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Abstract
Modern robust control techniques require a description of the uncertainty in the

plant to be controlled. For lightly damped structures, the most appropriate descrip-
tion of the uncertainty is in terms of interval ranges for parameters such as natural
frequencies and damping ratios. What is desired is an algorithm which can determine
such interval ranges from noisy transfer function measurements using set membership
identification techniques. We begin with a parameterization of the structural model
which is numerically stable. However, because the parameterization is nonlinear, this
will result in a set of nonlinear optimization problems. Our approach is to embed
these problems into a set of convex optimization problems. The added conservatism
of the embedding can be made arbitrarily small for a one mode system by partitioning
the parameter space into a finite number of regions. For a multiple mode system, an
overbound on the level of conservatism can be easily measured.

We then investigate the situation when the compensator designed for our uncer-
tain system does not achieve the desired robust performance goal. The philosophy
pursued is to determine a new input to apply to the open loop system in order to
reduce the uncertainty. A new approach based upon sensitivity analysis is presented.
Using the standard upper bound to the structured singular value as our measure of
performance, we calculate the sensitivity of the performance to the size of the para-
metric uncertainty, and estimate the effect of the inputs on this uncertainty. This
information is combined to determine the input with the largest expected improve-
ment in the performance. Several examples demonstrate the ability of this procedure
to achieve the desired performance using only a small number of data points.

Thesis Supervisor: Michael Athans
Title: Professor of Electrical Engineering
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Chapter 1

Introduction

1.1 Overview

In this thesis, we examine the robust control problem from an identification point

of view. We have an unknown flexible structure, and we wish to apply robust control

techniques to guarantee a certain level of performance. The problem is to appropri-

ately model the structure so that our control methodology can achieve the desired

performance.

The problem examined in this work is aimed specifically at flexible structures.

Structures are assumed to be open loop stable. By flexible, we mean that all of its

poles are lightly damped, i.e. near the jw axis in the complex plane. The design

of a compensator which produces a desired level of performance for such a structure

is very difficult when we do not have an accurate model of the system. A high

performance control design can easily drive the system unstable when the exact pole

or zero locations are not known.

Given a set of a priori information, we must generate an appropriate model from

input-output data. Since there is noise in the system, any model we calculate will

have some inherent model uncertainty. This uncertainty needs to be quantified in

order to determine if the control design will meet the stability and performance goals.

There are two types of uncertainty for such a system, unstructured uncertainty

and parametric uncertainty. Unstructured uncertainty is always present, due to un-
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modelled dynamics. It could be argued that all the uncertainty in the system could

be modelled this way. However, this would lead to unnecessary conservatism in the

amount of uncertainty. It is more appropriate to model the uncertainty as having

a contribution due to the unmodelled dynamics, and another part which is due to

uncertainty in the parameters of the system. In this thesis, we will concentrate on

parameter uncertainty.

Since we are concerned with parameter uncertainty, the parameterization of the

model is very important. It immediately determines which parameters we would need

to identify. We would like a parameterization which is appropriate for control, yet

gives us physical insight. We would also like to work with a model which is numerically

stable. With this model and a set of input-output data, we need to identify both the

nominal parameters and the corresponding uncertainty to design robust controllers.

The discussion so far has assumed that we have a set of input-output data on

which we will model the system. The next question to examine is how we should

generate this data. We would like to be able to determine the "optimal" inputs to

the system to identify our model parameters. We define optimal as the inputs we

should apply to the system so that after the identification and control design are

complete, we have the best possible robust performance.

In order to make this a tractable problem, we need to consider the input design in

an iterative framework. We begin with a set of input-output data, identify an appro-

priate model of the system, and design a compensator. We then wish to determine

which input to apply to best improve the current system. We then collect additional

input-output data, and remodel the system. The process can then be repeated. The

question of interest is how to choose these inputs so that the robust performance of

the system is improving as much as possible at each step.

Both the question of identifying the parametric uncertainty in our system, and how

to choose inputs to improve the performance are examined in this work. Throughout,

we will stress the ability to apply these techniques to complicated systems. Subopti-

rnal techniques are developed to ensure reasonable computational requirements.
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1.2 Previous Work

A significant amount of work has been done in the field of identification. A

good example of the work done in "classical" identification is Ljung [36]. This book

describes in some detail the importance of having a model which is identifiable, i.e. a

model for which two different sets of parameters yield two different systems. It also

covers least squares identification of autoregressive type models. However, it does not

cover identification for control, nor the appropriate models for control.

There have been several identification methods specifically designed for structures.

One of the most popular is the Eigensystem Realization Algorithm (ERA) [29],[30].

The basic idea is to create the Hankel Matrix based upon impulse response data.

The impulse response data is typically determined from measured frequency response

data. From the Hankel matrix, a realization can be found. Methods based upon the

Hankel matrix can be traced back to Ho and Kalman [27], and to Silverman [51]. A

more general theory was presented by Akaike in [1]. In these methods, the Hankel

matrix is factored to produce a minimal state space description.

Similar methods to ERA are the Q-Markov technique [35], and the Observability

Range Subspace Extraction [34]. In Q-Markov, the first Q Markov parameters of a

system driven by white noise are matched exactly. From these Markov parameters, a

stochastic version of the Hankel matrix can be determined. ORSE is a generalization

of both ERA and Q-Markov. ORSE can use arbitrary inputs, as long as the structure

is sufficiently excited.

One of the inherent problems with these approaches is that they typically require

us to compute the pseudoinverse of a very large matrix. For lightly damped systems,

this matrix can become ill-conditioned. One method to avoid these problems is given

in [31]. Here, instead of identifying the actual Markov parameters of the system,

we identify the Markov parameters of an observer of the system, with poles at any

location we choose. We then determine what the actual Markov parameters are based

upon the observer Markov parameters, as well as determining the observer gain used.

A state space realization is then obtained using ERA.
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A recent method which has produced very good results is the log-least squares

algorithm [28], [50]. In this algorithm, the cost function is defined as the two-norm of

the difference between the logarithms of the data and the model. This cost function

is appropriate for systems with a large dynamic range, like a lightly damped system,

because it penalizes errors at low magnitudes (near the zeros) and errors at high

magnitudes (near the poles) similarly. The drawback to this method is that it requires

a nonlinear optimization.

So far, the methods described do not attempt to measure the uncertainty in the

system. One method which explicitly finds a bound on the error is the so-called

control-oriented system identification [25]. The goal is to determine an algorithm such

that the worst case identification error converges to zero as the number of frequency

domain data points increases and the noise decreases. In addition, a bound on the

worst case error is sought. Several papers have examined this issue in depth, among

them [2], [9], [10], [24], and [26]. Unfortunately, accuracy with this method is achieved

through increasingly higher order models. Also, the only description of uncertainty

is through the WOO bound of the error.

An approach which bounds the uncertainty in the parameters of the system is

called set membership identification. One of the earlier papers on this subject was

[18]. Here, the system is modelled as linear in the unknown parameters, with noise

which is unknown but bounded in amplitude. The goal is to find the set of all

parameters which is consistent with the bound on the noise. Since finding an exact

solution quickly becomes intractable, an algorithm is proposed which finds an ellipsoid

that bounds this "consistent" parameter region as tightly as possible. Several other

papers have been written on the subject, and other similar algorithms have been

proposed, e.g. [5]. See also surveys [12], [42], and [54]. The major drawback to this

approach is that it is limited to systems with parameters entering linearly into the

system (although there are some extensions; see for example [45]).

The model used for control design is very important. Most modern control tech-

niques require a state space model of the system. Many state space descriptions for a

given input-output model exist. In [55], the sensitivity of the poles of a system due to
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changes in parameters is studied. It is shown that although the controllable canonical

and observable canonical forms have low complexity (in terms of the number of mul-

tiplications and divisions needed for calculations with these representations), they are

very sensitive to changes in parameters. They are therefore described as "unsuitable"

models for controller design. One model which is more suitable for controller design is

a block diagonal structure. In [21], an algorithm is given to convert a model described

in terms of poles and residues into a block diagonal model. This algorithm works for

multi-input multi-output systems, and produces models which are numerically stable.

The final topic to be considered is choosing optimal inputs for identification. A

survey of the early work in this subject is found in [39]. The objectives are either

accurate determination of parameter values, or prediction. The criteria are usually

related to the Fisher information matrix. These approaches are therefore not nec-

essarily applicable to improving the robust performance of a system. Similar work

using a closed loop system is given in [37]. Here, the sensitivity of the outputs to the

parameters is minimized, which turns out to be related to the Fisher information ma-

trix. An interesting result shown in [39] is that an input consisting of a finite number

of frequencies can be found which has the same information as any other stationary

input with equal power.

Some of the more modern approaches have considered the joint identification-

control problem. In [48], it is argued that for good performance, identification and

control must be considered as a joint problem, and that an iterative scheme is needed.

This type of approach is followed in [4], where the objective is to design a controller

with the best robust performance over all plants consistent with the data. The uncer-

tainty in this case is modelled as a nonparametric bound on the additive uncertainty.

In [33], an estimator is considered for adaptive control systems. The estimator pro-

vides a nominal model and a measure of uncertainty. This uncertainty is in the form

of a magnitude bound on the modeling errors in the frequency domain.

To summarize, there has been much research into the field of identification. In

terms of identification algorithms for the purpose of designing robust controllers for

structural systems, there have been three main areas of research. There are algo-
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rithms for the identification of structures, which do not provide a measure of the

uncertainty. There is a class of algorithms which provides uncertainty in terms of

an WOO error instead of the uncertainty in parameters. Finally, there are algorithms

which determine the uncertainty in parameters, but do not provide a parameteriza-

tion which is appropriate for controlling structural systems. Clearly there is a need

for a method which combines aspects of all three of these types of approaches, and

this thesis was motivated by these considerations.

1.3 Contributions and Outline of Thesis

There are two main goals of this thesis. First, given a set of frequency domain

data from a lightly damped structure, we would like to determine a model and a

description of the uncertainty appropriate for robust control design. Furthermore,

the model should be numerically stable. It is argued that the most appropriate

description of the uncertainty is in terms of uncertainty in the parameters. Previous

work has either used models which are not appropriate for lightly damped structures,

or has not been able to determine the parametric uncertainty in the model.

The model we will use for the identification will be based upon a modal decompo-

sition of the flexible structure. This is an appropriate model for this type of system,

as shown in chapter 2. However, because it is nonlinear in the parameters, identifi-

cation of the parametric uncertainty becomes very difficult. An iterative algorithm

is introduced which can solve this problem. The algorithm uses a set of frequency

domain input-output data. This data is corrupted both by noise bounded in magni-

tude, as well as by additional uncertainty from unmodelled dynamics. The algorithm

will determine bounds on the parameters of the system by examining one mode of

the structure at a time, and iteratively reducing the uncertainty.

The second goal of this thesis is to determine a method to choose new inputs

to improve the robust performance of our closed loop system. Previous work has

examined choosing inputs to reduce parametric uncertainty, but not in a manner

which is the most appropriate for the performance of the system. Here, a new method
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for input design is introduced. The design is based upon a closed loop sensitivity

analysis. We assume that we have a specified control design methodology. We wish

to choose an input to apply to the system from a finite set of inputs. To do so, we

estimate the sensitivity of the closed loop performance measure to each of the inputs.

We then apply the input with the highest sensitivity, for this is the one which we

expect will improve the performance the most. These sensitivities must be estimated

both due to the noise, and also due to the nonlinear relationship between the inputs

and the performance. The analysis is done strictly using open loop data, as the

philosophy is to guarantee robust stability and performance before closing the loop.

A computationally efficient method to determine these sensitivities will be de-

termined. It is based upon using the chain rule to write the sensitivity in terms of

the sensitivity of the performance metric to the size of the uncertainties, and the

sensitivity of the uncertainties to the inputs. Several new techniques are introduced

for this analysis, including the -sensitivities, which determine the sensitivity of the

structured singular value to any parameter in the system.

An iterative scheme is then proposed for identification, control design, and input

design. It is seen through several examples that this algorithm can quickly improve

the robust performance of our system. It does this by choosing inputs to reduce the

parametric uncertainty in the system in a manner which is most appropriate for the

control design. Some convergence issues are examined, as are the limitations of this

approach.

It is important to note that the inputs resulting from this algorithm are not

necessarily "optimal" solutions. The nonlinear relationship between the performance,

the control design, and the identification make truly optimal solutions impossible. It

is necessary to decompose the problem into a number of separate steps in order to

avoid the complicated interrelationships present. Approximations are then required to

create a scheme with a reasonable amount of computation. The iterative methodology

presented is a heuristic approach, and few convergence results can be guaranteed.

This thesis is organized as follows. In chapter 2, several important issues are

examined. We describe the parameterization of flexible structures used in this work.

13



We also define the robust performance metric /u, and show how it is computed. We

then motivate the need for an iterative algorithm for input design, and provide some

notation which will be useful in the derivations.

In chapter 3, we derive the identification algorithm. The algorithm proceeds by

reducing our system to a set of one mode problems. To determine the parametric

uncertainty, a set of convex optimization problems are solved. The conservatism of

the approach is analyzed, and a method to reduce the conservatism is outlined.

In chapter 4, we introduce the methodology to determine the next input to apply

to our system through sensitivity analysis. In this chapter, the computational aspects

of the method are stressed. The convergence issues of this approach in an iterative

scheme are examined in chapter 5.

Several examples of the algorithms introduced are shown in chapter 6. The first

examples show the ability of the identification algorithm to determine accurate pa-

rameter intervals from a very small amount of data. We then examine in detail the

ability of the input design algorithm to intelligently choose inputs which improve the

guaranteed performance of the system.

Finally in chapter 7, we will summarize the results presented, and discuss some

avenues for future work.

14



Chapter 2

Preliminaries

In this chapter, several key elements of the problems to be addressed are intro-

duced, and some notation is defined. We begin by looking at system parameteriza-

tion, and how it relates to flexible structures. A numerically stable representation

is described. It is this model which will be used in chapter 3 for the identification

algorithm. We restrict the discussion to single-input single-output systems. Some

issues with multiple-input multiple-output systems are addressed in appendix A.

In section 2.2, we will define the measure of robust performance to be used in this

work, and show how it can be calculated. We then motivate and discuss iterative

algorithms in the framework introduced. Some notation is introduced which will ease

the presentation in chapters 4 and 5.

2.1 Parameterization of Flexible Structures

A lightly damped system is most easily described in terms of its modes. Each

mode is a pair of complex conjugate, lightly damped poles, and can be represented

in the form

Ti (S)
Gi (s) S2 + 24ihts +w Wi2 (2.1)

where ri(s) is the residue of the it h mode, wi is its natural frequency, and (i is its
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damping ratio. We can write ri(s) as a first order term:

ri(s) = blis + boi (2.2)

Since the system can be written as a sum of these terms, we can write the system

G(s) as
n

G(s) = E Gi(s)
i=1

(2.3)

In [21], a method for creating a state space description from this particular pa-

rameterization is given. The resulting system is a block diagonal system, given by

xt(t) = Ax(t) + Bu(t) (2.4)

A = blockdiag(A,..., A,);

Here, Bi and Ci are determined by

y(t) = Cx(t)

B1

th= i i

the algorithm in [21], and Ai is given by

0 1

-w ? -2w(i ]
(2.7)

For single-input single-output systems, without loss in generality, we can choose

(2.8)

This state space description is easy to compute once we have a frequency descrip-

tion of the model. Furthermore, it allows us to use the physical parameters wi and i

directly in the model. The model is therefore parameterized in terms of these physical

parameters, and also the residues of the system. The block diagonal structure makes

this description numerically stable, i.e. not sensitive to changes in the parameters.

16
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For single-input single-output systems, this description immediately lets us incor-

porate uncertainty in the parameters directly into the system. Assuming we have

identified uncertainty in all the terms in Gi(s), we can write

Ai,true = Ai +[ (2.9)
li 62i

Ci,true = Ci + [ 3i ] (2.10)

Here, 61i is the uncertainty in w2, 6 2i is the uncertainty in 2(iwi, 63i is the uncertainty

in boi, and 64i is the uncertainty in bli. Notice that we are not directly determining

uncertainty in the structural parameters such as stiffness and damping parameters,

but rather in the coefficients of characteristic polynomials for each term. As it turns

out, this is a convenient description which we use at the expense of some physical

insight.

2.2 The Mixed Problem

The underlying goal of this work is to be able to design a compensator for a

flexible structure. The compensator needs to guarantee the stability of the structure,

and also that we have met certain performance goals. Furthermore, we need to make

these guarantees even in the face of uncertainty. In this section, we will describe an

appropriate measure of robust performance. We will use the standard upper bound

to mixed , defined in [57].

We consider the system shown in figure 2-1. In this system M represents the

stable closed loop nominal system including the nominal plant and the compensator,

and A represents the uncertainty in the system. This uncertainty includes para-

metric uncertainty, unstructured uncertainty (unmodelled dynamics), and fictitious

uncertainty used to transform the robust performance problem into a robust stability

problem (see, for example, [16]). The system is normalized so that IIAlloo < 1.

We will limit our discussion here to where the uncertainty consists of nonrepeated

17



w

Figure 2-1: Standard M-A system

parametric uncertainty, and scalar unstructured uncertainty. This is done for nota-

tional simplicity, and is sufficient for the problem considered in this research. As seen

in section 2.1, the parametric uncertainty enters in a nonrepeated fashion. Also, since

we restrict ourselves to single-input single-output systems, the unstructured uncer-

tainty is scalar. For a more general description, see [57] and the references therein.

The A block therefore consists of these scalar uncertainties. We will order our un-

certainties so that all of the parametric (real) uncertainties are first. The uncertainty

block will therefore have the structure of the following set.

A = a = diag(6l,..., 6p, +...q): i E , i = 1,...,p; i E C i = p + ,...,q

(2.11)

Any robust performance question can be recast into the above "M-A" form. The

structured singular value now indicates whether or not we have met robust stability

and performance. It is defined at a particular frequency as follows.

Definition 2.1

/I(M(w))= (inf {f(A) : det(I- M())A) = o}) (2.12)

with ,u(M(w)) = 0 if there is no A E A such that det(I - M(w)A) = 0.

l is calculated in this manner for each frequency point. It is a necessary and

sufficient condition for the robust stability and performance of our loop, in the sense

that < 1 for all frequencies if and only if we have met the robust stability and

18



performance specifications. However, it is very difficult to compute At exactly. Instead,

we compute an upper bound . This upper bound provides a sufficient condition for

robust stability and performance in the sense that t < 1 for all frequencies guarantees

robust stability and performance.

We can find an upper bound to following [58]. To find an upper bound, we need

to define two different types of scaling matrices, the "D-scales", and the "G-scales".

For our problem, they are defined by

D = {diag(d, ... , dq) :O < di E Z} (2.13)

= diag(gl, ..., gp, O, ... , 0): gi E R} (2.14)

Now, an upper bound over all frequencies is given by the following definition.

Definition 2.2

P(M) = suP inf [min {/: A(M(w)MD(w) + j(GMD(w) M (w)G)) < 32}]

(2.15)

where MD(w) g DM(w)D - , and A(X) denotes the maximum eigenvalue of X.

This upper bound will be our measure of robust performance. The goal is therefore

to determine a model of our system, and design a compensator so that is less than

1. Pi can be computed as discussed in [58], and is available as a Matlab toolbox [3].

An alternate definition to l can be found in [58], and is presented in the following

lemma. The proof can be found in [58].

Lemma 2.1 An alternate definition to i is the following.

A(M) = sup inf [min { 'B: M(w)DM(w)+ j(GM(w)- M*(w)G) < 2D}]
w DD,GEg /3_0 

(2.16)

Before leaving the discussion on Pt, we will present a result which will be useful in

this work. This result shows us that if the size of one of our uncertainties decreases
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while everything else remains fixed (i.e. the nominal model and the compensator),

then fT will be less than or equal to the value of fi before the uncertainty decreased.

We can represent the system with the uncertainty in the jth parameter reduced by a

factor of (1 - e)2 as in figure 2-2.

Figure 2-2: M-A system with a decrease in the uncertainty represented by A.

In the figure, A = diag(l1, 1,..., 1, 1- , 1,..., 1); that is a matrix with ones on

the diagonal except for a 1- e in the (j, j) position. We will assume < 1. This

represents reducing the uncertainty in the jth parameter by a factor (1- )2. That is,

ISj < (1 - )2, which indicates the uncertainty in this parameter has decreased from

the normalized value Ij[ < 1. In order to recalculate T, we need to renormalize the

uncertainty. To do so, we could include the perturbation as part of M, and compute

Tt(AMA). It should be noted that we consider the decrease in a balanced framework

(i.e. the matrix A both premultiplies and postmultiplies M) because it tends to be

more numerically stable.

With this notation, we now have the following result.

Lemma 2.2 Pointwise in frequency, (AMA) < I(M).

Proof: We begin by using the alternate expression for i in lemma 2.1. If we

let M represent the closed loop system at a particular frequency, then (M) at this

frequency can be calculated as follows.

/(M) = Dinf [min {: M*DM + j(GM - M*G) < 32D}] (2.17)DE-D,GC9 [3 l_0

20



Assume therefore that there is a D E D and G E g such that

M*DM + j(GM - M*G) < 2D

Let us define the following scaled matrices.

D A-1 DA-1 G = AGA - 1

From the definition of A, it is clear that D E D and G E 5. Furthermore, by the

structure of G and A, AGA- 1 = A- 1 GA. Substituting these quantities, we have

M*ADAM + j(A-1GAM - M*AGA- 1) < P2ADA (2.20)

We will not change the sign definiteness of the expression by premultiply and post-

multiply the expression by A, since A is diagonal and positive definite. We therefore

get the following result.

AM*ADAMA + j(GAMA - AM*AG) < p 2A2DA2

< P2D

Thus T(M) <• =X m(AMA) < 3. ·

2.3 Philosophy Behind the Iterative Scheme

It is clear that for our measure of robust performance to be meaningful we need

both a model of the system as well as a description of the uncertainty. A method to

determine parametric uncertainty for flexible structures will be derived in chapter 3.

Based upon this model, we can design a compensator, and then determine if we have

met our robust performance goals using . The question we would like to consider is:

what should we do if we have not met our goals?
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There are several steps in the design process where we could try to improve on our

current robustness guarantees. For instance, we could try to redesign the compensator

to improve our performance, by either changing weighting functions, or using a new

design methodology. In this work, we will consider this redesign to be part of the

design procedure. The control design may therefore be iterative in nature, and may

involve some tuning. The resulting compensator is considered to be the best design

using the control methodology under consideration.

We must therefore improve the model in order to improve our robustness guaran-

tees. In this work, the approach will be to choose a new input to apply to the system

in order to collect more data. With this new data, we use the identification algorithm

to determine a better model of the system, and redesign the compensator. We would

like to choose an input which will help improve our performance as much as possible.

In this type of framework, it is necessary to use an iterative scheme. The identified

model of the system is clearly a function of the inputs we have already applied to the

system. However, we wish to choose the inputs based upon the performance measure.

Since we can not determine the performance without a model of the system and a

compensator, the inputs are necessarily a function of our model. We are therefore

unable to choose the optimal inputs a priori. A good input for one model is not

necessarily a good input for another model. The input we choose must be a function

of our current model.

In general we must design the inputs based upon the closed loop system, but our

understanding of the closed loop system is based upon the inputs we have chosen.

We therefore proceed by using an iterative scheme. Details on the steps of such a

scheme will be introduced in the next section, when we define some notation which

will be useful to us later.

2.4 Notation

Let us now define some general notation, and outline the steps in the iterative

scheme. We will assume that the system has p unknown parameters, which we will
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write as a vector 0 RP. In the identification scheme, we will identify upper and

lower bounds for the parameters. These will be denoted as 0, and respectively.

Thus, we will have the following relationship.

O < < (2.24)

The midpoint of the uncertainty intervals will be denoted , which is determined in

a straightforward manner as follows.

