
Name Matching for Data Quality Mediator
by

Jin Mo Kim

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degrees of

Bachelor of Science in Computer Science and Engineering

and

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1995

(Massachusetts Institute of Technology 1995. All rights reserved.

/ AhA /

Author
Department of Electr lineering and Comter Science

E...tx.jl/.ineeri~ LI ay 30, 1995

Certified by
Riard Wang

Co-Director for Total Data Quality Management (TDQM) Reasearch Program and
Associate Professor of Information Technologies

Thesis Supervisor

Accepted by............................. .. ud

Chairman, Departmental Committee o Grduate Students
,MASSACHUSETTS INSTITU'rE

OF TECHNOLOGY

AUG 1 01995

UBRARIES

brker Eng

Name Matching for Data Quality Mediator

by

Jin Mo Kim

Submitted to the Department of Electrical Engineering and Computer Science
on May 30, 1995, in partial fulfillment of the

requirements for the degrees of
Bachelor of Science in Computer Science and Engineering

and
Master of Engineering in Electrical Engineering and Computer Science

Abstract
Name matching refers to the process of identifying names that are equivalent but
not necessarily identical. A pair of names are equivalent when they both refer to the
same entity. For example, "M.I.T." and "Massachusetts Institute of Technology" are
equivalent but not identical expressions. The topic of this thesis is a general theory
to name matching which exploits syntactic, domain, and contextual knowledge to
match names from two separate input tables. A computer program is implemented
which performs name matching specifically on company names. Empirical analysis
using the program shows that the algorithm can achieve 100% accuracy with a small
number of user queries.

Thesis Supervisor: Richard Wang

Title: Co-Director for Total Data Quality Management (TDQM) Research Program

and Associate Professor of Information Technologies

Acknowledgments

Professor Rich Wang has been my mentor and guide throughout the writing and

implementation of this thesis. I am deeply indebted to him for his generosity in

sharing his time and insight into matters beyond just those concerning my thesis but

also concerning my future and direction as well.

I am also forever grateful to my parents, Paul and Anne Kim, who have provided

the foundation of love and family that has carried me through my years at MIT.

They have poured their lives into our family, and their sacrifice has been my eternal

blessing.

I also wish to thank the one who has literally been at my side as I wrote this thesis.

She has shared in the burden of its making as well as in the joy of its completion. I

owe more than I can express to her.

Contents

1 Introduction

1.1 Thesis Topic and Goals

1.2 Thesis Organization.......

2 Overview and General Theory

2.1 Uniqueness Assumption .

2.2 Three Types of Knowledge . . .

2.3 Syntactic Knowledge.

2.4 Domain Knowledge.

2.5 Contextual Knowledge.

2.5.1 Keys: Unique Specifiers

2.5.2 Non-Unique Specifiers

3 Implementation and Algorithms

3.1 Introduction.

3.2 Data Quality Manager

3.3 Basic Implementation .

3.4 Salient Features

3.4.1 Tables and Field Lists

3.4.2 Buttons

3.4.3 Views

3.4.4 Option Boxes.

3.4.5 Results Window .

7

8

8

9

9

11

12

12

14

14

15

16

......... . .16

...16

......... . .17

......... . .17

......... . .17

......... . .. 17

.18

.19

. 19

4

..

.....................

.....................

.....................

.

.

.

.

.

.

.

.

.

.I

......................

...........

...........

...........

...........

...........

3.5 Running a Session

3.5.1 Specifiying Tables and Fields

3.5.2 Button [1]: Exact Matching ..

3.5.3 Button [2]: Context Matching .

3.5.4 Button [3]: Canonic Matching .

3.5.5 Button [4]: Keyword Matching

3.5.6 Button [5]: Soundex Matching .

3.6 Improving Matching Performance . . .

3.6.1 Alias Table.

3.6.2 Condition Tables.

4 Empirical Analysis

4.1 Synthetic Data Set

4.1.1 Making the Set

4.1.2 Testing the Set

4.2 Real World Data Set

5 Conclusion

A Code

B Real World Data Set

5

.. 19

. 19

. 20

.20

.21

. 22

. 22

. 22

.23

. 23

25

..... .. 25

..... .. 25

..... .. 26

..... .. 29
31

33

64

List of Tables

1.1 Name Matching Example.

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

Synthetic Tables . . .

Exact Matches

Context Matches . . .

Canonic Matches . . .

Keyword Matches . . .

Soundex Matches . . .

Matching Statistics . .

Matching Statistics II .

B.1 Worldscope: SIC=6331

B.2 Fortune 1000: SIC = 6331

B.3 Output Table for Insurance Companies

B.4 Worldscope: SIC=2991

B.5 Fortune 1000: SIC=2991

B.6 Output Table for Petroleum Refining Companies

B.7 Worldscope: SIC=3571

B.8 Fortune 1000: SIC=3571

B.9 Output Table for Electronic Computer Companies

B.10 Worldscope: SIC=4813

B.11 Fortune 1000: SIC=4813

B.12 Output Table for Telephone Communications Companies

6

8

. 26

. 27

. 27

. 27

. 28

. 28

. *. 30

.30

65

66

66

67

67

68

69

69

69

70

70

70

Chapter 1

Introduction

Modern information systems have the capability to collect and process information

from multiple sources. Any time data is collected from multiple sources, however,

it becomes necessary to be able to recognize when references are being made to the

same entity or when duplicate entries exist. This may be the case, for instance, when

merging two lists of mailing addresses. In order to avoid mailing multiple copies of an

item to the same household, duplicate addresses need to be purged. This is a problem

when working with disparate databases because primary-foreign key relationships are

not; well defined.' Standards for notation and abbreviation may vary significantly

across databases, and even misspellings confuse the process of identifying duplicates.

For these reasons it is a non-trivial task to identify records that are referring to the

same entity, and name matching is a topic of research which addresses this issue.

To make the issue a little more concrete, the following is an example of when name

matching could be used. A join operation is desired between a Fortune 500 database

and a Car Manufacturers database of companies that sell stock (see Table 1). The

Fortune Database may have an entry with "Ford Co." while the Car Manufacturers

database has "Ford Company." They both refer to the same company, but a simple

DBMS join operation would be unable to recognize the match.

1 A primary key is the attribute in a relation which uniquely identifies a record, and a foreign key
is an attribute in a relation which is also a primary key in another relation.

7

Fortune 500 Car Manufacturers
Ford Co. IBM

Apple Computers Ford Motor Co. e
IBM Microsoft

Table 1.1: Name Matching Example

1.1 Thesis Topic and Goals

Name matching refers to the process of identifying names that are equivalent but not

necessarily identical. A human operator would have little trouble recognizing that the

example given above is a match. However, a human operator does not have the time

to manually inspect thousands or even millions of possible matches, and a computer

algorithm becomes useful.

Therefore, the goal of this thesis is twofold. The first goal is to develop a theory

to name matching which can be applied to any class or domain of names, and the

second goal is to actually implement a computer program which applies the theory to

a specific domain. The domain chosen for this thesis is company names.

1.2 Thesis Organization

A theory to name matching utilizing syntactic, domain, and contextual knowledge is

presented in the next chapter. This general theory is then applied to a specific domain,

namely company names in chapter 3. Chapter 3 includes the details of software

implementation and specific algorithms used in the program. Chapter 4 gives the

results of empirical analysis performed on the name matching program using synthetic

and real world data sets. The fifth and final chapter presents conclusions from this

effort and points to several areas of possible future research and development.

8

Chapter 2

Overview and General Theory

Name matching is fundamentally a comparison test. When a person is asked to

perform name matching on a pair of names, he or she will typically gather as much

information as possible from the name itself, any knowledge which he/she may have

concerning that name from previous experience, and also any attributes that may be

associated with the name. These three areas outline the types of knowledge which

are available and exploitable for the purpose of name matching: syntactic, domain,

and contextual knowledge respectively.

2.1 Uniqueness Assumption

Before exploring name matching in more detail, however, it is necessary to define

what is meant by two names matching. If the question seems at first too simple,

the reason, most likely, is that people hardly make a distinction between a word and

what it means or represents. When humans are presented with verbal information

the words are immediately and transparently tied to their meanings. Computers,

however, have no built-in capability to tie a word with what it represents unless a

system of knowledge representation has been implemented. Name matching attempts

to match the entities behind the words, but unfortunately only the representation of

it will be available.

Simple comparison testing for computers, therefore, requires making an assump-

9

tion which we will call the uniqueness assumption. The uniqueness assumption states

that for any particular name, x, there is only one unique entity, y, which refers

to. In other words, a one-to-one correlation between representation and meaning is

assumed. If a pair of names are identical, then they refer to the same object or en-

tity. The corollary to this is that a single entity will not have more than one name

identifying it.

The uniqueness assumption may appear like a reasonable assumption to make at

first since names are often chosen to identify the entity which it refers to from a vast

variety of other similar entities. If names did not have this characteristic than then

they would be useless as identifiers and no longer serve one of the main purposes for

which they were created.

Conceding their purpose for creation, however, some classes of names, neverthe-

less, clearly lack uniqueness. This happens especially as the number of similar entities

increase without a like increase in the number of possible different names. People

names are a prime example of this. As the population of English speaking people

rapidly increases, the number of English names that are used remains relatively sta-

ble. This means that more and more people will end up with similar names. The

problem does not arise because more permutations of letters do not exist. It is rather

that when parents come to naming their child, they often draw from a pool of names

which have been used before. In other words, people names are often "recycled."

To varying degrees, this is common to all classes of names for which people are the

primary namers.

Due to ambiguities introduced by naming constraints such as the one mentioned

above, the uniqueness assumption does not hold strongly for many classes of names.

More specifically, there are two cases in which relying solely on the uniqueness as-

sumption will lead to incorrect conclusions. The first case is representation overload

or when two different names refer to the same entity (e.g., Bob and Robert may refer

to the same person). In this case the uniqueness assumption will fail to see a match

and thus produce a false mismatch. The second case is semantic overload which is

when two exactly matching names refer to different entities (e.g., Paris is a city in

10

France but also a city in Texas). The example given above concerning English names

is a case of semantic overload. In this case the uniqueness assumption falsely assumes

that the names refer to the same entity producing a false match.

The success of comparison testing for computers will, therefore, lie in being able

to identify those situations in which the uniqueness assumption fails and being able to

correct for it appropriately. This will be accomplished by employing the three types

of knowledge which are described in the following sections.

2.2 Three Types of Knowledge

There are three types of knowledge which can be leveraged in order to determine if

a pair of names are equivalent. The first type of knowledge is syntactic knowledge

found in the name itself. Syntactic knowledge attempts to know nothing about the

meaning of a particular name but only looks at how the name is constructed, and

a high degree of similarity between two names is a strong indicator that they are

equivalent. The second type of knowledge is domain knowledge. Domain knowledge

captures all that can be known about a class of names from previous experience. This

includes conventions of abbreviation and notation as well as knowledge of nicknames

or aliases which have previously been used. Domain knowledge will be important in

determining which form of a particular name is to be used as its canonic form. The

third type of knowledge is contextual knowledge that may or may not be available for

a given name. Contextual knowledge here refers specifically to secondary information

found in the adjacent columns of the table in which the name resides. For example,

in a directory database the name of a person is usually supplemented by contextual

information such as street address, city, state, ZIP, and phone number. Contextual

knowledge has the potential to provide the highest degree of discriminating power.

There is actually a fourth type of knowledge which a computer will have available

to it, and this is the human operator. When all else fails, the computer will default

to the human operator to make the final call as to whether or not a pair of names are

equivalent.

11

2.3 Syntactic Knowledge

Syntactic knowledge is simply knowledge about the construction of a name. All names

are constructed of letters, spaces, and punctuation, and it is the structure of how

these elements are combined that compose syntactic information. This information

is used to test pairs of names for similarity using string matching. Because syntactic

knowledge, by definition, separates itself from the meaning of words, it is unable to

identify or correct for semantic overload. It is, however, able to check for several cases

of representation overload.

It is possible to have representation overload due to misspelling. A misspelling is

likely to alter the original syntax of a word by a small degree. The computer's task

will be to decide if in fact the difference is such that a misspelling can be inferred.

To infer a misspelling further infers that the user who entered the name was actually

referring to the entity that the correctly spelled name refers to. Thus a match can be

assumed.

Due to its lack of semantics, syntactic knowledge has relatively low discriminating

power compared with the other types of knowledge that will be discussed.

