, a', b' E R we have: If a - a', b b' = a+b , a'+b' and axb - a'x b'

Now, let the set R/, denote the set of equivalence classes of the semiring R under

the semiring congruence relation (we call these classes semiring congruence classes).

For equivalence classes [a], [b] ([a] is the equivalence class that contains element a) we

define the following binary operations:

[a]E[b] = [a+b]

[a]®[b] = [axb]

Claim: Both of the above operations are well-defined and R/ (the set of equiv-

alence classes of R under the congruence relation) is a semiring.

Proof: If [a] = [a'] and [b] = [b'] then a a' and b b'. Therefore, a + b a' + b'

and a x b a' x b', which means that a + b belongs to the same semiring congruence

class as a' + b', and a x b belongs to the same semiring congruence class as a' x b'.

Therefore, operations $ and 0 are well-defined. Operations $, 0 are clearly asso-

ciative (they inherit associativity from +, x respectively). Moreover, operation is

evidently abelian and the distributive laws for operations D and 0 are inherited from

the distributive laws of R. The additive identity of R/- is [0+] and its multiplicative

identity is [1 x]. Therefore, (R/-, ($,) is a semiring. /

Now, we are ready to state the following theorem:

Theorem: Let : (R, +, x) -- (T, $, 0) be a surjective semiring homomor-

phism. Let relation - be defined by:

x-y 0(x) = (y)

Then, , is a semiring congruence relation and R/- is isomorphic to T. Conversely,

81

if is a semiring congruence relation, then the mapping 0: R - > R/- such that for

all r E R

0(r) = [r]

is a surjective semiring homomorphism.

Proof: The proof is exactly the same (other than considering two operations

instead of one) as the proof of the similar statement for a semigroup in Chapter 3.

We leave the details of the proof to the reader. V/
The above theorem states that all surjective homomorphic images T of a semir-

ing R can be found (up to isomorphism) by finding all semiring congruence relations

that exist in R. Therefore, all possible separate codes that protect a computation in

a semiring R can be enumerated by finding all semiring congruence relations of R.

In each case, the semiring T that provides the parity information is isomorphic to

R/l- and H is isomorphic to R x R . Of course, the enumeration of all semiring

congruence relations might not be an easy task. However, we have obtained a com-

plete characterization of the separate codes for a semiring computation. Moreover,

we have an algebraic framework that can be used to study separate codes for semiring

computations.

The notion of semiring congruence relations in a semiring R investigates surjective

semiring homomorphisms by looking "globally" over the semiring and verifying that

certain equivalence classes satisfy the requirements of a semiring congruence class.

However, sometimes we would like to address more "local" questions: under what

conditions could a given subset of elements of R correspond to a semiring congruence

class (or, equivalently, to the complete preimage of an element under some semiring

homomorphism of R). The remainder of this section answers this question by in-

troducing the concepts of a semiring complex and a semiring ideal (which are really

extensions of the normal complex and normal subsemigroup respectively).

Definition: A non-empty subset N of a semiring (R, +, x) is called a semiring

complex if:

* For any z, l, r E R and for any nl, n2 E N,

82

if z + (x ni x r) E N, then z + (I x n2 x r) E N.

The following theorem establishes the equivalence between a semiring complex

and a semiring congruence class.

Theorem: For the subset N of a semiring R to be a complete preimage of one

element under some surjective homomorphism of R, it is necessary and sufficient that

N be a semiring complex.

Proof: The proof is rather long and is deferred to Appendix A. /

If we look at the special case of the congruence class that contains the additive

identity O+ of R (that is, the kernel of the homomorphism) we get the following:

Definition: A non-empty subset U of a semiring (R, +, x) is called a semiring

ideal if:

* 0+EU.

* For any z, , r E R and for any nl, n2 E U

If z + (x n x r) E U, then z + (I x n2 x r) E U.

Theorem: In order that the subset U of a semiring R should be, under some

surjective semiring homomorphism 0: R -4 T, the complete preimage of the additive

identity OE of T, it is necessary and sufficient that U be a semiring ideal.

Proof: U has to be semiring complex and has to contain the additive identity

(because for any semiring homomorphism 0(0+) = 0E). /

Before closing this section, let us make an observation about the form of the

semiring ideal in the special case of a semiring in which the additive identity acts as

a multiplicative zero that is, for any element r E R:

O+ x r = r x O+ = 0+

Since O+ E U we see that for any ul, u2 E U we need:

ul + (I x u2 x r) EU for all , r ER

(this is easy to see - just express ul = ul + I x O+ x r for any , r E R). If we set

83

r = I = 1 , we see that U is a subsemigroup under the additive operation (in fact,

it has to be a normal subsemigroup, as can be seen easily). If we set ul = 0+ we see

that for any u E U and all , r E R

IxuxrEU

We conclude that in this special case a semiring ideal is a subset U of R such that:

* U is normal subsemigroup that contains 0+ under the additive operation.

* For any 1,r ER the set I x U x r C U.

Under these circumstances, the concept of a semiring ideal is exactly the same as in

[24] and is very close to the concept of the ideal in the ring case that we studied in

Section 5.2.

