
A Programmable Processor for the Cheops Image
Processing System

by

Edward Kelly Acosta

B.A., Boston College (1989)

Submitted to the Department of Electrical Engineering and
Computer Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1995

) Massachusetts Institute of Technology 1995. All rights reserved.

I.o A

Author ..
Department of Electrical Engineering and Computer Science

May 26, 1995

C ertified by
V. Michael Bove, Jr.

Associate Professor
Thesis Supervisor

k ·I A.

Accepted by.......
ASSACHUSETS INSTI TU'TE

OF TECHNOLOGY Chairman,

JUL 171995

'.¥~'. >
R. Morgenthaler

aduate StudentsDepartmental

LIBRARIES
Baker Eno

A Programmable Processor for the Cheops Image

Processing System

by

Edward Kelly Acosta

Submitted to the Department of Electrical Engineering and Computer Science
on May 26, 1995, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Science and Engineering

Abstract
We explore the use of dynamically reconfigurable hardware in the CHEOPS image
processing system. CHEOPS incurs a substantial performance degradation when
executing computational operations for which no dedicated stream processor exists.
A new programmable processor that combines the speed of special purpose stream
architectures with the flexibility of general purpose processing is proposed and im-
plemented as a solution to this problem. Two SRAM based FPGAs are utilized in
conjunction with a PC603 microprocessor to provide a flexible computational sub-
strate. The system allows algorithms to be arbitrarily mapped to some combination
of dedicated hardware, and software within the data flow paradigm. Dynamic recon-
figuration allows the processor to specialize to each computation while maintaining
temporal flexibility. The system is designed and implemented; observations are re-
ported.

This research was supported by the Television of Tomorrow research consortium
at the MIT Media Laboratory.

Thesis Supervisor: V. Michael Bove, Jr.
Title: Associate Professor

Acknowledgments

This project was not conducted in a vacuum and there were many people who helped

along the way. First and foremost, special thanks go to Prof. V. Micheal Bove Jr. for

his patience and guidance and for making this opportunity available. Special thanks

also go to John Watlington for countless hours of assistance in the lab and a great

deal of technical advice.

Hanoz Gandhi, for help with a multitude of parts and especially for help keeping

Oreo and the Cadence software up and running. Thanks also to Andrew Huang for

the original Huffman decoder Altera design and to Jeffrey Wong for assistance with

parts ordering.

I would like to also thank Henry Holtzman and Klee Dienes for answering many

stupid UNIX questions and for occasional intervention when I got in over my head.

Many thanks must also go to Dan Gruhl for much help with latex and final document

preparation.

I must also thank Steve Wilson and Nam Pham at IBM for providing samples of

the PowerPC603 microprocessor, and much technical information, before they were

publically available.

Finally, I would like to thank my parents and family for all of their support both

moral and financial during this time. And to Lauren Fenton for putting up with me

during a very difficult time; I love you.

4

Contents

1 Introduction 13

1.1 Image Processing Applications 16

1.2 Data Flow Computing and Cheops 17

1.3 Contribution of Thesis 18

1.4 Organization of Thesis 20

2 Background: Dynamically Reconfigurable Hardware 21

2.1 Field Programmable Gate Arrays 25

2.2 Current Systems Exploiting Dynamically Reconfigurable Hardware 28

2.3 Obstacles to Acceptance of Custom Computing Machines 32

2.3.1 Reconfiguration Overhead 32

2.3.2 Device Density 34

2.3.3 Programming Environment 35

3 The Cheops Imaging System 39

3.1 Input and Output Modules 40

3.2 The Processor Module Architecture 41

3.3 The Stream Processors 42

3.4 The Stream Bottleneck 45

4 The State Machine Stream Processor 47

4.1 System and Data-path Design 48

5

4.2 Applications.

4.3 Dynamic Reconfiguration .

4.4 Configuration Timing Analysis .

5 Hardware Implementation

5.1 Overview.

5.1.1 Major Elements

5.1.2 Data-paths

5.2 Memory Organization.

5.3 PC603 Bus Access

5.3.1 Local Processor Access

5.3.2 PC603 Access

5.3.3 PC603 Bus Arbitration

5.4 Register Interface

5.4.1 Registers

5.5 Board Modes and Configuration Control

5.5.1 Board Modes.

5.6 Control Processor

5.6.1 Memory Space.

5.6.2 Memory Access Types

5.7 Bus Controller and Protocols

5.7.1 FPGA Bus Protocol

5.8 FPGA Devices.

5.8.1 External Signal Interfaces

5.8.2 Bus Protocol Logic Overhead for FPGAs

5.8.3 Flood Interface.

5.8.4 Timing Issues

5.8.5 LUT tables.

6

51

52

54

59

............... ...59
61

62

64

67

67

69

69

70

71

75

75

77

78

78

80

81

83

83

84

84

88

90

............

............

............

............

............

............

............

............

............

............

............

............

............

............

............

............

............

............

............

............

............

6 Software Environment 93

6.1 Overview 93
6.2 Development Environment 93

6.3 ChameleonOS Operating System 94

6.3.1 Design Objective 94

6.3.2 OS Initialization 95

6.3.3 Data Structures 100

6.3.4 Memory Usage 105

6.3.5 Process Switching 107

6.3.6 Local Processor Communications 109

6.3.7 FPGA Configuration 110

6.4 Application Code 110

6.4.1 The main() function 111

6.4.2 Malloc and Printf 111

6.4.3 FPGA Communication and Interrupt Handlers 112

6.4.4 Linking Applications 114

6.5 FPGA Configuration Files 115

6.6 Resource Manager Integration 116

7 Research Results 119

7.1 Implementation Difficulties. 119

7.2 FPGA Resource Utilization 120

7.3 Timing Analysis 123

8 Suggestions for Further Research and Future Directions 127

8.1 Further Research for the State Machine 127

8.1.1 Adding Newer Xilinx FPGAs 128

8.1.2 Hardware/Software Compiler 128

8.1.3 Resource Manager Support for Dynamic Reconfiguration . . . 129

7

8.2 Future Directions for Research 130

8.2.1 Improving Configuration Data Bandwidth 130

8.2.2 Continued Work on Custom Computing in General Purpose

Machines 131

8.2.3 Self-Altering Computing Machinery 131

8

List of Figures

1-1 Computer Design Stratification

Two Dimensional Design Specificity Space

Typical internal organization of an FPGA

Altera Logic Array Block (LAB) and Logic Element (LE) . .

SPLASH Custom Computing Machine Architecture

PRISM-II Custom Computing Machine Architecture

Cheops Internal Organization

Processor Module Organization

Stream Processor Submodule Statistics

Cheops data-flow software description

4-1 State Machine Stream Processor Organization . . .

4-2 FPGA Configuration Process

State Machine System Architecture Block Diagram

Local Bus Transfer Timing

PC603 Bus Transfer Tenures

PC603 Memory Map

FPGA Flood Interface State Machine, DAM

FPGA Flood Interface Logic

FPGA Memory Bus Controller .

9

15

2-1

2-2

2-3

2-4

2-5

3-1

3-2

3-3

3-4

.. . 24

. . . 26

. . . 27

. . . 30

. . . 32

......... . 41

......... . 43

......... . 45

......... . 46
50

53

5-1

5-2

5-3

5-4

5-5

5-6

5-7

..... . .60

..... . .68

..... . .70

..... . .79

..... . .85

..... . .86
.87

FPGA Memory Bus Logic

Flood Interface Timing

FPGA Memory Access Timing

Chameleon Operating System Flowchart

Chameleon Operating System Flowchart

PC603 Local Memory Usage

PC603 Local Memory Usage

ChameleonOS Process Switching

FPGA Configuration File Generation . .

7-1 Compilation Time vs. Device Utilization Ratio.

10

5-8

5-9

5-10

6-1

6-2

6-3

6-4

6-5

6-6

............ . .88

.89

.90

.. . 97

.. . 98

. . 106

... 107
. . 108

. . 116

121

List of Tables

PC603 Bus Signals

Address Bit Device Selection Mappings

Flex Bus Signals

Flex Bus Signals Connected by Transmission Gates

Local Control Bus Signals

Registers of the Register Interface

Bit Definitions of the Status Register

Bit Definitions of the Bus Priority Register

State Machine Board Modes

11

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

......... . .62

......... . .63

......... . .63

......... . .64

.......... .67

........... 71

. 72

......... . .74

......... . .74

12

Chapter 1

Introduction

A classic debate in the computer literature between special purpose and general pur-

pose architectures has persisted for decades. On one side, is the desirability of flexible

architectures that are capable of implementing a wide range of applications. On the

other is the desire, and in some applications the necessity, for very high levels of

performance offered only by custom Integrated Circuits (ICs). All other things be-

ing equal the ideal solution would be to build a machine that incorporates both.

That is, a machine with multiple custom ICs targeted at each application of interest.

Unfortunately, all other things are not equal and computer designs are subject to

the constraint of cost. Any IC design effort is extraordinary expensive and must be

amortized over many possible customers to be cost effective. Custom ICs, desirable

as they are, typically do not have a large enough application base to make them eco-

nomically feasible for a majority of applications. As a result most computers employ

general purpose architectures' capable of performing a wide range of applications at

moderate performance levels.

Custom ICs, have been used only by a limited number of consumers with deep

pockets and very specialized applications that demand the highest levels of perfor-

'General purpose machine architectures and general purpose processors will be referred to as
GPPs in this work.

13

mance. The effects of these design realities has stratified the design landscape into

two camps as indicated in figure 1-1. On the one side are the general purpose de-

signs. They come in several different flavors, mainly, SIMD, MIMD, SISD, etc., and

are characterized as follows:

* Implement a general computational architecture onto which a wide variety of

applications can be performed.

* Suffer from Von Neumann bottlenecks of one form or another. These are mem-

ory bandwidth bottlenecks, ALU computation bottlenecks, control overhead

bottlenecks.

* Have the advantage of low cost due to an extremely large pool of consumers.

The low cost to the user is possible because the architecture can perform a wide

variety of tasks. Thus development costs can be amortized over a very large

number of consumers.

At the other extreme are machines that are special purpose and are characterized by

the following attributes:

* Have extremely high levels of performance.

* Have only a very limited range of applications.

* Are not constrained computationally by architecture, but still may be con-

strained by memory bandwidth.

* Have very high costs due to the fact that there are only a small number of

consumers for each particular IC.

The void in the middle of this spectrum has begun to be filled by more flexible ICs

and by the use of programmable logic devices. Producers of custom ICs have begun to

appreciate the importance of versatility in design. As a result most custom ICs being

14

developed recently have been designed to implement multiple functions to the extent

that the minimum required performance of the target application is not hindered.

An example of this type of IC is video codecs that may implement several different

coding schemes [35].

Figure 1-1: Computer Design Stratification

A much more important recent development that has contributed to the filling of

this void is the appearance of a new device, the SRAM based Field Programmable

Gate Array (FPGA). These programmable logic devices are capable of implementing

arbitrary user specified logic functions and can be programmed from a software de-

scription of the required logic. Moreover, it is possible to change their configuration

dynamically such that the same chip may implement many different functions. The

use of such devices has made possible architectures that begin to approximate the

speed of custom ICs while maintaining the application flexibility of GPPs. Recently,

they have been used both to prototype custom ICs and as flexible coprocessors for

GPPs. Several new architectures based on this concept will be discussed in the next

chapter. All suggest that the use of dynamically reconfigurable hardware in the de-

sign of general purpose computing platforms may allow them to tackle applications

that were once the exclusive domain of custom ICs. To this end, the work described

15

here is a further exploration into the use of dynamically reconfigurable hardware, in

the form of SRAM based FPGAs, to provide flexible architectures that offer very high

performance.

1.1 Image Processing Applications

One class of applications that has traditionally had extremely high computational

demands is image processing applications. These typically require the processing of

huge amounts of data, and for video applications, in very short time frames. As an

example consider the computational requirements of the Discrete Cosine Transform

(DCT) of a CCIR 601 resolution image. 2 The DCT is often used in transform based

coding methods to achieve high levels of data compression for transmission in low

bandwidth channels. Mathematically, the DCT is expressed as in equation 1.1:

2 N-1 N-1 (2m + 1)ui7r (2n + 1)v ir]
F(u,) N= a(u)a(v) x(m,).cos (2N)u os 2 (1.1)

where,

a(k) { 1/v if k = (1.2)
1, if k#0.

The DCT operation for this image requires approximately 8,110,080 multiply and

divides, and 7,096,320 additions and subtractions[32]. 3 Many transform based codecs

must process 30 frames (images) per second in this manner to compress full-motion

video in real time.

As a point of reference, a 90-MHz Pentium microprocessor is capable of 11 Mil-

lion Floating Point Operations Per Second (MFLOPS). The 200MHz DEC Alpha

2480 x 760 pixel resolution.
3 These numbers can vary considerably depending on method of implementation of the DCT. The

point here is to present a qualitative argument, and for this purpose these numbers are representative.

16

microprocessor is capable of 43 MFLOPS[16].4 These processors are representative

of the state of the art at this time. Clearly, transform based codecs for real-time

full-motion video require more computational power than can be mustered by general

purpose CPUs. These types of computational demands exceed the resources of even

the most high performance GPPs. Hence, image processing is one application area

where the use of custom ICs is demanded by the computational requirements and it is

not uncommon to find custom machine architectures to carry out these applications.

1.2 Data Flow Computing and Cheops

Often computers designed for image processing and digital video applications employ

the data-flow model as a means of providing special purpose processors to achieve high

performance while still providing some application flexibility. Dataflow computers

are data driven, as opposed to instruction driven as are GPPs [36]. Their defining

feature is that they employ an instruction execution model that enables any particular

instruction to execute as soon as all of its operands are available [18]. The evolution of

computations in dataflow machines are typified by acyclic directed graphs in which the

nodes represent computational elements or instruction execution, and the connecting

edges are the datapaths through the graph. Figure 3-4 is an example of a simple

dataflow computation described by a directed graph. This type of computational

representation is common in digital signal processing applications. The advantage of

dataflow architectures is that they are capable of exploiting large-scale parallelism

by identifying all tasks that can be performed at the same time. An additional

advantage is that memory latency bottlenecks are overcome. This is the result of

their data driven nature. However, a significant drawback of such architectures is

the extremely complex control and sequencing necessary to identify and exploit this

4 These numbers were derived based on the Linpack Benchmark. A benchmark widely used to
gauge processor performance for complex mathematical operations.

17

parallelism. Specifically, dataflow machines require a very large synchronization name

space.

The Cheops Image processing system is a hybrid dataflow architecture that was

designed and constructed to facilitate the immense computational demands of dig-

ital video applications while avoiding some of the inherent complexities associated

with true dataflow machines. Cheops is really a hybrid dataflow/MIMD machine.

Like dataflow machines, it computations are specified by directed graphs. However,

in Cheops the computational nodes are dedicated special purpose stream processors

that perform a narrow class of computations with very high throughput. Instructions

in Cheops do not require complex analysis and scheduling as do more traditional

dataflow machine instructions. Instead, they simply identify the source and destina-

tion memory regions. Algorithms are implemented by having the data flow through

these processors from memory bank to memory bank. All memory banks and all

stream processors are connected through a full cross-bar switch whose configuration

can by dynamically changed. Like MIMD machines, more than one instruction thread

may be operational at one time. Unlike most MIMD machines though, each proces-

sor is special purpose and can only implement a single function. By utilizing this

stream architecture, Cheops is able to offer very high performance. Additionally, dy-

namic configuration of the cross-bar allows Cheops to provide algorithmic flexibility.

It is thus capable of implementing a wide range of digital video applications with

the speed of special purpose hardware and flexibility approximating that of general

purpose processors. The architecture of Cheops will be discussed in much more detail

in chapter III.

1.3 Contribution of Thesis

Cheops is capable of offering very high performance provided that there is a Special

Purpose Stream Processor (SPSP) available for any given computation. However,

18

practical constraints place limitations on the number of SPSPs that can be present in

the system at any one time. A Cheops system may be configured with many different

types of SPSPs and these can be changed by replacing small modular Printed Circuit

Boards (PCBs). But, these changes cannot occur at run time, the system must be

powered down to make the changes.

As a result of these limitations, it is possible for an algorithm to specify an oper-

ation for which no SPSP exists in the system. When this occurs Cheops can exhibit

severe performance degradation as the computation must then take place on a tradi-

tional GPP. In this thesis I propose a new SPSP for Cheops called the State Machine.

Specifically, I propose a dynamically reconfigurable processor that can be configured

to perform an arbitrary computation. The State Machine will utilize a general pur-

pose processor closely coupled to two large SRAM based FPGAs to provide a flexible

computational substrate. It will be used to overcome the practical constraints to the

architectural flexibility of Cheops by extending this flexibility to the stream processor

element level. In the course of this work I hope to accomplish two tasks. First to

show that dynamically reconfigurable hardware can be used within Cheops to success-

fully implement an arbitrary computation such that Cheops is not forced to execute

these on its general purpose platform. In the course of so doing, the performance of

Cheops will be improved by enabling it to implement complex real-time video algo-

rithms. These performance improvements will be noted and compared against the

performance of an unimproved Cheops.

Additionally, I investigate the utility of such dynamically reconfigurable hardware

for providing architectural flexibility at run-time. While many groups have already

demonstrated the use of FPGAs to provide architectural flexibility in co-processor

design, few take into account reconfiguration time in their performance improvement

calculations. Thus these efforts provide little if any information for run-time applica-

tions, and in particular, in a multi-tasking environment. In this work I address this

issue directly and present results obtained with Cheops.

19

1.4 Organization of Thesis

This thesis is organized into several chapters as follows. Chapter II discusses the his-

tory of reconfigurable computing and provides the background for the work attempted

here. Chapter III is an in-depth explanation of the Cheops Image Processing System

and its software environment. Chapter IV introduces the programmable processor

and indicates how it is used to extend the architecture of Cheops to provide increased

performance for complex applications. Chapter V reviews the hardware implementa-

tion and its computational abilities. Chapter VI discusses programming issues and

the software environment associated with the State Machine. In chapter VII, the

results of this research are presented. Finally Chapter VIII presents insights gained

during this project along with directions for further research. Several appendices

follow that provide additional information about the programmable processor.

20

Chapter 2

Background: Dynamically

Reconfigurable Hardware

Dynamic reconfiguration of hardware to customize a machine is not a new idea al-

though the current generation of reconfigurable logic devices has generated renewed

interest in the concept. The desire to implement custom hardware to improve the

performance of special instructions and applications within GPPs has been prevalent

throughout the history of processor design. The trend towards instruction specific

specialization has only very recently ceased with the wide spread acceptance, both

academic and commercial, of the superior performance offered by RISC architectures.

But many computers today still employ special purpose hardware, in the form of ap-

plication specific integrated circuits (ASICs), for specific applications such as floating

point mathematics, graphics rendering, and MPEG video coding/decoding. Addition-

ally, network and storage interface controllers are increasingly using ASICs to keep

pace with the storage bandwidth requirements of modern processors. These ASICs

provide very high levels of performance but generally only for a very limited number

of applications. Much of the current research in the use of dynamic reconfiguration of

hardware is targeted at these ASICs. It attempts to approximate the performance of

ASICs but with greater application flexibility to make better use of the silicon area

21

and thus achieve better cost/performance design points. In the following chapter we

provide a brief history of dynamic hardware configuration and discuss the current

generation of programmable logic devices that has generated renewed interest in this

area. Several systems based on these devices will be discussed to convey a feeling

for the current state of affairs. Finally we conclude with a discussion of some of the

technological limitations of these devices and the systems based on them.

Many early computers had microcoded control units that allowed their instruction

sets to be altered, or tailored to specific applications, to improve performance [15].

The early 70's saw extensive research on dynamically altering the instruction set

of a machine at compile time to improve performance by reducing bus traffic to

main memory [45] [1]. Most notably, the IBM 360 series of computers popularized

this method of CPU control in the middle 70's. These machines allowed not only

improved performance through custom modifications to the instruction set, but also

the ability to emulate other instruction sets and hardware platforms [26]. Among the

most well known (or notorious) of application specific microcoded instructions was

the polynomial evaluation instruction of early VAX computers. This instruction was

designed to improve performance by reducing instruction fetches to main memory[37].

These machine designs had the advantage of a somewhat flexible instruction set.

Custom instructions could be created for special applications or the instruction set

could be tailored to the application as desired. They provided the ability to customize

the architecture at the instruction level. That is, they provided instruction specific

flexibility. Still, this method of specialization was severely limited by the fact that

microcode only allowed changes of the sequencing of control signals and data-flow in

a fixed datapath. The datapath itself was static and unalterable.

