
Distributed Tools for Distributed Thought:

Networked StarLogo

by

Bruce R. Krysiak

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degrees of

Bachelor of Science in Computer Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

May 1995

Copyright 1995 Bruce R. Krysiak. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce
and to distribute copies of this thesis document in whole or in part,

and to grant others the right to do so.

Author
eparttit of lectrialI Engineering and Computer Science

May 30, 1995

Certified by
Mitchel Resnick

(l z f n, Thesis Supervisor

Accepted by
r
sDep

AU t 1 lUYb

LIBRARIES

-

Distributed Tools for Distributed Thought:

Networked StarLogo

by
Bruce R. Krysiak

Submitted to the

Department of Electrical Engineering and Computer Science

May 30, 1995

In Partial Fulfillment of the Requirements for the Degrees of

Bachelor of Science in Computer Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

StarLogo, an extension of the Logo programming environment developed over
the last several years at MIT's Media Lab, serves as a microworld construction
kit for decentralized systems. Until now, however, the StarLogo interface has
been focused on single user interactions only. I have extended this interface
to allow multiple users to interact and explore in a common, "shared" space.
Users may add and control turtles in this space, one in which other users may
have their own, independently operating turtles. In this way, multiple users
are able to interact within a single, common environment, opening up the
world of StarLogo to a new set of capabilities for shared learning.

This paper talks about the experiences of the author in designing and
implementing the Distributed StarLogo system in Macintosh Common Lisp,
including design and implementation issues and choices, project results,
lessons learned, and future directions that can be explored beyond the current
system.

Thesis Supervisor: Mitchel Resnick

Title: Head: Assistant Professor, Media Arts and Sciences

2

Acknowledgements

Like all those who have toiled before me, and like all those who are
still to come, I owe a tremendous debt of gratitude to the many
people around me who helped make this thesis possible. I would
now like to thank:

Mitchel Resnick, my thesis advisor, for taking me under his
wing and allowing me to explore many types of distributed
thought through the use and modification of his creation, StarLogo,
and for taking the time and effort to support and guide me on this
great undertaking;

Andy Begel and Brian Silverman for helping me to make sense
of the strange and wonderful beast that is Macintosh StarLogo;

Rick Boravoy and David Cavallo for helping me get started in
the Media Lab and for first introducing me to Mitchel;

and my parents, for helping to get me where I am and for
helping me go where I'm going.

3

1 Introduction

StarLogo, an extension of the Logo programming environment

developed over the last several years at MIT's Media Lab, serves as a

microworld construction kit for decentralized systems (Resnick

1992). Until now, however, the StarLogo interface has been focused

on single user interactions only. I have extended this interface to

allow multiple users to interact and explore in a common, "shared"

space. Users may add and control turtles in this space, one in which

other users may have their own, independently operating turtles. In

this way, multiple users are able to interact within a single, common

environment, opening up the world of StarLogo to a new set of

capabilities for shared learning.

One such capability is the ability of several users to collaborate

simultaneously in the design and construction of a shared artifact.

With this functionality, I hope to allow users to experience a more

synergistic style of learning than would be possible with several

users, even in the same room, working on their own, distinct

StarLogo worlds. This idea also resonates with the core of the

StarLogo distributed mindset, where multiple agents may interact

with the same StarLogo environment independently, effectively

bringing a distributed context to development and learning with

StarLogo's distributed systems content.

4

1.1 What StarLogo Is

StarLogo is essentially an extension of Seymour Papert's introductory

programming language, Logo (Papert 1980), for use in helping people

explore and understand complex, decentralized systems. Three key

points serve to distinguish it from its predecessor. First, instead of

one turtle, users can control thousands of turtles simultaneously.

This allows and encourages people to think about and use StarLogo in

very parallelized, distributed fashions. Second, instead of a passive,

unresponsive environment, StarLogo turtles live in a world of

patches, each of which may be controlled in much the same way as

the turtles themselves. By conferring an almost co-equal status to

the environment, StarLogo tries to encourage thinking about

interactions not just between turtles and turtles, but also between

turtles and the environment. Finally, StarLogo turtles have better

senses than ordinary Logo turtles. While Logo turtles are meant for

drawing, StarLogo turtles come with a built-in ability to interact,

lending themselves more toward the behavioral constructions for

which they were designed (Resnick 1992). More detailed

information is contained within the documentation distributed with

the StarLogo package (Resnick 1995).

1.2 What StarLogo Is Good For

The driving force behind the StarLogo programming language is a

desire to help people move beyond what Resnick calls the

"Centralized Mindset," which is people's tendency to think about

5

systems using a type of "centralized control" paradigm. This is a

"top-down" approach to systems thinking. By contrast, StarLogo

encourages a more "bottom-up" approach, one in which high level

behaviors emerge from the interactions of simple, low-level rules.

StarLogo has been used to help high school students create and

explore many diverse kinds of decentralized systems, ranging from

termites gathering wood chips to the formation of traffic jams

(Resnick 1992).

1.3 Focus of the Thesis

My thesis focuses on the design and preliminary implementation of a

networked version of StarLogo. It seems that this project will have

some interesting implications involving collaborative learning, as

well as the potential to add to what Sherry Turkle calls the "holding

power" of StarLogo (Turkle 1984). One need only glance at a

university computer center overnight to see the legions of devotees

to MUDs, MOOs and other shared environments, as well as those

enabling networked competition, such as Netrek and Xtank. By

enabling users to interact in the StarLogo environment in these

fashions, I hope to leverage the human fascination with shared

experience to involve people in the systems learning power of

StarLogo at a deeper level than they would experience otherwise.

