
Heterogeneous Multithreaded Computing

by

Howard J. Lu

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degrees of

Bachelor of Science in Computer Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

May 1995

Copyright 1995 Howard J. Lu. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce

and to distribute copies of this thesis document in whole or in part,

and to grant others the right to do so.

Department of Elecfcal Engineering and Computer Science- / / , May 17,1995

ed by

A I, Charle R lei.r.snn

{l 0F 1esissupervisor

'I I F.R. Mormenthaler

..."airman, Department \mnttee on Graduate Theses
?'-ASS'~c- Slrs TS INSTITUTE

OFTECHNOLOGY

AUG 1 01995

LIBRARIES
_- e'Ja

Author

Certifi¢

Accepted by

Heterogeneous Multithreaded Computing

by

Howard J. Lu

Submitted to the

Department of Electrical Engineering and Computer Science

May 1995

In Partial Fulfillment of the Requirements for the Degrees of

Bachelor of Science in Computer Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

This thesis studies issues introduced by supporting multithreaded computing in

environments composed of workers heterogeneous with respect to data representation,

speed, and scale. We implement a heterogeneous multithreaded runtime system, and

prove its efficiency.

We present an implementation of Cilk that supports execution in heterogeneous

environments. To support communication between workers with different data

representations, we propose two mechanisms. The first mechanism translates messages

to a canonical form on transmission and to the native host format on reception. The

second mechanism generates signature tables of structures that are communicated

between the workers to guide translation. We propose but do not implement an extension

to generate signature tables for all C functions so that functions can be passed as

messages.

We prove the following: for a fully strict Cilk program with T1 total work and a critical

path of length To, running on P workers with a maximum communication time amax,

average performance 7rave, and maximum performance rmax, we obtain the execution

time Tp = O(TI17aveP + TYmaxToormaxllrave) Furthermore, the "effective parallelism" of

such a computation is only a factor of omax/rmax worse than the average parallelism T1/Too.

Thesis Supervisor: Charles E. Leiserson

Title: Professor, Massachusetts Institute of Technology

1 Introduction

With the growing availability of computer resources, the idea of distributing

computation across a set of processors has become very popular. Many runtime systems

have been developed to implement the distribution of the work of a multithreaded parallel

program across a homogeneous set of workers, such as a group of identical workstations

or the nodes of a multiprocessor. Many issues and problems arise when trying to

implement such a system in a heterogeneous environment, however. In this thesis, we

examine the problems introduced by differences in data representation, speed, and scale.

We also show both practically and analytically that a runtime system can run efficiently

in a heterogeneous environment.

We have chosen to investigate these problems using the Cilk runtime system [1].

Cilk is a C-based runtime system that supports the execution of multithreaded programs

in a continuation passing style across a homogeneous set of workers. We have chosen

Cilk because it is simple, portable, and provably efficient in a homogeneous environment.

In this thesis, we show that Cilk is provably efficient in heterogeneous environments as

well.

To demonstrate the practicality and feasibility of a runtime system operating

across a heterogeneous environment, we have produced two heterogeneous
implementations of Cilk. The first runs on the MIT Phish network of workstations [3], an

environment in which the workers are of the same scale but are heterogeneous with

respect to their performance speeds. The second implementation runs on the PVM

message-passing layer [6]. This implementation allows execution of a multithreaded

program on any virtual computer composed of workers of different performances and

scale.

In generating these two implementations of Cilk, we discovered the problem that

heterogeneous workers could store data differently, requiring some form of translation to

allow communication between workers. After examining different solutions to this

problem, we have chosen to translate all messages to some canonical format when

sending them, and translate them back into the native host format upon reception. This

mechanism of translation requires that the structure of data is known beforehand, both at

the source and destination of the message. Therefore, messages whose structure depends

on the user's own code represent a problem. Our solution is to have the Cilk
preprocessor construct signature tables of all structures introduced by the user's code, and

use these signature tables to guide the translation mechanism.

3

Having heterogeneous workers also poses the problem that the slowest workers

might always be hoarding the computation, slowing down the total execution time of the

program. Blumofe and Leiserson [2] showed that in a P-worker homogeneous

environment, the execution time of a fully strict Cilk program with T1 total work and a

critical path of length To was Tp = O(T1/P + Tm). We show that in an environment in

which each worker steals at the same rate, e.g., limited by the speed of a network, a fully

strict Cilk program has a time of execution Tp = O(TI/(raveP) + Toomax/lave), where

lCmax is the performance of the fastest worker and nave is the average performance of all P

workers.

We also extend our analysis to prove that computing with workers of different

scales does not affect the time of execution by more than a constant factor. We prove that

for a fully strict Cilk program, the execution time is Tp = O(TI/(aveP) +

T,oomaxrnmax/7ave), where amax is the longest amount of time it takes for a single worker

to perform a steal.