Even after improved memory and cache technology eliminated most of the tradi-

tional advantages of microcoding, the desire to implement application specific instruc-

tions continued. There are countless examples of the implementation of application

specific instructions that contributed to the proliferation of CISC machines in the

22

late 80's and early 90's [46] [23]. Thus it is clear that even within the realm of gen-

eral purpose processing there is still a desire to employ custom hardware whenever

it is economically feasible, or at least custom instructions for specific applications.

Research has shown however, that for comparable semiconductor process technology

and clock rate such CISC architectures are two to three times slower than RISC ar-

chitectures that take advantage of simpler control design, larger register sets, and

improved memory hierarchies [8]. Further, RISC instruction sets eliminate the over-

head of supporting complex instructions that are infrequently utilized by compilers

at best [31].

Even within current designs of GPPs there is more hardware specialization than

one might imagine. This is not immediately obvious if only the single design dimension

of application specificity is considered. Consider instead a two dimensional design

space in which one dimension represents application specificity, as before, while the

second represents data type specificity. Clearly, as figure 2-1 indicates, in this space,

most processors we think of as GP are very special purpose. However they are not

specialized to applications, like ASICs, but instead to data types. That is, they are

specialized to and provide very good performance for, applications that deal primarily

with 16-bit or 32-bit data objects'. Consequently, just as special purpose machines

exhibit poor performance on tasks other than their target task, most GPPs exhibit

poor performance for data types other than their target data types. This fact has

been noted by several researchers in dealing with bit-serial applications[40][7].

The recent dominance of RISC architecture, while relegating traditional forms

of hardware reconfiguration to the depths of history, is of no consequence to the

renewed interest in custom computing due to the emergence of a new type of device.

These devices are SRAM based FPGAs. 2 These are programmable logic devices

ISome of the very latest processor designs are specialized to 64-bit data types, like the DEC
Alpha and the Intel Pentium and i860.

2 The concept of custom computing refers to the use of specialized hardware for executing ap-
plications. Systems that now employ dynamically reconfigurable hardware of one form or another
to provide a flexible custom computing environment are referred to in the literature as custom

23

True Application
application Specific

specific

MOST

ASIC
DESIGNS

_ _- - - - - - - - - - -

Datatype
specific

INTEL INTEL nlrh Al uA

Tnrue
general
purpose

8086 80486 64-bit
8-bit 32-bit 993
1985 1990

Datatype low
Specificity

Figure 2-1: Two Dimensional Design Specificity Space

that can be completely reconfigured under external control.3 This means that they

are capable of assuming completely different architectures at different times. Their

presence has motivated new research into dynamic hardware configuration. Unlike

earlier attempts though, these are aimed not at the instruction level, but instead at the

application level. A datapath can be designed for each particular application and the

devices can be reconfigured immediately before run-time. Thus SRAM based FPGAs

offer an additional advantage over earlier forms of dynamic machine configuration.

It is not only possible to change the order of occurrence of control signals for a

fixed datapath, as with microcoded machines, it is possible to completely change the

datapath itself. Moreover, they offer true dynamic flexibility along both dimensions

of the two dimensional design space mentioned above in that the custom datapath

can be specific to an arbitrary data type. The custom computing machines box in

computing machines (CCMs). This convention will be used in this work as well.
3 They may also reconfigure themselves under external signal.

24

high/

Application
Specificity

low

O
CMa
0
3
a
3

---- E---I

3
0

'a
:r

\

figure 2-1 is meant to be representative of this fact. While CCMs can provide very

high degrees of both application and data type specificity, they are also very general in

the sense that they can be quickly specialized to a wide range of possible applications.

2.1 Field Programmable Gate Arrays

Field Programmable Gate Arrays are programmable logic devices that can be repro-

grammed any number of times. In this respect they are similar to PAL devices, but

offer much higher logic density and are capable of implementing more complex logic.

The most advanced FPGAs currently offer up to 10,000 logic gates.4 The name is

descendent from the earlier mask programmable sea of gates devices from which these

are derived. Their objective is to obtain the density of sea of gates technology and

the flexibility of PAL/PLD devices. Most FPGAs are constructed as an array of very

fine grained logic resource blocks surrounded by routing resources which are used to

wire logic together. Figure 2-2 is a block diagram of the typical internal organization

of an FPGA.

The exact architecture and size of the blocks varies from vendor to vendor but

generally consists of a 2-8 input,1-2 output combinational logic function, 1-2 flip-flops,

and some control and multiplexing circuitry. The blocks labeled IOB in figure 2-2

are I/O buffer cells that typically consist of a few tri-state buffers, a line driver for

driving signals off chip, and possibly a register for latching either inputs or outputs.

The logic block of an Altera FLEX8000 logic block, known as a Logic Element (LE),

is shown in figure 2-3. In these devices 8 LEs are grouped together in Logic Array

Blocks (LABs) to provide both fine and coarse grained logic elements. These devices

have been used in the research work discussed here.

Most FPGAs to date have been based on technologies like CMOS EPROM or EEP-

4 However, a more appropriate measure of logic resources for these devices is the number of logic
blocks offered. This will become clear shortly.

25

Figure 2-2: Typical internal organization of an FPGA

ROM, which is electrically programmable read-only memory or electrically erasable

programmable read-only memory respectively. Both require special programming ap-

paratus that utilize voltage levels not normally seen in the application circuit. Once

programmed these devices are not re-programmable without being removed from the

target circuit. As a result of the physical manner in which they are reprogrammed,

they are typically only good for 100-10,000 programmings and start to fail after

that[17]. Their use is thus limited to application development. Once the design has

been debugged these devices become static in function. In this respect they are similar

to PAL devices.

The general trend of the current generation of FPGAs is towards SRAM based con-

figuration methods. These FPGAs store their configuration information in standard

static RAM cells interspersed throughout the chip. In contrast to their predecessors,

26

Inr~
iL

A

f

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~4

w

I

f

4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~- 
A

w
r4 4~~~~~

MQ

A

4
E2

0

4-40

I2 
a

I

[' F 1



.E
out

Figure 2-3: Altera Logic Array Block (LAB) and Logic Element (LE)

they may be reconfigured any number of times without any wear or tear on the device.

They use simple RAM based look-up tables (LUTs) to implement logic functions in-

stead of gates made from transistors. The inputs to a logic function are treated as

an address, the contents of the address is the logic function result. Since no special

voltage levels are required for configuration, these devices can be configured without

removing them from the circuit. In fact, it is possible for the target circuit itself to

control the configuration. It is this last possibility that is most interesting and offers

great potential for dynamic reconfiguration of application specific hardware.

When an SRAM based FPGA exists in a circuit designed to control it and utilize

its resources, a whole new dimension of design flexibility is introduced. It becomes

possible to build systems that begin to approximate the performance of application

specific ICs while offering the flexibility of general purpose processors. The perfor-

mance comes from the fact that hardware can be custom tailored to each application.

For many applications it becomes possible to achieve the highly desirable attribute

of a result per clock cycle. 5 The flexibility comes from the dynamic reconfigurability

mentioned above. Theoretically, it is possible to implement a custom architecture for

5 Result is used instead of instruction since instructions begin to lose their significance. Thus the
metric of Cycles Per Instruction (CPI) is less meaningful with these machines.

27



each individual application. Machines that embody this philosophy are commonly

referred to in the literature as custom computing machines. While a diversity of

systems architectures exists, they all employ this basic concept.

2.2 Current Systems Exploiting Dynamically Re-

configurable Hardware

As mentioned earlier, the potential offered by SRAM based FPGAs 6 has ignited re-

newed interest in dynamic hardware configuration. A large number of researchers have

very recently, and concurrently, begun to reexamine the feasibility from a cost/performance

perspective of providing application specific hardware in light of the recent develop-

ments in FPGA technology. However, the emphasis is not on instruction specific

specialization, but instead on application specific specialization. Most research in

this area is currently exploring two general trends. 7 The first is the use of FPGAs

in complete systems that allow the user to arbitrarily configure the hardware for spe-

cific applications to obtain super-computer type performance. Most of these target a

specific application, like logic emulation, and do not have dynamic reconfiguration as

a primary goal. Rather, they exploit the low cost and short design cycles of these de-

vices as a welcome alternative to full custom ICs in obtaining improved performance.

Many groups have reported spectacular success at speeding up various applications

with FPGAs without the expense or time commitment of ASICs[43][25][11]. A more

interesting current area of research is the use of FPGAs in add-on boards and other

closely coupled co-processors that assist GPPs in performing certain parts of applica-

tions. Typical designs attempt to move two distinct types of operations to hardware

to speed applications, these are:

6 From this point forward SRAM based FPGAs will be referred to as simply FPGAs.
7 There are notable exceptions to this generalization. An example is the Spyder processor, a

superscalar processor with reconfigurable execution units implemented with FPGAs, constructed by
Iseli and Sanchez et al.[28]

28



* Bit parallel computations. Computations that exhibit a high degree of par-

allelism and employ non-standard data types. GPPs generally provide poor

performance in each of these cases and thus benefit greatly from co-processor

assistance.

* Computationally intensive inner program loops. Takes advantage of the fact

that typically less than 10% of program code accounts for 90% of program

execution time [26]. Attempts to implement these sections of code in hardware

to improve performance.

In both cases designs of this nature attempt to use FPGAs to provide a flexible

computational substrate that is dynamically adaptive to the application of interest.

We chose to discuss a few of these systems further, as their presence has been a

motivating factor in the design of the programmable processor for Cheops.

Perhaps the first custom computing machine was the Anyboard, a PC plug-in

board that provided five Xilinx FPGAs together with local RAM store to provide

a rapid-prototyping environment for digital system development [14]. Anyboard,

constructed in 1992, utilized Xilinx XC3042 FPGAs and took over five seconds to

reconfigure[13]. For this proprietary system, dynamic reconfiguration at run time

was too computationally costly. Anyboard's chief contribution was the creation of

a pioneering reconfigurable hardware platform for custom computing. Although its

purpose was not to augment the functionality of a GPP, its presence served as the

inspiration for other custom computing machines with this goal in mind.

Another notable custom computing machine is SPLASH, constructed at the IDA

Supercomputing Research Center. This architecture consists of up to sixteen SPLASH

boards that connect to a Sun Sparcstation through a separate interface board. The

interface board provides four DMA channels capable of providing a total bandwidth

of 50 MBytes/sec. to the SPLASH boards. Each SPLASH board consists of 16

Xilinx XC4010 FPGAs fully connected through a 16x16 crossbar switch. Additionally,

36-bit paths run between adjacent FPGAs which are laid out in a linear array[5].

29



Figure 2-4 is a block diagram of the layout of a SPLASH board. The linear bus

that connects adjacent FPGAs may also be extended across multiple boards should

they be employed. SPLASH has several key advantages over its predecessors. First

the FPGAs used are high density, 10,000 gates per chip, and thus provide enough

hardware resources to implement large scale architectural designs. In addition, the

programming environment is vastly improved over earlier machines through the use

of HDLs (Hardware Description Languages) which allow designs to be specified at the

behavioral level. Finally, the newer FPGAs have configuration times that are several

orders of magnitude less than Anyboard. Several applications have been successfully

demonstrated on this machine and SPLASH2 is under development to overcome I/O

and internal connect bandwidth problems encountered[39].

I

I I I I I I I I I

H xo 16 x 16 CROSSBAR

m

I I I I I

Figure 2-4: SPLASH Custom Computing Machine Architecture

The virtual computer designed by the Virtual Computing Corporation and de-

scribed by Casselman et al. [9], is not in the class of machines under discussion. It is

a complete super-computing platform designed to assist a host workstation. It consists

of a large array of Xilinx 4010 FPGAs interspersed with I-Cube IQ160 reconfigurable

routing chips. Despite the difference in design, we mention it here because it can be

30

xl X2 X3 X4 X5 X6 X7 X8

I I I I I

I I I I I I

X16 X15 X14 X13 X12 X11 X10 X9

.q

to

31P
F

I

.

I I I I I I



completely reconfigured in 25 milliseconds. A dedicated fast 64-bit I/O port facilities

the reconfiguration operation. Although this author feels that this claim is somewhat

dubious, it provides an example of what is currently possible in reconfiguration times

for the current generation of FPGA devices.8

The PRISM-II machine, built at Brown University by Athanas, Agarwal, and

Silverman et al. [45], employs three Xilinx 4010 FPGAs closely coupled to a AM29050

processor to provide flexible co-processor support. Figure 2-5 is a block diagram of

the system architecture. This project is perhaps the most sophisticated to date in

that they have accomplished a considerable amount of work in generation of hardware

modules directly from high level C source code [44]. The goal of PRISM is to improve

performance of computationally intensive tasks by using information extracted at

compile time to automatically synthesize application specific hardware to supplement

the computational abilities of the GPP. The FPGAs fulfill the role of a custom co-

processor, but an adaptive one that can be specialized to each individual application.

The PRISM architecture is very similar to that of the programmable processor as we

shall soon see.

As a final note DeHon, et al. [12] has proposed the integration of FPGAs with

conventional GPPs in a new device called a DPGA, Dynamically Programmable Gate

Array. These augment a core general purpose processor with an array of reconfig-

urable logic resources on the same chip. Each logic element in the array has local store

to store several configurations for fast context switches between applications. While

the availability of these devices is many years away, their feasibility is unquestionable.

Consequently, they represent a natural extrapolation of dynamically reconfigurable

hardware technology and indicate that the paradigm for flexible custom computers

has been established.

8 No other researchers have reported reconfiguration times similar to these for this family of
FPGAs.

31



Figure 2-5: PRISM-II Custom Computing Machine Architecture

2.3 Obstacles to Acceptance of Custom Comput-

ing Machines

While significant progress has been made in the design and construction of custom

computing machines using FPGAs, there are still several technological barriers that

have prevented them from establishing a more visible role in the world of computer

architecture. Critics often use these to dismiss the relevance of these machines. Specif-

ically, there are three major problems with these machines: a high temporal reconfigu-

ration cost, low silicon density, and a complex programming and design environment.

We address each of these points in detail.

2.3.1 Reconfiguration Overhead

The most serious problem is the very high reconfiguration overhead. Typically, the

reconfiguration time can exceed the corresponding computation time on a general

purpose processor. Thus even though the custom computer may be orders of magni-

32



tude faster than a GPP computationally, the total time to perform the computation,

reconfiguration plus actual computation, may be longer than the GPPs computation

time. Thus it would seem that the use of custom computers is not practical. This is

certainly true for most of the devices currently available.

What the critics fail to note though, is that the reconfiguration times of FPGAs

are dropping by orders of magnitude each year. As noted above Anyboard took sec-

onds to reconfigure using Xilinx XC3042, an older family of FPGA introduced around

1988. The generation of FPGAs used in this thesis, Xilinx 4000, Altera FLEX8000,

etc., have reconfiguration times of 25-100ms. The most recent generation of devices

available have reconfiguration times in the 1-lOms range. These reconfiguration times

continue to drop at a near exponential rate as FPGA technology improves.9 More-

over, the currently available devices were not designed with ultrafast reconfiguration

in mind. Increased demand for faster reconfiguration for custom computing is already

driving down these times further. The next family of FPGAs will likely have recon-

figuration times on the order of 100us. Thus reconfiguration overhead is decreasing

to the point were it is rapidly approaching the time penalty of a context switch in

multiprocessing operating systems. As a result, the comparison to GPPs is beginning

to make sense for large data sets. We will have more to say on this subject later.

Another important development that could eliminate the reconfiguration over-

head is the appearance of FPGAs that are incrementally reconfigurable. Devices that

are incrementally reconfigurable are capable of carrying out computation in one area

of the chip while reconfiguration occurs in another. With these FPGAs it may be-

come possible to reduce the reconfiguration overhead to zero if an architecture can

be appropriately time division multiplexed. This also introduces another interesting

possibility, implementing virtual hardware in an analogous fashion to virtual memory.

Babb et al. [6], who has developed a tool for time partitioning a circuit, has discussed

this possibility and Ling and Amano et al [33] describe a machine based on it. Algo-

9Indeed, product announcements in 1995 surprise even this author.

33



tronix, a Scottish company, currently makes a family of incrementally reconfigurable

FPGAs, the CAL family of chips[19]. If this technique becomes more popular it is

likely that other vendors will follow.

The trend of near exponential improvement in reconfiguration time and the avail-

ability of incrementally reconfigurable logic devices indicate that the objection to

custom computing based on reconfiguration overhead is only a short term objection.

It is not a fundamental obstacle to the development of these machines. For large

datasets and specific computations, it is already worth paying the configuration over-

head. As technology scales this will become true in an increasing number of cases.

As such, its worth will be discounted in the remainder of this work. We will choose

instead to attempt to develop some empirical insights on when and how to employ

these and future devices in an advantageous fashion.

2.3.2 Device Density

Another common objection to the use of FPGAs in custom computing is the device

density. Current FPGAs are a factor of 10 less dense than corresponding sea of gates

technology[40]. Thus it is hard at this point to fit a design of any reasonable size in

a single FPGA. The problem is exacerbated by low device utilization due to routing

constraints. l° Using multiple devices is an option but introduces a whole new set of

problems which must be addressed. While not insurmountable, they complicate the

design cycle unnecessarily. This is a serious drawback and a fundamental weakness

in the cost/performance equation for this class of machines.

Despite this weakness, the advancement of FPGA technology will continue to

alleviate these constraints. FPGAs will also continually benefit from improvements

in semiconductor process technology in the same manner as other ICs. FPGA gate

°0 FPGAs typically have only a limited number of wire segments in the routing channels to connect
the logic blocks with. It is not uncommon for a given design to exhaust the possible connecting paths
between two logic blocks. When this happens the logic block becomes unusable to implement logic
functions. We will have more to say on this subject in a later chapter.

34



count is increasing at a rate of better than 100% per year [48]. Newer generation

of devices eliminate routing constraints with better architectures and more routing

resources. The largest of the current generation of devices has on the order of 50k

gates. Xilinx projects FPGA usable gate counts of over 200,000 by the end of the

century and a price of under five dollars for the current generation of devices[47]. So

although FPGAs may never offer the logic density of custom ASICS, densities will

improve to the point where they are acceptable for most applications. Already the

largest FPGAs are large enough to accommodate small designs in their entirety. Thus

although logic density is a current constraint, it is also only a short term constraint.

2.3.3 Programming Environment

The programming environment of custom computing machines is also a serious con-

cern. Many complain that the use of VHDL and other hardware and circuit languages

to program these devices forces the programmer to have detailed knowledge of digital

hardware design as well as software design. As long as this is the case, it is likely that

they will not gain wide spread acceptance because of the difficulty in programming

them. This concern is also a legitimate one, programmers should not be required to

specify the architectural details on which their software will run. This is too radi-

cal a departure from current practice and introduces more complexity than can be

reasonably justified.

A major effort has been under way over the past two years to eradicate this

problem. Several groups have made significant progress in synthesizing hardware

modules directly from high level programming languages. DEC Paris Research Lab

have demonstrated that with a few simple extensions the C++ programming language

can be used to describe hardware function at the structural level[7]. While still

requiring the user to have knowledge of the underlying architecture, its description

can be specified in a familiar environment. Further, many programmers have detailed

knowledge of the underlying hardware at the structural level anyway. Software tuning

35



to the run-time architecture is still a widely practiced concept[45].

A more important development is the synthesis of hardware and software directly

from a high level programming language. Several groups have begun to automate the

various steps of the compilation process. Most of these efforts let a high level language

compiler break the program down to the RTL level where control flow graphs (CFGs)

can be easily generated to assist with hardware synthesis. Athanas and Silverman

et al [45] have made impressive progress in synthesizing hardware directly from an

algorithmic description in the C programming language. Their first effort was capable

of compiling a subset of the language that included int, char, short, and long types,

if-else control structs, and fixed length for loops directly into hardware. They used the

GCC compiler as a front end to generate the RTL description of the problem, and then

used CFGs, VHDL and the Xilinx tools to directly generate FPGA hardware images.

They are currently working on the next generation compiler which will incorporate

variable loop count for loops, while and do-while loops, switch-case statements, and

break and continue directives. Their efforts have shown that it is already possible to

generate synthesized hardware directly from traditional programming languages.

There are many others that are currently conducting research in this area and

making significant progress. While the current generation of compilers is rather prim-

itive this is also a temporary condition. It is unquestionable that in the very near

future there can be very sophisticated combined hardware software compilers that

will synthesize complete systems described in high level languages. DeHon et al [12]

has also commented on this possibility. In the short term, architectures and sub-

components can be custom designed by hardware engineers and supplied as libraries.