1(O + (2.25)
2

At times it will be useful to refer to all of the bounds in one vector. We will define

the vector X E 7Z 2p by writing

= _ (2.26)

The parametric uncertainty in the system will be denoted by d. It is calculated as

follows.

= - _O (2.27)

When referring to a particular element of a vector, we will use a subscript. For

instance, the jth element of d will be written as j. Also, since we are using an iterative

algorithm, we will need an iteration index. This will be done using a superscript. For

example, at the kt h iteration, the current bounds are written as Ok.

We will assume that our model structure is fixed, and that we have a set bound

on the effects of the unmodelled dynamics in the system. Modulo this, we are left

with the bounds as completely describing the current model. We will refer to as

being the current model of the system, including the nominal model and parametric

uncertainty.

Since the model structure is assumed to be fixed, we can consider the goal of the

identification algorithm to be determining upper and lower bounds on the parameters

0. We will assulme that for the kth iteration we have collected Nk data points from the
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open loop system. Since we are using frequency domain data, this data is complex.

The identification algorithm is viewed as a map h : R2p X CN k -+ 1 2 p

~0+1 = h(qk, yk) (2.28)

where yk is the data at the kth iteration.

After determining the model of the system, we will design a compensator. We will

represent the control design as a map from our parameter space to the compensator.

Ck = f (k) (2.29)

In general, there may be some weighting functions that could be used in the control

design to tune the compensator to the particular model under consideration. In this

work, we will consider the weights or any other tuning of the compensator as part of

the map f.

Our performance will be based upon our model of the closed loop system. The

nominal system is chosen to be the closed loop system with the parameters 0, with the

uncertainty 6. We will represent this model in one of two ways. We will typically write

it as a function of the bounds 0 and the compensator C. Thus, at the kth iteration, we

will represent the closed loop system as M(k, Ck). Here, the fact that the nominal

system is at the midpoint of the bounds is implicit. However, sometimes we will want

tlo emphasize the difference between the nominal model and the uncertainty. In this

case, we will write the closed loop system as M(Ok, 6 k, Ck).

Finally, we note that we will drop all arguments when it will cause no confusion.

The steps in the iterative algorithm are therefore the following. We begin with

a set of transfer function data from our flexible structure. Using the algorithm to

be introduced in chapter 3, we determine a nominal model, and the corresponding

parametric uncertainty.

A compensator is then designed based upon this model. In this research, the

control design methodology is not specified. Any methodology could be used, and it

is expected that this may include tuning of frequency weights or using engineering
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judgment to determine an appropriate compensator.

Finally, we can evaluate fT, and see if we have met our robust performance goals.

If not, we choose an input to the open loop system to help improve our robustness

guarantees as much as possible. Note that this is not necessarily the input which

reduces the uncertainty as much as possible (measured by some norm). In this respect,

the philosophy of this approach is different from previous work.

Finally, with the new data collected, we can update our model and redesign the

compensator.

2.5 Summary

To summarize, we will outline the steps needed for designing a compensator with

the philosophy presented here. This outline will serve as a roadmap for the algorithms

presented.

1. Determine the inputs for the initial experiment, and measure the data y0. Let

k = 1, and let q° denote our a priori knowledge of the parameters.

2. Determine the model Ok = h(q k - l , yk-l). Essentially, we need to determine the

upper and lower bounds to the parameters of a flexible structure. This is done

in chapter 3.

3. Design the compensator Ck = f (k). We do not specify the control methodol-

ogy, as the choice is made based upon performance goals, computational limi-

tations, and other engineering considerations.

4. If T(M(bk, Ck)) < 1, then stop.

5. Determine the next input to apply to the open loop system, using a sensitivity

analysis. This is done in chapters 4 and 5.

6. Set k = k + 1, and go to step 2.
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Chapter 3

Set Membership Identification of

Lightly Damped Systems

In this chapter, we examine the problem of determining uncertainty intervals for

the parameters in the model described in section 2.1. Set membership identification

techniques are adapted to the case where the parameters are not linear in the data.

An iterative algorithm is derived which guarantees the set of all plants consistent

with the data and our a priori knowledge is contained in our uncertainty description.

The conservatism of the algorithm is examined, and ways to reduce the conservatism

are discussed.

3.1 Set Membership Identification

We begin with an introduction to set membership identification. Various methods

to solve the standard set membership identification problem are discussed. These

methods will be extended in later sections for our problem.
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3.1.1 The Standard Problem

The basic assumptions in set membership identification are as follows. We have a

single-input single-output system described by

Yk = 0TXk + Wk; k = 1, 2,... (3.1)

where 0 T = [ 01, 02, , , p ] is the vector of unknown parameters. Typically, Xk

consists of past inputs and outputs, i.e. XT = [ Yk-1, . . Yk-m, Uk, . ., Uk-l ]

with p = m + I - 1. However, any Xk and Yk which satisfies equation (3.1) is valid.

{Wk} is a noise sequence which is bounded by

[wk < rk; rk > ; k = 1,2,... (3.2)

Notice that with our assumption on the noise, equation (3.1) is equivalent to

IYk- OTXkI < rk k = 1, 2,... (3.3)

Following the discussion in [18], the goal is to find the set of parameters 6* which

is consistent with these equations. When we have k data points, this set eO is the

one given by
k

) = fn {0: (y, - OTX) 2 < r 0 E tR} (3.4)
i=l

Finding this set (.- is very difficult due to the large amount of information at each step,

and the complexity of the resulting set. Thus, we would like to find an overbounding

set Ok such that

ek C ek (3.5)

We would like this set Ok to be simple computationally, while overbounding as

"tightly" as possible.

To visualize the problem, note that equation (3.3) summarizes all of the informa-

tion available from a given data point. In parameter space, this is the area between

two hyperplanes. Thus, the set of parameters consistent with all of the data points
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Figure 3-1: Information from a single data point, and the exact set of consistent
parameters from three data points (shaded area).

is the set of parameters in the intersection of all of these hyperplanes. See figure 3-1.

There are many ways to attack this problem. Over the years, researchers have

developed algorithms to outerbound the set of feasible parameters. One of the first

such methods, described in [18], finds an ellipsoid which contains the set of feasible

parameters. As we obtain more data, the ellipsoid is recursively updated. The advan-

tage of this type of approach is that as we get more data, it is computationally very

simple to update our set. The disadvantage is that it can be conservative, because

not only can the ellipsoid bound be poor, but also because we only use one data point

for each update. See [5], [11], [41], [44], [46], and [54] for modifications to the basic

algorithm of [18] which attempt to reduce this conservatism.

Another common method is to find a polytope which bounds the feasible set as

tightly as possible. This is the philosophy used in this thesis and is outlined in the

next section. The advantage of this approach is that the resulting set is typically

much less conservative. The disadvantage is that it is nonrecursive in nature, and

thus it is not as easy to update the feasible set as we collect new data.

3.1.2 Solution Through Linear Programming

A common approach to solving the set membership problem (3.3) is to bound the

feasible set EO with a polytope. A case which will be of interest to us is when we
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wish to determine independent interval ranges for each of the uncertain parameters.

Thus the question asked is what are the maximum and minimum values for each of

the uncertain parameters in our set EO of feasible parameters. This is equivalent to

finding the smallest box aligned with the parameter axes which contains the set ®~.

This problem can be cast into a linear programming problem as introduced in

[40]. We can solve the following set of problems.

Problem 3.1

i. Determine upper bounds:

max 0i

s.t. Yk - OTXk < rk k=1, 2, 3,...

2. Determine lower bounds:

min Oi

s.t. Yk -OTXkI < rk k =1, 2, 3,...

This is clearly a set of linear programs which can be solved using standard software

for the case of finite data.

3.2 Application to Lightly Damped Structures

We now introduce the set membership problem for lightly damped structures. We

will use the parameterization of section 2.1, and assume we have measured frequency

domain data. The noise free system is given by

i blis + boi(3.6)
go (S) i 2 + ails + aoi (3.6)

'We will assume that we have measured data at N frequency points wi, and that

this data is corrupted by noise bounded in magnitude.

(jw) = go(jw) + n(j) In(jw) < R(jw) (3.7)
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We will assume that we know the bound R(jw). The set membership problem in

which we are interested is to find all parameters consistent with the set of equations

g(jwi) - blkji + bok < R(jwi) i = 1,..., N (3.8)
k1 -2 + alkjwi + aOk

This is clearly a very difficult problem. The set of parameters consistent with this

eqluation is, in general, nonconvex. To solve this problem, we will first reduce the

problem into a set of single mode problems, and then examine how to solve each of

the one mode problems.

:3.2.1 Reduction to a One Mode Problem

Here we describe how to reduce our problem to a set of problems with one mode.

r1ho simplify notation, let us define

blis + boi

Si() 2 + alis + aoi 

So we can rewrite equation (3.8) for w = wi as

n

g(jw) - gi (jow) < R(jw) (3.10)

Let i be an estimate of the i t h mode, determined either by curve fitting or choos-

ing the midpoints from a priori intervals for each parameter. We will estimate the

parameters of the ith mode by subtracting out our estimates of the other modes. The

philosophy is to remove all the dynamics from the system other than those of the

itz mode. Of course, we need to take into account any possible error due to model

mismatch. Using the triangle inequality, we see

(9g(w) - E Ok(jw)) - g(jW) < R(jw) + I OIjk(jW) - k(j) ,,,m (3.11)

where Igk(jw) - gk(j) max is a bound on the maximum this term can achieve due

to the parametric uncertainty (to be described shortly). Equation (3.11) is now in
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the form of a problem with one uncertain mode, with noise bound given by the right

hand side of the inequality. We have therefore reduced the multiple mode case to a

set of single mode problems. We can solve these problems using the methods to be

outlined in the following sections. Once we have done this however, we may then be

able to reduce the bound on Igk(jw) - gk(jw)[max. So we reidentify the bounds of the

parameters in gi, and continue to iterate in this fashion until we no longer can reduce

the bounds. Thus, we get the following iterative algorithm.

Algorithm 3.1 (Multiple Mode System)

1. Determine an upper bound to I[k(jw) - gk(jw) near frequencies of all modes.

2. Solve each of the one mode set membership problems described by equation (3.11)

to get bounds on the parameters of gi for each mode i.

3. Recalculate the values of Ik(jw) - gk(jW) Imax.

4. Have the bounds on the parameters improved (more than some tolerance)? If

yes, go to step 2. If no, stop.

The result is an iterative algorithm to estimate the parameters. Several comments

need to be made. First, it should be noted that we are estimating the parameters of

each mode separately. While we do this, we are treating the errors in the other modes

as noise. To do this, we really need a new piece of a priori information: the maximum

error contribution of each mode to the overall frequency response, which we clearly

do not have a priori. Our solution to this problem is to use an upper bound to this

contribution. The algorithm is therefore most effective when this contribution can be

made small.

Let us describe how we can get such bounds. Since i(jw) is a known complex

number, and gi(.jw) contains uncertain parameters, we can use the following lemma

to derive a bound which is less conservative than the triangle inequality.
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Lemma 3.1 Assume a E R, a > O, b = Bej ; , < B < B < B, V < < ,

-27 < 0, < 2. If-7w, [, k], then,

la- bl < max{la - Bej l, la - Bej l, la -Be"I, la - Be"I}

Proof: Let us define

f(B, b) = la-Be j Vl = (a2+ B 2 - 2aB cos P) 2

Since the set of all possible values of B and 4' is compact, we have for some values

B* and O*

f(B*, *) = max f(B, )
BE[Bb] ,V)E [

(3.14)

First, if ±ir [I, ], then we have for all Ec [, V],

COS(+r) = -1 < cos(1) (3.15)

- 2aB* cos(±r) > -2aB* cos(¢) (3.16)

Thus we see that

f(B*, r) > f (B*, V)) (3.17)

Clearly, if +tr is in our allowable range, it is optimal (this is the triangle inequality).

Now, assume that -r < < < V < 7r. If O* =$ ' and 0* it, then there is

some > 0 such that

Ot '*e E [!Ž, V] (3.18)

This implies that

cos(Vp* + e) < cos('*) or cos(O* - ) < cos(*)
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Thus we have

f(B*, ?)* +- ) > f(B*, 1)*) or f(B*, g)* - e) > f(B*,, O*) (3.20)

In either case, it shows that * is not optimal. Since this is a contradiction, it must

be that V* = or * = .

Now assume that B* B and B* #: B. Thus we have that for some c > 0,

B < B* + e < B (3.21)

We have

(a2+ (B* + c)2- 2a (B* + e) cos(lb*)) -(a2+ (B*)2 - 2aB* cos(4*))

= e2 + (2B*e - 2accosop*) (3.22)

(a2+ (B* _e)2- 2a (B*-e) cos(*)) - (a2 + (B*)2 - 2aB* cos(4*))

= e2 _ (2B*E - 2accosb*) (3.23)

Thus we have

f2 (B* + e, *) - f 2(B*, ?*) > 0 or f 2(B* - e, l*) - f2(B*, 4 *) > 0 (3.24)

Since f(B, ) > 0, we have found B* is not optimal. Thus it must be true that

B* = B or B* = B. ·

In this lemma, we have assumed a C R without loss in generality, since in general

we can rotate both a and b by the phase of a. Although there is still conservatism

in this bound since we considered the magnitude and phase to be independent, this

overbound has generated accurate parameter estimates.

Using this lemma, we can determine a bound on gk(jW) - gk(jw)lma.z Using a

priori bounds on the parameters alk, ak, blk, and bk, it is straightforward to bound
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the magnitude and phase of k(jw). If ±7r e [, lp], then we use the triangle inequality.

Otherwise, we apply lemma 3.1. Initially the a priori information may be very poor,

so instead we can use a suitable constant determined through engineering judgment.

Since the system is lightly damped, this value is typically small near the natural

frequencies of other modes. We will consider the amount our upper bound adds to

the noise level an indication of the conservatism added due to mismatch in other

modes. Although it can only be reduced through iteration, it is easy to measure the

conservatism introduced in this process.

3.2.2 Embedding a One Mode Problem into a Convex Space

Let us now consider the set membership problem when we have a one mode system.

We have now reduced the problem to one of the form

g(jwi) - + aljwi + bo < E(jwi) i= 1,...,N (3.25)

Here, E(jwi) is the bound on the noise plus the bound on the errors in other modes.

This is still a difficult problem because the set of feasible parameters is not, in general,

a convex set. We will proceed by embedding the feasible set into a convex set. To

do this, we will assume that we have a priori upper and lower bounds on the natural

frequency w, and an upper bound on the damping ratio (. Since a = 2 and

al = 2n, these bounds give us upper and lower bounds on ao and an upper bound

on al.

We can rewrite our set-membership equations (3.25) by multiplying through by

the denominator. We then overbound the right hand side of the equation as follows.

g(jWi)(-w2 + aijwi + ao) - (bljwi + bo) < I- w + ajwi ao E(wi )

< max i - wi + aljwi + ao E(wi)
ao,al

-- max - w2 aljwi + aoIE(wi)
aoE {ao(oao

C(wi) (3.26)
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This equation can be rewritten in the form xTQx < C2 , where

al

a0 - w2
2

b0

9R+gz 0 _ .R gi
W2 0 w2 W3

2 2
gR+g - gi _ 9R

_ R - i 1 0
,2 W

3
w

2
0 -W4 W3 49i -3 W2

3 W4 W4

(3.27)

where gR = Real(g(jwi)), gI = Imag(g(jwi)), w = wi, and C = C(wi).

Since each equation describes an ellipsoid, the set of parameters consistent with

equation (3.26) is the intersection of N ellipsoids. Since the intersection of a finite

number of convex sets is itself convex, we have found a convex set which contains the

feasible set.

It is important to understand the significance of overbounding the set of feasible

parameters with a set which is larger. We desire an overbounding set because we wish

to ensure that the true feasible set is contained in our parameter intervals. We desire

a convex set because, as will be shown, it is straightforward to determine interval

ranges for a convex set.

With these convex feasible sets, it is fairly easy to determine corresponding pa-

rameter ranges. We need to solve the following set of problems.

Problem 3.2

1. Determine upper bounds:

max i

s.t. 0 satisfies equation (3.26) i = 1, ..., N

0-= al ao b bo]

2. Determine lower bounds:

min Oi

s.t. 0 satisfies equation (3.26) i = 1, ..., N

= [ al ao b bo
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Since this is a convex programming problem, it is considered a solved problem.

For instance, it is possible to recast this problem using linear matrix inequalities [7].

It can then be solved using the software described in [20], [43].

Notice that once we have solved this problem, we may have tighter bounds on a0

and a. We could then determine a tighter bound C(wi) in equation (3.26). With

a tighter bound, we could then resolve the convex programming problems. We thus

have the following algorithm.

Algorithm 3.2 (Set Membership ID for a Single Mode System)

1. Estimate w,, C (

2. Calculate the bound C(w).

3. Use convex programming to find the smallest axis-aligned box containing the set

of parameters consistent with equation (3.26), for i = 1, ..., N.

4. Have the bounds on Wn and improved (more than some tolerance)? If yes, go

to step 2. If no, stop.

3.2.3 Reducing the Conservatism

We now analyze the conservatism of the one mode problem. If we divide equation

(3.26) by - w2 + ajwi + aol, we see that we have solved for the set of parameters

consistent with the following equation

maxaoe{oao} -w 1jw i aobljwi + bo ai aji + aoIg(jwi) - 2 <ajwj + ao - E(jwi) (3.28)
+ aljwi + aoI-w + aljwi + aol

Let us define the "ratio of conservatism" due to the embedding as

A m ax aoe{a,ao} - + lji + ao0 (3.29)? max >1 (3.29)i-,...,N l-Wi + aljwi + aol

Let us discuss exactly what this ratio means. Let us assume we have a candidate

value of the parameter vector [a1, ao, b, bo]T. Let us assume that it is not a feasible
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value, but it is included in our convex set. Thus at some wi,

b1jwi + bo max ao{o,_} I-w + aljwi + ao
E(j'w) < g(jwc) - _% + ljw_ + ao < E(jwi)-wi ± ajw + ao -w + aljwi + aol

(3.30)

In the denominator on the right hand side, the values of al and ao used are

our candidate values, while the numerator contains the value which maximizes the

expression. The conservatism ratio y is an indication of how conservative our bound

is. y is always greater than or equal to one, and as y gets closer to one, the box which

results from our optimization gets closer to the optimal box around the nonconvex

region. Clearly we would like to make -y small.

What we will now do is show how to guarantee y is as small as we desire. To do

so, we need to make the following assumption.

Assumption 3.1 The lower bound on al, a, is greater than 0.

With our assumptions on the plant (i.e. strictly stable), this assumption is not an

unreasonable one. Physically, this amounts to saying each mode has some damping.

In fact, even if we initially assume that the lower bound is 0, the lower bound will in

general become nonzero after a few iterations of algorithm 3.2.

To reduce the ratio of conservatism, we first need the following lemma.

Lemma 3.2 Given 6 > 'o, 6 > 1. Then

maXaoc[o,o],al[j,S1] -W 2 + aljw + a 
<6 (3.31)

minaoE[oaoo]l,ae[all] - W2 + aljw + aol

for all w > 0 if the following two inequalities hold

(al) 6 < 2 ()(20 ao (3.32)

( (al) )< ° ((o) 62 -_ _)) (3.33)
a, !ao -aO
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Proof: Let us first determine the maximum and minimum values of the term

- w 2 + ajw + ao I as a function of frequency. It is straightforward to see

max - _ 2 + aljw+aol =
al [a ,al],aoE[0 ,a]

min -w2 +aljw+aol =
0a L[a 1 ,dl],aoE [ 0 ,ao] 

[(ao - W2)2 + (aW)2]2

[(ao - w2)2 + (alw)2] 2

[(ao- W2)2 + (alW)2] 2

a1w
[(a -W2)2 + (aW)2]21(do- _ 2)2+ (aU)2]2

W2 < agO+aO
2 (3.34)

W2 > +o-- 2

22 < ao

a_ < 2 < o
02 > o

(3.35)

To satisfy equation (3.31), we thus need to satisfy the following equations.

(ao - w 2)2 + (lUw) 2 <

(do - 2)2 + (w) 2 <

(ao - 2)2 + (w) 2 <

((a0 - W2)2 + ( 1W)2 <

62 ((ao -

62 (alw)2

62 (al) 2

62 ((Zl -

W2) 2 + (a 1 0W)2 )

W2)2 + (alW)2)

W2 < a O

2 22O < w2 < 2 W2 < aO
W2 > O

Rearranging, we see that we need to satisfy the following set of inequalities.

62( w)

6( aJ w)2
62 (X _ W)2

i W 2< ao

%aO < w2 < o+o

w2 > o

Notice that in this expression we are looking over all positive frequencies. Our goal

is therefore to find the frequency at which the right hand side of this expression is

minimized, and check that the inequality (3.31) holds at this frequency.

Let us define the following functions for ease of notation.

(3.38)

38

(3.36)

a2 - 62a2 <_di a, (3.37)

_ ( no _ '; ) 2
W

_ (a _ )2
W

f, (W) = ( -_ W
f~~)=a( )W W



f2(w) = ( (3.39)

f3(w) =-( -/W) (3.40)

f4(W) = 62 ) _ (oW) (3.41)

Let us first consider the middle two equations. They are of the form

f23(W) = _ (3.42)

Notice that this is a concave function. Thus, it is minimized at one of the endpoints.

For each inequality, we need to check both endpoints to find the minimizing value.

WVe see that;

f2 (Va) = (ao -) 2 < 2( ) (ao ao)2 = f2 ao) (3.43)
Io - 2 <o - ao) 2

f3 (.a) =- (ao - 0ao)2 < _ I - (oao-) 2 = f3 ao ) (3.44)
-do - 2 (0o + ao) 2

Thus we see that .f2 is minimized at w = /i and f3 is minimized at w = v/o. Since

f2 (V) = fl (/do), and f3(V/) = f4 (V), we see that the appropriate inequalities

for f2 and f3 will be met if the inequalities for fi and f4 are met. Thus, we will focus

on these two inequalities.

Let us first consider fi. Differentiating with respect to w and setting equal to

zero, we find that there is a unique stationary point over all w > 0 at

2w1 2 ao (G)2 (3.45)

Notice that this is well defined by our assumptions on 6. Also notice that this sta-

tionary point w1 satisfies w2 < a, so that this frequency point is in the acceptable
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range for fl. To see that this stationary point is actually the minimizing point for fi,

we use that fact that wl is the unique stationary point and

lim fi (W) = (3.46)
w-+0

lim f () = o0 (3.47)

Evaluating f(wl), we get the right hand side of equation (3.32). Thus (3.32)

guarantees that our inequalities are satisfied for f and f2.

Following the same steps for f4 , we find that the minimum value of f4 is the right

hand side of equation (3.33). Thus (3.33) guarantees that our inequalities are satisfied

for f3 and f4.

In general we must check both the inequalities (3.32) and (3.33) since either one

could be the binding constraint, depending upon the problem. U

What this lemma indicates is that we can find a bound 6 on the ratio of conser-

vatism if we are given upper and lower bounds on ao and al. It is interesting to note

that in the lemma, it is the ratios al and o which are important. In order to make

the ratio of conservatism small, what we will do is to split up the parameter space

into different regions where these ratios are small. To see how this is done, see figure

3-2.

a,

- n-,

Figure 3-2: Splitting the parameter space into a finite number of regions.

In general, we will split the a priori bounds for a into no regions and the a priori

bounds for al into n regions. In each of the regions we will keep the ratio of the
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upper bound to lower bound for each parameter constant. We can then solve the

set membership problem where we restrict ao and al to each region. In each region,

we determine the bound C(jwi) in equation (3.26). We also restrict our search over

parameters to the region where al and a0 are in the partition. To combine the results,

we simply take the maximum and minimum values found for each parameter over all

partitions.