The distributed functionality will also give users a richer

environment within which to learn about such decentralized systems,

reinforcing the system's learning effectiveness.

6

2 Background

This section describes several of the motivating factors behind the

Distributed StarLogo system, as well as listing several examples of

possible domains and projects that the system could be applied to.

2.1 Motivations for Distributed StarLogo

The design and implementation of Distributed StarLogo was chiefly

aimed towards exploring further various aspects of constructionism

and decentralization beyond that which was already present in the

original StarLogo package. In addition, it also attempted to explore

how to encourage similar extensions by other future researchers.

The mechanisms by which I tried to accomplish these goals follows.

Adding Content to Context

While it is clear that the content of StarLogo is a clear step towards

the ultimate goal of encouraging decentralized thinking in the world,

the design and context of StarLogo has still been entrenched in the

centralized mindset. One user may use one computer to explore

(usually) one system at a time. While one could argue that in reality

there are many users with many computers working on many

worlds, it seems like there is a difference between this

"decentralized" model and actual decentralized phenomena in the

real world.

7

One of the basic tenets of StarLogo is that complex phenomena arise

from interactions among many very simple agents, and that is

precisely what is missing from StarLogo, when viewed "up" one level.

There is no way for people to interact with one another in the

standard version of StarLogo. Of course, several people could be

working at the same machine on a given simulation, but what if your

collaborator is across the country? Or around the world? With

normal StarLogo you would be stuck discussing your work via email,

perhaps, or sending files back and forth on a regular basis. This

thesis is concerned with helping to increase such human interactions

and collaboration on StarLogo projects by making those interactions

as effortless as possible, supporting and thereby encouraging their

occurrence.

Introducing Shared Experiences

Distributed StarLogo also imbues explorations of its microworld with

the power of the shared experience. While it may sometimes be

valuable for a user to explore the StarLogo world without the

disruptive activities of others, in many situations the addition of a

social aspect to the task can increase the users' excitement and

enjoyment of the experience. Having others able to share the process

of learning and exploration gives those experiences greater impact

and lasting power, as well as serving as a vital component in creating

a StarLogo community, below.

8

Creating a StarLogo Community

With the distributed version of StarLogo, I also hope to reap some of

the benefits gained by creating a community of users devoted to a

common goal, namely exploring and learning about complex,

decentralized systems. As Amy Bruckman relates in her research on

community and learning, the presence of a community of learners

can be a key motivator for learning. People can share ideas and

projects with the community, which will then tend to increase the

desire of others to contribute their own work to that community. In

addition, a community can give emotional and technical support that

is hard or impossible to come by in an individual learning context

(Bruckman 1994). By allowing users to participate in system

building projects together, I hope to eventually encourage a StarLogo

community to form that will develop and maintain strong

interpersonal bonds.

Encouraging Further Development

Distributed StarLogo will also fuel the further development of the

StarLogo language itself in several directions. First, it will provide a

new context for developers to think about the user and language

interfaces. It also provides a springboard from which to explore new

decentralized aspects of StarLogo development, as well as serving to

generate new ideas for further language development. Finally, the

distributed version can shed light on assumptions and limitations

previously hidden under the single-user interaction model. By

exposing these constraints, future development can focus on

9

formalizing or eliminating these limitations, depending on whether

they are seen to be beneficial or detrimental to the overall schema.

2.2 Potential Distributed StarLogo Projects

This is a short listing of a few examples of tasks that are possible

with the new, distributed version of StarLogo. Future users are sure

to dream up and explore many others, but I just wanted to try and

give a feel for the kinds of things the new system will be good for, as

well as to provide a more visual representation of where the

different versions of Logo and StarLogo fit into a larger picture

(below).

Figure 1. StarLogo user space.

10

INTERACTION PARADIGM

Cooperat

Hybrid REGULAR

STARLOGO

Competi

Behavior Most Few Breed
_r~~~~~ v~~Vune user/
PART OF TURTLE OWNED One Turtle GROUP OF TURTLES OWNED

MAPPING OF TURTLES TO USERS

All

I F

Free-for-all

In the distributed context, users of StarLogo can interact in a variety

of ways. A useful way to think of these interactions is within a two

dimensional space, with axes for the interaction paradigm of the

users and the mapping of users to turtles (see figure 1). Users can

either interact competitively, one user or group trying to beat

another, or cooperatively, where a set of users must work together to

accomplish a task or to solve a problem. A hybrid situation might

exist when the application allows either cooperation or competition,

but does not specify either, allowing the users the freedom to choose

between them.

Along the other dimension, the mapping of turtles to users may vary

from any number of users to any number of turtles. All turtles may

"belong" to one user, a user may own an entire breed of turtles, or he

may own a few of a single breed of turtles. One can envision a

dividing point between users owning turtles exclusively and users

sharing turtles with others at the "one user/one turtle" point. The

original Logo is a special case of this situation, where there is only

one turtle and only one user (see below). Crossing to the shared

turtle space, a user may own most of a turtle (sharing with few other

users), part of a turtle (sharing with many or all other users but

owning a "piece" or behavior of a turtle), or none of a turtle (all users

can affect all turtles indiscriminately - a turtle "free-for-all").

A third dimension that can be seen to be occupied by the Logo family

of programming environments is that of the total number of turtles

present in their microworlds. While Logo is "stuck" in the one-turtle

11

case, the StarLogo branch of the tree extended the number of turtles

available to the user in the same way Distributed StarLogo extends

the number of users that can connect to a given exploration.