Programmers can then make use of these hardware libraries in the same manner that

they use software libraries. In either case the programming environment can be made

amenable to current practices so that programming custom computing machines is

no more difficult than programming machines based on GPPs.

Dynamic configuration for custom computing has evolved considerably over the

36



past several years. The appearance of SRAM based FPGAs has motivated new re-

search into run-time application specialization. Several experimental systems have

demonstrated that their use holds great promise for custom computing. While there

are currently some major constraints in using FPGAs to implement custom comput-

ing machines, it has been shown that these are at best temporary. There are no

fundamental technological boundaries that prohibit the advancement of these ma-

chines. Their most major handicap is that the devices that are employed for dynamic

reconfiguration were not designed with custom computing in mind. As the growing

recognition of the usefulness of these machines-both in terms of flexibility and favor-

able cost/performance ratios-continues to rise, there will be sufficient market forces

present to insure that new devices that overcome the current limitations of FPGAs

will be available.

37



38



Chapter 3

The Cheops Imaging System

The Cheops Image Processing System is a modular experimental test bed built by the

Information and Entertainment Group at the Media Laboratory. It employs a flexi-

ble parallel architecture for the execution of real-time image processing applications

including image encoding/decoding, motion compensation, model-based image repre-

sentation, and image compression and decompression[29]. Additionally, the system is

capable of sub-band coding and decoding and of generating displays of many differ-

ent resolutions and frame rates simultaneously in accord with the open-architecture

television paradigm proposed by Bove and Lippman, et. al. [30]. Cheops achieves

its real-time speed by exploiting the fact that a large class of image processing algo-

rithms and operations employ a small set of basic computational operations that can

be implemented in special purpose hardware as dedicated stream processors. These

algorithms can then be described in terms of a data-flow representation where data

flows between storage elements through a cascaded set of memory buffers and com-

putational nodes [29].

The Cheops system is internally subdivided into three types of modules connected

through two high speed buses for image data transfer, and a slower global bus for con-

trol and inter-module communications. There are input modules designed to accept

coded video data at a wide range of input data rates. Processing modules perform

39



coding/decoding and other image processing operations. Finally, output modules

contain several frames of video buffering and are capable of both digital and analog

output for many different frame sizes and frame rates. Cheops can be configured with

up to four of each type of module all capable of operating simultaneously.' The two

high speed buses are known as Nile buses, they are 48 bits wide and carry pixel data

between modules in a twenty-four bit format (8-bit for each of the RGB channels) at

a data rate of 40 M-Pixel/sec. each. A third bus (32 bits wide) carries control and

general data communications between the modules at an 8 Mtransfers/sec. data rate.

Figure 3-1 is a block diagram of the modular structure of Cheops. The system is con-

trolled by a front-end host computer that supplies a file system and network interface

to Cheops. The host is used as a development platform for the cross-compilation of

Cheops software and as an execution environment.

3.1 Input and Output Modules

Input and output modules provide the necessary hardware for Cheops to capture

and display video data. The input modules pass data to the processor modules for

processing, which in turn pass the processed data along to the output modules for

display. Video data is passed between the modules using the Nile buses and control

and sequencing information is passed via the global bus as mentioned earlier. Since

the input and output modules do not have any direct relevance to this research, we

do not describe them in this work.

Recently, a Cheops system has been configured to accommodate up to six output modules for
the Spatial Imaging Group of the MIT Media Lab for the display of real-time three dimensional
holograms.

40



Figure 3-1: Cheops Internal Organization

3.2 The Processor Module Architecture

The majority of the interesting processing in the Cheops system occurs on the pro-

cessing modules. Each processor module consists of 32 M-byte of dual-ported RAM,

a general purpose processor with a small memory, as many as eight special purpose

stream processors, a local bus and several external bus interfaces [38]. It is within the

processor module that the data-flow model is exploited to achieve real-time speed by

performing common computations using dedicated stream processor hardware. It is

the nature of this implementation that, under certain conditions, creates a computa-

tional bottleneck that degrades system performance.

A block diagram of the processor module is shown in figure 3-2. The memory is

41



subdivided into eight distinct banks of 4M-bytes each. The banks are dual-ported

with one port connected to the global bus, and the other through a non-blocking

full crosspoint switch, known as "the Hub" [38], to as many as eight special purpose

stream processors. The crosspoint switch allows for a 40 M-Sample/sec2 path to

be configured between any memory bank and any stream processor. Connections

between memory banks and between cascaded processors are also possible[30]. The

general purpose processor is an Intel 80960CF, a 32-bit superscalar RISC processor;

capable of executing as many as three instructions per cycle. It is responsible for

stream processor coordination, resource management, user interface, and performing

computations for which no stream processor exists. Cheops is connected to the host

computer through the SCSI and RS-232 interfaces.3

3.3 The Stream Processors

Six of the eight stream processors reside on submodules that plug into the proces-

sor module system board. The physical and logical interface of the submodules is

provided in figure 3-3. Each submodule can contain two stream processors and has

two 16-bit inputs and two 16-bit outputs connected to the Hub for the transmission

of image data. The submodules are connected to the processor board with a 36-pin

dual row header strip (P20) and a 96-pin Eurocard connector (P10). These allow the

submodules to be removed and replaced easily for maximum configuration flexibil-

ity. Some stream processors require enough hardware to occupy an entire submodule

board; others are capable of temporarily utilizing all input and output ports to in-

crease bandwidth, disabling the other stream processor in the process. There are

many different types of stream processors for performing common computations in

image processing. The following is an exhaustive list of the available stream processor

2 A sample is a 16-bit wide data type.
3 A high speed parallel interface (HPPI) that will facilitate a 100M-Byte/sec. transfer rate, is

also under construction.

42



THE CHEOPS PROCESSOR MODULE ARCHITECTURE

C

I VRAM i n

IT VRM 1 pVRAM 

T RR

Figure 3-2: Processor Module Organization

submodules:

* 8x8 discrete cosine transform (DCT/IDCT) unit

* FIR filter engine

* 16x16 full search motion estimation unit

* Sequenced lookup table for vector quantization

* Splotch superposition processor

* Stream multiplier

* Spatial remapping processor

43

]

AL~i

aawswwssswarwwswaawwssssswwwwwwwws~=VW

$ ~~~~~~~~~~~~~~~~~~~~~~~~~

VRAM~ VRAM 

i~ul-) [ -- A



The remaining two stream processors are transpose engines and are permanently

attached to the processor module because of their frequent use. Finally, the color

space converter is also connected to the memory banks and provides an interface to

the Nile system buses.

The flow of data from memory banks to stream processors and vice-versa is con-

trolled by handshaking signals known as OK signals. A processor module has three

OK signals that run to each of the submodule cards. A single OK signal governs

the transfer of data in a single computational pipeline. The system resource man-

ager may dynamically assign specific OK signals to stream processors to carry out

data transfers. Once assigned the stream processor synchronizes its activities to the

assertions of the OK channels, which are controlled by the resource manager. Data

transfers between memory banks and stream processors occur in one or two phases.

For one phase operations data flows from one memory bank through a stream proces-

sor and into another memory bank in the same operation. In two phase operations,

data flows from a memory bank into a stream processor where it is processed and

buffered until the second phase in which the data flows back to a memory bank. Two

phase operations use one OK channel in each phase of operation. As a result of this

organization, the number of concurrent stream processor computations is limited by

the number of OK signals and types of transfers in progress.

The stream processors receive their configuration information over the control

interface. A separate 16-bit address and 8-bit data bus and a few handshaking signals

are provided for this purpose. A quick look at figure 3-3 shows that the stream

processor modules appear as essentially memory mapped objects to the local processor

(80960). The only exception is the ready signal which is used by slow devices to extend

the normal data transfer cycle. The configuration information stored on the modules

includes OK channel assignment, delay value from the assertion of the OK signal to

the first valid flood datum, as well as other stream processor specific configuration

information.

44



THE STREAM PROCESSOR INTERFACE

AIN

AOUTCl

FLOODOK j3

BIN 
16_

BOUT

l Addr .50

b Data

- ADS

W/R

r CSI
CSI

- READY

0< - RESET

4.300"
4.000" , i

...... '6 ..--------.----------------- -------- i
~- ""5 3.950 

.
P20_

.550".: ~t ,~~~~~~~~.,, .4¢ PlO I

Packa§ iKeepin Areas

i ;

Submodule Statistics

1) Inputs

2) Outputs
Submodule
Side View 3) Bidirectional

4) Usable Area:

5) Connector Current
Limit

6) Power Dissipation
Limit

Figure 3-3: Stream Processor Submodule Statistics

3.4 The Stream Bottleneck

The software that runs on the embedded general purpose processor specifies algo-

rithms as data-flow graphs where operations are performed by the stream processors.

Data dependencies are also specified so that proper sequencing is maintained. Fig-

ure 3-4 is a typical graph describing a simple two step operation. Data flows from

buffer to buffer through the stream processors where it is operated on with very high

throughput.

The operating system used, Magic7, is cooperatively multitasking allowing several

different processes, to execute simultaneously. A separate task, known as Norman,

manages the processor module resources and arbitrates between tasks competing

45

STRBAM PROCESSOR SUBMODULE CARD

Stream
Processor I

Stream
OR... Processor

Stream
Processor 2

...

....... f.

.400"

.300"

t

56

33

8

42.47 sq. in.
(both sides)

6 Amp

30 Watt

.1...... , . ---- .--

......... ! ! J.. r-o

-------- .. .. - .. ... . ----------------------------------------------

$



ource Stream
memory > Processor 3

bank One

Stream
>30 Processor 

Two

Figure 3-4: Cheops data-flow software description

for the same resources. In this case the resources are the stream processors and

the various memory banks. It is the computational performance of these dedicated

stream processors that allow Cheops to achieve its real-time performance. Algorithms

whose operations can be executed exclusively on the stream processors demonstrate

superior throughput. However, algorithms for which no stream processor exists suffer

a substantial performance degradation. This is because these must be performed by

the general purpose processor, which slows system performance in two ways. First,

the general purpose processor, fast as it is, simply does not offer the performance of

the specialized stream processors. Additionally, the computation receives only some

fraction of the processor's power since it is multitasking and must devote as much time

to the resource scheduling task, Norman, as is necessary[30]. Complex algorithms are

thus unable to realize the full potential of the Cheops architecture.

In order that this computational bottleneck be removed, all of the computations

that would be performed on the main CPU must be moved elsewhere so that it can

concentrate exclusively on resource management. A stream processor that combines

special purpose speed with general purpose flexibility is required; an apparent con-

tradiction. In the following chapters we discuss the design and implementation of

the State Machine stream processor, which is proposed to overcome this fundamental

limitation.

46

i

i



Chapter 4

The State Machine Stream

Processor

In chapter 2 a detailed explanation of dynamic hardware configuration and SRAM

based FPGAs was provided. In addition the term custom computing machine was

introduced to describe system architectures that exploit the dynamic reconfigurability

provided by SRAM based FPGAs. In this thesis, we endeavor to improve Cheops

through the addition of custom computing machinery. The State Machine stream

processor is in essence, a custom computing machine. In particular, it is a custom

computing machine that has been tailored to the operational requirements of the

Cheops imaging system. Custom computing provides an elegant and valid solution

to the stream bottleneck problem within Cheops. In this chapter we describe the

organization of the State Machine stream processor at a high level, and discuss its

use within Cheops. In addition, a model for predicting the reconfiguration time'

for the State Machine is provided. The State Machine is described in much greater

technical detail in the following two chapters.

The State Machine is a new type of computational resource for the Cheops proces-

sor module. It appears to the processor module as an ordinary submodule and uses

'Here we refer to this time as the reconfiguration penalty.

47



the standard submodule interfaces. However, the State Machine is really a complete

high-performance computational platform. The State Machine satisfies the dual re-

quirements of general purpose flexibility and special purpose speed and is specifically

designed to overcome the stream bottleneck problem. The State Machine uses the

current generation of dynamically reconfigurable FPGAs under the control of a gen-

eral purpose processor to satisfy these requirements. The flexibility is provided by

the run-time reconfigurability of the FPGAs, the main computational elements. Each

State Machine application can have its own specific hardware architecture. The per-

formance is the result of the ability to implement a custom computational architecture

for any arbitrary task;2 in many cases achieving a result per clock cycle.

The general purpose CPU controls the configuration process and all communica-

tion with the LP.3 Additionally, the general purpose CPU may augment the com-

putational abilities of the FPGAs for certain configurations. This ability allows the

designer of a State Machine application to arbitrarily choose the boundary between

hardware and software implementation of a design. The State Machine is able to ap-

pear as a dedicated stream processor for an arbitrary application without violating the

data-flow model within Cheops. For any given application, throughput and latency

characteristics are dependent on the extent to which custom hardware is utilized.

4.1 System and Data-path Design

The objective of the design of the State Machine was to implement a stream processor

that would work within the physical, electrical and logical constraints of the current

stream processor interface while providing maximum algorithmic flexibility. That is,

how best to organize the resources such that the architecture remained general enough

2 provided, of course, that the architecture does not require more hardware resources than are
available in the FPGAs.

3In the remainder of this document the LP refers to the Cheops processor module i960
microprocessor.

48



to accommodate as many algorithms and computations as possible.

Physically, all of the hardware components are constrained to fit on a single sub-

module card. Figure 3-3 provides diagrams of the stream processor submodule speci-

fications. Components can occupy both sides of the card provided they do not exceed

the height restrictions on either side of the card. While most large components are

placed on the top side of the board, small surface mount packages and even industry

standard PLCC sockets will fit on the bottom side of the board. The only exception

on the bottom side is the small package keep-out zone, where the card physically

extends over a large heat sink on the processor module.

Electrically the design is constrained by the input/output interface, current con-

straint, and power dissipation limit. The two connectors are capable of supplying

6 Amps of 5V DC current to the stream processor card. Thus the aggregate peak

current requirements cannot exceed 6 Amps. Power dissipation is thus limited to

30 Watts; six large fans in the system chassis insure that the system is adequately

cooled.

The physical and electrical constraints restrict the number of computational re-

sources present on the State Machine board. Clearly, to provide maximum application

flexibility, it is desirable to include as much memory and as many large dense FPGAs

as possible. Unfortunately, large, dense FPGAs take up a considerable amount of

board space. Most come in 160-299 pin PGAs or QFPs [2] [48]. In addition, the

larger FPGAs can dissipate a considerable amount of power, a maximum power dissi-

pation rate of approximately 3 Watts is typical of these devices. The approach taken

here is to provide one large FPGA per Flood port and fill any remaining board space

with additional memory.

Logically, to be maximally flexible the State Machine must accommodate three

different types of usage. First it must be capable of acting as two completely inde-

pendent stream processors, each stream processor using one of the two hub ports.

It must be able to be used as one large stream processor using one or both flood

49



ports. Finally, it must be utilizable as two stream processors working together. A

further logical constraint is that it must be completely configurable from the control

interface.

AIN AOUT

DATA PATH DESIGN

AORY
ANK

BIN BOUT

Flood Interfaces

Figure 4-1: State Machine Stream Processor Organization

Figure 4-1 is a block diagram describing the system architecture of the State Ma-

chine stream processor. The three busses on the board are capable of supporting

concurrent independent transactions. For configurations where the State Machine

is to be used as two independent stream processors, each FPGA and its associated

memory bank can be operated independently of the other with no interference. For

these applications the processor can assist one or both, or none, of the FPGAs with

their respective tasks. The inter-FPGA bus allows the FPGAs to pass control signals

50



and data for single processor applications. Also, a set of pass gates connect the two

address busses so that they may appear as a single bus when enabled. This feature

is useful for applications that require address remapping such as motion compensa-

tion and image rendition; allowing one FPGA to generate addresses while the other

shuffles the data [10]. For cases where the State Machine is configured as two stream

processors working together, the processor can facilitate the transfer of data from one

stream processor to the other without interfering with the operation of either one.

The processor bus is clocked at the Pclk rate, the processor module system clock

speed. It is capable of 896 M-bit/s peak and 224 M-bit/s sustained bandwidth when

Pclk is 28 MHz.4 Each FPGA bus is accessed at the Hub clock rate of 32MHz and

is capable of 1.024 G-bit/s sustained bandwidth when the FPGA has its memory bus

in buslock mode. 5 Data streams flow in from and out to each of the Flood ports at

512 M-bit/s.

4.2 Applications

A State Machine application is divided into two components. There is an architec-

tural description of the custom hardware to be implemented in the FPGAs, and a

software image to be executed on the processor. Every application has these two

components irrespective of device utilization. Applications that can be implemented

entirely in hardware still need a software image to handle communications and trans-

fer phase control information with the LP. Conversely, applications that carry out the

entire application with the general purpose processor still need hardware descriptions

of the circuitry required to transfer the incoming data from the Flood interface to

the memory banks. State Machine application requirements are discussed further in

chapter 6.

4 These peak numbers assume there is no significant interference from the control interface.
5 Buslock mode enables the FPGA to assume exclusive control of the bus, preventing the processor

from accessing the FPGA or the FPGA memory bank.

51



4.3 Dynamic Reconfiguration

The State Machine is configured by the LP through the control interface. This inter-

face consists of a 16-bit address bus and a 8-bit data bus. State Machine configuration

consists of two parts. In the first part, the LP loads both the software image and

the device configuration files into the State Machine processor memory bank. In the

second part, the State Machine processor initializes the application code and recon-

figures the FPGA devices with the new configuration data. 6 The two parts may occur

sequentially, or may be decoupled in time.

In the simplest case, one application is loaded and run. Both parts of the con-

figuration process are performed successively. However, sufficient memory exists to

allow the LP to load more than one application into the State Machine memory in

step one. Thus, timing wise, this simple example represents the worst case. The more

typical case, is that multiple applications are loaded into the State Machine memory

in step one. Step two is performed for the loaded applications individually, at run

time. This method has the advantage of decoupling the loading process from the con-

figuration process so that only the latter occurs at run-time. The best case, minimal

reconfiguration time, occurs when two applications can make use of the same FPGA

configuration file. In this case, dynamic reconfiguration consists only of initializing

the application code.

This configuration methodology introduces several distinct possibilities for device

reconfiguration. The following cases are possible:

* Both steps one and two must be performed for the application.

* Both the software image and the FPGA configuration data are already present
in the processor memory, only step two needs to be performed.

* Both the software image and the configuration data are already present in the
processor memory, only code initialization needs to be performed.

6 For reconfiguration timing analysis part two is further divided into two parts.

52



Figure 4-2: FPGA Configuration Process

The FPGA configuration data is stored at the high end of the processor memory

bank. In part two of the configuration process, the processor reads this data from

memory and forwards it to the FPGA busses. The Boswell FPGA takes its configura-

tion bits from bits (15: 8) of its data bus. The Johnson FPGA takes its configuration

bits from bits (7: 0) of its data bus. Since both 32-bit FPGA data busses connect di-

rectly to the 32-bit processor data bus through the transfer registers, the devices can

be configured in parallel by reading half-words from memory and writing these to the

FPGA busses. Figure 4-2 illustrates this process. During configuration the FPGAs

require a new configuration data byte every 8 Dclk cycles.7 Using the cyncclk as a

7 Dclk is the FPGA configuration clock used to synchronize configuration data input.

53

FPGA Device
Configuration 

Processor
Bus

Pclk _ 28MHz

Dclk 4MHz

c y nic I I
proc_bus _ JI
fpgabus oo I X _: X 2J

--- -- -- -- --- -- -- ---- -- -- -- -- .. .. .. .. ... --- -- --- -- -- -- --



reference signal the processor can read a new half-word from memory at every rising

edge of cyncclk and write the data to the FPGA busses.8

4.4 Configuration Timing Analysis

The time required for dynamic reconfiguration of the State Machine is dependent

on the type of reconfiguration performed. It may be expressed as the sum of three

components as follows:

T = d + i + Tc (4.1)

where,

Trd = time to load State Machine memory with program and
configuration data (Part I).

i = time required to initialize the configured stream
processor (Part II).

c = time required to configure the FPGA devices (Part II).

The first component, d, corresponds to the time required for part one of the

configuration process. The second two components, ri and zr, correspond to part two

of the configuration process. As discussed above, one or more of these components can

be zero depending on the state of the FPGAs and the number and type of applications

already resident in the State Machine processor memory bank. We discuss each of

these components in detail.

The first component Td is the time required to write the application data into the

State Machine's memory bank. The application data includes both program code

and configuration data for the FPGA devices. The size in bytes of the application

program code varies with the application, and is represented by the variable p. The

size of the FPGA configuration data is constant for a given device and is represented

8 cyncclk is used by the State Machine processor during the FPGA configuration process to
determine when to forward another word of configuration data to the FPGAs.