We are generally interested in the environments in which the speedup T1/Tp

increases linearly with P. In homogeneous environments, linear speedup occurs when the

number of workers P is at most the order of the average parallelism T I/T,. We define the

"effective parallelism" to be the maximum number of workers that still guarantees linear

speedup. For homogeneous environments, the effective parallelism is equal to the

average parallelism T/Too. A fully strict Cilk program running on P homogeneous

workers has an execution time Tp = O(Ti/P + To). When the number of workers P is at
most the order of the average parallelism T1/T., T1/P dominates the sum T IP + Too. We

derive Tp = O(T1/P) which yields the linear speedup T/Tp = O(P) for the homogeneous

case.

In a completely heterogeneous environment, we conclude that the "effective
parallelism" is O((T 1/T,,)(l1/(o,,xmax))) because when the number of workers P =

O((T/T*)(1/('mnax7max))), we obtain linear speedup. From our theoretical bound on the

execution time of a Cilk program in a heterogeneous environment, we note that all of the

computational performance is applied to performing the total work. The only penalty
incurred is a slight decrease in the effective parallelism by maxnrax, a constant factor.

We present some background information on the Cilk runtime system in section 2.

In section 3, we investigate the issues brought about when computing in an environment

that is heterogeneous with respect to data representation. In section 4, we explore the

theoretical issues of computing in an environment of workers running in different speeds.
We analyze the implications of running in a heterogeneous environment of different

scales in section 5. And in section 6, we present some implementation details for

4

constructing Cilk to run heterogeneously with respect to data representation, speed, and

scale.

2 Cilk
We have chosen the Cilk multithreaded runtime system [1] to study the issues of

heterogeneous multithreaded computing, because Cilk is portable, simple, and provably
efficient. In this section, we justify our choice of Cilk as our vehicle to study the issues

of heterogeneous multithreaded computing. We also present background information

about the Cilk runtime system.

Cilk was an ideal choice for studying heterogeneous multithreaded computing,

because it is a simple runtime system that supports the execution of multithreaded
programs in a homogeneous environment. Because of its simplicity (Cilk is only a

couple thousand lines of code long), we were able to easily extend Cilk to operate in a

heterogeneous environment.

Cilk's portability allows the implementation of its runtime system on a diverse

collection of computers. Cilk is written entirely in C, and the runtime system runs on a

vanilla C stack. Because of this, Cilk can be easily ported to different computers. Cilk

can therefore be run across a diverse set of workers, such as the Connection Machine
CM5 MPP, the Intel Paragon MPP, the Silicon Graphics Power Challenge SMP, the MIT

Phish network of workstations [3], and on the PVM message-passing layer [6].

We also chose Cilk because it is efficient, both empirically and theoretically. The

Cilk scheduling algorithm allows us to view a multithreaded computation as a bounded-

degree directed acyclic graph of tasks. With this view, a fully strict Cilk program,

running in a P processor homogeneous environment with total work T1 and a critical path

of length To, has an expected time of execution Tp = O(T1IP + Too). The execution uses

space Sp < PSI, where S is the maximum amount of space used executing the same

program on a single worker. And, the expected communication incurred by a P-worker

execution is O(SmaXPToo), where Smax is the size of the largest communicated data
structure.

Cilk achieves its empirical and analytical efficiency through the use of its work-

stealing scheduling paradigm. The Cilk runtime system schedules the execution of

threads through a work-stealing algorithm: whenever there are idle workers, they attempt

to "steal" tasks from other workers. This algorithm reduces the amount of
communication between workers, and still ensures that workers are rarely idle if work
remains to be performed.

5

In the Cilk system, communication between workers is achieved through

message-passing. All the threads executing on the workers can communicate with each

other by sending a message through an underlying message-passing layer. Completed
threads send their results as a message to a continuing thread. Data structures called

closures are transmitted between workers when one worker manages to steal a task from

another.

Because of Cilk's simplicity, portability, and efficiency, it was an ideal choice to

study the issues of heterogeneity in multithreaded computing. Cilk's use of message-
passing allowed us to construct a heterogeneous implementation of Cilk relatively easily.

3 Heterogeneity in Data Representation
In this section, we explore the problems and issues introduced when extending the

Cilk runtime system to execute across a set of workers that can possess different

representations of data. Allowing workers to represent data differently introduces the

problem of a "language barrier": workers with different data representations cannot

communicate without some form of translation. After considering different solutions, we

chose to implement a system in which all messages are translated into a canonical

message format on transmission and translated into the native host format upon reception.

Although this protocol allows redundant translations, it is simple to implement and only

requires that workers only know two data formats: the canonical one and their native one.

To enable the communication of user-defined structures, we present a mechanism that

uses signature tables to guide the translation.

In running Cilk programs in an environment in which workers may have different

representations of data, the problem arises of establishing a coherent protocol for

communication among workers. We therefore decided to solve this problem practically,

by implementing a version of the Cilk runtime system that runs on the MIT Phish

network of workstations. After a careful analysis of the "language barrier" problem, we

were able to produce a practical solution and implement it in this version of Cilk.