We are thus solving non problems. First, we must show that for any > 1, there

are a finite number of partitions needed to guarantee that the ratio of conservatism

is less that 6. We do this with the following lemmas.

Lemma 3.3 If we partition ao into no regions and al into nl regions where in each

partition the ratio of the upper bound to lower bound is constant, then in each region

maXaoE[_,oo],alE[l,il] I - W2 + aljc + aol 
minaoe[O,o],alE[a,l] I - W 2 + aljw + ao -

if the following inequalities hold

2 (1 (a 1 2) 2g ( 2 - 62 - 2/no _ (aO) 1/)) (3.48)

(3.49)

Thus, in the kga region for a0 and the kh region for al, the ranges for ao and al are

given by

ao E [aO°-1,aoEO] (3.52)
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a E [akl-l,alekL (3.53)

Applying lemma 3.2 to this particular partition, we see that the equalities we wish

to satisfy are given by

(ale)( ()2) < 2aO/1c ( a 6 x _6 (62 - eo)) (3.54)

(ale l)2 ( (1)2) 6) 2ao6- L ( 02- 62 _ 1- (o06- 1)) (3.55)

6 > o (3.56)

Since , el > 1, we have

eko > ekO- ' (3.57)

E1k > E kl -1 (3.58)

Thus, the left hand side of the inequalities are maximized when k = n. Similarly, the

right hand side of the inequalities are minimized when k0o = 1. Thus if the inequalities

are satisfied for k = n1 and k0o = 1, then they are satisfied for all partitions.

Substituting in for ko0, k, and using the definitions for e0 and el, we recover the

desired result. e

We now show that given 6 > 1, there is always at least one feasible way to partition

our parameter region with a finite number of partitions.

Lemma 3.4 Given > 1, 0 < a < ao, 0 < al < al, then one feasible partitioning

is given by
log(di) - log(al) (3.59)lo (3.59)log(6)

=min{2 ((_1) 62 1) v2 } (3.60)

no max 2(log( ao) - log(o)- log() (3.61)
-r w hog t62(62 _1)_(2 _1_)2 log (e +62 (3.1)62_ 1 ws

Proof: First, we will show that the right hand sides of equations (3.48) and
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(3.49) are both increasing functions of no. Let us define the function

f(r) = (2 _ 1)1(62 - r2) _ (2 _ r) (3.62)

The first derivative of this function is given by

af(r) _ (62 1) 2(62 r2) r+ 1 (3.63)
Or

For r> 1,

(62 1) (62 _ r2)2 > 1 (3.64)

Thus the first derivative of f(r) is negative for all r > 1. We will use f(r) with r

defined by the following.

ra / =>1 (3.65)

As no increases, 7' decreases. Since the derivative of f (r) with respect to r is negative,

as r decreases, f (r) increases. This shows that the right hand side of equation (3.48)

is an increasing function of n o. Furthermore, we have

1 d( )2o) 2 o( (_ )l/ o (3.66)io 62 2 62 - = 0 (3.66)

Thus we see the right hand side of equation (3.48) is always nonpositive.

The same properties hold for the right hand side of equation (3.49), and can be

shown in exactly the same way. Thus, we have shown that the right hand side of our

inequalities are negative. For the inequalities to hold, we need the left hand sides to

be negative as well. This will be true if we choose

1log(1)- log(a1 )
ni > (3.67)

log(i)

Notice that n is well defined since > 1.
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With the definition of e, it is clear that we need a no such that

1 ( (o)2/no)2 ( ( 2/ao) (3.68)
ao - /_

< 2 62 _ 1 62 (3.69)

Such a no exists since the right hand sides are increasing functions of no, and become

O as no -+ o. Straightforward manipulation confirms that choosing no as in the

lemma satisfies these bounds. It should be noted that the value of no is well defined

by allowing e to be no larger than (62 - 1). ·

Given 6, let us call a partition (no, nl) feasible if equations (3.48)--(3.50) hold. In

order to have the least number of partitions, we would like to minimize the product

non, over all feasible partitions. Given that there is a feasible solution, this can be

done with a brute force search method. This search is made easier using the following

facts, which are a direct result of the previous lemmas.

Corollary 3.1

1. If (no, n1 ) are feasible for 61 > 1, then they are also feasible for any 62 where

62 > 61 

2. If (no, ni) are infeasible for 61 > 1, then they are also infeasible for any 62 where

62 < 61.

3. If (no, nl) are feasible for 6 > 1, then so are (k0, k) where ko > no and k > nl.

4. If (no, n1 ) are infeasible for 6 > 1, then so are (ko, k1) where ko < no and

kl < nl .

In summary, we have shown that we can embed our problem into a problem

which is convex. The added conservatism due to this embedding can be made smaller

than any specified value by partitioning the a priori bounds into a finite number of

partitions.
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3.3 Summary of the Parameter Identification Al-

gorithm

Based upon the results presented in this chapter, we can summarize the steps in

the parametric identification as follows. We use algorithm 3.1 to generate parameter

intervals. In step 2, we can specify a desired level of conservatism due to embedding

the one mode problem into a convex space. We determine the appropriate partitioning

of the parameter space, and apply algorithm 3.2 to each partition. In order to restrict

the optimization problems to a particular partition, we include the following convex

constraints in the optimization.

ao(ko) < ao < o0(ko) al(kl) < al < al(kl) (3.70)

where a(ko) and ao(ko) are the lower and upper bounds to the k h partition for ao,

with similar notation for al. To combine the results from these optimization problems,

we find the upper and lower bounds to each parameter over all partitions.

A block diagram of this algorithm is shown in figure 3-3.

3.4 Summary

This chapter has solved the main identification problem addressed in this thesis.

We are given a set of frequency domain data for a lightly damped structure. We

have parameterized the system in a fashion which is numerically stable. We would

like to determine interval ranges for each of the parameters such that the true system

is guaranteed to lie within the interval ranges given our a priori assumptions on the

noise.

This problem can be contrasted with previous work in that we are assuming a

large amount of a, priori information. We know the order of the system, and a priori

bounds on the natural frequency and damping ratio of each mode. Unfortunately,

this also leads to a problem which is nonconvex.
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START

Determine an upper bound to
Mk(jW) -gk(jW) k n

Create n single mode problems
given by equation (3.11)

Specify bound on conservatism
due to embedding into convex space

Determine appropriate partitioning of parameter space

For each partition, determine the bound C(w) and solve 
the set membership problems given by equation (3.26)

Has the
bound C(wi) 
decreased

Find the upper and lower bounds
for each parameter over all partitions

Y H ave the parameter
intervals improved?

ST-OP

Figure 3-3: Block diagram of the identification algorithm.
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In order to guarantee that our intervals contain the true system, we have applied

the following procedure. First, using our knowledge that the modes are separated

in frequency, we have reduced the problem to a set of one mode problems. While

looking at each mode, we subtract the estimates of the other modes, and take into

account the possible errors as part of our noise bound. The added conservatism can be

easily measured. It is important to note that this conservatism can not necessarily be

removed through iteration. A counterexample to this type of convergence is presented

in section 6.2.1. In the example, a significant model mismatch in the first mode of

the system prevents accurate identification of the parameters of the other modes.

For each of the one mode problems, we have embedded the set of feasible pa-

rameters into a larger convex set. We determine the interval ranges using convex

programming. The added conservatism due to the embedding can be made arbitrar-

ily small by partitioning the parameter space into a finite number of regions, and

solving the convex programming problems in each region.

In summary, we have outlined a procedure to solve the problem of identifying

parametric uncertainty. The novelty of the approach was our ability to use a param-

eterization which is nonlinear in the data.
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Chapter 4

Computation of Inputs

4.1 Overview

We now begin to examine the problem of determining which input to apply to

our system in order to improve our closed loop robust performance measure as much

as possible. This is done through a sensitivity analysis. We apply the chain rule to

create two quantities we must calculate: the p-sensitivities and the expected effect

of the inputs on the uncertainties. In this chapter, these quantities will be defined,

and their computation is examined.

We consider the case when we have a finite number of choices for the next input.

For each of these choices, we would like to determine the expected improvement in

the performance measure. We can not determine the actual improvement a priori due

to the noise in the system. Instead, we would like to calculate the expected change

in performance given a specific input. This is represented as

En f\ A Iu} (4.1)

Here, £4 represents an expectation over the measurement noise and the uncertainty.

For this to have meaning, we must now make stronger assumptions on the noise.

In determining the effects of the inputs, we assume that our current nominal model

is the true system, and the errors in our model (including unmodelled dynamics) are
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considered part of the noise. Thus, one portion of the noise is a fixed but unknown

deterministic error due to this model mismatch. We will also assume that there is a

zero mean stochastic component to the noise. We will write

n(jw) = nd(jW) + n,(jw) (4.2)

The stochastic portion, n,(jw), will have a probability density function given by

p,s(n). Thus, the expectation in equation (4.1) is with respect to this probability

density function, and nd. Note that in this setting, nd can be considered the unknown

mean of the noise.

Our theory allows for several different parametric models for performance. We

assume that the system performance is defined by p variables ai. These variables

could be the size of the uncertainties of each parameter, or they could be the upper

and lower bounds to each parameter. Both of these possibilities will be examined in

more detail later.

We will apply the chain rule to equation (4.1), and use a first order approximation

as follows.

En {Al Iu} a En {AOai I u} (4.3)
i=1 Z

Notice that there are two terms we need to calculate. The first is the sensitivity of 7

with respect to the parameters ai. Essentially this tells us how 7i will change as the

parameters change. This will be explored in the next section. The other term is the

expected effect the new inputs will have on each of the parameters. For instance, if

the parameters ai represented the size of the uncertainty in each of the parameters,

this term would b:e the expected decrease in the uncertainty with each new input.

In the following sections, we will examine these quantities in more detail. We

will stress the computation of the appropriate quantities, and defer discussion of

convergence issues in the iterative framework to chapter 5.

49



4.2 /z-Sensitivities

The sensitivity of pz to a given parameter is a problem which has received con-

siderable attention. This type of analysis was first introduced in [19]. Here, the

robustness was measured using the singular values of the closed loop system, and the

sensitivities of the singular values to a perturbation in the system were determined.

Unfortunately, the maximum singular value is too conservative a measure of robust-

ness when there are real uncertain parameters. The approach was extended in [8],

where the /t-sensitivities were introduced. This is essentially the sensitivity of A to

the size of the uncertainty in the parameters. The approach taken was to approximate

the sensitivity using finite differences.

Here, a new approach to solving the -sensitivity problem is presented. Once we

have determined 7Y, the sensitivity calculation involves only an eigenvalue decompo-

sition. The calculation can thus be done more efficiently than by finite difference

aI)proximations.

4.2.1 Definitions

We consider t;he closed loop system shown in figure 2-1. We determine the measure

of robust performance of this closed loop system using the mixed p problem of section

2.2. The robust performance metric -fi is given in definition 2.2, and is repeated here

for convenience.

D = {diag(di, ... , dq) : O < di E R} (4.4)

=-' {diag(g1, ., , ..., 0): gi R} (4.5)

(M/) sup inf [min {3: (M ()MD (w) + j(GMD (w)- M (w)G)) < 32}]
w DED,GEg [_>0 

(4.6)

MD(w) DM(w)D -1 (4.7)

where M is the nominal closed loop system, and A(X) denotes the maximum eigen-

value of X.

As a practical matter, we only check the value of ft over a finite set of frequencies.
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We will thus assume that there is a finite set Q over which we determine ft. Our

robust performance measure fi can therefore be redefined as follows.

Definition 4.1

t(M) = max in f DG [On {3: (M (w)MD (w) + j(GMD(W) - M (w)G)) <32}]
(4.8)

'where MD(w) DM(w)D-1.

Let us now examine what is meant by the p sensitivities. We want to understand

how the value of P changes as a parameter in the closed loop system changes. This

parameter could. be the size of one of the uncertainties, or it could be any other

parameter which changes in a smooth fashion. This will be made more clear in the

sequel. For now, we will assume that there is a parameter , and we want to determine

the sensitivity of ft(M) around e = 0.

For notational convenience, we will write the closed loop system as M, so that

M0 = M. The problem of finding the sensitivity of ft is now clear. The sensitivity is

defined by

i(M~) (4.9)

We will examine how to calculate this quantity in the next section.

4.2.2 Calculation of the p-Sensitivities

We have restricted our calculation of t to a finite number of frequency points.

We will therefore have a finite set of points where the maximum of equation (4.8) is

achieved. The performance of the system is thus the value of ft at these frequencies,

and we would need to calculate the -sensitivities only at these frequencies. The

frequency with the smallest decrease (or largest increase) in ft as we change will

define the new value of the performance. Thus, we can calculate the It-sensitivities

at each of the frequencies where the maximum is achieved, and the L/-sensitivity is

defined as the largest.
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From this discussion, we see that we can restrict the problem to finding the ,u-

sensitivity at a particular frequency point. For notational convenience, we will assume

that Me is a fixed matrix, and not a function of frequency. Thus, we are concerned

with the following quantity.

DeV,Ge [mi 3: (MMMDe + j(GMDe - MLeG)) < /32} (4.10)

where MDe DMD- 1.

To begin the calculation of the pt-sensitivities, we will first make an assumption

which says that we can achieve the infimum of equation (4.10). Essentially, this

implies that our problem is nondegenerate.

Assumption 4.1 For each e in a small neighborhood around zero, there exists a > 0,

and scalars di, gj such that

1
7 < di < - i= 1, ...q (4.11)

< 1- -<gj<- j-l,...,p (4.12)

D = diag(dl, ..., dq) (4.13)

G = diag(gl, ... , g, 0, ... , 0) (4.14)

(A(M,)) 2 = A(MEM-E + j(GME - ME G)) (4.15)

Thus, we have achieved the infimum at some optimal scalings D and G for each e.

We will now outline the general methodology for calculating the Ai-sensitivities.

It should be noted that results similar to those to be presented here have appeared in

[59]. However, the results in [59] were limited to the case where all the uncertainties

are complex, and the maximum eigenvalue in (4.10) is unique. As shown in [56], this

is only true when pi equals its upper bound, and thus is very restrictive.

To understand the philosophy behind the calculation of /z-sensitivities, consider
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the problem

min f(x, e) (4.16)

where f is differentiable with respect to x and , and for each the minimum is

achieved. Let x(e) be the value which achieves the global minimum, as well as a local

minimum (so the gradient at x(e) is zero). Assuming that x(e) is differentiable as a

finction of , we would like to calculate

d
ef ( ()) 6) (4.17)

The following lemma tells us how to do this.

Lemma 4.1 Assume

Vxf(x, e) = 0 (4.18)
Vof(, e) [ > 0

V2>f(x, e) ] > 0 (4.19)

Then we have
d 0
d f( (e),e) =Of(xe) z_~(, (4.20)

Proof: First, we note that equations (4.18) and (4.19) allow us to use the

Implicit Function Theorem [47] to show that x(e) is a well defined and differentiable

finction. We can therefore use the multivariable chain rule as follows.

d af(x(e))= a f(.,·)/ i + (Vxf(x, ))T - X() (4.21)

By assumption, the second term equals zero. e

To use lemma, 4.1, we let

x d= ... dq 91 ... gp (4.22)

and f(x, e) = T('IE). By assumption 4.1, the gradient with respect to the scalings of

T(M,) at the optimizing point is zero.
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Remark 4.1 In Lemma 4.1, we assumed that the hessian of f is positive definite.

For ji, this can be made true in general by setting one of the scaling elements di to be

equal to 1. We are thus excluding degenerate problems, such as when M is diagonal

and any set of scalings will achieve the minimum.

All that remains is to determine how to actually calculate the derivatives in ques-

tion. Note that we are taking the derivative of the eigenvalues of a symmetric linear

operator. We need to ensure that the derivatives of the eigenvalues and eigenvectors

exist. This is done in the following theorem, which is taken from Chapter 2 of [32].

Theorem 4.1 Let X(a) E CnX be a well defined and holomorphic function of a E 7R

in some open neighborhood B(d) of o. Let us also assume that X(o) is symmetric,

i.e. X*(a) = X(a).

1. For each a E B(-), there are functions Ai(a) E C and ui(a) E Cn , i = 1,..., n,

such that Ai(ca) is an eigenvalue of X((a) with eigenvector ui (a).

2. The matrix U(a), which has ith column ui(a), is orthonormal for each value of

a eB(a)

3. Ai(a) and ui(a), i = 1, ..., n are differentiable functions of a in B(5).

Much work exists to determine the derivatives of the eigenvalues of a matrix. See

for example [53]. Since we know that the derivatives exist, it is actually much simpler

to derive equations for the derivatives. This is given in the next theorem, whose proof

is simple linear algebra manipulations and follows the proof for singular values given

in [19].

Theorem 4.2 Let X(a) CnXl be symmetric, and let Al be an eigenvalue of X(d)

repeated m times. For a in a small open neighborhood B(i) of d, let X(a) have the

eigenvalue decomposition X(a) = U(a)A(a)U*(a) where we have

U(a) = [ U(a) U2(a) ] (4.23)
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U(a) Cnxm U2(,

A(a) = [Al(a)
O

Al(a) Cm x m

a) E Cn(n-m)

A2a)(c

A2 (a) E C(n-m)X(n-m)

Here, A1( a) = A1I. Then the derivatives of the eigenvalues A1 ((a) evaluated at a = i

are given by

a Ai(a) Oa a
= U(a)X() .(2) =

Proof: First, we note that such a eigenvalue decomposition exists because X (a)

is symmetric, and the previous theorem guarantees the existence of differentiable

eigenvalues and eigenvectors.

By the eigendecomposition, we know that

U (a)X(ao)U(a) = Ai(a) (4.28)

Taking derivatives of this equation, and evaluating at a = a gives

+ U ()x() a U (a) 
a=a

+ U1 ()x() U (c)

-= aAl(c) IN a=~~~Or- 

We use the properties that X(5)U(d) = AlIU1 ( ) and U(V)X( ) = U ()AlI to

get

A1 a U; (o) U (Y) + AlU () a U1A1'- U( (a)= _

= eAl(a) [ a=

We note that the first two terms sum to zero since

°o 9 = (U1;(a)U()) ()Of ae Q~~~~~~~~~~~~~~~~~~a~ ~
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(4.25)

(4.26)

Oa (a) =

(4.29)

+ u () a X(a) U1 (d)

(4.30)

(4.31)

(4.27)



= ~Uv(a) l()+v ()a U(a)
&9 de=1& 9,E ari

(4.32)

Thus we have

U )-X (a) u ( ) a A () 
19,E a=N

Theorem 4.3 Under the assumptions of Theorem 4.2, let V1 be any orthonormal set

of vectors which span the right eigenspace of X(5) corresponding to the maximum

eigenvalue. Then the derivatives of the eigenvalues of A1l(a) evaluated at a = 5 are

given by the eigenvalues of the matrix

V1*a X() Ia(9a a~ V1 (4.34)

Proof: Let U1 = Ul(d) E Cn X m . U1 is an orthonormal set of eigenvectors. Let

V1 Cnxm be an orthonormal set of vectors which span the same space as U1. We

will write U1 and VI in terms of their columns as follows.

U1 = [u11, ... ,um] V = [i, ... , vim]

Since U1 and V1 span the same space, there must be constants aji such that

m

Vii = E Oajiulj
j=1

(4.35)

(4.36)

Define the matrix T by

a 11

amlO'ml

*.. alm

... amm

(4.37)

We now have

V = UT (4.38)
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For V1 to be orthonormal, T must be an invertible matrix. Thus T is a similarity

transformation, and we have

Ai(/7* 9 x(a) 
I ace ac=Zi

V1) = Ai(T*UOl a X(a) U1T)

= Ai (Uia X(0a) U1) (4.39)

.

Thus we can perform the following steps in calculating the -sensitivities.

1. Let the optimal scaling matrices in (4.10) be given by D and G, and assume

that the value of f equals 3.

2. Calculate the eigenstructure of the matrix in (4.10) such that

UAU* = MgM + j(GMv- MD-G) (4.40)

Assume that the maximum eigenvalue is repeated m times, and let U1 be the

first m columns of U.

3. Define the matrix ME as above to represent the perturbation under considera-

tion.

4. Let X be the matrix calculated by

MD + a MD |
19,E E=0 j E (6a =O '9e De E(4.41)=O

(4.41)

5. The p-sensitivity is calculated by finding the largest eigenvalue of U XU1. We

find the largest eigenvalue since not all of the m eigenvalues increase at the

same rate, and we are interested in the one that increases the fastest. Since we

are interested in the sensitivity of Pi and not 2, we must also divide be 2.
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4.2.3 Application of the -Sensitivities

We will now discuss how to use the -isensitivities for our particular application.

In the preceding discussion, we assumed that we had access to a well defined function

MWE describing the closed loop effect of perturbations . For us, determining the

sensitivity of ft requires the sensitivity of the control design methodology (2.29) to

perturbations in the uncertainty. Thus, as will be discussed below, we will not be

able to determine the sensitivities exactly. Instead, we will use an approximation,

and discuss a property of the control methodology which makes this approximation

reasonable.

What we would like to determine is the sensitivity of i as the parameter bounds

change. In general, the upper bound and the lower bound will not change by the same

amount for a new data point. Thus, we would expect the midpoint of the parameter

intervals to move, and we must account for this while determining the sensitivity.

We thus are interested in the how ft changes as the bound 0j changes, and how it

changes as the bound _j changes. We can represent these perturbations as j(1 - e)

and j(l + e) respectively. More generally, we will represent this change as (e).

Using this framework, the p-sensitivity can be written as

a-i(M((e), f(q()))) | (4.42)

Notice that we must take into account the changes to the nominal closed loop system

M from both changes in the nominal plant and from changes in the compensator.

Although the changes to the nominal model are complicated, they do not pose any

conceptual difficulty, and it is straightforward to calculate these changes for a state

space description. However, we typically are unable to get an analytic expression for

the changes in the compensator due to changes in 0. When the control design includes

an iterative method to solve an optimization problem, or when the compensator

includes some sort of tuning, we are unable to determine this sensitivity.

One possible approximation is to assume that the compensator remains fixed.
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Thus, we are determining

-A(M(X(6), C)) | (4.43)

This approximation in general will be very pessimistic. We are letting the nominal

model of the system change, but not retuning the compensator to the new model.

The result is that the sensitivity analysis could easily conclude that improving the

parameter bounds would make fi worse. In order to avoid this result, we will use a

different approximation.

We will assume that as the midpoint of the parameter intervals shift, the compen-

sator is retuned so that A is approximately the same. In other words, the performance

is not changed by much as the nominal model shifts because the compensator is re-

designed for the new model. Instead, the changes in fT are attributed to the changes

in the size of the uncertainty intervals.

This argument allows us to calculate the sensitivities by assuming that the size

of the uncertainty interval decreases, but the midpoint remains fixed. For instance,

consider the case when we determine the sensitivity of ft to the jth uncertainty interval.

We want to determine the change in i as 6j reduces by . We will represent this by

6(e). We can then write the i-sensitivities as

(e again(( f (0(assumption that the compensator remains fixed as the param-44)

We again make the assumption that the compensator remains fixed as the param-

eters change. This is written as

a- (M(O, 6() f (X(e))) |=0 -1 (M(9, 6(E) C)) _ 0 (4.45)

The benefit of this approximation is that because the nominal model remains fixed,

lemma 2.2 guarantees that will decrease as the uncertainty decreases.

In summary, since in general we are unable to analytically determine the sensi-

tivities of the control design methodology, we need to make an approximation of the

/-sensitivities in which we are interested. By making an assumption on the control
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design methodology, we can solve a t-sensitivity problem where the nominal model

does not change. We then approximate this by assuming the compensator does not

change as well. The resulting u-sensitivities will always indicate that decreases,

which is the desired property. It is interesting to note that this sensitivity tells us

which of the parameters is most adversely affecting the current closed loop system.