At this point, we conclude the theoretical analysis for the semiring case. In order

to demonstrate these results and ways to use them, we present a few examples.

5.5 Examples in the Semiring-Theoretic Frame-

work

5.5.1 Separate Codes for (No,+, x)

In this section we present examples of separate codes for (No, +, x), the semiring of

non-negative integers under addition and multiplication. Our analysis results in a

complete characterization of the separate codes for this semiring. However, this is

in some ways an unfortunate example, because the analysis is relatively easy. The

elaborate theoretical analysis in the previous section can be verified, but those results

are not really necessary in finding the possible separate codes.

By comparing (No, +, x) with (Z, +, x) we can easily see that a residue check

can be used to protect computation in this semiring. Such a check corresponds to a

parity channel that performs integer addition and multiplication modulo some positive

84

Semiring (No,+,x)

Figure 5-3: Example of a residue check mod 4 for the semiring (No, +, x).

integer M. Figure 5-3 shows an example of such a residue check when M = 4. The

semiring congruence classes under this surjective homomorphism are shown in the

figure. The operations D and that take place in the parity semiring T are simply

addition and multiplication modulo 4.

From the results of the previous section and from the examples in Chapter 4,

we expect that this kind of separate code might not be the whole story. Any par-

tition of (No, +, x) into semiring congruence classes results in a semiring surjective

homomorphism. We know that the semiring congruence classes for (No, +, x) are

congruence classes under both operations (addition and multiplication), that is, they

are semigroup congruence classes for both (No, +) and (No, x). Since we already

have a complete characterization of the congruence classes for (No, +) (Chapter 4),

we know that the semiring congruence classes for (No, +, x) can only correspond to

homomorphic mappings of the form:

1. For n E No, (n) = n mod M, where M is any finite integer.

85

Semiring (No,+,x)

Figure 5-4: Example of a parity check code for the semiring (No, +, x).

2. For fixed finite positive integers M, k, for n E No we have:

O(n) = n if n < kM

O(n) = n mod M, otherwise

Fortunately, the above classes also satisfy the congruence requirements under the

multiplicative operation. Therefore, they can be used as separate codes for protecting

computations in the (No, +, x) semiring. In fact, this is a complete characterization

of all separate codes for this semiring. In Figure 5-4 we present an example of a parity

check code for (No, +, x) that is of the second form mentioned above: if the result is

less than 8, then the parity channel duplicates the computation, otherwise it simply

performs addition or multiplication mod 4. The parity semiring T has operations

& (additive) and (multiplicative). The defining tables for them can be found in

Table 5.1.

In Section 5.3, we saw that the only possible kind of separate code for computa-

tions in (Z, +, x), the ring of integers under addition and multiplication, is a parity

86

OPERATION I

I 1 2 3 1 4 15 16 7 1 04 14 24 34

0 0 1 2 3 4 5 6 7 04 14 24 34

1 1 2 3 4 5 6 7 04 14 24 34 04

2 2 3 4 5 6 7 04 14 24 34 04 14

3 3 4 5 6 7 04 14 24 34 04 14 24
4 4 5 6 7 04 14 24 34 04 14 24 34

5 5 6 7 04 14 24 34 04 14 24 34 04

6 6 7 04 14 24 34 04 14 24 34 04 14

7 7 04 14 24 34 04 14 24 34 04 14 24

04 04 14 24 34 04 14 24 34 04 14 24 34

14 14 24 34 04 14 24 34 04 14 24 34 04

24 24 34 04 14 24 34 04 14 24 34 04 14

34 34 04 14 24 34 04 14 24 34 04 14 24

OPERATION 0

0 l 0 1 2 3 4 5 6 7 04 14 24 34

1 0 1 2 3 4 5 6 7 04 14 24 34

2 0 2 4 6 04 24 04 24 04 24 04 24

3 0 3 6 14 04 34 24 14 04 34 24 14

4 0 4 04 04 04 04 04 04 04 04 04 04

5 0 5 24 34 04 14 24 34 04 14 24 34

6 0 6 04 24 04 24 04 24 04 24 04 24

7 0 7 24 14 04 34 24 14 04 34 24 14

04 0 04 04 04 04 04 04 04 04 04 04 04

14 0 14 24 34 04 14 24 34 04 14 24 34

24 0 24 04 24 04 24 04 24 04 24 04 24

34 0 34 24 14 04 34 24 14 04 34 24 14

Table 5.1: Defining tables of the operations e and 0 for the parity semiring T.

87

check that performs addition and multiplication modulo M (M being a positive in-

teger) [16] [17] [1]. However, when concentrating on the less structured semiring of

non-negative integers (No, +, x), more possibilities are opened. We hope that, by us-

ing the semigroup framework, we can utilize this extra flexibility to discover efficient

codes that suit our error detecting and correcting requirements.

5.5.2 Separate Codes for (z U {ioo}, MIN, MAX)

In this section we briefly discuss separate codes for (ZU{+oo}, MIN, MAX) the semiring

of integers under the operations MIN (additive) and MAX (multiplicative). The same

discussion applies if we switch the two operations (that is we make MAX the additive

operation and MIN the multiplicative one).