The main problem with a system in which workers represent data differently is

that more support is necessary for these workers to communicate. For example, one

instance of this "language barrier" is the famous Endian byte ordering problem [4].
There is one school of thought, Big Endian, which believes that bytes should be ordered

by placing the most significant byte as the leftmost byte. There is another school, Little
Endian, which believes in the opposite: that the least significant byte should be leftmost.
This difference is shown in figure 1. When two machines of different Endian

6

communicate, some translation is needed so that the workers interpret and understand

each other's messages correctly.

1111111 10101010 00000000 00000000 10101010 11111111

Big Endian Byte Ordering Little Endian Byte Ordering

Figure 1: The different representations of the binary number

111111111010101000000000 in both the Big and Little Endian Byte Orderings.

The first issue we encountered is deciding how to implement this mechanism of

translation. Two solutions immediately suggested themselves:

Mechanism 1: Upon sending a message, the sender must include an extra field in the

message, stored in some canonical format, denoting in which data format the rest of the

message is stored. Upon reception, the recipient then examines the extra field of the

message. If the recipient understands the data format, it simply uses the message.

Otherwise, it translates it.

The benefit of this scheme is that no unnecessary translations need be performed.

The main disadvantage is that it must send a longer message, since an extra field must be

maintained that denotes what data format the message is in. Moreover, each worker must

know how to translate from any possible data format into the native data format.

Mechanism 2: Upon sending a message, the sender translates the entire message into

some canonical data format. Upon reception, the recipient translates the message from

the canonical format into its native data format.

The benefits of this mechanism are that it ensures that messages are as small as

possible, since no extra data fields need be maintained, and that it provides a level of

abstraction between the workers and the message-passing layer. Workers only need to

know how to handle two data formats, the canonical message format and their native

format. Unfortunately, Mechanism 2 always performs translation of the message, even

when the sender and recipient possess the same data format.

Choosing between Mechanism 1 and Mechanism 2 yields a tradeoff: fewer
translations versus smaller message sizes and fewer number of data formats each worker

must know. In the Phish network of workstations, the number of translations does not

7

make too much difference. The overhead of translating a message is negligible in

comparison to the communication cost of sending it. Since unnecessary translations do

not noticeably affect performance, we chose to implement Mechanism 2 so that workers

only need to know how to translate between their own native format and the canonical

message format.

After examining the benefits and disadvantages of both solutions, we
implemented Mechanism 2 in the Cilk runtime system running on the Phish network,

because it is simple, transmitted messages are as short as possible, and the actual

overhead of translation is negligible. If the cost of translation becomes significant

however, because either the messages are larger or the communication costs decrease, we

would choose to implement Mechanism 1 because of its efficiency, particularly if there

are only a few possible data formats.

The second issue of heterogeneity of data representation we encountered was

deciding how to actually implement the translation. We conceived of three methods:

memoized translation on demand, no-memo translation on demand, and translation on

reception. We describe these three methods:

Memoized Translation on Demand:

Upon receiving the message, the recipient does not actually translate any of the

fields of the message until the values contained in those fields are needed by the worker's

execution. When the value is requested, the worker first checks to see if the field has

already been translated. If it has, it gets the value; otherwise, it translates the value and

then uses it.

The benefit of this method is that unnecessary translations of data fields are never

performed. Unfortunately, this method incurs the overhead of keeping track of which

fields of the message are still in the canonical message format and which fields are in the

native format. Furthermore, this mechanism does not easily work if data formats have

different sizes, because it translates the data fields of a message in place.

No-memo Translation on Demand:

Upon receiving the message, the recipient does not translate any of the fields of

the message until the values contained in those fields are needed. When requested, the

field is translated and provided.

The benefit of this method is that a field that is never used by the worker is never

translated. This method can unnecessarily translate the same field multiple times,
however.

8

Translation on Reception:

Upon receiving the message, the entire message is translated from the canonical

format into the native host data format.

This method is simple, because no information needs to be kept track of. The

contents of the message are always in the same data format. Another benefit with the

translation on reception method is that, because of its simplicity, it is straightforward to

implement. The only code that needs to be added to the runtime system is that upon

receiving a message, a translation procedure is invoked on the message. The

disadvantage of this method is that it performs unnecessary translations.

Choosing between the three methods for translation again yields a trade-off: the

overhead of maintaining information and the complexity of translation-on-demand versus

the simplicity and unnecessary translations of the translation on reception method. As

stated earlier, since the translation costs are negligible with respect to the actual cost of

communication in the Phish system, unnecessary translations do not significantly degrade

performance. Consequently, we chose to implement a translation on reception method.

But once again, if communication costs are sufficiently small such that the overhead of

translation becomes significant, one would switch to the no-memo translation on demand

method. And, if maintaining information about which fields are in which format can be

done cheaply, one would switch to the memoized translation on demand method.