54



by 71. Thus the transfer time depends on p and 71, the control bus clock rate, and the

number of cycles required to transfer a byte, and can be expressed as:

1
Td(p, , , f) = ( + V) A '. (4.2)f

where,

A = Number of Pclk cycles required to transfer a byte of data,
f = Frequency of Pclk.

The initialization time, ri, consists of two components: the time required for the

State Machine processor to load the application's parameters into the appropriate

place, and to initialize the application code's .BSS section. To simplify the calcu-

lation, the first component is approximated as constant, to be measured later. The

second component is dependent on the size of the application's .BSS section. If the

time to initialize a word9 of .BSS memory is approximated at six bus clock cycles,

then the initialization time can be expressed as:

i(,f) = ( ' * ) + Tprms (4.3)2 f
where,

p3 = Number of bytes in the program .BSS section
Tprm,= Time for OS to load the program parameters.

Finally, the configuration time, r, consists of the time required to load the config-

uration data into the FPGAs plus the constant FPGA initialization time. This time

can be expressed as:

d
-cr(d, fdclk) = + T (4.4)

fdelk Cs W

9 The word size is 4 bytes.

55



where,

d = Amount of configuration data in bytes,

fdclk = Configuration clock rate (Dclk),
CBw = Configuration bandwidth of FPGAs,
T = FPGA initialization time.

The total reconfiguration time can thus be expressed as:

T(p, , ,f, a, d, fdclk) = rd(p,, A, f) + ri(3,f) + rc(d,fdlk) (4.5)

where, d(p,r, A,f), i(f,f), and Tc(d,fdclk) are expressed as in equations 4.2, 4.3,

and 4.4. In the remainder of this work we explore the case where the application data

is already resident in the State Machine processor's memory at run time. Thus for

dynamic reconfiguration only step two need be performed. Mathematically, we have

Td(P,A,f) = 0; for all p, , A,f. (4.6)

and equation 4.5 reduces to

T(~, a, d,fdlck) = i (,f) + rc(d, fdclk). (4.7)

Combining terms gives a model of the dynamic reconfiguration time for the State

Machine stream processor:

T(/3,f, d,fdlk)= + + K. (4.8)
2f fdclk ' CBW

where,
K Tprms + T, (4.9)

For the case where dynamic reconfiguration consists of performing both parts of

step two, a further simplification can be employed to arrive at a "back of the envelope"

type calculation for the reconfiguration penalty. For the generation of FPGA devices

available at the time of this thesis,

56



fdclk f.

And if P < 16K then the contribution due to the initialization of the .BSS section

is on the order of 100's of 1us, while the contribution due to the FPGA configuration

is on the order of 10's of ms. And since K is on the order of /s the reconfiguration

time can be approximated as,

d
T(d,fdclk) =fd C ' (4.11)

i.e. the reconfiguration penalty is dominated by the time required to load the

configuration data into the FPGAs. Alternatively, if the FPGA configuration file is

already resident in the FPGAs, the contribution due to FPGA configuration is zero.

For this case the reconfiguration penalty is on the order of Its and is expressed as,

T(W f) = + K. (4.12)

If the application has a P approaching zero then the reconfiguration penalty re-

duces to just K. In chapter 7 we will apply this model to the completed State Machine

stream processor. The next two chapters provide detailed discussion of the hardware

and software implementation. From this discussion will emerge many of the constant

factors in the timing model.

57

(4.10)



58



Chapter 5

Hardware Implementation

5.1 Overview

In the preceding chapter a data-path diagram was presented to elucidate the applica-

tion flexibility provided by the state machine architecture. In this chapter we describe

the hardware implementation in much greater detail. Figure 5-1 is a block diagram

of the state machine system architecture that provides more detail than was provided

in the data-path diagram of the previous chapter. It provides an intermediate level

of detail for the State Machine system architecture between that of the data-path

diagram and that of the system schematics. The system schematics in appendix

8.2.3 provide the highest level of detail. While figure 5-1 shows all logical elements,

the schematics break these down further into individual semiconductor and discrete

devices. Additionally, all of the data-path and control signals are explicitly shown

in the schematics. While the schematics provide the greatest degree of detail, they

sacrifice global perspective to do so. Consequently, this chapter will refer mostly to

figure 5-1 and only to appendix 8.2.3 when necessary to provide detailed explanations

of system operation.

59



ADDR DATA

d

CTL

Figure 5-1: State Machine System Architecture Block Diagram

60

ADfR PROG DATA

PRGE5

BOSWELL

DATA PROG ADDR

PAGE 6

JOHNSON
6



5.1.1 Major Elements

The block diagram begins to reveal the parts used to implement the major functional

and logical components. The GPP employed is the PowerPC603 microprocessor built

by IBM and Motorola. The PC603 is a superscalar processor with a 32-bit address

space and instruction word width. The data bus can be configured in either of a

32-bit or 64-bit mode [27]. The State Machine utilizes the 32-bit mode because the

State Machine boards are area limited.'

The FPGAs used to provide the platform for dynamically reconfigurable hardware

are Altera FLEX EPF81188 devices. The State Machine uses two of these devices,

one for each Hub port. These devices provide approximately 12,000 usable logic

gates organized in 1008 logic elements and 180 I/O elements[3]. There are sufficient

programmable logic resources to implement small to medium sized computational

architectures. Each device has access to a 1MB memory bank as well as a 64Kx16

Look-Up Table (LUT) memory. In addition, each device has a direct interface to the

Hub. That is, data coming from the VRAM memory banks on the processor module

flow directly into the FPGAs on the State Machine submodule from the Hub.

The transfer registers that connect the PC603 busses to the FPGA busses consist

of ABT type logic devices and two PAL devices. Because the burst modes of the

PC603 processor are supported, the lower bits of the address busses must have the

ability to count, and are thus housed in a 22v10 PAL. The counters PAL holds bits

(3: 1) of each FPGA bus and implements two three bit counters for burst transfers.

The second PAL holds control logic necessary to facilitate the bus transfers.

After allowing space for the two FPGAs and other system components, enough

room remained to fit three 32-bit wide SIMM modules of fast static RAM. From

figure 4-1 one SIMM is dedicated to each of the processing elements, local to each

system bus. Although the limited memory provided to the high performance general

'Note that word and word-width both refer to 32-bit data types in this document.

61



purpose processing element does not satisfy the Amdahl/Case Rule [26],2 this is not

a serious limitation because the processor is rarely utilized to its full potential.

5.1.2 Data-paths

There are three major busses on the State Machine board. These are the PC603 bus,

the Boswell FPGA bus, and the Johnson FPGA bus. The PC603 bus consists of a

20-bit address bus, a 32-bit data bus, and several control signals. The PC603 bus

signals are listed in table 5.1.

Signal Name Description [

PC6_ADDR(19 0) 20-bit address bus
PC6DATA(31: 0) 32-bit data bus
PC6SIZ(2 0) transfer size bits
PC6ABB PC603 address bus busy signal
PC6DBB PC603 data bus busy signal
PC6R/W PC603 bus transfer read/write signal
TBST PC603 burst transfer signal
TCO PC603 instr./data transfer signal
PC6BR PC603 address bus request
PC6BG PC603 address bus grant
PC6DBG PC603 data bus grant
PC6TS PC603 transfer start signal
PC6AACK PC603 address acknowledge signal
PC6TA PC603 transfer acknowledge signal

Table 5.1: PC603 Bus Signals

The PC603 actually has more signals available to describe bus transfers. However,

these are not used in the state machine system.3 In addition to the address bus signals,

address bits [27:20] of the PC603 are used to select various devices to read from and

write to. Each bit selects a single device when asserted positive true. All devices,

2 The Amdahl/Case rule states that a machine should have 1 M-byte of memory for each MIPS
(million instructions per second) of performance it offers.

3 For more information on these other transfer bus signals see [27].

62



including the FPGAs, may be selected and accessed by the PC603. Table 5.2 lists

the address bit and device associations.

Address Bit Board Signal Name Signal Description

addr[27] JLUTB selects the Johnson LUT memory device
addr[26] BLUTB selects the Boswell LUT memory device
addr[25] JFLEXB selects the Johnson FPGA device
addr[24] BFLEXB selects the Boswell FPGA device
addr[23] REGB selects the register interface device
addr[22] PG2B selects the Johnson FPGA memory bank
addr[21] PG1B selects the Boswell FPGA memory bank
addr[20] PGOB selects the PC603 local memory bank

Table 5.2: Address Bit Device Selection Mappings

The Boswell and Johnson busses contain identical signals. Consequently, only the

Boswell bus will be described here. The bus contains a 19-bit address bus, a 32-bit

data bus, and several control signals. Table 5.3 summarizes these signals.

Bus Signal Name | Signal Description

BOS_ADDR(19..0) Boswell address bus
BOSDATA(31..0) Boswell data bus

BOS_SZ Boswell data bus transfer size signal
/BBB Boswell bus busy signal
/BBR Boswell bus request signal
/BBG Boswell bus grant signal

BUSLOCK Boswell buslock signal
/BMCE Boswell memory bank select signal

/BFLEXWE Boswell write enable control signal
/BPC6WE PC603 Boswell bus write enable control signal

Table 5.3: Flex Bus Signals

The State Machine provides the capability to bridge the two FPGA address busses.

Transmission gates can connect the two address busses such that an address asserted

63



by either FPGA is seen by both FPGA memory banks. 4 Each FPGA has a separate

signal to enable this capability. The Boswell enable, /BABUFFEN, is asserted

low, while the Johnson enable, JABUFFEN, is asserted high.5 When either is

asserted the signal pairs listed in table 5.4 are directly connected. This functionality

is desirable for address remapping where one FPGA is serving as an address generator

while the other shuffles the data[10].

Boswell Bus Signal Name Johnson Bus Signal Name

BOSADDR(19..0) JONADDR(19..0)
/BFLEXWE /JFLEXWE

BOSSZ JON_SZ
BMCE JMCE

Table 5.4: Flex Bus Signals Connected by Transmission Gates

5.2 Memory Organization

The State Machine board contains five separate memory components, all implemented

using SRAM.A single SIMM module is resident on the PC603 bus and provides local

storage for the operating system, configuration data, and application programs. The

other two SIMMs reside on the FPGA busses and provide storage space for video data.

One SIMM is allocated to each FPGA device and serves as local storage. Finally,

the two 64Kx16 12ns SRAM devices are present to provide fast LUTs for the FPGA

devices.

4 These devices are not shown in the block diagram of figure 5-1 for the sake of clarity. However,
they are present on page 5 of the schematics in appendix 8.2.3.

5 The Boswell enable is asserted negative true, while the Johnson enable is asserted positive true.

64



PC603 Memory Bank

The PC603 memory bank is a 1 M-byte 256 x 32 SRAM module. Each memory

element has some associated access control logic. The logic for the PC603 memory

element is labeled MAR in figure 5-1. It consists of an ABT16952 register device and

an Altera EPM7032 programmable logic device. The register holds bits (19: 5) of

the address bus while the logic device generates all control signals required by the

memory device and the low order address bits. The control signals include an output

enable, a write enable, and four chip selects, one for each byte of the 4-byte word

width.

All possible data transfer alignments are not supported. Half-word accesses must

be aligned to half-word boundaries. This means that the address of a full-word must

end in Ob0, and the address of a half-word must end in either ObOO or OblO0. 6

The pageO MAR (EPM7032) logic device holds the necessary logic for performing

these alignment translations. In addition, this logic includes the ability to sequence

the lower three memory device address bits from ObOOO thru Obll to support the

burst modes of the PC603 processor. The input signal /PGOMAR-CNT is used to

initiate a counting sequence for the low order three address bits.

Instructions and data on the PC603 bus are 32-bits wide, and most of the bus

transactions will be full-word accesses. However the bus must support byte transfers

to enable the transfer of data from the 8-bit control data bus to the memory device

and the transfer of byte-wide data to and from the register interface.

FPGA Memory

The FPGAs each have a 256kx32 data memory bank and a 64kx16 LUT memory

bank designated for their use. The FPGA memory banks can be accessed in either

half-word, or word widths. These data widths are consistent with the video data

6 Addresses that do not follow these conventions are automatically mapped to the nearest full-
word or half-word boundry.

65



types supported by Cheops. However, the FPGAs have the capability to support

other data types at the expense of interface complexity. We support half-word and

word widths to minimize this complexity. Data alignment is handled in the same

fashion as with the PC603 address bus. Since the FPGA data memory and data bus

only support half-word and full-word transfer widths, only nineteen address bits and

one transfer size bit are required.

The access control logic for the data memory banks is housed in a 16v8 type

PAL device with a 5ns input to output time. The PAL generates the /OE, /WE,

and /CSE(4: 1) control signals of the memory device. The PAL generates these as a

function of BOSDATA(O), BOS_SZ, BMCE, and two write signals /BFLEXWE,

/BPC6WE. The access control logic for the FPGA data memory requires two write

selects to generate the /WE signal because the memory may be accessed for writes

synchronous to two separate clocks. When the PC603 accesses this memory it does

so synchronous to the 28MHz SYSCLK signal. However, when the FPGA accesses

the data memory it does so synchronous to the 32MHz/40MHz Hub clock. Thus each

bus master must have a separate write enable signal.

LUT Memory

The two LUT memories provide only half-word width data and were selected to allow

identity mappings using the data size of the data types received from the Cheops Hub.

An example of the use of these memories is the table look-up of code words during

variable length coding/decoding applications. These devices are read-only memory

for the FPGA devices that have very fast (12ns)access times. The LUT memories

can be read or written by the PC603 processor which is responsible for initializing the

tables for applications that use them. The access control PAL for the data memory

bank also generates the /OE and /WE signals for the LUT memory based on the

66



driven values of the Boswell bus signals and the device chip select. 7

5.3 PC603 Bus Access

There are two possible bus masters for the PC603 bus. These are the PC603 processor

and the LP. Each may generate transfer requests completely asynchronously from the

other. Consequently, the state machine must be able to process simultaneous requests

in a graceful fashion. Because each processor accesses the bus with a different access

protocol, the State Machine bus controller must support both protocols. This section

describes how these issues are handled.

5.3.1 Local Processor Access

The local processor accesses the state machine board through the control bus interface.8

The local control bus signals are provided in table 5.5 [42].

| Bus Signal Signal Description 11
/ADS Transfer start signal
W/R Transfer Read/Write signal

/CSO Chip Select Zero
/CS1 Chip Select One

ADDR[15:0] Address Bus Signals
DATA[7:0] Data Bus Signals
/READY Transfer Delay Signal (asserted high)

Table 5.5: Local Control Bus Signals

The LP initiates a transfer by asserting the /ADS signal for one bus clock cycle.

Once the transfer begins, it cannot be stopped because the LP has no arbitration

7 The chip select is asserted by the PC603 as part of its address generation. See section 5.6.1 for
more information on how this is accomplished.

8 This bus is labeled LxCTL, where x is 0, 1, or 2 and corresponds to the submodule slot the
state machine card is plugged into on the processor module [41] [29].

67



ability in its protocol. But, a transfer may be delayed if the State Machine de-asserts

the /READY signal, in which case the LP waits until the signal is de-asserted for its

results. Figure 5-2 provides the timing for a typical control bus transfer and a delayed

transfer in which /READY has been de-asserted. If the READY signal is asserted

the bus signals remain asserted until one cycle after /READY is de-asserted. This

feature provides the remote device the ability to extend the normal transfer protocol.

The two /CSx signals may be used to select up to two separate stream processors

that reside on a stream processor submodule. The State Machine uses these signals

slightly differently. /CSO is asserted when the transfer is intended for a register in the

register interface. /CS1 is asserted when the local processor is initiating a transfer

to the PC603 memory bank.

Addr Wait Wait Data Wait Addr Wait Wait Data Wait Idle Idle Idle Idle
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Clk T F
ADS \ 

W/R j j \ /

/CSO
/CS1

Data0 : : : : :: : :

~~.TT. . .:. : . .

D[31:0] X X x ' I, 

Figure 5-2: Local Bus Transfer Timing.~ ' i . . : . .. . . * . . */// . .o
.~ ~ ~ ~ ~ ~ 

^B--z . _. . . .
A[31\: 0 / \ : : : : .

. ·

68



5.3.2 PC603 Access

The PC603 supports split bus transactions and may pipeline transfers two deep inter-

nally. In addition, it provides support for symmetric multiprocessing system architec-

tures and implements the MESI memory coherency protocol [27]. A great number of

control signals are provided to implement these features. Although the State Machine

has no need for multiprocessing capabilities, supporting the split bus transactions,

pipeline transfers, and the many transfer modes, make the PC603 bus access protocol

significantly more complex than the LP access protocol.

To support split bus transactions, the PC603 has separate arbitration signals for

the address and data busses and they may be in a different phase of the transfer

process at the same time. Each transfer (both address and data) occurs in three

phases, arbitration, transfer, and termination. The tenures of the address and data

busses overlap. Figure 5-3 provides an example of how the tenures of each bus overlap

when access to the address bus is granted immediately and access to the data bus is

delayed one cycle. Although the length of the arbitration and transfer cycles may vary

depending on how quickly access to the busses is granted, the arbitration phase of the

data tenure always overlaps the transfer phase of the address transfer. This is because

the /TS signal for the address bus serves as an implicit data bus request. Thus the

data bus arbitration phase is always initiated during the address bus transfer phase.

There are several other types of transfers that will be discussed further in section 5.6.2.

5.3.3 PC603 Bus Arbitration

Both the PC603 and the LP may access the PC603 bus in an asynchronous fashion.

Because this is so, an arbitration protocol must be implemented to insure that the

two accesses do not conflict. The specification of this protocol is complicated by the

fact that the LP transfer protocol does not have arbitration capabilities built in; it

is intended to access the State Machine like a memory element. Once a LP access

69



ADDRESS TENURE

ARBITRATION TRANSFER

InFDFPInFDI T nATA AND ADnniF /

TERMINATION

BUS TRANSFERS

ARBITRATION DELAYED SINGLE-BEAT TRANSFER TERMINATION

TIME

Figure 5-3: PC603 Bus Transfer Tenures

begins it must be allowed to complete otherwise it will bring all of Cheops to a stand

still. In order to provide limited arbitration capabilities for the LP protocol, we take

advantage of the /READY signal to implement a pseudo form of arbitration between

the PC603 and the LP.

This arbitration scheme assures that the LP will always complete its transaction

within a reasonable amount of time so that it does not cause Cheops to crash. By

taking advantage of the /READY signal and treating /ADS as a bus request instead

of a transfer start signal, a makeshift arbitration scheme is implemented. Regardless

of who has priority, LP transfers always complete with minimal interference to PC603

transfers.

5.4 Register Interface

The register interface consists of several registers and corresponding control logic that

together implement a communications interface between the State Machine and the

LP. Through this interface the LP controls the State Machine board. It is housed in

an Altera EPM7128 programmable logic device. This device also contains the con-

figuration clock circuitry and the control circuits for the data bus exchanger between

the control and PC603 busses.

70

I1 3



5.4.1 Registers

There are six 8-bit registers and a 2-bit register in the register interface. There are

two general purpose registers that may be read or written by either the PC603 or

the LP. A read-only status register may be monitored by both processors as well.

The LP controls the state machine through the bus priority register which is write

only. Two other write-only registers, the configuration register and the memory page

register, also assist in configuring and controlling the board. The 2-bit register allows

the PC603 to determine which FPGA generated an external interrupt exception. The

role of each register will be discussed in detail. Table 5.6 summarizes these registers.

R Register J Offset Type I Description

Status 0x00 read only Board status register
GP1 0x01 read/write General Purpose Register 1
GP2 0x02 read/write General Purpose Register 2
Bus Priority 0x04 write only Controls board mode and bus priority
Configuration 0x05 write only controls the flex configuration process
External Int. 0x06 read only determines which FPGA caused an interrupt
Memory Page 0x07 write only selects segments of PC603 memory

Table 5.6: Registers of the Register Interface

Status Register

The status register allows both the PC603 and the LP to monitor the status of the

State Machine board. The register is implemented as a 74273 type registered device

with each bit being updated on every clock cycle and specifying the status of a

different signal. Table 5.7 gives the definitions of each bit.9

The first two bits of this register monitor the mode of the board. Board modes and

their meaning will be discussed in section 5.5. Bits two and three are used to monitor

9For this register and all others in the register interface, bit zero is the least significant bit.