It is sometimes the case that a name is purposely altered to a similar form, but the

alteration is not illegal, meaning it follows some accepted convention. For example,

initials are often used in people names. "Susan May Jones" can also be written "Susan

M. Jones" or "S. M. Jones." This type of knowledge falls into domain knowledge

which will be discussed in the following section, but it is mentioned here because the

same string matching algorithm can be used to apply this type of knowledge. In other

words, implementation will not fall cleanly into the lines of theory that are being built

but will combine and recycle ideas in order to optimize work.

2.4 Domain Knowledge

Domain is a very flexible term. The key to defining it correctly is striking a bal-

ance between being restrictive enough to provide some discriminating power and

12

liberal enough to be able to use in real world applications. For the purposes of name

matching, domain is defined to be a class of names which has a naming convention.

Conventions are rules of practice which are widely accepted and followed. Several ex-

amples of such classes are company names, people names, addresses, and university

names.

If domain is defined to be a class of names with a naming convention then domain

knowledge refers to all that can be known about those conventions. In essence, the

name matching program is a knowledge-based system which attempts to capture the

knowledge that an expert would have about matching company names, and it is

domain knowledge which captures the bulk of the "knowledge" that is represented in

the system.

Domain knowledge is represented in two forms. The first representation is cap-

tured in rules which use a particular convention to condition all names in an input file

to a canonic form. Such rules would, for example, take out all punctuation and drop

common endings such as "Inc." and "Co." The second representation is a system

table. The system table is different from rules in that the table will contain knowledge

of specific names where as rules are generic and apply to all names. The system table

will contain three types of information. First it will have a name which is defined to

be the canonic form of a particular company name. Second, the table will contain

any number of aliases which are associated with the company name. The third type

of information will be unique specifiers which are discussed in the next section.

The use of an system table enables the program to gain knowledge as the user

may decide to add entries to the system table which is not be captured by the generic

conditioning rules. The program may also allow the user to add a generic rule which

gives the user the ability to tailor the program to the application at hand. This

will enable the name matching program to significantly improve its performance with

time.

The use of system tables and rules are both attempts to remedy representation

overload because they both start with the assumption that several representations are

possible and try to reduce the possibilities down to a canonic form for a particular

13

name.

Note that it is possible for a single class of names to have multiple conventions. For

example, people names are usually given in order of first name followed by surname.

However, in asian cultures the convention is to give the surname followed by the first

name. A name matching algorithm should identify and use only those conventions

which are unique to a class of names.

2.5 Contextual Knowledge

Context is another term with a wide range of possible meanings, but again, for the

purposes of name matching the definition of context is strictly defined to be secondary

information that may or may not be available as adjacent columns to the column being

matched. In database terminology, this refers to information in accompanying fields

of the same record as the name being matched. Contextual knowledge would not

be available if name matching is being performed on a list of names rather than a

column from a table.

2.5.1 Keys: Unique Specifiers

Contextual knowledge has the potential to provide the highest degree of discriminat-

ing power among the three types of knowledge discussed. This is because the problem

of trying to decide if two names are equivalent is not a new problem that has arrived

with the use of disparate databases. Even before networks made access to disparate

databases possible, people have recognized the need for additional specifiers that are

unique to the entities that names refer to. These specifiers are names for the which

the uniqueness assumption holds perfectly. For example, the social security number

is a unique key for people that is widely used. Companies that sell stock have a ticker

tape symbol or a disclosure number that are designed to be unique keys.

A unique key column such as the ones described above has perfect discriminating

power, meaning that if that key is available for all names being matched, then every

pair of names can be unambiguously resolved as a match or mismatch. A unique key

14

solves both representation overload and semantic overload.

2.5.2 Non-Unique Specifiers

Unique keys will not always be available, but even without them contextual knowledge

plays a very important role in name matching. A previous example of contextual

knowledge mentioned fields such as address, telephone, and zip. These are not unique

keys in the two ways. First, a match in one of these fields may not necessarily imply a

match in the names (similar to semantic overload). For example, two companies may

have the same zip code. Second, a non-match in one of these fields may not necessarily

mean that two separate entities are being referred to (representation overload). A

single company may have several telephone numbers which are used. Although non-

unique fields lack the definitive authority of unique keys, taken together or in subsets,

these specifiers can still provide a high degree of discriminating power.

For example, in order to deal with semantic overload, a comparison test may

combine syntactic knowledge with contextual knowledge. A comparison of two similar

names may show that their addresses are in two different states. This may be used as

evidence to support the hypothesis that the two names are actually referring to two

different companies. The same kind of example applies to representation overload.

Two names may be dissimilar, but if all other contextual information indicate that the

two names are actually referring to the same company, this may be used as evidence

to declare a match.

15

Chapter 3

Implementation and Algorithms

3.1 Introduction

The previous chapter outlined the three types of knowledge which a name match-

ing system should exploit in order to achieve maximum discriminating power. This

chapter describes the Name Matcher in the Data Quality Mediator which has been

implemented specifically to show that the three knowledge areas are adequate to build

a computer algorithm for name matching which can achieve accuracy rates of 95 -

100 percent.

3.2 Data Quality Manager

Name matching will be implemented as part of a larger design for data management

called the Data Quality Manager (DQM). DQM will have the capability to query data

from multiple databases, measure and analyze the quality of that data, and finally

modify the data to improve its quality. Name matching will be one option available

to the user for improving data quality.

16

3.3 Basic Implementation

DQM and correspondingly the DQM Name Matcher is implemented using Microsoft

Access and its macro language, Access Basic. Access has several characteristics which

were useful for implementing the DQM. Access allows users to build graphical user

interface (GUI) applications on top of existing databases, and it also allows users to

attach tables from remote databases through ODBC.

An important aspect of Access Basic is that it is an event driven programming

language. Rather than typing a start command and waiting for the program to run

its course, the user is in control of how the program runs by performing actions with

either the mouse or the keyboard on the active window.

3.4 Salient Features

When the user selects "Name Matching" from the DQM Main Menu, the Name

Matching window is opened on the screen. (See figure 3-1) The following sections

describe in detail each section of the window and their corresponding functions.

3.4.1 Tables and Field Lists

The boxes that appear directly below the Name Matching logo are used to specify

tables and columns to be used in the name matching process. These boxes appear in

pairs so that the boxes on the left hand side are concerned with the first input table

(Table A) and the right side boxes concern the second input table (Table B).

3.4.2 Buttons

There are three rows of buttons normally visible to the user; two rows right below

the Tables and Field Lists, the third midway from the top and bottom on the right

hand side of the window. The first row of buttons directly below the Tables and Field

Lists are used to walk through a name matching session. The second row of buttons

directly below these are used to modify the system tables which control the behavior

17

Name Matching
I Table A I

I Primary Field A I

I Table B I

| Primary Field B i

[1] [2] [3] [4] 1 [5]1

Contrl Buttons
I°o +~uoi I I I

IDo m a in
I

I Operation I

Results

I ManuaI Matching Buttons

Status and Instruction Bar

Figure 3-1: Layout of the DQM Name Matching Window

of the name matching process as well as allow the user to quit, start over, or cancel.

The third row on the right hand side are used when the user chooses to manually

declare matches from the table views and also to control the views themselves.

3.4.3 Views

The views occupy the right half section of the name matching window. There are two

modes of view; a double window and a single window view. The default is the double

window view which displays two tables at once. The single-window view occupies the

entire right half of the window and is used only when displaying the system table for

modifications or displaying the output table at the conclusion of a name matching

session.

18

View A

Field List A Field List B

View B

3.4.4 Option Boxes

There are two option boxes,and they are located on the lower left corner of the

window. The first option box on top allows the user to specify the domain in which

the name matching is to be executed. For this thesis, only the "Company Names"

option has been implemented. The second option box allows the user to specify the

type of join operation that is desired. There are four possibilities:

* Inner Join

* Right Join

* Left Join

* Merge

3.4.5 Results Window

The sunken box located directly to the right of the option boxes displays a running

total of how records have been matched, how many records are left unmatched in the

two input tables, and how many records will be included in the final output table

depending the type of join the user has specified.

3.5 Running a Session

This section provides a general description of how a session is executed in the name

matching window. Appendix B contains a more detailed description using a sample

tables and a scenario.

3.5.1 Specifiying Tables and Fields

The first step in running a name matching session is to specify which tables contain

the name fields which are to be matched. Clicking on the pulldown button located

flush right on the boxes labeled Table A and Table B displays a list of all available

tables in the current database. As soon as a table is chosen, the name matcher looks

19

up the table definition and displays a list of field names in the field list box. A

constraint on table definitions using Access requires that field names for any specific

table be unique. It may, however, be the case that Tables A and B use the same

name for any one or more of its fields. For example, both tables may use the name

"CompanyName." To allow both fields to be included in the join table, the Name

Matcher appends a "'A" and "B"' to the beginnings of all field names for their

respective tables.

The next step after specifying the tables is to specify the fields which contain the

names that are to be matched. These are called the primary columns. This can be

done by simply clicking on the appropriate field name in the field list box. Now the

user is ready to begin matching.

3.5.2 Button [1]: Exact Matching

The first matching that is executed is exact matching. None of the other four out of

five matching buttons are enabled until exact matching has first been performed. Ex-

act matching simply performs a run-of-the-mill DBMS join operation on the primary

columns specified.

There are several important initialization procedures that occur at this time. First

of all, the input tables are copied into temporary work tables NMUnMatchedA and

NMUnMatched_B, respectively. Following this, the results of the join operation are

used to make a new output table called NMMatched. Finally, the records that

were joined are purged from the UnMatched tables. After exact matching has been

executed, the unmatched tables will appear in the views to the right of the screen.

3.5.3 Button [2]: Context Matching

Context matching can be used when columns containing the same unique-specifier

exists for both tables. For example, if both Tables A and B contain fields for the

ticker tape symbol of the company, the user can select those fields from the field lists

and press the Context Matching button. If no such fields exist, then pressing the

20

Context Matching button without having selected fields will move the session to the

next step which is Canonic matching.

If the user has selected fields, then the name matcher first performs a check to see

that the fields are indeed unique. A join operation is executed, and any record that

is joined more than once indicates that the field is not unique. The user is informed

that the fields are not unique and matching is not performed. If no record is joined

more than once, then the results of the join are appended to the match table and

purged from their respective unmatched tables.

Notice that the name matcher cannot check to see that the selected columns are

by design unique-specifiers like ticker tape symbols or Social Security numbers. The

only thing that the can be checked is to see that no value occurs twice in the same

table. This means that a field like "city" can serve as a unique-specifier if no other

records in that table and no more than one record on the other table contains the

same value.

3.5.4 Button [3]: Canonic Matching

The purpose of canonic matching is four fold:

1. take out all punctuation

2. convert common words such as "and" to a canonic form "&"

3. truncate common endings such as Inc, Co, etc...

4. check if the name is an alias

The name matcher applies various string operations to carry out the above tasks,

and the resulting string is stored in a column appended to the original unmatched ta-

ble. The columns are named ANMCANONIC and BNMCANONIC, respectively.

Following the conditioning process, the resulting name is checked against the alias

table to see if there is a match, and if there is, the name is replaced by its canonic

form as defined in the alias table. Finally, a join operation is executed on the ap-

pended columns. As in the previous cases, the results of the join are appended to the

21

matched table and purged from the unmatched tables. Upon successful execution of

canonic matching, the name matcher allows the user to move on to either keyword

matching or Soundex matching.

3.5.5 Button [4]: Keyword Matching

Keyword matching performs further conditioning on the canonic form of the names

and stores the results in a second appended field called ANMKEYWORD and

BNMKEYWORD. What keyword does specifically is return the first word that

is not a single letter and not a common word as defined by the user. "Common"

words are stored in a system table called the Condition Table. The user has access

to this table and can add, delete, or modify entries in the table. Some common

words include First, National, General, and articles. If the first word happens to be

a single letter then the program returns the next word as well. In exactly the same

manner as canonic matching, a join operation is executed on the newly filled fields

and appropriate append and purge operations are executed.

3.5.6 Button [5]: Soundex Matching

Soundex matching uses an algorithm called the Soundex algorithm to convert the

canonic form of the name into a string of characters and numbers. The soundex

algorithm is described in detail along with the code in Appendix C. As with canonic

and keyword matches, the resulting string of characters and numbers are inserted into

an appended column. Then a join operation is used to find matches that are to be

added to the match table and deleted from the unmatched tables.