Going back to figure 1, if one user owns all turtles, we have the

standard non-networked StarLogo system. When each user controls

a "breed" of turtles, one might imagine different types of ecosystems

developing: users may develop predator-prey or parasite

relationships (competitive case), or they may work together with

other breeds to achieve a situation of mutual benefit or symbiosis

(cooperative case). The special case of the Virtual Fishtank, an idea

based upon an interactive museum exhibit proposed by David

Greschler and Mitchel Resnick (Greschler and Resnick 1995) cuts

across several user-to-turtle mappings on the hybrid axis. Users

may program in various behaviors into the virtual fish, then release

their creations into a shared tank to see how they interact with fish

created by other users. Fish may work together (schooling), may

ignore one another, or may compete (say, eat one another), but the

exact direction the Fishtank takes is up to the users. When dividing

the fish in the StarLogo Fishtank, each user could own a breed of fish,

to be programmed en masse and interact with other breeds, they

could own a few fish, programmed individually to interact with other

fish, they may work on a fish in a team, or they could each program

a behavior for a breed or for all of the fish. The extreme case is

when all users can control all aspects of all fish; this I have labeled

on the diagram as the "unlimited exploration" case.

12

Other special cases might include situations based on Loren

Carpenter's group demonstrations of self-organization (Kelley 1994).

In these demonstrations, each person in a group has a colored

paddle, and by turning it between the green and the red sides, they

can change their "input" to the overall task at hand. The input may

change a single pixel on a main display, or it may increase the

likelihood of moving a controller in different directions. Group tasks

included forming various pictures (as when people create one huge

picture at a football game by holding up colored cards), playing Pong

(akin to simple computer tennis), and flying an airplane (where

different segments of the room "voted" on flap and rudder controls).

In Distributed StarLogo, for example, one could let all users control

all turtles, and have the users as a group perform a given task (such

as creating pictures or grouping together turtles of different colors)

or compete with one another (e.g. Pong). When each user controls a

single behavior of the turtles, users may decide to work together to

build a shared world, such as the StarLogo anthill (Resnick 1992), or

their behaviors may compete for control of the turtles (reminiscent

of Marvin Minsky's Society of Mind model (Minsky 1986)).

A different twist on the distributed turtle grouping task might

involve each user or team of users owning some subset or all of a

color of turtles, and all users with like-colored turtles then must try

and bring them all together. This is slightly different from the other

grouping example in that users are less likely to unwittingly oppose

each other, plus it is a good example of how a single task can be

13

reinterpreted from a different perspective, providing fertile ground

for the development of other new ideas.

Each January, MIT students may take a class known as "6.270", in

which the object is to build and program an autonomous Lego robot

to compete one-on-one versus other students' creations in some

competitive task (such as gathering all the balls in a defined area) at

the end of the month. With each user or team of users controlling a

given number of turtles, one could imagine a 6.270-like contest being

run within Distributed StarLogo. Instead of building a physical robot,

however, students could program their turtles' behaviors and then

let them compete with one another.

3 Design

The personal and social consequences of any medium

(extension of ourselves) result from the new scale that is

introduced into our affairs by each extension of ourselves, or

any new technology.

- Marshall McLuhan (1964)

The process of Distributed StarLogo's design can be broken up into

three distinct phases: goal identification, where the high level goals

of the system were identified; issue identification, where the various

problems and likely choice domains of the system were identified,

and the actual decision phase, in which the various options for the

14

final system design were explored and the consequences of each

choice was weighted accordingly.

3.1 System Goals

In creating the design for the Distributed StarLogo system, I was

influenced by several goals that helped to guide my thought about

how the final product should operate, and perhaps more accurately,

to "feel."

Generality

First, the system should be as general as possible. I decided that

since StarLogo is primarily concerned with decentralization, the

operating metric for this criteria should be the level of

decentralization present in the design. Much like Dee Hock in his

quest to decentralize the structure of the Visa International banking

services corporation (Dougherty 1981, and Hock 1994), this goal led

me to try to "push power to the edges" as much as possible. This led

me to consider using a "client / client" computation model, and to

shift the control and responsibility in the final "client / server" model

as much toward the clients as possible.

Flexibility

Second, the system should be as flexible as possible. To satisfy this

goal, I had to consider many possible applications of the finished

system as previously described, and to think about what types of

functionality would be needed to be able to create such applications.

15

This led to design choices that allowed the system to be able to cover

as many implementations within its conceptual framework as

possible.

Non-intrusiveness
Next, the system should be non-intrusive. That is, the fact that the

user is sharing the system with a group of other people should not

adversely affect the ease with which projects are created. The

heuristic I used here was to try and do as much "add-on" work as I

could when enabling the system's distributed functionality, while

trying not to change the underlying interface to the StarLogo

programming language itself, as it was already very well-designed

and well thought out.

Ease of Use

Finally, the system should be easy to use. A system that no one

understands or that requires a degree in rocket science to operate is

useless in the educational context StarLogo is geared towards. This

also ties in with the previous goal, as the original system sports a

very nice user interface that I attempted to preserve as much of as

possible. It might be most appropriate to say that, while extending

the system, I attempted to do as little harm to it as possible.

3.2 Requirements

In creating a design such as this, there are many issues and choices

that will inevitably arise. In my case, I was led into some design

16

issues through careful examination and thought about how the

system would be viewed by its users, and I simply fell into other

issues due to the existing StarLogo implementation and the inherent

conflict of trying to implement a very decentralized system within a

very centralized computing environment. A discussion of some of

these issues follows.