We already know from the analysis of (Z, MIN) and (Z, MAX) in Chapter 4 that the

congruence classes for both of these semigroups are intervals of consecutive integers.

Therefore, we conclude that the semiring congruence classes for (ZU{±oo}, MIN, MAX)

will be of the exact same form, that is consecutive intervals of integers. All of the

examples of separate codes that we saw in Chapter 4 for (Z, MAX/MIN) can be used

without any modification to protect this semiring.

In fact, this is a complete characterization of all possible semiring congruence

classes of (Z U {+oo}, MIN, MAX). Clearly, the same results apply to the semirings

(R U {±oo}, MAX, MIN) and (R U {+oo}, MIN, MAX).

5.5.3 Separate Codes for (z U {-oo}, MAX, +)

If we consider the congruence classes of the semigroups (Z, MAX) and (Z, +) sepa-

rately (both of them were analyzed in Chapter 4), we see that they have no common

intersection (other than the trivial congruence classesil). Therefore, we conclude

11Each semigroup/semiring can be partitioned into congruence classes in two trivial ways:

1. Take the whole set of elements as one big congruence class. This corresponds to a surjective
homomorphism that maps everything to the zero element.

2. Make each element a separate congruence class. This corresponds to an isomorphism.

88

that no non-trivial separate codes can be used to protect computation in the semir-

ing (Z U {-oo}, MAX, +). Of course, the same results apply to (Z U {+oo}, MIN, +),

(R U {-oo}, MAX, +), and (R U {+oo}, MIN, +).

It is interesting to note that the above conclusion is false for the semiring (No U

{-oo}, MAX, +). As we saw in Chapter 4, the semigroup (No, +) allows for more

kinds of surjective homomorphisms than the group (Z, +). This extra freedom

suggests that there might exist non-trivial surjective homomorphisms for the semir-

ing (No U {-oo}, MAX, +). In fact, one such homomorphism (taken from [24]) is the

following:

Let X, be the finite set {-oo, , 1, ..., n}, where -oo is assumed to satisfy the condi-

tions -oo < i and -oo +i = -oo for i E X,. Let o be the operation xoy = MAX(x, y)

and o be the operation x o y = MIN(x + y, n). (One can easily check that (X,, o, o)

is a finite semiring.) Now, if we let i, : (N U {-oo}, MAX, +) - > (X,, o, o) be the

mapping:

g~(i) = i,for i< n

= n, otherwise

for all i E No, we easily conclude that b, is a semiring homomorphism (the verification

is left to the reader). In fact, this mapping is very reminiscent of the homomorphisms

for (No, +) that we saw in Chapter 4, where up to a certain threshold (in this case

n) the homomorphic semigroup duplicates the original one. Once we exceed the

threshold, things get radically different.

5.6 Summary

In this chapter we developed frameworks for higher algebraic structures. More specif-

ically, we extended the work of Chapters 2 and 3 to treat computations with an

underlying ring or semiring structure. Many examples of arithmetic codes that fit

in these frameworks were presented: codes for the ring of matrices, the ring of inte-

89

gers, the semiring of non-negative integers and other structures were presented. More

importantly, we demonstrated the use of the tools and the results of our theoretical

analysis (for groups/semigroups and rings/semirings) in constructing arithmetic codes

for given computations. However, it is our belief that the potential applications of

this algebraic framework go beyond what we have demonstrated here: it can be used

for developing arithmetic codes that make efficient use of redundancy, for achieving

efficient error correction procedures, and for exploiting more fully the error model.

90

Chapter 6

Summary of Contributions, and

Suggestions for Future Research

In this thesis we have dealt with the problem of systematic design of arithmetic

codes to protect a given computational task. Starting from a very general setting, in

which we assumed that the computation can be modeled as a semigroup operation, we

managed to extend a previous group-theoretic framework to encompass a more general

set of computations. We were also able to extend our results to more complicated

algebraic structures, such as rings and semirings. The end result is to provide an

algebraic framework under which the design of arithmetic codes for semigroup and

semiring computations can be formulated as a mathematical problem and be solved

systematically.

6.1 Contributions and Conclusions

The starting point for this thesis was modeling a fault-tolerant system for a semigroup-

based computation as a composition of three subsystems: a unit that performs com-

putation in a larger redundant semigroup, an error corrector, and a decoder. We

assumed that the error corrector and the decoder were error-free (that is, protected

by modular redundancy or some other means), and concentrated on the redundant

computation unit.

91

Under a few elementary requirements on the structure of the redundant computa-

tion, we showed that all possible ways of adding redundancy correspond to semigroup

homomorphisms. Therefore, the redundant computation unit essentially performs a

homomorphic computation in a redundant semigroup of higher order. The above is

an important result because it places the problem of designing arithmetic codes into

an algebraic framework.

We then used this framework to characterize the error detection and correction

requirements for our arithmetic codes. Naturally, such a characterization requires

an underlying error model. The choice depends on the actual hardware that is used

to implement the computation. However, in order to demonstrate the use of the

framework, we adopted an additive error model (as used in [1]) and managed to

characterize the redundancy requirements with respect to the error detecting and

correcting capabilities of our codes.

