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Abstract

Autonomous Underwater Vehicles (AUVs) pose a unique challenge in
the design of motor drive systems. The motor is required to be low weight
and to produce high torque with high efficiency and reliability. Permanent-
magnet AC (brushless DC) motors are well suited for this application.
However, it is highly desirable that the motor work quietly to avoid
disturbing the environment and/or detection. Unfortunately, permanent-
magnet motors tend to have high torque ripple in trade-off for their high
output torque and efficiency which results in persistent noise transmission
with a well defined signature. The focus of this thesis is the study of torque
ripple reduction methods for permanent-magnet motors in an attempt to
design a drive system with high power density coupled with low torque
ripple.

In this study, active shaping of the stator current waveforms is used to
cancel torque ripple due to both slot harmonics and cogging effects. Both
problems of current waveform selection and enforcement are addressed. A
unique close-loop approach to selecting the appropriate current harmonics
using estimates of the torque ripple spectrum from a load torque
measurements is discussed. The scheme uses a model reference adaptive
control algorithm which requires no a priori knowledge of motor parameters.
A pulse-width modulation(PWM) scheme for imposing the current
waveform on the stator windings with minimal phase and amplitude
distortion is also presented. Detailed simulation results are provided which
indicate that a better 80 dB reduction in torque ripple through active current
control is possible without a significant reduction in the system's power
efficiency.

Thesis Supervisor: Dr. Bernard L. Lesieutre
Title: Assistant Professor of Electrical Engineering
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1 Background

1.1 Autonomous Underwater Vehicles (AUVs)

Autonomous Underwater Vehicles or AUVs are unmanned,
submarine type vehicles which are designed to infiltrate and investigate
dangerous or otherwise inaccessible underwater environments. Figure 1.1 is a
non-scale depiction of an AUV.

Figure 1.1: Side-View Sketch of AUV

The vehicles are completely self-contained. They usually use an electric drive

system powered by internally carried batteries, and follow a pre-programmed
mission with little or no external guidance. For this reason, power efficiency
and system reliability are key design constraints.

The heart of many AUV missions is the collection of intelligence with
minimal disturbance to the environment under observation. For military
scenarios, stealth is especially important for mission success and vehicle

survivability. To this end, it is important for the AUV drive system to operate
relatively noise-free while maintaining high efficiency and reliability. A
major noise source in electric motor drives is torque ripple or a variation in
the motor's torque production due to unavoidable imperfections in the
motor's construction. This torque ripple can excite mechanical modes in the
drive shaft which transmit sounds at discrete frequencies into the
environment defining an easily recognizable signature for the vehicle. The
effect is most pronounced during low speed operation. For this reason, much
effort has been directed by the U.S. Navy into understanding the causes
torque ripple and developing methods to reduce it.

1.2 Permanent-Magnet AC Motors

Recent technological developments have made Permanent-Magnet AC
or PMAC motors a viable choice for an AUV drive system. High power
density permanent-magnet material can be used to make light-weight motors
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capable of delivering very high torque[7]. Advances in power electronic
devices and circuits result in highly efficient and reliable drive systems.

Figure 1.2: Cross Section of a Three-Phase Radial-Field PMAC Motor

An important engineering trade-off in PMAC motor design is power

density and torque ripple[6]. In many PMAC motors, neither the stator nor

the rotor have smooth profiles(Figure 1.2). Slots on the stator for the phase

windings and the permanent magnet pieces on the rotor cause a "jagged"
interface between the stator and rotor edges. Due to this saliency, the total

tangential force on the rotor is not constant over all rotor positions. The

forces caused by the interaction between a rough stator and the rotor are called
"cogging" and "reluctance" torques. In a rotating machine, such as an AUV

drive system, these torques produce periodic vibrations in the motor's total

output torque and is one source of torque ripple.

1.3 Axial-Field Motors

Radial-Field PMAC motors, like the one depicted in Figure 1.2, are not

the only PMAC configuration. Instead of surrounding the permanent-magnet

rotor radially by the stator, the rotor and stator may be stacked axially as
shown by Figure 1.3. The magnetic flux lines pass through the rotor parallel
to the drive shaft(i.e. along the axial direction) instead of radially outward

from the center of rotation. Note that the direction of the resulting force on

the rotor is tangential(i.e. the same) for both configurations.
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Figure 1.3: Side View of A Dual-Stator Axial-Field PMAC Motor

One major benefit of the axial-field configuration is the ability to use
two stators, one placed on either side of the rotor. This feature allows high
torques and efficiency, which are desirable for AUV drive systems.

stator

Figure 1.4: Aligned vs. Misaligned Rotor

There are two main drawbacks to the axial-field motor. One is the
complexity of construction. Not only are there more basic pieces to the motor,
alignment of the rotor between the two stators becomes a key issue(Figure
1.4). It has been shown in reference[6] that the motor performance is sensitive
to even a small rotor misalignment. Secondly, axial-field motors suffer from
larger torque ripple than equally sized radial-field motors. This torque ripple
can have both an axial and tangential component in axial-field motors
whereas traditional radial-field motors only have a tangential component.
(This phenomena will discussed in Section 2.3.) There is a need for torque
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ripple reducing techniques to realize the benefits of an axial-field
configuration.

1.4 Existing Torque Ripple Reduction Methods

Torque ripple is considered a parasitic component in most motor
systems. Electric machines are constructed in such a way to minimize the

torque ripple component for the intended operational speed. This is done
through the skewing of slots along the stator or other geometric variations in

the motors construction(references [6], [9], and [14]). In vehicle drive
applications, however, the requirements for high power and high efficiency

make torque ripple minimization through motor design difficult. Drive
systems are often required to operate over a wide speed range, making torque

ripple minimization for the entire operational range nearly impossible
through a fixed geometry design.

Research into torque ripple reduction through the shaping of the phase

current waveforms has shown promise. Reference[2] includes an analysis of

the physics of torque ripple in brushless DC motors and shows that the
"optimal" phase current waveforms for ripple-free operation can be
computed, in theory, given the motor's back electro-motive force (EMF)
shapes. This work is extended in reference[3] in which an open-loop current

controller was proposed and shown through computer simulation to produce

ripple-free operation. Although this work provided insight into the origins
of torque ripple in machines and provided motivation to the possibility of

using control of phase currents to reduce torque ripple, the open-loop scheme

did not address the issues of system stability, transient response, and
robustness to parameter variations and assumes precise a priori knowledge of

the motor's parameters.

A controls oriented approach to the problem of torque ripple
cancellation is pursued in references [4] and [5] where an adaptive feedback

controller is proposed that cancels torque ripple harmonics through the
controlled addition of harmonics to the phase current waveform. Position
and velocity feedback are used to "adapt" the magnitude of the applied
current harmonics in real-time. System stability and robustness can be
proven, and the controller requires nearly no knowledge of the motor's
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parameters. There are some draw-backs to the approach. It is assumed that

the current commands generated by the controller can be exactly followed by

the power electronics; there are no limits on the amplitude or rate of change

of the commanded phase currents. In addition, there is no clear relationship

between applied current harmonics and the physical parameters of the motor.

As such, it is not clear the current waveforms generated by the controller are

"optimal" in the same sense shown by reference[3].

Most of the literature on torque ripple reduction has focused on radial-

field machines. This is no doubtfully due to the large popularity of the radial-

field topology. References [6] and [7] provide a detailed analysis of the sources

of torque ripple in dual-stator axial-field motors and suggest some
construction techniques to reduce the ripple. Little or no research, however,

has been published on active torque ripple reduction techniques in axial-field

motors. It is the goal of this thesis document to apply some of the existing

knowledge and techniques concerning active torque ripple reduction to this
promising yet under-utilized motor configuration.
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2 System Modeling

Proper modeling of the dynamics of the permanent-magnetic motor is

key to understanding the source of torque ripple. The following analysis will

begin with the generic three phase electric machine equations which can be

found in reference [27] and will develop a specific model for a dual-stator,

permanent-magnet motor including tangential torque ripple. Some sources
of axial torque ripple will also be discussed. Following the model
development, specific conditions for torque ripple free operation will be
derived.

2.1 The Three-Phase Permanent-Magnet AC Motor (PMAC)

A fifth-order dynamic model is used to model the three-phase
permanent-magnet motor used in this study. There are two natural choices

for the three electrical state-variables-- either the stator fluxes, Xa, ?b, and Xc,

or the stator currents, ia, ib, and ic. Since current control power electronics
will be used to drive the stator windings, the phase currents will be chosen as

the state-variables. The two mechanical states are co and 0 representing the
rotational velocity and position of the shaft, respectfully. By choosing the

states in this manner, the motor may be viewed as two coupled subsystems--

one electrical, and the other mechanical. This is illustrated in Figure 2.1.
Assuming an ideal flux/current relation and constant speed operation, the

two subsystems are linear. This property has been exploited by a number of

motor speed control schemes[4], [5], [21], and [26].

TI

Va

Vb

Vc

e
(O

Figure 2.1: Motor System Block Diagram

The inputs Va, Vb, and Vc are the phase winding voltages applied to

the electrical subsystem via the stator. The outputs are the mechanical state-
variables 0 and co. Other variables of interest include the tangential
component of the electrical torque Tt, and the load torque TL.
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The electrical parameters of the motor include the phase winding
resistance Rs and self-inductance Ls for each of three stator phases, and the

mutual inductance Lm linking each of the phases to the magnetic rotor and to

each other. The rate of change these inductance terms produces a voltage

known as the excitation voltage whose amplitude is proportional to the shaft

velocity . Figure 2.2 is a linear circuit model for the electrical dynamics of a

single motor phase.

In Rs jNpoLs

coLmKm

Figure 2.2: Phase Winding Model

For a symmetric three-phase machine, each winding may be modeled
equivalently[38].

One may model the permanent-magnet rotor as another phase
winding carrying constant current[27]. This increases the number of states in

the system by one, however this artificial state can be discarded after using it

to compute the form of the electrical torque equation, reducing the final
model to a fifth-order model.

The vectors corresponding to the flux-linkages, applied voltages, and

generated currents are given by Equations (2.1), (2.2), and (2.3).

A= Xc (2.1) V = V (2.2) i=[ ] (2.3)

The top three elements of each vector are the state and input variables for the

three stator phases, labeled a, b, and c. The bottom entries represent the
variables associated with the rotor phase. As is done in reference[27], the

permanent-magnet is modeled as a shorted winding carrying a constant

12



current. This implies an applied voltage of zero(i.e. the bottom entry in
Equation (2.2)) and a constant current(i.e. Km in Equation (2.3) ).

The resistance matrix is given by Equation (2.4) assuming the machine
has similar phase windings, each with equal phase resistance Rs.