Once the uncertainty does decrease, we can always redesign the compensator to im-

prove even more than that indicated by the ft sensitivities.

4.3 Effect of Inputs on Uncertainties

4.3.1 Philosophy of Approach

Based on the previous discussion, we have chosen the parameters cai in equation

(4.3) to be the size of the uncertainty intervals 6i. In this section, we will outline a

computationally efficient method to calculate the value of

E& {Asi I u) (4.46)

Equation (4.46) is referred to as the effect of input u on 6i. For the moment, let

us assume that we know the true plant and the actual value of the noise which will

occur when we apply the next input. In this case, we know the output of the system

yj when we apply the input uj. Given the pair (uj, yj), we could add this information

to the data we already have, and recalculate the value of the parameter i. We would

need to do this for every input in our set Uk. This could be computationally intensive

due to the number of optimization problems that would need to be solved. Instead,

we will describe an approximation which we can use to rank the inputs when we know

the output. This will be discussed in section 4.3.2.

To determine the expected change in j when we don't know the actual value of

the noise which will occur, we could determine the change from every possible value

of the noise, and take the average. This is also computationally intensive, and an

approximation needs to be made. This is the subject of section 4.3.3.
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4.3.2 Calculation with Noise Known

We will first examine the case of how to determine the change in the value of

6i when we are given a particular (uj, yj) pair. If the identification used a recursive

framework, it would be easy to find the effects of the additional data point; we would

simply use the recursive equations to update the parameter bounds. However, the

set membership algorithm of chapter 3 is not a recursive procedure. Instead, we

would need to redo the entire optimization procedure for each choice of uj. As an

alternative, we will use the following approximation.

To determine the amount the bounds on an arbitrary parameter i change, we

recall that the bound is the result of a convex optimization. Let us assume that we

are concerned with the upper bound to 0i. In determining the upper bound (before

adding a new input), we solved the optimization problem for a parameter vector 0*

for which

Oi = 0- (4.47)

To estimate the improvement in i, we examine how the optimization problem

changes with the constraint added by the new data point. With this new constraint,

the optimization problem will yield a new parameter vector 0, where the new upper

bound i is achieved. We will assume that except for the ith component, this new

optimum point is the same as *. That is, we assume

Sk = Ok k i (4.48)

This is pictured in figure 4-1 where we estimate the improvement in both the upper

and lower bounds from a new data point. In the figure, we represent the ellipsoidal

constraint (3.26) for each data point as two parallel hyperplanes (degenerate ellip-

soids). The solid lines represent the previous constraints, giving rise to the parameter

intervals depicted by the rectangle. The constraints due to the new input-output pair

are represented by the dotted lines. Our approximation says that the new optimum

has the same value in the vertical direction (for this example) as the old optimum.
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Figure 4-1: Estimate of improvement in parameter bounds due to a new data point
(dotted lines). The arrows indicate the estimated improvement.

It is clear from the figure that our estimate of the improvement in the parameter

bounds can be optimistic. However, it does give a method to rank each of our choices

for the input in a computationally efficient manner. The computation requires solving

a quadratic equation, and involves finding the points where a p dimensional ellipsoid

intersect a p - dimensional hyperplane. To see this, we write the new constraint in

an ellipsoidal form as in equation (3.27).

TQx < C2 (4.49)

Let us assume, without loss in generality, that we are interested in the bounds on the

first component of the vector x. We partition the matrices as follows.

x= Q i [ Q121 (4.50)

[ 2Q [ Qll Q12

Here, xl and Q are real scalars, and x2 E Rp - l, Q12 E lx (p - l), and Q22 c

R ( p - 1)X(p-l). The vector x2 is fixed at the value from the previous optimum. We

then solve for x1 such that

T ] Q1 Q12 1 _ C2 (4.51)

12
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This occurs where

x2Q 11 + 2xlQ 12 x2 + X2 Q22x 2 = C2 (4.52)

If (4.52) has two solutions, say x1l and x12 with xll < x12, the estimate of the new

upper bound is the minimum of x12 and the previous upper bound. Similarly, the

estimate of the new lower bound is the maximum of Xll and the previous lower bound.

Once we have done this approximation, we can solve the convex optimization

problem for only those inputs which have the best improvements. Our approximation

is used as a coarse ranking for all of the possible inputs, and we only need to solve a

small number of optimization problems.

4.3.3 Certainty Equivalence

We so far have studied how to compute improvements in parameter bounds given

the exact output of the system for any given input. Due to the noise, however, we need

to determine the expected value of the improvement. This requires a good estimate

of the probability distribution of the noise. To determine such an estimate would be

computationally intensive, and thus should be avoided.

As an alternative, we make the following simplifying assumptions. We will assume

that the average improvement in the bounds is equal to the improvement when our

nominal model is the true system, and the system is noise free. This will be referred

to as certainty equivalence. To write this mathematically, let us denote the noise free

output of our nominal system as y, and the change in the jth uncertainty interval if

the output of the system was as A\j(q). The assumption is then written as

En {.\6A I u} = Ajsj(!) (4.53)

The advantage of such an approach is that it is computationally feasible. We

are not required to do any Monte Carlo averaging, which reduces the number of

optimization problems we must solve. It also requires little knowledge about the

statistics of the noise.
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For this to be a reasonable assumption, however, the noise must have certain

properties. For instance, the deterministic error nd must be small, so that the output

: is close to the actual output of the system. Also, for A j(y) to estimate the average

change of Abj, the probability density function of ns must be small away from n, = 0.

Unfortunately, it is not possible to verify these properties without estimating

pn,, (n) and nd. The approach here, however, is to choose an input without using this

information. In the next chapter, when we explore some of the convergence issues, we

will describe in more detail conditions that ensure our approximation appropriately

ranks inputs, even when (4.53) is not valid. We will also discuss the limitations of

such an approach.

4.4 Summary

In this chapter, we have introduced new tools for experiment design. The phi-

losophy is to choose the input, from a finite set, which we would expect on average

to best improve our measure of robust performance. To do so, we have performed a

sensitivity analysis on the closed loop system to see the effects of additional inputs.

There were two steps in this analysis. First, we introduced the t-sensitivites. This

problem has been examined in the literature in the past. Here, we solved the problem

when our performance is the standard upper bound to the structured singular value.

After computing this upper bound, the only additional computation to calculate the

---sensitivities is an eigenvalue decomposition.

We then examined how to determine the effects of the inputs on the parameter

ranges. The philosophy here was more brute force in that we simulate the system

with each input, and compared the change in parameter intervals. Using an approx-

imation to the identification algorithm and a certainty equivalence assumption, a

computationally efficient method was determined.

Here, we have stressed computational issues. In the next chapter, we will ex-

amine the convergence properties of the iterative identification, control design, and

experiment design algorithm.
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Chapter 5

Iterative Method

5.1 Overview

In this chapter, we will combine the results of the previous two chapters to create

the iterative algorithm. The basic steps in this algorithm are identification of the

model and uncertainty, robust control design, and choosing a new input to apply to

the system. So far, little has been said of the control design. The philosophy in

this work is to not advocate any particular methodology; instead, we provide the

flexibility to choose any methodology which may be appropriate for a specific system.

For instance, we often may want to sacrifice some performance in order to reduce the

computation in either the control design or implementation.

In this chapter, we will examine the convergence properties of our algorithm. In

the process, we will describe some necessary properties of the control design. We will

also describe in more detail assumptions on the noise, and their implications for the

input design.

5.2 Outline of the Iterative Scheme

In this section, we will summarize the overall procedure for identification, control

design, and experiment design. The notation used here will be that introduced in

chapter 2.
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We begin by assuming we have a fixed model structure. The first step is thus the

identification of the uncertain parameters in the system. An identification algorithm

was developed in chapter 3. It should be noted that no attempt is made to estimate

the unmodelled dynamics; it is assumed that this is specified a priori, and is fixed.

A compensator is then designed based upon the current model. We have not

limited ourselves to a particular methodology, so that any desired methodology can

be used. When we examine the convergence properties, however, we will describe a

set of properties on the control design which are sufficient to guarantee convergence.

If we have not yet achieved the desired performance, we then perform a new

experiment. We choose a finite set of possible inputs. Each input is a sinusoid at

a fixed frequency. Based upon a sensitivity analysis, we choose the input which we

expect will improve our resulting performance as much as possible. We can then

repeat these steps beginning with a revised identification.

We have described the following algorithm. A block diagram of the algorithm is

shown in figure 5-1.

Algorithm 5.1 (Iterative ID, Control, and Experiment Design)

1. Determine the inputs for the initial experiment, and measure the data yO. Let

k = 1, and let q° denote our a priori knowledge of the parameters.

2. Determine the model parameters Ok = h(Ok-1, yk-l).

3. Design the compensator Ck = f (k).

4. If ft(M(qk, Ck)) < 1, then stop.

5. Choose a finite set Uk of possible inputs for the next experiment.

6. Determine the l-sensitivities

A(M(t, 6, Ck)) (5.1)

and the effects of the inputs

En fA{zi I u} (5.2)
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for each u E Uk.

7. Apply the input u which maximizes

a -f(M(S'c, k, ck))n {A6 I u (5.3)

8. Set k = k + 1, and go to step 2.

5.3 Convergence of g

The first thing we would like to guarantee about this algorithm is that the per-

formance measure ft is monotonically nonincreasing. There are two steps to this

procedure. First, we must guarantee that we are not losing information in the iden-

tification step. Specifically, we must guarantee that the upper and lower bounds are

not getting worse, i.e.
ok < k+1 (54)

Ok+l < k (5.5)

Note that (5.4) and (5.5) are convex constraints. Therefore it is straightforward to

include these constraints in the identification optimization problem. We will assume

that this has been (done, so that (5.4) and (5.5) are automatically satisfied. In fact,

the use of this a priori knowledge motivated the representation of the identification

scheme as a function of the previous bound.

Secondly, we need to guarantee that as the uncertainty decreases, the robust

performance measure will be nonincreasing (where we assume that a lower value of

the performance measure indicates better robust performance). We will state this as

an assumption on the control methodology.

Assumption 5.1 Given (5.4) and (5.5), then

T(M(bk+, f (k+l))) < ft(M(qk, f(k))) (5.6)
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Figure 5-1: Block diagram of the iterative algorithm.
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This assumption need not hold for an arbitrary control methodology. However,

from the discussion in section 2.2 we know there are special cases when it will hold.

Specifically, if the uncertainty decreases in such a way that the nominal model remains

fixed, and if the control methodology produces the same compensator for a fixed

nominal model, then -g will not increase. That is,

A(M(6k, k+l f(Ok))) < (M(Ok, 6k, f (Ok))) for k+1 < 6k (5.7)

The difficulty arises when the midpoint of the parameter intervals shift. In that case

there are many control methodologies for which assumption 5.1 does not hold.

Since the philosophy in this work is to allow as many control methodologies as

possible, the following procedure can be used. After determining the new bounds

on the uncertainty intervals, we will design our compensator. If A increases, we will

increase the uncertainty intervals in such a way that the midpoint of each interval is

the same as on the previous iteration. Although we may increase the uncertainty in

the system from the control design perspective, we are still guaranteed that (5.4) and

(5.5) hold. The increase is accomplished as follows:

= k (5.8)

6 = 2max{ sk+l _, 0 _k+1l (5.9)

- 6=0- 9=0-- (5.10)
2 2

ch4] (5.11)

This is visualized in figure 5-2. The bounds decreased from iteration k- to iteration

k. However, the midpoint moved as well. To recover the previous midpoint, the

uncertainty is increased. After redesigning the compensator, if 7 still has increased, we

will use the compensator from the previous iteration with this increased uncertainty.

The control design procedure is thus modified as follows. Let F(O) be the desired
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Figure 5-2: Expanding the uncertainty region to guarantee the control design will
result in a nonincreasing value of .

control methodology. Then f (k+l) is defined by

F(ok+l) if (M(ok+l,F(ok+l))) < (M(k, Ck))

f (k+l) | F(0) if (M(0k+1, F(qk+l))) > A(M(k, Ck)) (5.12)

and (M(, F(q))) < 7(M(k, Ck))

Ck otherwise

With this procedure, assumption 5.1 will be satisfied, regardless of what our choice

for the control methodology F may be.

Thus, ft is nonincreasing. Since it is bounded from below by 0, it must converge

as the algorithm proceeds. This result does not, however, indicate whether or not we

will converge to where i < 1. This will be examined in the next section.

5.4 Asymptotic Performance Bound

Our closed loop guaranteed performance is necessarily a function of the control

methodology. One question we would like to ask is whether the iterative methodology

will achieve the best possible guaranteed performance that our particular control

methodology is capable of achieving. In other words, we would like to understand

the conditions under which our analysis correctly indicates which inputs we should

apply to improve our performance.

Our specific goal is the following. Assume that there exist a sequence of identifi-

cation experiments such that the uncertainty intervals would asymptotically become
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small enough so that fT becomes less than 1. We would like to guarantee that, through

our sensitivity analysis, we will choose inputs so that we eventually achieve fi < 1.

Achieving this goal depends on the interaction of the sensitivity analysis, the

experimentation process, and the characteristics of the noise. We will now examine

these relationships in more detail.

There are two issues we need to address. First, we need to ensure that the sensi-

tivity analysis will not indicate a high sensitivity for an input which has little chance

of improving t. In other words, we need to guarantee that we are not choosing in-

puts that will not improve the appropriate parameter bounds when one exists which

will improve them. By appropriate bounds, we mean parameter intervals which are

limiting our performance.

The other issue is whether the algorithm can terminate prematurely. Termina-

tion occurs when all the sensitivities are zero. We need to guarantee that when we

terminate without achieving our goal, then no choice of inputs could improve our

guaranteed performance.

5.4.1 Guaranteed Improvement

We will first determine conditions that guarantee we will not choose incorrect

inputs. From section 5.3, we know that ft will never increase. Let us assume that

for the ith parameter, the -sensitivity equals E1 for some el > 0. This implies that

as 6i decreases, t will decrease at a rate of el (to first order) if we use the same

compensator. When we update the compensator, we will be doing at least as well.

So clearly a positive -sensitivity is an indication that decreasing the uncertainty

interval will decrease ft.

Therefore, we can choose the incorrect input only when we determine that an

input will decrease our uncertainty bounds, when this is in fact not possible. This is

clearly a function of how we analyze the effects of the inputs on the uncertainty. To

proceed further, we need to impose more structure on the noise in the system.
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Recall that from chapter 4 that the noise is written as

n(jw) = nd(jw) + n, (jw) (5.13)

where nd is a fixed but unknown deterministic error which includes the errors due

to model mismatch (since we assume our nominal model is the true system), and

n, is zero mean stochastic noise with probability density function p,,(n). We will

determine characteristics of the noise which guarantee that the method of approxi-

mating En {Ai I u} is nonzero only if applying u will cause 6i to decrease with nonzero

probability.

There are two parts to this argument. First, we must show that if the output of

the experiment is close to what we expect, then the decrease in 6i is also close to what

we expect. This is a continuity argument. We will then determine conditions on the

noise which guarantee we are close to the expected output with nonzero probability.

Let us first address the continuity argument. Let y be our expected output of the

system when we assume our nominal model is the true system and the system is noise

free. Let Adj(y) be the change in j if the actual output was given by y. Then we

will make the following assumption.

Assumption 5.2 Given ~, for all e > 0 there exists an open neighborhood Y around

y such that

IA6i(y) - A6 (q)I < e Vy E Y (5.14)

Although this is stated as an assumption, it is clear that it holds true for the

identification algorithm in chapter 3. The convex constraint added by the additional

data point is continuous in the value of the output, and therefore so is the result of

the convex optimization.

We will now determine conditions to guarantee the output is in the open set Y

with nonzero probability. Essentially we need to guarantee that the deterministic

error is not too large relative to the stochastic noise. However, we would like to do

so without making strong assumptions on Pns (n). Instead, we will define the function
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H(c) such that

pns(n) > e Vn such that Inl < H() (5.15)

This implies that there is a region given by H(e) such that the probability density

function is greater than e in this region. With this notation, the necessary assumption

is the following.

Assumption 5.3 3e > 0 such that ndl < H(E)

This assumption describes the allowable size of the deterministic error. It must be

small enough such that there is a nonzero probability that the noisy output is inside

a small open set around , the noise free output.

It is important to understand the implication of this. Under the assumptions

given, an input we choose will cause the uncertainty intervals to decrease (in such

a way so that will decrease) with nonzero probability. If our compensator and

performance do not change, we can try the same input again. With probability one,

we will eventually get the uncertainty bounds to decrease.

5.4.2 Preventing Premature Termination

There are two issues that need to be addressed in examining whether the algorithm

can terminate prematurely. First, we are limiting our choice of inputs to a finite set,

when there may be an infinite number of inputs we would like to choose from. For

example, we may be able to apply any unit amplitude sinusoid between f and f2

hertz. We need to choose the sets in such a way that every one of these sinusoids can

be chosen. We also need to show that the sensitivity analysis is not ignoring useful

inputs by thinking that they will not help decrease i when in fact they can. These

issues are addressed in this section.

We begin with a possible uncountable set of inputs from which we would like to

choose the next input. Let us call this set U*. Instead of choosing from U*, we

create a finite set, Uk, from which we choose an input at time k. We will require each

element of U* to appear in {U1 , U2, ...} infinitely often. This allows us to guarantee
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that given an arbitrarily large iteration index k, and any useful input u E U*, then

u C Ukl for some k > k. Since the input-output map of the plant is continuous (i.e.

the transfer function is a continuous function of frequency), this can be weakened to

the following. We will choose the sets Uk such that

lim Uk is a dense subset of U*
k-+oo

Instead of choosing from U* at time k, we choose from the finite set Uk.

WVe now examine what happens if for all inputs u we determine that

En {/\{ l u} = (5.16)

This will happen when for all j

6= 0 or 9n \6j I l =O (5.17)

The first condition has implications for the control design, while the second has

implications on our analysis of the noise.

To prevent the li-sensitivities from becoming zero we will assume that there is a

value > 0 such that at least one of the - sensitivities has a value greater than e. Let

us examine what this assumption indicates about the control methodology. If all the

--sensitivities are zero, then decreasing any of the uncertainties by a small amount

will (to first order) have no effect on the resulting robust performance. This implies

that the robust performance is not being limited by any of the uncertain parameters.

Instead, it is being limited by unstructured uncertainty, or the robust performance

specification. We wish to avoid this situation.

The control design must therefore make use of the uncertainty intervals to the

extent that they are limiting performance. This means the compensator must be

designed in some intelligent fashion. We are not considering in this work designs

which try to get performance by only putting energy where there is no parametric

uncertainty.
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Let us now examine what happens if our approximation says that n {AnSj I u} = 0

for all inputs u. If we were, in fact, taking the expected value over the noise, then

this could only happen when the probability that 6j will decrease with the next input

is 0. With the approximation presented in section 4.3.3 however, it is not clear that

this will always hold.

It is possible that although the noise free system will not produce an output which

will improve the bounds, there is a high probability that the noise will be such that

an improvement will occur. Such a situation is shown in figure 5-3. In this figure, it

does not appear as though the new data point will improve the parameter bounds on

the noise free system. However, if the data was shifted by a small amount (due to

noise), then a decrease would, in fact, occur.

Figure 5-3: A new data point which will not improve the parameter bounds, while
small deviations due to noise could cause improvement. The new data point is rep-
resented by the dotted lines. Compare to figure 4-1.

In the case when our approximation says that none of the bounds would improve

for any input, we could then look at which inputs have a greater probability of

improving the bounds. Instead of ranking the inputs by approximated improvements

in parameter bounds, we are now ranking based on an estimate of how close the

nominal ellipsoid for each input is to causing a parameter bound improvement.

The possibility of this occurrence is a drawback to the approximation presented.

At this point, it may become necessary to estimate the statistics of the noise from the

measured data. In essence, we would be seeking to estimate the probability density

function of n(jw). In this way, we could improve our estimation of the expected
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improvement. The drawback is the additional computation required to determine the

expected decrease in the uncertainty intervals.

5.5 Summary

In this chapter, we have combined the results of the previous chapters to create

the iterative algorithm for identification, control design, and experiment design. The

emphasis has been on the convergence properties of the algorithm. The first property

was to show that i would be nonincreasing. This required an assumption on the

control methodology. We were able to show how to adapt any control methodology

to satisfy this assumption.

We then discussed further properties which would be needed to guarantee we

asymptotically achieve the desired robust performance from our control methodology.

These properties are not easily verifiable a priori. We need the deterministic error to

be small relative to the variation in the stochastic noise. Also, the control design must

make use of the parametric uncertainty to the extent that it is limiting performance.

Since these are properties which make engineering sense, we could describe the input

design process as being an intelligent heuristic. However, we can not a priori guarantee

convergence to the best possible performance of the specified control methodology.

We can proceed with the algorithm until the improvement in the parameter bounds

becomes small. If we wish to continue choosing inputs, we may need to use the data

to estimate the statistics of the noise.
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Chapter 6

Examples

In this chapter, we will provide several examples of the algorithms presented in

this work. The first examples demonstrate the ability of the identification algorithm

to determine accurate parameter estimates from only a few data points. We also

demonstrate the need to use physical insight in determining the correct parameteri-

zation of the structure.

Several examples of the input design algorithm are then presented. It is shown

how the algorithm makes full use of the available information to determine the most

appropriate input to apply. Several different bounds on the noise are used, and

insights into the choice of inputs are made.

6.1 Bernoulli-Euler Beam

The examples in this chapter are based upon a Bernoulli-Euler model of a can-

tilevered beam [6], shown in figure 6-1. A force is applied at the tip of the beam, and

we measure displacement at the tip.

We have truncated the infinite order dynamics to the first 16 states. Thus, the

"true" plant will consist of the first eight modes. The length of the beam has been

normalized so that the first mode is at I rad/sec. We will identify the parameters of

the first three modes, and consider the other modes as unmodelled dynamics. The

noise free dynamics are shown in figure 6-2.
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Figure 6-1: Bernoulli-Euler Beam.
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Figure 6-2: Noise free dynamics of the Bernoulli-Euler Beam.
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The a priori information needed for the identification algorithm includes a bound

on the noise, an upper bound on the damping ratio for each mode. and upper and

lower bounds on the natural frequencies of each mode. The a priori bounds on the

natural frequencies are shown in figure 6-3. Also shown in the figure is an additive

bound on the unmodelled dynamics. The noise bound used must account for both

the additive noise in the system, and the unmodelled dynamics. The noise bound

for the identification algorithm will therefore be the sum of this bound on unmod-

elled dynamics plus the bound on the additive noise. The bound on the unmodelled

dynamics can be represented as

.182(s2 + 15.2s + 361)2
WI(s) (s2 + 26.4s + 1089)2

103

102

101

-_o

'10

10
-1

10- 2

10
-1 100 101

Frequency (rad/s)

(6.1)

Figure 6-3: A priori knowledge for use with the identification algorithm. The vertical
lines are the a priori bounds on the natural frequencies. Also shown is the bound on
unmodelled dynamics IW(jw)1.

For an a priori bound on the damping ratio, we will use .5, i.e. 0 < ( < .5. Since

the true value of the damping ratio is .01 for each mode, we see that the initial guess

is very conservative. The a priori bounds on the natural frequency of the first mode
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are .884 < wn < 1.125; the a priori bounds for the second mode are 5.41 < w,, < 7.34;

and the a priori bounds for the third mode are 16.35 < w, < 19.81.

In the following sections, a number of examples will be presented with this system.

For each example, the bound on the additive noise will be specified, and will be used

with the a priori information presented in this section.

6.2 Identification Algorithm

In this section, we will provide two examples of the identification algorithm. In

the first example, we will use the parameterization discussed in section 2.1. For the

second example, we will use physical insight to reduce the number of parameters in

the model, and consequentially improve our parameter estimates.