In the special case of separate codes (that is, codes that provide fault tolerance

through a completely independent parity channel operating in parallel with the orig-

inal computational unit), we presented a constructive procedure that generates all

possible separate codes for a given semigroup-based computation. This is an interest-

ing result because it generalizes the previous procedure for group-based computations

to a more general set of computations.

Having established the algebraic framework, we presented many examples of arith-

metic codes that we constructed using the methods and the results mentioned above.

The objective was to demonstrate the use of the framework on simple, well-known

semigroup computations.

Finally, the framework was extended to the ring and semiring structures, which

are higher algebraic structures with one group operation and one semigroup operation

respectively. We then presented examples of arithmetic codes for these structures.

92

6.2 Future Research Directions

This thesis presented an algebraic framework for developing arithmetic codes. The

framework is very general and applies to all computations that can be modeled as

semigroup operations. The framework is also very theoretical, so there is a variety

of practical issues to be considered, as well as a number of directions in which the

framework can be extended.

6.2.1 Hardware Implementation and the Error Model

An arithmetic code can provide fault tolerance to a computational system if it protects

the parts of the system that are liable to fail. Therefore, there is a definite need to map

the abstract semigroup-theoretic formulation to actual hardware implementations, in

order to connect the theoretical results that we obtained in this thesis with the actual

implementation of our computational system. Hardware failure modes need to be

explicitly reflected in our algebraic formulation. This is extremely important: the set

of expected errors depends solely upon the specifics of our implementation, and it is

against this set of errors that the fault-tolerant system should provide protection. As

long as our model for the fault-tolerant computation does not provide direct links to

the actual hardware that is used, the error model cannot be specified with complete

success.

Choosing an error model should really be a tradeoff between simplicity in the

algebraic formulation and effectiveness in reflecting the actual errors that take place

in the system. For example, we have already seen that an additive error model was a

suitable choice for computational tasks with an underlying group structure. Despite

the fact that it might be a somewhat poor or inefficient reflection of the actual faults

that can take place in the system, an additive error model for group-based computa-

tions results in a coset-based error correction procedure, which is not as complicated

as the general error correction procedure. However, an additive error model can be

inefficient or intractable in situations where it does not directly reflect the actual er-

ror. For example, while a multiplicative error in a ring can be written as an additive

93

error, the additive error will be operand-dependent even if the multiplicative error is

not.

For a semigroup-based computation, the additive error model does not even result

in a simplified error correction technique. Therefore, it is not even clear why we

should use by default an additive error model (something that was done in the group

case for the sake of coset-based error correction). An error model that appropriately

reflects the hardware implementation and/or makes the task of error correction well-

defined, systematic, and easy needs to be developed. In order to achieve this, the

first step is to map the algebraic formulation onto an actual implementation. This

was accomplished in the past for some specific computational tasks (for example, for

operations of arithmetic processors in [16]). It is our hope that similar results can be

achieved for the more general setting we have presented in this thesis.

6.2.2 Non-Abelian Group or Semigroup Computations

Our results regarding semigroup homomorphisms, as well as the results on group

homomorphisms in [1], do not really require the underlying semigroup or group op-

erations to be abelian. Therefore, an interesting direction to take is to investigate

possibilities for extending this framework to non-abelian computations. Naturally, the

analysis would get more complicated: we would need to look for normal subgroups

and normal complexes, and we would have to be especially careful about the error

model. For example, a simple additive error model would not be sufficient because a

right error might behave differently than a left error.

6.2.3 Realizability of Arithmetic Codes

A question that was not addressed in this thesis was the realizability of an arithmetic

coding scheme. An arithmetic code needs to be efficient in the sense that encoding and

decoding of the data should be relatively easy to perform. A complicated arithmetic

code is not desirable for the following reasons:

94

* If such a code is too complicated, then modular redundancy could be more

efficient and much easier to implement.

* Complex coding and decoding is more liable to failures and invalidates our as-

sumption that the encoders, error corrector and decoder are fault-free. This

again reinforces the need for reflecting implementation in the algebraic formu-

lation.

6.2.4 Development of a Probabilistic Framework

An interesting direction is the inclusion of a probabilistic model in our framework.

Under such a model, we would be able to analyze the fault detection and correction

capabilities of a fault-tolerant system based on the prior probabilities of each of the

errors. This opens up a number of intriguing possibilities:

* The computational system can be characterized in terms of an average or ex-

pected performance. If error correction is time consuming but errors occur infre-

quently enough, then we could afford to use an arithmetic code once we know

that its overall performance will be adequate.

* Comparisons between fault-tolerant systems can be made on a fair basis.

* When a faulty result originates from more than one valid result, we could use

a number of classic methods of detection and estimation to achieve optimal re-

covery from the error(s). By allowing different errors to reach the same invalid

result in the redundant space, we relax the strict requirements on the redun-

dancy of the arithmetic code, and, by taking advantage of our knowledge about

the prior probability distributions of the errors, we can make efficient use of the

redundancy of the code.