Turtles
StarLogo is comprised of turtles, so it was natural for me to think

about how the turtles should work in the distributed version. Users

may want to each have their own turtles that are completely within

their control, and interact only between different turtles. Others

may want to share turtles among several users, or to share all turtles

equally. But what does it mean exactly to "share"? Of what are the

turtles composed of? After some thought, it seems as though, in the

StarLogo model, each turtle breaks down into two simpler pieces: its

state and its action.

State

Each turtle's state essentially consists of all of its associated built-

in variables, namely position, heading, color, pen state, visibility,

plus all of its user-defined turtle variables. For simplicity, I just

considered the simplest case of sharing, which is whether a

variable is private (only the owner can change it), or public

(anyone can change it). What is needed for some amount of

flexibility in the turtles' state division is a mechanism to specify

for each variable whether it is public or private. That way, users

17

can specify whether anyone can change anything about a given

turtle, nothing about a given turtle, or something in between.

Action

A turtle's action is whatever it is doing at a given time. Given the

parallel model of StarLogo, a turtle could be performing multiple

actions at the same time (running demons and responding to user

commands, for example). In some sense, processes that are

running simultaneously are sharing the turtle. While it would be

nice to somehow specify relative amounts of processing time

allocated for each demon and user command, that is not a feature

of the current underlying implementation of StarLogo. Again

moving back to a simpler case, for a given turtle there should at

least be some method for specifying which other users can affect a

given turtle's action, and in the simplest case, whether all users

can affect a given turtle's action, or if only the turtle's owner is

allowed to affect it.

Patches

The same questions arise for the patches that do for the turtles - how

can they be shared, and what aspects of that sharing should or need

to be specified? Patches are simplified in the facts that there are a

fixed number of them and they are all immobile, at least in the

standard version of StarLogo. This also complicates them, though,

since any sharing specification would need to be defined over all

10,000 patches for every exploration, besides the fact that they are

the environment over which the turtles roam and through which

18

they interact. For generality, though, it seems like it might be

desirable to have a method whereby the sharing attributes of patch

states and actions could somehow be specified.

User Code

One aspect of the StarLogo model that is transparent in the single-

user version but becomes immediately visible in the distributed case

is the StarLogo code itself. Much like the turtles and patches, there

needs to be some mechanism for determining which parts of the code

are affectable and usable by which users, and which are not.

Perhaps a user wants his code run by himself only, or perhaps also

his close friends, but no one else, and only he can modify it. Or

maybe he adheres to a more progressive philosophy, and he wants

his code to be both modifiable and executable by all users. Maybe he

doesn't even want anyone else to see his code. These are all issues

that have been resolved most generally in the UNIX operating

system, where file access is controlled by read, write, and execute

privileges over a file's owner, user-definable groups associated with

the file, and all other users (Bach 1988). Even greater control is

afforded by the Andrew File Sharing system, where access can be

controlled on a per-user basis (Zayas and Everhart 1988). Perhaps

this functionality is overkill for an essentially collaborative system,

but it is still an issue that needs to be taken into consideration.

Patch Environment

Remembering the lesson of levels emphasized in Resnick's original

work on StarLogo, it is instructive to realize that the patches

19

themselves exist in a topological environment of their own. In the

standard version of StarLogo, the patches are arranged in a 100 x

100 grid with wraparound (a turtle that goes off one edge appears in

the corresponding position on the other edge), a formation formally

known as a torus. As it is possible in a distributed implementation of

StarLogo to computationally map regions of the patch environment to

logically distinct computers (different computers can perform the

computations for different parts of the patch environment), the

question of exactly how this mapping gets done becomes important.

On first glance, it seems like the best overall performance will be

afforded by the most direct mapping possible from the StarLogo

world to the physical world, but the issue clearly needs further

thought.

Computation

The complement to the patch environment issue is that of where the

computation actually takes place in Distributed StarLogo. Should the

computational distribution be static or dynamic? Equally allocated

among the number of connected machines, or allocated in proportion

to their available memory and computation resources, or according to

some other scheme? How should new connections affect the

environment's topology? Perhaps the most important question

relating to this issue, though, is how many complicated mechanisms

should be built into the system to support these ideas before their

cost begins to outweigh their advantages?

20

Display Control

Another issue that arises, especially when coupled with the reality of

limited network bandwidth, is how much control over the final

display should a given local machine have? And how should that

display be set up and supported? A local user may want to set his

screen to display all of his turtles in red and all others in blue. Or he

may want to do some other type of display remapping; maybe he

only wants to look at a small portion of the world, or maybe he

wants to see everything. In order to display the results of a local

computation on a global set of screens (or to at least make that

information available for display), all the relevant data must be sent

by all computational hosts to all display hosts across the network.

This includes data for each patch and turtle and their associated

states, in addition to information about the overall patch topology

and all of its changes, assuming we want to allow the users to be able

to see a global picture of the entire environment. How much

information can the available bandwidth handle? What is the best

trade-off between speed and the ability to control display

parameters locally?

Communications

In a tool such as Distributed StarLogo that is intended to foster

communications and collaboration among users, it becomes necessary

to create both a communications policy and a communications

infrastructure, each of which plays off of the other. What types of

user communication are most effective for Distributed StarLogo's

purpose? What kinds of communication constructs can best foster

21

those types of communications? How can these constructs be kept as

non-intrusive as possible?

A second aspect to the communications conundrum is how to most

effectively facilitate the creation of a "community" of StarLogo users,

much like has been done with various MUD and MOO environments

(e.g. Dibbell 1993). New users should be able to easily get help with

the system, and experienced users should not grow frustrated with a

lack of available resources appropriate for them, a delicate balance to

say the least.