The third issue of heterogeneity that we encountered is the problem that our

translation mechanism requires that the sender and recipient of the message know the

structure of the message. But in Cilk, it is possible to send data whose structure depends

on the execution of the user's code. To support the passing of custom data structures as

messages, we extended our translation mechanism to use signature tables to look up the
structure of all possible messages.

The ability to send custom data structures is vital to the Cilk runtime system. Cilk
contains two types of communication: continuations and work-stealing. Synchronization

and the completion of work is communicated between threads by sending a simple and
known type of data from one thread to the other through a function called a continuation.

This continuation mechanism is simple to implement, because the type of the data is

known by both threads. The other type of communication, work-stealing, is achieved by
having the thief receive a data structure called a closure from the victim. The actual
structure of the closure depends on the program that is being executed. Therefore,

9

without the ability to send custom data structures, Cilk would not be able to support its

work-stealing algorithm for scheduling threads.

We solve the problem of passing custom data structures as data messages by

constructing signature tables. Signature tables contain all the information detailing the

structure of all closures that can be generated in the execution of the user's code.

Because the user's code must be processed by a Cilk preprocessor before runtime

anyway, we require that the preprocessor emits these signature tables into the user's code.

When a closure is passed, its structure can be looked up in the signature tables and

translated appropriately, both on the sending and receiving side.

Another possible solution to this problem would have been to burden the user to

provide procedures to handle the packing and unpacking of the data structures. We did

not select this method, because we do not want to expose the need for translation or the

different data formats to the user.

The final issue of heterogeneity we encountered is the problem that heterogeneous

workers possess different memory maps. Consequently, a memory reference to a

function in one worker's memory will be nonsense in the other worker's memory. This

instance of a "language barrier" again requires some mechanism for translation to allow

coherent communication between workers. Since the memory references to functions are

meaningless across different workers, we construct a signature table of all functions.

Memory references to functions can be translated into indices into this signature table.

When a memory reference is sent in a message, it is translated into the appropriate index

into the table. Upon reception, the index is translated into a memory reference in the

recipient's memory.

We implemented this solution in the Cilk runtime system to support active

messages [5]. An active message is essentially a data message and a memory reference to

a piece of code, called a handler procedure. Upon reception of the message, the recipient

invokes the handler procedure on the rest of the message. This handler procedure handles

the unpacking of the message into appropriate data structures. Cilk uses these active

messages to handle all of the communication between the workers. To support active

messages in our implementation of Cilk, we generated a signature table of all handler

procedures used by the Cilk runtime system. When an active message was sent with a

reference to one of these procedures, the reference was translated into an index into the

table. Upon reception, the index was translated into a memory reference to a handler

procedure, which is then invoked on the rest of the message.

In the current implementation of Cilk, our solution does not support the passing of

references of user-defined functions in a message. The Cilk preprocessor cannot generate

10

a signature table for all user-defined functions, because Cilk code can be linked with

standard C code. The Cilk preprocessor only processes Cilk code, so it only generates a

table for the functions in the Cilk code and not the linked C code. Our solution of using

signature tables does not work because of this limitation of the current Cilk preprocessor.

If we later produce a Cilk linker or require the Cilk preprocessor to process all of the

codes, our signature table solution would support the passing of user-defined functions.

To further demonstrate the fact that heterogeneity is not a significant problem to

multithreaded computing, we constructed an implementation of Cilk built on top of the

PVM message-passing layer. The PVM layer allows us to run Cilk on a variety of

workers that can differ with data format, in speed, and in scale. By employing our

translation mechanism and using signature tables, this version of Cilk is able to run

heterogeneous multithreaded computing without a significant degradation in
performance.

4 Heterogeneity in Speed
In this section, we explore the issues introduced by extending Cilk to run on a set

of workers that are heterogeneous with respect to the speed at which they work. If all the

workers communicate at the same constant rate (as in the case when they all

communicate through a network), we demonstrate that the Cilk runtime system is able to

handle the differences in worker speed in a fair manner. We derive theoretical bounds on

the space, time, and communication costs of a fully strict Cilk program running in such a

heterogeneous environment. In an environment of P workers, a fully strict Cilk program

with total work T 1 and a critical path of length Too uses space Sp < SIP and incurs

O(SmaxPToo) communication cost, where S1 is the maximum space used in a single worker

execution and Smax is the size of the largest data structure communicated. The execution

time of such a program is

Tp = O(TI/(lraveP) + oToomax/lrave),

where rmax is the performance of the fastest worker and irave is the average performance

over the worker pool. We conclude that heterogeneity of speed only affects the time of

execution: the space and communication costs are within a constant factor of the

homogeneous case. Furthermore, the computation is still efficient: all of the computation

performance raveP is being applied to the total work T1. We define the "average

parallelism" of a computation to be T1/Too, the "speedup" of the computation to be T1/Tp,

and the "effective parallelism" of the computation to be the maximum number of workers

allowable to still guarantee linear speedup (i.e. the speedup Tl/Tp grows linearly with P).

