
Optical Pulse Storage Rings and
Transmission Systems

by

William Siu-Cheong Wong

Submitted to the Department of
Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Science
in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1995

© Massachusetts Institute of Technology 1995.

Author ........................ - ..;. r .-.
Department of

Electrical Engineering and Computer Science
May 12, 1995

Certified by......... .... . . . . .. - - '.1

Hermann A. Haus
Institute Professor
Thesis Supervisor

Certified by....
Erich P. Ippen

Elihu Thomson Professor of Electrical Engineering
\ I k Thesis Supervisor

Accepted by ....... ..........
lderic R. Morgenthaler

Chairman, Department1 Committe on Graduate Students

All rights reseM&i HUSETTs INSTITUTE
OF TECHNOLOGY

JUL 1 71995

LIBRARIES

arker E8



Optical Pulse Storage Rings and

Transmission Systems

by

William Siu-Cheong Wong

Submitted to the Department of
Electrical Engineering and Computer Science
on May 12, 1995, in partial fulfillment of the

requirements for the degree of
Master of Science

in Electrical Engineering and Computer Science

Abstract
We study the effectiveness of compensation techniques, including intensity-dependent
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plifier noise in high bit rate (10+ Gb/s) pulse storage rings and transmission systems.
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Chapter 1

Introduction

1.1 Soliton Transmission and Storage

In 1973, Hasegawa and Tappert [4] first proposed the idea of using optical solitons

in fiber communication systems. They suggested using the nonlinearity of the fiber

medium to compensate for the group-velocity dispersion of pulses. However, because

of material loss, the pulse width increases in the course of propagation. One solution

is to use periodic amplification to maintain the pulse shape via the stimulated Raman

process [5-7].

Another solution came in 1990 when Desurvire and his coworkers perfected the

erbium-doped fiber amplifier [8]. When the Er3+ ions in the glass host are excited to

a higher energy state by a pump source, they can amplify incident light at 1.5 m

with a bandwidth of about 50 nm.

Using the above two technologies, Nakazawa achieved error-free soliton data trans-

mission over unlimited distances [9, 10]. Inspired by the Nakazawa's experiments,

Haus and Mecozzi suggested the idea of storing a bit stream of solitons (ONEs) and

gaps (ZEROs) in a ring configuration [11]. Their design was shown in Figure 1-1,

where the bit stream recirculated in a fiber ring. The system consisted of an optical

amplifier to compensate loss, an amplitude modulator to maintain pulse timing, and

a bandpass filter to minimize frequency jitter. They were able to show, using soliton

perturbation theory [12,13], that there existed a regime of operation such that both

10



the ONEs (pulses) and the ZEROs (the absence of a pulse) are stable.

Erbium-Doped
Fiber Amplifier

Bandpass
Filter

Amplitude
Modulator

Input Pattern

Figure 1-1: Pulse storage ring design as suggested by Haus and Mecozzi.

1.2 The All-Optical Network Consortium

In 1993, AT&T, DEC, and MIT formed a pre-competitive consortium on wide-band

all-optical networks to develop a national information infrastructure using fiber-optic

technology [14]. The network architecture, which is all-optical, is shown in Figure 1-2.

The 100 Gb/s local area network (LAN) uses time-division multiplexing (TDM)

technology [15], where packets are routed from node to node until they arrive at the

proper receiving node. This slotted TDM technology allows various optical terminals

to operate at different speeds. For example, video images, computer data, and voice

can be transmitted and received at the same time. An all-optical gateway links this

TDM LAN to a wide area network (WAN). To minimize pulse degradation over the

long propagation distances in the WAN, the gateway converts the high bit-rate stream

from the LAN to multiple lower bit-rate streams where the pulses are broader. This

is known as wavelength-division multiplexing (WDM), since each stream in the WAN

is centered at a different wavelength.

11



Figure 1-2: The all-optical network architecture, courtesy of MIT Lincoln Laboratory.

Optical buffers are needed to perform rate conversion at the all-optical gateway.

For example, in order to demultiplex a high bit-rate incoming packet into N lower bit-

rate streams, the packet is required to circulate in the optical buffer for a minimum of

N roundtrips. In addition, buffers can be used to mediate collisions between multiple

packets arriving at a particular node simultaneously.

1.3 Organization of Thesis

This thesis is organized as follows. Phenomena encountered in pulse propagation in

an optical fiber, such as dispersion, self-phase modulation, and nonlinear polarization

rotation, are introduced in Chapter 2. Timing maintenance of the ONEs and the

stability of the ZEROs in an optical storage ring are studied in Chapter 3. An

experimental demonstration of optical storage ring operation - loading, storing, and

unloading packet data is discussed in Chapter 4. The thesis ends with conclusions

and future work in Chapter 5.

12



Chapter 2

Wave Propagation in Optical

Fibers

In this chapter, we present the theory of light propagation in an optical fiber. We

will develop a mathematical model to describe the evolution of the envelope of a

wavepacket in a dispersive medium where the refractive index depends on the field

intensity.

We first begin with Maxwell's equations with no sources in an isotropic medium [16],

V. D(r, t)

V. B(r, t)

V x E(r, t)

V x H(r, t)

= 0

= 0
aB(r, t)

at
aD(r, t)

at

We can obtain a single partial differential equation for the propagation of the electric

field by taking the curl of Eq. (2.3), and using Eqs. (2.1) and (2.4)

1 a2E(r, t) 1 a2P(r, t)
V 2 E(r, t) - c2 t 2 EC 2 t2

13

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)



2.1 Linear Dispersion

Since the polarization field in an optical fiber does not respond instantaneously to

incident light, that is,

+oo0

P(z, t) = o / X(t - r) E(z, r)dr , (2.6)

the susceptibility X(w) is frequency-dependent. Because of causality, the real and

imaginary parts of X(w) are Hilbert transform pairs

Xl(w) = -P _+ °° X 2( ) d (27)Xi) =Pr7' 0 --W 

X2(w) = _ 1 i X (') (2.8)
7r J W - W

The real part X(w) modifies the propagation speed, whereas the imaginary part

X2(w) determines the absorption or amplification by the medium. Using the linear

dispersion relation

D(z,w) = oE(z,w)+ P(z,w) = 0o(w)[1 + X(w)]E(z,w) , (2.9)

we can rewrite the wave equation (2.5) in the Fourier domain for an axially uniform

optical fiber as

V 2 E(r, w) + w2/C(p, w)E(r, w) = 0, (2.10)

where pue(p, w) = [1 + X(p, w)] /C 2 and p = x2 + y2.

If the electric field is y-polarized and it propagates along the z-direction, we can

write

E(r, t) = . a(x, y) ej(wt-P(w)z) (2.11)

Substituting Eq. (2.11) into the wave equation (2.10), we obtain a differential equa-

tion that defines the transverse eigenmode a(x, y) in the optical fiber with modal

14



propagation constant /3(w),

Va(x, y) + [w2ye (p,w) - 32 (w)] a(x, y) = O . (2.12)

The evolution in z can be obtained by assuming

E(r, w) = y E(z, w) a(x, y) (2.13)

in Eq. (2.10), which yields a scalar partial differential equation,

02E(z,w)
+ / 2(w)E(z,w) = O (2.14)az 2

The modal propagation constant P(w) depends on frequency in a complicated way,

because apart from resonance contributions, waveguide dispersion also plays a sig-

nificant role. To simplify calculations, we perform a Taylor series expansion of /3(w)

around the optical carrier frequency wo away from electronic resonances,

1
fp(w) = /i(wo) + P'(wo) (w - wo) + P-/3(Wo) (w - WO)2 + *- . (2.15)

2

The envelope of the wavepacket moves at the group velocity vgroup = 1//'(wo). The

parameter P/3"(wo) describes pulse broadening due to dispersion. We can "factorize"

and rewrite Eq. (2.14) in the time domain (dropping the term containing (wo)) as

aE(z, t) I aE(z, t) 3 2wo E(z, t)
+ 3- = J 0/1 (WO) a 2 (2.16)Oz +Vgroup at 2 o 2 (

Instead of solving Eq. (2.5), a vector partial differential equation in 3 + 1 dimensions,

we have greatly simplified the problem such that we can now work with Eq. (2.16), a

scalar partial differential equation in 1 + 1 dimensions.

In Figure 2-1, the dispersion of single-mode fiber is shown for different material

composition and modefield diameter.

15



Material Dispersion

E
X0
E
C
C,

a.
0
I-
c
C-
.0

VA

SiO2/4%GeO 2

(pm)

ersion

Figure 2-1: Dispersion of single-mode fiber vs. wavelength for different material com-
position and modefield diameter, after Ref. [1]. Note that the dispersion parameter
is defined as D = -2c"(w0).

