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Abstract
Distributed routing and call admission algorithms for high speed wide area networks
typically rely on link state information for optimal decision making. Therefore, topol-
ogy updates are necessary to have accurate local network utilization tables. The up-
date strategy must be efficient enough to avoid taxing the resources of the network
while maintaining the performance of the algorithms. Performance is generally char-
acterized as the amount of traffic which can be admitted into the network. Using both
theoretical and empirical techniques, this thesis studies the effect of inaccurate local
databases and the amount of information necessary to achieve good performance.
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Chapter 1

Introduction

The advent of fiber optic technology has created a new class of wide area networks.

These high speed networks, such as PARIS/plaNET [2, 6] will have bandwidths in

the Gigabit rate range and will support large numbers of users. Along with offering

new capabilities, these networks also create new problems. One such problem is how

to maintain distributed network state information.

This research project aims to study the problem of efficiently maintaining topology

and network utilization information. The project has two parts, one focusing on

analytically determining the effect of incomplete knowledge on a distributed routing

and call admission algorithm. The second part simulates the effect of partial state

information on the performance of the algorithm. It is hoped that this project will

shed new light on this area.

1.1 Background and Motivation

Managing a limited resource such as bandwidth is a problem common to most net-

works. This problem is handled by algorithms which decide how much traffic should

be admitted to the network and along which path to send it to its destination, respec-

tively denoted the call admission and routing problems. Routing and call admission

algorithms require a certain amount of information about the current state of the

network. In a real-time environment, this information can never be completely ac-

7



curate. The topology update question is then how often and in which manner this

information must be improved. A large body of research addresses the problems of

managing bandwidth and topology updates [8]. For example, Amotz Bar-Noy and

Madan Gopal [5] examined five different update strategies and their effects on a dis-

tributed routing algorithm. Their research focused on the problem of finding shortest

paths between networks, given that local hosts have only limited knowledge about

the other networks.

Routing, call admission and topology update have been studied extensively for

many years. Much of the current research on these problems has been spurred by

the need for integrated service networks. Integrated service combines multiple types

of data, such as voice, video and file transfer into a single network. These networks

require a protocol such as Asynchronous Transfer Mode (ATM) which has the dual

advantages of low delay and flexibility [10, 9, 13]. The low delay comes from the

use of circuit routing, which allows fast packet switching, while the flexibility stems

from the ability to multiplex several connections together. Since cells in ATM are

source routed, resources can be reserved to meet various Quality of Service (QoS)

requirements. This protocol was designed to be flexible enough to effectively manage

multiple types of data.

Fiber optic wide area networks are designed to service large numbers of users, each

expecting a high quality of service. The demand is sufficiently large enough to render

centralized control infeasible. Decisions must be made immediately as each request

arrives without any knowledge of future demand. To further complicate the situation,

each node may only have partial information about the current state of the network,

since connections may simultaneously arrive at other nodes. The algorithm must be

efficient enough to prevent admission from becoming a bottleneck. Similarly, after

acceptance of a connection, frequent rerouting becomes impractical, since ensuring

uninterrupted service makes rerouting very expensive.

These complications are what led to the consideration of distributed routing al-

gorithms. Distributed routing differs from centralized control in that decision making

occurs locally instead of at a global network controller. The performance of high speed
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networks would be severely compromised if each host had to depend on a remote cen-

tralized node for decision making. Distributed algorithms also have the advantage of

greater reliability and security, since operation of the network does not depend on a

single location.

While distributed algorithms may possess these advantages, they induce additional

complexity. For efficient management of the network, each individual node must be

capable of informed decisions. Some sort of topology update mechanism is therefore

required. Previous research [2, 7] has shown the feasibility of maintaining structures

for network broadcast. This allows any node to quickly inform the network of the

load on its adjacent links. The question remains of how frequently these updates

should be sent. Obviously, sending them too frequently will clog the network with

needless messages. The local hosts will be overwhelmed if too many updates are

broadcast, which is conceivable considering the size of some networks. On the other

hand, if updates are too infrequent, routing decisions will suffer from a lack of current

information. The goal is to find the right balance.

The motivation for examining new distributed algorithms is that most of the ex-

isting research focuses on packet routing. Protocols which use packet routing such as

TCP/IP cannot effectively handle integrated service. A packet routed network cannot

reserve bandwidth and therefore cannot make any guarantees about the performance

of the network. The routing algorithms designed for these protocols are therefore not

very useful in an ATM environment. This environment requires new solutions.

An important consideration in designing new algorithms for ATM networks is

how the three problems of routing, admission control and topology update interact.

The algorithms must be designed to complement each other. Bahk and El Zarki [4]

designed a dynamic multi-path algorithm which attempted to bridge the gap between

routing and admission control. Their approach is to use shortest-path routing if

traffic is light, but then switch to multi-path routing once the network load increases.

A hierarchical approach, proposed by Meempat and Sundareshan [12], would use

a network supervisor to control access. The algorithm uses centralized admission

control but distributed routing. Lin and Yee [11] present a completely distributed
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routing and admission control algorithm for use in ATM networks. Their algorithm

formulates the problem as a combinatorial optimization problem, and then attempts

to use Lagrangian relaxation to obtain a good solution.