11

We show that the effective parallelism of a Cilk program running in a heterogeneous

environment with workers of differing performances is
T 1 1

To Oitmax

Recalling that the effective parallelism in a homogeneous environment is T/T,,

heterogeneity in speed only affects the effective parallelism by a constant factor,

1/(Cmax).

Because the Cilk scheduler provides a view of multithreaded computations as

directed acyclic graphs (dags) of tasks, Blumofe and Leiserson [2] were able to quantify

the space requirements, execution time, and communication cost of a fully strict Cilk

program running across P homogeneous processors in terms of measurements of this dag.

We use these same measurements to quantify space, time, and communication costs in a

heterogeneous environment, where workers possess different work performances.

Following the same argument of Blumofe and Leiserson, we derive that the space

Sp used by the execution of a fully strict Cilk program running over P heterogeneous

workers is bounded by SIP, where SI is the maximum of the activation depths of any of

the workers, running by itself. Running strict Cilk programs with workers of differing

performances produces the same space bounds Sp < SIP as the program running in the

homogeneous environment.

We also show that for fully strict programs running on P workers with different

performances, the expected total number of bytes communicated is O(PToSmax), where

T is the length of the critical path measured in instructions and Smax is the size of the

largest task in the dag. This proof follows directly from the proof in the homogeneous

case [2]. Therefore, running Cilk programs with workers of differing performances does

not affect the communication costs.

To summarize, allowing workers to possess different performances does not affect

the theoretical bounds on the space and communication of the execution of a

multithreaded Cilk program. The proofs follow directly from the homogeneous case.

The bound on the execution time of the program is somewhat different, however.

We introduce terminology in order to allow us to quantify the execution time of a

Cilk program. The quantity we wish to analyze is the time used in executing the program

in an environment of P workers with differing performances. We let this time be Tp. We

measure the length To, of the critical path of the computation in terms of instructions.

Likewise, we also measure the total work Ti of the computation, in instructions. The total

work T1 reflects the minimum number of instructions that need to be executed in order to

perform the computation on a single worker. We measure the performance ri of the ith

12

worker in terms of the rate in which it can execute instructions (e.g., instructions per

second). We also assume that the time a to perform a steal operation is uniform across

all of the workers.

Similar to the work of Blumofe and Leiserson [2], we use an accounting argument

to analyze the running time of the Cilk work-stealing scheduling algorithm. We assume

that a fully strict multithreaded computation with work T1 and critical path length Too is

executing in a heterogeneous environment of P workers. In their argument, Blumofe and

Leiserson posit that at each time step, one dollar is collected from each processor. These

P total dollars are then placed in one of three buckets: Work, Steal, or Wait. Blumofe and

Leiserson were able to bound the expected number of dollars that are in each of the three

bins when the execution of a fully strict Cilk program terminates: the Work bin contains

Tl dollars, the Steal bin contains O(PT,,) dollars, and the Wait bin contains O(PTo)

dollars. Therefore, the expectation of the total dollars collected in the execution of a fully

strict Cilk program is O(T1 + PToo). The execution time Tp of the program is the total

number of dollars collected divided by the number of dollars collected per time step.

Blumofe and Leiserson therefore concluded that: Tp = O(T1 /P + Too).

Unfortunately, this argument does not directly extend to the heterogeneous case,

because it does not account for the fact that workers can do unequal amounts of work in

the same time due to performance differences.

We therefore construct an accounting argument with P+2 buckets: Work, Wait,

and Steall, Steal2,...,Stealp. For each second of execution, for all i=l,...,P, we collect 7ri

dollars from the ith worker, where ri is the performance of the ith worker. We let Crave be

the average performance of the set of workers
I1

7tave = 2 i=l i.
P

The total number of dollars collected each second is therefore g7aveP. Depending on its

actions for that second, for all i=1,...,P, the ith worker must throw its dollars into one of

three buckets: Work, Steali, or Wait. If the worker executes instructions during that

second, it places its ri dollars in Work. If the worker initiates a steal attempt, it places its

yi dollars in Steali. And if the worker waits for a queued steal request, it places its 7ri

dollars in the Wait bucket. We can therefore bound the time of the entire execution by

simply summing the total number of dollars in all of the buckets at the end of the

execution, and then dividing by ZCaveP, the number of dollars collected per second.

13

Lemma 1 The execution of a fully strict Cilk program with work T 1 executing on a set of

P workers, varying in performances, terminates with exactly T1 dollars in the Work

bucket.

Proof: The ith worker places its ri dollars in the Work bucket when it executes

instructions. Since there are T1 instructions in the entire computation, the execution ends

with exactly T1 dollars in the Work bucket.

Determining a bound on the total dollars in the P steal buckets requires a more in-

depth analysis than the bound on the Work bucket, because the dollars in the ith steal

bucket Steali represent the number of instructions that are "wasted" by the ith worker

when it is trying to steal. Although the workers steal at the same rate, 1/ steals per

second, the amount of work "wasted" is different, because they have different

performances. We are therefore unable to directly place a bound on the total number of

instructions "wasted" while stealing.