For both of these examples, the noise will be bounded in magnitude by the bound

shown in figure 6-4. The overall noise bound is therefore the sum of this bound,

and the bound on the unmodelled dynamics Wl(s). This noise bound was chosen

so that the signal to noise ratio was on the same order for all of the modes. It was

derived by taking the noise free model of the Bernoulli-Euler beam, and setting the

damping on both the poles and zeros to 1. Of course, this knowledge is not used by

the identification algorithm.

Since the noise sequence must be complex, it was generated uniformly in both

magnitude and phase, with the bound on the magnitude shown in figure 6-4. An

example of the noisy data is shown in figure 6-5. It should be noted that very similar

results were obtained when the identification algorithm was given the same bound

on the noise, but the data was actually noise free. Thus the bound used is very

significant, and we should strive to use as tight a bound as possible.

During the identification algorithm, the estimate for each mode was chosen as the

system with the parameter values at the midpoints of the interval ranges. Initially,

the estimates where chosen to be 0. This happens to be a particularly bad estimate,

but the error due to this estimate was quickly reduced.
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Figure 6-5: Noisy data for the first example.
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6.2.1 Identification of the System

To identify this system, we use a three mode parameterization as in section 2.1.

Thus, there are 12 uncertain parameters. We run algorithm 3.1, and on step 2 of this

algorithm we apply the steps of algorithm 3.2 only once (i.e. no iteration). The final

parameter variations occurred after 8 iterations of algorithm 3.1.

There is clearly a tradeoff between the number of data points used in the identifi-

cation algorithm, and the accuracy of the parameter intervals. The more data points

we use, the more information we have about each of the parameters. However, if we

increase the number of data points, we are also increasing the number of constraints

used in the convex programming problems. For the examples presented here, we will

use only 5 data points for each mode. These data points are chosen as the 5 data

points closest to the peak in the frequency response for the mode, where the signal

to noise ratio is highest. Thus, we use only 15 data points to identify the system.

We would like to guarantee the ratio of conservatism y, defined in section 3.2.3,

is less than 1.1. Before running the algorithm, however, we are unable to partition

the parameter space because the lower bound on the damping ratio is initially equal

to 0. Instead, we run the algorithm without partitioning. After one iteration, we

are then able to partition the parameter space. However, as shown ill table 6-1, the

number of partitions necessary to achieve y < 1.1 is unreasonably large. Instead, we

do not partition, and perform the steps in the iterative algorithm again. We continue

in this fashion for 7 iterations. After the seventh iteration, the number of partitions

necessary to achieve 7 < 1.1 is reasonable. We can now partition the parameter space

as appropriate for the last iteration of the algorithm.

The resulting parameter intervals are shown in table 6-2. Notice that even though

we have only used 5 data points for each mode, the parameter intervals are small. It

is also interesting to note that we did not fully use the physical information available

to us. We are measuring displacement, and based upon our model structure, this

implies that bli = 0 for each of the modes. We did not use this information, and for

the first mode, the parameter interval is significant. The result is that there is a large
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Iteration Partitions we Partitions we Partitions we
completed would need for would need for would need for

Mode 1 Mode 2 Mode 3
1 3432 5744 4332
2 8 3864 5408
3 2 78 4044

4 2 18 296
5 2 10 102

6 2 8 75
7 2 8 65

Table 6-1: The number of partitions needed to achieve y < 1.1.

Parameter Lower bound Upper bound True Value
all 1.9222 x 10- 2 2.0931 x 10-2 2.0000 x 10- 2

aol 9.9911 x 10- 1 1.0008 1.0000
bil -1.3869 x 10-1 1.2570 x 10-1 0
bo, 3.8820 4.1493 4.0000
a 12 1.1278 x 10-l 1.3975 x 10- 1 1.2534 x 10-1
ao2 3.9200 x 101 3.9369 x 101 3.9274 x 101
b1-2 -5.6459 x 10-2 4.7304 x 10-2 0
bo2 3.6984 4.3906 4.0000
al 3 2.6480 x 10-1 4.7965 x 10-1 3.5095 x 10-1
ao3 3.0599 x 102 3.0970 x 102 3.0791 x 102
b]3 -4.4073 x 10-2 5.8050 x 10-2 0
bo3 3.2468 5.0450 4.0000

Table 6-2: Final parameter intervals.
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model mismatch, which causes the other modes to not be identified as accurately.

To see exactly the effects of ignoring the physical knowledge available, let us

examine the conservatism in our identification in more detail. Recall that there

are two sources of conservatism. There is the conservatism due to the embedding,

which we have already specified is no more than 10%. There is also conservatism

due to model mismatch, when we reduce our problem to a one mode problem by

subtracting estimates of the other modes. In table 6-3, this conservatism is listed for

each mode. The total conservatism is therefore the product of the conservatism from

model mismatch and the conservatism from the embedding. The total conservatism

listed is therefore the effective increase of the noise bound over the actual noise bound.

We see that without using the physical knowledge, the conservatism can be large.

We also note that we do not necessarily reduce this conservatism as the algorithm

proceeds.

Mode Conservatism due Total Conservatism
to model mismatch

1 1.005 1.11
2 1.18 1.30
3 1.29 1.42

Table 6-3: The conservatism in each mode due to model mismatch, and the total
conservatism.

6.2.2 Using Physical Knowledge

We will now use the fact that we are only measuring displacement, and not velocity.

We will adapt the model of the system by setting bli = 0 for each mode.1 The same

procedure for determining the bounds as in the previous example is followed.

The final parameter intervals are shown in table 6-4. We see that by using the

correct structure for the system, the uncertainty is decreased. We also see in table

'This was actually implemented by choosing a priori bounds for bli as bli = V105 and bi =
_y/-5.
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6-5 that the conservatism has dramatically decreased. We can thus conclude that

using all the available knowledge in creating the parameterization of the system is

important. This physical knowledge will be used for the remainder of the examples.

Parameter Lower bound Upper bound True Value
all 1.9211 x 10- 2 2.0921 x 10-2 2.0000 x 10-2
ao1 9.9946 x 10-1 1.0005 1.0000
bo 3.8806 4.1480 4.0000
a 2 1.1428 x 10- 1 1.3777 x 10-1 1.2534 x 10-1
a0 2 3.9241 x 101 3.9326 x 101 3.9274 x 101
b02 3.7375 4.3394 4.0000
a1 3 2.8057 x 10-1 4.5110 x 10- 1 3.5095 x 10-1

ao3 3.0731 x 102 3.0854 x 102 3.0791 x 102
bo3 3.4042 4.8278 4.0000

Table 6-4: Final parameter intervals, when using physical knowledge.

Mode Conservatism due Total Conservatism
to model mismatch

1 1.0038 1.104
2 1.0418 1.146
3 1.0392 1.143

Table 6-5: The conservatism in each mode due to model mismatch, and the total
conservatism for the case when we use physical knowledge.

6.3 Input Design

We now give several examples of the iterative methodology for input design. We

begin by describing the control methodology. Examples are then presented which

demonstrate the ability of the algorithm to reduce 77 very quickly. Although this

input design algorithm is a heuristic, and few convergence properties are guaranteed,

these examples demonstrate the potential of this approach to achieve our robust

performance goals, while using only a small number of data points. Throughout, we
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will use the model described in the previous section, which uses physical insight to

reduce the parameter errors.

6.3.1 Control Design

In this section, we will describe the control design methodology. We first need to

construct a state space representation of the system. We will then design a compen-

sator based upon this model. The description here will be general in terms of the

number of uncertain parameters.

We begin with a standard representation of the nominal model plus parametric

uncertainty. We will assume that there are p uncertain parameters, of which the first

r are in the A matrix, and the remaining p - r are in the C matrix. These uncertain

parameters enter in a linear fashion, so we can write the system as a nominal model

plus the uncertainty as follows:

x(t) = Ax(t) + E qilintx(t) + Bu(t) (6.2)
i=l

yp(t) = Cx(t) + E qilinTx(t) (6.3)
i=r+l

jqi < 1 i= 1,...,p (6.4)

Here, qi represents the uncertainty of the ith parameter, with li and ni representing

the structure of how the uncertainty enters the system.

The midpoints of the uncertainty intervals are always chosen for the nominal

model. It should be noted that the choices for li and ni are not unique since they

can be scaled arbitrarily. In the examples presented, each parameter enters in a rank

1 fashion, so that i and ni are vectors. We will always choose the scaling such that

14i112= lni[2-

As in [13], we can put all of these uncertainties into larger matrices as follows:

E = [ 11 .. i E = 1,+1 .. -p] (6.5)
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T Tnj n72Tr+1

Fa = ' Fc = ' (6.6)
T Tn r Tt

We can now describe the system in the following state space form.

x(t) = Ax(t) + Bu(t) + EaWa(t) (6.7)

yp(t) = Cx(t) + Ecw,(t) (6.8)

Za(t) = FaX(t) (6.9)

Zc(t) = Fjx(t) (6.10)

wa(t) = Qaza(t); Qa = diag(ql, ..., qr) (6.11)

wc(t) = Qcz~(t); Q = diag(qr+l, ..., qp) (6.12)

We will assume there are unmodelled dynamics in our system, which we will

represent as an additive uncertainty. This uncertainty will be written as AWl1 (s),

with TV1 defined in (6.1).

We will also consider our performance as a weighted sensitivity. The robust per-

formance goal is to keep the quantity IW2 (jw)S(jw)lI < 1, with the weighting function

W2 (8) .33(s2 + 4.9s + 12.25)2 (6.13)
(s2 + 3.2s + 4)2

The desired bound on the sensitivity is shown in figure 6-6. The bound is defined as

the inverse of the magnitude of W2 (i.e. we wish to keep the sensitivity less than this

bound). Note that we wish to make this guarantee even in the face of uncertainty.

It is therefore referred to as a robust performance bound. It will be included in the

uncertainty block as the unstructured uncertainty A2 [16].

We will now include the weighting functions in our state space model. Let us
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Figure 6-6: Open loop system, and desired bound on the sensitivity. The bound is
given by IW2 (jw)l -' .

assume that the weighting functions have the following state space description.

W (s) = D1 + Ci(sI - A)-1B1 (6.14)

W2(s) = D2 + C2 (sI - A2)-1B2 (6.15)

Augmenting the states of the weighting functions to those of the plant, we have the

following state space description.

(6.16)

z(t) = ClX(t) + Dllw(t) + Db2u(t) (6.17)

y(t) = C2x(t) + D21w(t)

w(t) = Az(t)
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This state space description now describes the open loop

of the system is shown in figure 6-7. In the figure, P(s)

described by (6.16)-(6.18).

system. A block diagram

is the open loop system

W

U

Figure 6-7: The open loop system including the uncertainties.

The control methodology we will use is an 7/2 design. The goal of the compensator

is to minimize the 7/2 norm between w and z, as shown in figure 6-7. It is important

to note that the compensator is not actually trying to achieve the specified robust

performance. However, this is a design which is both easy to compute, and also

results in a compensator that is the same order as the plant. Since we consider the

parameter uncertainty as noise entering the system, the compensator is sensitized

to this uncertainty. The robust performance analysis indicates that this method

produces compensators which do well.
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It is important to notice that for the 7-2 problem to be well posed, we need

D2 = 0. Since this is not the case with our particular weight on performance, we

need to modify our weights. A 20 dB/decade rolloff was added to the weighting

function W2(s) by including an extra pole at s = -10000. Since this pole is at such

a high frequency, it will have very little effect on the system. However, it enables us

to use the desired control methodology.

Several other design methodologies were attempted. It was found that an 7-OO

design had similar performance to the W/2 design. This similarity has been noted by

other researchers, such as [38]. Also, see [17] for more on W7-2 and 7t designs. It is

possible to improve the robustness properties of the closed loop system by using a

design such as D--K synthesis [52]. However, the order of the compensator can often

increase dramatically, causing the computational burden to become unreasonable.

On the other hand, the 2 design can achieve a reasonable performance level with a

reasonable amount of computation. This version of the 2 problem is very similar in

nature to the sensitivity weighted LQG controller derived in [22], [23]. The sensitivity

weighted LQG controller was shown to compare favorably with other robust control

techniques, both in simulation and in closed loop implementation.

6.3.2 Example of Input Design

Our first example of the input design will use the same noise bound as shown in

figure 6-4. As opposed to the previous examples, however, the initial data points will

not be chosen necessarily near the peak of each mode. Instead, 5 data points are

chosen in the vicinity of each mode, but covering more of the frequency region. The

initial data is shown in figure 6-8.

Since the initial data points are not where the signal to noise ratio2 is highest, the

initial parameter intervals will be much larger. This is done to highlight the ability of

the input design algorithm to find appropriate inputs when there is a large amount

of uncertainty. The resulting parameter intervals are shown in appendix B. This

2 By signal to noise ratio, we mean the ratio of the magnitude of the noise free system to the
bound on the noise.
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Figure 6-8: Initial data points used in the input design algorithm.

appendix lists both the parameter bounds, and the resulting -sensitivities for each

iteration in the input design procedure.

It should be stressed that the data in figure 6-8, together with the a priori infor-

mation on the parameters in our model and on the noise, as outlined in section 6.1,

constitute the entire knowledge of the system at the beginning of the iterative algo-

rithm. The reason that this is a difficult design problem is that we are using so few

data points. Using the a priori knowledge, and the specified parameterization of the

system, we can determine a rough estimate of the system, and generate new inputs

to reduce the uncertainty quickly. This is the advantage of the approach presented

in this research.

To highlight the uncertainty arising from only using these 15 data points, several

values of the parameters are chosen from within the parameter intervals resulting

from the identification. We will plot the transfer function for each set of parameters.

This will give an indication of the amount of uncertainty from a transfer function per-

spective, and demonstrate the improvement due to new data points as the algorithm

proceeds.
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Table 6-6 lists the choices for these parameters. The actual uncertainty in the

frequency domain due to the parameter intervals is not necessarily bounded by the

transfer functions resulting from these parameter choices. These transfer functions

represent a small sample of all of the possible transfer functions which result from

this parametric uncertainty.

all ao0 1 b0 1 a 1 2 a0 2 b0 2 a1 3 a0 3 b0 3

Transfer Function 1 -1 1 -1 -1 1 -1 -1 I -1

Transfer Function 2 1 -1 1 1 -1 1 1 -1 1

Transfer Function 3 -1 -1 1 -1 -1 1 -1 -1

Transfer Function 4 1 -1 -1 -1 -1 -1 1 -1 1
Transfer Function 5 1 1 1 1 1 -1 -1 -1

Transfer Function 6 0 -1 -1 0 -1 -1 0 -1 -1
Transfer Function 7 -.5 0 0 -.5 0 0 -.5 0 0

Transfer Function 8 .5 0 0 .5 0 0 .5 ( 0
Transfer Function 9 O 0 0 0 0 0 0 0

Table 6-6: Parameter values used to generate sample transfer functions. The value
used for parameter 0j is O + x(0j - j), where j = .5(0j + j), and x is the value in
the table for j.

The transfer functions for these choices of the parameters after the initial identi-

fication are shown in figure 6-9. We see that there is a large amount of uncertainty

present. The DC value ranges from about 2.15 to 9. There is a wide variation in the

pole and zero locations. This is highlighted in figure 6-10, where the poles and zeros

of these transfer functions are plotted. We see that it is possible to have nonminimum

phase zeros, as well as zeros which are purely real.

To understand the uncertainty which is most important to reduce, we need to

understand how the compensator interacts with the system. To visualize this, the

7 2 compensator was designed for the initial model. In figure 6-11, the nominal loop

transfer function is plotted (i.e. the nominal value of the plant, which occurs at the

midpoints of the uncertainty intervals, together with the compensator). Since this

is an 7/2 design, we know that the nominal closed loop system is stable. Thus, the

system with the uncertainty is guaranteed to be stable if the loop transfer function
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Figure 6-9: Transfer functions after identification using only fifteen initial data points.
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does not encircle the critical point, where the magnitude is 1 and the phase is 180

degrees. 3

-5
10

g

510-

1 n-1{

10 1 1 10 10 103
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0? 0

a.i

-1000
0 100 10 10....2 103

Frequency (radls)

Figure 6-11: Nominal oop transfer function -GK for the initial model.

We see from figure 6-11 that the compensator is phase stabilizing the first mode of

the system and gain stabilizing the other modes. Thus, it is important. that the phase

remains away from 180 degrees until after the magnitude is less than . However, in

order to meet the performance goals, the compensator needs to have authority over

the frequency range where we desire sensitivity reduction. Thus, it is important to

have an accurate model of the system between the first two modes, near crossover.

We also need to have a good estimate of the gain of the system. We will see that the

input design methodology tries to pick inputs which help get an accurate model of

these aspects of the transfer function.

The following procedure is used for the input design procedure. At each iteration,

all of the available data is used to determine the parameter intervals. We wish to

guarantee the same bound on the ratio of conservatism as in the previous examples;

3The actual compensator was designed using positive feedback. Thus, the true critical point in
the complex plane is at s = 1, and not s = -1. In order to adhere to standard notation, we have
plotted -GK, so that the critical point is shifted back to s = -1.
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:namely y < 1.1. However, we will only partition the parameter space if the required

number of partitions is less than 200.

We will limit our choice of inputs to unit amplitude sinusoids at; frequencies be-

tween .1 rad/sec and 1000 rad/sec. It is assumed that the data is observed in steady

state, and that any residual transient is considered part of the noise. Thus the output

consists of the magnitude and phase at a particular frequency. To limit ourselves to

a finite number of frequencies from which to choose the sinusoid, we initially allow

ourselves to choose from 500 different frequencies, logarithmically spaced between

.1 rad/sec and 1000 rad/sec. To increase the number of frequencies from which we

can choose the sinusoid, at the kth iteration we will allow ourselves to choose from

500 + 25k different frequencies, logarithmically spaced between .1 rad/sec and 1000

rad/sec.

A summary of the results generated by the iterative algorithm is shown in figures

6-12 and 6-13. In figure 6-12, the value of the peak of A is plotted for each iteration.

Below each point, the "optimal" frequency calculated for the next input is shown. We

see that ft does, in fact, decrease at each iteration, until ft < 1. We also see that the

algorithm generates input frequencies near the natural frequency of one of the modes

in our system. This is because the signal to noise ratio is highest near the natural

frequency, and thus at this frequency we can learn more about all of the parameters

of a particular mode.

In figure 6-13, Pi is plotted as a function of frequency. It is interesting to note that

ft achieves its peak near the second zero of the system. This is expected, because it is

right near this zero (at w ~ 4.4 rad/sec.) where the loop transfer function is rolling

off. However, the algorithm does not specify sinusoids in the frequency range where

ft reaches its peak. Since the signal to noise ratio is low near this zero, we would not

learn much about the parameters by applying a sinusoid near the zero frequency. So

although we seek an input to lower ft near the zero, this can best be done by applying

an input at a different frequency to overcome signal to noise problems.

The ultimate performance achieved by the algorithm is certainly dependent upon

the control methodology. As an indication of the possible performance for this ex-
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ample, an 7t2 compensator was designed on the nominal system, with no parametric

uncertainty. The robust performance was then calculated assuming that the only

uncertainties were due to the unmodelled dynamics, and the robust performance

specification. The resulting values of fi was approximately .9.

We can thus conclude that the 2 control methodology is an appropriate choice

for this particular problem. If the value of 77 was greater than 1, we would have been

less willing to use an 7-12 methodology. (It is possible with an W72 methodology to

have a lower value of ,7 if we include a small amount of parameter uncertainty, but

X > is an indication that we should try other methodologies). On the other hand,

if i was much less than 1, we could conclude that this control methodology could

achieve a more stringent performance goal. A value of .9 indicates that we have a

reasonable performance goal, which most likely will be achieved once the parametric

uncertainty is reduced.

The goal of the iterative algorithm is to reduce j9 where it reaches its peak. In this

case, we wish to reduce j7 near the first zero (at w - 4.4) of the open loop system.

All of the parameters affect the transfer function in this frequency region, and so the

algorithm must decide which parameters are affecting it the most, and which input

will improve ,7 the most.

In fact, the three most important parameters, as determined by the At-sensitivities,

are the residues of the three modes (recall that bil = 0 for all of the modes). The

p-senstivity for bol is .806; for b 2 it is .754, and for b03 it is .192. This can be

seen from table B-1 in the appendix. The analysis of the effect of the inputs on the

uncertainty show that we expect to be able to get more information from the second

mode than the first. This can be see in figure 6-14. In this figure, we have plotted the

estimated change in ,i (calculated in step 7 of algorithm 5.1) for each of the 500 unit

amplitude sinusoids from which the algorithm will choose the next input. Thus, each

frequency point represents a different input. Note that there is only a small number

of frequencies where the estimated improvement is nonzero.

We see from figure 6-14 that we expect the most improvement in 7i if we apply an

input sinusoid near the natural frequency of one of the first three modes of the system.
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Figure 6-14: The estimated improvement in ft for each of the unit amplitude sinusoids
at the first iteration.

It is important to note that we do not actually expect an improvement as large as

indicated by figure 6-14. The large values are due to the first order approximation

of the effect of the change in uncertainty on ft (i.e. the i-sensitivities). Because the

expected improvement in the parameter intervals is large, the estimated improvement

in fi is large. The primary use of the information in this figure is to determine which

inputs are effective in improving performance, and to provide a ranking of these

inputs.

Based upon figure 6-14, we see the algorithm has determined that there are many

input frequencies which would be helpful in improving t. The input frequency which

is ranked the highest is 6.48 rad/sec. This is therefore the frequency chosen for the

next experiment.

Let us examine the improvement after adding this one frequency point. Figure

6-15 shows the transfer functions for the choice of parameters listed in table 6-6,

with the corresponding pole-zero pattern in figure 6-16. We see that there is a great

improvement in all aspects of the transfer function, especially at frequencies near the

second mode. However, there is still a large amount of uncertainty.
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Figure 6-15: Transfer functions after applying a sinusoid at 6.48 rad/sec.
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Figure 6-16: Open loop pole-zero pattern after applying a sinusoid at 6.48 rad/sec.
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Looking at the new -sensitivities, we see that it is still the residue terms that are

the most important for improving 7i. From table B-2, the value of the -sensitivity

for b 1 is .850; for b02 it is .351; and for b03 it is .107. We see that bo0 1 is at least twice as

important as any of the other parameters. It is also interesting to note that although

there is a wide variation in the natural frequency and damping ratio of the third

mode, the -sensitivities for a3 and a1 3 are small (see table B-2). This is because

the important part of this mode for decreasing the peak of the A plot is the DC value.

Figure 6-17 shows the estimated improvement in pT for each of the possible choices

for the next input. We see the estimated improvement in ft is much larger if we choose

an input frequency near the first mode. The algorithm therefore chooses an input

sinusoid at 1.15 rad/sec.
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Figure 6-17: The estimated improvement in Ti for each of the unit amplitude sinusoids
at the second iteration.

We now apply the new input. Figure 6-18 shows the transfer functions for the

parameters selected in table 6-6. We see that there is much less uncertainty at both

the first pole, and the first zero. Also, we have much less uncertainty in the DC gain of

the system. However, there is an interesting phenomenon which appears in this figure.

There is enough uncertainty in the parameters to cause a pole-zero cancellation at
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the third mode for some parameter values. This is also seen in figure 6-19, where the

poles and zeros are plotted for these transfer functions.

-'-3

Frequency (rad/s)

Figure 6-18: Transfer functions after applying a sinusoid at 1.15 rad/sec.
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Figure 6-19: Open loop pole-zero pattern after applying a sinusoid at 1.15 rad/sec.
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Another interesting thing to notice is that some of the zeros are still nonminimum

phase. Although this is hard to tell from figure 6-19, some of the zeros actually have a

real part which is approximately 10-5 . Although this was not apparent in figure 6-16,

there have been values of the parameters which created nonminimum phase zeros for

all previous iterations. The values of the parameters plotted in figure 6-16 did not

happen to contain a nonminimum phase zero, as we are not guaranteed to bound the

ranges of possible poles and zeros with our sample parameter values.