2.2 Self-Phase Modulation

The response of an isotropic optical fiber to an external electric field becomes nonlin-

ear when the field is intense (comparable to the internal atomic field). This nonlinear-

ity originates from the anharmonic motion of bound electrons under the influence of

an applied field. Self-phase modulation, one of the nonlinear effects, can be modeled

as

pNL(z,w) =oX(3) IE(z, w)12 E(z, w) (2.17)

where X(3 ) is real and positive.

What happens physically is that the refractive index becomes dependent on the

optical intensity. As a result, when an optical pulse propagates, its peak will acquire

more phase shift than its wings will. Self-phase modulation plays an essential role

in optical soliton formation. One can incorporate this nonlinearity into the wave

equation by defining

D(z,w) = o(w) [1 + X(1)(w)] E(z,w) + pNL(z,w), (2.18)

16
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which yields the cubic nonlinear Schr6dinger equation

OE(z,t) 1 OE(z,t) _ o) E(z,t) . wX IE(z, t) 2 E(z,t) .
Oz Vgroup 9t 2 = 2 2nc ( )

(2.19)

It is evident from the right hand side of Eq. (2.19) that the optical Kerr effect is a

reactive process which produces an additional phase shift proportional to the optical

intensity.

2.3 Optical Solitons

In a lossless medium with anomalous dispersion where P "(wo) < 0, higher frequency

components of an optical pulse trail lower frequency components. Thus, in a linear

medium, the pulse will broaden indefinitely as it propagates. On the other hand, in

a Kerr medium, self-phase modulation produces a positive chirp across the central

portion of the pulse. It is possible to find a steady-state pulse shape where the

amount of self-phase modulation balances the effect of dispersion exactly. The pulse

then propagates undistorted in the form of an optical soliton.

To show that soliton solutions exist for Eq. (2.19), we first normalize the equation

according to (see Appendix A for more details)

z - groupt (2.20)
z~ = (2.20)

Zc

t
tn = t (2.21)

tc
E

Un Eo (2.22)

and choose z,, t, and Eo such that both conditions

ZC
/i3"(wo)l t2 = 1 (2.23)

and

2X(3)E2z= 1 (2.24)

17



are satisfied. The normalized nonlinear Schr6dinger equation then takes a simple

form

. az = 2 t2 + u' 12 un . (2.25)
(9z= 2 &t2

In 1972, Zakharov and Shabat [17] applied the technique of inverse scattering [18]

to solve the above nonlinear partial differential equation. Their analytical solutions

revealed that the amplitude and the velocity of interacting/colliding solitons did not

change, whereas their phases contained discontinuities. The fundamental soliton is

the simplest form of an extensive family of exact solutions of Eq. (2.25). It has an

hyperbolic secant form

u(zn, t) = sech(tn) e- j zn/2 . (2.26)

2.4 Nonlinear Polarization Rotation

The principle of nonlinear polarization rotation [19] can be used to enhance the per-

formance of a modelocked laser or a pulse storage ring. Mathematically, if

E(t) = RE.(t) + Ey(t) (2.27)

and we write each scalar component using a Fourier expansion,

E.(t) = 2 [Ex(w)ewt + E*(w)eijt], (2.28)

we can rewrite the nonlinear part of polarization in Eq. (2.17) as

NL(w) = °( [3 E(w)l 2 E(w) + 2 Ey(w)l2 E(w) + Ey(w)2E*(w)] . (2.29)

A similar equation also holds for Py(w). In a circular polarization basis,

NL COX (3) [wE)(W) 12 1

p+NL(w) = °2 [E+E(w)2 + 2 ] E+(w) , (2.30)
PNL(w OX 2 + E+(L) £.3(3)

L(w) = e°2 [IE-(w) 2 2E+(w)l 2 ] . (2.31)

18



The above equations describe the evolution of two circular eigenmodes. If the polariza-

tion of the electric field is elliptical, the propagation constants of the two eigenmodes

will be different, resulting in an intensity-dependent rotation of the total electric field.

Nonlinear polarization rotation can be used to produce an intensity dependent

intracavity transmission. In Figure 2-2, the waveplate transforms a linearly polarized

pulse into an elliptically polarized one, before it is launched into a Kerr medium such

as an optical fiber. Because of the nonlinear intensity-dependent refractive index,

the peak of the pulse will acquire more phase shift than will the wings of the pulse.

The analyzer at the end of the fiber transforms this intensity-dependent rotation

into amplitude modulation. This is known as the additive-pulse modelocking (APM)

action. A typical plot of intracavity transmission vs. light intensity is shown in

Figure 2-3. The transmission increases with increasing light intensity, peaks, and

then decreases with further increase in intensity.