We place a bound on the total number of steals that are performed in a

computation instead. It has been shown that in the Cilk work-stealing algorithm, with
probability at least l-e, the execution terminates with at most O(P(To + lg(l/e))) steals

performed [2]. So, the expected number of steals is O(PTo). Let ni denote the number of

steals performed by the ith worker throughout the computation. Therefore, we have

ji1 ni = O(P(To + lg(l/))).

We can bound the number of dollars in each steal bucket, which is the number of

instructions "wasted" stealing by the corresponding worker.

Lemma 2 For i=l,...,P, after the execution of a fully strict Cilk program, there are o7rini
dollars in the Steali bucket, where a is the time in seconds needed to perform one steal

and ni is the number of steals performed by the ith worker, which can execute ri

instructions per second.

Proof: If the ith worker performs ni steals throughout the duration of the computation,

that means that the worker has spent ani seconds stealing throughout the execution. So,

for a ni seconds of computation, the ith worker has been performing steals. Therefore,

the worker has been placing its ri dollars into the Steali bucket a ni times. We conclude

that after the program has completed its execution, there are carini dollars in the Steali

bucket.

14

Placing a bound on the number of dollars in the Wait bucket follows directly from

the contention analysis of Blumofe and Leiserson [2]. According to Blumofe and
Leiserson, the total delay incurred by M random requests made by P workers is O(M +
PlgP + Plg(l/e)) with probability at least 1-e, and the expected delay is at most O(M).

Since we have shown that the number of steals performed in the execution of a fully strict
Cilk program running on P workers with varying bandwidths is O(P(To + lg(1/e))) with

probability at least l-E, the expected total delay incurred in the execution of the program

is O(PTo + PlgP + Plg(1/e)). With probability at least l-e, at most O(PToo + PlgP +

Plg(l/t)) dollars are in the Wait bucket, at the termination of the program.

Lemma 3 For any fully strict Cilk program running on P workers, where for all
i=l,...,P, the ith worker has performance ri, with probability at least l-E, a total of

Tl + Cil nini + O(PToo + PlgP + Plg(1/e))
dollars are accumulated in all P+2 buckets, where Z pI ni =O(PToo + Plg(lI/)). The total
expected dollars accumulated in all of the bins is T + aiVpl cini + O(PTo), where
Exp(Zi ni) = O(PToo).

Proof' From lemma 1, there are T1 dollars in the Work bucket at the end of the execution.
There are, with probability at least l-e, at most O(PToo + PlgP +Plg(l/c)) dollars in the

Wait bucket. And from lemma 2, there are arini dollars in each Steali bucket. Summing
and reducing yields T 1 + aiP rini + O(PToo + PlgP + Plg(ll)) total dollars. The

expected bound follows, because the tail of the distribution falls off exponentially.

As stated earlier, the total time of execution is bounded by the number of dollars

collected from all the buckets divided by the number of dollars placed in the buckets per

second. Since there are IraveP dollars collected per second, the expected running time is
_ _ _ PTT = I+2.n +

7avep 7aveP i=1 've P)

Theorem 1: The total expected running time of the execution of a fully strict Cilk
program running on P workers, where the ith worker runs with a performance of ri
instructions per second, is

Tp = + O{T,_ ax 11
Kave P 'gave

where rm, is the performance of the fastest worker and grave is the average performance

of the P workers.

15

Proof: Since for all i=l,..,P, the ith worker has performance zri<7rmax, the expected

running time is

O(T / (,,aveP) + 0l' (mirni/ (7aveP)) + PT I (1aveP))

< O(T1 / (ave P) + o l (Cmax ni / (tave P)) + PT- / (Tave P)).

From lemma 3, the expectation of , ,ni is O(PToo). Substituting and reducing yields

the theorem.

According to our analytical time bound, having workers of different speeds

running a Cilk program only affects the amount of time spent on the critical path. All of

the workers, fast and slow, are contributing to the reduction of the total work T1. The

only penalty we pay for having slow workers is the factor of 7Cmax/rave being spent

working along the critical path of length To,. We can also view this penalty factor as

rmaxPl ii , i, from the definition of 7rave. If we view this summation in a continuous

setting, we note that the penalty we pay is the ratio of rmaxP to the integral of ri, from 1

to P. We show this in figure 2. We can view the penalty we pay for heterogeneity to

simply be the ratio of the shaded area to the total area. Therefore the closer in speed the

workers are, the less the penalty.

Penalty Incurred in the length of the Critical Path
Too because of heterogeneous speed

co

U 1m

0

.)

uE Workers P

Figure 2: The penalty in the reduction of the critical path for having workers which have

different bandwidths is the ratio of the area of the rectangle to the area of the white

region. The ratio of the shaded area to the total area of the rectangle reflects the penalty

for having heterogeneity in the computation.