Of the above researchers, only Bahk and E1l Zarki addressed the question of how

link state information is updated. They proposed an estimation scheme which com-

putes an effective capacity for each link. This estimate is updated by infrequent

broadcasts from each network node. However, none of the other researchers addressed

the problem of how often the link state information which all their algorithms depend

upon will be updated. Most of the research only looks at the interaction of routing

and admission control. This paper differs from previous research by examining the

interaction of all three problems. The aim is to discover how much information is

actually necessary for good algorithm performance. This paper uses an algorithm

developed by Awerbuch, Azar and Plotkin [1] which solves the call admission and

routing problems. By combining this algorithm with a simple topology update mech-

anism, it is hoped to understand how the lack of accurate link state information

affects the system.

1.2 Description and Goals

How frequently should utilization updates be broadcast? This is the question that

will be addressed by the experimental component of this project. Specifically, a dis-

tributed algorithm will be implemented on a network simulator. The performance

of this algorithm under varying conditions will then be analyzed to determine the

optimal topology update strategy. Two different topologies will be used. The net-

works will be simulated under several degrees of usage. For each type of workload,

the frequency of topology updates can be adjusted to balance the need for fresh in-

formation against the stress on the local host computation from too many messages.

Typical qualitative measures such as mean throughput and loss ratio will be consid-

ered. Loss ratio is the percentage of rejected connections out of the total workload.

These measures form a picture of how the network is behaving.
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The distributed algorithm considered solves the call admission and routing prob-

lems in a virtual circuit environment. In this case, all packets for a connection use

the same route through the net. For a network with many users and varied data

types, including real-time audio and video, circuit routing is a method of guarantee-

ing minimum latency and reserving bandwidth. As mentioned earlier, circuit routing

is necessary because packet routing cannot reserve bandwidth. This inability of a

packet routed network to provide flexible QoS guarantees, which is critical for multi-

media applications, stems from the fact that every packet can take a different route

through the network. Routing in virtual circuits assumes that each connection has a

certain bandwidth demand which must be satisfied for the duration of the call. Once

a route has been established, rerouting or interrupting it is very costly, due to the

large amount of data frames which would accumulate at a node's buffer. As a result,

paths are static for a call's duration. Also, blocked calls do not reapply for admission

into the system. These constraints apply to every algorithm.

Now that the constraints are established, the two schemes used for comparison

can be explained. Baruch Awerbuch, Yossi Azar and Serge Plotkin developed the

RouteorBlock protocol [1], an effective combined routing and call admission algo-

rithm that has the advantage of being relatively easy to implement. This algorithm

chooses a routing path for a connection and regulates the entrance of heavy users

into the system. To work correctly, this algorithm requires each network host to have

knowledge of the system's current state. As a control, the minimum-hop heuristic is

being used. Both the RouteorBlock algorithm and min-hop are distributed. Brief

descriptions of each follow.

RouteorBlock accepts or rejects a connection request immediately based on a

cost versus value comparison. This algorithm makes its decisions on-line, without

any knowledge of future arrivals, in contrast to off-line algorithms, which know the

entire input sequence of connection requests. When a call arrives, the local controller

looks for the lowest cost path that can accommodate that demand. The cost of a

path is a function of its utilization. If this cost is greater than the profit or value

of the request, it is rejected. The value of a request can depend on the quantity
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of information it will transmit. Otherwise, the cheapest path is assigned to that

connection. Minimum-hop simply chooses the shortest path between the source and

destination, which is a static method of routing.

The previous paragraphs explained the empirical portion of this thesis. The the-

oretical part considers the effect of partial state information on the competitive ratio

of the algorithm. Consider the ratio of the worst-case performance by an on-line al-

gorithm against the optimum off-line algorithm on the same sequence of inputs. The

competitive ratio is the maximum value of this ratio over all inputs [3]. Since a cer-

tain amount of guessing is involved, any on-line algorithm will perform less effectively

than an optimal off-line scheme. However, algorithms performing within a certain

factor are efficient enough to be useful. Proving the competitive ratio also guarantees

a minimum level of performance over all inputs.

This research project has multiple goals. One is to analytically study the effect of

erroneous network state information on distributed routing algorithms. This question

will also be addressed empirically, by using a network simulator to run a series of tests.

Finally, it is hoped that this project will suggest possible avenues for future research.

This thesis is organized into the following parts. First, the effect of error is the-

oretically analyzed. Chapter 3 then describes the method by which the experiments

were conducted. Chapter 4 explains the results of the first series of tests. The next

part relates how the outcomes were effected by changing the update method. The

last one discusses the results and speculates upon some possible follow up research.
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Chapter 2

Theoretical Error Analysis

Algorithms canl be evaluated both empirically and analytically. The goal of theoretical

analysis is to prove the correctness of the algorithm and establish its competitive ratio.

The algorithm used in this paper has been shown to operate correctly by Awerbuch,

Azar and Plotkin [1] in their paper presenting RouteorBlock. In the same paper,

the algorithm was also shown to be O(lognT) competitive, where n is the size of

the network and T is the maximum duration of any connection request. This chapter

will show how operation in an implementation with inaccurate local state information

effects this analysis and competitive ratio.