R s 0 0 0

R = Rs (2.4)
0 0 Rs

The fourth row and column of R correspond to the artificial rotor winding.
Since this winding has a constant current and no applied voltage, it's phase
resistant is zero. Equation (2.5) shows the form of the machine's inductance
matrix.

Laa(0) Lab () Lac () Lam() 1
L( Lab( 0) Lbb(0) Lbc(0) Lbm(0) (2.5)

Lac (0) Lbc(0) Lcc(0) Lc ()

Lam (0) Lbm( 0) Lcm(0) Lmm ()

The notation Lxx refers to the self-inductance for phase x, and Lxy is the

mutual-inductance between phase x and phase y, where a, b, and c are the

three stator phases and m is the rotor phase. Assuming a symmetric
machine, the stator self-inductances are equal(i.e. Laa=Lbb=Lcc) and all
mutual inductance terms are symmetric(i.e. Lxy=Lyx for all x,y = a,b,c,m). In

this model, all inductance terms are a function of rotor position 0. This
implies that for a rotating motor, L(0) is periodic in 0 with period 2/[ electrical

radians(i.e. L(0+2X)=L() ).

There are three fundamental physical equations underlying the
motor's dynamics. Faraday's and Ohm's Laws specify the electrical dynamics,

= V - Ri (2.6)
dt
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Newton's Second Law of Motion specifies the mechanical dynamics, [J is the
moment of inertia of the rotor, shaft, and load; Tt is the tangential
component of the electrically generated torque; and TL is the load torque].

dco
Jdo = Tt - TL (2.7)

dt

The second mechanical state, position, is the integral of speed.

dO
dt= o(2.8)
dt

As shown in Equation (2.7), the net torque applied to the rotor at any
given time is the difference between the torque due to the electrical
interactions between the stator windings and the magnetic rotor, and the
mechanical load torque opposing the movement of the shaft. The tangential
component of the electrically generated torque Tt is given by Equation (2.9)
[27].

Tt = iT di (2.9)t2 dO

In an axial-field motor, there are two components to the electrical torque--
tangential and axial. Only the tangential component Tt contributes to
working torque, and therefore, is the only component in Equation (2.7). The
axial component Ta contributes only to vibrations of the shaft through
excitations of its axial modes. This will be discussed in greater detail in
Sections 2.2 and 2.3. The load torque TL is due to frictional forces which
oppose the motion of the shaft in the environment. Since TL is a
manifestation of frictional type forces, it is some function of the rotor's
rotational speed co. For many typical loads, such as a propulsor in a viscous
fluid, the load torque is best modeled by a quadratic function.

TL = sgn(co)(Kbco + Kpc02 ) (2.10)

The sgn(co) multiplier insures that the torque always opposes the motion of
the shaft.
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Since the currents i were chosen as the electrical states, it is necessary to
eliminate A, from Equation (2.6) before assembling the equations of the motor
into the standard state-space form. Assuming an ideal flux/current relation,
the flux vector x can be expressed as the product of the inductance matrix L
and the current vector i.

A = Li (2.11)

Taking the time derivative of Equation (2.11) yields Equation (2.12).

dA d(Li)

dt dt
di dL.= L-+-i
dt dt

(2.12)
=di dL di

dt dO dt
di dL

= L +co i
dt dO

Finally, substituting Equation (2.12) into Equation (2.6) and collecting like
terms yields Equation (2.13).

di dL
L = V - [R + co ]i (2.13)

dt dO

The inductance matrix L must be symmetric and positive-definite for
any physically realizable machine(see reference[27] for proof). Thus, L must
be invertible(i.e. L-1) exists. Multiplying Equation (2.13) by L-1 yields Equation
(2.14).

-= UL V -- l[R+ e*)-li (2.14)
dt dO

dtO [ ][ T (i, 0) J TL(W)] (2.15)

Together, Equations (2.14) and (2.15) form the state-space model for the three-
phase permanent-magnet motor.
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2.2 Tangential Torque in PMAC Motors

As mentioned previously, only the tangential component of torque
contributes to the desired rotational acceleration of the drive shaft, and thus,
produces useful work. In radial-field motors, the torque of electrical origin
has only a tangential component. In axial-field motors, the generated torque
can have both tangential and axial components; the axial component will be
further discussed in Section 2.3.

Figure 2.3: Tangential and Axial Torque Components

Equation (2.9) is the general equation for the tangential component of
the torque of electrical origin. This equation is derived from energy
conservation arguments. A detailed formulation can be found in
reference[27]. Expanding the vector symbols in Equation (2.9) with the full
matrix and vector representations yields Equation (2.16).

Tt = [ia ib ic km]

dLaa dLab dac dLam
dO dO dO dO

dLab dLbb dLbc dLbm

dO dO dO dO
dLac dLbc dLcc dLcm

dO dO dO dO
dLam dLbm dLcm dLmm

dO dO dO dO

ia

ib (2.16)

kc

km

Performing the appropriate matrix multiplication and grouping common
terms gives the scalar Equation (2.17).

T, dLaa 2dLbb 2dL dLab i dL dLC( dLa dL a dLbTt 2 dOa +ibd +C dO)+(iaib dO aicdO' +lbic dOc

+ k (i dLam + ib dLbm +i dm) (2.17)dO dO d

+ k 2 dLmm
m dO

16



In general, every inductance term will be a function of rotor position 0 and

can contribute to the net generated torque. For a rotating machine, these
functions will all be periodic with period 2 electrical radians, and therefore,
can all contribute to torque ripple. Depending on the motor's construction
some terms may be negligible in comparison to others.

The tangential electrical torque Tt has three distinct physical origins.
Equation (2.17) can be divided into three component, each representing a
different source.

Tt = Tr + Tk + Tc (2.18)

The first component Tr is called reluctance torque.

T.= 1 (.2dLbb + dL) dLacaa i2 dLbc )(2.19)
r 2 a dO i b aO + i a c -- +i bi c

do b dO c dO dO ac dO dO

As shown in Equation (2.19), the reluctance torque expression contains
products of the electrical state variables (i.e. the stator currents), and thus, is

highly nonlinear. This torque component is caused by changes in the stator
self-inductances with rotor position. These changes are induced by a time-
varying reluctance path for the stator flux caused by rotor saliency. For
switched reluctance motors, this component can be large and is the prime
source of working torque. For synchronous PMAC motors, however, the
reluctance torque is usually minimized though the use of a smooth rotor
construction. This is the case for the dual axial-field motor under study here,
and therefore, Tr is assumed to be negligible.

The second component T is known as mutual torque, and for PM
motors, is the main source of working torque.

T km (ia d ib +iC ) (2.20)
dO dO dO

This component is a function of the mutual inductance between each stator
phase and the rotor, and is a linear function of the stator currents. In an ideal
motor, the stator windings would be wound in an exact sinusoidal pattern
making each mutual inductance term a pure sinusoidal function as given by,
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Lam = Lm cos(Np0)

Lbm = Lm cos(Npe- ) (2.22)

Lcm = Lm cos(NpO - ) (2.23)

Note that the period of the inductance functions are dependent on the
number of pole pairs Np. Given this, the question of what current waveforms

to impose on the stator remains. Assume that pure a sinusoidal excitation is

chosen,

ia = Ip sin(Np0) (2.24)

ib = Ip sin(Np0 - 2) (2.25)

ic = Ip sin(Np0 - 47?) (2.26)

Substituting Equations (2.21)-(2.26) into Equation (2.20) yields,

T =N k L I (2.27)

In this case, Tj is linear with respect to the current amplitude Ip and constant

with respect to rotor position 0 (i.e. no torque ripple).

For real motors, the stator windings are only approximately sinusoidal

causing the mutual inductance terms to contain higher harmonic terms. A

square winding distribution(i.e. the worst case) results in a triangle
inductance pattern with harmonics at all odd multiples of the fundamental
pole frequency. Equations (2.28) through (2.30) give the Fourier series model
for this distribution.

nodd 1
Lam = Lm -cos(nNp) (2.28)

n=l n

n odd 

= Lm = Lm 2cos(n(Np0- 3)) (2.29)
n=

n odd

La = ' Y 2 cos(n(ac L 1 (2.30)
n=1

18
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If the same sinusoidal excitation is applied in this case, the resulting mutual

torque expression is not independent of the rotor position 0. To see this,
assume that the mutual inductance terms contain the 3rd and 5th harmonics,

1 1
Lam = Lm cos(Np0) + 1 Lm cos(3Np0) + 2 Lm cos(5Np0) (2.31)

p 9p 25 (N 0)

Lbm = Lm cos(N0 - -+ L) N+ m cos((N --)) (2.32)P 3 9 m P 3 25 P 3

LCM = Lm cos(N - 4)+ gLos(3(N + L))+ 5 Lm cos(5(Np0- -)) (2.33)
P 3 9 P 3 25 P 3

Now apply the same stator current waveforms given by Equations (2.24),

(2.25), and (2.26). Substituting into Equation (2.20) yields the following
expression for the mutual torque:

3 3
Tg = 2 kmLmIP- NpkmLm cos(6Np0) (2.34)

The mutual torque T4 is no longer independent of the rotor position 0. There

is a sinusoidal component at six times the input frequency due to the

interaction between the higher order inductance harmonic and the input
stator currents. This interaction is one source of torque ripple. The natural
question to ask now is "does there exist a different stator current waveform

which will cause the mutual torque to again be independent of rotor
position?". Provided the number of inductance harmonics is finite, the
answer to this question is "yes". Again consider the case where the 3rd and 5th

inductance harmonics are present(i.e. Equations (2.31), (2.32), and (2.33) ).

Assume the stator currents are the following,

ia = I sin(Np0) - Ip sin(5Np0) (2.35)

ib = Ip sin(Np0 - Ip sin(5(Np0 - )) (2.36)

3 5 p 3
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Substituting these stator currents into Equation (2.20) yield the following
mutual torque expression:

T = 50NpkmLmI (2.38)

For the augmented stator excitation, the mutual torque T is once again
independent of the rotor position(i.e. the torque ripple has been eliminated).

This idea will be used as a basis for a minimum torque ripple control scheme.
Although the actual system may contain a very large (possibly infinite)
number of inductance harmonics, in practice the small relative amplitude of
the higher order terms produce negligible contributions to the torque
spectrum. Thus, significant torque ripple reduction can be achieved through
the addition of a finite number of stator current harmonics.