wave Kerr
polarizer plate medium analyzer

~~~~~o (L~~~~~~~~~~~~~~~~~ ED~~~~~~~I 

Figure 2-2: The additive-pulse modelocking action through nonlinear polarization
rotation.

Other transmission vs. intensity responses can be obtained by changing the linear

bias of the waveplates. For example, the slope of the transmission curve can be made

negative so that low intensity light will experience preferential gain over high intensity

light.

19
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Figure 2-3: Plot of intracavity transmission vs. normalized intensity.
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Chapter 3

Stability and Timing Maintenance

in Soliton Transmission and

Storage Rings

This work was done with Dr. John D. Moores, who also wrote sections
3.1 and 3.3.1. It is published in [20].

Pulse storage rings are potentially useful devices, e.g. for buffering data in optical

communications networks. Perhaps the most successful storage ring demonstrated

to date has been the synchronous recirculating loop of Nakazawa et al. [9, 21, 22]

(intended as a long-distance transmission simulator, but clearly of use as a storage

ring). Filtering [12,23,24] and amplitude modulation [13] were used in this loop to

preserve the timing of the ONE's (solitons) and to suppress the growth of noise in bit

intervals containing ZERO's (absence of solitons). Sliding-guiding filtering [25-27]

improves the suppression of continuum, but may be less convenient for compact stor-

age rings or in a network environment. More recently, analyses of the benefits of phase

modulation have appeared [28-30]. Here, we propose the use of intensity-dependent

absorption/gain (which we abbreviate FSA/G for fast saturable absorption/gain) to

provide a thresholding effect which not only guarantees suppression of low intensities

(robustness of ZEROs), but also provides a restoring force for intensity, driving the

21



intensity to a fixed value. This is not only beneficial for maintaining the intensity

and width of the pulses, but also for reducing timing jitter, because the Raman self-

frequency shift (RSFS) and third-order fiber dispersion (TOD) both couple intensity

fluctuations into timing jitter. The most desired behavior, discussed in greater detail

below, is FSG at low powers, FSA at intermediate powers, and FSG at high powers.

We denote this combination of effects FSG+A+G. Much easier to implement, yet

still quite suitable, is FSA+G (FSA at low powers, FSG at high powers), which we

demonstrate via simulation. The intensity-dependent absorption may be provided by

self-phase modulation followed by an interferometric transformation of phase modu-

lation into amplitude modulation (as in Additive Pulse Mode-Locking [31]).

Regarding the analysis in this chapter, there are of course several effects which

we have not considered, yet which limit transmission and storage. In pushing to very

high bit rates, dispersive wave generation should not be overlooked, as it drains energy

from the pulses, can be detected as false ONEs, and can induce timing jitter in the

ONEs. Deleterious effects of polarization mode dispersion (PMD) are not discussed,

as it is assumed that low PMD fibers and components are used. Also of importance

are effects such as the phase-dependent soliton-soliton interaction, electrostriction,

etc. We anticipate that the compensation schemes described below will reduce the

impact of these effects as well. Furthermore, although our analysis assumes near-

soliton ONE's, we anticipate the utility of these compensation schemes for other

types of nonlinear ONE's.

3.1 Model

The starting equation includes effects of filters, modulators, and intensity-dependent

absorption, so as to make it applicable to either storage rings or to long distance

transmission.

The path-averaged nonlinear Schr6dinger equation with (in order of appearance)

noise, RSFS, TOD, extra gain required to balance filtering loss, four terms which are

a polynomial fit to the intensity-dependent absorption/gain, amplitude modulation,

22



phase modulation, and filtering, can be written

Ou ._21 2 &u1 k"' 3 uOu + jD-2U + jr2U1L12u = S + jcRr26 u + k aO3

+ Agu + (-LFSA + y31ul2 + -y5lul4 + y7lul6) u
1 1

2- AM AM M(t + T - TAM)2 U + j 2l MpMWM(t + T - TpM)2 U

+ JX -2 J3 u+-f [-1 - + X2] Ot
+ wh

Q 2 X at2+ f [-3 at3 (3.1)

where

Ik"I 1

2 2

2rn 2hwo

AoAeff

X = p - Wf0
f2f I

a2k
aW2 

(3.2)

(3.3)

(3.4)

k" and k"' represent path-averaged values, and CR is the effective relaxation time

associated with RSFS.

Aeff is the modal effective area in the fiber, h(= 1.05 x 10- 3 4 J-s) is Planck's

constant divided by 27r, wo is the soliton initial carrier (mean) frequency (rad/s), and

for silica the nonlinear index n2 = 3.2 x 10-20 m2/W. In the case of long-distance

transmission, we should also average over the polarization scattering, which gives an

extra factor of 8/9 on 6 [32]. We have normalized the field such that

I +ioo
=

00

Jul2dt (3.5)

is the photon number. From path-averaging [33,34],

r2 = (1 - e-2rl)/(2rl) (3.6)

where is the field loss coefficient which accounts for fiber loss, splice losses, etc. but

23



not filter loss, and is the distance between successive amplifiers. This factor applies

to the self-Raman effect as well as the Kerr effect. The coefficient CR is a measure of

the strength of the RSFS term, which is a fraction of the Raman delay time, weighted

by the shape of the Raman response curve. Path-averaging is valid if the amplifier

spacing I is much less than the soliton phase period (which is eight times larger than

z0, the so-called soliton period) 8zo = 27rr2/D.

In the absence of filtering, the path-averaged gain should be zero. With filtering,

solitons experience additional loss, which is compensated by excess gain Ag. The gain

is a function of pump power, pulse energy, and the number of ONE's in the ring. It is

clear that in the steady-state, the saturated level of gain is a major factor determining

the number of pulses which can be stably supported. The dynamic saturation of the

gain is an important consideration when the number of pulses in the loop changes.

It is anticipated that in many systems, the dynamics of gain saturation will not be

as important for dynamic stability as the compensation techniques discussed in this

paper, because of the time scales. It is not our objective in this chapter to address

the implications of dynamic gain saturation, and we take the gain and Ag to be fixed

in the analysis.

The filtering terms we have chosen are for illustrative purposes. They are based

upon the approximation of the logarithm of a complex Lorentzian for small devia-

tions from the center frequency Qf of the filter with filter length If. We have trun-

cated the expansion at third order. At the next order, we would have picked up an

imaginary third-derivative term which could help to cancel RSFS, but the imaginary

first-derivative term already does so in the perturbative treatment.

We define several relevant frequencies and frequency shifts: w0 is the initial carrier

frequency of the solitons, (wo - p) is the actual carrier frequency of a soliton, and wfo 0

is the difference between wo and the filter center frequency. See Figure 3-1.

We define the timing of the initial soliton to be zero, the current timing of the

soliton is T, and TpM and TAM are the timing of the phase and amplitude modula-

tion.

Intensity-dependent absorption can be achieved in many ways. Examples include
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Figure 3-1: wo is the initial carrier frequency of the solitons, (wo - p) is the actual
carrier frequency of a soliton, and wfo is the difference between wo and the filter center
frequency.

nonlinear Mach-Zender interferometers, asymmetric loop mirrors, and the use of non-

linear polarization ellipse rotation with polarizers and waveplates. These examples

exhibit absorption which is an oscillatory function of intensity and which can be ade-

quately approximated with a polynomial in intensity (simplifying the analysis). If the

device is biased so that as the pulse intensity increases, the loss decreases (increases),

the device imitates FSA (FSG). In the analysis (but not in the simulations), we treat

the effect as distributed. If the pulse intensities are sufficiently high, the wings of the

pulse can see FSA while the peak sees FSG (FSA+G), or vice-versa. Taken one step

further, FSG+A+G in conjunction with gain, can be used to make a bistable storage

ring with thresholding. Ideally we would bias the device so that very low intensities

see loss, damping out noise and dispersive waves. Intermediate intensities see gain

(which can be balanced e.g. by filtering). High intensities see decreasing gain with

increasing intensity, which provides a restoring force for the peak intensity [35, 36].

A sample effective gain vs. intensity curve which incorporates FSG+A+G, and its

cubic fit, are shown in Figure 3-2. For FSG+A+G, the polynomial coefficients satisfy
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LFSA,75 > 0 and 73,77 < 0, and for FSA+G, LFSA,73 > 0, 75 < 0, and 77 = 0.

It is anticipated that this thresholding will be beneficial with waveforms other than

near-solitons, as well as near-solitons.

Figure 3-2: Cubic fit to effective gain vs. intensity with interferometric FSG+A+G.

The phase (amplitude) modulation in our model is completely described by a

frequency of modulation wpM(AM), timing TpM(TAM), and depth of modulation

M/1pM(MAM) per length IpM( 1AM). The modulation frequency is likely to be 27r/R,