Before the algorithm can be evaluated, some definitions and assumptions must be

made. A network is defined as a directed graph G(V, E) with a capacity function u(e)

defined over all edges. The input to the graph is a sequence of connection requests /i,

where each request consists of an origin-destination pair (si, di), a starting and ending

time (Ts,Tf), a rate function ri(t) and a connection profit pi. The rate function is

defined at all times, but is equal to zero outside of the interval between the start and

end times. The utilization is measured by the relative load of each edge,

A(t,j)= E u(e)
i<jE (e)

which is the sum of the rates of all the calls using that edge admitted before /3j arrives

at the host. Thus, the load is a function of the time and the requests admitted.
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The relative load of an edge determines the cost of that edge. This cost is weighted

by the capacity of the edge. Define ,i = 2nTF + 1 as the cost constant. Then the

cost of an edge

Ce(t,j) = u(e)(u-Ae(tj) - 1)

is exponentially proportional to its load. For a request to be accepted, there must

exist a path where the cost of the path is less than its profit. The path cost is a

weighted sum of edge costs.

However, since this algorithm is distributed, the local hosts do not have access to

the actual utilization and cost of each edge. Rather, each host has an estimated load

for each link le(t,j) and an estimated cost

xe(t,j) = u(e)(ulle(t 'j)- 1)

which is the value used for computing paths. The update mechanism of the network

keeps the local estimations within a certain bound of the real values. Let r be

the update threshold, expressed as a percentage of capacity. If an edge's load has

changed by that amount since its last update, the edge must broadcast its actual load

throughout the network.

There are several basic assumptions made about this algorithm. The first is that

since an edge will trigger an update if its load varies past the threshold, the error of the

estimated load le(t,j) = Ae(t,j) -r is bounded. The second assumption normalizes

the profit of each request. First define Tj = Tjf T to be the duration of a connection

and T to be the maximum duration of all requests. Since the profit is proportional

to the rate and duration product of the call, it can be normalized so that

1 I < F
-nTjrj(t) -

where F is some constant. The final restriction limits the incoming requested rates to

be a small fraction of the minimum link capacity. This assumption for each incoming

request rj(t) < u(e)(1/(log ) - ) means that no single connection can demand to
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Figure 2-1: The ROUTE_OR_BLOCK Algorithm

many resources. Given the large capacities available, a connection exceeding this

bound would not be very common. This bound also requires that r < 1/ log .

Next the routing and flow control algorithm is defined. The RouteorBlock al-

gorithm is shown in Figure 2-1. Essentially, what this algorithm does is look for a

low cost path for a request when it arrives. The utilizations and costs used in the

calculations are the local estimates at the host. If there exists such a path whose cost

is less than its profit, the call is accepted and assigned to the path. Otherwise, it is

rejected and discarded. The amount of error at that node will effect the computation

of the path's cost, since the actual cost may be higher or lower than what the local

host perceives. Once a request has been accepted, the link state information at that

node is updated to reflect the change. However, this information is not transmitted

to the rest of the network.

The rest of this chapter closely follows the outline of the proof given in the original

paper [1] by Awerbuch, Azar and Plotkin. This proof involves showing both the

correctness and the competitive ratio of the RouteorBlock algorithm. Because a

version of this proof has appeared before, some details will not be fleshed out fully. It is

assumed that interested readers will reference the corresponding document. However,

this chapter is self contained.
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if 3 a path P from s to d such that

(t xe(t,j) <p
eEP t u(e)

then route j on P and set

Ve E P, Ts < t Tf :Ae(t,j + 1) - e(t,j)+ ()
u(e)

Ve P, Ts < t < Tf : le(t,j + 1) e- )(t,j) 

else block the connection request



The first two lemmas seek to bound the profits, beginning with lower bounding

the total profit of the RouteorBlock algorithm. For all the following proofs, let A

be the set of accepted connections. Also let Q be the set of the connections that were

rejected by the on-line algorithm yet accepted by the optimal off-line algorithm, and

let m be the maximum index of any connection in this set. Finally, index k is the

maximum index of all incoming requests. Once the minimum profit accumulated by

this algorithm is established, the bound can be compared to the maximum profit that

the off-line algorithm could possibly get. The following lemma is an inductive proof.

Lemma 2-1. With A and k as defined previously,

2p' log E pj > CE c,(t,k+ 1)
jEA t e

Proof: Start by setting k = 0. This base case is obviously true. The inductive

step is to show that the inequality holds each time a connection is admitted into the

network. When k increments, each incoming request is either rejected or accepted. If

rejected, the costs and total profit are unchanged. If accepted, the costs of the links

will change like this:

---u(e) _ _ ~A(t> (t, )Ce(t, + 1)- ce(t,j) = u(e) (A,( 3) - e(tI;))

- u(e)#e(t'j ) (e) - 1)

Combining this equality with the assumption about rates given earlier, and using

the fact that 2 - 1 < x for 0 < x < 1, the relation

ce(t,j + 1) - ce(t,j) < rj(t),e'(t'j) log 

is obtained. This is how the cost of an edge at a certain time is affected by an

admission. So the total change in costs due to the admission of another request is
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given by summing over all the edges at all times:

Z E(Ce(t,j + 1) - c(t,j)) < log II Z rj (t),ue (t 'j)
t e t eEPj

To prove that the increase in costs is bounded, a relation must be established

between the link utilization and connection profit. The following equation is based

on the definition of the algorithm, which limits the estimated cost of an accepted link:

Pi

Pj

Pji

pi > zz
t eEPj

Pi > ES1
t eEPj

Pi > E 
t eEPj

in > E E
t eEPj

i' > E 
t eEPj

iT > E 
t eEPj

t eEPj

xe(t,j)rj(t) e (t, )

rj (t) (le(t j ) - 1)

r() (t,j)
rj ( (

rj(t)Pyxe(tiJ) _

- 1)

- EE rj(t)IF
t eEPj

lPjlrj(t) 
t

rj(t)lAe(tij)_ pj T

rj (t),z1 e(tj)

Now this equation can be plugged into tl

profit. The profit limits the cost of acceptih

Z (ce(t,j + 1) - Ce(t,j))
t e

he inductive step for incremental cost and

ig any connection:

< log pE E rj(t)yX e(t j )

t eEPj

< 2 1 pj log 

From this equation, it can be seen that the inductive step holds with each admis-

sion control and routing decision. This completes the proof of the lemma. Clearly,

the profit that the algorithm can accumulate is lower bounded by the sum of the costs

incurred while running the algorithm. 00
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A lower bound has now been established on the profit. The second step in the

proof is to upper bound the profit of the off-line algorithm. This upper bound follows

from the definition of path cost.

Lemma 2-2. The profit gained by the off-line algorithm in excess of that gained

by the on-line version is bounded by

y pj < S y(c(t, m)7 + t7 - 1)
iEQ t e

Proof: Consider any request /j E Q which was rejected by the on-line algorithm

but accepted by the off-line. Let Pj be the path over which this request was routed.

Given that ~qj was blocked and that the cost function is monotonic over connections,

j(t)
Pi < (e) xe(t, m)

t eEP )

This is the limit of the costs incurred by any one connection in the set Q. The

total over all the connections in the set is:

E pj < E ri()x,(t,m)
aEQ jEQ t ePj

< xe(t,m) (t)
t e jeQleeP, u(e)

< EE(e)(7,PAe(t'm) - 1)
t e

< E (ce(t, m)/7 + 7 - 1)
t e

In the step from the second to the third equation, the last sum can be eliminated

since the off-line algorithm must also satisfy the capacity constraints. Therefore, the

ratio rz(t) cannot exceed unity and the term can be dropped. The step from the third

to the fourth equation holds because x,(t,j) < u(e)(iAe(tlj )+, - 1), which means that

X(t,j) < C,(t,j)7, + /7 - 1. This concludes the proof of the upper bound on the

off-line revenue. 00
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At this stage, a framework has been laid down. This framework will be used

to prove the new competitive ratio of the RouteorBlock algorithm . The proof of

the theorem then is relatively simple, since the profits have been bounded and can

be compared. The key to this proof is that the link costs are a lower bound of the

on-line algorithm but an upper bound of the off-line algorithm.

Theorem 2-1. The profit of the optimal off-line algorithm is never more than

8 log(2/i) times greater than the profit generated by the on-line algorithm.

Proof: Let the total profit accrued by the optimal off-line algorithm be I. From

the preceding lemma, this value can be bounded from above by:

< E Pi+Zpi
iEA iEQ

< E Pi + E y(c,(t, k + 1)y + / - 1)
iEA4 t e

< E pi + 2P2r log u E pi + E Z(T - 1)
iEA iEA t e

< 2p 2 log(2) E Pi + E Z(T - 1)
iEA t e

The equations follow from the previously proved lemmas, as well as the fact that

since /3k is the last request, then c,(t, k + 1) is the final cost of each edge. The result

can be further simplified by noting that / < 2. Using this fact, the final bound is

8 log(2/u) EieA Pi plus a constant. 00

This proves the new competitive ratio of the RouteorBlock algorithm when used

in an inaccurate environment. The overall competitive ratio of 8 log(2/a) compares

very favorably with the original ratio of 21og(2y), which is only a constant factor

better. The algorithm is still O(lognT) competitive. Obviously, RouteorBlock is

very robust.

The last step of the argument is to prove that the algorithm will operate correctly

by not over-utilizing any edge. The algorithm is designed so that if any new call

would exceed the capacity restraints of one of the edges in the lowest cost path, then

that call would not be admitted.
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Theorem 2-2. For all edges e E E at all times t,

E ri(t) < (e)
iEAleEPi

Proof: Let Oj be the first connection that caused capacity constraints to be vio-

lated. Assume that edge e is the edge which becomes overloaded. Then the relative

load of this edge must exceed 1, which means that Ae(t,j) > 1 - (t). Using theu(e)

assumption about request rates which bounds the maximum rate at any time, and

using the definition of local edge cost, which relates to the real cost,

Xe(t,jI) = Yle(tJ) 1

> Ae(t,j) - 1

>

> 1-- )_ 1
> -)-1

Tr-1/(log) _
1 P

> l/(logn )

> nTF

Now take the second assumption made, which is the relation between the rev-

enue and the requested rate and duration. Using this assumption and inserting the

equation established above, it follows that

rj(t)e(tj) > rj(t)nTF
u(e)

> pj

This is an obvious contradiction, so request Pj could never have been admitted.