3.3 Choices and Compromises

As I worked my way through the design and implementation of

Distributed StarLogo, I found myself filled with ideas, but often

hampered by their scope and size relative to the intended scope of

the thesis. Often, what I wanted to do would best be done by

throwing away the entire system and starting over, if not from

scratch, from something very close to it. As this was not possible,

many of the implementation decisions were heavily influenced by

the existing StarLogo implementation and the ease with which I

could retrofit the desired functionality to it. My true goal was not to

complete the "ultimate Distributed StarLogo" package, but to simply

take another step in the right direction, as much to show what is

possible and useful in terms of the distributed model as to create the

actual system in its own right. I certainly hope that I came

reasonably close to achieving that goal.

22

Computation and Patch Environment

The first implementation decision I faced was how to structure the

computation in the new StarLogo environment. As I discussed it

with my advisor and other people involved with the original

StarLogo package, three classes of possibilities quickly presented

themselves.

The Distributed World

In this proposal, the world would be organized much like a

patchwork quilt. Each local machine would join the "StarLogo world,"

perhaps by consulting a central server to point to other machines

that would be it's "neighbors" one each of the four sides of the local

screen. Anything on the local screen would be the responsibility of

the local machine to keep track of, and when a turtle moves off an

edge of the screen, both it and the code it is executing is sent to the

appropriate neighbor for further execution, the local machine simply

"forgets" about it.

Advantages

The great advantage of this model is that it carries the

"distributed mindset" to an extreme. The computer only concerns

itself with what is nearby and doesn't care what is happening

outside of its own local area.

23

D) isadvantages

Unfortunately, while it would appear simple to cause turtles who

would have "wrapped" around the screen to be sent to another

server, the code that would have to control that is deep in the

bowels of' StarLogo's assembly language segment, which controls

all turtle and patch process executions. This code would have to

be heavily reworked and retuned for acceptable performance

levels. In addition, migrating code from machine to machine is no

small task, either. There are many other "fuzzy" issues involved,

too. Who controls non-local turtles? How can you tell what your

turtles are doing once they leave your screen? How do you tell

them to stop what they're doing, or tell them to do something

else? Or are they completely autonomous? If so, do they ever

die? How? This option, which on a first look appeared attractive,

ended up being completely unworkable for the purpose of this

thesis.

The Complete World

The complete world model is basically a simple client-server model.

'Clients can connect to a central server, send and receive code and

messages to other users, and receive picture display information. All

code is run on the server, and the clients simply serve as relatively

dumb terminal interfaces to the remote host.

A dva ntag es

This model seemed most achievable for the purposes of this

thesis, as it did not seem to have quite as many possibly

24

insurmountable obstacles impeding its creation. Most work could

be done at a high level, freeing the implementation to "black-box"

the assembly-language portion of the code, greatly speeding the

development process. Also, the original interface code was

written in a fairly modular way, which lent to its easy reuse and

modification for this project, preventing the new system both

from needing to be completely rewritten and from it ending up as

a giant hack that was completely incomprehensible, unusable,

non-extendible, and unmaintainable.

Disadvantages

This model, while being on the leading edge of decentralization in

software as far as actual commercial production systems are

concerned, still falls far short of the original lofty goal of a

completely decentralized environment for StarLogo. The server

would need to be very fast in order to properly perform the

necessary computations, and the network bandwidth would hit a

serious bottleneck at the main server with the large amount of

screen data needing to be sent from it to each client.

Hybrid Worlds

The idea of the hybrid world is, as the name implies, a combination

of the distributed and complete models. The most distinguishing of

these models is one in which each client controls all turtles it creates,

as well as all patch variables in its local 100 x 100 grid. The turtles

could then be off of the local grid while the local machine is still

keeping track of them and running their code. Whenever there is

25

any non-local patch or any turtle interactions, a message is sent to a

central "dispatch server" that either routes the request to the proper

local machine, or sends that machine's address back to the

originating client for distributed processing. Each local machine

would be individually responsible for responding to all such

requests, just like in the completely distributed case.

Advantages

This model seems to embody a "best-of-both-worlds" approach to

the distributed design. Most of the computation and control is

kept on the local machines, while centralization is avoided as

much as possible..

Disadvantages

Again, however, the practical necessity of performance that forced

the original StarLogo design towards assembly language has

hindered the efforts of extending it without a disproportionately

large amount of effort. This type of extension would be possible,

but again, the resulting code would end up as a "kludge"

(computerspeak for an incoherent mess that just happens to do

what it's supposed to) that would not confer the benefit of a basic

platform to build on to future system designers.

The Centralized Mindset Wins Again

While it blatantly flies in the face of the spirit of the original

StarLogo package in many ways, the centralized server model

seemed to be the right way to go for this project. By avoiding

26

development at the assembly code level, I have tried to avoid

passing along the spectre of low-level code to future developers as

much as I could. Also, one of the main goals of the original StarLogo

package was to help people explore and think about decentralized

systems as well as shifting mental paradigms from the "one" to the

"many," and I think that this apparently centralized choice continues

StarLogo's tradition in these senses. From the user's perspective, this

is probably a better choice than the others, since it does not limit his

ability to view or change the system in some of the ways the other

systems might have. He will simply see many people working

together on the same StarLogo canvas, and generally won't realize

what a kind of "deal with the devil" had to be made in order to

realize that situation.

Interlude
Once the computation model was settled on, many of the other issues

came into much clearer focus. In addition to the domain-specific

issues they raise, all these design choices can be evaluated with

respect to the space of possibilities defined by how a given

parameter specification is allowed to be changed in the final system.