16

We can produce more informative bounds on the expected running time of a fully
strict Cilk program if we have more information about the heterogeneous environment. If
we know that the performance of the fastest worker max is at most a factor of a more

than the performance of the slowest worker min, i.e. rmax < armin, then the expected
running time of a fully strict Cilk program is Tp = O(TI(raveP) + aToo) in this

environment. We can derive this quite simply from the fact rave >2 Cmin. The penalty of

having heterogeneous workers is only in the time it takes to perform work along the

critical path, and that penalty is at most the ratio of the fastest worker to the slowest

worker.

We define Tl /To to be the "average parallelism" of a computation, Tl/Tp to be the

speedup of the computation, and the maximum number of workers allowable to still

guarantee linear speedup (i.e. the speedup T ITp grows linearly with P) to be the effective

parallelism.

Theorem 2: The effective parallelism of a fully strict Cilk program running on P workers
with total work T1 and critical path of length T is

T 1 1

Too ormax

where ma,, is the performance of the fastest worker and a is the time to perform a steal

operation.

Proof. The effective parallelism of a computation is defined to be the maximum number

of workers that allows linear speedup. From theorem 1, the bound on the execution time
is Tp = O(T /l(aveP) + OTooCnmaxlrave) . Linear speedup can only be achieved when

Tp = O(Tl /(7laveP)). Therefore, we only obtain linear speedup when

Tl/(7aveP) 2 Too7rmax/l7ave-

Performing some simple reductions, we obtain P < (T/Too)(l/(aZ7rm)).

From our time bound and the derived expression for the effective parallelism, we
conclude that Cilk programs running in a heterogeneous environment are efficient: all of
the performance raveP is applied to the total work T1. The only penalty we incur for
having workers with differing performances is that the effective parallelism is a factor of

tcmax smaller than the average parallelism T1/To

17

5 Heterogeneity in Scale
In this section, we investigate the issues involved in extending Cilk to run on a set

of workers composed of computers of different scales, such as workstations and

multiprocessors. We provide theoretical bounds on the time, space, and communication

costs on the execution of a fully strict Cilk program in such an environment. The bounds

on the space and communication costs are the same as the homogeneous case. We show

that the execution time of the program is Tp = O(Tll(7aveP) + anmaxToomaxlave). We

also conclude that attempting to maximize local communications, such as communication

between nodes of a multiprocessor, may be a good heuristic, but should not be a rule for

the Cilk work-stealing algorithm.

The primary difference between an environment in which workers are

heterogeneous in speeds and an environment where the workers can differ in scale is that

the communication time between workers is no longer constant. For example, a node in a

multiprocessor communicates faster with another node than with a workstation on the

network. For the execution of a fully strict Cilk program, these differences in

communication times do not affect our bounds for space and communication costs, only

for the execution time. And, our derivation of a bound for the execution time extends

well for nonconstant communication.

In a completely heterogeneous environment, in which workers differ in their

speed and scale, the expected execution time of a fully strict Cilk program is

Tp=O(T1/(7raveP) + amaxT°Kmax/Cave), where gave is the average performance of P
workers, /7max is the performance of the fastest worker, and max is the longest time,

measured in seconds, for one worker to steal from another. The proof of this follows

directly from our derivation with constant communication, if we simply treat cr to be a

function, rather than a constant. From this bound, we obtain an effective parallelism of

(T1 lT.)(ll('maxnmax)).

Because of our time bound, integrating workers of different speeds and scale only

affects the amount of time it takes to reduce the critical path by a factor of amaxnrmax/lrave-

All of the computer resources are being utilized to reduce the total work T1.

One downside of incorporating workers of different scales is that the time spent

working on the critical path is increased by the time amax of the slowest communication.

Maximizing local communication whenever possible is one way to reduce this factor.

The current Cilk work-stealing algorithm states that if a worker is idle however, it

attempts to steal from another worker chosen at random. Maximizing local

communication requires the work-stealing algorithm to try to steal from a local worker, as

opposed to a global worker. Maximizing local communication does not guarantee,

18

however, that if workers are stealing, progress is being made on the critical path.

Intuitively, if workers are busy, they are contributing to reducing the total work T1. If

sufficient workers are unsuccessfully stealing, we are confident that progress is being

made on the critical path. After P random steals, with reasonable probability, we know

that work has been made on the critical path. Maximizing local communication defeats

this random choice of stealing, so that even after P steals, we have no guarantee that

progress has been made along the critical path. Consequently, the execution time could

be even worse, because we can have workers who are not contributing to the reduction of

the total work or to progress along the critical path. We conclude that the naive idea of

trying to maximize communication may be a good heuristic for choosing a worker from

which to steal, but it should not be implemented as a rule, since it could actually degrade

performance.