3.6 Improving Matching Performance

The user has several options for improving the performance of the name matcher after

he/she gains an understanding of the domain in which the name matching is being

performed and the procedure which the DQM Name Matcher follows in matching

22

names. All options for improving performance relies on the user to modify one or

more system tables which specify exactly what the DQM Name Matcher looks for

during different phases of the process.

3.6.1 Alias Table

The system table contains a list of aliases for specific company names which would

not otherwise be detected by the name matcher. For example, acronyms cannot be

detected by the name matcher unless specified in the alias table. The alias table pro-

vides a mechanism for handling the exceptions that always occur within conventions

of nearly any sort. A single company can have up to four aliases.

In order to modify the alias table, the user presses the button labeled "Alias

Table," and the table will appear in single-table mode in the view section of the

window. With the mouse, the user can click on either an existing record to modify or

add aliases to an already existing company, or the user may click on a blank record to

add a new company and an alias. When finished, pressing the now depressed button

will restore the button and return the session to where it left off.

3.6.2 Condition Tables

There are two condition tables which specify how canonic and keyword matches are

carried out. The first is the discard table and the second is the replace table.

The discard table consist of two columns which contain the first and end tokens

discarded, if found, during the keyword and canonic matching stages respectively.

During canonic matching, the end token is found by finding the last space which

occurs before the end of the name and discarding everything before the space and

including the space. If no space is found then an empty string is returned. If the

end token is in the column of end tokens specified in the condition table, then it is

discarded from the name. The process is similar for keyword matching except that

the first token is used instead of the end token.

The replace table also consists of two columns and both columns are used to

23

convert a name to its canonic form. The first column specifies a search string, and

the second column specifies a replace string. Anytime the search string is found in

a name, it is replaced by the replace string. This table is used mostly to replace

punctuation with spaces, but it is also used to replace common words such as "and"

to a canonic form such as "&." In the latter case, the choice of which form to make

canonic is arbitrary and unimportant as along as all occurrences of the word are

converted to a common form.

The condition tables can be modified in similar fashion to the alias table. The

button labeled "Condition Tables" will cause the discard table to appear in the top

view and the replace table in the bottom view.

24

Chapter 4

Empirical Analysis

Empirical analysis was performed on the DQM Name Matcher using two different

types of data: synthetic data and real world data. Synthetic data was built specifi-

cally to test that the designed features of the name matcher were working properly.

Section 1 describes how the synthetic data was prepared and also gives the results of

performing a DQM Name Matching session on the set. Section 2 describes the real

world data that was used to test the DQM Name Matcher.

4.1 Synthetic Data Set

4.1.1 Making the Set

The synthetic tables, consisting of Synthetic Table A and B, were constructed by first

querying the Fortune 1000 '93 database to return all companies that had a primary

SIC code of 3571. The SIC code categorizes company's according to the type of

service or product that they offer, and 3571 refers to companies that manufacture

electronic computers. There was no particular reason for choosing this subset of

Fortune companies except that the names were familiar to the author and the size

query was adequate for the purpose of testing. This query returned 16 records which

makes up Synthetic Table A.

To prepare Synthetic Table B, records in Table A was modified to test a certain

25

Synthetic Table A Synthetic Table B
ACompanyName BCompanyName Match Type
Dell Computer Dell Computer Exact
Unisys Unisys
Hewlett Packard Hewl. Pack. Context
Digital Dig. Equip. Corp.
Apple Computer Apple Computer Inc Canonic-End Token
Ast Research Ast Research Incorporated
International Business Machines IBM Canonic-Alias
Silicon Graphics SGI
Gateway 2000 Gateway Keyword
Sun Microsystems Sun Micro Inc.
Compaq Computer Compac Computer Soundex
Tandem Computers Tandam Computers

Sun Diamond Growers Mismatch

Table 4.1: Synthetic Tables

feature of the name matcher. For example, end tokens such as Inc. and Co. were

added to some names to test Canonic matching. Canonic matching was also tested

by converting some names to their aliases which were input into the system alias

table. Parts of names were deleted or added to test Keyword matching, and some

names were purposely misspelled to test the Soundex algorithm. Some names were

left unmodified to test exact matching. Finally, a miscellaneous record was added to

Table B which does not have a match in Table A. The modified table was then saved

as a second table called Synthetic Table B. Table 4.1 shows the names in Synthetic

Table A and B along with the type of match which they represent indicated in the

third column. The ticker tape symbol was included in both tables as a primary key

on which to perform context matching.

4.1.2 Testing the Set

After synthesizing Tables A and B, saving the tables into the DQM database made

them available for the DQM Name Matcher to examine. Notice that remote tables

can also be attached to the DQM database meaning that tables need not physically

reside in the machine which is running the DQM. Following the procedure for running

a name matching session described in the previous chapter, Synthetic Tables A and

26

ACompanyName BCompanyName
Dell Computer Dell Computer
Unisys Unisys

Table 4.2: Exact Matches

ACompanyName B.CompanyName
Dell Computer Dell Computer
Unisys Unisys
Hewlett Packard Hewl. Pack.
Digital Dig. Equip. Corp.
Apple Computer Apple Computer Inc
Ast Research Ast Research Incorporated
International Business Machines IBM
Silicon Graphics SGI
Gateway 2000 Gateway
Sun Microsystems Sun Micro Inc.
Compaq Computer Compac Computer
Tandem Computers Tandam Computers

Table 4.3: Context Matches

B were selected, and buttons [1] through [5] were used to perform the matching.

Table 4.2 shows the results of performing exact matching on the input tables. Table

4.3 shows the results of performing context match. Table 4.4 shows the results of

performing canonic match. Table 4.5 shows the results of performing keyword match,

and Table 4.6 shows the results of performing soundex match. Notice that when a

primary key is available, no other matching algorithm is necessary.

ACompanyName B.CompanyName Canonic Form
Apple Computer Apple Computer Inc Apple Computer
Ast Research Ast Research Incorporated Ast Research
International Business Machines IBM International Business Machines
Silicon Graphics SGI Silicon Graphics

Table 4.4: Canonic Matches

27

ACompanyName BCompanyName Keyword
Gateway 2000 Gateway Gateway
Sun Microsystems Sun Micro Inc. Sun

Table 4.5: Keyword Matches

A CompanyName BCompanyName Soundex Code
Compaq Computer Compac Computer
Tandem Computers Tandam Computers

Table 4.6: Soundex Matches

28

4.2 Real World Data Set

The real world data sets were obtained from two separate sources: the Worldscope

database and Fortune 1000 '93 database. Just as with the synthetic data sets, the

primary SIC code was used to query a subset of the company tables from their

respective databases. For the Worldscope database, an additional specificier was

added to restrict the query to U.S. companies only. Included in both queries was

the ticker tape symbol which provided a way of determining how many true matches

were in the two input tables created by the queries. After determining the number of

true matches, name matching was performed on the input tables without using the

ticker tape symbol so that performance of the rest of the name matching algorithm

could be measured. The data sets tested are listed along with their output tables in

Appendix B.

Tables 4.7 and 4.2 gives the vital statistics of the name matching performed on

the input tables enumerated in Appendix B. The first column of Table 4.7 gives the

SIC Code which was queried. The second column gives the number of true matches

existing in the two input tables. This was obtained by performing a join operation

using the ticker tape symbols as specifiers. The third column gives the number of

actual matches that were obtained without using the ticker tape symbol with the

DQM Name Matcher. The fourth column is the percentage of names which were

matched (Actual/True * 100). The fifth column indicates how many of the matches

that were made required the user's input. This is essentially the number of matches

made using keyword and soundex since both of these require the user to make the

final decision. Finally, the last column gives the percentage of matches made requiring

user input from all matches made. Table 4.2 breaks down the matches by type.

29

SIC True Actual % Queried % of Matches
Code Matches Matches Matched Matches from Queries
6331 16 16 100% 5 31%

2911 13 13 100% 1 7.7%

3571 5 5 100% 1 20%

4813 9 9 100% 1 11%

Table 4.7: Matching Statistics

SIC Exact Canonic Keyword Soundex
Code Matches Matches Matched Matches
6331 0 11 5 0

2911 0 12 1 0

3571 0 4 1 0

4813 1 7 1 0

Table 4.8: Matching Statistics II

30

Chapter 5

Conclusion

The goals initially set for this thesis were succesfully reached. The main contribution

of this thesis is a framework for viewing all the available information that can be

exploited toward determining if two names within a specified domain are equivalent.

This framework includes the syntactic, domain, and contextual knowledge that is

either embedded in the name itself, in a known convention, or in accompanying fields

of the record, respectively. The DQM Name Matcher has been implemented to show

that these concepts can be coded into a computer algorithm for actual use in real

working environments.

The emprical analysis shows that the algorithm implemented in DQM Name

Matcher can achieve 100% accurary with real world data. There are, however, two

important details that point to possible future research and development of the DQM

Name Matcher. The first detail is that although the test set included company names

from a variety of domains, the names came only from two databases, Worldscope and

Fortune 1000. Both these databases were likely to have naming conventions which

would have constrained the types of mis-matches that the name matcher encoun-

tered. Therefore, further testing with a wider variety and greater number of sources

is needed before giving confidence to the DQM Name Matching algorithm.

The second detail concerns the percentage of matches that required user input.

The Name Matcher required the user's final decision for an average 17.4% of its

matches. This was not a problem for tables in the test set which had no more than

31

16 matches. For tables with number of matches in the thousands or more, however,

17.4% proves to be quite a burden for the user to have to manually inspect. An

improvement in the keyword and soundex matching algorithms could greatly reduce

this burden. Currently, the system queries the user whenever a keyword or soundex

match is found. This is because those matches are not strong enough in themselves

to conclude a definitive match. If, however, these matches were combined with some

other measure of equivalency, the two measures together could be strong enough to

declare a match without asking the user. One such measure of equivalency could

come from the non-unique context fields that are currently unused by the system.

32

Appendix A

Code

Option Compare Database 'Use database order for string comparisons

'** CONSTANTS ***

Const TABLECOLOR = 32768, P COLOR = 16711808, S COLOR = 4194432
Const COMPANY-NAMES = 1, ADDRESSES = 2, PEOPLE NAMES = 3
Const INNER-JOIN = 1, OUTER JOIN = 2, LEFT JOIN = 3, RIGHT JOIN = 4
Const PASS = 1, FAIL = 0
Const EXACT MATCH STAGE = 0, UNIQUECONTEXT STAGE = 1, CANONIC STAGE = 2
Const KEYWORD STAGE = 3, USER STAGE = 4, FINISHED STAGE = 5, QUERY STAGE: 6
Const MB OK = 0. MB OKCANCEL = 1 'Define buttons.
Const MB YESNOCANCEL = 3, MB YESNO = 4
Const MB ICONSTOP = 16, MB ICONQUESTION = 32 'Define icons.
Const MB ICONEXCLAMATION = 48, MB ICONINFORMATION = 64
Const MB DEFBUTTON2 = 256, IDYES = 6, IDNO = 7 'Define other.
Const IDCANCEL = 2, IDOK = 1

"** VARIABLES **

Recordset Variables 20

Dim MyWS As WorkSpace
Dim MyDb As Database
Dim matchedset As Recordset, un one As Recordset, un two As Recordset
Dim tl As String 'name of Table A
Dim t2 As String 'name of Table B
Dim pl As String 'name of primary field in table A
Dim p2 As String 'name of primary field in table B
Dim sl As String 'name of secondary field in table A
Dim s2 As String 'name of secondary field in table B
Dim manmatch As Integer 'number of records matched manually 30

Dim man nonmatch As Integer
Dim FIELD LIST A As String, FIELDLIST B As String
Dim exactmatches As Integer

33

Dim contextmatches As Integer
Dim canonic_matches As Integer
Dim keywordmatches As Integer
Dim soundex matches As Integer
Dim total-matches As Integer

40

'** FLAGS ********* ***

Dim KEYWORD MATCHED As Integer
Dim CANONICIZED As Integer
Dim SOUNDEXED As Integer
Dim EXACTMATCHED As Integer
Dim MATCH VIEW CREATED As Integer
Dim A VIEWCREATED As Integer
Dim BVIEW CREATED As Integer

50

Sub btn_CancelClick ()
On Error GoTo Err_btn Cancel Click
DoCmd Close

Exit btn_Cancel_Click:
Exit Sub

Err btnCancel_Click:
MsgBox Error$
Resume Exit btn CancelClick 60

End Sub

Sub btn_Canonic Click ()
On Error GoTo ErrbtnCanonic Click

If Not CANONICIZED Then

Write_STAT "CANONIC STAGE: Please Wait. Primary fields are being
transformed to canonic form." 70

DoCmd Hourglass True

Condition_Set "NM UnMatched One", "ACANONIC"
Condition_Set "NM UnMatched Two", "B_CANONIC"
canonic matches = UpdateTables("A_NM_CANONIC", "B_NMCANONIC", False)
Update_Results

If Not STAGE = FINISHED STAGE Then
[btn_Keyword].Enabled = True
[btn_Soundex].Enabled = True 80

[btnKeyword].SetFocus
[btn Canonic].Enabled = False
Write STAT "Next, KEYWORD STAGE: Canonic forms will be

parsed for keyword. Press [4]."
End If

CANONICIZED = True

34

End If

ExitbtnCanonicClick: 90

DoCmd Hourglass False
Exit Sub

Err btn CanonicClick:
CANONICIZED = False
Select Case Err

Case 13 Type Mismatch
Write_STAT "The two selected fields have incompatible types."