On one axis, we examine whether the specification will be built in to

the system, or whether it will be user-definable. On the other axis

we have the possible rate of change of the parameter: is it a very

static specification, one that is made once and then remains forever

(or at least until the power goes out), or can it be changed

dynamically, on the fly? Figure 2, below, gives an idea of how I tried

to visualize this space.

27

dynamic

Change
Action

static

automatically application
reconfigured variables

I uoatclyI pliain

built-in user-definable

Change
Method

Figure 2. State-space for StarLogo functional specifications.

For example, if a system's designer makes the decision as to how a

given functional specification will work and builds it into the system,

that parameter can be seen as residing in the lower left quadrant of

the graph. If the designer builds in enough intelligence so that the

server can automatically reconfigure itself for changing conditions

(as in the issue of computational division), that would tend towards

the upper left quadrant. If the user can only define a given

specification once, or if it is very cumbersome to change (akin to

"compile-time options" in some other languages such as C), those

functional specifications would be in the lower right of the graph,

and finally, those parameters that the user can both define himself

and change in the course of a program's execution are in the

"dynamic, user-definable" upper right quadrant of the space.

Regular StarLogo's variable declarations would then fall somewhere

28

between the top and bottom on the right-hand side of the graph, as

they can be changed within the scope of the running StarLogo

programming framework, but not within the scope of a given user's

individual, running StarLogo program itself without forcing a

recompilation.

The design goals of generality and flexibility both can be viewed as

forces pushing the design choices up and to the right of the diagram,

but their inherent complexity involved in their implementation kept

pulling them back toward their original static, system-defined state

at the origin. Like in any complex system, I did not try and find the

"ideal" value for each of these parameters, instead, I attempted to

find the best "middle-ground" within which, given the constraints

present, the system's development could most effectively proceed.

Patch Environment

Since the Distributed StarLogo system operates in a client / server

fashion on top of the original StarLogo, the possible issue of patch

environment topology becomes a non-issue: The environment

simply remains a 100 x 100 toroidal grid. This is another good

example of issues that arose in the design of the distributed system

that were completely transparent (and "obvious") when viewed from

the single-user mindset but became non-trivial when reexamined in

the distributed context.

29

Turtles
Looking at the original StarLogo's implementation, I realized that

although it would be reasonably simple to do some preprocessing of

code sent to the compiler for turtle and patch execution to facilitate

state sharing specifications, it would be difficult if not impossible to

do the same thing for turtle and patch actions. Hence, I made the

decisions to focus exclusively on StarLogo's state variables and their

sharing specifications, and to allow the users much less latitude in

the action specifications.

The way turtle state sharing specification works in the final system

is that the user, in the variable declarations at the start of his code,

indicates which turtle variables are to be private by using the

original "turtlesown [foo bar]" syntax, and then specifies public turtle

variables with a new declaration, "turtlespublic [bat baz]". Any

thusly declared variable is then open to all users, and anyone can

modify the value in any way they choose at any time. Private

variables are modifiable only by the turtle's owner, or by other

turtles that belong to him.

By using the phrase "turtles that belong to him," I am implicitly

declaring that turtles, as well as variables, are somehow owned by

StarLogo users. This is a basic form of action sharing specification,

done automatically by the system at runtime. Any turtles created by

a user with the normal "crt n" command are private turtles,

belonging exclusively to him. Only public turtle variables are able to

be changed by patches and other users and their turtles. On the

30

other hand, users may create public turtles with the new "crtpub n"

command. These turtles' actions and their state are able to be

affected by any user at any time through any means whatsoever, be

it an action or a state command.

Patches

In thinking about how sharing should work in relation to patches, I

found myself wondering what exactly would it mean for a patch to

be "private?" It is, after all, a part of all the turtles' environment and

it didn't seem to make much sense that a turtle wouldn't be able to

interact with its local or even non-local environment at any given

time. I found myself asking if that was really in the spirit of the

original StarLogo, and decided that the answer is really no. As most

turtle interactions happen by using the environment as an

intermediary, this could effectively block turtles from

communicating with one another, a central StarLogo concept. This

though process highlights what has turned out to be another lesson

of this thesis - what is left out of a model is just as important, maybe

even more so, than what is kept in. In the real world, anything you

leave lying around is fair game for anyone to wander along and

fiddle with; so it is in Distributed StarLogo.

Shared Code

The design decision I made regarding shared code in Distributed

StarLogo was that users should enter their own code into their local

machines, only after which is all of their code uploaded to the server,

compiled, and made available to users for execution. In this case,

31

once the code is uploaded, it is "out of the user's hands" in some

sense, as it then resides on the server, which makes the decision of

how then to deal with code sharing all the more important.

The conclusion I finally came to basically involved sidestepping the

issue entirely. Yes, it might be nice to be able to allow others to

modify code that belongs to you, but there is an inherent increase in

the language complexity that comes along with such a feature which

seemed to be too high a price to pay in this case. My final design

allows for users to download the entire code library at any time, and

to run any of the users' code on their own private turtles or on any

of the public turtles. When a user leaves the system, so does the

body of code he brought with him. This prevents the server from

becoming cluttered with old code that no one is currently using, but

still allows other users to archive others' useful code and to reload it

should those people decide to leave the system.

This design also shifts the burden for enabling collaboration between

users towards the person-to-person communication end of the

spectrum, rather than allowing cooperation through the impersonal

means of modifying each other's code. This is surely of some benefit

in a world where parents complain of their children spending too

much time on the computer and not enough time interacting with

their peers, but in some of those same eyes it may also seem to

exasperate the problem when it is viewed as a lack of face-to-face

interaction. My only reply is that StarLogo is not meant to be all

things to all people, and there are always going to be some tradeoffs

32

made in a design such as this. If this package does not meet their

needs well enough to be useful, they can feel free not to take

advantage of its use.