where R is the bit rate. We use a distributed model for the action of periodic lumped

modulators. Suppose the lumped amplitude modulator multiplies the time profile

by (1 - MAM + MAM coswAMt), where MAM is actually half of the full depth of

modulation. Then the corresponding distributed operator is (1/ 1AM) ln(1 - MAM +

/MAM cos AMt), which is approximately -MAMwkMt 2 /(21AM). If the phase mod-

ulator multiplies the time profile by exp -jI{PM + MpM(coswpMt - 1)}, then the

corresponding distributed operator is (-j/lPM){qPM + MpM(coswpMt - 1)}, or

approximately -MpMwpMt 2/(2lpM), where we have ignored the constant phase

term which can be trivially scaled out. The obvious implementation is with discrete

electro-optic modulators. However, it may be possible to achieve continuous phase

modulation using cross-phase modulation, as we discuss elsewhere.

The term S represents both the noise introduced by the amplifiers and the noise
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from zero-point fluctuations due to the loss. It is assumed that the gain balances the

loss. Strictly, the noise and the soliton amplitude should be treated as operators. In

a quantum analysis, half of the noise is due to the zero-point fluctuations associated

with the loss, and half with those associated with the gain (when the gain medium is

distributed and perfectly inverted). A semiclassical analysis gives the same result, if

the total noise is associated with the compensation by the amplifiers of the loss. In

the limit of distributed amplification, with white, delta-function-correlated noise we

have [33]

(S*(tl, z)S(t 2 , z2)) = - 1)6(zi - z 2)6(ti - t2), (3.7)

where 3 is the excess noise parameter [37], G is the power gain of an amplifier, and

I is the distance between amplifiers. We have normalized u21 to photon flux (photon

number per unit time), which accounts for the absence of the factor hwo in (3.7).

If the communication system or memory device is such that the gain is not dis-

tributed to cancel the loss at each point, but the gain is lumped into amplifiers,

it has been shown [33, 34] that soliton behavior can be maintained on the average

under practically realizable conditions. There is a path-averaging noise-penalty fac-

tor [33,37]
(G- 1)2 (38)
Gins G (3.8)Gln2 G

which will arise in our analysis. The gain balances the loss, or 2rl = ln G, where

I is the distance between amplifiers. The path-averaging factor r2 (see Eq. (3.6) )

therefore satisfies

r2 = (G-i) (3.9)
G InG

Effectively,

(S*(tl,zl)S(tt 2, Z2)) = NNS(Z - Z2 )(tl - t2) (3.10)

where

NN = 2r-f (3.11)r2

For example, with = 0.0242 km - ' (power loss of 0.21 dB/km) and I = 20 km, we

find that f = 1.081 and r2 = 0.64. For a storage ring of length I = 1 km, the noise
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penalty and path-averaging coefficient are close to unity: f = 1.0002 and r2 = 0.98.

3.2 Stability of Zeros

To analyze the stability of the ZEROs, we ignore the nonlinear and the TOD terms

in Eq. (3.1), and focus on the spectral components of the noise near the passband of

the filter where the detuning X 0. We shall determine the conditions under which

all eigenmodes of the linear evolution equation are damped.

The equation of motion for low intensity light (well below the intensity of a data

pulse) is

_u _2u
S- jDa. + Agu- LFSAU

1 M1
21AMAMwAMWjt 2U + 2 Mp MWMPMt2

1 02u
+ 22lf at2 (3.12)

Following the approach by Haus and Mecozzi [11] we look for an eigenfunction

solution to Eq. (3.12) of the form u,(z, t) = Z,(z)Tn(t). Substitution of u,(z, t) yields

1 d ) 1 1

2Q1f -jD) dt 2 ( 2 MAM W Mt2 - 21 MPMe Mt) Tn(t) = EnT (t)
(3.13)

and
dZ (z)

dz = (/g - LFSA + En) Z.(z) + S(z) (3.14)

If we denote

MAMwM _
1 = 'AM

o02 1

2

(3.15)

the eigenfunctions

T(t) = ' (t) exp (- 2t) (3.16)
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are Hermite-Gaussian functions where

n/2(t)= (-l)mn!(2t)n- 2m
'tH (t) = m!(n - 2m)! for n=O, 1, 2, ...

m=O-

The eigenvalues are

E, -(2n + 1) 21AM(2f )]
(3.17)

There are two criteria to ensure the stability of the ZEROs. Firstly, the evolution

of the low-intensity noise is damped provided that all its eigenmodes are damped:

Ag - LFSA + Re[En] < 0 (3.18)

for all n.

The value of Ag is chosen such that there is no systematic change in the photon

number. From Eq. (3.32),

1 22 2 3I '7'__ LFSA n2 , (3.19)1fT2 2 4 1AM AMAMwM + LFSA- 6r 15r2 35r(3

The sequence {Re[Eo], Re[Ei],...} is monotonically decreasing. Therefore, one only

needs to ensure that Ag - LFSA + Re[Eo] < 0 for stability. Since one can choose the

parameters LFSA, y3, y5, and 77 freely in Eq. (3.19) to satisfy the first criterion, it

is immediately clear that fast saturable absorption can suppress the growth of noise.

Secondly, the evolution of the change in the photon number in Eq. (3.33) has to

be damped as well. This additional constraint is

2 n r ___2 8y 5no 12__no

3lfQT + -6lAM W + + < 0 (3.20)3 f 61AM M 3r 15r 2 35r3

Because it is not clear how to implement FSA/G in a long-haul, non-polarization-

preserving transmission system, we shall analyze the stability of ZEROs in a system
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without FSA/G. It is useful to define dimensionless variables

r 2 1F=
D lf2r2
T2 MAMWAMr 2

LAM D 'AM

7 2 MpMw4MT2

~PMlD /PM

that are proportional to the strength of filtering, amplitude modulation, and phase

modulation, respectively.

3.2.1 Systems with Amplitude Modulation and Filtering

This case was also discussed by Haus and Mecozzi [11]. Without saturable absorption,

the gain Ag must be kept below an upper limit set by Eq. (3.18). In terms of

dimensionless variables,

F 72A ([ )AM [(2+I cos ta (k)] (3.21)
6 2AM < 2

This inequality states that one cannot increase the filtering strength F arbitrarily.

The use of amplitude modulation tends to shorten the soliton pulse width and

broaden its spectrum, which can be counteracted by filtering only if the amount of

modulation is not excessive. Specifically, from Eq. (3.20), we require that

7r2 2
24AM < 3F. (3.22)

The stability region, bounded by Eq. (3.21) and Eq. (3.22), is shown in Figure 3-3.

3.2.2 Systems with Phase Modulation and Filtering

A phase modulator changes the phase of an input signal while leaving its photon

number intact. Therefore, in the absence of amplitude modulation and saturable

absorption, the criterion for photon number stability given by Eq. (3.20) is always
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Figure 3-3: Theoretical stability diagram for soliton storage ring with amplitude
modulation and filtering.

satisfied provided F > 0. The stability region is (see Figure 3-4):

+ 1
F (2)

6 2 2

I
4 1 FCos - an-'(L/

2 k 2 /

3.3 The ONEs

We consider classical and noise effects upon near-soliton pulses, using soliton pertur-

bation theory.

3.3.1 Soliton Perturbation Theory

A simple fundamental soliton solution of the unperturbed nonlinear Schr6dinger equa-

tion (Eq. (3.1) without the RHS), is

uo= Ao sech { (t - T - 2Dpz)}
Tr

expj{- +D2z-pt-T)+ }.
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Figure 3-4: Theoretical stability diagram for soliton storage ring with phase modula-
tion and filtering. Note that the system is marginally stable with no filtering (along
the horizontal axis).

with 0 an arbitrary phase, T the temporal displacement, p the change of inverse group

velocity, which is equivalent to the shift of frequency as defined above, and which we

have labeled 'p' suggestive of quantum mechanical momentum [38]. Note that in this

momentum analog, a positive momentum leads to motion in the positive t direction.

However, this is a delay, and we are in the anomalous dispersion regime, where lower

frequencies are delayed. Thus a positive change in momentum corresponds to a

negative change in frequency. The pulsewidth

T = = 0 567TFWHM (3.25)

where TFWHM is full-width-at-half-maximum-intensity, and

2A2 r = n. (3.26)

The perturbation of a soliton may be treated as a perturbation of the photon
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number An, displacement AT, momentum Ap, and phase AO. We can express this

as [38]

Au(z, t) = f,(t)An(z) + fT(t)AT(z) + fp(t)Ap(z) + fo(t)AO(z) + continuum. (3.27)

By 'continuum,' we mean nonsoliton, dispersive wave radiation [17]. One can use the

perturbation approach of Haus et al. [13,38] or equivalently, the approach of Kaup [39]

with the pulse amplitude and width coupled.

Our approach will be to expand the driving terms (RHS of Eq. (3.1)) to first

order in the soliton parameters, and to solve self-consistently. The continuum plays

an important role if, for example, the TOD is sufficiently large, if the soliton period

is too short, or if narrowband filters with fixed passband are used without saturable

gain/absorption. Proper treatment of the continuum could also describe the long-

term instability of RSFS and filtering simulated by Blow et al. [40]. The analysis in

this section assumes that the influence of the continuum is weak. The parameters of

the initial soliton are denoted with '0' subscripts, and without loss of generality, we

choose p=T=0=0 at z = 0.

The ansatz (3.27) is introduced into (3.1) and the equations for An, Ap, AT and

A0 are projected out. The projection functions are the adjoints f.(t), obeying the

orthogonality relations [38]

Re j f*(t) fj(t)dt = Sij ;i,j E {n,T,p,O} (3.28)

and equal to

f (t) = 2Aosech( t )

f (t) = -- tanh (t) Aosech ( t- )

t n T
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We are not interested in the change of phase 0 (it does not couple back to the other

parameters). We are interested in change of the soliton position (timing) AT due to