Case Else
MsgBox Error$ 100

End Select
Resume ExitbtnCanonicClick

End Sub

Sub btn_Context Click ()
On Error GoTo ErrbtnContext Click

sl = Me!field one list
s2 = Me!field two list 110

If (sl = "") Or (s2 = "") Then
If Not CANONICIZED Then

[btnCanonic].Enabled = True
[btnCanonic].SetFocus

End If
GoTo Exit btnContext Click

End If

'Check to see if keys are unique 120

Dim TempRS As Recordset
Set TempRS = MyDb.OpenRecordset("SELECT [NM UnMatched One]." &

sl &" FROM [NM UnMatched One] INNER JOIN [NM UnMatched
Two] ON [NM UnMatched One]." & sl & " = [NM UnMatched

Two] ." & s2 & " GROUP BY [NM UnMatched One]." & sl & "
HAVING (Count([NM UnMatched One] ." & sl & ") > 1);")

If Not (TempRS.EOF) Then
MsgBox "The chosen fields are not unique keys."

GoTo Exit btnContextClick
End If 130

TempRS.Close

context-matches = Update Tables(sl, s2, False) + context_matches

Update_Results

Exit btn Context Click:
'context-matches = (Val([txtresult_1].Caption) - exact matches)
[field one list] =
[field two list] = "" 140

Exit Sub

35

Err btn ContextClick:
context matches = 0
Select Case Err

Case 13 Type Mismatch
WriteSTAT "The two selected fields have incompatible types."

Case Else

MsgBox Error$
End Select 150

Resume Exitbtn ContextClick

End Sub

Sub btnContext KeyPress (KeyAscii As Integer)
btn Context Click

End Sub

Sub btn doneClick () 160

Me! [btn view] .Enabled = True
Me![table].Form.allowediting = False
Me![table].Form.defaultediting = 3 Read Only
Me![table2].Form.allowediting = False
Me![table2].Form.defaultediting = 3 Read Only
[btn match].Enabled = False
[btn manual].Enabled = True
[btn manual] .SetFocus
[btn done].Enabled = False

End Sub 170

Sub btnExactClick ()
On Error GoTo ErrbtnExact Click

If Not EXACT MATCHED Then

If ([field one list] = "") Or ([field two list] = "") Then
MsgBox "Please choose two fields to match", 48
GoTo Exit btnExactClick

ElseIf Me!tableone list = Me!table two list Then is0
MsgBox "Choose Different Tables", 48
GoTo Exit btn Exact Click

End If

tl = Me!table one list
t2 = Me!table two list
pl = Me!field_one_list
p2 = Me!field_twolist

D)oCmd Hourglass True 190
If Initialize NM(= FAIL Then

MsgBox "Failed to initialize tables", 16
GoTo Exit btn Exact_Click

End If

36

[table one list].Locked = True
[table two list].Locked = True
[txt primary 1].Caption = pl
[txt primary_2].Caption = p2
[btnview].Enabled = True 200

[btn manual].Enabled = True

[field one_list] = "

[field two list] =

UpdateResults

EXACT MATCHED = True
Removefromlist 1

Removefromlist 2 210

WriteSTAT "CONTEXT STAGE: Select fields that are unique and

press [2]. Press [3] when none."

[btnContext].Enabled = True

[btn Context].SetFocus
[btn Exact].Enabled = False
[btn Finish].Enabled = True
exact matches = Val([txtjresult 1] .Caption)

End If

Exit btnExactClick: 220

Exit Sub

Errbtn Exact Click:
exact matches = 0
EXACT MATCHED = False
MsgBox "Procedure: btnExactClick" & Chr$(13) & Error$
DoCmd Hourglass False
Resume Exitbtn Exact Click

End Sub
230

Sub btn Exact KeyPress (KeyAscii As Integer)
btn Exact Click

End Sub

Sub btnfinishClick ()

Dim fname As String, MyQuery As QueryDef, LogSet As Recordset

fname = InputBox$("Save output table as:",, "NM_Out")
If fname = " " Then 240

Exit Sub
End If
Del_fromTabledDefs fname

Del from_QueryDefs "NM Update Matches"
Set MyQuery = MyDb.CreateQueryDef("NM Update Matches")

[cmb operation] .SetFocus
Select Case [cmb operation].Text

37

Case "Inner Join"
GoTo After_Select

Case "Right Join"
MyQuery.SQL = "INSERT INTO [NM Matched]

Two].* FROM [NM UnMatched Two];"
Case "Left Join"

MyQuery.SQL = "INSERT INTO [NM Matched]
One]. * FROM [NM UnMatched One];"

Case "Merge"
MyQuery.SQL = "INSERT INTO [NM Matched]

One] .* FROM [NM UnMatched One];"
MyQuery.Execute
MyQuery.SQL = "INSERT INTO [NM Matched]

Two] .* FROM [NM UnMatched Two];"
End Select

250

SELECT [NM UnMatched

SELECT [NM UnMatched

SELECT [NM UnMatched

260

SELECT [NM UnMatched

MyQuery. Execute

After_Select:
MyQuery.Close

270

Set LogSet = MyDb.OpenRecordset("NM Log")
LogSet.AddNew
LogSet!TABLE_A = tl
LogSet!TABLEB = t2
LogSet!Primaryfield_A = pl
LogSet!Primary field_B = p2
LogSet!Output_Table = fname
LogSet!Date = Date$
LogSet!Time = Time$
[cmboperation] .SetFocus
LogSet!Operation_Type = [cmb operation].Text
[cmb domain] .SetFocus
LogSet!Domain_Type = [cmbdomain].Text
[btn new] .SetFocus
LogSet!exact matches = exactmatches
LogSet!contextmatches = context-matches
LogSet!canonicmatches = canonicmatches
LogSet!keyword_matches = keywordmatches
LogSet!soundex matches = soundex_matches
LogSet!total_matches = total_matches
LogSet!User_Queries = manmatch + man_nonmatch
LogSet!Matches_Declared = man match
LogSet!NonMatchesDeclared = man_nonmatch
LogSet!UnMatched in A = [txtresult_2].Caption
LogSet!UnMatched_in_B = [txtresult_3].Caption
LogSet!Output_Records = [txt_total].Caption
LogSet.Update
LogSet.Close

280

290

300If [table2].sourceobject = "NM Matched" Then
[table2].sourceobject = "NM Empty Form"

End If
Del From_TableDefs fname

38

DoCmd Rename fname, A TABLE, "NM Matched"
MyDb.tabledefs.Refresh

Me![table_one list].SetFocus
Me![btn Exact].Enabled = False
Me![btn Context] .Enabled = False
Me![btn Canonic].Enabled = False 310

Me![btnKeyword].Enabled = False
Me![btnSoundex].Enabled = False
Me![btn manual].Enabled = False
Me![btn match] .Enabled = False
Me![btndone].Enabled = False
Me![btnCancel].Enabled = True
Me![btn new].Enabled = True
Me![btn Finish].Enabled = False
Write_STAT "Matching COMPLETE!!! !"
InitializeView fname, "Final Output" 320

Del From_TableDefs "NM UnMatched One"
Del_From_TableDefs "NM UnMatched Two"
DelFrom_TableDefs "NM Temp Matched"

Del From_TableDefs "NM Query Match"
Del from QueryDefs "NM Update Matches"
Del_fromQueryDefs "NM Update Table A"
Delfrom_QueryDefs "NM Update Table B"

DoCmd OpenForm "NM Result" 330

End Sub

Sub btn KeywordClick ()
On Error GoTo Errbtn_KeywordClick

If Not KEYWORD MATCHED Then
DoCmd Hourglass True

Condition-Set "NM UnMatched One", "AKEYWORD" 340

Condition Set "NM UnMatched Two", "B_KEYWORD"
keyword_matches = Update_Tables("A_NM_KEYWORD", "B_NM_KEYWORD", True)
Update_Results

If STAGE = FINISHED STAGE Then
[btn_new] .SetFocus

Else
[btn_new].SetFocus
[btn_Keyword].Enabled = False
Write_STAT "Next, SOUNDEX STAGE: Uses approximate matching 350

algorithm. Press [5]"
End If

KEYWORD MATCHED = True

End If

39

Exit btnKeyword Click:
DoCmd Hourglass False
Exit Sub 360

Err btn KeywordClick:
KEYWORD MATCHED = False
MsgBox "Procedure :btn_Keyword_Click" & Chr$(13) & Error$
Resume ExitbtnKeyword Click

End Sub

Sub btn Keyword KeyPress (KeyAscii As Integer)
btn KeywordClick

End Sub 370

Sub btn_manual Click ()
If Me![table2].sourceobject = "NM Matched" Then

MakeViewB to B
End If
Me![btn view] .Enabled = False
Me![table].Form.defaultediting = 4 'Can't Add Record
Me! [table] .Form.allowediting = True
Me![table2].Form.allowediting = True
Me! [table2].Form.defaultediting = 4 'Can't Add Record 380

[btnmatch].Enabled = True
[btn done].Enabled = True
[btn done].SetFocus
[btn manual].Enabled = False

End Sub

Sub btn manuall click ()
On Error GoTo Err btn manuall click

If [btn manual].Caption = "Manual Matching" Then 390

If Me![table2].sourceobject = "NM Matched" Then
Make ViewB to B

End If
Me![btn view].Enabled = False
Me![table] .Form.defaultediting = 4 'Can 't Add Record
Me![table].Form.allowediting = True
Me![table2].Form.allowediting = True
Me![table2].Form.defaultediting = 4 'Can t Add Record
[btn match].Enabled = True
[btn done].Enabled = True 400

[btn manual].Caption = "Done"

Else
Dim MyQueryl As QueryDef, MyQuery2 As QueryDef, MyQuery3 As QueryDef
Dim FIELDLIST As String

MyWS.BeginTrans
Set MyQueryl = MyDb.OpenQueryDef("NM Update Matches")
Set MyQuery2 = MyDb.OpenQueryDef("NM Update Table A")
Set MyQuery3 = MyDb.OpenQueryDef("NM Update Table B") 410

40

FIELD LIST = Build Field List(
MyQueryl.SQL = "INSERT INTO [NM Matched] SELECT " & FIELDLIST &

" FROM [NM UnMatched One] INNER JOIN [NM UnMatched Two]
ON [NM UnMatched One].[A_NMMATCH_NUM] = [NM UnMatched

Two]. [BNM_MATCH_NUM];"

MyDb.Execute (MyQueryl.name)

MyQuery2.SQL = "DELETE DISTINCTROW [NM UnMatched One] .* FROM [NM
UnMatched One] WHERE [NM UnMatched One]. [A_NM_MATCH_NUM] 420

= " & man match & ";"
MyQuery3.SQL = "DELETE DISTINCTROW [NM UnMatched Two].* FROM [NM

UnMatched Two] WHERE [NM UnMatched Two]. [B_NM_MATCH_NUM]

= " & man match & ";"
MyDb.Execute (MyQuery2.name) 'Run query.
MyDb.Execute (MyQuery3.name) 'Run query.
MyQueryl .Close
MyQuery2.Close
MyQuery3.Close

430

Update_Results

MyWS.CommitTrans

Me![btnview].Enabled = True
Me! [table].Form.allowediting = False
Me![table].Form.defaultediting = 3 Read Only
Me![table2].Form.allowediting = False
Me![table2].Form.defaultediting = 3 Read Only
[btn match].Enabled = False 440