* A hierarchical division of the errors according to their prior likelihoods can make

an important difference in the efficiency of the error correction techniques. If

error correction guarantees fast recovery from the most probable error(s) then

95

the average performance of the technique could be acceptable, even if certain

(infrequent) errors take a lot of time to be identified.

6.2.5 Subsystem Decomposition and Machines

Depending on how one looks at a computational task, there might be different kinds

of semigroup computations that can be associated with it. Consider the example of

linear time-invariant (LTI) discrete-time (DT) filters of finite order N that operate

on finite sequences. For simplicity, assume that the input sequences and the impulse

responses of the filters take on only integer values. If we look at LTI DT filters as

systems that produce one output at a time, we might think of the operation as a

sequence of N additions and N multiplications in a ring. Alternatively, we could look

at one multiplication and one addition at a time, which sets things up in the group

of integers under addition and the semigroup of integers under multiplication. Yet

another point of view is to consider the outputs of LTI DT filters as sequences, so we

might associate the underlying computation with the semigroup of finite sequences

(with integer values) under the operation of convolution. Similar possibilities exist

for median and other nonlinear DT filters. In fact, most DT filters can be seen as

computations in the semigroup of finite (or, more generally, infinite) sequences under

some desirable operation.

Depending on the level at which we look at the problem, we see that there exists a

variety of different approaches to protecting the given system. It would be interesting

to study the various tradeoffs between these different approaches, as well as the

differences in terms of the hardware overhead and the time delay involved. Since DT

filters are so important in a variety of signal processing applications, investigating

ways of providing fault tolerance in such systems seems an extremely interesting

research direction.

In fact, a computational machine can usually be regarded as an operation taking

place in the set of strings: given a collection of strings as an input, there is a rule

that specifies how to produce an output string. Therefore, with the right choice of

an operator, we can model a machine as a semigroup operation taking place in the

96

set of strings. An interesting future direction would be to investigate if and how

the semigroup-theoretic framework can be used to provide fault tolerance to a given

machine.

6.2.6 Links to the Theory of Error-Correcting Codes

If we restrict ourselves to a unary identity operation, then the arithmetic coding

scheme essentially reduces to an error-correcting coding scheme, of the sort considered

in communication theory. In fact, if the additive error model is a good description

of the interaction between the codewords and the noise in a communication channel,

then the framework with this error model (discussed in both Chapters 2 and 3) can

be used to generate error-correcting codes.

Considering binary vector spaces as an extension of the group framework, we

quickly arrive at the standard class of linear error-correcting codes [2]. In this case, the

error-correcting code is really a subspace of a higher dimensional space: redundancy is

introduced by mapping the original vector space V (consisting of the set of codewords

that we would like to protect) to a higher-dimensional vector space H. Codewords

from V get mapped to a subspace V' of H. Note that a subspace forms a group under

the operation of addition and functions in the same way as a subgroup in the case

of a group computation (Chapter 2). In fact, since the operation in this case is the

identity operation, we can use any "coset" of H under V' (which, in this case, is the

subspace V' "shifted" by some distance) to map codewords to. Codes created in this

fashion are known as coset codes [2].

Similarly, the semigroup framework can be used to generate error-correcting codes.

However, the additive error model in this case essentially reflects only errors that are

unidirectional. In fact, asymmetric codes that have been already developed in some

other fashion, like the Constantin-Rao single asymmetric error-correcting (SAEC)

codes [2], can be placed in the semigroup framework quite comfortably. The big

difference in this case is that, instead of looking at a subgroup and the cosets that

it creates (all of which are necessarily sets of the same order of elements), we look

at the normal subsemigroup and the corresponding normal complexes (which are not

97

necessarily sets of the same order).

One interesting future direction would be to investigate what the group- and

semigroup-theoretic frameworks can offer to (or what they can gain from) error-

correcting coding theory.

98

Appendix A

Proofs of Theorems

A.1 Enumerating all Separate Codes for (No, +)

Here, we prove the claim made in Chapter 4 about the form of the parity checks for

(No, +), the semigroup of non-negative integers under the operation of addition.

Specifically, we prove the following claim:

Claim: All possible surjective homomorphisms 0 from the semigroup (No, +)

onto a semigroup T have one of the following two forms:

1. For n E No, (n) = n mod M, where M is any finite integer (if M is infinite,

then 0 can be thought of as an isomorphism). This kind of homomorphisms

map (No, +) onto a finite cyclic group of order M.

2. For a finite integer M, for n E N we have:

O(n) = n if n < kM (for a fixed positive integer k)

O(n) = n mod M, otherwise

This kind of homomorphisms map (No, +) to a finite semigroup of order M +

kM = (k + 1)M.

Proof: Let 0: No -+ T be an onto homomorphism and let - be the corresponding

congruence relation defined on the elements of No. Then, 0 maps each of the congru-

ence classes of the semigroup No to an element of the semigroup T. Moreover, since

99

0 is onto, any element of T has a non-empty preimage under 0 which is a congruence

class.