the fluctuations. The evolution equations of interest have many terms, but all have

simple physical interpretation. They are at first presented in full, and then simpler

limiting cases will be analyzed, culminating in an analysis of the entire system. The

equations are:

1 Wo tr2T2 _ MAMW2MT M
2Ag - f1 2 A AM31 9 /2lT2 /ff 121AMAMwM 

+ (-2LFSA + 3n 2+ y5 2y7 n o \]37- 15r 2 35r3 j no

1 Wo 2 Mr2T2 2 _ MAMWAMT M
f+ 2 g AM AMff + 1AM

+ (-2LFS A + 3T3no + 5 2- + 72] An/, 15r2 35T3

2nowjfo 2MAM MTAM+ [,ls}Ap + A -AT + $,(z) (3.29)
lf 'ApAM

(16cRD 2wjo MPM&4MTPM
15r4 31f2fr 2 IPM

64RD +4wf
+ (154no 31 92r2no) An - 3721fQ2) p

PMWPM AT + S,(z) (3.30)
/PM

Ik" 7r2T 2MAMWAMTAM 1 w2o 1
+ _ _ _ _ _ 2

\6 r2 61AM + lff 3 1f3r2

+ ' 3 7 r2 A2 M TAMMTA 2
+3r2no 3 nolAM 31ffr 2n 

2wfo r2MAMWAM+ 2D r + IfQ3 Ap - M61AM AT + ST(z). (3.31)fwo 6A
In the equation for An, Eq. (3.29), there is excess gain required to offset the loss

seen by the pulse from filtering and amplitude modulation. There is filtering loss

from the finite bandwidth of the pulse and more loss if the pulse carrier frequency

34

dAn
dz

dAp
dz

dAT
dz



is offset from the center of the filter passband. The amplitude modulator gives loss

as a function of timing, so a wider pulse will see more loss. Furthermore, if the

pulse is offset from the timing of the modulator, there will be loss. The final four

terms multiplying no are the FSA/G terms, which by definition provide loss that is

a function of intensity. Next we have a large number of terms multiplying An. The

interpretation of these is the same as for the terms multiplying no, but these terms

show the trends as the photon number changes. Most have the same sign, with one

exception - the amplitude modulator term which depends on the pulse width. This

simply means that there is net loss due to AM, and the loss increases as the pulse

gets weaker and wider. The term multiplying Ap shows that as the pulse carrier

frequency shifts, the pulse sees more or less loss depending upon whether the carrier

frequency is moving away from or towards the center of the filter passband. The

AT term is similar, showing that as the pulse drifts in time, it sees more or less loss

as it moves away from or towards the timing of maximum transmission through the

amplitude modulator. The final term is that portion of the noise which affects the

photon number of the pulse.

The gain of the fiber amplifiers has to be adjusted so that there is no systematic

change of the photon number, i.e.

1 W 272____ MAMW2MT M
2Ag - + - 2AM AM3l r2 + Q2 + l lMAMWAM +

31f2f ff2 121AM 'AM
73n, 2-y5nn2 27n3A

+ 2LFsA 3r (3.32)+ 2LFSA- 3r 15r2 35r3 (3.32)

The equation for An then simplifies:

dan 2_ 2 2y 3no 8n 127n3 
dz -3l r2 61 A MMAM 3 15 2 35r3 A

+ ,AP + AMp A+ 2MAM+ SAM(z) (3.33)
If2o IAM

At least naively, the larger the quantity (Ag - LFSA), the greater is the opportunity

for the growth of noise at the center frequency of the filter and at the maximum
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transmission of the amplitude modulator. In a memory device, it should be possible

to keep (Ag - LFSA) < 0, suppressing the growth of noise. By simply choosing

parameters such that the peak intensity of the pulse sees sufficient loss with increas-

ing intensity from the FSA/G, the sum of the FSA/G terms with -y-coefficients in

Eq. (3.33) will be negative. Cases with no saturable absorption/gain are treated in

Section IV.

In the equation for Ap, Eq. (3.30), the first CR term is the classical self-frequency

shift. The next term is frequency-pulling (from the effective refractive index profile

associated with the filter) due to the initial offset of center frequencies. The third

term is frequency-pulling from the phase modulator, which chirps mistimed pulses.

At the next order, we have the terms multiplying An. The first shows that if the

photon number fluctuates, then the power and bandwidth of the soliton change, and

this alters the rate of RSFS - increased photon number (intensity and bandwidth)

implies stronger RSFS. The other term shows that as the pulse bandwidth changes,

the frequency pulling due to the filtering changes. The Ap term describes the restoring

force which filtering imposes on the pulse center frequency. The AT term shows that

as the pulse walks off in time, it is chirped by the phase modulator. Finally, there is

the noise Sp.

The lowest order terms in Eq. (3.31) are the deterministic timing terms, which, if

we are interested in timing jitter only, can be ignored. Briefly, these terms show that

larger pulse bandwidths lead to timing shifts via TOD, offset amplitude modulation

pulls the timing, the reactive nature of the filtering changes the group spatial velocity

directly and also acts like TOD. Next we have three terms by which changes in photon

number affect timing. The first says that as the bandwidth changes, TOD changes

the group velocity. The second says that if the pulse is offset from the timing of the

amplitude modulator, then there is pulling in time, and the strength of the pulling

depends on the pulse width. The third is just like the first, except that the filter

provides the TOD. The terms multiplying Ap are simply group velocity dispersion

terms, one from fiber dispersion, and the other from the dispersive nature of the

filtering. The AT term shows that amplitude modulation provides a restoring force
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for timing. The last term is timing noise.

The noise sources Si(z) are the projections

r+oo
Si(z) = Ref L*(t) S(t, z)dt . (3.34)

-oo

Now that we have obtained the general equations of motion, let us restrict our

attention to some specific cases. First we shall consider the uncompensated case,

in which RSFS, TOD, and noise-induced jitter go unchecked. We shall find that

the growth rate of the soliton timing fluctuations about the deterministic (shifting)

position can be greater than the growth rate for Gordon-Haus fluctuations. The

second case of interest is that in which filtering is chosen to preserve the classical

(i.e. lowest order, deterministic) photon number, and to cancel the classical RSFS.

We assume weak RSFS or closely-spaced filters for RSFS cancellation. At higher bit

rates, it may be necessary to downshift the filters with distance, in accordance with

the classical RSFS, so that the frequency of a channel as received will be lower than

the frequency transmitted.

3.3.2 Evolution of Uncompensated Systems

3.3.2.1 Classical

In the absence of noise, the soliton parameters evolve according to

dAn
= 0 (3.35)dz

d A 16cRD) 64cRD) An (3.36)
dz - 15r4 15r4 n0

dz 6= K', 6'+ 3r2n o An + 2DAp. (3.37)

Solving the above linear system of ODEs, assuming An(O) = 0 yields

An(z) = 0 (3.38)

Ap() = Ap(0) + 16cRD (3.39)157- 4
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kb' 16cRD 2ZT(z) = AT(O) + 6rz + 2DAp(O)z + 15T4 z . (3.40)

The linear growth in timing delay is due to both TOD and detuning in frequency,

while the quadratic growth in timing delay is due to the RSFS. In order to store

pulses permanently in a ring at steady-state, one needs to combat these classical

(deterministic) timing delays. Otherwise, the frequency of the solitons will be red-

shifted continously until it is counteracted by the gain bandwidth of the optical

amplifier.

3.3.2.2 Stochastic

Solution of the equations of motion in the presence of noise is simplified by unilater-

ally Laplace transforming in z. We label the transform variable s (to compare with

Ref. [13], we can write s = Re s - jK).

We define the autocorrelation with respect to the value at z = 0. In the evaluation

of noise projections we use

+oo00I dt (S*(t, z)S(t', O)) = NNS(z), (3.41)

and thus

£ j dt (S*(t, z)S(t,O0)) = NN (3.42)

where L indicates unilateral spatial Laplace transformation. Evaluating the projec-

tions, we find

(S(s)Sp(s) = (3 2)NN (3.43)

(S,*(s)S(s)) = 4noNN (3.44)

(ST (s)ST(s)) = ( 6 NN. (3.45)

Henceforth we adopt the notational simplification (S,*(s)Sj(s)) (S2), j = n, p, T.
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Without compensation, the equations of motion are greatly simplified:

dan
= Sn(z) (3.46)dz

dAp (16cnD (64cRD (
dzp 16C5r e + 64CRD An + S,(z) (3.47)

dz = 6r2 + ,(3 0 An + 2DAp ST(z) (3.48)

Laplace transforming and solving, we find

210 cD 262r4 (Sn) 24 CRk1m62r4 (S2)(AT2) = +
225r6 s6 45r 4 s5

k_'252r4 (S) (Sp2 (S )+ '6 + 4D2 (SP + (3.49)
+ 144D2 r2 4 4-- s

The first term is due to the photon number noise affecting RSFS. The second term is

the effect of photon number noise on RSFS and TOD. The third term is due to photon

number noise affecting pulse group velocity via TOD alone. The second term can be

negative if k"' is negative, but of course the sum of the first three terms is positive

semidefinite. The fourth term is noise associated with the Gordon-Haus effect. The

fifth term is due to timing noise. Noting the Laplace transform pairs

1 Z m,+l ( ) Z ! (3.50)Sm+l m!

we immediately see the z 3 growth of Gordon-Haus jitter and we see that RSFS can

lead to z5 growth of jitter.

If one neglects TOD, the dominant terms in the timing variance are, typically,

Raman jitter at large distances, Gordon-Haus jitter at intermediate distances, and

direct timing jitter at very short distances. Performing the inverse Laplace transform

of Eq. (3.49), the corresponding normalized timing variances are

(AT(z)2 )RSFS 210 cRD2 2 r4(S1) Z 35 x 101 () D'2 (.51)
225,r8 5! 0 Dps/nm/kmps/nm/km

39



(AT(z))H - 4D2 (S2)Z = 1.1 x 10- 6 )
(T(Z)2 )G - 2 1 (3.52)

T ol Dps/nm/km