The effective parallelism of a fully strict Cilk program running in a completely

heterogeneous environment in which workers differ in performance and scale is
T 1 1

Too Omax C max

The proof of this follows directly from our derivation with constant communication, if we

simply treat a to be a function, rather than a constant. Therefore, the only penalty for

running a program in a completely heterogeneous environment, instead of a
homogeneous one, is a factor of amaxncmax decrease in the effective parallelism. Our

derived time bound shows that all of the computational performance is applied to the total

work, so the computation is efficient.

We were able to show the practicality of implementing Cilk in an environment of

workers of different scale by implementing a version of Cilk on the PVM message-

passing layer. PVM enables the construction of a worker pool consisting of workers of

different scales. Since we constructed Cilk on top of this layer, we are able to run Cilk

programs across such a worker pool.

6 Implementation
In this section, we present some of the details and problems that were encountered

when we modified the implementation of Cilk that ran on the MIT Phish network of

workstations [3] and the implementation on the PVM message-passing layer [6].

The major implementation difficulty encountered was that the mechanism for

starting up a Cilk program was no longer valid. Originally, a Cilk program was executed

by simply running the program simultaneously across the nodes of a multiprocessor. But

in a network of heterogeneous workers, a program cannot be started simultaneously on all

19

the workers. Instead, we modified the startup of a Cilk program so that one worker was

the host for the program. After it starts, it spawns itself off onto the rest of the workers.

The implementation of Cilk on the MIT Phish network of workstations was

limited because it could only run on a network of heterogeneous workstations. In order

to construct a version of Cilk that could run on a completely heterogeneous environment,

in which workers could differ in data format, speed, or scale, we chose to implement Cilk

on the PVM message-passing layer because PVM was available on most platforms.

Furthermore, PVM also provides a mechanism for running programs on machines of

different scales and speeds [6]. Because of this mechanism, we were able to concentrate

our efforts on building applications for Cilk and doing theoretical analysis.

7 Conclusion
We have shown that it is practical to extend the Cilk runtime system from running

on a homogeneous environment to running in a heterogeneous one. We have also proven

analytically that running Cilk on a heterogeneous environment is efficient: all of the

computational performance is applied to the total work of a program. The only penalty

incurred is a slight decrease in the effective parallelism.

From a practical standpoint, we have proposed implementations of Cilk that run

on heterogeneous environments. We explained our mechanism for translation so that two

workers of different data formats could communicate with each other. We have also

constructed two implementations of Cilk, one running on the MIT Phish network of

workstations, the other on the PVM message-passing layer, which shows that it is

possible to extend Cilk to heterogeneous environments. We have also tested these

implementations by running several programs on them: recursive Fibonacci, the nqueens

problem (placing n queens on a nxn chessboard so that no two queens can attack each

other), a ray-tracing algorithm, and the *Socrates chess program.

From an analytical view, we have shown that in a heterogeneous environment in

which the communication rate is constant across all workers (as is the case when all

workers communicate through a network), the execution time of a Cilk program running

on P workers with total work T1 and a critical path of length Too is Tp = O(TI/(ltave P) +

dToozrmaxlrave) where cr is the time it takes to perform a steal, 7rma is the average

performance of the workers, and Rtave is the performance of the fastest worker. In an

environment where workers can differ in scale as well, the execution time is Tp =

O(Ti/l7aveP +UmaxToormax/rave) where amax is the maximum time it takes for one worker

to steal from another. Finally, we showed that the effective parallelism in such a

20

computation is . Therefore, the effective parallelism in a heterogeneous
Too max max

environment is a factor of max7rmax smaller than the effective parallelism T1ITo in a

homogeneous environment.

Acknowledgments
I would like to thank all of the members of the Cilk project at the MIT Laboratory

for Computer Science. Their help, advice, and insights have provided me with a great

deal of support. I would especially like to thank Mr. Robert D. Blumofe and Professor

Charles E. Leiserson for all of their long hours of support.

References
[1] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E.

Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: An Efficient Multithreaded

Runtime System. To appear in the Symposium on Principles and Practice of

Parallel Programming, Santa Barbara, California, July 1994.

[2] Robert D. Blumofe and Charles E. Leiserson. Scheduling Multithreaded

Computations by Work Stealing. In Conferences in Foundations of Computer

Science, Santa Fe, New Mexico, November 1994. IEEE.

[3] Robert D. Blumofe and David S. Park. Scheduling Large-Scale Parallel

Computations on Network of Workstations. In Proceedings of the Third

International Symposium on High Performance Distributed Computing, San
Francisco, California, August 1994.

[4] D. Cohen. "On Holy Wars and a Plea for Peace". Computer, Vol. 14, No. 10,

October 1981, pp. 48-54.

[5] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, Klaus Erik Schauser.

Active Messages: a Mechanism for Integrated Communication and Computation. In

Proceedings of the 19th International Symposium on Computer Architecture, Gold

Coast, Australia, May 1992. ACM.

[6] V.S. Sunderam. PVM: A Framework for Parallel Distributed Computing.

Concurrency: Practice and Experience, 2(4):315-339, December 1990.

21