The third and final component of the electrical torque is known as

cogging or detent torque. The expression for this component is given by

T c =k2 dm (2.39)

Tc is due to interactions between the rotor permanent-magnets and the
surrounding stator material. If the stator is not smooth, the rotor will prefer

to align its magnets with the teeth of the stator. This preference creates a rotor
position dependent force on the rotor which adds to the overall torque. The

cogging torque is a function of motor construction parameters (i.e. the
number of stator teeth, the number of rotor magnet poles, the stator/rotor gap
width, and the power density of the rotor magnets) and not of applied stator
current. Thus, Tc does not contribute any useful working torque and simply

adds to the torque ripple. Motor construction techniques to reduce cogging
torque such as rotor magnet skewing have been studied extensively in
references [6], 17], [9], [11], [14], [16], [17], and [21]. Although the cogging forces

can be significantly reduced, construction techniques alone can not
completely eliminate cogging and result in a trade-off with overall power
density. By adding appropriate harmonics to the stator current waveform, the
effects of the cogging torque can be eliminated actively. This again assumes
that the cogging torque harmonics to be eliminated are restricted to a finite
frequency band. Analysis of the cogging forces in a dual air-gap axial-field
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motor through both experiment[7] and finite-element modeling[6] suggest
that the torque ripple spectrum including cogging torque effects is effectively
band limited.

2.3 Axial Forces in Axial-Field Motors

Reference [6] provides a detailed analysis into the sources of torque

ripple in axial-field PMAC motors. There are two components to torque

ripple in axial-field type machines, tangential and axial. The tangential
component is caused by stator/rotor interactions resulting in position
dependent mutual and detent torque terms. This is the same torque ripple
component found in radial-field motors which was described in Chapter 2.2.

The axial component, which is only found in the axial-field configuration, is

caused by differing flux paths on either side of the rotor. The resulting axial

force is also rotor position dependent, and like tangential torque ripple, this

force may excite mechanical vibrations in the drive shaft leading to
unacceptable noise transmission. Therefore, it is necessary to simultaneously

minimize both tangential and axial components of torque ripple.

The authors of reference[6] through finite-element analysis techniques

found that both tangential and axial components of torque ripple are effected

by staggering one stator relative to the other (Figure 2.4).

_ _E~~~~~~~811

Figure 2.4: Unstaggered vs. Staggered Stators

Staggering the stators was found to greatly reduce the detent torque which

resulted in smaller tangential torque ripple. However, staggering was found

to cause much larger axial forces on the rotor. Additionally, it was found that

axial forces are minimized when the stators are precisely aligned. Therefore,

there is a trade-off between tangential and axial torque ripple components
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when constructing a dual-stator axial-field motor. Both components can not

be simultaneously minimized through construction techniques alone.

It is suggested in reference[6] that one choice is to build the motor with

precisely aligned stators to minimize axial torque ripple and then use
advanced control of the stator current waveforms to reduce the tangential

torque ripple. It may be possible to minimize axial torque ripple through
control of stator currents; however, this would required that separate current

waveforms be applied to the two stators independently. Separate ports to the

two stators are not usually provided making the latter suggestion impossible.

Therefore, the active reduction of the tangential component of torque ripple
only will be considered. It will be assumed from here on that the axial forces

of the motor have been minimized through alignment of the two stators.
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3 Active Torque Ripple Reduction Part I:
Current Selection

It was shown in Chapter 2 that unavoidable parasitics in stator and
rotor construction result in position dependent terms(i.e. torque ripple) when

the stator excitation is a pure sinusoidal waveform. However, altering the

stator excitation with harmonics at the appropriate frequency, amplitude, and

phase can reduce the effect of the motor imperfections. The reduction of

torque ripple through specific shaping of the stator excitation is termed Active

Torque Ripple Reduction (ATRR).

Assuming current mode control of the stator excitation essentially
removes the need to consider the stator or electrical dynamics when
analyzing the mechanical motor variables, it is beneficial to think of ATRR as

the active shaping of the stator current waveforms. Implicit in the current
shaping is the application of the appropriate stator voltages to generate the

desired currents. This separation of variables suggests that there are two parts

to ATRR-- selection of the appropriate current excitation to minimize the

torque ripple for the given motor at the given operating speed, and
enforcement of the selected current excitation through the application of the

appropriate stator voltages to force the current to track the commanded

waveform. For many motors, including the dual air-gap axial-field PMAC
motor considered here, there is a significant time-scale separation between

the electrical and mechanical dynamics(i.e. the electrical time-constants are

much shorter than the mechanical). As a result, the controllers for each

section can be designed separately and independently of each other. The

remainder of Chapter 3 will consider the current selection problem. The

current enforcement problem will be studied in Chapter 4.

3.1 Harmonic System Analysis

In order to select the appropriate stator current waveform to minimize

torque ripple, it is first necessary to understand how a change in the stator

current waveform affects the electrical torque waveform. A detailed motor

model including source of torque ripple was developed in Chapter 2,
however the model in its present form does not provide the necessary insight
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to develop a systematic methodology for selecting the appropriate current
waveform. As demonstrated by the simple example in Section 2.2, the
appropriate selection of current harmonics to cancel even a single inductance
harmonic term required a clever guess for the form of the stator current. To
solve the more general problem, a more precise analysis technique will be
required.

The reduction of torque ripple essentially means reduction of the non
DC terms in the frequency spectrum of the electrical torque waveform. The
pure time domain model derived in Chapter 2 does not provide the necessary
insight into the frequency response of the system. One method to gain this
insight is to introduce a transformation of variables in which the state-
variables of the transformed system represent the frequency content of the
system's physical state-variables. Consider the following nonlinear system

dx
-= f(x, U) (3.1)

dt

where x is the state-vector and u is the input vector, and whose state
trajectories exhibit periodic oscillations around their ideal(i.e. desired)
trajectories. Let the fundamental frequency of these periodic oscillations be co
and define the following variable transformation.

o00O

x(t-T+s) = £Xn(t)eJnW(t-T+s) (3.2)
n=-oo

u(t-T+s) = Un(t)ej nc (t- T+) (3.3)
n=-oo

where T = 2n/w and se (O,T]. This transformation is in effect a time-varying
Fourier Series expansion over the interval (t-T,t]. This expansion was used in
reference [25] for use in the analysis of resonant power converters. A similar
analysis will be applied here to the periodic oscillations of a rotating electric
machine. The only assumption which need hold true is that the state-variable
oscillations be periodic with the same fundamental frequency co, which is true
for the PMAC motor application. The transformed state-vector Xk(t) and
input-vector Uk(t) are complex functions of time. The original time functions
x(t) and u(t) are real functions(i.e. a pure real number at each point in time)
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which imposes the following constraints on the transformed state and input
variables,

X-n(t) = Xn(t) Vn,t (3.4)

U_n(t) = Un(t) Vn,t (3.5)

where X*(U*) is the complex conjugate of X(U). In the steady-state, the
transformed variables Xk(t) and Uk(t) simply become the standard Fourier
Series coefficients Xk and Uk,

00 

x(t) = YXnejn wt (3.6)
n=-oo

00oo

u(t) = Unejnw (3.7)
n=-oo

of the physical variables.

In many control schemes for rotating electrical machines, the control
inputs are computed as functions of the rotor position 0 instead of time. This
approach is used because most state-variables in a rotating machine are
periodic in 0 with period 2, and 0 is a measurable quantity. The
transformation of variables defined above can be modified to

x(0)= IXn(t)ejn0 (3.8)
n=-oo

u(0) = ,Un(t)e ino (3.9)
n=-oo

In the steady-state, the rotor position 0 is proportional to time(i.e. 0=c0t).
Thus, the modified Equations (3.8) and (3.9) revert back to the original
transformation given by Equations (3.6) and (3.7) in steady-state operation.
The physical variables x(0) and u(0) are functions of position 0, but the
Fourier coefficients Xn(t) and Un(t) in equations (3.8) and (3.9) are still
functions of time. This implies that the control algorithm which will
compute the appropriate Un will be based on time. It is interesting to note that
these Fourier coefficients could be taken to be functions of rotor position as
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well(i.e. Xn(0) and Un(0) ), leading to a completely time independent
controller.

The transformation of variables given by Equations (3.8) and (3.9)
provides the type of system decomposition needed for the ATRR problem.
Note however that this transformation increases the order of the plant to
infinity. Even a simple first order system will require an infinite number of
state-variables in the transformed state-space. For the PMAC motor
application and most real systems, the bulk of the energy associated with the
state oscillations reside appears in a limited frequency band. For PMAC
motors, the torque ripple energy is concentrated around the fundamental
pole frequency of the machine. Thus, the number of Fourier coefficients
required by the transformed system can be reduced by limiting frequency band
of oscillations which will be considered. In this case, the transformation
defined by Equations (3.8) and (3.9) changes to

N
x(e) = XXn(t)e j n0 (3.10)

n=-N

N
u(0) = U n (t)e jn0 (3.11)

n=-N

which limits the order of the transformed system to 2N(i.e. the sum of the
upper and lower summation limits from Equations (3.10) and (3.11)) and the
highest considered oscillation frequency component to N times the rotor's
rotational frequency co.

A second modeling problem exists with the transformation defined
above. Consider the state of the system at time zero(i.e. t=0 and 0=0),

x(O) = XN()+...+X_ (0)+ X(O)+ X(0)+...+XN (0) (3.12)

The initial state vector is easily converted to the transformed state-space,
however, the mapping of the initial conditions to the new space is under-
constrained. This problem of mapping initial conditions through a variable
transformation is termed the initial condition problem. In general, the initial
condition problem may be over-constrained, one-to-one, or under-
constrained. In the under-constrained case, as in the PMAC motor
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application, the problem becomes choosing the appropriate starting point to

best represent the behavior of the physical system.

For a general system, the initial condition problem is non-trivial and

does not have a specific solution. However, for the synchronous motor
application, there is a solution which is better than the others. For an ideal

sinusoidal wound motor, the electrical states of the system(i.e. the stator
currents) are pure sinusoidal waveforms with the stator pole frequency(i.e.
Npco). Thus, one way to map the initial conditions on the electrical state-

variables is to set the Np component equal to the given initial state with all
other frequency components set to zero. This idea could be extended to an
ideal square wound machine by setting the initial conditions at the frequency
components of the ideal input square wave currents. Also, in an ideal motor,
the rotor speed co will have only a DC component in the steady-state(i.e. no
ripple). Thus, it would make sense to map any initial rotor speed solely to its
DC component in the transformed system. The second mechanical state, the
rotor position 0, can be chosen to be zero initially. To summarize,

x(O) = X(O) + XNp (0) (3.13)

COO= COO + (3.14)

00N

where io, coo, 00 are the initial stator currents, rotor speed, and rotor position
respectfully. In essence, the system is modeled as an ideal PMAC motor which
is periodically disturbed by a secondary system causing the parasitic
oscillations at the overall system output(Figure 3.1).

, - - - -I

U X

Figure 3.1: TransformedSystem Block Diagram

Figure 3.1: TransformedSystem Block Diagram
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The initial conditions of the secondary system are assumed to be zero for
modeling convenience which is justified provided the contribution of
secondary system is much smaller than the ideal component(i.e. the motor is
constructed well).