(AT(z) 2 )T = ST) = 3.2 x 10- 6 ( 7)ps (3.53)
T2 T2 T s D (.53

ps/nm/km

The expressions at the far right assume that the parameters of our system are CR =

2.5 fs, 6 = 4.7 x 10- 22 s/m, noise figure P = 2.0, loss = 0.204 dB/roundtrip, and the

loop length is 2 m.

Although the proportionality constant for the RSFS-induced timing variance is five

orders of magnitude smaller than that of the Gordon-Haus jitter, the RSFS-induced

timing variance varies linearly with pulse width, whereas the normalized Gordon-Haus

jitter varies as the cubic power of pulse width. As bit rates increase (or r decreases),

RSFS jitter quickly gains prominence. Furthermore, RSFS jitter grows much faster

with distance than Gordon-Haus jitter. In order to observe, in numerical simulations,

the transition from Gordon-Haus-dominated jitter to RSFS-dominated jitter without

using excessive CPU time, we simulated pulses of 0.1 ps FWHM. Specifically, a single

pulse was propagated in a storage ring with noise added at each amplifier stage.

The dispersion was D' = 0.5 ps/nm/km. Single pulses were used to ensure that

the soliton-soliton interaction imparted no jitter. Using an ensemble of 25 runs, the

trajectories were then compared with an ideal noiseless trajectory to obtain the timing

variance. The agreement between theory and the simulation results is fairly good.

The results are shown in Figure 3-5. The solid curve is the numerical variance, and

the dashed curve is the prediction from perturbation theory. Note that the curve

changes its slope from +3 to +5 at approximately z = 20zo, which in this example is

approximately 16 km.

3.3.3 Evolution of Systems Compensated with Phase Mod-

ulation and Filtering

It is important to maintain an optical pulse pattern of ONEs and ZEROs against

noise and high-order effects. In this section, a method using phase modulation and
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Figure 3-5: Normalized timing variance. Variance of 25 single-pulse simulations -
solid curve. Dotted curve - perturbation theory. Pulse FWHM = 0.1 ps, D' =0.5
ps/nm/km. Note that the curve changes its slope from +3 to +5 at approximately
z = 20zo, which in this example is approximately 16 km.

filtering is proposed to maintain the timing of the ONEs. The stabilization of ZEROs

by this method was already discussed in section 3.2.

3.3.3.1 Classical

When an electro-optic phase modulator is driven cosinusoidaly at the data rate, it

changes the phase of the incoming optical field according to:

Uout = Uin exp [-jMpM cos(wpMt)] (3.54)

The instantaneous frequency shift, which is the negative time-derivative of the phase

d

= -jwpMMpM sin(wpMt)

(3.56)

(3.56)
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thus varies across the bit interval. In the presence of filtering with no detuning, the

equilibrium positions for the ONEs are where the instantaneous frequency is zero

(see Figure 3-6). Away from those equilibrium positions, the pulse will be alternately

upshifted and downshifted in frequency, which gives rise to an oscillation in time

about an equilibrium position. A filter, which damps out this oscillation, helps to

guide the pulse toward the equilibrium position in an asymptotic manner.

mirror motion
x(t) or (r)

alternative
phase states

Figure 3-6: Pulse transmission
2Am = MPM.

Mathematically, the timing

tial equation:

through a phase modulator, after Ref. [2]. Note that

delay AT(z) of a pulse satisfies the following differen-

d2 A 4 dT 2DMPMWPM 2 AT 32cRD 4k"'
dz 2 31f2 72 dz PM 15r 4 91f2 r 4 (3.57)

One can construct an analogous system governed by Eq. (3.57), where a point mass

is connected in parallel by a spring and a damper to some fixed surface (Figure 3-7).

Phase modulation, which is analogous to the spring action, causes the pulse (point

mass) to oscillate at some natural frequency. Meanwhile, the motion of the pulse

(point mass) is damped by filtering.

Classically, when TOD and RSFS are present, the pulse will settle into a position
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Point
Mass

Figure 3-7: An analogous system where the position of the point mass evolves ac-
cording to Eq. (3.57).

slightly offset from its natural equilibrium position. That is,

lim AT(z) =
Z-+00

IPM
2 DMpMwpM 2

32cRD
15r4 (3.58)

4k"' 
+ 9f2T4f4

3.3.3.2 Stochastic

To calculate how phase modulation and filtering can reduce noise-induced timing

jitter, one solves the following system of differential equations with stochastic inputs,

dAn
dz

dAp
dz

dAT
dz

Sn (z)

(16CRD'

( 15T4 J

(3.59)

( 15r4n) An -
2

3Iff2}T2

(M pMWPM2 )

(r2 + (3T2no A)n + 2DAp + ST(Z).
3 r2noJ

(3.60)

(3.61)

Using the Laplace transform, one can decouple the above system of differential
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equations to compute the timing variance in the transformed domain,

s2 s + 311 lr2)

(2 + -S Mp WPM2M)
24cR1C"'2 r4 (S,)+ 2 C stk}r _s+ -

45-4 S4 ( + 2 )

+ 4 2 (S2) (ST) 
S 31f 02,r

{ 2 0c}D252r2

225r6

k"'62r4 (S2)
A44D2 r2 S4

(s2)

4 + 31j2 )S 1 2r

Using the final-value theorem,

lim (AT2 (z)) = lim s (AT 2(s)),
Z'--00 ' -*0

(3.63)

one can obtain the asymptotic behavior of T(z) for large z (z > zo). By inspection,

we see that the amount of Gordon-Haus jitter is eliminated, while the Raman- and

the TOD-induced timing jitter grow linearly with z:

(AT(Z)2)RSFS,TOD
T 2

210c2D262r 2 24CRk"'t6 2 r4 2

225-r8 + 45r6 3f Q2 2

144D2r 94 4 MM2 (S,2) z (3.64)144D2 r4 9124J MPM 2WPM4

3.3.3.3 Numerical Simulation

We have simulated this case with a variety of parameters. An example is shown in

Figure 3-8. We used a split-step Fourier algorithm with 1024 temporal gridpoints and

periodic boundary conditions.

The initial condition was a 20-bit pseudorandom train of 1.8 ps soliton-like pulses

(linear superposition of hyperbolic secants) at center wavelength 1.55 ,um, with a

one-radian phase difference between nearest-neighbor bit intervals, and with a slight

intensity modulation on the data (2 percent bit-to-bit intensity oscillation). The

pulse spacing was 5:1, making for a bit rate of 111 Gb/s. The amplifier spacing
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Figure 3-8: 111 Gb/s soliton data in storage ring with and without compensation
(phase modulation and filtering). Parameters in text.

45

1.2

1.0

0.8

0.6

0.4

0.2

0.0
-1

c
0

-
0

zZ

0

,Xk
-100 0

Normalized Time

(c) after 750 km without compensation



was 1 km, which is less than the 2.14 km soliton period. The fiber dispersion was

0.6 ps/nm/km anomalous, with +0.08 ps3 /km TOD. The Raman time constant was

taken to be 2.5 fs, and the loss was 0.2 dB/km. The phase modulator modulation

depth was 0.06, and the modulation was offset in time from the initial pulses by one

tenth of a bit interval, imparting an immediate small blue-shift so as to partially

compensate RSFS. A scheme for achieving phase modulation at these high bit rates

will be discussed elsewhere. A filter was placed opposite the amplifier in the loop.

The bandwidth was 167 GHz, and the filter was offset from the pulse center frequency

by +26 GHz, to partially compensate the classical RSFS shift.

The initial condition is shown in Figure 3-8(a). The data after 750 km are shown

in Figure 3-8(b). The timing and intensity jitter are negligible and the classical RSFS

has been overcome, through filtering and phase modulation. For comparison, we ran

a simulation with no compensation but the same initial conditions. The output is

shown in Figure 3-8(c). The timing information is lost without compensation.

3.3.4 Evoluation of Systems Compensated with Intensity-

dependent Absorption/Gain, Amplitude Modulation,

and Filtering

3.3.4.1 Case I: Filtering, AM, and FSA/G

We ran simulations for two storage rings which had the same filtering and amplitude

modulation, but one had FSA (3 > 0) and the other had FSG (y3 < 0). The initial

condition was a 10-bit soliton-like pulse train (010011000) with 2 ps pulses at a bit

rate of 50 Gbit/s.

The fast saturable gain/absorption (FSG/A) action can be realized by the prin-

ciple of nonlinear polarization rotation using polarizers and waveplates [19]. The

coefficient y3 is calculated to be:

73 = C sin 4sin 20 cos2 sin 2 (3.65)
2
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where c = 261Loop/3 , is the order of the waveplate (e.g. = r/4 for a quarter-

wave waveplate), and 0 is the angle between the transmission axis of the polarizer

and the slow axis of the waveplate. To specify the amount of FSG/A, one can adjust

the angle 0 of the waveplate. In this simulation, FSA was realized with = 57r/16,

0 = r/4 and FSG with b = -3r/16, 0 = 7r/8. The plots of transmission vs. intensity

are shown in Figure 3-9.

0.~

0
C)
(n

E
0.

Lr
C-

0.

0 2 3 4 6

Normalized
Intensity

Figure 3-9: Transmission vs. intensity curves for the intensity-dependent absorption
of Case I. Solid=FSA case. Dashed=FSG case. Circle indicates peak initial intensity.
Square indicates peak intensity at 50 km.

Our model of a storage ring, shown in Figure 3-10, consists of an amplitude

modulator, two Lorentzian filters, an amplifier with a noise figure of 2.0, a polarizer,

and a quarter-wave waveplate. The total loop length is 200 m. The depth of amplitude

modulation and the filter bandwidth are 0.2 and 384 GHz respectively.

For the FSG case (3 < 0), the initial data (shown in Figure 3-11(a)) was prop-

agated for 50 km, and the result is shown in Figure 3-11(b). The initial ONEs

broadened and became less intense. The ZEROs were observed to grow; two of them

eventually becoming false ONEs. Thus, the contrast between the ZEROs and ONEs

continually degraded.