71



|| Bit Description
0 Board config mode bit
1 Board start mode bit
2 Boswell confdone signal
3 Boswell nstatus bit
4 Johnson nstatus bit
5 Johnson confdone bit
6 Configuration clk enable status
7 Configuration clock

Table 5.7: Bit Definitions of the Status Register

the Boswell FPGA status signals. Nstatus is used to indicate an error during device

configuration while confdone indicates that the configuration process is complete.

Bits four and five play an analogous role for the Johnson FPGA device. Bit six

indicates whether or not the configuration clocks are enabled. Finally bit seven is

the configuration synchronization clock. This bit is monitored by the PC603 during

FPGA configuration to determine when to write the next bytes of configuration data

to the FPGAs.

General Purpose Registers

There are two general purpose registers in the register interface that do not have a

specific function. They are both readable and writable by both processors. These are

provided to facilitate inter-processor communication and assist the Cheops resource

manager, Norman, in configuring the State Machine board. The PC603 operating sys-

tem, ChameleonOS, makes extensive use of these registers for handshaking protocols

with the LP and to provide limited error reporting under conditions of catastrophic

failure. They are not intended for general application use.

72



Memory Page Register

The memory page register is used to assist the LP in addressing the PC603 memory

bank. The control ADDR(15: 0) bus used by the LP to address the state machine is

only 16-bits wide, allowing for a 64 K-byte address range. Since the PC603 memory

bank provides 1MB of storage, the LP needs assistance in order to address the full

memory space of the PC603. This assistance is provided by the memory page register

which provides the upper 4 bits of the 20-bit PC603 memory address. The use of

the memory page register essentially divides the PC603 memory bank into 64 K-byte

pages with the 4-bit page number coming from the memory page register and the

16-bit offset into the page coming from the 16-bit control address bus.

Configuration Register

The configuration register is used to control the FPGA configuration process and

is a write only register. Bit 0 of this register is used to enable and disable the

two configuration clocks. Bit 1 of this register is used to start the configuration

process. The output of this bit feeds the nconfig signal of both FPGA devices. The

configuration process is begun shortly after this bit transitions from a zero to a one.

The FPGA configuration clock enable signal is also fed to bit six of the status

register so that it may be monitored. The default assumption is that if this bit is

asserted, the configuration process is in progress. This implies that the PC603 must

de-assert this bit after the configuration process is complete. The PC603 determines

that the process is complete by monitoring the status register, since the FPGA's

confdone signals are inputs to this register.

Bus Priority Register

The bus priority register is the primary means by which the LP controls the State

Machine board. It is a write only register that may be written by either processor.

However, under most normal conditions only the LP should be writing to this register.

73



It contains five configuration bits used to control board activity. These bits are

summarized in table 5.8.

i Bit Description
0 Boswell FPGA bus priority bit
1 Johnson FPGA bus priority bit
2 PC603 bus priority bit
3 Board config mode bit
4 Board start mode bit

5-7 RESERVED

Table 5.8: Bit Definitions of the Bus Priority Register

There are three bus control configuration bits and two board control bits. The

bus priority bits determine which of the two possible bus masters on each bus has

priority. For both of the FPGA busses, when the bit is zero the FPGA devices have

priority on the bus. When the bit is one the PC603 has priority on the bus. For the

PC603 bus, the LP has priority when the bit is zero and the PC603 has priority when

it is one.

The final two configuration bits in this register control the mode of the board. The

mode of the board determines what actions may take place and what functionality is

available. The board mode also assists the bus controller in determining what actions

to take. The board modes are summarized in table 5.9.

start bit config bit Mode Description ¢

0 0 Idle Board is idle, function undefined
0 1 Write Local Processor writing data to the board
1 0 Config PC603 boots and FPGA devices being configured
1 1 Normal Board configured and ready to compute

Table 5.9: State Machine Board Modes

The final three bits of the register are unused and reserved for future use. The

74



use of these bits and the board modes will be discussed in much greater detail in

section 5.5.

5.5 Board Modes and Configuration Control

There are four distinct modes that the State Machine board can be in. These modes

determine what board activity can take place and help the bus controller control the

various board functions. The mode information is stored in the bus priority register

in the register interface.

5.5.1 Board Modes

The four modes are listed in table 5.9, and are controlled by the two mode bits strt

and config. The IDLE mode is the default mode for power-up, there is no board

activity in this mode. The strt bit is used as the hard reset signal for the PC603

processor. Thus when the board is in either of IDLE or WRITE modes it cannot

initiate any bus activity and tri-states all of its bus outputs. The config bit for the

FPGA devices is also initialized to zero at power-up and thus holds these devices in

reset until a command from the PC603 processor changes this bit. Thus when the

board is powered up both the PC603 processor and the FPGAs are held in reset.

The board mode is changed to write by the LP to download data into the PC603

memory bank. The change in mode enables the bus controller to facilitate this transfer

of dcata from the LP to the memory. Typically, the write mode is used only after

power-up to initially write the ChameleonOS operating system code, FPGA device

configuration data, and the initial applications into the memory bank.

When the board mode is changed to config mode by the LP, the PC603 hard reset

signal is released and the 603 bootstraps itself from the code in the PC603 memory

bank. The PC603 then performs hardware checking, initialization tasks, and enters

the process monitor loop. At this point the State Machine is ready to handle service

75



requests from the LP.

The NORMAL mode is the standard mode for processing data. All use of

the State Machine by Cheops to process flood data coming from the VRAM banks

occurs in this mode. The bus controller is fully enabled in this mode, and FPGA

configuration abilities are disabled. Under ordinary conditions the PC603 changes

the board mode to normal mode after booting and configuring the FPGAs.

Normal Sequence of Events

The normal sequence of events from power-on until the State Machine is first used

for processing, is a progression beginning with IDLE mode and finally arriving in

NORMAL mode. Since all the bits in the register interface are initialized to zeros

when the State Machine is powered on, the board defaults to IDLE mode with all

processing elements disabled. The board remains in this mode until the LP changes

the mode by updating the bus priority register, see table 5.8, in the register interface.

When the LP is ready to write programming information to the board it sets the

board mode to WRITE. This enables the LP to write data to the PC603 memory

bank. Since the control address bus is only sixteen bits in width, it must also update

and use the memory page register in the register interface to access the upper portions

of the PC603 memory bank. The LP fills the PC603 memory bank with the operating

system, application code, and FPGA configuration data.

When the LP is finished writing the data, it changes the mode to CONFIG

mode. In this mode the 603 is released from reset and begins its boot sequence.

After the boot sequence is complete, the PC603 begins to program the FPGA devices

by manipulating the config bits in the register interface and monitoring the two

configuration clocks. The PC603 continues to load configuration data bytes into the

FPGAs, synchronous to the configuration synchronization clock, until the process is

complete or an error is detected. If an error is detected the configuration process is

repeated.

76



Once the PC603 has completed the configuration process it changes the board

mode to NORMAL mode. At this point the FPGA devices are released for user

mode operation and will assume their respective functions as soon as they complete

the initialization process. At this point the State Machine is ready to perform stream

computations.

5.6 Control Processor

The processor used to control the State Machine board is the IBM PowerPC603

micro-processor. The PC603 is a RISC super-scalar architecture that employs five

separate functional units, an integer ALU, a floating-point ALU, a branch proces-

sor, a load/store processor, and a system register processing unit [27]. It provides

thirty-two 32-bit general purpose registers for integer operations and thirty-two 64-

bit floating-point registers for floating-point operations. The PC603 has separate

8K-byte instruction and data caches and supports out-of-order instruction execution

and speculative branching. The PC603 also provides dynamic power reduction by

shutting down functional units that are not active.

The PC603 is chosen for this application primarily because of its very high per-

formance levels and low power-consumption. Also its highly optimized floating point

processor provides single instruction multiplication and division, as well as a multiply

and accumulate assembler instructuion. An additional feature that favored it use in

the early design phase was its programmable 64-bit/32-bit data bus modes. For the

State Machine application the 32-bit data bus mode was selected since it was most

consistent both with the image data types to be processed and the 32-bit instruction

widths.

77



5.6.1 Memory Space

The State Machine card has less than 4 M-byte of total memory and memory mapped

devices on board. Since the State Machine card has no I/O devices other than a

shared memory space, no virtual paging is implemented. However, the processor's

block address translation facilities are used to protect certain memory segments from

being caching, and to relocate user processes at run-time. Figure 5-4 is a picture

of the PC603 memory space that indicates how the various devices are mapped into

this space. Note that the very highest addresses that begin OxFFF are aliased back

into the 0x001 range by external logic. This aliasing allows the processor to retrieve

instructions from the correct location at boot time and during exceptions.

The PC603 has 1MB of local storage for its operating system, ChameleonOS, user

programs, and FPGA configuration data. Figure 5-4 shows the organization of this

memory. The memory is divided into eight 128K-byte chunks because this is the

smallest block size supported by the block address translation facilities of the PC603.

The first block is occupied by the interrupt vector table, the operating system, and

system data structures. The last three block is reserved for FPGA configuration data.

The middle six slots are available to be allocated to user programs as needed. Chapter

6, Software Environment, will have more to say on the use of this memory and the

use of the block address translation facilities.

5.6.2 Memory Access Types

The PC603 performs several different types of data transfers on its address and data

busses. These are single beat transfers, double beat bursts, and eight beat bursts.

The types discussed in this document represent only the relevant subset of all the

transfer types the PC603 is capable of.l° Single beat transfers refer to the simplest

of the transfer types in which a single word or less of data is transfered in a four data

'°For additional information on the PC603 bus transfer types see chapter 10 of [27].

78



PC603 Local
Memory Bank 256x32

Bosell FPGA
Memory Bank 256x32

I"-~~~~

JohnsonFPGA
Memory Bank 256x32

~"'~"'

Register Intertace
Address Sace

Boswell Flex

Johnson Flex

iwell LUT Memory

meon LUT Memory
.........

OxOOO

; ; Oxl1FFFF
,'I Ox20000

. I

', I Ox3FFFF
0x40000

I
'I Ox5FFFF

. I Ox60000
1
e. Ox7FFFF
l ~ Ox80000

I
I I Ox9FFFF

I ' OxBFFFF
I ' OXCOOOO
I 

I ' OxDFFFF
I .OxEFFFF

OxFFFFF
!

II .
I XFF

.......... Tabl..
ChameleonOS

Slot

Program Slot

1

Program Slot
2

Program Slot
3

Program Slot
4

Program Slot
5

Program Slot
6

FPGA Config.
Data

I
I
I
I

I

I Aliased to exception
table of PC603 Local mem.

!

Figure 5-4: PC603 Memory Map

79

Bc

Jo

I CBe:

_oe

OOOOOOO00000000

OxOOOFFFFF
0x001 00000

Ox001FFFFF
0x00200000

Ox002FFFFF
Ox00300000
Ox003FFFFF
0x00400000
0x004FFFFF
Ox00500000

Ox007FFFFF
0x00800000
0x00FFFFF
0x00900000

OxOOFFFFFF
Ox01000000

0x01OFFFFF
0x01100000

O0x01FFFFFF
Ox02000000

OxO2OFFFFF
0x021 00000

Ox03FFFFFF
0x04000000
Ox040FFFFF
0x041 00000

Ox07FFFFFF
0x08000000
Ox080FFFFF
0x08100000

OxOFFFFFFF
Ox10000000
Ox10000001

OxIFFFFFFF
Ox20000000
0x20000001

OxFFFOOOFF
OxFFF00100
OxFFF02FFF
OxFFF03000

OxFFFFFFFF,

well Int acknowledge

loonnt ciow g

603 Exception Table
Vector Space

I I.ig 110,011.01 I0II0II0§/:*i...

,,,,,,,55-.;-.55-�7.5-.-C�CCC·i-CiCCrCCC

I1!

---

/ i

I



bus clock cycles. The PC603 transfers bytes, half-words, and words in single-beat

transfers. Double beat transfers are a special transfer type that take place only when

the PC603 is configured for 32-bit data bus mode. ll Double beat transfers are used

to transfer data types that are eight bytes in length, such as the C language types

double and long long int. The PC603 in 32-bit data bus mode performs cache line fills

and cache line writes in eight beat burst transfers. These transfers take a full eight

bus clock cycles to transfer the data on the data bus.

5.7 Bus Controller and Protocols

The bus controller is the heart of the state machine board and manages all data

transfers between the processing elements, PC603 and memory elements. It is by far

the most complex element on the board. The bus controller is housed in an Altera

EPM7160 logic device. In addition to this chip there are several other logic devices

on the board that help facilitate the transfer of data. These are the PC603 to FPGA

bus transfer registers, the FPGA memory bank PAL devices, and the PC603 memory

bank access logic (EPM7032).

PC603 Bus Protocol

The PC603 bus protocol is outlined in chapter 10, System Interface Operation, of the

PowerPC603 Microprocessor User Manual [27]. It is a complex protocol designed for

high transfer throughput and supports symmetric multitasking environments. The

reader is referred to [27], and section 5.6 for more information. Fortunately, most

of the advanced features for this protocol are not required for the State Machine

implementation. Consequently, many of the transfer attribute signals are unused and

the remaining subset of the protocol implemented is greatly simplified. Despite this

l"This is the default mode for the State Machine which only supports data transfers as large as
32-bits.

80



fact, the PC603 bus protocol is still the most complex protocol supported on the

State Machine board and requires a large amount of state information to maintain it.

This is primarily due to the fact that the PC603 implements split-bus transactions

and may pipeline bus transfers two deep internally.

Local Processor Communications Protocol

In contrast, the LP communications protocol, implemented on the control bus, is

much simpler and easier to support. However, since the LP can be a bus master on

the PC603 bus, some protocol translation must be performed to inform the PC603

of the LP's presence on the bus. Figure 5-2 demonstrates the LP protocol for local

bus transfers to and from the stream processor submodule cards [42]. The protocol is

very straight-forward as it treats the stream processor submodule as a slave device.

That is, the GPP is not capable of initiating a transfer on the control bus.

The presence of the PC603 does introduce some slight complications. The bus

controller must handle arbitration issues between the two bus masters, and signal

translation must be performed to notify the PC603 of the presence of the LP on the

bus. The arbitration protocol has already been described in section 5.3.3 and will not

be discussed further here.

5.7.1 FPGA Bus Protocol

The FPGA bus protocols have been designed with absolute simplicity in mind. They

have been designed in this manner to minimize the interface overhead that the FPGAs

must sustain. The overriding objective is to leave as many logic resources as possible

for the implementation of user logic and custom computations. Table 5.4 lists the

FPGA bus signals.

When the FPGA desires to use the bus, it asserts the /BBR signal. When the

/BBG signal is given the FPGA may use the bus on the next cycle. The FPGA

may not use the bus until /BBG has been granted and should continue to assert the

81



/BBR signal until the /BBG is granted. During the cycle that the FPGA is using

the bus it must assert the /BBB signal to inform the PC603 and the bus controller

that the bus is in use.

Under certain conditions, the FPGA may not be able to tolerate long latencies

while the PC603 performs extended operations to the FPGA memory, or even spend

cycles on bus arbitration. When these conditions exist, the FPGA may assert the

buslock signal. When the buslock signal is asserted, the PC603 is effectively locked

out from the FPGA bus and the FPGA may assume complete control ignoring the

normal arbitration protocol. If the PC603 attempts a memory access while buslock

is asserted it will take a transfer error exception. So, for dynamic use of this signal

some coordination with the PC603 via software is required.

Bus Arbitration

The bus controller chip also houses all of the bus arbitration circuitry for the busses

on the State Machine board. There are three specific arbitration circuits, one for each

FPGA bus, and one for the PC603 bus. The FPGA bus arbiters are identical except

that each processes different signals. The PC603 arbiter is considerably different and

more complex than the FPGA bus arbiters. The arbitration protocol for the FPGA

busses is less complex. This is intentional, to avoid wasting precious FPGA logic

resources on bus interface issues.

Note that neither the PC603 nor a FPGA device can receive a bus grant when the

bus busy signal (/BBB) is asserted. This insures there are no bus synchronization

problems since the FPGA and the PC603 access the bus with asynchronous clocks.

The default mode is each FPGA has priority on its respective bus. For the case when

the two address busses are bridged the buslock signals from both FPGAs must be

asserted to insure that the PC603 does not interrupt address remap processing.

82



5.8 FPGA Devices

The State Machine employs two Altera FPGA EPF81188 SRAM based FPGAs that

serve as the dynamically reconfigurable computational platform. It is these devices

that provide the State Machine's extraordinary power and flexibility. Each FPGA is

dedicated to one of the Hub ports on the State Machine stream processor submodule.

Each FPGA provides 1,008 bits of registered storage. Each bit is coupled with a 4

input one output programmable logic function. 180 additional periphery registers are

provided in the I/O elements[3].1 2 These FPGAs provide space to implement custom

architectures so that pieces of complex image processing algorithms can be performed

in dedicated hardware. Applications designed for the State Machine consist of both

application code and architectural description information, in the form of AHDL files,

to be loaded into the FPGAs.

5.8.1 External Signal Interfaces

The State Machine FPGAs have three other interfaces as well as the Hub port inter-

face. There is the FPGA data bus interface that connects each FPGA to its memory

bank. This is an arbitrated interface since the bus may also be mastered by the

PC603 processor. The signals for this interface are outlined in table 5.3. The LUT

memory interface consists of BLUTADDR(15..0) and BLUTDATA(15..0), and

allows the FPGA device to retrieve LUT data very quickly. Finally, there are 42

signals that run between Boswell and Johnson for inter-FPGA communications. The

BOSJON(41..0) bus may be used for whatever communication needs that a State

Machine application might have.

'2As of the beginning of this project these devices represented the state-of-the-art in FPGAs.
However as of this writing more dense and more advanced SRAM based FPGAs are now available.

83



5.8.2 Bus Protocol Logic Overhead for FPGAs

Since the State Machine FPGAs are fixed within a larger system architecture it is

not possible to utilize all of their logic resources to implement user applications. A

small portion of the logic resources within each FPGA must be used to implement

the various interface protocols. These protocols have been designed to be as simple

as possible to avoid maintaining lots of state internally and thus minimize circuit

overhead. The LUT interface and the FPGA interface, if implemented, are considered

to be a part of the application and are not considered here. However, each FPGA

must use some logic to keep track of system state for the Hub and FPGA memory bus

interfaces. Between the two the required logic requires only 18% of the logic resources

of the chip.

5.8.3 Flood Interface

The Hub interface requires a minimal amount of logic to monitor the status of the

selected OK signal and sense the beginning and end of data flow. A finite state

machine, DAM, with four states controls this interface. Figure 5-5 depicts the states

and the input output relation of the controller. In addition, a delay value register,

an 8-bit counter, a 2-bit OK channel select register, and some combinational logic

to generate the OK active signal are used. Figure 5-6 is a register transfer level

description of this logic. The controller remains dormant until it detects the assertion

of the OK active signal. It then signals the counter to begin counting. When the

counter has counted through the delay count, signaling the end of the wait period

before valid data, the controller transitions to the FLOWING state and produces

the data flowing signal. When the OK active signal is de-asserted the controller again

signals the counter to count through the delay value. At the end of the count, the

controller de-asserts the data flowing signal and returns to the DRY state. This logic

84



implements a basic Flood Interface. 13 Applications may implement more complex

interface logic if desired.

!QOK

CNTDONE QOK

!CNT )ONE

IQOK

QOK

CNTDONE

CNTDONE

QOK

: 5----- ' " '-'"-I'".- iI: -i : ·::::5:::::>:~: ... .. 71 > _31

:::::::::::::::::::::::::~!3 .
i'N-W:V-J

FLOWSIG

COUNT

Figure 5-5: FPGA Flood Interface State Machine, DAM

Memory bus interface

The FPGA memory bus interface is the most complex of the FPGA interfaces. It

requires a fair amount of logic to preserve the state of the bus. The logic for this

interface includes a 7-state finite state machine, several flip-flops for control signals,

registers for the address and data, and a 19-bit address counter. Figure 5-7 describes

the state machine and figure 5-8 is a block diagram of the bus controller logic. The

data and address registers are implemented in the periphery registers of the I/0 ele-

ments of the FPGA devices and thus do not use any internal logic resources.

' 3 This example was taken from the AHDL file dell.tdf

85



Figure 5-6: FPGA Flood Interface Logic

In addition to saving logic resources, the data and address registers are placed

in periphery registers so that fast bus accesses may be accommodated. Specifically,

the Hub clock, which is the system clock for the FPGAs may be operated at up to

40MHz. In order to read from the FPGA memory banks at this speed, the memory

address and the return data must be registered in the I/O elements to allow for fast

clock to output and data setup times.