Therefore, given the assumptions restricting the input rates, the capacity constraints

hold during the execution of the algorithm. 00
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This concludes the theoretical analysis of the RouteorBlock algorithm operating

in an implementation without accurate link state information. The two theorems

showed that with some new restrictions on the incoming requests, and the existence of

some sort of update mechanism, the algorithm will perform correctly by not violating

any capacity constraints, and that it also has a competitive ratio which is only a

constant factor worse than the implementation with accurate state information.
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Chapter 3

Experimental Environment

The theoretical model for this project is that of a synchronous connection-oriented

network. All decision making takes place in discrete intervals at access nodes. The

network is represented by an arbitrary graph with bidirectional high speed links. The

network topology is taken from a telecommunications network.

There were some basic assumptions made in designing the simulator, which served

the dual purpose of simplifying implementation and also removing environmental

variables which would have obscured the results. One assumption is that all links

have equivalent capacity and all nodes possess an equal amount of processing power.

A somewhat unrealistic assumption is that no nodes or edges will fail. Admission

control and routing decisions are made dynamically in a distributed fashion at the

source nodes. There is no queueing of requests at the hosts, since all admission control

decisions are immediate. Nor do rejected requests reapply for admission at a later

time. Cells are routed over virtual circuits with all packets of a connection following

the same path.

There are two graphs used as networks in the experiments. (See Figure 3-1.) Both

have 25 host nodes, the only difference being the number of edges between them. The

'dense' graph has a total of 47 edges, while the 'sparse' graph has only 28 between

the nodes. The links in the sparse graph are a subset of the edges from the dense

one. All edges are bidirectional with a capacity of 155 Mbps in each direction. Each

host has a private database which records each edge's available capacity.
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Figure 3-1: Network Topologies used for Simulations

Connection requests arrive at the network according to a Poisson process. A

request consists of a source and destination host, a desired maximum rate, a duration

and a starting time. The hosts are randomly chosen while the rate is a constant 1

Mbps for all connections. The duration of each request is a normal random variable

with a mean of a half hour and a standard deviation of 6 minutes. The interarrival

times are exponential random variables. The mean of the arrival process controls the

amount of the incoming workload.

For each simulation run, requests are generated until a request arrives with a start

time exceeding 100,000 seconds. Consequently, for higher interarrival rates, less traffic

23



is presented to the system. For each request, data flows in only one direction. This

is equivalent to considering a two-way connection as two separate circuits. While not

all networks allow this, the assumption is not unrealistic.

The main algorithm utilized is the RouteorBlock routing and admission control

algorithm. This algorithm works in two phases. As a request arrives at a host, the

program uses Dijkstra's shortest path algorithm to determine the lowest cost path.

The cost of a path is determined from the information in the source's local database.

It consists of the sum of the edge weights in the path. The edge weights are an

exponential function of the utilization, with a base iu = 100.

Once the lowest cost path has been chosen, the second phase is to decide whether

or not to admit this call. That decision is made by comparing the path cost against

the request's value, which is a linear function of its bandwidth. The function used is

pj = rj(t)/5. If the cost is too great, the request is rejected. Since these decisions

are made with some degree of uncertainty, each admitted request is also checked to

make sure that no edge is oversaturated. If one is, the request is rejected. Even

though the algorithm has been proven to satisfy the capacity constraints, in the

experimental implementation it is necessary to explicitly check to make sure this will

not occur. There are a few reasons why this is necessary. First of all, the simulations

do not restrict the update threshold sufficiently to ensure that no edge is overloaded.

Secondly, the two constants (100 and 1/5) used by the algorithm violate some of

the assumptions made in the correctness proof. The constants were chosen through

empirical analysis. These compromises were accepted to ensure good experimental

results.

This is then the basic algorithm. A variant is to admit all requests, routing them

by the lowest cost path, regardless how high this cost is. Another option is to admit

all requests along their minimum-hop path. All three algorithms will be used in the

simulation runs.

The accuracy of the host databases degrade with time as the utilization of the

network changes. When a connection is accepted into the network, the source node

records this change and modifies its own database accordingly, decreasing the current
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available capacity for each edge in the chosen path. Similarly, after a connection ter-

minates, the available capacity of the affected edges in the local database is increased

by the rate of the connection. However, each node will still be unaware of any change

in an edge's utilization caused by other hosts.

Topology updates are used to bring the databases up to date. An update is

triggered when an edge's load changes more than the threshold value. This is a

global variable that can be set to any percentage of an edge's capacity. When an

edge's availability has changed more than this value since its last update, the edge

notifies its source node to send an update. There are two varieties of update. Global

updates are broadcast from the source node to all other nodes, while local updates

reach only those hosts within a radius of two edge hops away from the source node.

Both include the true available capacity of every edge emanating from the host, and

are assumed to fully propagate within one time step. Multiple hosts can send updates

simultaneously, but each can only send one per time step.