To explain the next optimal input at a frequency of 16.96 rad/sec, we again look

at the I-sensitivities and the effect of the inputs on the uncertainty. Once again, it

is the residue terms which are the most important to identify accurately according

to the /i-sensitivities. As seen in table B-3, the i-sensitivity for bol is .479; for b 2 it

is .280; and for b03 it is .094. However, in figure 6-20 we see that the algorithm has

ranked an input frequency near the third mode highest. The reason for this is that

there is so much uncertainty in this mode (see table B-3), the estimated improvement

in fT is greater when we apply an input which attempts to improve these parameters

even though the li-sensitivities are smaller. The algorithm therefore specifies an input

near the natural frequency of this third mode.

We see that this input has indeed improved the transfer function estimates. It

has certainly improved the location of the second zero and the third pole, as there is

no longer a pole--zero cancellation, at least for the parameter values chosen. This is

seen in figure 6-21. Also, in figure 6-22, we can now clearly see the pole-zero pattern.

Since the system is lightly damped, the natural frequency of each pole or zero is

approximately equal to its imaginary component; it can therefore be estimated from

the value in the vertical direction in the pole-zero plot. We see that for all the poles

and zeros (except perhaps the second zero), the frequency is known fairly accurately.

However, the damping ratios are not well known.

This pattern of input design continues according to the values in figure 6-12. No-

tice that as we add more inputs, the improvement in fi decreases. This is to be

expected, because it becomes less likely that we will gain a large amount of informa-

tion from any of the parameters. After adding 12 new data points, we have achieved
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Figure 6-20: The estimated improvement in ft for each of the unit amplitude sinusoids
at the third iteration.
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Figure 6-21: Transfer functions after applying a sinusoid at 16.96 rad/sec.
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Figure 6-22: Open loop pole-zero pattern after applying a sinusoid at 16.96 rad/sec.

/- < 1. The final uncertainty can be seen by plotting the transfer functions and pole-

zero pattern for the values of the parameters in table 6-6. These are shown in figure

6-23 and 6-24 respectively. We see that the uncertainty in the first two poles and

the first zero have been significantly reduced. Also, the DC value is very well known,

ranging from about; 3.94 to 4.23. There is still some uncertainty in the damping of

the third pole and the second zero, but these do not have as large an impact upon

our control design.

Finally, let us examine how the compensator has changed as the algorithm pro-

gressed. The magnitude of the compensators for the first few iterations, as well as the

magnitude of the final compensator, are shown in figure 6-25. All of the compensators

have the characteristics of a typical W72 design. The compensators try to invert the

plant, and insert the desired dynamics. Thus we see that the compensator has zeros

at approximately the same locations as the poles of the plant, and poles at approxi-

mately the same location as the zeros of the plant. However, due to the uncertainty in

the system, exact pole zero cancellations are not possible. As the uncertainty in the

system is reduced, we have better knowledge of the location of the poles and zeros in
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Figure 6-23: Final variation in transfer functions.
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Figure 6-24: Final variation in open loop pole-zero pattern.
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the system. As a result, the poles and zeros of the compensator become more lightly

damped.

We also see that as the uncertainty decreases, the gain of the compensator in-

creases. With less uncertainty in the system, the compensator can exert more control

authority. This larger gain helps achieve the desired reduction in the sensitivity at

low frequencies. Ve can therefore conclude that the improvement in performance is

caused, in part, by higher authority control designs. Although the improvement in the

parameter intervals helps improve performance even without changing the compen-

sator, the iterative algorithm takes advantage of the tighter bounds to design higher

authority compensators.

.1

0)

2.c0)Cu

Freq (radls)

Figure 6-25: The magnitude of the compensator over several iterations.

6.3.3 Input Design with a SNR of 10

In the first example of the input design, we saw that the inputs were always chosen

near the natural frequency of one of the modes in our model. This was because the

signal to noise ratio is highest here, and therefore more information could be obtained.

In this example, we will explore what happens when the signal to noise ratio is the
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same at all frequencies.

For this example, we will use the same a priori information as in the previous

example except for the bound on the noise. Here, the frequency dependent bound on

the noise was chosen as 10% of the magnitude of the true system at each frequency.

Therefore we have the same signal to noise ratio at each frequency.

The results of the input design algorithm are shown in figures 6-26 and 6-27. We

see that initially the value of f is lower than in the previous example. This is because

the initial data points are spread throughout the frequency spectrum. In the previous

example, most of these points had signal to noise ratios which were lower than 10.

Thus, initially, we have a more accurate model. The actual parameter values are

shown in tables B-13 to B-35.
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Figure 6-26: The decrease in ft as the algorithm proceeds. The frequency for the next
input is shown next to the value of ft for each iteration.

In figure 6-27, we have plotted ft as a function of frequency for all of the iterations.

We see that although we do decrease the peak of the ft plot at each iteration, we do

not necessarily reduce ft at every frequency. Since our performance was defined as

the peak of the ft plot, this is not a concern. This is, in fact, to be expected from any
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Figure 6-27: A plot of A as a function of frequency for each iteration.

methodology which attempts to reduce the peak of the P plot.

Looking at figure 6-26, we see that although we start at a lower value of yT, it

actually takes more iterations to achieve 77 < 1. This again is due to the signal to

noise ratio. In the previous example, the inputs were chosen at frequencies where the

signal to noise ratio was larger than 10. Since the bound on the noise is larger in this

example at the input frequencies chosen, the identification algorithm is not able to

get as tight a bound on the parameters.

Even though the signal to noise ratio was set to be the same at all frequencies, the

inputs were still chosen near the natural frequencies of the modes. This is due to the

other sources of noise in the system, namely the unmodelled dynamics and the model

mismatch. Since these types of errors tend to vary slowly over frequency, the effective

signal to noise ratio was larger at the natural frequencies of the modes. Thus, we

still have more information at the natural frequencies. Only when the bound on the

additive noise is higher at the natural frequencies than elsewhere will the algorithm

specify inputs away from the natural frequencies.
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6.3.4 Two Examples with Larger Noise at the Natural Fre-

quencies

We now consider two examples where the signal to noise ratio is greatly reduced

near the natural frequencies of the modes in our model. The bound on the noise as

a function of frequency is shown in figure 6-28. We see that the noise is much larger

near the natural fiequencies of the modes than near the zeros. We would therefore

expect that the "optimal" input frequencies generated by the algorithm will not be

near the true natural frequencies.

a)

C
aCt
2

10-' 10 101 102

Frequency (rad/s)
103

Figure 6-28: Noise free system,
frequency for the third example.

and bound on the additive noise as a function of

Since the signal to noise ratio is poor near the natural frequencies, for our initial

frequency points we will choose 15 data points logarithmically spaced between .3

rad/sec and 30 rad/sec. Other than this choice of initial data points and the bound

on the noise, the procedure for these examples is the same as in the previous examples.

For the first of these examples, we use the noise bound in figure 6-28, as well as

the bound on the unmodelled dynamics in figure 6-3. The results are shown in figure

6-29 and 6-30. We see that in this example, we did not achieve 7 < 1 within the 10

109

4 3



2.45

2.4

2.35

2.3

2.25

2.2

1=

I I
X

5.39

0 1 2 3 4 5 6 7 8 9 10
Iteration

Figure 6-29: The decrease in )7 as the algorithm proceeds. The frequency for the next
input is shown next to the value of ft for each iteration.

iterations plotted. In fact, fT did not decrease appreciably after many more iterations.

To understand why we were not able to achieve ft < 1, we have to understand

how the inputs are being chosen. Due to the large noise near the natural frequencies,

the sensitivity analysis indicates that there is little information to be obtained at

these frequencies. From figure 6-28, we would expect there to be a lot of information

where the bound on the noise becomes small. However, recall that there are other

sources of noise which must be considered. Added to this noise bound is the bound

on unmodelled dynamics. So although there appears to be a high signal to noise ratio

near the zeros of the system, the unmodelled dynamics cause this signal to noise ratio

to be lower than we originally thought.

There is also another source of noise in the system. This is the error due to

model mismatch. Because our initial model is so poor, this error can be large. In

the previous examples, this error was quickly reduced because our inputs were chosen

near the natural frequencies, where these effects are reduced. For this particular

example, these effects are large at the input frequencies chosen. We therefore have a
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Figure 6-30: A plot of ft as a function of frequency for each iteration.

large amount of noise in the system, even at the zeros.

Let us examine the choice for the input frequencies in more detail. The first input

was chosen at 5.39 rad/sec. This is right at the border of where the additive noise

bound increases. Thus, we are trying to get more information about the second mode,

and to do this we choose an input as close to the natural frequency of the second mode

as we can, while still avoiding the large additive noise.

The next input is chosen at 20.20 rad/sec. We are now trying to identify the pa-

rameters of the third mode, especially the residue. The choice for this input frequency

is made for the same reason as the first choice.

After these first two inputs, the analysis still indicates that the best input is just

above 20 rad/sec., where the additive noise bound drops. Since the set of frequencies

from which we choose our input changes at each iteration, the frequency chosen

varies by a small amount, but is always a little over 20 rad/sec. In this case, we

are incorrectly assuming that the noise is dominated by a stochastic component. In

fact, the major source of noise is the model mismatch. So although the expected

improvement in is greatest at these frequencies, this analysis used an incorrect
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assumption on the noise. We therefore become caught in a trap of continuing to try

the same frequency region when there is little information available.

In order to understand the effects of the unmodelled disturbances on the parame-

ter bounds, we will now repeat the same example. However, this time we will remove

the unmodelled dynamics from the true system. The noise bound used in the identi-

fication algorithm will therefore consist only of the additive noise bound; there is no

reason to include the bound on unmodelled dynamics since we have removed them

from the system. However, the control design and analysis will be done exactly the

same way, using the weight W 1(s) as part of the robust stability criterion.

The results are shown in figure 6-31 and 6-32. The iterations begin very similar to

before. In fact, we pick exactly the same inputs. However, after the fourth iteration,

the value of ft suddenly drops. We have managed to get enough information in these

four choices of inputs to vastly improve the parameter bounds.
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Figure 6-31: The decrease in f as the algorithm proceeds.
input is shown next to the value of f for each iteration.

The frequency for the next

To understand what has happened, we need to understand how the uncertainty is

affecting the system. The parameter bounds and -sensitivites are listed in appendix
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Figure 6-32: A plot of Hi as a function of frequency for each iteration.

B. We see in table B-46 that after the initial identification, there is a large uncertainty

in the residues of all of the modes. The largest -sensitivity is the one for the residue

of the second mode, b 2. The reason that this parameter is having such a large impact

on the system is that there is such a large interval range. In fact, we don't even know

the sign of b02. The same is true for b03.

We see from table B-47 that the input has had the desired effect. The interval

range for b 2 is much smaller now, although we still don't know the sign. The reason

we were able to learn so much more in this example as opposed to the previous

example is that the noise bound has been decreased; we are no longer adding the

bound on the unmodelled dynamics to the additive noise bound. Notice that since

the interval ranges have reduced by a large amount, we now have a tighter bound

on the model mismatch. So the effective noise in the system has been significantly

reduced.

The algorithm specifies the next input 20.20 rad/sec. As seen in table B-47,

although the -sensitivity is highest for b02, we expect a greater improvement in f if

we apply an input to get more information from the parameters of the third mode.
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For instance, the current knowledge on b 3 is that it can range from -10.4 to 18.3.

The input is chosen to reduce this uncertainty, and is effective in doing so. It also

reduces the model mismatch affecting the first two modes. Thus, we are improving

all the parameter bounds with this input.

The next input is chosen at 20.06 rad/sec, for a similar reason. The effect is that

the uncertainty in the third mode has been significantly reduced. This has caused the

model mismatch affecting the second mode to be reduced. The effective noise bound

at the second mode is now small enough that we can determine the sign of b02. This

in turn greatly reduces the model mismatch caused by the second mode.

The result is that once the model mismatch has been reduced, the original data

points become effectively noise free. The large amount of noise originally associated

with these data points was mainly caused by model mismatch. Once we have reduced

this mismatch, we can identify the system very accurately. Indeed, after 6 iterations,

the bounds on all of the parameters are very small.

6.4 Summary

This chapter has demonstrated the effectiveness of the algorithms presented in this

thesis. The first two examples showed that the identification algorithm can determine

accurate interval ranges for the parameters from a small number of data points. These

points were chosen where the signal to noise ratio was highest.

Several examples of the input design methodology were shown. The algorithm

was quickly able to reduce the parametric uncertainty to where we have met our

robust performance goals. The inputs were chosen where the signal to noise ratio was

highest, which is typically at the natural frequencies of the structure. This approach

to input design was therefore shown to be effective for the examples presented.

We also examined the case when the main source of noise was model mismatch.

In this case, the assumptions of the input design methodology were violated. This

is not a problem if we are able to choose inputs which reduced the model mismatch.

Otherwise we may not be able to achieve the performance goals.
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Chapter 7

Conclusions

7.1 Summary and Contributions

This work has been concerned with the identification of flexible structures. We

chose a parameterization of our system which has been demonstrated in previous

work to be numerically stable. We then wanted to determine a nominal model of the

system, plus a description of the uncertainty which is appropriate for robust control.

We began by looking at how we could determine a model of our system from a

set of input-output data. This data is assumed to be corrupted frequency domain

data, with a known bound on the noise. We wanted to determine an interval range

for each parameter in our model such that we are guaranteed the true model is in

the resulting model set. We constructed an algorithm such that this guarantee can

be made subject to the validity of our a priori assumptions.

The novelty of the resulting algorithm was the ability to use a model which is not

linear in the unknown parameters. The desired optimization problems are therefore

nonlinear. The algorithm avoids this difficulty by a form of "successive linearization."

The system is split into a set of one mode problems. Each of the one mode problems

is then solved by embedding the nonlinear optimization problem into a convex space.

We can then use convex programming to solve the resulting problem.

We have examined the conservatism of this algorithm as opposed to a method

which could solve the original nonlinear optimization problems. There are two sources
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of conservatism. The first source is from splitting the problem into a set of one mode

problems. This conservatism can be easily measured, and should be checked to ensure

it becomes small for the problem under consideration. The second source of conser-

vatism arises from embedding our nonlinear optimization problems into a convex

space. It was shown how to adapt the identification algorithm to make this conser-

vatism smaller than any specified tolerance by solving a finite number of optimization

problems.

We then examined the problem of how to choose an input to apply to the system.

Instead of choosing an input based solely on some measure of the parameter uncer-

tainty, we examined how the inputs impact the resulting closed loop performance.

The sensitivity of the performance to the inputs was estimated, and the input chosen

was the one which had the highest sensitivity.

To calculate this sensitivity, two new quantities were introduced. The first is

the sensitivity of the performance to the size of the uncertainties in the system.

Using the standard upper bound to mixed p as our measure of robust performance,

we developed a computationally efficient method to calculate this sensitivity. The

computation required was an eigenvalue decomposition. Since Hi is a function of the

closed loop system, a control design methodology must be included in the algorithm.

The philosophy of this work was to allow any desired methodology.

The second quantity we needed to calculate was the expected effect of the inputs

on the uncertainties. A computationally efficient method to estimate this quantity

was described. Using a certainty equivalence assumption, we were able to simulate

the system based upon our nominal model to determine the expected output for each

input. We then estimated the improvement in the parameter bounds for each of these

input--output pairs. This method required little knowledge of the noise entering the

system.

We then combined the identification and input design methodologies to create

an iterative algorithm. Some basic convergence properties of this algorithm were

examined. To guarantee that the robust performance was monotonically improving,

some limitations on the control methodology were imposed, and we showed how to
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adapt any control methodology to satisfy these requirements. We also examined the

conditions under which the specified algorithm would converge to where we have met

the robust performance goals. The limitations of the algorithm were discussed.

Several examples were then presented. We first demonstrated the ability of the

identification algorithm to determine accurate parameter intervals from a small set of

data. The need to use physical insight in parameterizing the system was highlighted.

We then examined the ability of the iterative algorithm for identification, control

design, and input design to quickly improve the performance in our system. We

began with only 15 data points. In most of the examples, we were able to achieve the

robust performance goals by adding only a small number of new data points. The

ability of the input design algorithm to incorporate all of the available information

to determine the most appropriate input was demonstrated.

7.2 Future Work

The algorithms developed in this work were aimed specifically at lightly damped

structures. We assumed that all of the modes of the system were lightly damped,

and that there was some separation between the modes. One area of future research

would be to extend the results presented here to a more general class of systems.

For systems with damped modes, we may be able to use a parameterization which

is not as numerically stable. Thus, we would identify the parameters of more than

one mode at a time. Other parameterizations may be needed for systems with closely

spaced or repeated modes. We expect a tradeoff between the numerical stability of

the parameterization and the number of modes we identify at one time.

The identification algorithm was based upon a set of a priori information. This in-

formation includes a bound on the noise, and a rough estimate of specific parameters.

We did not examine the effect of having a small set of data points which violated the a

priori assumptions. We would need a method to reject data points when appropriate.

This would typically happen when the algorithm determines that there does not exist

a set of parameters which is compatible with the data and the a priori assumptions.
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We would either need to change our assumptions, or remove a small number of data

points.

Another one of the underlying assumptions in this work is that intervals are the

best way to describe parameter uncertainty for the purpose of control. The set of

parameters consistent with our data might better be described by using a more com-

plicated shape such as a polygon, or some other description which can provide a

tighter bound on the set. Several of these methods have been investigated by other

researchers, as indicated earlier. However, it remains an open question how we would

design or analyze a control system with such a description of the uncertainty. An

alternate method to determine the measure of robust performance may be needed.

The philosophy of the iterative input design algorithm presented here was to

allow any control design methodologies, and to use as little knowledge of the noise as

possible. By using a specific control methodology, or by having more information on

the noise, we may be able to make stronger convergence arguments. For instance, it

may be possible to estimate the probability distribution of the noise, and as a result

achieve more accurate estimates of the effect of the inputs on the uncertainty. Of

course, we need to be concerned with the resulting computational burden this extra

computation may impose.

Another possible extension is to multi-input multi-output systems. There is no

conceptual change in extending the results presented here to MIMO systems. One

could identify the parameters of each input-output pair separately, and combine the

results. No change is necessary in the input design algorithm, other than that we

would need to consider the inputs from a MIMO viewpoint. The difficulty is that

we would need to create a state space model of the system including the uncertainty.

It. is much harder to do this from a pole-residue model than it is for single-input

single-output systems. A discussion of some of the relevant issues can be found in

appendix A.
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Appendix A

Parameterization of MIMO

Systems

One of the possible extensions to the algorithms presented in this work is to

multi-input multi-output systems. In this appendix, we will show that compared to

single-input single-output systems, it is much more difficult to transform a model of

a MIMO system which includes parametric uncertainty into a state space represen-

tation. A state space representation is desired because most robust control analysis

and synthesis tools require such a representation of the system.

We begin by assuming we have a second order MIMO system, with no uncertainty.

In the frequency domain, we would have the following representation.

Bls ± Bo
G(s) = Bl (A.1)

s2 + als + ao

Since this is a multi-input multi-output system, B1 and Bo are matrices.

For notational convenience, we will define '4 (s) as the characteristic polynomial.

tb(s) = s2 + a1s + ao (A.2)

We would like to determine when we can write this system in a state space representa-

tion with only two states. If the system has two nonrepeated poles, and no pole zero
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cancellations, a state space representation can be found with only two states. Such a

representation can always be transformed into the following state space matrices:

0A = 
--a0

-IaI
-a, _

B = [ b (A.3)

(A.4)C =[ Co C

For notational convenience, we will define bo = bo + albl.

not lost any generality in our representation. The state space

described by the following equations.

A=[ 1 B= b
-ao -al boT - albT

C= [o C]

In doing so, we have

representation is now

I

(A.5)

(A.6)

The question we would like to address is when can our system (A.1) be put into

this state space representation. In other words, when can we say the system (A.1)

has two nonrepeated poles? Whenever we can make this statement, (A.5)-(A.6) is

an appropriate state space representation.

As an example, consider the case when B 1 = 0. As we will see, if we have

I 0 () 0 1I(A.7)
G($) -- 2 als ao (A.7)

then any state space description for this system must have at least four states. How-

ever, if we have

0 1

G(s) 2= s + als + ao (A.8)

then we can create a state space description with two states.
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The following result was shown in [21]. The proof is presented here for complete-

ness.

Lemma A.1 The system

Bls + Bo
G(s)= 2 + als + ao

has a state space description given by (A.5)-(A.6) if and only if the following equalities

hold.

Bis + Bo = c(s)b(s) mod 1(s)

c(s) = cis + co

b(s) = bTs + bo

(A.9)

(A.10)

(A.11)

where "mod O(s) " represents the residue after division by s2 + als + a0.

Proof: Straightforward algebra shows that

C(sI -. A)-1B
[ ] [ 5 a ][-1

- ao s + al 

bT

bT - albT

cobTs + cobT - aoclbT + sclbT - salclbT
S2 + als + ao

(A.12)

(A.13)

Thus, this is a representation for our system if and only if

Bls +- Bo = (coblT + clbo - aclblT)s + (cobo - aoclbT ) (A.14)

= (cob + T + - alclbT)s + (coboT - a0c1bT) (A.15)

+clbTO(s) mod +(s)

= c1bTS2 + (cobT + cibT)s + coboT mod +(s) (A.16)

= (c1s + Co)(bTs + bT ) mod b(s) (A.17)

This first result gives a characterization of the types of systems which can be

transformed into the desired state space representation. Essentially, it characterizes
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the second order transfer functions which can be represented as a system with two

nonrepeated poles. A more useful characterization is given in the following lemma.

Lemma A.2 The system
Gs Bs + Bo

8) 2 ± als + ao

has a state space description given by (A.5)-(A.6) if and only if

Bjs+Blo is rank (A.18)
B(s)=O

Proof: First, assume that (A.5)-(A.6) is an appropriate state space representa-

tion. Then we know from lemma A.1

B1 s + Bo = c(s)b(s) mod 4(s) (A.19)

where c(s) and b(s) were defined in lemma A.1.

For all s, c(s)b(s) is rank 1. Multiplying this out, and collecting terms, we see the

following quantity has rank 1.

(cobT + ciboT - alclb )s + (coboT - aocibf) + c1b 'V'(s) (A.20)

The first two terms of this expression equal c(s)b(s) mod b(s). We therefore know

that

c(s)b(s) mod 7p(s) + clbTO(s) is rank 1 (A.21)

Therefore, we have

B1s + Bo + c1b TO(s) is rank 1 Vs (A.22)

The result follows by evaluating at +p(s) = 0.

Conversely, let us assume that B1s+Bo is rank 1. From (21], we can always

write this residue in terms of a sum of dyads as follows.

h

Bls + Bo = ci(s)bi(s) mod /(s) (A.23)
i=l
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ci(s) = clis + Coi

bi(s) = bs + boi (A.25)

We therefore have the following quantity as being rank 1.

h

Zci (s)bi (s) mod '(s) (A.26)
i(s)=O

Following the same steps as before, we can conclude that

h

ci(s)bi(s) is rank 1 (A.27)
i=l (s)=O

Without loss in generality, we can assume that

ci(s)bi(s) = i = 2,..., h (A.28)
O(s)=o

Therefore we can write

Bls + Bo = ci(s)bi(s) mod (s) (A.29)

Using lemma A.1 completes the proof. ·

The conclusion from this lemma is that if our frequency domain description has

two nonrepeated poles, then the residue evaluated at the location of the poles must

be rank 1. In general, if the residue is rank h at the location of the poles, then these

poles are repeated h times. We would therefore need a state space description which

has 2h states instead of 2 states.

Let us examine what this means for describing parametric uncertainty. For sim-

plicity, let us assume that we have a second order system whose poles are known

exactly. Furthermore, let us assume that the residue consists only of a constant term.

We thus have the following system.