3.2 Harmonic Analysis of PMAC Motor

Using the background previously developed, the variable
transformation given by Equations (3.8) and (3.9) can be applied to the time
domain state-space model for the PMAC motor developed in Chapter 2. The
current control inner-loop that will be used to enforce the appropriate current
waveform will be detailed in Chapter 4. Thus, it is justified at this level to
consider the stator currents(i.e. ia, ib, and ic) as the control inputs, ignoring
any stator electrical dynamics. It is necessary to choose current waveforms
with enough degrees of freedom to eliminate torque ripple due to both
inductance and cogging harmonics. The following choice provides the needed
freedom.

N N

ia( o ) = lm,n enN P (3.15)
m=-N n=-N

N N i0 n
ib(O) = Imne (3.16)

m=-N n=-N

N N
j(nNp-m 3)ic(O)= Aj, ZimEne'm3 (3.17)

m=-N n=-N

where the Im,n's are the new control variables. In the steady-state, Im,n
represents the complex amplitude of the nth stator current harmonic with
phase offset multiple m where the fundamental frequency is the rotor's pole
frequency, Np. The reasoning behind this choice of current excitation will be
discussed further in this section.
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The load torque Equation (2.10) of the motor also needs to be
transformed to the harmonic state-space since it is the load harmonic terms
which need to be attenuated. Applying the variable transformation,

2N

TL(0) = XTnenNPO (3.18)
n=-2N

where Tn is the complex amplitude of the nth torque ripple harmonic. The

summation limits in Equation (3.18) are correctly written as 2N (not N). It
will be shown shortly that N mutual inductance harmonics interacting with
N current harmonics can result in 2N torque harmonics.

The next step is to apply the harmonic variable transformation to the

mutual inductance parameters of the motor as defined in Section 2.1(i.e. Lam,
Lbm, and Lcm).

N jnN 0 (3.19)Lam(0) LnenN P (3.19)
n=-N

N jn(NP0-3) (3.21)N -NLm (0) = Lnej 3 (3.21)

n=-N

Ln represents the complex amplitude for the nth inductance harmonic. For

the ideal motor, the inductance terms will be pure sinusoids at the stator pole

frequency, i.e.

Lm n =1
Ln l° else (3.22)
· =l"O~ n~else

For real motors, the inductance terms will contain higher order harmonics
which is one source of torque ripple, as mentioned in Section 2.2. In the worst

case, all odd harmonics will be present with amplitudes decreasing inversely
as the harmonic squared, i.e.
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L n odd
Ln =n (3.23)

0 else

For symmetry reasons, it will be assumed here that the harmonic content is

the same for each phase(i.e. Ln is the same for Lam, Lbm, and Lcm). The variable

transformation can also be applied to the cogging term Lmm,

2N

Lmm(O) = CneJnNP0 (3.24)
n=-2N

where Cn is the complex amplitude of the nth cogging harmonic. Keeping

with the symmetry assumption, the cogging is modeled as three equal
components, each contributing to a single stator phase. The fundamental
cogging harmonic will appear as the product of the stator and rotor pole

frequencies. It is assumed here for simplicity that the stator and rotor pole

frequencies are equal, however this is not required to perform this analysis.

The higher order cogging harmonics will be a function of the motor's
construction(teeth width, skewing angle, etc.) and may be estimated for a

specific motor either through experimental methods or finite element
numerical analysis techniques, see references [6] and [7].

Using the above computations, we can find the form of the electrical

torque, Equation (2.17), in the transformed state-space. Since the electrical

torque is a function of the derivatives of the inductance functions, the first

step is to take the derivatives of Equations (3.19), (3.20), (3.21), and (3.24) with

respect to 0.

N

dLm.= jnNpLnejnNP (3.25)
dO n=-N

dL N jn(N0 2)
bm- j n N3dOr j nNpLne 3 (3.26)

n=-N

dLcm jn(N 0- )jjnnce Am= 3(3.27)
n=-N
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2N
dLmm = 2nN nei P (3.28)

dO _ jNpCe nNp 0
n=-2N

Substituting the stator currents, Equations (3.15), (3.16), and (3.17), and the
mutual inductance derivatives, Equations (3.25), (3.26), and (3.27), into the
mutual torque expression, Equation (2.20).

Ti.()km Imne6 _ )(E pLqe JqNPo

T +/(0) km Im,ne jNpe (3.29)=-N n=-Nq=-N
,=-Nn=-N q=-N

+kin j(nN -m 4-n N jq(N 0- 23)

+km X I C Im,ne P 3 lt jjqNpLqe 3
m=-Nn=-N q=-

This expression can be simplified by replacing the summation of summations
terms by double summations.

) k E E N -i(n+q)N _ -j(m+n) + -j(m+n) 43
Tg(0)=km I Z jqNpLqIme(nq )NO(1+e +e 3

m=-N n=-N q=-N

A closer look at Equation (3.30), reveals that the mutual torque is simply a
weighted convolution sum of the current and inductance harmonics. Notice
from Equation (3.31) that the mutual torque harmonics are zero except when
m+n is a multiple of three. The choice of n selects the frequency of the
rotating magnetic stator field in the motor. The rotational frequency of the
stator magnetic field is equal to nNpcw. The choice of m selects the direction of
the rotating magnetic field. Choosing m to be in the set {1, 4, 7, ...} results in a
positive rotating magnet stator field. Choosing m to be in the set 2, 5, 8, ...}
results in a negative multiple of three results in a negative rotating stator
field. Thus, this choice of input currents (i.e. Equations (3.15), (3.16), and (3.17)
) generates a linear combination of both positive and negative rotating fields
at any desired frequency. By choosing the appropriate set of (m,n) [under the
constraint that m+n is a multiple of three], it should be possible to generate
rotating field components which cancel the rotating fields due to the parasitic
inductance and cogging effects. This will result in torque ripple reduction.
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Consider again the current waveforms, Equations (3.15), (3.16), and
(3.17). Notice that, under the constraint that m+n is a multiple of three, these
three-phase currents sum to zero for all 0, i.e.

ia(0)+ ib(0) + ic(0) = tVO (3.31)

Thus, this choice of current excitation may be applied to the Y-connected
motor configurations. A four wire or isolated winding configuration is not
required.

Substituting the cogging inductance derivative, Equation (3.28), into
the cogging torque expression, Equation (2.39), yields

2N

Tc(0) =k2m jnNpCneinNP (3.32)
n=-2N

The sum of the mutual torque, Equation (3.30), and the cogging, Equation
(3.32), is the total torque of electrical origin. In the steady-state, the total
electrical torque must equal the load torque, i.e.

Tt (0) = T, (0) + TC(0) = TL(0) (3.33)

Using the above results, the complete torque balance equations in the
harmonic state-space become

k N CNpL q)m e-j(m+n)- -j(m+n)- km jqN Ll j(n+q )NPO(1+ e +e )
m=-N n=-N q=-N

(3.34)
2N 2N

+k 2 CjnNpCneinNe ETneJNp
n=-2N n=-2N

This equations contains a large quantity of information. It shows how the
inductance, current, and cogging harmonics combine to create torque
harmonics. In addition, Equation (3.34) shows explicitly how to compute the
complex weighting factors which when combined determine the magnitude
and phase of the torque ripple.

To gain further insight, the torque balance relation, Equation (3.34), can
be written in a matrix form.
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LI + C = T

where L, I, C, and T take on the following forms.

... n+q=O

... n+q=l

... n+q=2

... n+q=2N ...

(3.36) I =

I-N-N

I-m,-n

Im,n

IN,N

-N<m<N
-N < n <N (3.37)

m + n is a a multiple of 3.

0 T o

C, T,
C = 1 (3.38) T= 1 (3.39)

The dimension of L is 2N+1 by (2N) 2 /3, I is (2N) 2 /3 by 1, C is 2N+1 by 1, and T

is 2N+1 by 1, thus Equation (3.35) is dimensionally correct. Notice that N
current harmonics and N mutual inductance harmonics can produce 2N
torque harmonics. This is due to the convolution relationships, and in
general, the total number of torque harmonics will be the sum of the number
of current harmonics and mutual inductance harmonics. Since m+n needs to
be a multiple of three to produce an effect on the torque harmonics(see
Equation (3.34) ), current harmonics in which m+n is not a multiple of three
should be set to zero. They do not contribute to torque ripple reduction and
result in resistive losses. As such, N should be chosen to be a multiple of 3 to
insure that I-N,-N and IN,N (i.e. the first and last terms in Equation (3.37))
effect torque ripple.

If the mutual inductance matrix L and the cogging spectrum C for a
motor is known precisely, the minimum torque ripple current excitation can
be computed by solving the linear system of equations(i.e. Equation (3.35) ).
The mutual inductance L will contain more columns than rows for any
choice of N (integer). Therefore, the system of equations is under-constrained
(i.e. there exists many current vector I which satisfy the matrix equation). We
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are free to choose any solution we wish. It makes sense to choose the solution
which minimizes the I2R losses in the motor windings, and thus, maximizes
efficiency. Minimizing I2R losses is equivalent to minimizing the norm of
the vector I (see reference [3]). The minimum norm solution of Equation
(3.35) is given by the following,

I =(L*L)-lL*(u -C) (3.40)

where L* is the complex conjugate of the matrix L and u contains the Fourier
coefficients of the desired torque spectrum.

U =[ T (3.41)

To eliminate torque ripple, the commanded torque spectrum should only
contain a DC component, i.e.

To

u=O (3.42)

where T is the commanded torque which may be set by an outer speed
control loop.

The above discussion shows the value of using this harmonic
decomposition analysis. Given a motor's mutual inductance and cogging
coefficients, the L matrix and C vector can be computed, and the optimal
current coefficients I to eliminate torque ripple can be found. Unfortunately,
this is not the end of the problem. The inductance and cogging parameters are
not easily measurable off-line. In addition, they may change slightly over the
operational life-time of the motor. Therefore, a fixed implementation of
Equation (3.40) does not constitute a reliable solution to the problem. An
adaptive control approach which uses Equation (3.40) as a basis and provides a
more robust solution will be presented in Section 3.3.
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3.3 Minimum Torque Ripple Current Controller

The analysis in Section 3.2 provides insight into the source of
tangential torque in PMAC motors. It shows that torque harmonics can,
theoretically, be controlled (or eliminated) through the careful addition of
harmonic terms to the stator current waveforms. Equation (3.40) shows how

to compute the amplitude and phase of the required current harmonics to
impose a desired torque spectrum with maximum efficiency. This
computation requires explicit knowledge of motor parameters(i.e. the
matrices L and C). Unfortunately, the control calculation is sensitive to errors
in these parameters. To use this control scheme in a practical motor drive, it

would necessary to correct for these errors. One method for dealing with the
sensitivity issue is to use adaptive control.