The interface circuit described in figure 5-8 is a generic example taken from a flood

controller design. This application simply streams data into the FPGA memory bank

so that the PC603 can operate on it, and then streams the results back onto the Hub

at the appropriate time. Other applications may require a more, or less, complex

controller circuit depending on their requirements. The logic for this interface can be

simplified and reduced for applications that are going to make exclusive use of the

FPGA memory bus and do not have to contend with bus arbitration issues.

86



r/nod &

Ifowsig

ctl = tri-state enable for bus busy & bus_sz memory bus signals
ensramwr = tri-state enable for data bus bits
enaddrdrv = tri-state enable for address bus bits and cnt enable for addr register
qok, flowsig - signals from the flood interface controller

Figure 5-7: FPGA Memory Bus Controller

87



Figure 5-8: FPGA Memory Bus Logic

5.8.4 Timing Issues

The State Machine FPGAs use three clock signals internally. All application logic

is clocked from the Hub clock, BEHUBCLK. The Hub clock serves as the system

clock for the FPGAs. The FLOODOK signals are synchronous to the FLDCLK

and this clock is used to validate the assertion of these signals. The PC603 system

clock, SYSCLK, is also available as a reference to handle any synchronization issues

that might arise in State Machine applications.

The FloodOK signals are used by the LP as handshaking signals for the stream

processors to indicate the presence of valid data on the flood ports. Stream processors

either read data from the ports or write data to the ports in response to these signals.

The FloodOK signals are asserted synchronous to the Floodclk, which operates at

half the frequency of BEHUBCLK. The FloodOK signals are only to be considered

valid at the rising edge of BEHUBCLK, iff FLDCLK is at its valid low logic level at

this time. Figure 5-9 illustrates the condition for validating the FLOODOK signals.

BEHUBCLK is a buffered and delayed version of EHUBCLK that is intended to

be a close approximation to the actual HUBCLK. EHUBCLK is an early version

88



HUBCLK that is distributed to the stream processor submodules to compensate for

delays in the clock signal caused by clock distribution and buffer delays.

HubClk
(at P2 Hub)

EHubClk

FldClk

i- 30 nS minimum

I I 1

ions

\ :, A0. I d* nTC
U 110 AU 11

FloodOK<2:0>

AIn<15:0>
BIn<15:0>

AOut<15:0>
BOut<15:0>

I I!nS 12 nS

,.. _i K . o-m_

15 nSn
5 nS

Figure 5-9: Flood Interface Timing

When the Hub clock is operated at 40MHz, the timing of the FPGA memory

reads and writes becomes critical. At this speed the clock period is 25ns while the

access time of the SRAM is 15ns. Because of the considerable I/O buffer delays of

the FPGAs it is not possible to read from memory directly to an internal register. To

perform the read in one clock cycle the address must be registered in, and the return

data latched in, the registers in the I/O elements. The clock to output times for the

address bits, and the register setup times for the data bits, is approximately 4ns [4].

14 If the Hub clock is operated at 32MHz or less this requirement is not necessary.

However, it is a good idea to register the transfer address and the incoming data in the

I/O elements as this cuts down on internal logic resource usage and uses registers that

would otherwise be wasted. Figure 5-10 provides the timing parameter information

for this interface.

14For precise, current values for these timing parameters consult the Altera Data Book 1994

89

--- -- --- -- J
! _



25 ns @ 40MHz
3 Ins @ 32MHz

:4 ns.

HubClk 11.\ns

BMCE : : s' '; 5ns* 
BFLEXWB

/CEx
/OE

A[ 18:0] Valid Address

BOSSZ i :o .z : .

BBB !. l t=15ns (rd access time)
UB ~ * .v;

: 

BDATA31:01

Ins {a 4U'MIlZ; - -
7ns @ 32MHz:

: 4ns:

Rk _/ (Required for Reads when HubCk = 40 MHz)

ts=4.6n -:

: Lf

Figure 5-10: FPGA Memory Access Timing

5.8.5 LUT tables

Each FPGA has an associated LUT memory bank for designs requiring table look-

ups. This memory is a Micron MT5C64K16A1 64Kx16 SRAM device with a 12ns

access speed[34]. It allows FPGA applications to have table look-up access in a single

clock cycle even when the Hub clock is operated at 40MHz. This allows the FPGAs to

carry-out applications like Huffman decodes and table-lookup multiplies at the Hub

clock rate.

To maximize the speed of access these devices are always enabled when the State

Machine is in NORMAL mode. The FPGAs need only drive an address on BLU-

TADDR to perform a table look-up. This configuration also has the additional

advantage of requiring very little logic to implement this interface.

Data is written into the LUT memories by the PC603 processor while the board

is in CONFIG mode. The FPGAs do not have the ability to write to these memory

elements. Once the PC603 changes the board mode to normal mode the chip selects

90

7X

.I.
.V

-3--

.



are asserted and the write enables are de-asserted placing the devices in read only

state. The PC603 may write to the LUT memories in NORMAL mode but this

is not advised since the FPGAs may be reading at the same time and there is no

mechanism for bus arbitration.

This concludes the hardware description of the State Machine stream processor.

All of the major components have been addressed, along with the more subtle interface

issues between them. The focus of this chapter has been on providing commentary on

the more important aspects of the architecture without overwhelming the reader with

technical detail. Most issues not addressed here can be resolved with a casual review

of the schematics provided in appendix 8.2.3. In the next chapter we continue in this

spirit with a discussion of the supporting software that provides the programming

environment for the State Machine.

91



92



Chapter 6

Software Environment

6.1 Overview

The State Machine software environment includes three distinct components. A small

operating system kernel manages the PC603 processor and launches applications.

There is the application code itself. In addition, each State Machine application has

an associated FPGA configuration file. These files are software descriptions of the

hardware architectures to implement in the FPGAs for the application. Finally, the

Cheops P2 resource manager is responsible for managing the State Machine stream

processor memory resources. In this chapter, we begin with a description of the

software development environment. Next, each of the above components will be

discussed in detail. The final section of this chapter will discuss the integration of the

P2-side State Machine library code into the Cheops resource manager, Norman.

6.2 Development Environment

All of the code for the State Machine stream processor was developed on Unix work-

stations, mostly in the C programming language. All code was compiled, assembled

and linked with the GNU C compiler and binary utilities[21]. Code targeted for

93



the P2 local processor, i80960, was compiled with GCC running on a DECstation

5000/200 configured as a cross-compiler for the i80960 architecture. Code targeted

for the PC603 processor was compiled with GCC in native mode running on an IBM

RS6000 workstation using the PowerPC compiler options.

Some of the code for the PC603 operating system was developed in PowerPC

assembly language. Specifically, the bootstrap and process swap facilities were coded

in PowerPC assembler. In addition the log_event() function, the State Machine

equivalent of printf() was also coded in assembler. All assembly code segments were

preprocessed with the GNU C preprocessor[20], to resolve macros and remove C style

comments, and then assembled with the as assembler[22].

6.3 ChameleonOS Operating System

The ChameleonOS operating system is responsible for controlling and managing all

on board functions of the State Machine stream processor. These responsibilities

include initialization, FPGA configuration, application process launch, and LP com-

munications. Before a State Machine can be used for any purpose, the operating

system must be loaded into the PC603 memory bank and the processor allowed to

complete the boot sequence. With this task complete, the State Machine is ready

to service requests from the local processor. The ChameleonOS operating system

handles these requests and any required communication with the local processor.

6.3.1 Design Objective

The design objectives of the ChameleonOS operating system were threefold. The

operating system should be designed in such a way that it is simple, does not re-

quire much space, and is highly efficient in switching applications. To simultaneously

meet these goals ChameleonOS has been designed to be as simple as possible and

includes only the bare minimum functionality required to launch applications and

94



communicate with the LP.

As a consequence of these goals this operating system differs substantially from

typical operating systems in several ways. First, there is no memory management

whatsoever. The PC603 local memory bank is a shared memory region, with the

PC603 having word access and the LP having byte access. The LP is responsible for

all memory management of this memory region. Thus the LP loads and keeps track

of all code and data on the card, including the ChameleonOS operating system code.

The operating system keeps no internal information about memory usage other than

that required by its system tables and that provided to it by the local processor in

the course of launching an application.

The PC603 is an embedded processor and has no access to a file system of any

type. Thus all standard library functions that require file I/O are not supported. This

includes functions such as printf() and sprintf(). However, the operating system

does implement a ramlog facility for passing text messages back to the local processor.

The logevent() function is provided as an alternative to printf( for State Machine

applications.

The ChameleonOS operating system does take advantage of some of the virtual

memory management features offered by the PC603 processor to keep the process

of loading application code simple. The block address translation facilities of the

PC603 are used to provide a common address space for application code to run in.

This allows application code to be linked to start at address zero with no run-time

relocation required of the loader.

6.3.2 OS Initialization

The start of execution of the operating system occurs on the transition of board

mode from Write to Config mode, caused by the assertion of the strt bit of the bus

priority register in the register interface. At this time the PC603 attempts to fetch

instructions and begin executing code. If the operating system has been loaded into

95



the PC603 local memory bank, execution begins, otherwise the processor thrashes

about until it takes a machine check exception and halts.

Figure 6-1 shows the system specific tasks performed by the main() function.

These consist mostly of hardware tests and data structure initialization. The pro-

cessor begins by checking to insure that it can write/read to/from the registers in

the register interface. Since the register interface is the primary means by which the

PC603 communicates with the local processor, a failure during these tests causes the

processor to attempt to report the failure to the LP and then halts. If the register

interface test is passed, the processor attempts to test the PC603 local memory bank

to insure its integrity. If the memory test is unsuccessful, the processor reports this

fact through the register interface and halts.

Once the hardware tests are complete, the processor proceeds by initializing all

of the operating system data structures. The structures used to track the current

application process are cleared, the memory semaphore table is cleared, and the

semaphore structures initialized. Finally, the ramlog facility is initialized and started.

The data structures used by the operating system will be discussed in section 6.3.3.

The final task the main() function executes is to call the monitor() function which,

under normal operating conditions, never returns.

Figure 6-2 describes the major operation of the operating system kernel. It is

a simple process monitor that continually waits on and then services requests from

the LP. Requests for service are made using the STATEMCH_GPlREG register

in the register interface and the system management exception vector of the PC603.

When idle the monitor sits in a tight loop checking its sleeping variable. The monitor

stays in this loop as long as sleeping is set.

When the LP wants to request a service, it places the service request byte in

the STATEMCHGP1-REG register of the register interface. It then causes

a system management interrupt to the PC603 to occur by writing a 0x02 to the

STATEMCHSERVREQ register in the register interface. On taking the excep-

96



Chameleon Operating Sytem Main()

No

Figure 6-1: Chameleon Operating System Flowchart

97



Chameleon Operating System

Monitor Process

Figure 6-2: Chameleon Operating System Flowchart

98



tion, the PC603 unsets the sleeping variable and reads the STATEMCHGPIREG

register to retrieve the service request. On return from the exception the monitor

leaves the sleeping loop and processes the request.

There are three types of service requests that the LP can make. The Reboot

command causes the PC603 to immediately jump to the start of the bootstrap code

and causes all process state to be lost. The processor then continues with the normal

bootstrap sequence, reinitializing the operating system environment.

The startprocess command causes the PC603 to transfer control from the op-

erating system to the application process. The operating system has no knowledge

of the application prior to the service request. All memory management and loading

is performed by the local processor. When the local processor makes the request, it

places all the information that ChameleonOS requires to start the process in a special

structure at the end of the application's address space. This process will be described

in greater detail in subsequent sections.

The last type of request that the LP can make is the hdwe_update service

request. This request is used to pass a new set of data parameters through to the

FPGA devices. The local processor places the parameter set in the system semaphore

space' and requests the hdwe_update service. On honoring the service request the

PC603 takes the parameter set and copies it into the appropriate FPGA device. The

first parameter determines which FPGA device the update is for. A parameter set is

a generic structure that consists of a number of address and value pairs. The PC603

performs a simple transfer of these parameters from the semaphore area to the FPGA

and has no knowledge of the content or purpose of the parameter set.

If the monitor exits the sleeping loop without recognizing the service request an

anomaly has occured. This fact is reported with a text message that is logged in

the ramlog space. The LP can detect this message and report it to the attached

workstation display console. After logging the message, the monitor will return to

1System memory semaphores will be discussed in more detail in section 6.3.3

99



the sleep loop and go back to sleep until the next service is requested. The monitor

main loop has no exit condition, and should never return to the main() function

during normal operation. If it does, something is terribly wrong and the processor

will probably take a machine check exception and halt.

6.3.3 Data Structures

The Chameleon operating system uses several data structures to keep track of its

internal state, application processes, the ramlog, and shared memory regions. Stack

space is kept separate for normal operation and exception processing. The following

section describes the important structures used.

internal structures

The sleeping variable controls monitor activity and keeps the monitor in a tight loop

waiting for LP requests. The system management exception handler unsets the sleep-

ing variable when it processes a LP service request, causing the monitor to exit its

sleep loop and initiate the service. The two bytes commandi and command2 are

filled with the contents of the general purpose registers STATEMCHGPIREG

and STATEMCHGP2_REG at the time of the system management exception.

These registers are used by the LP during the service request to indicate what type

of service is requested.

The floodupdate service uses the following data structure to facilitate the trans-

fer of flood parameters to the FPGA devices. Its use enables the operating system

to handle the transfer without knowing anything about the order or nature of the

parameters transferred.

100



typedef struct {

unsigned long addr; / * address of parameter */

long val; / * flood parameter */

}flood_listel;

Tables

The operating system uses several tables to implement the virtual memory model and

keep track of user process code slots. ChameleonOS uses the block address translation

facilities of the PC603 to protect certain regions of the address space from caching,

and to simplify the linking and loading process of application code. The tables used

are as follows:

* unsigned long os-ibattbl[]- Contains the configuration words for the upper and

lower BAT registers for the Operating system. The data from this table is

placed in the instruction BAT registers at boot time, and whenever control is

returned to the operating system from application code.

* unsigned long proc-ibattbl[] - Plays an analogous role for application code to the

osibattbl[] for the operating system. This table is used to fill the BAT registers

of the processor immediately before control is transferred to the application

code.

* unsigned long dbattbl[]- Specifies the block address translation configuration

information for data accesses. Since data accesses for both the application code

and the operating system are handled in a like manner, separate tables for

applications and the operating system are not required.

* unsigned long batLaddrtbl[] - This table holds the physical addresses of the start

locations of each of the application process code slots. When an application is

101



started the address in this table, corresponding to the code slot of the appli-

cation, is loaded into the BPRN field of the lower block address translation

register zero. The virtual memory manager of the PC603 subsequently maps

logical address zero to this address during application code.

Process handling structures

Application code is loaded into the PC603 memory bank by the LP according to

a predetermined convention that will be discussed shortly. Each application has

an associated process parameter structure that is used to communicate the process

parameters. This structure is located at the bottom of the process's last code slot.

typedef struct 

unsigned long configcode; /* FPGA configuration command */

unsigned long stackbase; / * ptr. to process stack base */

unsigned long TOCptr; /* ptr. to process TOC */

parameter_st procparms; / * process parameters structure */

) procrec;

The configcode word determines if and what FPGA configuration action is to be

taken. The code may specify that the processor is to reconfigure the FPGAs from one

of its two configuration data memory areas, or to perform no FPGA configuration

before starting the process. The stackbase and TOCptr fields are pointers to the stack

base of the stack and the program table of contents start. These pointers are relative

to the start of the 128k application address space. The procparms element provides

the actual arguments to the application function. The supporting data structures are

provided below.

102



#define MAXPARAMETERS 6

typedef union {

float f; / single precision floating point /

unsigned long ul; /* 32 bit integers, signed and unsigned $/

signed long 1;

unsigned short us; / 16 bit integers, signed and unsigned */

signed short s;

unsigned char uc; /* 8 bit integers, signed and unsigned /

unsigned char b;

signed char c;

smem_id m; /* shared memory reference id */

} parameter t;

typedef struct {

unsigned long Ilumparameters; / * number of parameters

parameter_t p[ MAX_PARAMETERS ]; / * array of paramei

unsigned long shared_mem; / * bit field indic. shared r

} parameter_st;

10

$/

ters */

nem param. */

The operating system uses six variables to keep track of the application code to

be executed. These six variables are:

* void *proc-code; - A pointer to the start of the executable code.

* unsigned long proc-stack; - A pointer to the stack space base for the application.

* procrec *proc-parms; - A pointer to the process parameter structure for the

application process.

* unsigned long procTOC; - the Table of Contents pointer value for the process.

* unsigned long proc-index; - The process index number of the application. This

index is the same as that used to reference the batladdr-tbl to determine the

103

I



physical start address of the application.

* int procstate; - a variable used to record the state of the current application

process.

Ramlog structures

The ramlog facility is used to communicate status and application program execution

information to the LP. It allows text and data to be logged into memory in a com-

pressed mode, for later interpretation and reporting. The ramlog area is essentially

a circular queue and uses a simple data structure to manage the queue. This header

structure sits at a fixed location in shared memory so that both the LP and the

PC603 can access it. The logevent() function is used by both the operating system

and applications in the same way that the C printf() function would be used on a

workstation. The difference is that the printf( would write the message to a file,

while the logevent() function writes it to the ramlog space. The LP ramlog monitor

can then pick up the message to use internally, or display to the console window on

the attached workstation.

Semaphore structures

A single variable is used to manage the semaphore memory. The semaphore memory

is a dedicated 2KB section of memory divided into 16 128 byte chunks that are

dynamically allocated as needed. These chunks can be used to pass information back

and forth between the LP and the PC603 on an ad hoc basis. The unsigned long

sema-stat variable is used to keep track of which semaphores are available or in use.

The semaphore usage is tracked by the value of its corresponding bit in the low order

16-bits of the semastat word.

104



6.3.4 Memory Usage

Figure 6-3 describes the memory organization of the PC603 local memory bank. The

memory is divided into 8 128K bytes regions. The divisions are chosen to correspond

to the smallest BAT register block size mask supported by the PC603[27]. The first

128K block is dedicated to operating system usage. The next six are reserved for

application code,which may begin only at the beginning of any of the six blocks.

The last block is used to store FPGA configuration for both FPGAs for up to two

different configurations. Alternatively, fewer application code slots can be reserved

to make room for more FPGA configurations should this need arise. This allocation

is controlled by and can be dynamically changed by the LP.

The operating system block, block 0, is divided into five sections as shown by the

dotted lines in figure 6-3. The processor exception table occupies the first 12 K-byte of

space and is immediately followed by the operating system code. The ChameleonOS

kernel takes up less than 20 K-byte of space, however, 50 K-byte is reserved for future

expansion. The operating system is immediately followed by the system ramlog space.

This space includes the 24 byte header and a 66,536 byte circular queue area. The

final 2 K-byte section is the semaphore table that contains space for dynamically

allocated memory chunks as discussed in section 6.3.3.

Figure 6-4 describes the memory usage of an application code slot. The code

begins at the beginning of the slot at logical address 0x0000. The last 44 bytes of

the slot are dedicated to the proc-rec parameters structure used to communicate

essential information for starting the process. The process stack space begins imme-

diately before this structure and grows from higher address to lower address. The

boundary between code space and stack space is arbitrary and determined by each

individual application. Note that application processes are not limited to a single

code slot. Larger applications may take two or more slots as required. The only

overriding restrictions are that the process parameter structure and stack space be at

the end of the last code slot used, and the code must start at the beginning of one of

105



PC603 LOCAL MEMORY ORGANIZATION

Base Address in
PC603 Address oxoo10000
Space

OxOOOO0
Ox02FFF
0x03000

0x0F7FF
0x0F800
0x0F817
0x0F818

0x1 F799
0x1 F800
Ox1 FFFF
0x20000

Ox3FFFF

0x40000

Ox5FFFF
0x60000

Ox7FFFF
0x80000

Ox9FFFF

OxA0000

OxBFFFF
OxC0000

OxDFFFF
OxE0000
OxE7FFF
OxE8000

OxF3FFF
OxF4000

OxFFFFF

Exception Table

ChameleonOS

Ramlog header

RAMLOG space

Semaphore table

Program Slot
Slot 1

Program Slot
Slot 2

Program Slot
Slot 3

Program Slot
Slot 4

Program Slot
Slot 5

Program Slot
Slot 6

No Use

FPGA Data
Slot 1

FPGA Data
Slot 2

12kbyte

50kbyte

24 byte

-65kbyte

2kbyte

128 kbyte

128 kbyte

128 kbyte

128 kbyte

128 kbyte

128 kbyte

32 kbyte

48 kbyte

48 kbyte

'I

Figure 6-3: PC603 Local Memory Usage

106

.

i

I



the first code slot used.