The following two theorems from [21] (adjusted for the sake of simplicity for the

abelian monoid case) show that congruence classes are equivalent to (normal) com-

plexes and (normal) subsemigroupsl:

Theorem 1: In order that the subset C of a monoid M should be a complete preimage

of one element under some homomorphism of M, it is necessary and sufficient that

C is a (normal) complex.

Theorem 2: In order that the subset C of a monoid M should, under some homo-

morphism 0, be a complete preimage of the identity element of the monoid O(M), it

is necessary and sufficient that C is a (normal) subsemigroup2 .

Once we have established an equivalence between the congruence classes of No

under the relation - and its (normal) complexes and (normal) subsemigroup, we can

characterize all surjective homomorphisms 0 : No -4 T by characterizing all ways

of partitioning No into sets that comprise the (normal) complexes and the (normal)

subsemigroup.

From the definition of a (normal) complex (the subsemigroup) we can easily con-

clude that there are only two possibilities for a complex (the subsemigroup):

* It consists of a single element (in which case it trivially satisfies the definition

of a normal complex) or,

* It consists of an infinite number of elements and it is of the form:

{k + iM} for fixed positive integers k, M and i e {0, 1,2,...}

The reason is simple: if a complex C contains at least two elements, say k, k' C C,

then we can always write the "largest" one (that is, the one that is generated using

1 These were defined in Chapter 3. A normal complex is a nonempty subset C of an abelian
semigroup S = (S, o), such that for any x E S and for any k, k' E C, xok E C always implies
xok' E C. A normal subsemigroup is a nonempty subset C of an abelian semigroup S such that for
any x E S and for any k, k' E C or being empty symbols, xok E C always implies xok' E C.

2In the monoid case, this simplifies to a normal complex that contains the identity.

100

the generator more times) in terms of the other. For example, if we assume without

loss of generality that k' is the "largest" one, we can write: k' = k + M, where M

was chosen accordingly. Then, the definition of a complex forces all elements of the

form k + iM for i E {0, 1,2, ...} to lie in C. This can be proved easily by induction.

Note that M has to be the "smallest difference" between elements in C.

Once the form of the (normal) subsemigroup and the (normal) complexes is known,

all that's left to show to complete the proof is the following:

1. The "step" number M is the same for all infinite complexes.

2. If each infinite complex Ci starts at a value ki, then all ki have to lie in an

interval [AM, ... , (AM + (M - 1))] for an appropriately chosen positive integer A.

The first statement can be proved by contradiction: if it is not true, then there

exist two different complexes C1 and C2 such that:

C1 = {kl iMl i E {0,1,2,...}}

C2 = {k2 +jM 2 I E {0,1,2,...}}

where M1 and M2 are different integers.

Let's assume without loss of generality that kl = k2 + d (where d is a non-negative

integer)3 . Then, by the definition of a congruence class (Chapter 3), the set given by:

d +C1 = {d +kl +iM i E {0,1,2,...}}

{k2 + iM1 I i E {0,1, 2,...}}

has to be a subset of a congruence class. Since it intersects the congruence class C2

(to see this, just let i = j = 0) it has to be a subset of it. So, d + C1 C C2. This can

only hold if M1 = M2 where is a positive integer (for an infinite complex M t 0).

3Since (No, +) is a cyclic semigroup, we always have either kl = k 2 + d or k2 = kl + d.

101

Therefore, the two congruence classes are as follows:

C1 = {kl+ipM liE {0,1,2,...))

C2 = {k2 + jM j e {0,1,2,...}}

where we have set M M2 for simplicity.

A similar argument can be made the other way: for a large enough positive integer

a, we can find an integer d' such that:

k2 + d' = apM + k1

Then, we can conclude that the set given by:

d'+C2 = {k2+d'+jMljE {0,1,2,...))

= {k +a cM + jM I j E {0,1,2,...}}

= {k +(ap + j)M j E {O, 1,2,...))

is a subset of a congruence class. Since it intersects C1 (for example, let i = 2a,

j = acu), it has to be a subset of C1. Clearly, this is possible only if p = 1.

Therefore, all infinite congruence classes can only be of the form:

Ci = {ki + jM I j {O0,1, 2,...}}

and each of the other congruence classes consists of a single element.

It remains to show that all ki E [AM,..., (AM + (M - 1))] for an appropriately

chosen A. The proof is again by contradiction. If the above was not true, then there

would exist two infinite congruence classes C1, C2 such that:

C1 = {k +iMliE {0,1,2,...}}

C2 = {k2 +jM I i E {0, 1,2,...}}

k2 = kl+aM+d

102

(A.1)

where a is a strictly positive integer, and, without loss of generality, we have assumed

kl < k2.

Then, for large enough i, the set d + C1 intersects the congruence class C2; it is

therefore a subset of it. However, that is impossible unless a = 0.

At this point, the proof of the claim is complete. We have demonstrated that the

only two kinds of separate codes for the (No, +) monoid are as given in the beginning

of this section4 . /

A.2 Equivalence of Semiring Congruence Classes

and Semiring Complexes

In this section we prove the following theorem from Section 5.4:

Theorem: For the subset N of a semiring R to be a complete preimage of one

element under some surjective homomorphism of R, it is necessary and sufficient that

N be a semiring complex.