[btn done].Enabled = False
[btnmanual] .Caption = "Manual Matching"

End If

Exitbtnmanuallclick:
Exit Sub

Errbtn manuallclick:
MyWS.Rollback
MsgBox "Procedure: btnmanuallclick" & Chr$(13) & Error$ 450

Resume Exitbtnmanuall click
End Sub

Sub btnmatch Click ()
On Error GoTo Err btnmatchClick
Dim MyQueryl As QueryDef, MyQuery2 As QueryDef, MyQuery3 As QueryDef
Dim FIELD_LIST As String

man match = manmatch + 1
Set unone = [table].Form.RecordsetClone 460

Set untwo = [table2].Form.RecordsetClone
un one.Bookmark = [table].Form.Bookmark
untwo.Bookmark = [table2].Form.Bookmark

un one.Edit

41

un_two.Edit
un_one![A NM_MATCH_NUM] = man_match
un_two![B NM MATCH NUM] = manmatch
un_one.Update
un_two.Update 470

Set MyQueryl = MyDb.OpenQueryDef("NM Update Matches")
Set MyQuery2 = MyDb.OpenQueryDef("NM Update Table A")
Set MyQuery3 = MyDb.OpenQueryDef("NM Update Table B")

MyWS.BeginTrans

FIELD_LIST = Build Field List(
MyQueryl.SQL = "INSERT INTO [NM Matched] SELECT " & FIELD_LIST &

" FROM [NM UnMatched One] INNER JOIN [NM UnMatched Two] 480

ON [NM UnMatched One]. [ANMMATCHNUM] = [NM UnMatched
Two]. [BNM_MATCH_NUM];"

MyDb.Execute (MyQueryl.name)

MyQuery2.SQL = "DELETE DISTINCTROW [NM UnMatched One] .* FROM [NM
UnMatched One] WHERE [NM UnMatched One]. [A_NM_MATCH_NUM]

= " & manmatch & ";"
MyQuery3.SQL = "DELETE DISTINCTROW [NM UnMatched Two] .* FROM [NM

UnMatched Two] WHERE [NM UnMatched Two]. [B_NM_MATCH_NUM]
= " & manmatch & ";" 490

MyDb.Execute (MyQuery2.name) 'Run query.
MyDb.Execute (MyQuery3.name) 'Run query.
MyQueryl.Close
MyQuery2.Close
MyQuery3.Close
MyWS.CommitTrans
UpdateResults

Exit_btn_matchClick:
Exit Sub 500

Errbtnmatch_Click:
man match = man_match - 1
MyWS.Rollback
MsgBox "Procedure btn_match_Click." & Chr$(13) & Error$
Resume Exit_btnmatchClick

End Sub

Sub btn_matchl_Click () 510
On Error GoTo Errbtnmatchl Click

man_match = man_match + 1
Set un_one = [table].Form.RecordsetClone
Set un_two = [table2].Form.RecordsetClone
un_one.Bookmark = [table].Form.Bookmark
un_two.Bookmark = [table2].Form.Bookmark

42

un one.Edit 520

un_two.Edit
If IsNull(unone![A_NM_MATCH NUM]) Then

If IsNull(un two![B NM_MATCH_NUM]) Then
un one![ANM MATCH NUM] = man match
untwo![BNMMATCH NUM] = man match

Else
unone![A_NMMATCH_NUM] = un two![BNM_MATCH NUM]

End If
Else

If IsNull(un two![B_NMMATCH_NUM]) Then 530

untwo![B NM MATCH NUM] = unone![A_NM_MATCH_NUM]
Else

MsgBox "Both records are already matched to other records."
GoTo Exitbtn_matchlclick

End If
End If

un_one.Update
un_two.Update

540

Exit btn_matchl click:
Exit Sub

Err_btnmatchl Click:
MsgBox "Procedure btn_match_Click." & Chr$(13) & Error$
Resume Exit btn_matchl click

End Sub
550

Sub btn_New_Click (
FormLoad

End Sub

Sub btn_Soundex Click ()
On Error GoTo Err btn Soundex_Click

If Not SOUNDEXED Then
DoCmd Hourglass True

560

Condition_Set "NM UnMatched One", "ASOUNDEX"

Condition_Set "NM UnMatched Two", "BSOUNDEX"
soundex_matches = Update_Tables("ANMSOUNDEX", "BNMSOUNDEX", True)
'Update_Tables "ANMSOUNDEXVAL", "B_NM_SOUNDEX_VAL", False
Update_Results

If STAGE = FINISHED STAGE Then
[btn_new] .SetFocus

Else
[btn_manual].SetFocus 570

[btn_Soundex].Enabled = False
Write STAT "Next, Do Manual matching."

End If

43

SOUNDEXED = True
End If

ExitbtnSoundexClick:
DoCmd Hourglass False
Exit Sub

580

Err btn SoundexClick:
SOUNDEXED = False
MsgBox "Procedure:btnSoundexClick" & Chr$(13) & Error$
Resume ExitbtnSoundex Click

End Sub

Sub btnviewClick ()
On Error GoTo ErrbtnviewClick

590

If Me![table2] .sourceobject = "NM Matched" Then
Make ViewB to B

Else
MakeViewB to C

End If

ExitbtnviewClick:
Exit Sub

Err btn view Click: 600

MsgBox Error$,, "Table Editing - btn_viewClick"
Resume Exit btnviewClick

End Sub

Function BuildAlias ()
On Error GoTo Err Build Alias

Dim N As Integer, M As Integer, I As Integer, Max As Integer, result
As String, fname As String 610

M = MyDb.tabledefs(tl).Fields.Count
N = MyDb.tabledefs(t2).Fields.Count
result = " '

If N > M Then
Max = N

Else
Max = M

End If 620

For I = 0 To Max - 1
If I < M Then

fname = MyDb.tabledefs(tl).Fields(I).name
result = result & " " & tl & ". [" & fname & "] AS A_" &

fname & "
End If

44

If I < N Then
fname = MyDb.tabledefs(t2).Fields(I).name
result = result & "[" & t2 & "]. [" & fname & "] AS B_" & 630

fname & ",
End If

Next I

Build Alias = Left$(result, Len(result) - 2)

Exit Build Alias:
DoCmd Echo True
Exit Function

640

Err BuildAlias:
MsgBox Err & " : " & Error,, "Build_Alias"
Build Alias =
Resume Exit Build Alias

End Function

Function Build_Alias_FieldList (table-name As String, Prefix As String) 650

As String
On Error GoTo Err BuildAliasFieldList

Dim N As Integer, M As Integer, result As String, fname As String

N=0
M = MyDb.tabledefs(tablename).Fields.Count
result "

Do 660

fname = MyDb.tabledefs(tablename) .Fields(N).name
result = result & " " & table name & "]. [" & fname & "] AS " &

Prefix & fname & ",
N=N + 1

Loop Until N >= M

Build_Alias_Field_List = Left$(result, Len(result) - 2)

Exit BuildAliasField_List:
DoCmd Echo True 670

Exit Function

ErrBuildAliasField List:
MsgBox Err &" : " & Error,, "Build_Alias_Field_List"
Build Alias Field List =
Resume ExitBuild AliasFieldList

End Function

Function BuildFieldList () As String 680

On Error GoTo Err Build Field List

45

Dim N As Integer, M As Integer, I As Integer, Max As Integer, result
As String, fname As String

M = MyDb.tabledefs("NM UnMatched One").Fields.Count
N = MyDb.tabledefs("NM UnMatched Two").Fields.Count
result =

690

If N > M Then
Max = N

Else
Max = M

End If

For I = 0 To Max - 1
If I < M Then

fname = MyDb.tabledefs("NM UnMatched One").Fields(I).name
result = result & " [NM UnMatched One] . [" & fname & "], " 700

End If
If I < N Then

fname = MyDb.tabledefs("NM UnMatched Two").Fields(I) .name
result = result & " [NM UnMatched Two] . [" & fname & "],

End If
Next I

Build_Field_List = Left$(result, Len(result) - 2)

Exit Build Field List: 710

DoCmd Echo True
Exit Function

Err Build Field List:
MsgBox Err &" : " & Error,, "Build_Field_List"
Build FieldList =
Resume Exit_Build Field_List

End Function
720

Function BuildTempFieldList () As String
On Error GoTo Err_BuildTempFieldList

Dim N As Integer, M As Integer, result As String, fname As String

N=0
M = MyDb.tabledefs("NM Temp Matched").Fields.Count
result =

Do 730

fname = MyDb.tabledefs("NM Temp Matched").Fields(N).name
result = result & " [NM Temp Matched]. [" & fname & "],
N=N + 1

Loop Until N >= M

46

N=O0

Build Temp_Field_List = Left$(result, Len(result) - 2)

Exit_Build_Temp_Field_List: 740

DoCmd Echo True
Exit Function

Err Build_Temp Field_List:
MsgBox Err & " : " & Error,, "Build_Temp_Field_List"
Build Temp Field List = ""
Resume ExitBuildTempField List

End Function
750

Sub Clear STAT ()
Me![txt status].Caption =

End Sub

Function ConditionRecord_to Canonic (txt As String) As String
On Error GoTo Err Condition_RecordtoCanonic

Dim LastSpc As Integer, Length As Integer
Dim EndToken As String, Temp As String
Dim Criteria As String, MySet As Recordset, ReplaceSet As Recordset 760

Set MySet = MyDb.OpenRecordset("NM Condition Table",
DBOPEN_DYNASET) 'Create Recordset.

Set ReplaceSet = MyDb.OpenRecordset("NM Replace Table",
DB_OPEN_DYNASET) 'Create Recordset.

Temp = txt
ReplaceSet. MoveFirst
Do Until ReplaceSet.EOF

Criteria = Mid$(ReplaceSet![Find String], 2, 770

Len(ReplaceSet![Find String]) - 2)
If InStr(Temp, Criteria) Then

ReplaceString Temp, Criteria, Mid$(ReplaceSet![Replace
String], 2, Len(ReplaceSet![Replace String]) - 2)

End If
ReplaceSet.MoveNext

Loop

Length = Len(Temp)
LastSpc = FindLast_Space(Temp) 780

If LastSpc > 0 Then
EndToken = Mid$(Temp, LastSpc + 1, Length - LastSpc)
Criteria = "EndToken = '" & EndToken & "'" IDefine search criteria.
MySet.FindFirst Criteria 'Locate first occurrence.
If Not MySet.NoMatch Then

Temp = Left$(Temp, LastSpc - 1)
End If
MySet.Close

End If

47

790

Exit Condition Record to_Canonic:
Condition_Recordto Canonic = Temp
Exit Function

Err ConditionRecord to Canonic:
MsgBox "Procedure: ConditionRecordto_Canonic" & Chr$(13) & Error$
Resume Exit Condition Recordto Canonic

End Function

Function Condition_Record to KeyWord (txt As String) As String 800

On Error GoTo Err_Condition_Record to KeyWord

Dim Length As Integer, FirstSpc As Integer
Dim Temp As String, FirstToken As String
Dim Criteria As String, MySet As Recordset

Temp = txt

Length = Len(Temp)
FirstSpc = InStr(Temp, Chr$(32)) 810

If (FirstSpc > 1) Then
FirstToken = Left$(Temp, FirstSpc - 1)
Criteria = "FirstToken = '" & FirstToken & "'" Define search

criteria.
Set MySet = MyDb.OpenRecordset("NM Condition Table",

DB_OPEN DYNASET) 'Create Recordset.
MySet.FindFirst Criteria 'Locate first occurrence.
If Not MySet.NoMatch Then

Temp = Mid$(Temp, FirstSpc + 1)
End If 820

MySet.Close
End If

ExitCondition Record to KeyWord:
Condition Record toKeyWord = FindFirstToken(Temp)
Exit Function

Err ConditionRecord to KeyWord:
MsgBox "Procedure: Condition_Record_to_KeyWord" & Chr$(13) & Error$
Resume Exit_ConditionRecord to KeyWord 830

End Function

Function Condition_RecordtoSoundex (txt As String) As String
On Error GoTo Err Condition Record to Soundex

Dim Length As Integer, FirstSpc As Integer, I As Integer
Dim Temp As String, FirstToken As String, Char As String, Last-Char As String