G() s2 als + ao (A.30)s 82 + als + ao
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Here, Bo is the nominal value of the residue, and Bo is the uncertainty. Let us assume

that we know the pole is nonrepeated. Thus, Bo must be rank 1. Furthermore, we

need to have Bo + Bo be rank 1 for all possible values of the uncertainty. If it was

not rank 1, then the uncertainty would be increasing the order of the system!

In order to guarantee that the residue remains rank 1 in the face of uncertainty,

we would need to write

Bo + Bo = (co + A 0)(b0 + A2b) (A.31)

Here, Al and A 2 are the uncertainty blocks, with co and bo representing the direction

the uncertainty enters the residue.

The difficulty with this representation is that it is not easy to transform this

description of the uncertainty into parameter intervals. In fact, requiring this form

for the uncertainty is a nonconvex constraint. The problem compounds when there is

a first order term in the residue, and the location of the poles is uncertain. We would

need to guarantee that the residue remains rank 1 at the location of the poles in the

face of uncertainty in both the residues and the pole locations.

The conclusion is that the identification of parametric uncertainty becomes much

more difficult for MIMO systems. We would need either to use alternate parameter-

izations, or to be otherwise able to guarantee that the uncertainty does not increase

the order of the system. It remains an open question on how this can be done from

a frequency domain perspective.
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Appendix B

Parameter Bounds and

Sensitivities

In this appendix, the parameter intervals resulting from the iterative input design

algorithm are listed. For each input, the lower and upper bounds are listed. Also

listed are the calculated -sensitivites.

B.1 First example of Input Design

In this section, we list the parameter bounds and -sensitivities for the example

of section 6.3.2. It is interesting to note that when we apply an input to improve

the parameter intervals of one mode, all the parameter intervals call decrease. For

instance, the lower bound to a12 is greatly improved after applying an input at 1.15

rad/sec. The reason is that the model mismatch from mode 1 was large, causing the

effective noise bound at mode 2 to be high. Once we apply an input at 1.15 rad/sec,

this model mismatch decreases. The noise bound at mode 2 decreases, allowing a

more accurate identification of the parameters in this mode.
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Parameter Lower Bound Upper Bound /,-sensitivity
all 2.0911 x 10- 1.2140 x 10-1 3.5078 x 10-2
ao1 8.8827 x 10-1 1.2333 2.7621 x 10-2
bol 2.7028 7.6251 8.0642 x 10- 1

a1 2 4.5511 x 10- 9 5.3030 x 10-1 3.2849 x 10- 3

ao2 3.3851 x 101 4.3162 x 101 1.7235 x 10-2
bo2 -1.4572 7.6061 7.5447 x 10- 1

a13 1.6299 x 10- 9 2.5572 6.2945 x 1() - 4

ao3 2.6725 x 102 3.5747 x 102 7.1178 x 10 - 3

bo3 -7.8492 1.5549 x 101 1.9178 x 10-1

The lower bounds, upper bounds, and /i-sensitivities after initial data

Parameter Lower Bound Upper Bound /l-sensitivity
all 2.3388 x 10- 9 1.0803 x 10-1 3.1556 x 10-2
aol 9.1603 x 10-1 1.2083 2.6370 x 10-2
bol 3.1475 7.3021 8.5018 x 10-1
a1 2 5.2126 x 10-9 2.9791 x 10-1 1.5692 x 10-2
ao2 3.8214 x 101 4.0165 x 101 3.3262 x 10-2
bo2 2.6454 5.3482 3.5126 x 10- 1

a13 2.4323 x 10- 9 1.4552 6.0251 x 10 - 5

ao0 3 2.8427 x 102 3.3174 x 102 5.9931 x 10 - 4

b03 -1.4172 9.3018 1.0711 x 10-1

Table B-2:
sinusoid at

The lower bounds, upper bounds, and u-sensitivities after applying a
6.48 rad/sec.
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Parameter Lower Bound Upper Bound i-sensitivity
all 4.2424 x 10- 9 5.9748 x 10-2 1.7408 x 10- 2

ao1 9.6593 x 10-1 1.0661 9.8363 x 10 -
3

bo1 3.4690 5.2415 4.7898 x 10-1

a 12 3.5359 x 10-2 2.4620 x 10-1 1.2230 x 10-2
ao2 3.8567 x 101 3.9892 x 101 2.6848 x 10-2
bo2 3.0733 4.9074 2.7978 x 10-1
a13 3.1971 x 10- 9 1.0474 1.0600 x 10 - 4

a0 3 2.9249 x 102 3.2448 x 102 1.0762 x 10 - 3

bo3 -1.1083 x 10- 2 7.6161 9.3782 x 10- 2

Table B-3:
sinusoid at

The lower bounds, upper bounds, and t-sensitivities after applying a
1.15 rad/sec.

Parameter Lower Bound Upper Bound it-sensitivity
a11 4.7365 x 10- 9 5.7917 x 10- 2 3.0749 x 10- 2

aol 9.6762 x 10-1 1.0645 2.0218 x 10-2
bol 3.4987 5.2119 3.0615 x 10-1

a12 8.0641 x 10-2 2.0884 x 10-1 6.8280 x 10- 4

ao2 3.8819 x 101 3.9646 x 101 1.6809 x 10 - 3

bo2 3.4239 4.5696 1.8212 x 10-2
a1 3 8.4559 x 10-2 6.4925 x 10-1 4.7136 x 10 - 5

ao:3 3.0265 x 102 3.1263 x 102 3.2356 x 10 - 4

b0o 2.7391 5.4602 5.0543 x 10
-

3

Table B-4: The lower bounds, upper bounds, and t-sensitivities after applying a
sinusoid at 16.96 rad/sec.
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Parameter Lower Bound Upper Bound s-sensitivity
al1 5.0456 x 10- 9 5.2191 x 10-2 2.2463 x 10-2
aol 9.7113 x 10-1 1.0310 5.4597 x 10 - 3

bo1 3.5514 4.6660 2.9543 x 10-1
a12 8.2541 x 10-2 2.0460 x 10-1 1.1113 x 10-2
a 2 3.8851 x 101 3.9638 x 101 1.5936 x 10-2
bo2 3.4482 4.5374 1.5601 x 10-1
a13 1.0453 x 10-1 6.2602 x 10-1 2.9560 x 10 - 4

a 3 3.0305 x 102 3.1231 x 102 1.1117 x 10- 3

bo3 2.8288 5.3569 3.0237 x 10-2

Table B-5:
sinusoid at

The lower bounds, upper bounds, and ,-sensitivities after applying a
1.09 rad/sec.

Parameter Lower Bound Upper Bound p-sensitivity
all 4.8585 x 10- 3 4.3214 x 10-2 1.6367 x 10-2

aol 9.8127 x 10-1 1.0182 3.4144 x 10- 3

bo:l 3.7303 4.5836 2.3284 x 10-1
a12 8.3685 x 10-2 2.0285 x 10-1 1.0891 x 10- 2

ao2 3.8857 x 101 3.9626 x 101 1.6077 x 10-2
b02 3.4608 4.5270 1.5747 x 10- 1

a1 3 1.0870 x 10-1 6.2251 x 10-1 2.9174 x 10 - 4

ao3 3.0311 x 102 3.1223 x 102 1.1266 x 10 - 3

bo3 2.8493 5.3391 3.0713 x 10-2

Table B-6: The lower bounds, upper bounds, and -sensitivities after applying a
sinusoid at .93 rad/sec.
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Parameter Lower Bound Upper Bound ,-sensitivity
all 4.9140 x 10 - 3 4.3165 x 10- 2 1.7787 x 10-2
aol 9.8135 x 10-1 1.0181 3.1973 x 10 - 3

bol 3.7321 4.5823 2.2599 x 10-1
a1 2 9.7232 x 10-2 1.5475 x 10-1 6.7511 x 10- 3

a 2 3.9032 x 101 3.9412 x 101 8.8697 x 1( - 3

bo2 3.5933 4.4337 1.3021 x 10-1
a13 1.1183 x 10-1 6.1975 x 10-1 3.3715 x 10 - 4

ao3 3.0316 x 102 3.1217 x 102 1.1204 x 10- 3

bo3 2.8650 5.3251 3.0814 x 1(-2

Table B-7: The lower bounds, upper bounds, and /p-sensitivities after applying a
sinusoid at 6.14 rad/sec.

Parameter Lower Bound Upper Bound /-sensitivity
all 1.7257 x 10-2 2.7399 x 10- 2 4.6538 x 10 - 3

aol 9.9722 x 10-1 1.0104 1.2098 x 10 - 3

bo1 3.8041 4.3815 1.7016 x 10-1
a1 2 9.7941 x 10- 2 1.5407 x 10- 1 6.7495 x 10- 3

a0 2 3.9037 x 101 3.9408 x 101 9.6238 x 10- 3

bo2 3.6063 4.4279 1.4150 x 10-1
a13 1.1511 x 10-1 6.1565 x 10-1 3.3976 x 10 - 4

a 3 3.0324 x 102 3.1212 x 102 1.2269 x 10- 3

bo3 2.8807 5.3061 3.3811 x 10-2

Table B-8: The lower bounds, upper bounds, and -sensitivities after applying a
sinusoid at .97 rad/sec.
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Parameter Lower Bound Upper Bound p/-sensitivity
a1l 1.7257 x 10-2 2.7399 x 10-2 3.7977 x 10- 3

aol 9.9726 x 10-1 1.0103 1.4364 x 10- 3

bo1 3.8063 4.3808 2.1780 x 10- 1

a12 1.1192 x 10-1 1.4985 x 10-1 4.9294 x 10- 3

a 2 3.9149 x 101 3.9369 x 101 9.1058 x 10- 3

bo2 3.8021 4.4279 1.5669 x 10-1
a13 1.1843 x 10-1 6.1378 x 10-1 3.2123 x 10 - 4

a 3 3.0327 x 102 3.1205 x 102 1.6896 x 10 - 3

bo:3 2.8977 5.2952 4.6565 x 10-2

Table B-9: The lower bounds, upper bounds, and -sensitivities after applying a
sinusoid at 6.37 rad/sec.

Parameter Lower Bound Upper Bound /-sensitivity
all 1.7307 x 10-2 2.2188 x 10-2 2.4443 x 10- 3

aol 9.9733 x 10-1 1.0032 5.9608 x 10 - 4

bol 3.8091 4.0513 8.4121 x 10-2
a1 2 1.1197 x 10-1 1.4896 x 10-1 5.5060 x 10 - 3

a 2 3.9154 x 101 3.9368 x 101 6.9287 x 10- 3

bo2 3.8110 4.4200 1.2416 x 10-1
a13 1.9632 x 10-1 5.7746 x 10-1 3.3100 x 10 - 4

a 3 3.0427 x 102 3.1104 x 102 1.2031 x 10- 3

bo3 3.1714 5.0556 3.1107 x 10-2

Table B-10: The lower bounds, upper bounds, and -sensitivities after applying a
sinusoid at 1.03 rad/sec.
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Parameter Lower Bound Upper Bound |/-sensitivity
all 1.7313 x 10-2 2.2183 x 10-2 2.5130 x 10 - 3

ao1 9.9733 x 10- 1 1.0032 5.6864 x 10 - 4

bol 3.8095 4.0511 8.0198 x 10-2
a12 1.1227 x 10-1 1.4896 x 10-1 5.6354 x 10 - 3

a 2 3.9155 x 101 3.9366 x 101 6.5573 x 10- 3

bo2 3.8124 4.4200 1.1862 x 10-1
a13 2.4905 x 10-1 4.8879 x 10-1 2.2847 x 10 - 4

oa3 3.0600 x 102 3.0975 x 102 6.7900 x 10 - 4

b03 3.3665 4.7721 2.2302 x 10- 2

Table B-11: The lower bounds, upper bounds, and /i-sensitivities after applying a
sinusoid at 17.28 rad/sec.

Parameter Lower Bound Upper Bound /-sensitivity
a11 1.7316 x 10-2 2.2181 x 10-2 2.5646 x 10 - 3

ao1 9.9734 x 10- 1 1.0032 5.5364 x 10 - 4

bol 3.8097 4.0510 7.8029 x 10- 2

a1 2 1.1241 x 10-1 1.4755 x 10-1 5.5185 x 10 - 3

a 2 3.9183 x 101 3.9365 x 101 5.5386 x 10- 3

bo2 3.8157 4.3398 9.9833 x 10- 2

(l3 2.4905 x 10- 1 4.8749 x 10- 1 2.3178 x 10 - 4

a103 3.0602 x 102 3.0974 x 102 6.5673 x 10 - 4

bo3 3.3676 4.7721 2.1723 x 10- 2

Table B-12: The lower bounds, upper bounds, and ,-sensitivities after applying a
sinusoid at 6.15 rad/sec.
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B.2 Example with SNR of 10

In this section, we list the parameter bounds and p-sensitivities for the example

of section 6.3.3, where the bound on the additive noise was set at 10% of the true

system.

Parameter Lower Bound Upper Bound p-sensitivity
a11 2.3512 x 10- 9 5.2417 x 10-2 1.8664 x 10- 2

a0o 9.6671 x 10-1 1.0554 8.6960 x 10-3
bol 3.7179 4.6707 2.5264 x 10-1
a1 2 1.0730 x 10- 9 2.6803 x 10-1 1.1883 x 10-2
ao2 3.7486 x 101 4.0497 x 101 3.7285 x 10-2
bo2 2.3832 5.0955 3.3311 x 10-1
a1 3 1.9081 x 10- 9 9.1498 x 10-1 2.9885 x 10 - 4

a 3 2.9682 x 102 3.1816 x 102 1.9234 x 10- 3

bo:3 2.0176 6.3354 4.6831 x 10-2

Table B-13: The lower
points.

bounds, upper bounds, and -sensitivities after initial data

Parameter Lower Bound Upper Bound /-sensitivity
all 3.3388 x 10- 9 5.0199 x 10-2 2.0357 x 10- 2

aoL 9.7153 x 10-1 1.0466 7.6136 x 10-3

bo1 3.7957 4.4936 2.1219 x 10-1
a12 8.0302 x 10-2 2.0086 x 10-1 1.0630 x 10-2
a2 3.8845 x 101 3.9627 x 101 1.8067 x 10-2
bo2 3.4522 4.4892 1.6969 x 10-1
a13 3.3509 x 10- 9 7.5742 x 10-1 3.9745 x 10-4
a 3 2.9990 x 102 3.1483 x 102 1.9475 x 10 - 3

bo3 2.6989 5.7228 4.1063 x 10-2

Table B-14: The lower bounds, upper bounds, and -sensitivities after applying a
sinusoid at 6.48 rad/sec.
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Parameter Lower Bound Upper Bound /-sensitivity
all 1.2638 x 10- 2 2.2547 x 10- 2 3.8579 x 10- 3

aol 9.9382 x 10-1 1.0055 1.1820 x 10 - 3

bol 3.8504 4.3295 1.5146 x 10-1
a1 2 8.2148 x 10-2 1.9882 x 10-1 1.0181 x 10-2

a 2 3.8864 x 101 3.9616 x 101 1.8117 x 10-2
bo2 3.4721 4.4526 1.6760 x 10-1
a13 3.8572 x 10-2 7.1225 x 10-1 3.5837 x 10 - 4

a 3 3.0073 x 102 3.1406 x 102 1.8609 x 10- 3

bo3 2.8265 5.5758 3.9101 x 10-2

Table B-15: The lower bounds, upper bounds, and ft-sensitivities after applying a
sinusoid at 1.02 rad/sec.

Parameter Lower Bound Upper Bound /-sensitivity
all 1.2741 x 10-2 2.2497 x 10-2 4.1621 x 10- 3

aol 9.9387 x 10-1 1.0055 1.0757 x 10 - 3

bol 3.8520 4.3277 1.3736 x 10-1
a1 2 8.3899 x 10-2 1.9664 x 10-1 1.0803 x 10-2
a 2 3.8868 x 101 3.9608 x 101 1.6318 x 10-2
b02 3.4819 4.4206 1.4703 x 10-1
a13 2.2377 x 10-1 5.0279 x 10-1 1.8799 x 10 - 4

a0 3 3.0571 x 102 3.1008 x 102 6.5173 x 10 - 4

bo3 3.2925 4.8550 2.0611 x 10- 2

Table B-16: The lower bounds, upper bounds, and ft-sensitivities after applying a
sinusoid at 17.25 rad/sec.
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Parameter Lower Bound Upper Bound -sensitivity
all 1.2741 x 10-2 2.2484 x 10-2 3.4581 x 10- 3

ao1 9.9389 x 10-1 1.0055 1.2088 x 10 - 3

bo1 3.8547 4.3263 1.7231 x 10-1
a1 2 9.9619 x 10-2 1.5192 x 10-1 6.0625 x 10-3

a 2 3.9173 x 101 3.9384 x 101 7.7356 x 10-3

bo2 3.4976 4.4111 2.1979 x 10-1
a1 3 2.2377 x 10-1 5.0007 x 10-1 1.9698 x 10 - 4

a0 3 3.0571 x 102 3.1008 x 102 9.2966 x 10 - 4

bo3 3.2925 4.8533 2.9421 x 10-2

Table B-17: The lower bounds, upper bounds, and ,-sensitivities after applying a
sinusoid at 6.28 rad/sec.

Parameter Lower Bound Upper Bound ,-sensitivity
a1l 1.2741 x 10-2 2.2480 x 10-2 3.5663 x 10-3

ao1 9.9390 x 10-1 1.0055 1.2046 x 10 - 3

bol 3.8554 4.3259 1.7139 x 10-1
a12 1.0382 x 10-1 1.5192 x 10-1 5.7956 x 10 - 3

a0 2 3.9173 x 101 3.9379 x 101 7.5990 x 10 - 3

bo2 3.5260 4.4111 2.1256 x 10-1
a1 3 2.2399 x 10-1 4.9793 x 10-1 2.0175 x 10 - 4

a0 3 3.0572 x 102 3.1007 x 102 9.2345 x 10 - 4

bo3 3.2983 4.8533 2.9225 x 10-2

Table B-18: The lower bounds, upper bounds, and ,-sensitivities after applying a
sinusoid at 6.16 rad/sec.
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Parameter Lower Bound Upper Bound /u-sensitivity
all 1.5197 x 10-2 2.2376 x 10-2 2.6152 x 10- 3

aol 9.9595 x 10-1 1.0030 7.2796 x 10 - 4

bol 3.8689 4.3255 1.6550 x 10-1
a12 1.0382 x 10-1 1.5192 x 10-1 5.7544 x 10- 3

ao2 3.9173 x 101 3.9378 x 101 7.5538 x 10- 3

bo2 3.5269 4.4082 2.1078 x 10-1
a13 2.2407 x 10-1 4.9761 x 10-1 1.9990 x 1) - 4

ao3 3.0572 x 102 3.1007 x 102 9.1750 x 10- 4

bo3 3.2989 4.8527 2.9083 x 10- 2

Table B-19: The lower
sinusoid at .99 rad/sec.

bounds, upper bounds, and L-sensitivities after applying a

Parameter Lower Bound Upper Bound Il-sensitivity
all 1.5197 x 10-2 2.2353 x 10-2 2.6910 x 10- 3

aol 9.9595 x 10-1 1.0030 7.1987 x 10 - 4

bol 3.8690 4.3253 1.6353 x 10- 1

a12 1.0382 x 10-1 1.4934 x 10-1 5.6285 x 10 - 3

ao2 3.9194 x 101 3.9378 x 101 6.6948 x 10-3
bo2 3.5269 4.3642 1.9817 x 10- 1

a13 2.2429 x 10-1 4.9738 x 10-1 2.0598 x 10- 4

a 3 3.0573 x 102 3.1006 x 102 9.0556 x 10 - 4

bo3 3.3002 4.8514 2.8716 x 10- 2

Table B-20: The lower bounds, upper bounds, and -sensitivities after applying a
sinusoid at 6.13 rad/sec.
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Parameter Lower Bound Upper Bound p-sensitivity
all 1.5197 x 10-2 2.2353 x 10-2 2.7357 x 10- 3

aol 9.9595 x 10-1 1.0030 7.3517 x 10 - 4

bo1 3.8713 4.3241 1.6569 x 10-1
a12 1.0464 x 10-1 1.4926 x 10-1 5.7716 x 10 - 3

a 2 3.9195 x 101 3.9378 x 101 7.0247 x 10 - 3

bo2 3.6376 4.3633 1.7531 x 10-1
a13 2.2478 x 10-1 4.9656 x 10-1 2.0803 x 10 - 4

a 3 3.0573 x 102 3.1005 x 102 9.1881 x 10-4

bo3 3.3030 4.8473 2.9182 x 10-2

Table B-21: The lower bounds, upper bounds, and p-sensitivities after applying a
sinusoid at 6.37 rad/sec.

Parameter Lower Bound Upper Bound p-sensitivity
al1 1.5971 x 10- 2 2.1649 x 10-2 2.1606 x 10 - 3

ao0 9.9821 x 10-1 1.0030 4.9678 x 10 - 4

bol 3.8728 4.3234 1.6430 x 10-1
a1 2 1.0464 x 10-1 1.4925 x 10-1 5.7385 x 10 - 3

ao2 3.9195 x 101 3.9378 x 101 6.9985 x 10-3
bo2 3.6376 4.3627 1.7459 x 10-1
a13 2.2478 x 10-1 4.9652 x 10-1 2.0680 x 10 - 4

a0 3 3.0573 x 102 3.1005 x 102 9.1483 x 10 - 4

bo3 3.3031 4.8471 2.9078 x 10-2

Table B-22: The lower bounds, upper bounds, and p-sensitivities after applying a
sinusoid at .99 rad/sec.

136



Parameter Lower Bound Upper Bound |-sensitivity
all 1.7312 x 10-2 2.1530 x 10-2 1.5998 x 10 - 3

aol 9.9821 x 10-1 1.0018 3.7120 x 10 - 4

bol 3.8729 4.3221 1.6347 x 10-1
a1 2 1.0464 x 10-1 1.4924 x 10-1 5.7152 x 10 - 3

a0 2 3.9195 x 101 3.9378 x 101 6.9841 x 10 - 3

bo2 3.6376 4.3627 1.7426 x 10-1
a13 2.2479 x 10-1 4.9651 x 10-1 2.0593 x 10 - 4

ao3 3.0573 x 102 3.1005 x 102 9.1268 x 10 - 4

bo:3 3.3032 4.8470 2.9024 x 10-2

Table B-23: The lower bounds, upper bounds, and p-sensitivities after applying a
sinusoid at 1.00 rad/sec.