Application Memory Space

OxOOOO0

Arbitrary
Boundry

OxlFFD3
OxlFFD4

Ox1FFFF

Application
Code

I
Stack Base
Parameters
Structure

-128 kbyte

44 bytes

'I

Figure 6-4: PC603 Local Memory Usage

6.3.5 Process Switching

Process switching occurs when the operating system transfers control to an applica-

tion code segment, or when an application code segment exits and control is returned

to the operating system. Both transfers involve a change of address space which is

facilitated by use of the system call instruction (sc) of the PC603. This instruction

generates a 603 exception and allows the transfer to occur in a different machine

context. Much of the low level process switching code is implemented in assembly

language. Figure 6-5 is a pictorial representation of the process switching operation.

The following is a description of this process.

Transfer of control to applications

If a system service has been requested by the LP, the monitor executes the start_process()

routine handing it the process index number and size contained in the commandl

107

/



Application side

Figure 6-5: ChameleonOS Process Switching

byte. start_process() is the monitor entry and exit point for launching applications.

startprocess() then calls proc_start() which updates the process data structures

before calling proc-link(. procstart() is the C level exit and entry point for the

operating system. proclink() is an assembly language stub used to generate the sc

instruction, causing a system call exception to be taken.

After taking a system call exception, the PC603 exception handler analyzes the

byte in the GPR02 register. Upon sensing a process index and size in this byte,

the handler jumps to the proc_restore() routine. The procrestore() function is

a low level assembly routine that saves the operating system processor state and

initializes the processor to begin the application code segment. It obtains the process

data from the process data structures. The procrestore() function ends in an rfi

instruction which causes the PC603 to jump to the start of the application code by

way of an exception return.3 The procrestore() function initializes the application

stack frame in such a way that when the application finishes, it automatically returns

2 This notation refers to the general purpose register set, GPRO-31, of the PC603 processor. This
notation will be used throughout this work.

3See [27], pages 6-1 thru 6-15 for detailed information on PC603 exceptions and exception return
information.

108

OS side



to the proc_exit() routine.

Transfer of control back to the operating system

Transfer of control back to the operating system from the application code segment

occurs automatically, when the application code executes a return. The procexit()

routine is called automatically, having been placed in the return linkage by the

proc-restore() routine. procexit() plays an analogous role for the operating system

that proclink() link plays for application code, it is a stub that generates a sys-

tem call exception. The difference is that proc_exit() loads register GPRO with the

GETOS command byte so that the system call interrupt handler calls the os_restore

routine. The os-restore () routine restores the operating system state and returns

to the end of the proc_start() routine, the C level entry and exit point for launch-

ing application code. proc_start() returns to startprocess() which immediately

calls prochalt(). proc_halt() removes the application information from the process

management data structures and then returns. startprocess() then returns to the

main monitor loop and returns to the sleep state, until the next service request.

6.3.6 Local Processor Communications

There are several different ways in which the LP and the PC603 on the State Machine

board communicate. The most basic method, and the default method in case of

catastrophic failure, is through the general purpose registers in the register interface.

These registers are used for several different types of communication. At boot time the

PC603 periodically writes a status byte to STATEMCH_GP1_REG to inform the

LP of its progress. After the boot sequence is complete, STATEMCHGPlREG

is used by the LP to indicate the type of service request. The 603 writes return

information to both STATEMCHGP _REG and STATEMCH_GP2-REG to

handshake with the LP.

The semaphore space in the operating system memory segment can be used to

109



pass information back and forth between the PC603 and the LP. The hdweupdate

service uses this method to pass a list of parameters to the PC603 to update the

FPGA devices with. It is anticipated that additional required services will pass

information in this manner. Finally, application process parameters are passed with

the procrec structure by the LP to the PC603 in their own dedicated space at the

end of the process memory slot.

6.3.7 FPGA Configuration

The operating system configures the FPGAs at the direction of the LP in accord

with the requirements of the desired application. The LP communicates the FPGA

configuration requirements to the operating system through the configcode field of

the procrec record associated with each application code segment in memory. The

operating system may then configure the FPGAs from either of two configuration

data slots reserved in the last 96 K-byte of the PC603 local memory bank. A special

routine, flexconfig, is provided to perform the configuration operation. This occurs

as one of the operations carried out by the procstart routine as it initializes the

other process structures for application execution.

6.4 Application Code

State Machine application code can include a wide range of functionality. It can

perform the majority of the computation for the designated stream processor, or it

can do almost nothing, letting the computation take place entirely in the FPGAs.

Many applications will fall somewhere in the middle of these two extremes, carry-

ing out the desired computation partly in hardware with the FPGAs, and partly in

software, on the 603. The State Machine allows the boundary between hardware

and software solution to be arbitrarily set. This choice is naturally influenced by the

available hardware resources, the computational demands of the application, and the

110



developer's knowledge of hardware/software development.

The application code for the PC603 is developed in the same manner as any other

C program with a few important exceptions. These exceptions include both coding

conventions and linking and loading conventions. We address each point here in

detail.

6.4.1 The main() function

State Machine applications do not have a main() function like ordinary C programs.

Instead, State Machine applications use the name of the application as the name of

the top level function. That is, the name of the application serves as the entry point

into the code. This convention was chosen to reinforce the model of the State Machine

as a resource for arbitrary function execution. A constraint of this convention is that

the entry point for the code must be explicitly provided to the linker. Command line

options of the d command are used in the application make file to accomplish this

purpose.

6.4.2 Malloc and Printf

The PC603 does not have storage peripherals of any kind available to it, including

a file system. The only I/O capability it has is to SRAM memory and hardware

registers in the register interface and FPGA devices. Consequently, none of the stan-

dard C library functions that implement file or buffered I/O are supported for State

Machine applications. These include all file handling fictions as well as printf()

and sprintf().

In addition, memory allocation functions such as malloc( and calloc( are not

supported. As has been discussed before, to keep the operating system as simple

as possible, no memory management of the PC603 memory bank is provided. This

memory management, of the application code slots and FPGA configuration slots,

is handled by the LP. Thus application code cannot call these functions. This does

111



not pose difficulties for most applications since most memory requirements can be

predetermined and the storage declared at compile time. Applications for which this

is not true can rely on the Cheops resource manager to allocate the required memory.

6.4.3 FPGA Communication and Interrupt Handlers

State Machine applications for which the PC603 plays more than a trivial role typi-

cally require some form of communication between the PC603 and the FPGA devices.

There are several methods by which this communication may take place. The impor-

tant thing to remember is that neither part of the application is developed without

knowledge of the other and implicit communication can and should occur.

memory based methods

The PC603 can communicate with the FPGA devices through special designated

memory locations in the FPGA memory banks that both know about. That is a

special location in the FPGA memory bank can be reserved, that the PC603 can

read from and the FPGA can write to, or vise-versa. This method can be used so

that both the FPGA and PC603 can communicate their progress in completing a

computation.

Alternatively the PC603 can read and write the FPGA device itself, as if it were

a memory element. This, of course, only works as long as the FPGA design files

support this activity. There is usually enough prior knowledge about each part of

the application such that this is known. Thus the PC603 can poll either location to

communicate with the FPGAs.

However, this form of communication only works if the FPGA devices are not

locking their busses with their respective buslock signals. When this occurs the PC603

cannot access the FPGA busses and this type of communication cannot occur.

112



The external interrupt

Another method is provided which allows limited signaling between the FPGA and

the PC603. Each FPGA device has the capability to interrupt the PC603 using

the PC603's external interrupt vector. The FPGAs interrupt signals, bosint and

jon_int, are logically ORed in the register interface with the resulting output signal

wired to the PC603's /INT input. The PC603 upon taking an external interrupt can

read from a location in the register interface to determine which FPGA caused the

interrupt. Two of the PC603's high order address lines act as interrupt acknowledge

signals. Thus when a FPGA generates an interrupt it holds its interrupt signal

asserted until it receives an interrupt acknowledge signal from the PC603.

Note that the FPGA does not have to generate an interrupt to receive an interrupt

acknowledge. The PC603 can assert the interrupt acknowledge signal to signal the

FPGA of certain events or synchronize operations. For this type of signaling it is

assumed that there is implicit knowledge between the FPGA and the PC603 of the

others activities. That is, the meaning of the interrupt has been previously agreed

upon.

To use this form of communication productively, State Machine applications must

have a method of installing their own interrupt handlers for the external interrupt

vector. The installed handler may then carry out the required operations of the

application when the external interrupt is signaled by a FPGA. The operating sys-

tem provides a special mechanism for registering interrupt handlers. The following

function is used for this purpose:

void register handler( void (*p_funct)(void));

The register-handler function installs the handler as the function to execute

when an external interrupt is taken. Application interrupt handler functions should

take no arguments and return nothing; they should only operate on global variables

or local variables declared on the stack.

113



6.4.4 Linking Applications

It was stated earlier that State Machine applications do not have a main() function

at the top level, using the name of the application instead. This convention has the

advantage of allowing the use of all the RS6000 PowerPC code development tools for

State Machine application development without suffering the injury of having the IBM

AIX program linkage code automatically linked into the program. The disadvantage

is that the linker is not able to determine the entry point into the code unless it is

explicitly stated at link time. Thus State Machine applications must explicitly state

their entry point at link time.

This task can be accomplished by using the -e option of the Id command in the

application Makefile. At link time, the name of the application, which should also be

the name of the top level function, is used with the -e flag to explicitly state the entry

point into the code. As an example, for the application matrix_mul, the top-level

function name is matrixmul() and the linker command in the make file is:

Id -omatrixmul -D-1 -ematrix_mul -H8 -S4096 -TOxOOOOOO0000000 \

-L${STATEMACH_USER_LIBS} -L${STMACH_C_LIB} ${APPFILES}

There are two other important d options present in this command line that are

essential for linking State Machine applications. The first is the -T option, which

tells the linker to link the program as if it were to start at address x0000. This is

extremely important since the Chameleon operating system uses the block address

translation virtual memory features of the PC603 to execute all application code as

starting at logical address zero. The memory management facilities of the PC603

maps the logical addresses to the correct physical address of the application code slot

where the program resides in the PC603 memory bank. The -T option is used with

the linker to insure that all address references in the program will be correct and

relative to a start logical address of OxO000.

The other is the -D-1 option, which tells the linker to place the .data section of

114



the program immediately following the .text section. This option is used to economize

on memory usage and simplify the memory management task. Other options used in

the command line include:

* -o - Tells the linker what to name the resulting executable output file.

* -H - Tells the linker what alignment to use for the start of program sections.

* -S - Tells the linker the maximum size the program stack is allowed to grow.

* -L - Specifies the directories to use to look for libraries that are to be linked

with the application.

6.5 FPGA Configuration Files

Each application has an associated FPGA configuration file. This file is actually a

composite consisting of the contents of two Altera *.ttf files with their contents inter-

leaved. The contents of the configuration file is loaded into the State Machine at the

same time the configuration code is. However, the mapping between application code

and FPGA configuration files is not isomorphic, and many applications may use the

same FPGA configuration file. Consequently, it is possible for the applications con-

figuration file to be already resident in the State Machine at the time the application

code is loaded.

The process of generating the FPGA configuration file is described by figure 6-6.

The application's hardware architecture is first designed and described in the AHDL

hardware description language using the Altera MaxPluslI development environment.

A *.tdf file is generated for each of the two FPGAs, Boswell and Johnson. The AHDL

files are then compiled using the MaxPlusII design compiler which performs logic

database generation, logic synthesis, netlist extraction, device mapping, routing, and

finally configuration file generation. An option of the compiler generates the *.ttf

form of the configuration files which consists of an ASCII file containing the comma

115



separated list of configuration bytes. Thus the output of the MaxPlusII development

tools is a pair, one for Boswell and Johnson, of *.ttf files.

PC Environment , Pink Unix Workstation
{ 

Figure 6-6: FPGA Configuration File Generation

These files are then transferred into their appropriate position in the application

directory tree on the Cheops host Unix workstation. Finally, the program ttfmerge

is run, taking the two *.ttf files as input and generating the FPGA configuration file

associated with the application. It is this file, in binary format, that is loaded into

the State Machine along with the application code.

6.6 Resource Manager Integration

Currently, only a low-level interface library for communicating with the State Machine

exists. These low level functions are used by the diagnostic and test code and are

unsuitable for general application use. However this is merely a short term condition

until support for the State Machine is built into the Cheops resource manager.

Eventually, the Cheops resource manager, NORMAN, will handle these tasks.

At this point, the low-level interface library will be used only by RMAN functions

so that the use of State Machine resources becomes transparent to the end user.

Cheops applications will simply refer to "virtual functions" without regard to which

State Machine they run on, or whether or not the function is presently loaded in a

State Machine. The resource manager is responsible for maintaining and modifying

the state of all State Machine stream processors so that these details need not be

116

Boswell.tdf

,Johnson.tdf



addressed by user applications.

This allows applications to refer to State Machine functions in the same manner

as other stream processors. Users merely include references to functions implemented

on the State Machine into their data-flow algorithm description using the RMAN

library functions[38]. Upon initial parsing of the algorithm description, the resource

manager will load instructions and configuration data (from disk) into local memory,

if it is not already present. At run time, the resource manager configures the State

Machine with the user requested function using a special startproc() routine and

hdwe_config messages.

Thus all details of State Machine usage are hidden from user applications. We do

not attempt a detailed explanation of the Cheops resource manager in this work; as

it is beyond the scope of this thesis. However, the curious reader is referred to [38].

117



118



Chapter 7

Research Results

We have designed and implemented the entire State Machine stream processor in-

cluding the hardware described in chapter 5 and the software described in chapter 6.

Unfortunately, the State Machine stream processor is only partly functional at this

time. Consequently, many of the proposed analysis are not described here. These will

be reported in a later work, after the State Machine is fully functional. The results

described in this chapter include the difficulties encountered in the construction of the

State Machine stream processor, a report on the achievable FPGA resource utilization

factors that determine the maximum size of State Machine hardware architectures,

and a refining of the reconfiguration timing model proposed in chapter 4.

7.1 Implementation Difficulties

Two major factors contributed to the delay in the design and implementation of

the State Machine stream processor: fabrication and assembly problems due to the

extremely high density of the State Machine board, and delays in getting information

on and samples of the IBM PowerPC603 microprocessor. The State Machine design

packs an extraordinary amount of ICs in a very small PCB area. The final design

includes 33 ICs in a 5.25"x4.3" double sided area, including 3 large 240-pin QFPs. The

119



PCBs are 12 layer boards and have approximately 3000 holes, 1900 SMT pads, and a

board density factor of .102. The routing and layout of the State Machine board took

several attempts and two separate layout design houses before an acceptable board

fabrication was achieved. The low board density factor also complicated the testing

process and contributed to increases in testing and debugging time.

The other source of delay in implementation was the availability of the IBM Pow-

erPC603 microprocessor. Although not generally available yet, we were able to ob-

tain several samples, probably from one of the first foundry runs. This version of the

PC603 had bugs and was not reliable. As a result we were forced to abandon our

initial samples and obtain new ones from a later run. In addition detailed technical

information for the PC603 was not made available until 9/94.

7.2 FPGA Resource Utilization

In the course of designing the State Machine stream processors, two sample appli-

cations were created to assist with the design process. A simple Huffman decoder

designed to operate at 40 MHz using both FPGAs was implemented and synthesized.

In addition, a simple flood controller was designed and implemented. The flood con-

troller design transfers data from the flood ports to the FPGA memory banks so that

it can be operated on by application code running on the PC603 processor. The flood

controller also returns the data to the Hub via the output flood ports. 1

The purpose of this effort was to gain insight into the optimal pin-out assignment

for the various bus interfaces and control signals that each FPGA had connectivity to.

The optimal pin-out is the pin-out assignment that provided maximum flexibility in

compiling and routing different designs in the Altera EPF81188 devices. In this work,

we discovered that fixing the pin-out of these devices during design compilation and

IThe flood controller is generic and is used by all State Machine applications that intend for all
processing to be handled by the PC603.

120



routing produced major device routing problems that adversely affected the device

resource utilization levels achievable.

30

25

20

15

10

E

0oo

0
5 10 15 20 25 30 35 40 45 50

Device Utilization Factor (%)

Figure 7-1: Compilation Time vs. Device Utilization Ratio

The results of this work are presented in figure 7.2. This graph plots design

compilation time vs. device utilization as reported in the Altera compilation report

files. All compilations were performed using Altera MaxPlusII design compiler v4.02.

These tests were performed for a fixed pin-out design of the Huffman decoder and the

flood controller. The two separate plots represent two different logic synthesis styles.

The Normal style causes the compiler to optimize the design for area, packing the

synthesized logic as closely together as possible. The Fast style causes the compiler to

optimize for speed, minimizing interconnect and logic delays, which generally requires

that logic resources be used less efficiently.

The test points show that the Fast logic style gives better compilation performance

at low densities, while the Normal logic synthesis style provides better compilation

121



performance at higher densities. The compilation time for the Fast logic style increases

at an exponential rate with increased device utilization, and at an apparent linear

rate for the Normal logic synthesis style. Moreover, for both the Fast and Normal

logic synthesis styles, the design compilation time is dominated by the routing time.

The most disturbing finding is that we were unable to successfully compile either

of the two designs for devices utilization factors above 46%. This suggests that the

compilation time for the Normal logic synthesis style is also probably increasing at

an exponential rate.

These results can be attributed to the Altera FLEX architecture. The routing

resources of these FPGAs are optimized for speed and employ long lines in the routing

channels, called FastTrack interconnect, that run the full length of the chip. The

output of each logic element (LE) connects to a single FastTrack channel in the

adjacent row and column routing channels. However, the I/O pins of the FPGA can

only be connected to a small subset of the FastTrack channels. The result is that

each I/O pin can only be connected to a very small number of the chips LEs. This

fact severely restricts the ability of the compiler to fit and route a design with a fixed

pin assignment. In addition, our results provide no indication as to what extent the

compiler's ability to route the FPGAs contributed to the low device utilization ratios.

The conclusions that can be drawn from these experiments are that the Altera

FLEX architecture is ill-suited for in circuit re-programmability, and by extension,

dynamic reconfiguration, with fixed pin assignments. Designs are limited to less than

50% 2 device utilization by routing constraints and compiler performance. Because

of these constraints, design compilation time increases exponentially with device uti-

lization. This implies that State Machine applications are limited to less than 6,000

usable gates, including communications protocol logic, per FPGA device. Thus for

2 This figure includes the logic required to implement the bus communication protocols. So
application designs are limited to less than 32% of the chips logic resources.

3 Admittedly, this must be a qualitative argument, as not enough data points were collected to
rigorously defend this analysis. Although, other researchers have reported similar results.

122



designs that use the entire State Machine as a single stream processor, the hardware

architecture is limited to 12,000 usable gates. Designs that use the State Machine as

two independent stream processors, have each of the hardware architectures limited

to 6,000 usable gates.

7.3 Timing Analysis

In chapter four a timing analysis model was presented for determining the recon-

figuration penalty required for switching State Machine applications. This model is

further clarified here in accordance with the completed design of the State Machine

stream processor. In particular, several variables are replaced with their nominal val-

ues, and several constants are defined as a result of the FPGA technology and other

system parameters.

The choice of the Altera FLEX EPF81188 FPGAs determines several of the key

timing parameters. These devices require 24 K-byte of configuration data when pro-

grammed in the passive parallel synchronous mode; the mode used in this work.

Thus the size of the configuration data for both the Boswell and Johnson FPGAs

is 7 = 49,152. The maximum allowable configuration clock rate for these devices

is 6 MHz. However, the State Machine uses a 4 MHz multiple of the EHUBCLK

signal for the configuration clock, thus fdclk = 4. For the EPF81188, a new configu-

ration byte is required every 8 DCLK cycles, thus CBW = byte/cyc. Finally, the

EPF81188 requires 10 global clock cycles to initialize its internal logic before use. The

FPGAs run synchronous to the 32 MHz BEHUBCLK clock signal, so T = 312 ns.

The other timing parameters are determined by the State Machine clock fre-

quencies, the LP communications protocol, and the choice of control processor. The

nominal system clock rate is the same as the P2 clock rate, so f = 28 MHz. Figure 5-2

shows the nominal LP to State Machine communications protocol requires six Pclk

cycles to transfer a byte, so A = 6. The control processor, PC603, is a super-scalar

123



pipelined processor that can launch or retire as many as three instructions per clock

cycle. In addition a normal single beat transfer of up to 4 bytes requires 4 Pclk cy-

cles. To estimate Tprms it is assumed that a constant six words of memory are moved

from one location to another. It is further estimated that each transfer requires 12

Pclk cycles so that Tp,, = 2.6/us.