Temp = "" 840
Last Char =
Char =

48

Length = Len(txt)
If Length <= 0 Then

GoTo Exit Condition Record to Soundex
End If
For I = 1 To Length

Char = Mid$(txt, I, 1)
If (Char Like " [a-z] ") Then 850

If Last Char <> "" Then
Select Case Char

Case "a", "e", "i", "o", "u", "h", "w", "y"
Char = Last Char

Case "b", "f" , p", I"v"
Char = "1"

Case i"c"l, "g"j , ", "k", "q", "s", "x", "z"
Char = "2"

Case "d", "t"
Char = "3" 860

Case "1"
Char = "4"

Case "m", "n"
Char = "5"

Case "r"
Char = "6"

End Select
End If
If Last Char <> Char Then

Temp = Temp & Char 870

LastChar = Char
End If

Else
If (Temp <> "") And (Char = Chr$(32) And (Last-Char <> Char)) Then

Temp = Temp & Chr$(32)
Last Char = ""

End If
End If

Next I
880

Exit ConditionRecord to Soundex:
Condition_Record to Soundex = Temp
Exit Function

ErrCondition Record to Soundex:
MsgBox "Procedure: Condition_Record_to_Soundex" & Chr$(13) & Error$
Resume Exit ConditionRecordto Soundex

End Function
890

Sub ConditionSet (Tbl As String, MorphType As String)
On Error GoTo ErrCondition Set

Dim MySet As Recordset, Temp As String

Set MySet = MyDb.OpenRecordset(Tbl)

49

If MySet.EOF Then
GoTo Exit ConditionSet

Else 900

MySet.MoveFirst
Do Until MySet.EOF

MySet.Edit
Select Case MorphType

Case "ACANONIC"
MySet![A_NM CANONIC] =

ConditionRecord to Canonic(CStr(MySet![A NM_CANONIC]))
MySet![A NM CANONIC] =

LookUp_Alias(CStr(MySet![A_NMCANONIC]))
Case "AKEYWORD" 910

MySet![A_NM KEYWORD] =
Condition_Record_to KeyWord(CStr(MySet![A NMCANONIC]))

Case "BCANONIC"
MySet![BNM CANONIC] =

ConditionRecordto Canonic(CStr(MySet![B NM_CANONIC]))
MySet![BNM CANONIC] =

LookUp Alias(CStr(MySet![BNMCANONIC]))
Case "BKEYWORD"

MySet![B_NMKEYWORD] =
Condition_Record_to.KeyWord(CStr(MySet![B NM_CANONIC])) 920

Case "ASOUNDEX"
Temp =

ConditionRecord to Soundex(CStr(MySet![A NM_CANONIC]))
MySet![A_NMSOUNDEX] = Temp
MySet![ANMSOUNDEXXVAL] = Val(Temp)

Case "BSOUNDEX"
Temp =

Condition Recordto Soundex(CStr(MySet![B NM_CANONIC]))
MySet![B NM SOUNDEX] = Temp
MySet![BNM_SOUNDEX VAL] = Val(Temp) 930

End Select
MySet.Update
MySet.MoveNext

Loop
MySet.MoveFirst
MySet.Close

End If

ExitCondition Set:
Exit Sub 940

Err ConditionSet:
MsgBox "Procedure: Condition_Set:" & Chr$(13) & Error$
GoTo ExitCondition Set

End Sub

Function Create NMform (table name As String)
On Error GoTo Err Create NM form 950

50

Dim frmcreate As Form, x As Integer, y As Integer, mycontrol As Control
Dim N As Integer, M As Integer, result As String, fname As String

DoCmd Echo False

x=0
y=O

Set frmcreate = CreateForm() 960

frmcreate.viewsallowed = 2
frmcreate.defaultview = 2
frmcreate.recordsource = tablename
M = MyDb.tabledefs(table name).Fields.Count
N=0
frmcreate.section(0).Height = M * 300
Do

fname = MyDb.tabledefs(table name).Fields(N).name
Set mycontrol = CreateControl(frmcreate.name, 109, 0, "", fname,

x, y, 1000, 200) 970

mycontrol.controlsource = fname
mycontrol.name = fname
y = y + 300
N=N+ 1

Loop Until N >= M

ExitCreateNMform:
DoCmd Echo True
Exit Function

980

Err Create NM form:
MsgBox Error$, 0 Or 48, "Create_NM_form"
Resume Exit Create NM form

End Function

Sub Del from QueryDefs (qname As String)
Dim I As Integer

For I = 0 To MyDb.QueryDefs.Count - 1 990

If MyDb.QueryDefs(I).name = q_name Then
MyDb.QueryDefs.Delete q_name
Exit For

End If
Next I

End Sub

Sub Del From TableDefs (table-name As String)
Dim I As Integer

1000
For I = 0 To MyDb.tabledefs.Count - 1

If MyDb.tabledefs(I).name = table_name Then
MyDb.tabledefs.Delete table-name
Exit For

End If

51

Next I
End Sub

Function Find_FirstToken (txtstr As String) As String
1010

Dim FrstSpc As Integer, ScndSpc As Integer, Length As Integer

Find FirstToken = txtstr
Length = Len(txtstr)
If Length = 0 Then

Exit Function
Else

FrstSpc = InStr(txtstr, Chr$(32))
If (FrstSpc <= 0) Then

Exit Function 1020

ElseIf (FrstSpc <= 2) Then
ScndSpc = InStr(Mid$(txtstr, FrstSpc + 1, Length), Chr$(32))
If (ScndSpc > 0) Then

Find_FirstToken = Left$(txtstr, (FrstSpc + ScndSpc - 1))
End If

Else
Find_FirstToken = Left$(txtstr, FrstSpc - 1)

End If
End If

1030

End Function

Function Find_Last Space (txt As String) As Integer

Dim SpcPos As Integer, LastPos As Integer

SpcPos = 0
FindLast_Space = 0

Do While Not (txt = "") 1040

SpcPos = InStr(SpcPos + 1, txt, Chr(32))
If SpcPos = 0 Then

Find Last Space = LastPos
Exit Function

Else
LastPos = SpcPos

End If
Loop

End Function 1050

Sub FormLoad ()
Me![table one list].Locked = False
Me![table_two list].Locked = False
Me![tableone_list].rowsource = gettable_list()
Me![table_two_list].rowsource = gettable_list()
Me![btnExact].Enabled = True
Me![btnContext].Enabled = False
Me![btnCanonic].Enabled = False

52

Me![btn Keyword].Enabled = False 1060

M:e![btn Soundex].Enabled = False
Me![btn Finish].Enabled = False
Me![btn Exact].Enabled = True
Me![txt result].Caption = "0"
Me![txt_result 2].Caption = "0"
Me![txt result 3].Caption = "0"
Me![txt total].Caption = "0"
Me! [btn match] .Enabled = False
Me![btn done].Enabled = False
Me![btn manual].Enabled = False 1070

Me![btn view] .Enabled = False
Me![field onelist].rowsource = ""
Me![field twolist] .rowsource = ""
Me![field one list] = ""
Me![field one_list] =""
Me![txt primary 1].Caption = ""
Me![txt_primary _2].Caption = ""
Me![table2].Visible = True
Me![table].Height = 3478
Me![table].sourceobject = "NM Empty Form" 1080

Me![table label].Caption = ""
Me![table2].sourceobject = "NM Empty Form"
Me![table2_labell].Caption = ""
Me! [table2abel2].Caption = ""
MATCH VIEW CREATED = False
A VIEW CREATED = False
]3 VIEW CREATED = False
EXACT MATCHED = False
CANONICIZED = False
KEYWORD MATCHED = False 1090

SOUNDEXED = False
man match = 0
man nonmatch = 0
exact matches = 0
context matches = 0
canonic matches = 0
keywordmatches = 0
soundex matches = 0
total matches =
Set MyWS = DBEngine.Workspaces(O) 1100
Set MyDb = MyWS.Databases(O)

Write_STAT "Choose the tables and primary fields which are to be matched."

End Sub

Function InitializeNM () As Integer
'Return PASS if successful, FAIL if not
On Error GoTo err init
Dimn mysetl As Recordset, myset2 As Recordset
Dirn FIELD_LIST_A As String, FIELDLIST_B As String, FIELDLIST As String 1llo

Write STAT "Checking for exact match in primary fields."

53

Set mysetl = MyDb.OpenRecordset(tl, DB_OPENTABLE)
Set myset2 = MyDb.OpenRecordset(t2, DBOPENTABLE)

Del From_TableDefs "NM Matched"
Del_From_TableDefs "NM UnMatched One"
Del From TableDefs "NM UnMatched Two"
Del_from_QueryDefs "NM Update Matches" 1120

Del_from_QueryDefs "NM Update Table A"
Del_from_QueryDefs "NM Update Table B"

Dim MyQueryl As QueryDef, MyQuery2 As QueryDef, MyQuery3 As
QueryDef, SQL1 As String, SQL2 As String, SQL3 As String

Dim orig As String, orig p2 As String

Set MyQueryl = MyDb.CreateQueryDef("NM Update Matches")
Set MyQuery2 = MyDb.CreateQueryDef("NM Update Table A") 1130

Set MyQuery3 = MyDb.CreateQueryDef("NM Update Table B")

origpl = Right$(pl, Len(pl) - 2)
orig p2 = Right$(p2, Len(p2) - 2)

FIELD LIST_A = BuildAliasFieldList(tl, "A_")
FIELD_LIST B = Build_Alias_Field_List(t2, "B_")
MyQuery2.SQL = "SELECT DISTINCTROW " & FIELD_LIST_A & ", [" & tl

& "]. [" & origpl & "] AS ANMCANONIC INTO [NM
UnMatched One] FROM [" & tl & "] LEFT JOIN [NM Matched] 1140

ON [" & tl & "] . [" & origpl & "] = [NM Matched]. [" & pl
& "] WHERE ([NM Matched] . [" & pl & "] Is Null);"

SQL1 = "SELECT DISTINCTROW " & FIELD_LIST_B & ", [" & t2 & "]. ["
& origp2 & "] AS B_NM_CANONIC INTO [NM UnMatched Two]

FROM [" & t2 & "] LEFT JOIN [NM Matched] ON [" & t2 &
"]. [" & origp2 & "] = [NM Matched]. [" & p2 & "] WHERE
([NM Matched]. [" & p2 & "] Is Null);"

Debug.Print SQL1
MyQuery3.SQL = SQL1
FIELDLIST = BuildAlias() 1150

SQL1 = "SELECT DISTINCTROW " & FIELD_LIST & ", [" & tl & "]. [" &
origpl & "] AS ANMCANONIC, [" & t2 & "] . [" & origp2
& "] AS B_NM_CANONIC INTO [NM Matched] FROM [" & tl & "]
INNER JOIN [" & t2 & "] ON [" & tl & "] . [" & origpl &
"] = [" & t2 & "].["& orig p2 & "];"

MyQueryl.SQL = SQL1
Debug.Print SQL1
Debug.Print MyQuery2.SQL
Debug.Print MyQuery3.SQL
MyQueryl.Execute 1160

MyQuery2.Execute
MyQuery3.Execute
MyDb.tabledefs.Refresh

MyQueryl.SQL = "ALTER TABLE [NM Matched] ADD COLUMN

[ANM_MATCHNUM] SHORT;"
MyQueryl.Execute

54

MyQueryl.SQL = "ALTER TABLE [NM

[B_NMMATCH_NUM] SHORT;"
MyQueryl.Execute
MyQuery2.SQL = "ALTER TABLE [NM

[A_NM_MATCHNUM] SHORT;"
MyQuery3.SQL = "ALTER TABLE [NM

[B_NM_MATCHNUM] SHORT;"
MyQuery2.Execute
MyQuery3.Execute

Matched] ADD COLUMN

1170

UnMatched One] ADD COLUMN

UnMatched Two] ADD COLUMN

MyQueryl.SQL = "ALTER TABLE [NM

[A_NMKEYWORD] TEXT;"
MyQueryl.Execute

MyQueryl.SQL = "ALTER TABLE [NM
[B_NM_KEYWORD] TEXT;"

MyQueryl.Execute
MyQuery2.SQL = "ALTER TABLE [NM

[A_NMKEYWORD]
MyQuery3.SQL = "ALTER

[B_NMKEYWORD]
MyQuery2.Execute
MyQuery3.Execute

TEXT;"

TABLE

TEXT;"