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Figure 3-10: Schematic of Case I storage loop.

For the FSA case, the initial data of three ONEs and seven ZEROs was propagated

for 2 km (10 round-trips). From Figure 3-12, one sees that the ZEROs were stable

while the intensities of the ONEs fluctuated greatly, to the extent that one of the

pulses was extinguished. The remaining ONEs were narrower and more delayed with

respect to the amplitude modulator than the ONEs of the FSG case. The narrowness

is attributed to the superior suppression of continuum which competes with the pulses

(for the same gain saturation energy), and to the FSA. The time delay was due to

the stronger RSFS and TOD for the shorter pulses.

3.3.4.2 Case II: FSA+G, AM, and Filtering

In the previous case, we found that FSA alone stabilized the ZEROs, but destabilized

the ONEs. We also found that FSG alone destabilized the ZEROs and stabilized

the ONEs. In this case, we consider the effect of FSA at low intensities and FSG at

high intensities, which can be implemented using a 3A/16 waveplate (q = 37r/16) and

0 = 7r/8 as shown in Figure 3-13.

A simulation was run with the above waveplate settings using a system model
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Figure 3-11: Case I with FSG. The initial ONEs broadened and became less intense.
The ZEROs were observed to grow; two of them eventually becoming false ONEs.
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Figure 3-12: Case I with FSA. The ZEROs were stable while the intensities of the
ONEs fluctuated greatly, to the extent that one of the pulses was extinguished.
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Figure 3-13: Transmission vs. intensity of the intensity-dependent absorption of Case
II. Square indicates steady-state peak intensity.
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otherwise identical to that used in Case I above. Steady-state operation was reached

after 31 round-trips. Much smaller fluctuations of the ONEs were observed in this

case than in the case of purely positive 73 (Case I).

Figure 3-14 showed the data pulses after being propagated for 25 km. The contrast

between the ZEROs and the ONEs was 60 dB in this FSA+G case, while it was only

20 dB (and still degrading) in the FSG case. The reason for this difference in contrast

lies in the fact that FSG alone encourages low intensities; on the other hand, with

suitably appropriated FSA and FSG, low intensities are discriminated while high

intensities are limited and stabilized.

n
-1x0'

1x10 1

x 1 x10
>,

a 1x1 0 3
N

- -

1x104
0z

1x10-5

1x10- 6

-100 0 100

Normalized Time

Figure 3-14: Simulation to 25 km. Solid: Case II with FSA+G. Dashed: Case I with
FSG.
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Chapter 4

Experimental Demonstration of

an Optical Memory

This work was done with Dr. Christopher R. Doerr. It is published
in [41].

4.1 Additive-pulse Modelocking/Limiting

Doerr et al. [3] demonstrated experimentally that an additive pulse mode-locked fiber

ring laser can maintain a random pulse pattern that started from noise. The exper-

imental setup is shown in Figure 4-1. Active modelocking is achieved by driving

the Ti:LiNbO3 amplitude modulator at a harmonic of the round-trip frequency. The

gain medium is an erbium-doped fiber pumped by a Ti:sapphire laser at 980 nm.

The nonlinear rotation of the polarization of the electric field in the fiber, followed

by transmission through a polarizer, gives rise to an intracavity intensity-dependent

transmission. By appropriately adjusting either the birefringent elements or the ori-

entation of the polarization-sensitive isolator, the bias of the laser can be set for

increased transmission with increasing intensity (APM, y3 > 0), or for decreased

transmission with increasing intensity (APL, 73 < 0).

When the laser is biased such that the transmission increases with increasing
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lsolator/
polarizer
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Figure 4-1: The additive-pulse limiting (APL) laser, after Ref. [3].

light intensity then decreases at a higher intensity, only few high-intensity pulses can

exist in the cavity provided that the system is power-limited. Moreover, the pulses

are stabilized as their peaks reach the roll-off part of the transmission curve, while

low-intensity light will experience net loss. In other words, this form of bistability

enhances the contrast between the ZEROs and the ONEs. Figure 4-2 shows that, out

of the 17 transmission windows created by the amplitude modulator, only four are

occupied. By adjusting the amount of pump power, the number of pulses (ONEs)

can be varied from four to zero successively.

Figure 4-2: A random pulse pattern is maintained in the APL laser. The modulator
frequency is 510 MHz (17 times the round-trip frequency). The horizontal scale is
5 ns/division, after Ref. [3].
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4.2 Experimental Setup

Doerr's experiment revealed that his APM/L laser can maintain data patterns that

are generated from noise. It is desirable to adapt his laser to store a pre-determined

pulse pattern. The experimental setup is shown in Figure 4-3. It consists of two

unidirectional fiber loops. The loop on the right is a pulse-pattern generator (PPG),

where random data patterns are generated from intracavity noise; the loop on the

left is a pulse-storage ring (PSR). Each ring contains erbium-doped fiber pumped by

Ti:sapphire at 980 nm. The InGaAsP/InP semiconductor traveling-wave amplifiers

(SAs) are driven at 1.0 GHz with a DC bias current. They provide gain as well

creating 66 timed slots in the loop.

Bias Bias

Figure 4-3: Experimental setup: EDFA, erbium-doped fiber amplifier; SA, semicon-
ductor amplifier; PBS, polarization beam splitter; A/2, A/4, half-wave and quarter-
wave plates.

Loading of data is performed by inserting a LiNbO3 electro-optic modulator as

an optical switch between the pulse-pattern generating loop and the storage loop. To
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facilitate loading, one has to be able to i) synchronize the source and the storage ring

while accounting for the time-of-flight of the injected pattern, iii) tune the source

wavelength to match that of the storage ring, and iv) control the polarization state of

the injected pulse pattern. The synchronization can be done by matching the cavity

lengths of the source and the storage ring with a variable optical delay, and driving

both rings with the same RF signal from a frequency synthesizer. A variable RF delay

line is inserted in one arm of the RF drive to account for the propagation delay of

pulses. The tuning of the pulse pattern source is achieved by rotating the birefringent

plate in the ring cavity. Finally, mechanical polarization controllers can be inserted

throughout the ring memory to control the injected pattern's polarization as well as

setting the proper bias for nonlinear polarization rotation.

The PSR is initially empty. When a 90-ns electrical pulse is applied to the mod-

ulator, the optical switch is closed for the duration of the incoming packet of 66 bits

from the PPG, allowing the packet to be loaded into the PSR. Figure 4-4 shows the

oscilloscope traces of the data patterns in the PPG and in the PSR. The data packet

in the PSR can be stored for as long as 30 minutes.

However, there are two problems with the current method of loading data. First,

because loading is done with a passive coupler, the pulse energy of the incoming

packet is, in general, smaller than the steady-state pulse energy in the storage ring.

Therefore, it will take several roundtrips for the injected packet to reach equilibrium.

Second, the APM bias in the storage ring is pattern-dependent. Possible solutions to

these problems will be discussed in the next chapter.

The optical spectra of the PPG and the PSR, when there are four ONEs being

recirculated, are shown in Figures 4-5(a) and 4-5(b) respectively. The modulations

in the spectra are due to residual etalon effects in the semiconductor amplifier that

cannot be eliminated completely by anti-reflection coating. Interestingly, the modula-

tion in the optical spectrum of the PSR when it is empty (contains only low-intensity

light) is almost washed out (Figure 4-5(c)), which suggests that the intracavity energy

is dominated by low-coherence amplified spontaneous emission from the SA and the

erbium-doped fiber amplifier.
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(a) oscilloscope trace of the bit pattern in the PPG (started from noise).

(b) oscilloscope trace of the bit pattern in the PSR after being loaded from the PPG.

Figure 4-4: Example of loading data into a storage ring by use of a 90 ns electrical
gating pulse. Horizontal scale, 500 ps/division.
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(b) optical spectrum of the PSR with four ONEs.
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(c) optical spectrum of the empty PSR.

Figure 4-5: Optical Spectra of the PPG and the PSR.
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Chapter 5

Conclusions and Future Work

We demonstrated stable operation of an optical pulse storage ring at 1 GHz using

amplitude modulation, filtering, and APM/L action, where loading and unloading of

data were done with passive couplers. In the future, an intracavity optical switch

should be used so that each individual pulse can be switched into and out of the ring

with a control pulse. In addition, instead of adjusting the APM bias in the storage