Display Control

While many ideas were kicked around in relation to a Mosaic-style

control of the end user's local display for StarLogo explorations, they

all assumed that a high bandwidth was possible between the server

and each of its clients, or that enough compression could be achieved

to send the necessary amounts of data. Unfortunately, the network

interface that was chosen for this project, the TCP/IP (Transmission

Control Protocol / Internet Protocol) protocol suite, did not turn out

to be up for the task. Even sending trivially small amounts of data

across a connection of a few feet took over one-third of a second.

This pretty much eliminated most of these ideas for contention, as it

took heavy compression and code optimization to simply send color

change information across the development room at that rate. That

frame rate is reasonable, but it will still take some major

improvements before the smooth quality of the original version is

equaled. Unfortunately, this was one of the less desirable tradeoffs

that had to be made in the completion of the project, as in a visually-

oriented system such as StarLogo, the display speed and smoothness

are important factors in users' enjoyment and comprehension of the

overall package and in the learning gained from it.

33

Communications

The final design issue to be resolved related to the portion of the

communications interface for the system visible to the end users.

This was probably the most important decision to be made,

especially due to the fact that it would take most of the burden for

enabling Distributed StarLogo users to collaborate and to share

thoughts and ideas about Distributed StarLogo, in conjunction with

the system's built-in code handling facilities.

In today's chiefly text-oriented computer communications medium,

there are essentially two models on which to model a

communications structure: the MUD or MOO model, and the Usenet

News model. Their key features are summarized below.

MUD / MOO Model

In this model, users connect to a central server, much like in the

Distributed StarLogo system. There they can type in commands

that immediately appear on all or some of the other users'

screens, as well as being able to create new locations and actions

(or "verbs" as they are called in MOO parlance). Users are located

in virtual "rooms," an apt name since that is exactly how MOO

interactions tend to feel: very informal and chatty, much like a

group of people gathered together in a room talking with one

another.

34

Usenet News Model

Usenet News, on the other hand, is modeled on a more

asynchronous method of communicating with other users: the

bulletin board. Users may "post" messages to newsgroups, which

then appear in a listing along with all the other currently active

messages on the group. Other users then select which messages

they want to read from that list. This model doesn't quite map

onto the StarLogo model as well as the MOO metaphor does, but it

has some valuable features nonetheless, such as greater message

permanence and built-in archiving features.

Bessie, Come Home!

Although it might be valuable to be able to store some older

messages for community access in Distributed StarLogo, I felt that

the great majority of user interactions would be of a more ethereal,

transient nature, and thus would not necessitate such a feature to be

built directly into Distributed StarLogo. Other, external media, such

as the real Usenet News system and the World Wide Web, are much

more suited for such types of interactions.

In addition, the MOO model of interactions simply fit more closely

with the underlying constraints of Distributed StarLogo. MOOs are

built on a synchronous model of communications, as is Distributed

StarLogo, while bulletin boards are more of an asynchronous concept.

Coupled with the fact that the unique characteristics of newsgroups,

message permanence and archiving, were already available

elsewhere, I felt that it would be an acceptable design decision to

35

allow users the freedom to choose their own, external discussion

forum in cases where asynchronous communication or message

permanence were required. I also hypothesize that as the

community of Distributed StarLogo users grows, the availability of

information accessible in regards to its use outside the scope of the

package will increase dramatically. Already, there is a mailing list

for the users of the original system, which distributed users can

easily tap into, and I feel that this trend will only continue.

4 Results

For me, a long and arduous software development task has ended,

but for others now and to come, that is not the case. Here I hope to

extend some of my insights and experiences to others in the hope

that they may be able to glean some sort of useful knowledge from

them.

4.1 Lessons Learned

I learned many valuable lessons, both technical and personal,

throughout the course of this project, way too many to list here.

Here are a few of the perhaps more relevant ones:

Challenge Assumptions

One of the valuable lessons I found in developing this system was

danger of making any early assumptions. When I was on my way

36

toward making some such incorrect assumption, I was fortunate

enough to have very helpful and knowledgeable colleagues who were

able to steer me back on course before I went astray. One bad

assumption I did make, however, was in the case of the assumption

that I should use TCP/IP as the underlying protocol suite for network

transactions simply because it is the de facto standard. As it turned

out, that choice was one of the most limiting factors in the final

system's ultimate performance.

The Value of Documentation

If there was one lesson to be learned from my experience with the

implementation of Distributed StarLogo, it was how important proper

programming style and documentation is for people who have to deal

with maintaining and extending a given set of code at a later date. If

it were not for the valuable help I received from StarLogo's original

architects and implementers, Distributed StarLogo would have taken

a much longer time and more hard work than it already did. As

such, I have attempted to make my code as accessible and as

straightforward as possible, and I hope that I will have made the

way a little clearer for those who will follow me.

Perspective Matters

Several of the design issues that arose in the development of

Distributed StarLogo would never have been issues or even really

considered in a single-user context. The idea of the code as an object

needing to be shared and managed and the fact that patches exist in

their own environmental topology would probably not have been as

37

extensively considered when the system was only focused on a single

user. In addition, some of the design decisions that appeared to be

suboptimal when evaluated with respect to one metric turned out to

probably be the best choice when seen in another light, underscoring

the need to look at things from as many points of view as possible

before their full implications can be fully comprehended.