[NM

Matched] ADD COLUMN

1180

Matched] ADD COLUMN

UnMatched One] ADD COLUMN

UnMatched Two] ADD COLUMN

1190
MyQueryl.SQL = "ALTER TABLE

[A_NMSOUNDEX] TEXT;"
MyQueryl.Execute
MyQueryl.SQL = "ALTER TABLE

[B_NM_SOUNDEX] TEXT;"
MyQueryl.Execute

MyQuery2.SQL = "ALTER TABLE
[A_NM_SOUNDEX] TEXT;"

MyQuery3.SQL = "ALTER TABLE
[B_NM_SOUNDEX] TEXT;"

MyQuery2.Execute
MyQuery3.Execute

[NM Matched] ADD COLUMN

[NM Matched] ADD COLUMN

[NM UnMatched One] ADD COLUMN

[NM UnMatched Two] ADD COLUMN

1200

MyQueryl.SQL = "ALTER TABLE [NM Matched] ADD COLUMN
[ANMSOUNDEX_VAL] SHORT;"

MyQueryl .Execute
MyQueryl.SQL = "ALTER TABLE [NM Matched]

[BNMSOUNDEX_VAL] SHORT;"
MyQueryl.Execute
MyQuery2.SQL = "ALTER TABLE [NM UnMatched

[ANMSOUNDEX_VAL] SHORT;"
MyQuery3.SQL = "ALTER TABLE [NM UnMatched

[B_NMSOUNDEX_VAL] SHORT;"
MyQuery2.Execute
MyQuery3.Execute

ADD COLUMN

One] ADD COLUMN

Two] ADD COLUMN

MyQueryl .Close
MyQuery2.Close
MyQuery3.Close

mysetl .Close

55

1210

1220

myset2.Close

Initialize_View "NM UnMatched One", "A"
Initialize View "NM UnMatched Two", "B"
Initialize_View "NM Matched", "C"

Initialize_NM = PASS
1230

exitinit:
Exit Function

errinit:
Select Case Err

Case 13 Type Mismatch
MsgBox "The two selected fields have incompatible types."

Case Else
MsgBox "Procedure:Initialize NM." & Chr$(13) & Error$

End Select
Initialize_NM = FAIL
Resume exitinit

End Function

Sub Initialize_View (tablename As String, view As String)
On Error GoTo Err_Init_View

DoCmd Echo False
DoCmd SetWarnings False

Dim dummy As Variant, F As Form

dummy = CreateNMform(tablename)
Set F = screen.activeform
F.defaultediting = 3 Read Only
F.allowediting = False
F.allowupdating = 1
SendKeys table-name & "{enter)", False
DoCmd DoMenuItem 3, afile, asaveformas,,
DoCmd Close

a menu_ver20

If view = "A" Then
Me!table_label.Caption = "Table A: "& table_name
Me!tablelabel.ForeColor = TABLE COLOR
Me!table.sourceobject = tablename

ElseIf view = "B" Then
MakeViewB to B

ElseIf view = "Query" Then
Me!table_label.Caption = "Table Query Match: "& table_name
Me!table_label.ForeColor = TABLE_COLOR
Me!table.sourceobject = tablename
Me!table2.sourceobject = "NM Empty Form"

ElseIf view = "Final Output" Then
[table].Height = 7954

56

1240

1250

1260

1270

[table].sourceobject = table-name
[tablelabel].Caption = "Final Output Table: "& table_name
[table label].ForeColor = SCOLOR
[table2].sourceobject = "NM Empty Form"
[table2].Visible = False 1280

ElseIf view = "System" Then
Itable].sourceobject = table_name
[table label].Caption = "System Table: " & table_name
[table label].ForeColor = SCOLOR
'table].Form.allowediting = True
Itable].Form.defaultediting = 2 'Allow Edits
[table2].sourceobject = "NM Empty Form"
Itable2].Visible = False

End If
1290

Exit Init View:
DoCmd Echo True
DoCmd SetWarnings True
Exit Sub

Err Init View:
MsgBox "Procedure: Initialize_View " & Chr$(13) & Error$
Resume ExitInitView

End Sub 1300

Function LookUpAlias (txt As String) As String
On Error GoTo Err LookUp_Alias
Dim MyTable As Recordset, I As Integer

LookUp Alias = txt
Set MyTable = MyDb.OpenRecordset("NM System", DB_OPEN_TABLE)

For I = 1 To 4
MyTable.Index = "Alias_" & I 1310

MyTable.Seek "=", txt
If Not MyTable.NoMatch Then

LookUp Alias = MyTable!COMPANY NAME CANONIC
Exit Function

End If
Next I

MyTable.Close 'Close table.

ExitLookUp.Alias: 1320

Exit Function

Err_LookUp Alias:
MsgBox "Procedure: LookUp_Alias" & Chr$(13) & Error$
Resume ExitjLookUp_Alias

End Function

Sub Make_ViewB to B ()
Me![btn view].Caption = "View Matches"

57

Me!table2_1abell.Caption = "Table B:" 1330

Me!table2label2.Caption = "NM UnMatched Two"
Me!table2 labell.ForeColor = TABLECOLOR
Me!table2 label2.ForeColor = TABLE COLOR
Me!table2.sourceobject = "NM UnMatched Two"

End Sub

Sub Make ViewB to C (
Me![btn view].Caption = "View Table B"
Me![table2 labell].Caption = "Output Table:"
Me![table2 label2].Caption = "NM Matched" 1340

Me![table2 labell1].ForeColor = S_COLOR
Me![table2 label2].ForeColor = SCOLOR
Me![table2] .sourceobject = "NM Matched"

End Sub

Sub Remove from list (contrl As Integer)
Dim list As String, item As String

If contrl = 1 Then
list = Me!field one list.rowsource 1350

item = pl
ElseIf contrl = 2 Then

list = Me!field two list.rowsource
item = p2

End If

ReplaceString list, item & ";", ""

If contrl = 1 Then
Me!fieldone list.rowsource = list 1360

Else
Me!field_twolist.rowsource = list

End If

End Sub

Sub TableonelistAfterUpdate ()
TABLE A = tableonelist
Me!field_one_list.rowsource = getNMfield_list(TABLE_A, "A_")

End Sub 1370

Sub Table_one_list KeyDown (KeyCode As Integer, Shift As Integer)
Tableonelist AfterUpdate

End Sub

Sub tabletwolist AfterUpdate ()
TABLE B = table two list
Me!fieldtwo list.rowsource = get_NM_fieldlist(TABLE_B, "B_")
button89 Click

End Sub 1380

Sub Tabletwolist KeyDown (KeyCode As Integer, Shift As Integer)
table two list AfterUpdate

58

End Sub

Sub tglCondition AfterUpdate ()
If [tgl Condition] Then

[table].sourceobject = "NM Condition Table"
[table_label].Caption = "System Table: NM Condition Table"
[table].Form.allowediting = True
[table].Form.defaultediting = 2 'Allow Edits
[table2].sourceobject = "NM Replace Table"
[table2jlabell].Caption = "System Table:"
[table2_label2].Caption = "NM Replace Table"
[table2].Form.allowediting = True
[table2].Form.defaultediting = 2 'Allow Edits

Else
[table].sourceobject = "NM Empty Form"
[table label].Caption =
[table2].sourceobject = "NM Empty Form"
[table2labell].Caption =
[table2label2].Caption =

End If
End Sub

Sub tglSystemAfterUpdate (
If [tgl_System] Then

[table2].Visible = False
[table3].Visible = True
[table3 label].Visible = True
[table3].sourceobject = "NM System"
[table3label].Caption = "System Table: NM System"
[table3].Form.allowediting = True
ltable3].Form.defaultview = 1 'Continuous
[table3].Height = 7954
[table3].Left = 6870
[table3].Top = 540
[table3].Width = 7530
[table3].Form.scrollbars = 3

Else
[table2].Visible = True
[table3].Visible = False
[table3 label].Visible = False

End If
End Sub

Sub Update Results (
Set matched-set = MyDb.OpenRecordset("NM Matched")
If matched set.EOF Then

Write_STAT "No exact matches found."
End If
Set unone = MyDb.OpenRecordset("NM UnMatched One")
Set un_two = MyDb.OpenRecordset("NM UnMatched Two")

If matched set.EOF Then
Me![txt result 1].Caption = "0"

Else

59

1390

1400

1410

1420

1430

matchedset.MoveLast
Me![txt result_1].Caption = matched_set.RecordCount
totalmatches = matched set.RecordCount 1440

End If

If unone.EOF Then
Me![txt result_2].Caption = "0"
STAGE = FINISHED STAGE

Else
unone.MoveLast
Me![txt result_2].Caption = unone.RecordCount

End If
1450

If untwo.EOF Then
Me![txt result_3].Caption = "0"
STAGE = FINISHED STAGE

Else
untwo.MoveLast
Me![txt result_3].Caption = un two.RecordCount

End If

matched_set.Close
un one.Close 1460

untwo.Close

[cmb_operation].SetFocus
Select Case [cmb operation].Text

Case "Inner Join"
[txt total].Caption = Val([txt resultl1].Caption)

Case "Right Join"
[txt total].Caption = (Val([txt result 1].Caption) +

Val([txtresult3].Caption))
Case "Left Join" 1470

[txttotal].Caption = (Val([txt resultl].Caption) +
Val([txt result2] .Caption))

Case "Merge"
[txt total].Caption = (Val([txtresult 1].Caption) +

Val([txt result 2].Caption) +
Val([txt result 3].Caption))

End Select

If STAGE = FINISHED STAGE Then
btn finishClick 1480

Else
If Me![table2].sourceobject = "NM Matched" Then

Make ViewB to C
Else

Make ViewB to B
End If
Me!table.sourceobject = "NM UnMatched One"

If [btn manual].Caption = "Done" Then
Me![table].Form.defaultediting = 4 'Can't Add Record 1490

Me![table].Form.allowediting = True

60

Me![table2].Form.allowediting = True
Me![table2].Form.defaultediting = 4 'Can't Add Record

End If
End If

End Sub

Function UpdateTables (fieldi As String, field2 As String, Query_Flag
As Integer) As Integer

On Error GoTo Err_UpdateTables 1500

Dim MyQueryl As QueryDef, MyQuery2 As QueryDef, MyQuery3 As QueryDef
Dim temp matched set As Recordset
Dim FIELD-LIST As String

MyWS.BeginTrans

[table].sourceobject = "NM Empty Form"
[table2].sourceobject = "NM Empty Form"
Set MyQueryl = MyDb.OpenQueryDef("NM Update Matches")
Set MyQuery2 = MyDb.OpenQueryDef("NM Update Table A") 1510

Set MyQuery3 = MyDb.OpenQueryDef("NM Update Table B")

MyQuery2.SQL = "CREATE INDEX NMINDX_" & fieldl & " ON [NM
UnMatched One] (" & fieldl & ") WITH IGNORE NULL;"

MyDb.Execute (MyQuery2.name)
MyQuery3.SQL = "CREATE INDEX NMINDX_" & field2 & " ON [NM

UnMatched Two] (" & field2 & ") WITH IGNORE NULL;"
MyDb.Execute (MyQuery3.name)
MyDb.tabledefs.Refresh

1520

Del_FromTableDefs "NM Temp Matched"
FIELD_LIST = Build_Field_List(
MyQueryl.SQL = "SELECT DISTINCTROW " & FIELD_LIST & " INTO [NM

Temp Matched] FROM [NM UnMatched One] INNER JOIN [NM
UnMatched Two] ON [NM UnMatched One]. [" & fieldl & "] =
[NM UnMatched Two]. [" & field2 & "] ;"

Debug.Print MyQueryl.SQL

MyDb.Execute (MyQueryl.name)

MyDb.tabledefs.Refresh

1530

If Query_Flag Then
Dim MySet As Recordset, Response As Integer, Msg As String

FIELD LIST = BuildTempField_List()
Set MySet = MyDb.OpenRecordset("SELECT DISTINCTROW " &

FIELDLIST & " FROM [NM Temp Matched] WHERE " & fieldl &
"In (SELECT [" & fieldl & "] FROM [NM Temp Matched] As
Tmp GROUP BY [" & fieldl & "], [" & field2 & "] HAVING

Count(*)>=1 And [" & field2 & "] = [NM Temp Matched]. ["
& field2 & "]) ORDER BY [" & fieldl & "], [" & field2 & 1540

II]; I,)
MyDb.tabledefs.Refresh

Do Until MySet.EOF
Msg = "Is this pair a match?" & Chr$(13) & Chr$(13)