Multiple quantities were measured by the simulator during each run. At sampling

intervals of 1000 seconds, the average edge weight, database error and network flow

were recorded. Samples were not collected until after a short warmup period to ensure

that the system had reached a steady state. At the end of each run, the total number

of updates, the loss ratio and the average hop count were also output. Each data

point is the average of five runs with different random number seeds. The confidence

level was chosen to be 90%.
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Chapter 4

Effects of Inaccurate Information

In this chapter, various interactions between the accuracy of local host databases

and the effectiveness of the call admission and routing algorithm are explored. The

goal is to discover how much information will be required at each point of entry into

the network in order for the algorithm to operate effectively without consuming too

many resources with operational overhead. The first section establishes the underlying

correlation between error and performance, and the next one further fleshes out some

interesting points. The objective was to understand the dependence of the system on

the update mechanism.

4.1 Database Error

The first question examined was the relationship between database error and algo-

rithm performance. How much will performance degrade if the local databases do not

have perfect knowledge of network state? Performance in this context refers to the

loss ratio, the percentage of requests that the algorithm must reject due to overloaded

links, and requests which are too expensive. Loss ratio was the main performance

statistic used throughout the experiments.

To answer this question, a series of tests were run at a moderate workload with

varying update thresholds. The greater the update threshold, the less frequently

updates would be sent and consequently, the higher the average database error. For
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Dense Sparse
updates loss ratio | updates _ loss ratio

optimal 0.52 + .03 % optimal 1.48 ± .11 %
185429 ± 164 0.52 i .04 % 79440 + 221 1.48 + .11 %
4193 38 0.62 + .03 % 1479 28 1.48 ± .11 %
2043 ± 39 0.89 ± .03 % 433 ± 31 1.49 + .09 %
1545 ±t 35 1.17 + .03 % 172 7 1.49 ± .11 %
1328 ± 65 2.24 ± .05 % 122 ±t 33 1.60 ± .12 %
1248 62 4.89 + .31 % 37 1 1.76 i .09 %
min-hop 8.26 ± .07 % min-hop 4.06 i .15 %

Table 4.1: This table gives the loss ratios for various update frequencies. The results
are for a moderate workload on each topology.

each test, the algorithm was run both with and without admission control. The tests

were run on both networks, with the smaller one requiring a higher interarrival rate

to generate an equivalent workload. There were six different update levels tested.

The table shows how the performance of the algorithm degraded as updates became

more infrequent. The table compares performance with different update levels against

the performance of the centralized implementation operating with perfect knowledge.

The results using min-hop are also included to show how RouteorBlock performed

better.

Generally, the results from these tests were as expected, but they also had some

curious trends. The results in Table 4.1 are representative of the overall patterns

in the data collected. As database error increased, the algorithm performed worse.

This comes as no surprise. Interestingly enough, however, the relationship between

error and performance is not linear. The systems can tolerate a certain amount

of error without much performance degradation. This is more true of the sparse

network, which is probably due to the fewer alternatives available for each decision.

As expected, average hop counts for connections in the sparse graph were greater

than those for the dense graph. This is obviously due to the lower connectivity.

The next step was to see if the previous trends continued to hold true for any kind

of workload. The same series of experiments was performed on a range of workloads,
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Figure 4-1: These graphs show the relationship between average database error and
loss ratio. They show how performance degrades as the local databases become less
accurate.
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from very lightly loaded to heavily loaded. Four interarrival means were chosen. The

results can be seen in Figure 4-1.

For the most part, the outcomes were similar. Unless the network is very highly

stressed, the algorithm can withstand some error without undue degradation of perfor-

mance. The algorithm only became very sensitive to error when so many connections

were requested that every third request was dropped. At that point, the relationship

was almost linear. This linearity stems from the fact that the system is saturated,

and every increase in database error leads to a corresponding increase in loss ratio.

In a realistic network, performance is rarely allowed to degrade that far.

The fact that under normal conditions the system was very robust is an encourag-

ing result. Interestingly, the loss ratio increased swiftly as the workload grew. When

the incoming load doubled, from an interarrival mean of 400 milliseconds to 200 mil-

liseconds, the loss ratio became over six times as great. Clearly, the relationship is

not strictly linear either.

4.2 Update Frequency

The previous results relate only part of the story. Now that the relationship between

database error and loss ratio has been established, it is necessary to look at the

number of updates required to keep the error within certain bounds. This is the main

quantity of interest, since it is the updates themselves that tax the resources of the

network. So the main questions now are: what frequency of updating maintains this

comfortable level of error, and does this frequency depend on the level of traffic or

on the network topology? These questions will be answered by looking at the total

number of updates which where broadcast during the execution of each simulation.

Here again the results follow a pattern. This pattern is that the average database

error does not begin to increase dramatically until the frequency of updating falls

below a certain level. This level remains fairly consistent for all types of workloads.

This can be clearly seen on the graph in Figure 4-2. According to these results, the

relative frequency of updates necessary to maintain algorithmic stability can remain
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Figure 4-2: This graph shows the relationship between update frequency and database
error on the dense topology. Each line represents a different level of traffic load.

effectively constant regardless of the amount of traffic flowing into the network. This

avoids a cyclic effect where the number of updates would ebb and flow as the traffic

pattern varies. Even if the amount of traffic entering the network isn't stable, the

frequency of updating will be stable.