Parameter Lower Bound Upper Bound p-sensitivity
all 1.7312 x 10-2 2.1522 x 10-2 1.5967 x 10 - 3

aol 9.9823 x 10-1 1.0018 3.6857 x 10 - 4

bol 3.8729 4.3221 1.6343 x 10-1
a1 2 1.0464 x 10-1 1.4924 x 10-1 5.7149 x 10 - 3

a0 2 3.9195 x 101 3.9378 x 101 6.9834 x 10 - 3

bo2 3.6376 4.3624 1.7417 x 10-1
a13 2.2479 x 10-1 4.9650 x 10-1 2.0592 x 10 - 4

ao3 3.0573 x 102 3.1005 x 102 9.1257 x 10 - 4

bo3 3.3032 4.8470 2.9021 x 10-2

Table B-24: The lower bounds, upper bounds, and p-sensitivities after applying a
sinusoid at 6.31 rad/sec.
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Parameter Lower Bound Upper Bound |p-sensitivity
all 1.7312 x 10-2 2.1520 x 10- 2 1.5963 x 10- 3

aol 9.9823 x 10-1 1.0018 3.6849 x 10 - 4

bo1 3.8729 4.3221 1.6343 x 10-1
a12 1.0464 x 10-1 1.4924 x 10-1 5.7149 x 10 - 3

ao2 3.9195 x 101 3.9378 x 101 6.9834 x 10-3
bo2 3.6376 4.3624 1.7417 x 10-1
a1 3 2.2479 x 10-1 4.9650 x 10-1 2.0592 x 10 - 4

a 3 3.0573 x 102 3.1005 x 102 9.1256 x 10 - 4

bo3 3.3032 4.8470 2.9021 x 10-2

Table B-25: The lower
sinusoid at .99 rad/sec.

bounds, upper bounds, and ,u-sensitivities after applying a

Parameter Lower Bound Upper Bound ,i-sensitivity
all 1.7312 x 10-2 2.1520 x 10-2 1.6355 x 10- 3
aol 9.9823 x 10-1 1.0018 3.6148 x 10 - 4

bol 3.8730 4.3221 1.6029 x 10-1
a1 2 1.0464 x 10-1 1.4924 x 10-1 5.8623 x 10 - 3

ao2 3.9195 x 101 3.9378 x 101 6.8555 x 10- 3

bo2 3.6377 4.3621 1.7090 x 10-1
a13 2.4425 x 10-1 4.5244 x 10-1 1.6247 x 10 - 4

ao3 3.0637 x 102 3.0927 x 102 6.0473 x 10 - 4

bo3 3.3072 4.8412 2.8373 x 10-2

Table B-26: The lower bounds, upper bounds, and p-sensitivities after applying a
sinusoid at 17.69 rad/sec.
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Parameter Lower Bound Upper Bound /p-sensitivity
all 1.7312 x 10-2 2.1520 x 10-2 1.6325 x 10- 3

a 01 9.9879 x 10-1 1.0018 3.0382 x 10 - 4

bo1 3.8731 4.3221 1.5996 x 10-1
a1 2 1.0464 x 10-1 1.4923 x 10-1 5.8501 x 10- 3

ao2 3.9195 x 101 3.9378 x 101 6.8422 x 10 - 3

bo2 3.6378 4.3617 1.7047 x 10-1

a13 2.4429 x 10-1 4.5048 x 10-1 1.6074 x 10 - 4

ao3 3.0638 x 102 3.0927 x 102 6.0260 x 10 - 4

bo:3 3.3112 4.8403 2.8231 x 10-2

Table B-27: The lower bounds, upper
sinusoid at 1.01 rad/sec.

bounds, and t-sensitivities after applying a

Parameter Lower Bound Upper Bound /u-sensitivity
all 1.7392 x 10-2 2.1520 x 10-2 1.6016 x 10- 3

aol 9.9879 x 10-1 1.0018 3.0349 x 10 - 4

bol 3.8731 4.3221 1.5992 x 10-1
a12 1.0464 x 10-1 1.4923 x 10-1 5.8508 x 10 - 3

ao2 3.9195 x 101 3.9378 x 101 6.8414 x 10
- 3

bo2 3.6378 4.3616 1.7043 x 10-1
a1 3 2.4430 x 10-1 4.5022 x 10-1 1.6056 x 10 - 4

ao3 3.0638 x 102 3.0927 x 102 6.0193 x 10 - 4

bo3 3.3115 4.8393 2.8203 x 10-2

Table B-28: The lower bounds, upper bounds, and -sensitivities after applying a
sinusoid at 1.00 rad/sec.
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Parameter Lower Bound Upper Bound p-sensitivity
all 1.7392 x 10-2 2.1520 x 10- 2 1.6016 x 10 - 3

aol 9.9879 x 10-1 1.0018 3.0343 x 10 - 4

b01 3.8731 4.3221 1.5991 x 10-1
a1 2 1.0464 x 10-1 1.4923 x 10-1 5.8508 x 10- 3

ao2 3.9195 x 101 3.9378 x 101 6.8413 x 10 - 3

bo2 3.6378 4.3616 1.7042 x 10-1
a13 2 .4 43 1 x 10 -1 4 .5 0 1 8 x 1 0

-
1 1.6 0 54 x 10 - 4

a0:3 3.0638 x 102 3.0927 x 102 6.0183 x 10 - 4

-03 3.3115 4.8391 2.8198 x 10- 2

Table B-29: The lower bounds, upper bounds, and -sensitivities after applying a
sinusoid at 6.36 rad/sec.

Parameter Lower Bound Upper Bound p-sensitivity
all 1.8371 x 10- 2 2.1520 x 10- 2 1.2183 x 10 - 3

aol 9.9953 x 10- 1 1.0018 2.2717 x 10 - 4

bo1 3.8731 4.3221 1.5947 x 10- 1

a1 2 1.0464 x 10-1 1.4923 x 10-1 5.8287 x 10- 3

a0 2 3.9195 x 101 3.9378 x 101 6.8220 x 10- 3

bo2 3.6378 4.3615 1.6997 x 10-1
a13 2.4431 x 10- 1 4.5017 x 10- 1 1.5989 x 10 - 4

a0 3 3.0638 x 102 3.0927 x 102 5.9999 x 10 - 4

bo3 3.3115 4.8391 2.8125 x 10-2

Table B-30: The lower bounds, upper bounds, and p-sensitivities after applying a
sinusoid at 1.00 rad/sec.
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Parameter Lower Bound Upper Bound /L-sensitivity
all 1.8371 x 10-2 2.1520 x 10- 2 1.2180 x 10- 3

ao1 9.9953 x 10-1 1.0018 2.2692 x 10 - 4

bol 3.8731 4.3221 1.5946 x 10-1

a12 1.0464 x 10-1 1.4923 x 10-1 5.8273 x 10- 3

a 2 3.9195 x 101 3.9378 x 101 6.8215 x 10- 3

bo2 3.6378 4.3615 1.6996 x 10-1
a13 2.4431 x 10-1 4.5017 x 10-1 1.5985 x 10 - 4

a 3 3.0638 x 102 3.0927 x 102 5.9992 x 10 - 4

bo3 3.3115 4.8085 2.7562 x 10-2

Table B-31: The lower bounds, upper bounds, and M/-sensitivities after applying a
sinusoid at 17.83 rad/sec.

Parameter Lower Bound Upper Bound ,-sensitivity
a11 1.8371 x 10-2 2.1520 x 10-2 1.2319 x 10 - 3

a01 9.9953 x 10-1 1.0018 2.2588 x 10 - 4

bol 3.8731 4.3221 1.5874 x 10-1
a12 1.0633 x 10-1 1.4923 x 10-1 5.6700 x 10-3
a0 2 3.9195 x 101 3.9378 x 101 6.7973 x 10- 3

b02 3.6379 4.3604 1.6901 x 10- 1

al13 2.4431 x 10-1 4.5017 x 10-1 1.6167 x 10 - 4

(103 3.0638 x 102 3.0927 x 102 5.9723 x 10 - 4

bo3 3.3116 4.8085 2.7439 x 10-2

Table B-32: The lower bounds, upper bounds, and /-sensitivities after applying a
sinusoid at 6.31 rad/sec.
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Parameter Lower Bound Upper Bound p-sensitivity
all 1.8371 x 10-2 2.1448 x 10-2 1.2018 x 1( - 3

ao1 9.9954 x 10-1 1.0015 1.9917 x 10 - 4

bol 3.8731 4.3196 1.5807 x 10-1
a1 2 1.0633 x 10-1 1.4922 x 10-1 5.6677 x 10 - 3

a 2 3.9196 x 101 3.9378 x 101 6.7722 x 10 - 3

bo2 3.6410 4.3604 1.6853 x 10- 1

a1 3 2.4432 x 10-1 4.5015 x 10-1 1.6147 x 10-4

ao.3 3.0638 x 102 3.0927 x 102 5.9790 x 10 - 4

bo3 3.3117 4.8083 2.7474 x 10-2

Table B-33:
sinusoid at 1

The lower bounds, upper bounds, and ,t-sensitivities after applying a
.00 rad/sec.

Parameter Lower Bound Upper Bound |-sensitivity
all 1.8371 x 10-2 2.1437 x 10-2 1.1975 x 10 - 3

aol 9.9954 x 10-1 1.0015 1.9849 x 10 - 4

bol. 3.8731 4.3194 1.5802 x 10- 1

a12 1.0633 x 10-1 1.4922 x 10-1 5.6674 x 10 - 3

ao2 3.9196 x 101 3.9378 x 101 6.7725 x 10 - 3

bo2 3.6410 4.3604 1.6852 x 10-1
a13 2.4432 x 10-1 4.5014 x 10-1 1.6146 x 10- 4

a0 3 3.0638 x 102 3.0927 x 102 5.9794 x 10 - 4

bo3 3.3117 4.8083 2.7476 x 10-2

Table B-34:
sinusoid at 6

The lower bounds, upper bounds, and u-sensitivities after applying a
.34 rad/sec.
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Parameter Lower Bound Upper Bound e-sensitivity
all 1.8557 x 10-2 2.1398 x 10-2 1.1037 x 10 - 3

ao1 9.9955 x 10-1 1.0006 1.0807 x 10 - 4

bol 3.8743 4.3185 1.5690 x 10- 1

a1 2 1.0633 x 10 - 1 1.4922 x 10- 1 5.6356 x 10- 3

a0 2 3.9196 x 101 3.9378 x 101 6.7545 x 10 - 3

bo2 3.6411 4.3601 1.6806 x 10-1
a13 2.4433 x 10-1 4.5013 x 10-1 1.6052 x 10 - 4

a0 3 3.0638 x 102 3.0927 x 102 5.9622 x 10 - 4

b03 3.3118 4.8082 2.7411 x 10 - 2

Table B-35: The lower
sinusoid at 1.00 rad/sec.

bounds, upper bounds, and -sensitivities after applying a

B.3 Two Examples with Larger Noise at the Nat-

ural Frequencies

This section contains the parameter bounds for the two examples where the addi-

tive noise bound was much larger at the natural frequencies of the system than near

the zeros. Each example will be put into its own subsection.
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B.3.1 Parameter Bounds When We Include Unmodelled

Dynamics

all 5.0508 x 10-9 1.2619 x 10-1 3.2196 x 10-2
ao0 7.8212 x 10-1 1.1802 2.9418 x 10-2

bol 2.6351 4.9086 3.5682 x 10-1
a l 2 4.1845 x 10- 9 7.3355 6.7197 x 10- 3

ao2 2.9266 x 101 5.3809 x 101 1.2886 x 10-1
bo2 -1.0883 x 101 1.8948 x 101 1.8993
a13 1.5471 x 10- 9 1.9815 x 101 6.9523 x 10 - 3

ao3 2.6725 x 102 3.9262 x 102 2.5262 x 10-2
bo3 -3.1001 x 101 4.0654 x 101 3.8948 x 10-1

Table B-36: The lower bounds, upper bounds, and ,-sensitivities after initial data
points.

Parameter Lower Bound Upper Bound /i-sensitivity
all 6.1708 x 10- 9 1.0166 x 10-1 2.7544 x 10-2

a01 7.8212 x 10-1 1.1802 3.0132 x 10-2
bol 2.8966 4.9086 3.2816 x 10-1
a1 2 5.1640 x 10- 9 4.5244 9.5091 x 10 - 3

a02 2.9266 x 101 5.3809 x 101 9.0020 x 10- 2

bo2 -8.0258 1.6058 x 101 1.7048
a113 2.2385 x 10- 9 1.9815 x 101 8.4559 x 10 - 3

a03 2.6725 x 102 3.9262 x 102 2.9910 x 10-2

bo3 -3.0892 x 101 4.0654 x 101 4.2559 x 10-1

Table B-37: The lower bounds, upper bounds, and t-sensitivities after applying a
sinusoid at 5.39 rad/sec.
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Parameter Lower Bound Upper Bound tp-sensitivity
all 6.9136 x 10- 9 1.0166 x 10-1 1.5784 x 10- 2

aol 7.8318 x 10-1 1.1802 3.3215 x 10-2

bol 2.9055 4.9086 3.8742 x 10-1
a 1 2 5.6791 x 10-9 3.8323 8.5892 x 10 - 3

ao2 2.9266 x 101 5.3809 x 101 5.6664 x 10-2
bo2 -6.1032 1.4042 x 101 1.6023
a13 3.3435 x 10- 9 1.9815 x 101 3.0732 x 1( - 3

ao3 2.6725 x 102 3.9262 x 102 3.5972 x 10-2
bo3 -2.9544 x 101 3.7529 x 101 4.7792 x 10-1

Table B-38: The lower bounds, upper bounds, and /-sensitivities after applying a
sinusoid at 20.20 rad/sec.

Parameter Lower Bound Upper Bound p-sensitivity
all 7.4044 x 10- 9 1.0166 x 10- 1 1.6781 x 10- 2

aol 7.8318 x 10- 1 1.1802 3.3992 x 10- 2

bol 2.9055 4.9086 3.9566 x 10-1
a1 2 6.9503 x 10- 9 3.6342 9.8070 x 10- 3

ao2 2.9266 x 101 5.3809 x 101 4.5380 x 10-2

bo2 -5.5028 1.3441 x 101 1.5038
a13 3.9267 x 10- 9 1.9815 x 101 3.3474 x 10- 3

1103 2.6725 x 102 3.9262 x 102 3.6036 x 10-2
bo3 -2.8216 x 101 3.6204 x 101 4.7118 x 10-1

Table B-39: The lower bounds, upper bounds, and /-sensitivities after applying a
sinusoid at 20.06 rad/sec.
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Parameter Lower Bound Upper Bound /-sensitivity
all 7.6702 x 10- 9 1.0166 x 10-1 1.7117 x 10-2
aol 7.8318 x 10-1 1.1802 3.4017 x 10-2
bol 2.9055 4.9086 3.9572 x 10-1
a12 7.8217 x 10- 9 3.5860 1.0018 x 10-2

a0 2 2.9266 x 101 5.3809 x 101 4.3094 x 10-2
bo2 -5.3566 1.3295 x 101 1.4773
a13 5.0084 x 10- 9 1.9815 x 101 3.3618 x 10 - 3

ao3 2.6725 x 102 3.9262 x 102 3.5870 x 10-2
bo_ -2.7881 x 101 3.5872 x 101 4.6708 x 10-1

Table B-40: The lower bounds, upper bounds, and p-sensitivities after applying a
sinusoid at 20.26 rad/sec.

Parameter Lower Bound Upper Bound /L-sensitivity
all 8.5047 x 10- 9 1.0166 x 10-1 1.7066 x 10-2
ao1 7.8318 x 10-1 1.1802 3.4183 x 10-2
bo1 2.9055 4.9086 3.9762 x 10-1
(212 8.3153 x 10- 9 3.5746 1.0113 x 10-2
ao2 2.9266 x 101 5.3809 x 101 4.2167 x 10-2

bo2 -5.3220 1.3261 x 101 1.4684
a1 3 6.2511 x 10- 9 1.9815 x 101 3.4197 x 10 - 3

(Z03 2.6725 x 102 3.9262 x 102 3.5965 x 10-2
b13 -2.7800 x 101 3.5792 x 101 4.6815 x 10-1

Table B-41: The lower bounds, upper bounds, and p-sensitivities after applying a
sinusoid at 20.13 rad/sec.
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Parameter Lower Bound Upper Bound /L-sensitivity
all 8.9517 x 10-9 1.0166 x 10-1 3.8805 x 10 - 3

aol 7.8318 x 10-1 1.1802 2.8042 x 10 - 3

bol 2.9055 4.9086 4.3852 x 10-2

a12 1.0256 x 10-8 3.5683 1.0100 x 10-2

a 2 2.9266 x 101 5.3809 x 101 2.1814 x 10-2
bo2 -5.3032 1.3241 x 101 4.6106 x 10-1
a13 7.4262 x 10- 9 1.9815 x 101 1.4074 x 10 - 3

a 3 2.6725 x 102 3.9262 x 102 5.5167 x 10- 4

bo3 -2.7746 x 101 3.5733 x 101 6.1149 x 10-2

Table B-42: The lower bounds, upper bounds, and -sensitivities after applying a
sinusoid at 20.01 rad/sec.

Parameter Lower Bound Upper Bound /,-sensitivity
al l 1.0212 x 10-8 1.0166 x 10-1 1.7105 x 10- 2

ao1 7.8318 x 10-1 1.1802 3.4208 x 10- 2

bol 2.9055 4.9086 3.9787 x 10- 1

a12 1.1589 x 10-8 3.5665 1.0149 x 10- 2

a02 2.9266 x 101 5.3809 x 101 4.1762 x 10-2
bo2 -5.2977 1.3236 x 101 1.4635
a13 1.0332 x 10-8 1.9815 x 101 3.4286 x 10- 3

(103 2.6725 x 102 3.9262 x 102 3.5944 x 10-2

1)b3 -2.7733 x 101 3.5721 x 101 4.6753 x 10-1

Table B-43: The lower bounds, upper bounds, and ,u-sensitivities after applying a
sinusoid at 20.19 rad/sec.
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Parameter Lower Bound Upper Bound |L-sensitivity
all 1.1165 x 10-8 1.0166 x 10-1 1.7108 x 10-2
aol 7.8318 x 10-1 1.1802 3.4208 x 10-2

bo:L 2.9055 4.9086 3.9787 x 10-1
a12 1.3060 x 10-8 3.5661 1.0150 x 10-2
ao 2 2.9266 x 101 5.3809 x 101 4.1741 x 10-2
bo2 -5.2964 1.3235 x 101 1.4633
a13 1.0821 x 10-8 1.9815 x 101 3.4285 x 10 - 3

a 3 2.6725 x 102 3.9262 x 102 3.5942 x 10-2
bo3 -2.7730 x 101 3.5718 x 101 4.6749 x 10-1

Table B-44: The lower bounds, upper bounds, and p-sensitivities after applying a
sinusoid at 20.08 rad/sec.

Parameter Lower Bound Upper Bound p-sensitivity
all 1.3766 x 10-8 1.0166 x 10-1 1.6298 x 10-2
aol 7.8318 x 10-1 1.1802 3.4510 x 1(-2
bol 2.9055 4.9086 4.0207 x 10-1
a1 2 1.4261 x 10-8 3.5660 1.2284 x 10-2

a0 2 2.9266 x 101 5.3809 x 101 4.7944 x 10-2
bo2 -5.2961 1.3234 x 101 1.4774
a1 3 1.1804 x 10-8 1.9815 x 101 3.6818 x 10 - 3

ao3 2.6725 x 102 3.9262 x 102 3.5635 x 10 - 2

bo3 -2.7729 x 101 3.5717 x 101 4.7107 x 10-1

Table B-45: The lower bounds, upper bounds, and ,-sensitivities after applying a
sinusoid at 20.24 rad/sec.
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B.3.2 Parameter Bounds Without Unmodelled Dynamics

Parameter Lower Bound Upper Bound p-sensitivity
all 3.1956 x 10- 9 1.1943 x 10-1 3.1644 x 10-2
aoL 7.8212 x 10-1 1.1643 3.1166 x 10-2
bo1 2.6588 4.8290 3.7177 x 10-1
a1 2 1.9103 x 10- 9 7.3355 1.5401 x 10-2
ao2 2.9266 x 101 5.3809 x 101 7.6127 x 10-2
bo2 -6.5011 1.4219 x 101 1.3977
a13 2.1504 x 10- 9 1.9815 x 101 3.7307 x 10- 3

ao3 2.6725 x 102 3.9262 x 102 1.5129 x 10- 2

bo3 -1.5923 x 101 2.4232 x 101 2.3878 x 10 -1

Table B-46: The lower
points.

bounds, upper bounds, and p-sensitivities after initial data

Parameter Lower Bound Upper Bound A-sensitivity
a11 3.8321 x 10- 9 9.4964 x 10-2 3.4497 x 10- 2

(101 7.9160 x 10-1 1.1643 3.6277 x 10-2
bo1 2.9445 4.8290 3.9563 x 10-1
(112 2.2790 x 10 - 9 1.9675 1.2413 x 10-2

az02 2.9266 x 101 5.3809 x 101 4.8223 x 10- 2

bo2 -7.4727 x 10-1 8.6883 5.2710 x 10-1
a13 2.8567 x 10- 9 1.9815 x 101 4.5500 x 10-3
a 3 2.6725 x 102 3.9262 x 102 1.6697 x 10-2
bo3 -1.0409 x 101 1.8337 x 101 2.3550 x 10- 1

Table B-47: The lower
sinusoid at 5.39 rad/sec.

bounds, upper bounds, and p-sensitivities after applying a
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Parameter Lower Bound Upper Bound ,u-sensitivity
a1l 4.8511 x 10- 9 9.4964 x 10-2 3.5576 x 10- 2

ao1 7.9584 x 10-1 1.1643 3.5858 x 10-2
bo1 2.9680 4.8290 3.8898 x 10-1
al12 2.9977 x 10- 9 1.7313 1.3774 x 10-2
a0 2 2.9266 x 101 5.3345 x 101 5.7457 x 10-2
bo2 -1.2706 x 10-1 8.0656 4.4850 x 10-1
(Z13 3.1977 x 10- 9 1.8793 x 101 4.3339 x 10 - 3

(0o3 2.6725 x 102 3.9262 x 102 1.5594 x 10-2
b0o3 -9.5700 1.7485 x 101 2.2171 x 10-1

Table B-48: The lower bounds, upper bounds, and 1L-sensitivities after applying a
sinusoid at 20.20 rad/sec.

Parameter Lower Bound Upper Bound 1-sensitivity
all 5.2870 x 10- 9 9.4964 x 10-2 3.6839 x 10-2

ao[: 7.9644 x 10- 1 1.1643 3.7678 x 10- 2

bo1 2.9712 4.8290 4.0794 x 10-1
a 1 2 4.3215 x 10- 9 1.6543 1.4581 x 10-2
a 2 2.9266 x 101 5.2758 x 101 6.2664 x 10-2
bo2 3.9033 x 10-2 7.9090 4.5652 x 10-1
a1 3 3.6083 x 10- 9 9.9455 6.5449 x 10 - 4

a0 3 2.6725 x 102 3.9262 x 102 3.3478 x 10- 3

bo3 -4.3364 1.2440 x 101 1.2977 x 10-1

Table B-49: The lower bounds, upper bounds, and 1-sensitivities after applying a
sinusoid at 20.06 rad/sec.
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Parameter Lower Bound Upper Bound L-sensitivity
all 7.6697 x 10- 3 3.2217 x 10-2 1.4624 x 10-2
aol 9.6456 x 10-1 1.0350 5.2783 x 10 - 3

bol 3.8189 4.1791 7.0881 x 10-2
a 12 2.9575 x 10-2 2.2043 x 10-1 1.5552 x 10-2
ao2 3.8456 x 101 4.0094 x 101 1.7279 x 10-2
bo2 3.7546 4.2459 3.8259 x 10-2
a13 1.4728 x 10-1 5.5959 x 10-1 3.0119 x 10 - 4

ao3 3.0439 x 102 3.1150 x 102 6.6139 x 10- 4

bo3 3.8235 4.1762 2.5579 x 10 - 3

Table B-50: The lower bounds, upper bounds, and ,-sensitivities after applying a
sinusoid at 20.59 rad/sec.

Parameter Lower Bound Upper Bound i/-sensitivity
all 1.9637 x 10-2 2.0362 x 10-2 4.8277 x 10-4

aol 9.9943 x 10-1 1.0006 1.1769 x 10- 4

bol 3.9970 4.0030 2.3353 x 10 - 3

a12 1.2063 x 10- 1 1.3023 x 10- 1 2.6925 x 10 - 3

ao2 3.9239 x 101 3.9306 x 101 3.2423 x 10-3
bo2 3.9895 4.0106 5.7286 x 10 - 3

a13 3.2752 x 10-1 3.7931 x 10-1 9.2254 x 10- 5

ao3 3.0754 x 102 3.0840 x 102 2.4756 x 10 - 4

bo3 3.9788 4.0225 9.1500 x 10 - 4

Table B-51: The lower bounds, upper bounds, and ,-sensitivities after applying a
sinusoid at 8.00 rad/sec.
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