Proof: First, we prove that in order for the subset N to be a complete preimage

of some element under some surjective homomorphism of R, it has to be a semiring

complex.

Let N be the complete preimage of some element t E T under a surjective homo-

morphism 0: (R, +, x) -- (T, E, 0). Then

O(n) = t for all n E N

For any elements nl, n2 E N and any elements z, 1, r E R, if z + (I x nl x r) E N

then (z) 3 (0(1) 0 0(nl) 0 0(r)) = t. Since 0(ni) = (n2) = t , we conclude that

O(z) · (0(l) 0 0(n2) 0 O(r)) = t . Therefore, the element z + (x n 2 x r) E N. This

establishes that N is a semiring complex.

Now, we prove the other direction of the theorem: a semiring complex N is the

4It is not hard to verify that these two kinds of separate codes in fact work, and we leave that
verification to the reader.

103

complete preimage of an element under some (surjective5) semiring homomorphism 0.

All we need to do is construct a homomorphism 0 under which N is the complete

preimage of an element of 9(R). Equivalently, we can construct a semiring congruence

relation - under which N is a complete congruence class. In fact, we follow the later

approach6 .

First, we define in R the relation -. : for elements rl, r 2 E R we say that "r is

related to r2 through " " (notation r'r 2) if and only if:

r = r2 or

* There exist nl, n2 E N and z, , r E R such that we can write:

r = z+(l n x r)

r2 = z+(l x n2 x r)

Note that the above relation is not quite an equivalence relation. It is clearly

reflexive (for all r E R, r'r) and symmetric (for all rl, r2 E R, if rl~'r 2 then r2 -'ri).

To create an equivalence relation, we need the transitivity property. Therefore, we

define the relation as follows: rl - r2 if and only if:

* There exists a finite sequence of elements {zl, z 2, ... , Zn) E R such that:

rl i Zl .Z 2 ... IZn ,'Tr2

One can easily check that relation , is an equivalence relation (it is reflexive, sym-

metric and transitive). Furthermore, it is a semiring congruence relation. To show

that, we need to show two things:

1. For all a, b, c, d E R, if a - b and c d then (a + b) (c + d), and

2. For all a, b,c,d E R, if a b and c d then (a x b) (c x d)

5 The proof does not really require the semiring homomorphism to be surjective.
6 We basically refine the relations used for semigroups in [21] to account for the fact that we are

dealing with a semiring.

104

We start by showing the truth of the first statement. First, we will show that for

all a, b, c, d E R, if a-'b and c'd then (a + b) (c + d). For simplicity of notation, we

assume that multiplication precedes addition whenever parentheses are not used to

indicate the order of operations explicitly. We break the problem into four different

cases:

Case 1: There exist zl, 11, rl and z 2,12, r2 in R and nl, n2, n3 , n4 in N such that:

a = zi + 11 x nl x r

b = z +1 x n2 x r

= Z2 + 2 n3 x r 2

d = Z2 + 12 X n4 X r2

By adding a to c and d, we see that:

(a + c) = (Zl 2 z2 + x nx r)+ 2 X n3 X r2

= zi'+ 2 x n3 x r 2

(a + d) = (z + Z2 + ll x ni x rl) + 12 x n 4 x r2

= z + 12 X n4 X r2

where z' = zl + Z2 + 11 x n1 x ri .

We conclude that (a + c)-'(a + d). Similarly, by adding d to a and b, we conclude

that (a + d)-'(b + d). By the transitivity of -, we arrive at the important result

(a + c) (b + d). By induction, we can easily show that for all a, b, c, d E R, if a b

and c d then (a + c) (b + d).

Case 2: a = b and c, d as above. The proof is basically the same as above (in fact,

easier).

Case 3: c = d and a, b as in case 1. The proof is the same as in case 2.

Case 4: a = b and c = d. Clearly a + c = b + d and therefore, (a + c) , (b + d)

Now we show that for all a, b, c, d E R, if a-'b and c-'d then (a x c) (b x d). If

a.'b and c-'d then we have the exact same cases we had above:

105

Case 1: There exist zl,ll,rl and z2,12 , r2 in R and nl,n 2 , n3 , n 4 in N such that:

a = zl+l x ni x r

b = zl+ l1 x n2 x rl

= z2 +12 Xn3 x r2

d = Z2 +12 X n4 X r2

Then, by left multiplying c and d by a we see that:

(a x c) = (l X Z2 + 11 nli X rl xz 2) +(zl +I x nl x rl) x 12 x n3 x r 2

= z I+ 1 x n 3 r2

(a x d) = (zl x z2 + x ni x r X z2)+ (Z1 +1l X nl X rl) X 12 x n4 x r2

= z'+I' x n4 X r2

where z' = zl x Z2 + 11 X ni X r1 X Z2 and 1' = (zl + 1l x nl x rl) x 12

We conclude that (a x c)r'(a x d). Similarly, by right multiplying a and b by d, we

conclude that (a x d),'(b x d). By the transitivity of -, we arrive at the important

result (a x c) , (b x d). By induction, we can easily show that for all a, b, c, d E R, if

a b and c d then (a x c) (b x d).