In fact, this level is even somewhat constant over both networks. The reason

for this effect is difficult to explain. A possible reason might be that the value of

information transmitted by each update increases as the workload does. In order to

understand this relationship better, a series of tests were run with varying workloads

yet equivalent update frequency. The results were then examined to see if each update

corrected more error as the workload increased. The expectation was that as the load

increased, each update would become more significant. However, the results did not

bear this out. This is an interesting yet unexplained effect.

The previous results lead to the most interesting question. Namely, what is the

overall effect of the relationships between error and performance, and frequency and

error? The cumulative effect can be seen by examining the correlation between the

number of updates and loss ratio.

The graphs in Figure 4-3 clearly show that the number of updates necessary to

keep performance relatively high remains constant for any type of workload. The loss
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ratio will not increase to an unacceptable level until the frequency of updating has

dropped significantly. No matter what kind of load is presented, or what topology

the system consists of, a steady level of updating will result in near optimal perfor-

mance. Likewise, having a very high number of updates does not improve operation

by much, since overall performance is already close to optimal. This establishes the

main pattern of the results, which should be close to the behavior of such a system

in an actual implementation.
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Chapter 5

Local versus Global Updates

This chapter explores the question of whether local knowledge is more significant

than global knowledge. That is to say, how important is it for each database to

have accurate knowledge about distant edges in the network? Since most connections

utilize paths that are not very long, the algorithm may be able to operate effectively

with only limited global information. This suggests the possibility of using only local

updates in the network.

These are updates which travel only 2 hops from the source node. A global update

requires that the source node broadcast the message to all other nodes. For a local

update, a node would only flood the area within a short distance. These limited up-

dates would maintain accurate information about nearby edges while allowing a higher

level of error for distant parts of the network. Correspondingly, this type of update

utilizes fewer resources than conventional updates, which must broadcast throughout

the entire network. The motivation is to trade potentially useless information for

conservation of resources. Another advantage would be faster updates.

There are two sections in this chapter. The first covers the effect of local updates

on the algorithm. The goal was to discern how well the algorithm performed with

only limited global knowledge. The second section checks to see if this effectiveness

is dependent on the network topology. In a sparse network, the paths of connections

would tend to be somewhat longer. Also, the 'spread' (the number of nodes reached)

of a local update would tend to be smaller.
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Figure 5-1: These charts contrast the performance of the algorithm using global
updating against the algorithm using only local updates.

5.1 Sensitivity to Global Knowledge

The same series of experiments used in the previous set of experiments were run

again on the dense network. On this occasion, however, only local updates were used

instead of global broadcasts. Once again, there were two variables of interest. The

interarrival mean of the requests ranged from 200 milliseconds to 500 milliseconds,

and the update threshold varied from 1% to 50% of capacity. Since the same incoming

traffic patterns were used, the results can be compared to see how the algorithm did

with local updates.
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Two main points emerged from the data. The most important is that the algo-

rithm did not do as well with only local information. This can be seen from Figure

5-1, which contrasts the performance of the algorithm over several workloads and

different frequencies of updating. Once the amount of traffic in the network passed

a certain point, the algorithm began to perform less effectively using only local up-

dates. This is similar to the results which Bar-Noy and Gopal found, where routing

algorithm performance decreased if the nodes had only local information [5]. This

effect becomes more pronounced as the network load increases.

Also, the update frequency became more significant. For example, at light loads

with frequent updates, the two versions of updating produced almost the same re-

sults. However, as the number of updates grew less frequent, the performance of the

algorithm with the local updates declined at a faster rate. The simulator reached

a similar steady-state as it did with global updates. But this steady-state was at a

lower level of performance than previously. So even when the frequency of updating

was very high, the algorithm still was not able to approach optimal performance.

This effect became more pronounced as the workload increased. At very light system

utilization, the difference between the two methods was not very noticeable. But as

the traffic increased, the simulation using local updates had higher and higher loss

ratios.

The other trend concerned the stability of the algorithm. Unlike test runs with

global updates, the comfortable margin of error did not remain the same as the traffic

increased. A larger number of updates was required to maintain database error within

certain limits. This can be seen from Table 5.1, compared against the graph of error

in Figure 4-2. For each workload, the table gives the average database error for the

highest and lowest frequencies of updating. Using global updates, the upper and lower

bounds for error remained constant independent of workload. With local updates,

the bounds increased as the load increased.

The increase in error due to higher workload relates to the disparity between

performance at low and high workloads. If the overall system error was not too great,

the local update version did almost as well as the system with global updates. But
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A lower bound upper bound

dense graph
500 25.09 ± .04 % 33.39 ± .31 %o
400 29.61 ± .03 % 35.34 t .19 %
300 31.46 i .02 % 37.19 + .26 %
200 32.13 ± .01 % 38.99 + .22 %

sparse graph
2000 28.75 ± .13 % 30.29 ± .34 %
1500 35.79 ± .07 % 40.01 ± .59 %
1000 45.96 ± .06 % 46.93 ±t .78 %
500 52.58 ± .02 %o 53.24 ± .38 %

Table 5.1: This table shows the average database error for the most frequent (the
lower bound) and the least frequent (the upper bound) levels of updating. These
ranges are examined for each traffic load.

as the utilization increased, so did overall error, which caused the local updates to

become less and less effective. The update frequency necessary to approach steady-

state also tended to increase. As the data shows, using only local updates makes the

system highly sensitive to the traffic load on the links.