61

Msg = Msg & "(1) " & MySet.Fields(pl) & Chr$(13)
Msg = Msg & " (2) " & MySet.Fields(p2) & Chr$(13)
Response = MsgBox(Msg, MB YESNOCANCEL + MB_ICONQUESTION,

"NM User Query")
Select Case Response 1550

Case IDYES
man match = man match + 1

Case IDNO
man_nonmatch = man_nonmatch + 1
MySet.Delete

Case IDCANCEL
Write_STAT "NAME MATCHING was Cancelled."
MyWS.Rollback
GoTo ExitUpdate_Tables

End Select 1560

MySet.MoveNext
Loop
MySet.Close

End If

MyQuery2.SQL = "DELETE [NM UnMatched One] .* FROM [NM UnMatched
One] INNER JOIN [NM Temp Matched] ON [NM UnMatched

One] . [" & fieldl & "] = [NM Temp Matched]. [" & fieldl &
"]; 1"

MyQuery3.SQL = "DELETE [NM UnMatched Two] .* FROM [NM UnMatched 1570

Two] INNER JOIN [NM Temp Matched] ON [NM UnMatched

Two]. [" & field2 & "] = [NM Temp Matched]. [" & fieldl &

"1; "
MyDb.Execute (MyQuery2.name) 'Run query.
MyDb.Execute (MyQuery3.name) ' Run query.
MyQueryl.SQL = "INSERT INTO [NM Matched] SELECT [NM Temp

Matched] .* FROM [NM Temp Matched];"
MyDb.Execute (MyQueryl.name)

MyQueryl.Close 1580

MyQuery2.Close
MyQuery3.Close

Set MySet = MyDb.OpenRecordset("NM Temp Matched")
MySet.MoveLast
Update_Tables = MySet.RecordCount
MySet.Close

MyWS.CommitTrans
1590

Exit_Update_Tables:
Exit Function

ErrUpdate Tables:
Select Case Err

Case 13 Type Mismatch
WriteSTAT "The two selected fields have incompatible types."

Case Else
MsgBox "Procedure Update_Tables." & Chr$(13) & Error$ &

62

Chr$(13) & Err 1600

End Select
Update_Tables = 0
M yWS.Rollback
GoTo Exit_Update Tables

End Function

Sub WriteSTAT (Msg As String)
Me![txt status].C'aption = Msg

End Sub 1610

63

Appendix B

Real World Data Set

64

vompany 'licker

Acmat Corporation
Alfa Corporation
Allied Group, Inc.
Allmerica Property & Casualty
American Indemnity Financial C
American International Group,
American Premier Underwriters,
Argonaut Group, Inc.
Ari Holdings, Inc.
Avemco Corporation
Baldwin & Lyons, Inc.
Berkley, W.R. Corporation
Berkshire Hathaway Inc.
Chubb Corporation
Cigna Corporation
Cincinnati Financial Corporati
Cna Financial Corporation
Continental Corporation (The)
Emc Insurance Group Inc.
Foremost Corporation Of Americ
Fremont General Corporation
Geico Corporation
General Re Corporpation
Harleysville Group, Inc.
Leucadia National Corporation
Loews Corporation
Merchants Group, Inc.
Mercury General Corporation
Meridian Insurance Group, Inc.
Midland Company
Milwaukee Insurance Group, Inc
Nac Re Corp.
Navigators Group, Inc.
Nobel Insurance Limited
Nymagic, Inc.
Old Republic International Cor
Orion Capital Corporation
Progressive Corporation
Re Capital Corporation
Reliance Group Holdings, Inc.
Riverside Group, Inc.
Rli Corp.
Safeco Corporation
Seibels Bruce Group, Inc. (The
Selective Insurance Group, Inc
St. Paul Companies, Inc. (The)
Sunstates Corporation
Transamerica Corporation
Travelers Corporation
Trenwick Group, Inc.
Unicare Financial Corp.
United Fire & Casualty Company
Usf & G Corporation
20th Century Industries

Acmt
Alfa
Algr
Alpc
Aifc
Aig
Apz
Agii
Ari
Ave
Bwina
Bkly
Brk
Cb
Ci
Cinf
Cna
Cic
Emci
Fcoa
Fmt
Gec
Grn
Hgic
Luk
Ltr
Mgp
Mrcy
Migi
Mla
Milw
Nrec
Navg
Nobl
Nym
Ori
Oc
Pgr
Rcc
Rel
Rsgi
Rli
Safc
Sbig
Sigi
Spc
Atn
Ta
Tic
Tren
Ufn
Ufcs
Fg
Tw

Table B.1: Worldscope : SIC=6331

65

m..·

'Tickerompany

Table B.2: Fortune 1000: SIC = 6331

ACompany BI CompanyiName
American International Group, American International Group
American Premier Underwriters, American Premier Underwriters
Berkshire Hathaway Inc. Berkshire Hathaway
Chubb Corporation Chubb
Cigna Corporation Cigna
Geico Corporation Geico
Leucadia National Corporation Leucadia National
Progressive Corporation Progressive
Reliance Group Holdings, Inc. Reliance Group Holdings
Safeco Corporation Safeco
Transamerica Corporation Transamerica
Allmerica Property & Casualty Allmerica Property & Casualty Cos
Cincinnati Financial Corporati Cincinnati Financial
General Re Corporpation General Re
Old Republic International Cor Old Republic International
St. Paul Companies, Inc. (The) St Paul Cos

Table B.3: Output Table for Insurance Companies

66

Company-Name Tic er
Allmerica Property & Casualty Cos Apy
General Re Grn
Itt Itt
Leucadia National Luk
Loew S Ltr
Ohio Casualty Ocas
Old Republic International Ori
Progressive Pgr
Reliance Group Holdings Rel
Safeco Safc
St Paul Cos Spc
Transamerica Ta
Transatlantic Holdings Trh
United Services Automobile Association D.Uzd
Usf&G Fg

Amerada Hess Corporation
Ashland Oil, Inc.
Atlantic Richfield Company
Crown Central Petroleum Corp.
Diamond Shamrock, Inc.
Du Pont (E.I.) De Nemours And
Fina, Inc.
Holly Corporation
Hondo Oil & Gas Company
Lyondell Petrochemical Company
Murphy Oil Corporation
Pacific Resources, Inc.
Petrolite Corporation
Phillips Petroleum Company
Sun Company, Inc.
Tesoro Petroleum Corporation
Unocal Corporation
Valero Energy Corporation
Wainoco Oil Corporation

Table B.4: Worldscope: SIC=2991

Amerada Hess
Amoco
Ashland Oil
Cenex
Chevron
Citgo Petroleum
Coastal
Crown Central Petroleum
Diamond Shamrock
E I Du Pont De Nemours &
Fina
Holly
Kerr Mcgee
Louisiana Land & Exploration
Lyondell Petrochemical
Mapco
Murphy Oil
Pennzoil
Phillips Petroleum
Shell Oil
Sun
Tesoro Petroleum
Tosco
Total Petroleum North Americ
Ultramar
Unocal
Valero Energy

Table B.5: Fortune 1000: SIC=2991

67

ca Ltd

CompanyName Ticker

v~ S-

Company Ticker
Ahc
Ash
Arc
Cnp A
Drm
Dd
Fi
Hoc
Hog
Lyo
Mur
Na
Plit
P
Sun
Tso
Ucl
Vlo
Wol

Ahc
An
Ash
D-Czc
Chv
D-Czh
Cgp
Cnpa
Drm
Dd
Fi
Hoc
King
Llx
Lyo
Mda
Mur
PZl
P
D-Sgu
Sun
Tso
Tos
Tpn
Ulr
Ucl
Vlo

Table B.6: Output Table for Petroleum Refining Companies

68

A-Company BCompanyName
Amerada Hess Corporation Amerada Hess
Ashland Oil, Inc. Ashland Oil
Crown Central Petroleum Corp. Crown Central Petroleum
Diamond Shamrock, Inc. Diamond Shamrock
Fina, Inc. Fina
Holly Corporation Holly
Lyondell Petrochemical Company Lyondell Petrochemical
Murphy Oil Corporation Murphy Oil
Phillips Petroleum Company Phillips Petroleum
Tesoro Petroleum Corporation Tesoro Petroleum
Unocal Corporation Unocal
Valero Energy Corporation Valero Energy
Sun Company, Inc. Sun

Company I
Advanced Logic Research, Inc.
Amplicon, Inc.
Apple Computer, Inc.
Atari Corporation
Convex Computer Corporation
Decision Industries Corporatio
Dell Computer Corporation
Digital Communications Associa
Evans & Sutherland Computer Co
Everex Systems, Inc.
Hewlett-Packard Company
Inmac Corporation
Intermec Corporation
Mai Systems Corporation
Micom Systems, Inc.
Miltope Group Inc.
Oracle Systems Corporation
Paradyne Corporation
Recognition International Inc.
Stratus Computer, Inc.
Sun Microsystems, Inc.
Tandem Computers Incorporated
Telxon Corporation
Ungermann-Bass, Incorporated
Wang Laboratories, Inc.

Aalr
Ampi
Aapl
Atc
Cnx
Na
Dell
Dca
Escc
Evrx
Hwp
Inmc
Intr
Mco
Na
Milt
Orcl
Na
Rec
Sra
Sunw
Tdm
Tlxn
Na
Wan B

Table B.7: Worldscope: SIC=3571

CompanyName Ticker
Amdahl Amh
Apple Computer Aapl
Ast Research Asta
Compaq Computer Cpq
Cray Research Cyr
Data General Dgn
Dell Computer Dell
Digital Equipment Dec
Gateway 2000 Gate
Hewlett Packard Hwp
Intergraph Ingr
International Business Machines Ibm
Silicon Graphics Sgi
Sun Microsystems Sunw
Tandem Computers Tdm
Unisys Uis

Table B.8: Fortune 1000: SIC=3571

Table B.9: Output Table for Electronic Computer Companies

69

A-Company B CompanyAName
Apple Computer, Inc. Apple Computer
Dell Computer Corporation Dell Computer
Hewlett-Packard Company Hewlett Packard
Sun Microsystems, Inc. Sun Microsystems
Tandem Computers Incorporated Tandem Computers

Ticker

Copn like
Alc Communications Corporation
Bell Atlantic Corporation
Bellsouth Corporation
C-Tec Corp.
Centel Corporation
Century Telephone Enterprises,
Contel Corporation
Gte Corporation
International Telecharge, Inc.
Lincoln Telecommunications Co.
Mci Communications Corporation
Nynex Corporation
Pacific Telecom, Inc.
Pacific Telesis Group
Rochester Telephone Corporatio
Southern New England Telecommu
Southwestern Bell Corporation
Sprint Corporation
Telephone And Data Systems, In
U S West, Incorporated

Alc
Bel
Bls
Ctex
Cnt
Ctl
Ctc
Gte
Iti
Ltec
Mcic
Nyn
Ptcm
Pac
Rtc
Sng
Sbc
Fon
Tds
Usw

Table B.10: Worldscope: SIC=4813

Company-Name Ticker
Alltel At
American Telephone & Telegraph T
Ameritech Ait
Bell Atlantic Bel
Bellsouth Bls
Gte Gte
Mci Communications Mcic
Nynex Nyn
Pacific Telesis Group Pac
Southwestern Bell Sbc
Sprint Fon
U S West Usw
Williams Companies Wmb

Table B.11: Fortune 1000: SIC=4813

A-Company B CompanyName
Pacific Telesis Group Pacific Telesis Group
Bell Atlantic Corporation Bell Atlantic
Bellsouth Corporation Bellsouth
Gte Corporation Gte
Mci Communications Corporation Mci Communications
Nynex Corporation Nynex
Southwestern Bell Corporation Southwestern Bell
Sprint Corporation Sprint
U S West, Incorporated U S West

Table B.12: Output Table for Telephone Communications Companies

70

rev

Company Ticker

Bibliography

[1] Almudena Arcelus. Name management strategy for database integration. Master's

thesis, Massachusetts Institute of Technology, 1990.

[2] James M. Kennedy Howard B. Newcomb. Record linkage. Communications of the

ACM, September 1962.

[3] Herber Regal Norckauer Jr. Duplicate entry detection in mailing and participation

lists. Master's thesis, Massachusetts Institute of Technology, 1990.

[4] William E. Winkler. Exact matching lists of businesses: Blocking, subfield iden-

tification, and information theory. Record Linkage Techniques, Proceedings of the

Workshop on Exact Matching, 1985.

71