ring to match the number of ONEs in the incoming data packet, Manchester coding

should be used so that all code words have the same energy.

We propose to construct a pulse storage device in a coupled-cavity configuration

that is generally known as a figure-eight laser [42,43] (Figure 5-1). It consists of a uni-

directional fiber ring coupled to a nonlinear amplifying loop mirror. The amplitude

modulator provides pulse timing via active modelocking, the isolator ensures the uni-

directionality of propagation, and the nonlinear amplifying loop mirror (NALM) [44]

provides an intensity-dependent transmission used to stabilize the ZEROs and the

ONEs.

The nonlinear loop mirror operates in the following way. When a pulse enters

the 50/50 coupler from the unidirectional ring, it is split into two counterpropagat-

ing pulses; one traverses the NALM in the clockwise direction and the other in the

counterclockwise direction. Since the gain medium (the erbium-doped fiber) is place

asymmetrically in the loop mirror, the clockwise-propagating pulse gets amplified

first, and thus acquires a larger nonlinear phase shift than the counterclockwise-
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Figure 5-1: The figure-eight laser.

propagating pulse does. When the two pulses finally return to and interfere at the

coupler after a roundtrip, the transmission will be a function of the incident pulse

intensity. The polarization controller in the NALM is used to set the APM bias.

There are two advantages of using the figure-eight laser as a pulse storage ring.

First, if one replaces the mechanical polarization controller with a variable Faraday

bias, one can make the entire storage ring out of polarization maintaining fiber, thus

enhancing the stability of operation. Second, all-optical switching can be performed

if control pulses are coupled into the NALM. Some optical switches make use of

the cross phase modulation (XPM) of the control pulse on the data pulse. Others,

such as the Terahertz Optical Asymmetric Demultiplexer (TOAD) [45,46] and the

Semiconductor Laser Amplifier in a Loop Mirror (SLALOM) [47] take advantage of

the fast semiconductor gain and index nonlinearities induced by the control pulse.
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Appendix A

Normalizing the Evolution

Equation

The material in this appendix was written by Dr. John D. Moores and
Farzana I. Khatri in 1988.

A.1 Master Equation with Group Velocity Dis-

persion

This is a summary of how to normalize the Master Equation. Note that it is nor-

malized to bright solitons in media with anomalous group velocity dispersion (GVD)

(and positive Kerr effect), and therefore, p2 = -1P21-

The unnormalized Master Equation is as follows:

au oau+ an
dZ ' t = {(i + 9

+ fi I 21a2
2 t

2 6- a +
6 6t3

1 

+ Lf f-2

234 t94)

(A.1)

) t2}

U - CR63 at U

+ {(y3 + i3)I1 2 + (5 + i 5)1U14} u.

Here u is the complex field, z is distance, t is the (possibly shifting) time coordinate,
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a is the slip with dimensions of inverse velocity (this term can be scaled out of a single

nonlinear Schr6dinger equation via the shifting time coordinate, but appears in the

coupled Master equations for two polarizations when the medium is birefringent -

furthermore, if one of the two coupled equations is in the coordinate frame moving

with its pulse, then the other equation has a slip a = +An/c, where An is the index

of refraction difference between the two polarization axes, and c is the vacuum speed

of light - note that the beat length Lb = An/A), k is a phase shift per length, g is the

(saturated) linear gain per length, I is the linear loss per length, £fg is the spectral

half-width at half maximum intensity of the (homogeneously-broadened) gain, f is

the spectral half-width at half maximum intensity of the net passive (static) filtering,

Lf is a characteristic length for f2f, fm, m = 2, 3, 4 are the mth-order coefficients of

group-velocity dispersion, CR is the effective Raman relaxation time, 3 is the third-

order saturable absorber gain, 63 is the Kerr coefficient (self-phase modulation), y5 is

the fifth-order saturable absorber gain (usually negative, and therefore a loss), and

65 is the fifth-order self-phase modulation coefficient.

To normalize, first let

t - tn

Z ) ZnZc

where the normalized time and space variables are tn and Zn respectively, r =

0.56729632855 rFWHM, rFWHM is the pulse width at half-maximum intensity, and

zc is a characteristic length scale which shall be determined below, where we normal-

ize the dispersion coefficient. The choice of time scale is such that normalized sech

(-) corresponds to a pulse whose FWHM is NTFWHM, in real units.

Next, you high school sophomores should use the chain rule and figure out deriva-

tives like this:

Au Au dz, 1 u

AZ ,Zn dz zc tZn
Au Au dtn 1 au

At at, dt r t,
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Similarly, with the second and third derivatives,

&2U

at2
a 1 au dtn
at T ,at" dt

1 2 u

r2 atn
a33 U 1 03 U

at 3 t3 t3 '

Making these replacements, the Master Equation becomes:

au
ZcOZn

a Ou
T tn

= {(io +g-l(+ (T2
.,,,(9~~

+ Lff}r21)
+ {i 22 at +

p3 3

673 at3 24r 4 }U24 4 t4n
.CR3 alJl 2

+ {(_3 + i 3)1U12 + (5 + i 5)lul4} u.

Next, we divide out 1li2 1/r2 so that the normalized dispersion is 1/2. This gives:

= {(i4 +

+ .12 a.C S Tn~ I

g
g221~1

- +(

f3 83

671r321 t

1 

f~l
/34 a4

24r 2
13 2 1t 4 u

CR3r alU12

1zl21 at U

+ {(3 + i3) l jIUI2 + (5 + i65 ) I1 1ul } 

Now, if we set the coefficient for au/az, to 1, we have that z = 2/1li21. Note that

2o,
zc =

7r

where zo is the soliton period. We would also like to normalize the Kerr coefficient

to unity, for which we choose u = u/Vz. Finally, we get:

= (i g -)-2+ ( 92
+ II) a2 U

62

r 2 au

I2IZ, aZn

ar au
+ 321 tn

OUn rT dua n

aZn I 21 tn



+ + 32r2f 1 a2 fi3 03 34 d4 7+ 2 at2 + 67|21 at3 '2472P2 at4

.CR aUn 12
- U

+ i 3 + Un1 + (t5 + i5) 112 Un 1 Un

Thus, we can define normalized parameters, so that the normalized equation is of

the same form as the unnormalized equation, Eq. (A.1). Thus,

oTZc
On --

n = 9Z

In = Izc

Lf
Lf,,n 

Zc

Qg,n = Q9T

Qfn = -f 

/3 2,n = 1

03,n "--
7I n21 = 

44 Zc
]4,n - 4

T4

CR
CR,n =

3
7Y3,n =

63,n= 1

75
6 5,n =
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A.2 Master Equation near Zero Group Velocity

Dispersion Point

This is a summary of how to normalize the Master Equation (as in program fiberkgn)

at a zero-group-velocity-dispersion (zero GVD) point.

The unnormalized Master Equation, with zero GVD, is as follows:

az {i9 ) Lf~f) at2
P3 3 P4 g4 . +Lf122

6 + t3 + a24 t4

+ ((Y3 + i63)JU12 + (5 + i65)U14} u.

Here u is the complex field, z is distance, t is the (possibly shifting) time coordinate,

a is the slip with dimensions of inverse velocity (this term can be scaled out of the

equation via the shifting time coordinate, but appears in the coupled Master equations

for two polarizations when the medium is birefringent), 6 is a phase shift per length, g

is the (saturated) linear gain per length, I is the linear loss per length, Qg is the spectral

half-width at half maximum intensity of the (homogeneously-broadened) gain, f2f is

the spectral half-width at half maximum intensity of the net passive (static) filtering,

Lf is a characteristic length for OF4, 3 m,m = 3,4 are the mth-order coefficients of

group-velocity dispersion, CR is the effective Raman relaxation time, 73 is the third-

order saturable absorber gain, 63 is the Kerr coefficient (self-phase modulation), y5 is

the fifth-order saturable absorber gain (usually negative, and therefore a loss), and

65 is the fifth-order self-phase modulation coefficient.

To normalize, first let

t - tn

Z ZnZ3

where the normalized time and space variables are t and z, respectively, T =
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0.56729632855 TFWHM, rFWHM is the pulse width at half-maximum intensity, and

z3 is a characteristic length scale which shall be determined below, where we normal-

ize the dispersion coefficient. The choice of time scale is such that normalized sech

(t-) corresponds to a pulse whose FWHM is NrFWHM, in real units.

Next, you high school sophomores should use the chain rule and figure out deriva-

tives like this:

du au dz, 1 u
Oz Ozn dz Z3 an

au au dtn 1 au
at at, dt at,

Similarly, with the second and third derivatives,

a2U

at2

03U

at3

a 1 du dtn 1 2u
t T atn dt 2 t2

1 3 U

T3 t3n

Making these replacements, the Master Equation becomes:

&u a au _ 1 
= n(io + 9 -) + Q2r2 + Lfflr2 2 u

f/3oa i u -+ {673 t3 24r4 t4 u- at
+ {(Y3 + i3)1uj + (-y + i + ( 5)U4} u.

Next, we divide out 133 1/r3 so that the normalized third-order dispersion is 1/6. This

gives:

T3 a r2 au 97 g a2

I31Z3 azn + 31 (tn = i + -)+ -- +fl31) t2I 
{ 33 d3 .P4 4 .CR 3 T2 aJU12

{ 131, ot3 + i 24°P31 'atOUl± 61 +/24=3(at J ) 1 31 atu

+ { (73 + i8 3)1 7 U12 + (Y5 + iS5 ) l |U14} U.
1 3 O3
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Now, if we set the coefficient for au/az, to 1, we have that z3 = r3 /1 3 1. We would

also like to normalize the Kerr coefficient to unity, for which we choose u = u,,/3.

Finally, we get:

= {(i +g -

+ {6l 33Ot36103 1 atn

+ ( 3 + i) ± 12

T3

01 (

g.r

+ 2/34 8t4247P3P at4 
fi~~~

+ (5 + i55

+ TnN) a
.CR a|Unl2

Un - - Unr t 

k7I }}u3~33

Thus, we can define normalized parameters, so that the normalized equation is of

the same form as the unnormalized equation, Eq. (A.1). Thus,

_OZ 3
O'n 

in = Z3

gn = gZ3

in = Iz 3

Lf,n= -
z 3
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