5.2 On a Sparsely Connected Network

To understand whether the use of local updating would be effected by network topol-

ogy, a series of tests were run on the sparse graph. These tests were identical to the

previous simulations run on this network. The aim was to see, by comparing these

results to the ones for global updates on a sparse network, if there was any difference

attributable purely to the change in topology.

As with the experiments run on the dense network, the simulations using local

updating had higher loss ratios. At low loading and low error, the difference was

not very pronounced. Under these conditions, both systems approached optimal

performance. But as database error increased, the loss ratio for the algorithm using

local updates quickly rose. The error for the local method increased both with load

and update threshold, so both of these factors decreased the performance. As pointed
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out before, when using global updates, database error does not increase with traffic.

So the algorithm became as or more sensitive to both error and utilization, as it had

on a dense one.

However, the surprising result was that the type of network topology did not

seem to have much effect. While using local updates is not optimal, the loss ratio will

not increase simply because the network has fewer available paths. In fact, for both

methods of updating database information, the impact of error was not as great on the

sparse network. Comparing the results of all simulations run on both networks, the

simulations on the dense network were more effected by inaccurate databases. This

agrees with the theoretical results produced, which showed that the performance is

dependent on the network size. In a dense network topology, the number of available

paths is greater for each new request, which would increase the significance of accurate

local databases.
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Chapter 6

Discussion

The experiments and theories given in the previous chapters detail the effects on the

system from incomplete knowledge about link states. These results illustrate how

decision making at access points into the network is dependent on this information.

This chapter attempts to extract the central meaning from that work, and point to

some new directions for future research.

The most interesting result is that the system is relatively robust. This point was

made both in the analytical proofs and in the empirical experiments. In Chapter 2,

the two theorems proven showed that RouteorBlock not only operates correctly in

a distributed implementation, but that its performance is comparable to the perfor-

mance of the centralized version. Both are O(log nT) competitive compared to the

off-line algorithm. As mentioned previously, this is optimal for any on-line routing

and call admission algorithm [1].

The experimental results from Chapter 4 showed how the algorithm is effected

by error when making decisions locally. The results clearly showed that while a

centralized, omniscient implementation has optimal performance (the minimum loss

ratio), the distributed implementation can approach this level as well. Also, the

frequency of updating necessary for near-optimal performance can be low without

adversely effecting the system greatly. (Approximately an order of magnitude less

frequent than connection arrivals.) These results held for various network topologies

and workloads.
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Therefore, Route_orBlock is a suitable routing and admission control algorithm

for a high speed wide area network. In an implementation of an ATM internet back-

bone, this algorithm would effectively outperform shortest path routing strategies by

reducing the overall network congestion and improving access to the network. There

would need to be some sort of topology update algorithm to maintain link state in-

formation, but this could be very simple. The amount of control traffic necessary

wouldn't be a heavy load on the system. The RouteorBlock algorithm is also very

stable, since it does not seem to be subject to any oscillatory behavior. None of

the simulations showed any tendency for the algorithm to cycle between overloading

various paths. Finally, this implementation would be very scalable. This is because

the competitive ratio is only logarithmically dependent on the network size, and also

because the algorithm is computationally efficient.

However, this thesis did not study the possible implications of using this algorithm

on a network consisting of mixed transmission media. The Internet in its current

incarnation exists consists of combinations of almost all types of channels, from fiber

optic trunk lines to Ethernet local area networks to satellite links. The ATM protocol

is designed to operate effectively over the varying bandwidth capacities and latencies

of these different channels. Whether or not RouteorBlock is capable of managing

the resources effectively in such an environment is currently an open question.

The second main conclusion of this work is that routing decisions depend almost

as heavily on global knowledge as they do on local. This was shown by the failure

of the RouteorBlock algorithm to perform well with only a local update strategy.

There was some benefit to using local updates at very light workloads. However,

this may not be that significant for an actual application. Cells can be switched and

transmitted very quickly in fiber optic networks, so the overhead from using global

broadcast isn't very great. The resource savings from using local updates might not

be very important.

Conceivably, there might be some advantage from using a mixture of various

update strategies, as opposed to the all or nothing approach examined here. This

could also be impacted by the fact that traffic probably isn't uniformly distributed
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over the network. Traffic would tend to be concentrated locally, but to what extent

is difficult to say. Examining this question of possible tradeoffs between local and

global knowledge could use some further study.

Obviously, there exists many starting points to explore new areas from the research

in this paper. Hopefully, there will be some attention paid to the insights gained from

this research. The interaction of routing, call admission and topology update is an

important problem in the implementation of the next generation of high speed wide

area networks. This paper showed that RouteorBlock is a distributed, scalable

algorithm which has some promise as a solution to this problem.
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