Case 2: a = b and c, d as above. The proof is basically the same as above.

Case 3: c = d and a, b as in case 1. The proof remains the same.

Case 4: a = b and c = d. Clearly a x c = b x d and therefore, (a x c) - (b x d)

We conclude that is a semiring congruence relation. The only thing left to do

to complete the proof of the theorem is to show that N is the complete preimage of

an element t E T under 0, the homomorphism corresponding to relation -. This is

easy: from the definition of N we see that if n - x and n E N then x E N. Therefore,

N is a complete semiring congruence class under .

At this point, the proof of the theorem (both directions) is complete. /

106

Bibliography

[1] P. E. Beckmann, Fault-Tolerant Computation Using Algebraic Homo-

morphisms. PhD Thesis, EECS, Massachusetts Institute of Technology,

Cambridge, MA, 1992.

[2] T.R.N. Rao and E. Fujiwara, Error-Control Coding for Computer Sys-

tems. Prentice-Hall, Englewood Cliffs, New Jersey, 1989.

[3] K.-H. Huang and J. A. Abraham, "Algorithm-based fault tolerance for

matrix operations," IEEE Transactions on Computers, vol. 33, pp. 518-

528, June 1984.

[4] J.-Y. Jou and J. A. Abraham, "Fault-tolerant matrix arithmetic and

signal processing on highly concurrent parallel structures," Proceedings

of the IEEE, vol. 74, pp. 732-741, May 1986.

[5] V. S. S. Nair and J. A. Abraham, "Real-number codes for fault-tolerant

matrix operations on processor arrays," IEEE Transactions on Comput-

ers, vol. 39, pp. 426-435, April 1990.

[6] J.-Y. Jou and J. A. Abraham, "Fault-tolerant FFT networks," IEEE

Transactions on Computers, vol. 37, pp. 548-561, May 1988.

[7] J. A. Abraham, "Fault tolerance techniques for highly parallel signal

processing architectures," Proc. of SPIE, vol. 614, pp. 49-65, 1986.

107

[8] J. A. Abraham, P. Banerjee, C.-Y. Chen, W. K. Fuchs, S.-Y. Kuo, and

A. L. N. Reddy, "Fault tolerance techniques for systolic arrays," IEEE

Computer, pp. 65-75, July 1987.

[9] C.-Y. Chen and J. A. Abraham, "Fault-tolerance systems for the com-

putation of eigenvalues and singular values," Proc. of SPIE, vol. 676, pp.

228-237, August 1986.

[10] P. E. Beckmann and B. R. Musicus, "Fault-tolerant round-robin A/D

converter system," IEEE Transactions on Circuits and Systems, vol. 38,

pp. 1420-1429, December 1991.

[11] P. E. Beckmann and B. R. Musicus, "Fast fault-tolerant digital convolu-

tion using a polynomial residue number system," IEEE Transactions on

Signal Processing, vol. 41, pp. 2300-2313, July 1993.

[12] C. J. Anfinson, R. P. Brent, and F. T. Luk, "A theoretical foundation

for the Weighted Checksum scheme," Proc. of SPIE, vol. 975, pp. 10-18,

1988.

[13] H. Park, "Multiple error algorithm-based fault tolerance for matrix tri-

angularizations," Proc. of SPIE, vol. 975, pp. 258-267, 1988.

[14] C. J. Anfinson and B. L. Drake, "Triangular systolic arrays and related

fault tolerance," Proc. of SPIE, vol 826, pp. 41-46, 1987.

[15] I. N. Herstein, Topics in Algebra. Xerox College Publishing, Lexington,

Massachusetts, 1975.

[16] T.R.N. Rao, Error Coding for Arithmetic Processors. Academic Press,

New York, 1974.

[17] W. W. Peterson and E. J. Weldon Jr, Error-Correcting Codes. The MIT

Press, Cambridge, Massachusetts, 1972.

108

[18] R. Lidl and G. Pilz, Applied Abstract Algebra. Undergraduate Texts in

Mathematics, Springer-Verlag, New York, 1985.

[19] P. M. Higgins, Techniques of Semigroup Theory. Oxford University Press,

New York, 1992.

[20] G. Lallement, Semigroups and Combinatorial Applications. John Wiley

and Sons, New York, 1979.

[21] E. S. Ljapin, Semigroups. Volume Three, Translations of Mathematical

Monographs, American Mathematical Society, Providence, Rhode Island,

1974.

[22] L. Fuchs, Abelian Groups. Pergamon Press, Oxford, New York, 1967.

[23] N. Jacobson, Basic Algebra I. W. H. Freeman and Company, San Fran-

cisco, 1974.

[24] J. S. Golan, The Theory of Semirings with Applications in Mathemat-

ics and Theoretical Computer Science. Longman Scientific & Technical,

Essex, England, 1992.

[25] W. Kuich and A. Salomaa, Semirings, Automata, Languages. Monographs

in Theoretical Computer Science, Springer-Verlag, New York, 1986.

109