The Importance of Omission

A final lesson that I noticed time and time again throughout my

development of Distributed StarLogo and in creating this thesis was

that the things you leave out of a system can be just as important, if

not more so, than those things you decide to keep in. Some of the

most important design decisions were omissions rather that

inclusions: the lack of privacy for the patch variables, the

impermanence of user communications and the lack of a

comprehensive built-in code sharing facility are the three that

become immediately apparent. Shifting to another level, it would not

have been possible to develop the system to the point it is today

without many omissions of production code "niceties" and other

features that would have increased the scope of this project beyond a

reasonable level, another example of this principle in action.

5 Conclusions

The Distributed StarLogo package is just another small step along the

road to an elimination of the dominance of the "Centralized Mindset"

38

in people's systems learning experiences. There are still many other

aspects left open for future exploration and research. Here I touch

on just a few of these opportunities and leave the reader

5.1 New Features

When using any new product, who doesn't get the urge to say "Well,

that's nice, but if it only did this..."? I have already talked about

most of these features, but they are listed here in the approximate

order of importance I would give to their further development.

Faster Video

As mentioned earlier, one of the most limiting factors in this project

was the slow networking speed achieved with TCP/IP in MCL

(Macintosh Common Lisp). I was barely able to achieve 3 frames per

second over a span of a few feet. Admittedly, the need to loop over

all 10,000+ patches each time step to detect color changes was one

limiting factor, but the overall data flow rate was not significantly

altered by sending the same amount of predetermined data. Options

for correcting this situation include rewriting the MCL TCP class

wrapper, or migrating the communications function to another

platform altogether, such as UDP (Unreliable Datagram Protocol), but

there is some research to be done to determine which of these routes

would be the most effective, especially for a given limited amount of

available effort.

39

Client Display Control

With faster video networking will come the ability to send more

display data across the network with each frame. A useful change

might be to send both turtle and patch states across as the display

information, which the client can then choose to display according to

which turtles are his, or which internal turtle and patch variables he

is interested in, or according to some other algorithm altogether.

This is much like the philosophy behind the World Wide Web: send

the underlying structure to be displayed, then allow the client to

decide for himself how that structure should appear on the screen, a

strategy that resonates well with StarLogo's natural bent toward

decentralized power and control.

Faster / Incremental Compiler

Another problem with the Distributed StarLogo prototype is that

whenever new user code or demons arrive at the server, the entire

simulation must shut down, load the code, and recompile. It would

be very useful if the compiler were "smarter" in acquiring and

loading new code; the exploration could continue uninterrupted while

these changes were being made. In addition, the network lag

combined with the inherent care with which the compiler takes to

receive and load code make these uploads take significantly longer in

the distributed version than with standard StarLogo, a situation that

could be corrected either algorithmically or though the acquisition of

faster hardware.

40

5.2 Summary

The original StarLogo system was based on two separate and very

powerful ideas: that helping people learn about distributed systems

is an important aspiration, and that people learn most effectively by

constructing personally meaningful artifacts within the domain being

learned, what Seymour Papert called Piagetian learning (Papert

1980).

The motivation behind Distributed StarLogo was a combination of

these two ideas: Papert asserts that such Piagetian learning takes

place most effectively in environments and cultures that are rich in

the building blocks needed for such knowledge to be assimilated. By

helping add a distributed context to StarLogo, I have tried to extend

the environment a small step in that direction, but there is still a

long way to go. Opportunities for further investigation and

development will surely abound in the near future for researchers in

all fields interested in the overreaching paradigm shift towards

decentralization and self-organization that StarLogo is emblematic of,

especially if people's initial reactions to Distributed StarLogo are any

indication. As Hock has noted about such decentralized constructs

(Dougherty 1981), "It proves the old saying that nothing is as

powerful as an idea whose time has come."

41

References

1. Bach, M. (1986). Design of the UNIX OS. New York: Prentice-
Hall.

:2. Bruckman, A. (1994). Programming for Fun: MUDs as a Context
for Collaborative Learning. FTP file from:
ftp ://media. mit. edu/pub/asb/papers/necc94.txt.

3. Dibbell, J. A Rape in Cyberspace. From Village Voice, December
21, 1993.

4. Dougherty, J. (1981) Visa International: The Management of
Change. Boston: HBS Case Services. Harvard Business School
Case Study #9-482-022.

5. Greschler, D. and Resnick, M. (1995). The
Proposal to the National Science Foundation
Science Education Program.

Virtual FishTank.
and the Informal

6. Hock, D. (1994). Personal communication.

7. Kelley, K. (1994). Out of Control. New York: Addison-Wesley.

8. McLuhan, M. (1964). Understanding Media:
Man. London: Routledge.

9. Minsky, M. (1986). Society of Mind. New
Schuster.

10. Papert, S. (1980). Mindstorms: Children,
Powerful Ideas. New York: Basic Books, Inc.

11. Resnick, M. (1992). Beyond the Centj
Explorations in Massively Parallel Microworl
and Learning Group, MIT Media Laboratory, Ca

12. Resnick, M. (1995). Getting Started
Epistemology and Learning Group, MIT
Cambridge, MA.

The Extensions of

York: Simon and

Computers, and

ralized Mindset:
Ids. Epistemology
tmbridge, MA.

With
Media

StarLogo.
Laboratory,

42

13. Turkle, S. (1984). The Second Self: Computers and the Human
Spirit. New York: Basic Books.

14. Zayas, E. and Everhart, M. (1988). Design and Specification of
the Cellular Andrew Environment. Information Technology
Center, Carnegie-Mellon University.

43