Speed Control Loop

Torque Control Loop

I r - .t _ - 1

Oref °t

I

V

V

. V

L

I

I I

I I

I I

I

II

Figure 3.2: Controller Block Diagram

Figure 3.2 shows a Model Reference Adaptive System (MRAS)[28]. The

control system is composed of two loops. The outer speed loop controls the
commanded torque to regulate the shaft's rotational speed. The inner torque
loop controls the applied current waveform to impose the desired working

torque without ripple harmonics. The essential idea of the torque control
loop is to use measurements of the torque ripple spectrum to recursively
estimate the inductance and cogging harmonic terms( i.e. L and C from
Equation (3.40) ). The estimates of these parameters will be referred to as Lest
and Cest. Using these estimates, the appropriate current harmonics required

to impose the desired DC torque with minimal ripple terms can be computed.
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The first step to implementing the MRAS system shown in Figure 3.2
is to derive an parameter estimation process. The model given by Equation
(3.34) provides the necessary basis. It is a given that the cogging torque can not
have a DC component(i.e. Co=O). Therefore, it is guaranteed that the DC
equation of (3.34) is can be written as the inner product of vectors containing
the mutual inductance and current coefficients, i.e.

TO= [I-N,-N ... I0,0 ... IN,N]

LN
...

Lo

L...N
_L-N_

(3.43)

Given that the DC inductance component L must also be zero, and all other
Fourier coefficients must appear as complex conjugates, Equation (3.43) can be
reduced to

2 = [I-N,-N ... Il .. (3.44)
2

Since Equation (3.44) is linear, it is possible to apply least-squares (LS)
techniques[28] to provide estimates of the inductance parameters given
measurements of the DC torque which can be computed from a shaft speed
measurement( see Equation (2.28) ). To describe the LS update law, it is first

necessary to define the following quantities:

0(t) = .... (3.45)

I - N ,- N

(p(t) = ... (3.46)

y(t) 2 (3.47)y(t) T O (3.47)
2
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where t is an index representing the current time step. One method for
recursively computing a least-squares parameter estimate is Kaczmarz's
algorithm[28]. Using the parameter definitions given by Equations (3.45),
(3.46), and (3.47), an estimate of the inductance parameters 0(t) may be
computed as follows

0(t) = 0(t -1) + (PT [y(t)- (pT0(t - 1)] (3.48)
a+ (pp

where 0(t) is the best least-squares estimate of the inductance parameters
given the previous estimate 0(t-1) and the most recent output measurement
y(t). Motor back EMF measurements may be used to provide an initial
parameter estimate 00 which assumes no parasitic inductance harmonics,

Go = i (3.49)

Ebwhere, L (3.50)

If back EMF data is not available, the estimate may be initialized to zero. The
later case will result in a slower parameter convergence. The variables ca and 
in Equation (3.48) are estimator design parameters. a should be a small
positive number whose purpose is to prevent the estimate from diverging
when the input vector (p becomes very small. y is the estimator's gain whose
value represents a trade-off between convergence rate and stability. A large
gain will result in fast parameter convergence, however, for a large enough
gain the estimator will become unstable. As indicated in reference[28], the
gain should be chosen between 0 and a maximum of 2 to prevent instability.

The Kaczmarz algorithm is a good estimator choice for motor drive
applications due to its simplicity of implementation and speed of
computation. Both are important constraints in motor drive
implementations. Other least-square algorithms, such as Gauss[28], boast
faster convergence rates, however at the expense of greater computational
complexity.
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One caution should be mention concerning the use of any recursive
least-squares algorithm. In order to estimate a system parameter from the

output measurements, it is necessary that the mode associated with that
system parameter is excited by the input and observable in the output. This
constraint is called the Excitation Condition. For the Kaczmarz estimator
described above, the excitation condition can be described as follows. Define
the matrix D such that,

I) = (pPT (3.51)

where c( was defined in Equation (3.46). The excitation condition is satisfied
provided the matrix D has full rank. This result has an physically intuitive
interpretation for the motor application. Considering Equation (3.44), the DC
electrical torque component is the result of each inductance harmonic
multiplied by its corresponding current harmonic. To estimate the nth
inductance harmonic Ln, the input current waveform must include the nth
current harmonic In. To make sure that all desired inductance harmonics are
present in the output, it is recommended that all current harmonics be
initialized to some non-zero quantity. This is equivalent to forcing the input
matrix(i.e. Equation (3.51) ) to have full rank.

Given the parameter estimate 0(t), the inductance matrix estimate, Lest,
can be constructed and used to estimate the cogging spectrum Cest.

Cest = T - LestI (3.52)

With the inductance and cogging harmonic estimates, Lest and Cest, the
current control law which results in minimum torque ripple can be defined
as follows.

I = (LestLest )- Lest (u - Cest) (3.53)

One beneficial feature of the MRAS system shown in Figure 3.2 is that
the inner torque control loop may be considered as transparent to the outer
speed loop. Thus, the gains of the speed tracking PI compensator may be
designed independent of the inner current control law.
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(Oref o- 

Figure 3.3: Speed Controller Transfer Function Diagram

where J and KB are the moment of inertia and load damping coefficient for
the motor and propulsor respectively, Kp and Ki are the speed controller
gains, Cos is the 3 dB bandwidth of the speed sensor. Using Figure 3.3, the speed
input-output transfer function can be derived.

co 1 Kps + K i=_ (3.54)
coref J s(s+ K)( S +1)

J oS

Thus, the poles and zeros of the motor's speed dynamics are simply functions
the motor's parameters, speed loop controller gains, and speed sensor
characteristics. They do not influence torque ripple with the given setup.

The power electronics and FFT subsystems will be discussed further in
Chapters 4 and 5 respectively. The next section will provide some computer
simulation results of the parameter estimate and current control law
subsystems.

3.4 Harmonic System Simulation & Parameter Estimation

The following computer simulations of the motor model and
controller described above were constructed using SIMULINK[29]. They are
intended to show the validity of the torque ripple model developed in
Section 3.2 and demonstrate the performance of the parameter estimator
developed in Section 3.3. This simulation deals only with the transformed
Fourier state-variables as they are defined by Equations (3.15) through (3.21).
A more detailed simulation which is based on the motor's physical state-
variables will be presented in Chapter 6.
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Torque Constant

Cogging Coefficient

Max Current
Amplitude

Moment of Inertia

Damping Coefficient

Number of Pole Pairs

Lmm

Imax

J

Bco

Np

0.1

150

0.2

0.1

24

H

A

kg m2

2
NM/RPM

Table 3.1: Simulation Parameters

Nominal parameters for a dual stator axial-field PMAC motor were
used and are shown in Table 3.1[6]. Graph 3.1 shows the rotor's velocity
profile. In this test, the motor was given a 100 RPM step velocity command
from rest. As shown, the rotor responded with a slightly under-damped
response, a 2 second rise time, and zero steady-state error. As noted
previously, the rotor's response is dictated completely by the choice of gains
for the outer speed control loop( see Figure 3.3 ) and is does not affect torque
ripple.

Graphs 3.2 through 3.7 show the magnitude and phase of the first 6
harmonics of the resulting torque ripple. Only the initial adaptation phase
(i.e. open-loop system) is demonstrated here.

Graph 3.8 shows the applied current harmonics to the system during
this initial adaptation phase. It should be noted that since only the first 6
torque harmonics are considered here, it is necessary to applied up to the
third current harmonic.

Graphs 3.9 and 3.10 shows the computed estimates of inductance and
cogging harmonics, respectively. The real values are shown as dashed lines
on these graphs. As expected, each estimate converged in the steady-state to
the true parameter value.
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Graph 3.1: Rotor Velocity Profile
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Graph 3.2: 1st Torque Ripple Harmonic, Magnitude and Phase
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Graph 3.3: 2nd Torque Ripple Harmonic, Magnitude and Phase
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Graph 3.4: 3rd Torque Ripple Harmonic, Magnitude and Phase
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Graph 3.5: 4th Torque Ripple Harmonic, Magnitude and Phase
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Graph 3.6: 5th Torque Ripple Harmonic, Magnitude and Phase
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Graph 3.7: 6th Torque Ripple Harmonic, Magnitude and Phase
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Graph 3.8: Applied Current Harmonics, Magnitudes Only
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Graph 3.9: Inductance Spectral Estimation
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Graph 3.10: Cogging Spectral Estimation
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4 Active Torque Ripple Reduction Part II:
Current Enforcement

The development of an active torque ripple reduction controller in
Chapter 3 has assumed that the stator current waveforms commanded by the
controller are followed without errors in amplitude, phase, or frequency
content. No discussion, thus far, has been given to the power electronics
required to track the current commands and the limits that are imposed. In
this chapter, these issues will be addressed. A circuit topology designed to
meet the specifications of an ATRR system will be presented along with both
simulation and experimental test results.

4.1 The Current Controlled Voltage Source Inverter (CCVSI)

It is useful in many applications, including this one, to think of the
inputs to the motor as the stator currents instead of stator voltages. However,
the winding currents are not independent of the stator voltage. There are
important electrical dynamics in the stator windings which limit the rate of
change of the stator currents. A lumped parameter model for the winding
dynamics is shown in Figure 2.2. At some point, these dynamics must be
considered and controlled which is the responsibility of the inverter.

It is the job of the current controlled voltage source inverter (CCVSI) to
apply the appropriate stator voltages to force the currents to track the desired
waveform in the presence of the winding dynamics. There are many power
electronic circuit topologies capable of performing this task. The H-Bridge
configuration, shown in Figure 4.1, is one of the most common. This
configuration will be considered here since it can apply bipolar voltages to
stator(i.e. Vbus and -Vbus) while operating from a single polarity supply bus,
which is the type of bus commonly found in AUVs. Detailed explanation of
other power electronic inverters can be found in reference[31].
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Figure 4.1: H-Bridge Circuit

Figure 4.1 represents only a single phase. The circuitry is repeated once for

each stator phase.

The H-Bridge inverter works by alternately opening and closing pairs

of semiconductor switches (M1,M3) and (M2,M4). The quantity s in Figure 4.1

is a Boolean variable with "1" indicating a closed switch and "0" indicating an

open switch. With s equal to "1", the switches M1 and M3 are closed, and M2

and M4 are open. The bus voltage is applied with positive polarity to the

winding(i.e. VP = +Vbus). With s equal to "0", the state of each switch is
reversed. The bus voltage is now applied with negative polarity to the
winding(i.e. Vp = -Vbus). The duty ratio, dx, is defined as the fraction of the

time s is equal to "1". By controlling the duty ratio, the average voltage
applied to the windings can range from -Vbus to Vbus.

Vp = (2dx - 1)Vbus (4.1)

Note that for the H-Bridge configuration, a 50% duty ratio(i.e. dx = 0.5) means

zero average voltage applied to the winding. Similarly, the average value of

the generated current will be a function of the applied average voltages. Thus,
the duty ratio can be used to control the average value of the currents in the

winding.

The stator current waveform will also contain a ripple component.
Figure 4.2 shows typical winding voltage and current waveforms. There is a

concern that the current ripple caused by the inverter switching may generate

unacceptable torque ripple components. Since the ATRR controller relies on
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the inverter to generate current waveforms, torque ripple caused by the
inverter itself can not be canceled by the controller. Therefore, it is necessary
to design the circuitry of the inverter such that current ripple and the
resulting torque ripple is minimized.

s
1

0

Ip

7X 7 i17 IL n

Figure 4.2: Typical Voltage and Current Waveforms

Provided the switching frequency is much faster than the time constant of the
winding(i.e. L/Rs) and the bus voltage is much greater than the back EMF
voltage, then the amplitude of the ripple current can be approximated by the
following equation.

1 Vbu s 1
Iripple 4 L s fsw (4.2)

where fsw is the switching frequency of the inverter. The ripple component of
the current is inversely related to the inverter switching frequency, and thus,
can be made small by increasing the switching speed. Additionally, the
mechanical damping of the motor and load will behave as a low pass filter,
attenuating the high frequency components of torque ripple. Thus, increasing
the switching frequency not only reduces the current ripple it also helps to
attenuate the resulting torque ripple.
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Unfortunately, the inverter switching frequency can not increased
without bounds. The semiconductor switches will have a maximum
frequency, and higher switching speeds will result in higher losses due to
heat. Thus, switching noise and efficiency must be traded-off in the design of
the drive's power electronics.

The inverter switching frequency also places a limit on the highest
current harmonic that can be generated by the inverter. The theoretical limit
is given by the Nyquist Sampling Frequency or half of the switching
frequency. In practice, a lower limit should be placed on the maximum
commanded frequency to account for non-idealities. As a rule of thumb, five
samples per period is usually required to sufficiently capture a sinusoidal
waveform. Therefore, the highest commanded current harmonic should
have a frequency less than fsw / 5. Table 4.1 lists the highest attainable current
harmonic versus shaft speed for a typical motor.

Table 4.1: Highest Current Harmonic vs. Rotor Speed

The values in Table 4.1 were computed assuming an inverter switching
frequency of 25 kHz and a motor with 24 pole pairs, which are typical values
for an AUV drive system, see reference[6]. The number of available
harmonics decreases quickly as the shaft's rotational speed increases. Above
5000 RPM, the motor is moving too quickly to impose any current harmonics.
Thus, ATRR is not applicable to very high speed motors. Fortunately, torque
ripple suppression for the AUV application is most needed in the low to mid
speed regime(i.e. under 1000 RPM). At higher speeds, the high load
torque(Equation (2.10) ) filters out the majority of the ripple.
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Rotor Speed Fundamental Highest Harmonic
[RPM] Electrical Frequency [Hz] Number / Frequency [Hz]

1 0.4 12,500 / 5000
5 2.0 2,500 / 5000
10 4.0 1,250 / 5000
50 20.0 250 / 5000
100 40.0 125 / 5000
500 200.0 25 / 5000
1000 400.0 12 / 4800
5000 2000.0 2 / 4000



4.2 Standard Pulse-Width Modulation (PWM) Schemes

The control signal to the H-Bridge(i.e. the switching signal s) must
encode the shape of the desired current waveform. This is usually
accomplished by storing the information in the width of the switching pulses
known as pulse-width modulation (PWM). It is the burden of the PWM
scheme to compute the optimal switching pattern to best track a reference
current command. Standard PWM schemes fall into one of three classes[33]:
bang-bang hysteresis control, triangle comparison, and voltage prediction.
The selection of the appropriate PWM scheme for a given application usually
involves a tradeoff in simplicity of implementation versus tracking
performance.

High gain hysteresis control provides a simple, low cost PWM
solution, see Figure 4.3. In the Bang-Bang Hysteresis scheme, the measured
winding current is compared to the reference. If the winding current is too
low, the stator voltage is switched positive to raise the current. If the current
is too high, the voltage is switched negative to lower it. A small hysteresis
band is introduced between the switching thresholds to limit the inverter
switching frequency.

Iref

Figure 4.3: Bang-Bang Hysteresis PWM Scheme

Graph 4.1 presents a simulation of this scheme showing a typical current
waveform. The width of the hysteresis band is the main design consideration.
A narrower band will result in a smaller ripple current and more frequent
inverter switching. One benefit of this scheme is that the hysteresis controller
can be implemented using a single operational amplifier for each phase. The
main drawback is that the inverter switching is variable and uncontrolled.
This is unacceptable for high performance motor systems.
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The triangle comparison method is a slightly more complicated PWM
scheme(see Figure 4.4). The error between the reference and the measured
winding current is compared to a fixed frequency triangle wave to generate
the inverter switching signal. Current tracking is done by a proportional-plus-
integral controller.

Triangle Wave

Iref o-*

Figure 4.4: Triangle Comparison PWM Scheme

Graph 4.2 presents simulated waveforms generated by this scheme. In this
scheme, the inverter switching frequency is constant and equal to the triangle
wave frequency which is an improvement over the previous scheme. The
problem here is that the PI controller introduces a frequency dependent phase
lag between the reference and actual current waveforms. For a system which
requires arbitrary current waveform generation such as the torque ripple
controller described in Chapter 3, this phase lag will introduce harmonic
distortion degrading the effectiveness of the controller. Modified versions of
the triangle comparison method such as clock turn on and turn off[34] can
remove phase delay but introduce unacceptable low frequency distortion by
tracking either an upper or lower edge of the reference current waveform.

Voltage Prediction PWM methods offer the best performance at the
expense of complexity. In VP schemes, a mathematical algorithm for
computing the optimal switching pattern is developed and implemented
using a microprocessor. This type of PWM scheme is the most flexible and the
most expensive to implement, and therefore, is only used when extreme high
performance is required. VP algorithms are usually optimized for a specific
application(e.g. see references [35], [36], and [37]). In the next section, a VP
scheme designed specifically for arbitrary current waveform generation and
torque ripple reduction is proposed.
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4.3 Model Reference PWM Scheme

A novel PWM scheme which is optimized for generating arbitrary
current waveforms with minimal harmonic distortion is shown in Figure
4.5. This scheme uses a combination of voltage prediction and triangle
comparison with PI tracking concepts. Frequency dependent winding models

Figure 4.5: Model Reference PWM Scheme

are used to predict the voltage required to generate each commanded current
harmonic. A current tracking PI controller is used to compensate for errors in
the winding models. Although some phase-lag is still present due to errors in
the winding model, it is minimized since the feedback controller is tracking a
smaller error between the actual and predicted waveforms.

A single-phase model for the stator windings is shown in Figure 2.2.
Assuming the mutual inductance between the phases is negligible,

Vs() Ls(o) di s,(O) = L(o) + Rs(o)i s + E(o)
dt (4.3)

where Vs is the applied stator voltage; is is the stator current; Ls and Rs are the
stator's self-inductance and resistance respectively; and E is the excitation
voltage. This model is the basis for many voltage prediction PWM schemes,
see references [33], [35], [36], and [37].
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In general, Ls, Rs, and E are all functions of the excitation frequency o.
Saturation in the stator core causes a change in the self-inductance at low
frequencies. At high frequencies, the mutual inductance between stator
phases changes the effective inductance seen at the stator terminals. The skin
effects cause the stator resistance to increase as the excitation frequency is
increased. Slot harmonics distort the shape of the excitation voltage
waveform giving E some frequency content. All these effects mean that each
current harmonic sees a different stator which is one source of harmonic
distortion. Using a frequency dependent model, the appropriate voltage
waveform to eliminate this distortion can be computed.

Using physical arguments with some assumptions, models for each of
these effects can be derived. The stator inductance is only effected at extreme
low and high frequencies. For the limited current spectrum required here, it
is acceptable to approximate the stator inductance as a constant. The change in
the stator resistance can be modeled by the following equations,

L
Rs(C) = Pcu (4.4)

Aeff (CO)

Aeff()) = CU (4.5)
CO

where Pcu is the resistivity of copper, L is the length of the winding, Aeff is the
effective area of the winding, and kcu is the skin effect constant for copper.
The excitation voltage shape is a complicated function of the motor's specific
geometry. However, it can be measured by externally driving the shaft. The
harmonic content of the waveform can be analysis providing a model for the
given motor.

One concern in the implementation of the winding model is the
sensitivity of the differentiator(i.e. di/dt) to parasitic signals. To reduce this
problem, the pure differentiator can be approximated by a lead filter, limiting
the gain of high frequency noise. This solution also limits the operational
bandwidth of the circuit; however, this is acceptable for motor drive
applications because of the separation between the electrical frequency of the
motor and the PWM frequency. Figure 4.6 shows the implementation the
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winding model. For the AUV application, a lead cut-off frequency of 10 kHz

was found to be acceptable(i.e. co)= 63 krad/sec).

in( Vn

Figure 4.6: Winding Model

A second concern is sensitivity to parameter uncertainties in the

winding model. This is an issue for any model reference scheme[37]. For each

current harmonic, the stator voltage component Vn can be broken into two
terms- the model predicted term and a parameter error term.

Vn + Vn = (Ls + s ) + (Rs + r)i s + (E + e)dt

disVn = dt + r si + eSdt 

(4.6)

(4.7)

The uppercase variables are the model predicted terms, and the lowercase

variables are the error components. As shown by Equations (4.6) and (4.7), the

error voltage vn appears as an additive disturbance to the modeled plant.

To minimize the error voltage, vn in Equation (4.7), a PI compensator is

used with current feedback. The tracking performance of each harmonic can

be analyzed by averaging all variables over the PWM switching period and

deriving the transfer function realization shown in Figure 4.7.

Controller Plant…- fI

Iref(s) lact(s)

Figure 4.7: Transfer Function Representation

P(s) is the transfer function associated with the winding model. A(s) represent

the error dynamics. C(s) is the transfer function of the PI compensator.
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Ignoring the back EMF terms (i.e. E and e) for simplicity, these transfer
functions are:

1
P(s) = (4.8)

sLs + Rs

A(s) = (4.9)
sls + rs

kps + kiC(s) = (4.10)
s

Including the back EMF terms make P(s) and A(s) unnecessarily more
complicated and does not add insight into the analysis. Using this
background, the following output/input transfer function can be derived,

Iact(s) 1 + (P + A)C + AP- 1

Iref (s) 1 + (P + A)C

Provided the gain of the compensator, C(s), is designed to be much greater
than the error term A(s)P-1(s) over the frequencies of interest, then the
transfer function simplifies to

a "ct(s) ~ 1 (4.12)
Iref (s)

Thus, the winding current tracks the reference as desired.

4.4 Model Reference PWM CCVSI Simulation

Computer simulations were done using SIMULINK[29]. The proposed
PWM scheme was tested in three scenarios: open-loop with exact parameter
knowledge, open-loop with a 50% inductance model error, closed-loop with a
50% inductance model error. In addition, comparison simulation were done
for two other popular PWM schemes. System for parameters for all
simulation runs are shown in Table 4.2. Results are shown in Graphs 4.1
through 4.5.
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Table 4.2: Test Motor Parameters

The first two simulations illustrate the problems with Bang-Bang
Hysteresis Control and Triangle Comparison with PI Tracking. Graph 4.1
shows unregulated switching patterns exhibited by high gain hysteresis
feedback. Graph 4.2 shows the inherent phase-lag of a simple PI tracking
controller. The remaining simulations demonstrate the performance the
model reference PWM scheme. Graph 4.3 shows the behavior of the system
using the winding model open-loop, assuming exact motor parameter
knowledge. As expected, the current tracks the command with no phase lag.
The current error is dominated by switching ripple. A 50% error in the
inductance estimate results in a degradation of the control, see Graph 4.4. A
negative inductance error(i.e. Is) causes a negative voltage error(i.e. vs) during
rising portions of the reference current waveform(i.e. diref/dt > 0) and a
positive error during the falling portions. Thus, the actual current should
track beneath the rising reference and above the falling reference which is
clearly shown on Graph 4.4. The current error now has a significant
component at the input frequency in addition to the ripple term. The
feedback compensator, when enabled, will use this component of the current
error signal to correct the applied stator voltage. Graph 4.5 shows the
performance of the system closed-loop in the presence of the 50% inductance
error. As expected, the current error has been corrected.
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Stator Inductance Ls 103 ]H

Stator Resistance Rs 20 m

Bus Voltage Vbus 10 Volt

Back EMF Coefficient Eb 0.5 Volt/RPM

Switching Frequency Fsw 25 kHz



Graph 4.1: Bang-Bang Hysteresis PWM Scheme
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Graph 4.2: Triangle Comparison with PI Tracking PWM Scheme
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Graph 4.3: Model Reference PWM Scheme-- Open Loop, Exact Model Parameters
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Graph 4.4: Model Reference PWM Scheme-- Open Loop, 50% Model Inductance Error
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Graph 4.5: Model Reference PWM Scheme-- Closed Loop, 50% Model Inductance Error
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4.5 Model Reference PWM CCVSI Experimental Results

A single harmonic implementation of the model reference PWM
scheme using low cost analog components was experimentally tested as a
proof of concept. The circuit was constructed on a breadboard and tested on a

"dummy" stator(i.e. the rotor had been removed). The electrical parameters
of the stator are the same as the one's used for the simulation runs, see Table
4.2. However, since the rotor had been removed, the back EMF is zero.

The current tracking behavior of the circuit was studied through a
number of open-loop and closed-loop tests. The reference, actual, and error

current waveforms for these tests are given in Graphs 4.6 through 4.11. The
commanded current for all tests was a 4A, 600 Hz sinusoid. To evaluate

parameter robustness, an intentional inductance error was added to the
winding model for some tests.

Graph 4.6 shows the reference, actual, and error current waveforms

with the circuit running open-loop. For this test, the model parameters were
set as close as possible to the measured values. The graph shows the actual
current waveform slightly leading the reference in phase and a small
amplitude offset. There are three possible reasons for these errors. First, 10%
resistors were used in the construction of the winding model circuitry which
lead to small modeling errors. Second, an error could have been introduced

in the measurement of the stator's electrical parameters. Name plate values

were used. Third, the assumptions in the underlying winding model also
introduced errors. The effects of inductive coupling between phases was not
modeled. These errors are the reason why current feedback is employed to
improve the overall performance. Graph 4.7 shows the same test with the PI

compensator enabled. The small phase and amplitude offsets have been
eliminated. Graph 4.8 shows the contribution of the feed-forward and
feedback terms to the control command. As expected, the feed-forward
component dominates the control with the feedback providing small
corrections.

Graphs 4.9, 4.10, and 4.11 are intended to demonstrate the robustness of

the system. A 50% error was subtracted from the inductance estimate. The
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open-loop performance of the system degraded significantly (Graph 4.9). With
the PI compensator enabled, the current errors are eliminated (Graph 4.10).
Graph 4.11 shows the two components of the control waveform for this test.
As expected, the feedback component has increased to compensate for the lack
of a good parameter estimate.

Graph 4.6: Reference, Actual, and Error Current Waveforms; Open-Loop

Vertical Scale: 1 A/div
Horizontal Scale: 500 gsec/div
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Graph 4.7: Reference, Actual, and Error Current Waveforms; Closed-Loop

Vertical Scale: 1 A/div
Horizontal Scale: 500 sec/div
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Graph 4.8: Voltage Predictor and PI Compensator Duty Cycle Commands

Vertical Scale: 1 V/div
Horizontal Scale: 500 gsec/div
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Graph 4.9: Reference, Actual, and Error Current Waveforms;
Open-Loop with Gross Inductance Error
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Graph 4.10: Reference, Actual, and Error Current Waveforms;
Closed-Loop with Gross Inductance Error

Vertical Scale: 1 A/div
Horizontal Scale: 500 gsec/div
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Graph 4.11: Voltage Predictor and PI Compensator Duty Cycle Commands;
Closed-Loop with Gross Inductance Error
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5 Practical Issues

There are a number of issues which must be considered before
implementing the torque ripple reduction scheme described previously.
These include limits imposed by the current controlled voltage source
inverter(CCVSI), measurement of the torque ripple and identification of its
frequency components, and discretization errors introduced by the speed
sensor. Each issue will have an impact the system's performance, and
therefore, should influence relevant design choices.

5.1 Power Electronics Limitations

The power electronic subsystem was described in detail previously. In

addition to the PWM issues discussed in Chapter 4, the VSI is limited in its
ability to generate current waveforms. Key among these limitations is the
inverter's slew rate.

The slew rate is defined here as the maximum rate of change of the

stator's current. The complete dynamics of the stator current waveforms are
given by Equation (4.3). To reduce heat losses, the stator resistance will be

minimal for many machines; thus, the Ris voltage will be small in
comparison to the other terms. Equation (4.3) can be simplified to the

following,

Vs = L s + E (5.1)
dt

Solving for the current's rate of change,

dis Vs - E) (5.2)
dt Ls

where Ls is the stator's self-inductance, Vs is the applied stator voltage, and E

is the back EMF waveform. Assuming the "ON" voltage of the semiconductor

switches uses in the inverter( see Figure 4.1) are small compared to the bus
voltage, the magnitude of the applied stator voltage will be equal to the bus
voltage, i.e.
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IVsI = Vbus (5.3)

The back EMF, E(t), will be a periodic waveform with some peak value I E I.

For example, a sinusoidal back EMF would have the following form:

E(t) = El cos(Np0) (5.4)

where Np is the number of pole pairs and 0 is the rotor's position. The back

EMF subtracts away from the applied stator voltage in its ability to change the

current. Therefore, the effective stator voltage is difference between the
applied voltage Vs and the back EMF E(t).

Veff =V s -E (5.5)

The effective voltage, and therefore the current slope, is smallest when the

back EMF waveform is at an extreme. Thus, the maximum enforceable
current change is limited to

dis = -(Vbus - Et) (5.6)
dt max Ls

The current waveform commanded by the torque ripple reduction
controller will be the sum of N harmonics, i.e.

is(t) = Ile jN P0(t) + I2ej2Np0(t)+.. +Ine jnNp(t) (5.7)

The rate of change of the stator current waveform required to generate this

waveform has contributions from each harmonic, i.e.

dis = jN pcIlejN P0 + j2NpCOI2 ej2 Np0+... +jnNp c I In ej nN (5.8)
dt n

In the worst case scenario, each of the harmonic terms are in phase resulting

in the following maximum required current slope,

dt Imax Np ClIll+ 2NpCOI2 1+...+nNpcOIInl (5.9)

The limit of the power electronics to change the stator current was given

previously by Equation (5.6). Comparing Equations (5.6) and (5.9), it is clear
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that a limit must be imposed the amplitude of each current harmonic to
insure that the rate of change of the commanded waveform does not exceed
the ability of the power electronics. Assuming that equal weighting is given to
each harmonic component, the following amplitude limit should be place on
the kth commanded harmonic,

1 Vbus - E IlIkI < VbusEI (5.10)
k nNpwL

where n is the number of current harmonics.

5.2 Torque Spectrum Measurement

A key input to the adaptive controller described in Chapter 3 is the
torque ripple spectrum. To actively control (minimize in this case) the ripple
spectrum, it is necessary to precisely measure the torque ripple and quickly
compute its frequency components. The torque ripple measurement can be
done using a torque transducer. This device is composed of material whose
electrical characteristics (usually resistivity) change as a function of applied
stress. when place on the drive shaft, the transducer produces an electrical
signal which provides a measure of the tangential torque being applied to the
load. The transducer is more accurate than mechanical accelerometers and
has a higher bandwidth than ripple measurements computed from rotor
speed changes.

The torque transducer mentioned above provides a time domain
signal of the torque ripple. The adaptive control algorithm described in
Chapter 3 needs the harmonics, magnitude and phase, of the load torque
signal. One method for extracting the frequency content of this signal is the
complex Fourier expansion. The load torque signal can be written as the
following series,

TL(t)= TnejnNPO (5.11)
n=-N

where Tk is the complex Fourier coefficient of the kth torque ripple harmonic.
Given that the torque ripple is periodic in 0, TL(t) over one full rotation
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period is required to compute the fouler coefficients of all ripple harmonics,
i.e.

27r

T= 2n TleNP 0 dO - N < n < N (5.12)

Unfortunately, the continuous load torque function TL(t) over a full
revolution is not available. The controller will only receive discrete update at

fixed sampling instants. Additionally, the controller needs to work
continuously and in real-time. Given these facts, it would be useful to

compute the Fourier coefficients in a recursive manner instead of direct
application of Equation (5.12). One method for performing this recursive
computation is to store an estimate of each Fourier coefficient, and update

each coefficient at each sampling instant using the latest torque ripple sample,

i.e.

Tk[n] = Tk,re[n] + jTk,im[n] (5.13)

Tk,re [n] = Tk,re [n - 1] + TL [n] cos(k0[n]) (5.14)

Tk,im[n] = Tk,im[n - 1] + TL [n] sin(ke[n]) (5.15)

where TL[n] and 0[n] are samples of the torque ripple signal and rotor
position, respectively, at the nth sampling instant. The estimates may be

initialized to zero, i.e.

Tk,re[O] = 0 (5.16)

Tk,im[O] = 0 (5.17)
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6 Detailed System Simulation

The following results are from a detailed SIMULINK[29] simulation of
the motor model (i.e. Equation (2.15) ) and ATRR controller (i.e. Equation
(3.40) ) described in Chapters 2 and 3. The simulation was constructed in the
time domain using the true physical state-variables. Therefore, the
waveforms generated by the simulation represent the true signals which
would appear on a physical experimental setup. Sensor effects on measured

signals are also modeled. The purpose of the simulation is to show the
performance the proposed ATRR controller and provide a design tool to
assist in the future implementation of system.

6.1 Simulation Parameters

The simulated motor is a three-phase, dual-stator, axial-field
permanent-magnet motor. It is assumed that the three phase windings are
symmetrical, and the two stators have been precisely aligned. Table 6.1 lists

the motor parameters used in the simulation.

Torque Constant

Cogging Coefficient

Max Current
Amplitude

Moment of Inertia

Damping Coefficient

Number of Pole Pairs

NM/A

H

A

kgm 2

NM/RPMNM /Rpm

kO

Lmm

Imax

J

Bw

Np

0.4

0.1

150

0.2

0.1

24

Table 6.1: Simulation Parameters

These values are consistent with parameters for an axial-field PMAC motor

currently under study by the NUWC in Newport, R.I. for use in a AUV drive

system.

The proportional and integral gains of the speed control loop were set

to provide an over-damped step response. All adaptation gains were set to

unity.
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6.2 Simulation Results

6.2.1 Baseline Simulation

The following set of graphs are from a simulation of the motor with
torque ripple reduction scheme disabled. The data are intended to provide a
baseline comparison for later simulation results.

In this simulation, the motor is given a 100 revolution per minute
(RPM) step command from an initial resting state. Graph 6.1 shows the
rotor's velocity response as a function of time. The response is over-damped,
as designed, and torque ripple is clearly evident in the steady-state.

Graph 6.2 shows the rotor's angular position as a function of time. The

position sensor modeled here is a 16 bit resolver. Fifteen complete
revolutions of the rotor occurred during this simulation.

Graph 6.3 shows the output of the speed sensor which uses periodic
samples of the rotor's position to estimate its velocity. The sampling period
was set to 20 milliseconds. Due to the limited sampling period, the speed
sensor does not provide adequate bandwidth to capture the high frequency
ripple components demonstrating the need for a separate torque sensor to
measure torque ripple.

Graph 6.4 shows the commanded stator current waveforms. All three

phases (a, b, and c) are shown. Since the torque ripple reduction scheme is
disabled for this baseline simulation, the waveform appear as pure sinusoids
at the fundamental pole frequency of the machine.

Graph 6.5 shows the steady-state torque ripple as measured from the
tangential torque sensor. The ripple appears almost triangular in shape
indicating the presents of the odd inductance harmonics. Graph 6.6 indicates
the spectrum of the torque ripple. The harmonic signature of the motor is
clearly shown. The attenuation of these discrete peaks is the goal of torque
ripple reduction.
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Graph 6.1: Rotor Velocity Profile, ATRR Off
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Graph 6.2: Rotor Position Profile, ATRR Off

1 2 3 4 5 6
Time [sec]

7 8 9 10

81

'4UU

350

300

, 250
-

O
.4-o
o
no 150

100

50

n
0

A NtE



Graph 6.3: Position Estimated Rotor Velocity
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Graph 6.4: Steady-State Stator Current Waveforms, ATRR Off
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Graph 6.5: Steady-State Torque Ripple, ATRR Off
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Graph 6.6: Torque Ripple Spectrum, ATRR Off
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6.2.2 Active Torque Ripple Reduction Simulation

The next simulation run demonstrates the response of the motor with
the active torque ripple reduction scheme activated. The same 100 RPM step
commanded is used. Thus, the results shown here are directly comparable to
the previous run.

Graph 6.7 shows the output of the torque sensor during the adaptation
process. The top graph presents the torque signal over the complete run. The
bottom two graph show "blow ups" of the torque signal at later time
intervals. The torque ripple is clearly reduced as time increases.

Graph 6.8 shows the actual (not estimated) rotor velocity profile. The
same over-damped response is apparent, however, the steady-state torque
ripple has been virtually eliminated.

Graph 6.9 indicates the shape of the commanded current waveforms
post adaptation. Again, all three phases (a, b, and c) are shown. The higher
frequency content required to cancel the torque ripple is clearly evident. It is
interesting to note that the three phases do not appear as phase shifted
versions of each other.

Graph 6.10 shows the torque ripple spectrum post adaptation.
Comparing this to the previous spectrum (Graph 6.6), the harmonic content
of the torque signal has been reduced by 100 dB. If the simulation was run for
a long duration, the ripple content would be reduced even further as the
controller's parameters continued to adapt.
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Graph 6.7: Load Torque Waveform During Adaption
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Graph 6.8: Rotor Velocity Profile, ATRR On
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Graph 6.9: Steady-State Stator Current Waveforms, ATRR On
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Graph 6.10: Torque Ripple Spectrum, ATRR On
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6.2.3 Limited Current Harmonics Cases

The simulation results provided in Section 6.2.3 indicate the ATRR
scheme's performance at its best. It was assumed that the first 6 current
harmonics could be exactly enforced on the stator windings. As described in
Chapter 4, a number of power electronic constraints may limit the number of
current harmonics which may be used resulting in a reduction in
performance. Graph 6.11 shows the torque spectrum in the case where only
the first 3 current harmonics are applied to the stator windings(i.e. only half
of the required current harmonics are available). Although the torque ripple
is still reduced from the baseline case (Graph 6.6), the torque harmonics show
only a 20 dB attenuation. The performance has clearly been reduced.

Energy efficiency is another system constraint which may effect ATRR
performance. As indicated in Chapter 2, the motor's mutual inductance terms
will only contain odd harmonics. Therefore, only odd current harmonics will
contribute to the DC component of the generated electrical torque, see
Equation (3.48). Even current harmonics may be required to cancel torque
ripple due to cogging harmonics, but they do not contribute to the useful
work. Thus, the energy dissipated these even current harmonics reduce the
overall efficiency of the motor. For a battery driven AUV system, energy
efficiency is a key performance issue. As such, it may be desirable to restrict
the stator current waveform to contain only odd current harmonics in the
interest of a higher efficiency. Graph 6.12 shows the torque spectrum if even
current harmonics are suppressed. Although the performance is reduced in
comparison to the optimal case (Graph 6.10), the ATRR controller still
achieved a 80 dB reduction in torque ripple over the baseline. Thus,
restriction of the even current harmonics result in only a small reduction in
torque ripple performance.
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Graph 6.11: Torque Spectrum, Higher Current Harmonics Suppressed
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Graph 6.12: Torque Spectrum, Even Current Harmonics Suppressed
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6.2.4 Extended Simulation Run

The fifth and final simulation run is intended to demonstrate the
ability of the controller to perform with multiple speed commands over an
extended run. Graph 6.13 shows the commanded and actual rotor velocity
profiles for this run. The commanded rotor velocity, shown as a dashed line,
make step changes from rest to 100 RPM to 200 RPM. The rotor's velocity
response is indicated by the solid line. The response is clearly over-damped as
desired.

Graph 6.14 shows a comparison between the resulting torque signal
with the ATRR scheme disabled (top) and enabled (bottom). Graph 6.15 and
Graph 6.16 show the same torque signal comparison "blown up" at different
time intervals. Graph 6.15 shows the time interval while the motor is
cruising at 100 RPM. Graph 6.16 shows the time interval while the motor is
spinning faster at 200 RPM. It is clearly indicated by all three graphs that the
torque ripple is greatly reduced by the ATRR scheme.

94



Graph 6.13: Rotor Velocity Profile, Test Run
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Graph 6.14: Test Run Load Torque Comparison, ATRR Off
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Graph 6.15: Test Run Load Torque Comparison (Zoom 1), ATRR Off
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Graph 6.16: Test Run Load Torque Comparison (Zoom 2), ATRR Off
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7 Conclusions

7.1 Contributions

The work described in this thesis document has made a number of
contributions to the area of active torque ripple reduction especially as it
applies to axial-field PMAC motors. Both sides of the problem, current
selection and enforcement, are discussed and studied. The relevant issues and
trade-offs are indicated, and possible solutions presented.

In the area of current selection, a model of the three-phase PMAC
motor which explicitly takes into count the source of torque ripple are
presented in Chapter 2. Using the generalized averaging method[25], a
transformed model which provided insight into the underlying structure of
torque ripple and a methodology for canceling it is presented in Chapter 3.
From there, adaptive control and estimation techniques[28] are applied to the
problem. A robust system for computing the required current harmonics is
later presented and discussed.

In the area of current enforcement, a detailed overview of current
tracking power electronics and popular PWM techniques were presented in
Chapter 4. The problems associated with these traditional PWM schemes in
the context of active torque ripple reduction systems were hi-lighted.
Furthermore, a model based PWM scheme which uses knowledge about the
stator winding dynamics to provide better current tracking performance was
described and studied.

The underlying goal of this thesis is to help illuminate the complex
and sometime couple issues associated with torque ripple cancellation in
PMAC motor systems. It is the hope that the combination of the research
presented here will to a complete system for the active reduction of torque
ripple.
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7.2 Summary of Results

Through the use of a detailed computer simulation, it was shown that
the torque ripple reduction methodology described in this thesis could result
in a significant reduction of a motor's torque ripple. The system, which
requires no a priori knowledge of motor parameters, demonstrated a 100 dB
reduction in torque ripple harmonics provided the required current
harmonics could be imposed. It was shown that partial torque ripple
reduction could still be achieved if the number enforceable current
harmonics were reduced. It was demonstrated that the removal even current
harmonics to improve system efficiency resulted in little degradation in
performance. This result indicates promise that a low torque ripple drive
system need not result in low efficiency. It was also shown that blanket
removal of higher current harmonics resulted in a strong degradation in
performance, demonstrating the need for high bandwidth current tracking to
eliminate torque ripple. Thus, an advance current source inverter and PWM
scheme are integral to achieving a low ripple drive system.

7.3 Future Work

The next logical step is the experimental implementation of the system
described in this thesis document. Both the adaptive torque ripple reduction
algorithm(Chapter 3) and the model reference PWM scheme(Chapter 4) are
most easily implemented in software requiring that a micro-processor based
test-bed be used.
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