Summarizing these parameters, we have

6

49,152 (48K)
312 ns
4 Mhz

f
Tprms
K
CBW

28 MHz
2.6 s

3.4 Is
8 bytes/cyc.8

With these values defined we can refine the equations for the components of the

delay given in equations 4.2, 4.3, and 4.4. Incorporating this new information, these

reduce to:

d = 216ns + 10.6ms

i = /3 54ns + 500ns

-_ 49.2nms

As in chapter 4 we are interested only in the case where the applications

been loaded ahead of time so that the load time Td is ignored. In addition we

for these parameters that,

fdclk f.

(7.1)

(7.2)

(7.3)

have

note

(7.4)

Thus for all reasonable /3 (/3 < 16K), if FPGA configuration must be performed,

the configuration time is dominated by the time to reconfigure the FPGA devices and

124

A

f1

T
fdlck



may be approximated by

T 50m s. (7.5)

Conversely, if the FPGAs are already correctly configured, then the reconfigura-

tion time is dominated by i and is exclusively a function of ,

T() = /3. 547ns + 8127nS. (7.6)

For any reasonable sized this is on the order of 100's of ~Is. Thus the recon-

figuration penalty for the State Machine stream processor is approximately 50ms for

applications requiring FPGA reconfiguration. For applications that require only code

initialization, the reconfiguration penalty is a function of and is on the order of ,us.

125



126



Chapter 8

Suggestions for Further Research

and Future Directions

The research described in this thesis represents a "first cut" at using custom com-

puting within the Cheops Imaging System to improve performance. The results have

been inconclusive to date but show promise for considerable performance gains within

Cheops. Several areas that are deserving of further research can be immediately sug-

gested. These will serve to realize the full potential of the State Machine. More

generally, the State Machine demonstrates an affective use of dynamic hardware con-

figuration and provides further evidence that custom computing machines can be

used affectively for certain computational problems. To this end, directions for future

research are suggested.

8.1 Further Research for the State Machine

A principal result of this work suggests that dynamic reconfiguration within Cheops

is possible. Much work remains to be done to make it a reality. The author sug-

gests continued development of the current State Machine design to bring it to full

functionality. The detailed performance comparisons suggested at the beginning of

127



this work can then be completed and conclusions drawn. In addition, the research

performed in this thesis suggests additional improvements that could be made to the

State Machine design to improve performance and facilitate usage.

8.1.1 Adding Newer Xilinx FPGAs

As discussed earlier a severe limitation for the State Machine is the low logic resource

utilization factors achievable within the FPGAs due to the fact that their pin assign-

ments are fixed by the external system architecture. This is a limitation of the Altera

FPGA devices employed that trade rout-ability for improved signal path delay and

signal delay predictability. This limitation restricts the size of user applications that

can be implemented with custom hardware.

To overcome this limitation a State Machine stream processor could be modified

to use Xilinx XC4000 family FPGAs. Xilinx FPGAs provide much improved rout-

ability in fixed pin assignment designs over Altera FPGAs. This improvement is

due to an increased number of physical routing resources on the chip and better

synthesis tools that allow the user greater control over the logic synthesis, placement,

and routing processes. In addition, as of this writing, Xilinx has introduced a new

family of FPGAs, the XC5000 family, that are specifically designed to overcome the

constraints of fixed pin assignment designs. These devices have the potential to

offer resource utilization ratios approaching those for designs with unconstrained pin

assignments (90-100%).

8.1.2 Hardware/Software Compiler

While the State Machine provides an efficient computing platform for implementing

computations in custom hardware, the process of developing these applications is

quite complex. This process involves both software programming and hardware design

using AHDL (Altera's variant of the more popular VHDL). It is desirable to simplify

this process so that users are not discouraged from using the State Machine in their

128



Cheops programs.

To automate this process a hardware/software compiler is needed to compile State

Machine applications directly from C or other high level programming languages.

Such a compiler would allow programmers to develop applications for the State

Machine without detailed knowledge of digital hardware development and without

changing their current programming environment. This compiler would make all

decisions about the division of labor between the FPGAs and the PC603, handle

all synchronization and communications issues between the FPGAs and the PC603,

compile PC603 code, and synthesize hardware architectures for the FPGAs. It would

essentially make the use of the State Machine stream processor transparent to the

end-user.

The author strongly believes this is an essential step that must be taken in order

for this class of machines to gain wide-spread acceptance as an architectural paradigm.

8.1.3 Resource Manager Support for Dynamic Reconfigu-

ration

Towards this same goal, it is desirable to have resource manager support within

NORMAN to facilitate transparent usage of the State Machine stream processor.

These facilities would allow the programmer to simply use function calls from a generic

library without knowledge of how the function is actually implemented or executed.

The resource manager would handle all low level operations required to configure and

initialize the State Machine for the desired operation, carry out the operation, and

return the results. It is not difficult to imagine a Cheops bestowed with only State

Machine stream processors that becomes essentially unconstrained in its ability to

implement user computations in custom hardware. Resource manager support for

this functionality needs to be developed.

While this scenario is wonderful in theory, practical limitations of current FPGAs

restrict its viability. However, these limitations are merely short term in nature, as

129



discussed in chapter 2. Within the next generation of FPGAs, these limitations will

begin to disappear. Alternatively, a custom reconfigurable device could be designed

and fabricated that meets the run-time processing and throughput requirements of

Cheops.

8.2 Future Directions for Research

Although considerable progress has been made in developing custom computing ma-

chines in this work and by other research groups, it is merely the foundation for a

new class of machines whose potential does not suffer from the physical and economic

constraints of general purpose machines. As fabrication costs and design cycle times

increase exponentially to extract the next incremental improvement in performance

from general purpose architectures, interest in alternative methods of implementing

computing machinery will rise. Custom computing machines will satisfy that interest

and will be the next evolutionary step for computing machinery.

In order for this prediction to become a reality many outstanding issues still must

be addressed. This will require further research to find the best solution to these

issues. The author can suggest several areas that are deserving of further intensive

study.

8.2.1 Improving Configuration Data Bandwidth

Currently the primary limitation of custom computing machines in general purpose

computing environments is the lack of reconfiguration data bandwidth. Clearly it

is desirable to minimize the amount of time required to configure and initialize the

devices with a specific architecture such that the total time for the computation,

configuration time plus computation time, is significantly less than that of general

purpose processors. The work in this thesis has begun to address this issue directly.

If custom computing machines are ever to be used as the basis for general purpose

130



computing platforms these reconfiguration times need to drop to the order of a process

context switch, or approximately 5-10 xs.

There are no inherent reasons, other than lack of popularity and demand, why

shorter configuration times cannot be achieved. Indeed, since the beginning of this

project, Xilinx has introduced a new family of devices that reduces the reconfigura-

tion time from on the order of 100ms to approximately loOms.1 This is an order of

magnitude improvement in a very short time period (1-2 yrs.). Further research in

this area will be required to reduce these times even further.

8.2.2 Continued Work on Custom Computing in General

Purpose Machines

So far most research and commercial development has focused on simply providing the

hardware platform for custom computing. With many of these issues solved, interest

and resources are shifting towards research designed to incorporate these resources in

general purpose computing platforms. This is a very exciting direction and suggests

that computers may implement a custom machine architecture for each application

in the very near future. Much research is still required in order to complete the

progression of custom computing machines from their current state to a mainstream

general purpose computing platform. There are many exciting opportunities in this

area.

8.2.3 Self-Altering Computing Machinery

Finally, perhaps the most exciting future direction for research, is the exploration of

computers that employ dynamic hardware configuration to alter, in real-time, their

machine organization to adapt to their target problem. That is the machine archi-

'The introduction of the XC5000 family provides evidence of the growing renewed interest in
dynamic hardware configuration that will provide the commercial impetus to reduce reconfiguration
times

131



tecture for the next time segment is a function of not just the inputs, but also of the

architecture, outputs, and performance metrics of the current time segment. Such

machines could be use to address problems with ambiguous characteristics or appli-

cations where the lack of standardization introduces hardware/software compatibility

issues. Such machines would alter their architecture over time to provide increased

computational performance. Machines designed in this manner, when used with cur-

rent neural networks might even demonstrate machine learning that more closely

approximates that of the human brain.

132



Appendix A: State Machine Schematics

133



I to gq nI ' ) I S

DItS lv R 1 01 1

:A mT
I a I 

va

LI '

i2r' 41(I 

I -IJ I I I

i
m 0

I I .. 1 9

ja I al- Im c i

0 ~ I

(n

0 '

U
LG
0E

r12

In

,F p
U 

IT 
'lnTl

N I\ 

in
I,-

L

I

U

2

a

AnT '

0

- e
u

R

w

wi-

-jLI-J

I

a

I

(n
II

m
ir

r-m DLn, II 
ww ,

,QCci(9CD
z ncn

Y bn i 1 1 DE
re &, i Ja 

134

t

3Li

F

FM
A

In

1Cl

C,

Lii
L

a

0
U

Li

i.

Z

Z
i

Ca
nx
0

r0

i
I-m
I-
~nl. uW

I_

U

g

a

MHU1111h lilliv## Y

U) O U) cn
nn ino , -( X3 LD 0 x 1m u y m

IE
IQ~ilivell IVIEMtt Y

n mLosnsn=n 1 .... s o 

U

a

a

mn
-I'

zI

Z0

LZ

0za,

Zn

I n

L'-W

· ·

-

- - - - - - --_

k-.

4
A i I a. I f

m 11 m I I~~I
i -l l

b~~~~~~~~~~~~b

n as sA R
I

r" ' " " " ,,, '"" " n 

. ' I I . . . I ' 'I I _ .-

i I ' 

I I

.-
m I E~~

I I ·

I I

1
m

D

-

Q

_ I

II

-"I 11( -16

'"L"'TITT)ml

4M-h*W-W-w~(·C~6 r
MtIRbMIM191 kl P11I0

I



T I I I

il l 1 T n m I I I

rn I '1. ,_l_ Imm.1_F . \olm

E!v i In
v C

N (1 411 U mmpl ln Cle cn

iI

Y|3 ( ' ,1
Pf1 I ~II

ma J~~U. .0~~~~ ~ a: U. la M

l.nT, '

zI,

a. nmt-TVFVtff MV#IP' I m I

I K FI I F 7f _I 1 17-i

H ~4 -4iAZ
T :! II- 1 1 1 1 I I L

(v

bl I I II ~~~~I 
t( ~ ~ ~ :k 

,i
W A

I .;

_7T · - D

', ~ ( I rn.'-'

I u
u

I ._wo

I -

X U
It :4'

T I I I t

135

a-

I . ,ID

C c
jt~ j

I I. _I/1
p
-J

a

-II

I-

([

wz

a:I

H
I-

N

0
a

I-

U

Li

w
wz

z
Id

zo

Laz
0

z

a:Li 0

Z -
C0

z >

6i(

a--

a

a

aI 
Nhtu U

U22iltett~l v IgI M y

_

a

.

I

--

! ! !

A;
e

12- .1 o "1 II1I In'

U

! !

i
I

I9 ,

(-(-( r �i

iiiijil llllivwaui v-\ - iX -x -'1

--If tw Xerox ~ 4 ll DI~~~FiLCPP~~~~I~~nl~~~l .w ~rC3 NlZ"~a a u n h ~ r FfF b t11 h J N

i
I:, l I j i a

a) ao I _I

i St l I m
6

LL6i

~

F

I I~~~~

i

9 
WE 4

r ,i

WE



T

1z

ri

z
1z

IzI, C
I:
cCcci:

I-

Cu

-v

czc

U

-i

I
Li

-I

Iy
-J
i,.

0D

pz
13

mz
i

TicLII( I

Zz13
U
z

uz

1 I

Uz

UI N /

6

-N Ul rn - -I -a , 

ml m m m m m m m m m m m m m

U U U m u u m u u u u u u m u

(9 (9 N 0.ui

91R-I U 1 -I - d R( -l -l -t 
1 uI _ 1 _ _ I ' I t I CIi

U P g t U ~ U ~ U - UNnUaa a cc Al Acl Ccl . c Cu l Cc)U

-C m u u u u u aa~~ua~ua~~ua~ua~~ua~ua~~ua~uCC+CtrC#FrCKXWN(Xyr ' ~~~~~~~~~~~~~~~~~~i
I I I ^1 ^1 ^1 ^1 ^1 ^1 I S~~~~~~l -| Nl thl 91 S1 ~ i

S

z
a:

Ln ~Int ~Ln

-
(:[IlJ

Dl -

zIc:

I1 1 a

¢ Z (
a:J a:

zf: z

, t'oz I I £I U>

o o zo 
I -Hn -I 

a [ L Li

O I- J " ZI U

bI JI Li - Imoa a JO

O13 l-IZ Za1
USHOI~-I·

L
CE2y

z
a

c

a

Or1

a,

O

-

I110.IIn W-aLl. l-I• J'i'

~IZI(

H
oz
H
EL

tr0
U

z
o

L)izZ-4

IOoz

,I

I-411

zl zl
1. C

I

z
(a:

in

z
a

136

z
a

S

z,,,,-

N

CUz
a:

r

(r,1z
l

cu

c
a:

a

iH

-

.J.-

a

a
n
0
Ua:

LI

Zi

z
4-

U

a

a

LI

a

a

n
11

a
CD

S
a

6D

EL

z

za

z n

(y1
a u

L
)U

a

a

tq I
_ ._ . _ _ _ _ _

t I .- _ , _ 
Ni tr _- .

I r 1 a IQ QJC I1 a I i m I z~ m\

I I

.,... ·rz rm
%S ml ~

t2>

l r

I

I · -

I I I

m

6

J

?

n

-I - Kl ' In n ,.- ] I _

d d d d t d 5 t af i 

I II

I
I f



U)
tww
Iz

rsU

on+VAM50ro- Ln'3

hlTO-

IUu
U)

a:

I m
In

(n
In 

woE rr
"'° J

_13EO
a(0- I ng

a u V
39§
O&lW
tLuz

UI U
CT
D

I..

hi-i

Cr
aIn-I-- Wa ZEl

VD

d1
u oE

a t

zz0

I'

(n
o
Li0

n,

0[Z

crz

I:L Z

" Pi

137

Ud3

La

*

U)cn
'r

o0U)

a Nnja

D



Un

N8u
iE

I-

i -W

-i i H 

"EJ , r

hi U-AAAV13 
w : WHOW

I]

-
on to

m

A4898PA94AA4

V1Q 212 -,L;,,

b;1Y~~IY Y8m AA 4-

lim 

).:I a II

I %- a Ia~~~~

I) II IEr' I
al 9~~~E lT I F , X | | | | I - r| f I I 

i
t

W---40WHOOM

I-

(IC
IiirIFY Y

mI

iu

,- II .1
cN
(im

.-.
II
a

In

Bm a ; d IPT0 u 8 mmqat |[ 
n n h~~~~

FBI 0 rR pI

| | 12 r I
li~lllIIItQ ~ ll------- Aell- IlQo§ofioFl§§fiaofiooS~~"o§Ao"oo 

i ~~~~~~~A A A A i 

T77177 '777

. 2 IIdI111

Ui
J u

I-

I

138

I r

I
FaAAsAA~aAAAeA3nA arnftmr-aaiawasvA -U

r 1r-------- 11111111 I a
11111111~g~gg~ ~

a

U-

.iYH
u

-j
In1

ee is-

I.-aIr

Ca

W,

U)

.1i

9
.- I

IUclf

n I

.9

a

aa

U,II
V)
Q~
d

z

-J
u

0
MI

I I · ~ ~ ~ ~ l lII
-~8;d~3;~ E~~·W~d·L, cU

7Tf7f"Ti 7imY4Y.. m
7 ------------------

A A A A � A A A -4 � �

I( I. 
m ~I I I l rr l I I I ~I I I I I nl I I I I 1 -n I ...I

- - - - - - - - - - - - - - - - - - - ,-

585<"qH~~-d qlL^^dqd- a d~~~~~~~~~~~~~~~~~

J-+^ ----------------- v . . E Y . .' " .

I - - LU

U,.. L_
-- - ----- I c '1 1------Ir- - - W I

.

I I

r-

9
it

A % 

?,

I I I



u

l

nra i LSS
ila 0 aX T ,T~l

L~~~~~~~LH5~~~ --~ -1J ""
4 , X L 1NX EW X lNI~~~~~~~ ,u~,S I

- to---- N- 
ca

-- nTO'

o TO'ir 2 D n tR {or~~~~~t

T ¢)IN TN _- *M.-Ulua

ew*3mZdluai/i-
ul !

I -1T0

,ag o W-Mrn1 . t

w *zUtU1S <T~~~
u

,~. c~~~~d*30" ua3O-- ~ ~ ~ ~ o I;I .____-- 

B tl~~~~~~~CaE~~~~~~~~~~~~~~~· ·~~~~-~~fll~~

(RIO( *:11~JP: K 

~II 11l d Ri2 diddII,,: I f ,S6ii a3 I-I ? U = LLY Y i &WU 
: NC

mLlo RMUIS NC
, JTThT ic Jl'CACK

* < i iH l l ¶'u h E jBINTwc 

: l

I I ' -:

91
I.

,i

j 7

-

S

m
w
y

URa I.YI

,~ A

"a IF

U~~~~~~

I- A
"Mla

t.

- aI

I,rSo;
I

11-

r,

I I

I--[; -
mP

I ma j sija T0
I I m I I

(II 

o~ a
0 an (: u

139

, iu _.

a:

IG

a:
' -m .

-i Th

,ib-0 -
.7 8

a e

C3
l

u

63ru
I

-

-

- - - - - NC

NC
tD 

RMIS -NC Im

m 

JINT-AIKX -- WL-LINI-PACK Ix

n 

u BIW-RICX M AINT AACK c G:

--

U JEW--KX 2 P u

G: 

P L, (f).J W

BKNTftvK 

- RTNTOA

fru 

z a 0

CIWIKX 

I-CANCEI TNT u

Jz
w

_wj U'p
cc 

OM

oo 

w JcHzW w

kuJil 

W ill (f)

NC

NC
NC
---- r~m---i~l



I

IT

I'IT rrTnT - lrlrr.1 I I 1 i I r r i

m

Ii
q

J

an
m

I-,
UC
U

uLI
* i~ti~ i 3t IttIII IIII~ i IIIihri rhErjl iI

I

ci I I~m t i 
-4 --

i ii ~

& II IQx~~~~~

ii

a

a Li~ = , ' "v [
Mme." 

dfilr

I (:

1RI

i .U
I

i-

I3--
9

0

I m

in

ii Il3

a mU
IX Mm OR

u
w
zI-z
0
U

83

-I

xhiZ
-JL
I
I_1ub._J

140

_ ___

· · · _·r· · · __·· __

I

I I-

�

,I

aI
i
!

!

rYl
I::

IC

ileaslllliIllllllllL1 d111lillJlllIllll1IP



I

If

iII

h.
9

I 

Y. '

I E

M "- M a d ; " ea ;

9999 AN gg ; IN ME WIN all Ei aiii

I
, il

W49d &Z it [goeiid LA iIEM

Erno

On
oau
bJrrZ
KUZ
Car

"a in

A

res I

a l II 

I ! I

141

(r
F-:)

- I ! I ; n~~~~~51 1' 
1 Ii X 

R

j

a;6 

AAA
ilii

d



IL~~~~

IL I IEM
a. I
w &

I I
x i 1 B I F;i1: I" 
_j z 

, I Lw l

t-
L
r
Mi

142

a
Ai

0

I§

i
I

9!

aCISQ
B2

S

I Am.
'an.

X M.,

H
U
zz0

X

Z
S:

t.

!II

8

a-a1 , mI
i Zi ' -M i i

%B m
0 -91 " ; §



Z m*a , J

'13Dbd "
GtMDd 

M/HgDd
ONASJNO'

*19Dd ,ISNOD 

Td 
wz- lS~Fn,

' "GXAS
*133S3AS ON;

*g9d '

STKI -

-. 1 n
S 

U:, tpI

E T

.T

1; T

i-r I

W-"

r'_I

W-T

!-, Tn d 6 
N
Ln
U)

[T8

UTO'

u

LdnEar

oz3

aoz
1Q-az
UL(I

aua
-U)Iou
mai

Zao
.. WU
ola

Za1r

0921d

U3a

0

Ml

U[6

-g go

ITN

:,~- ,.,
ii

;-n

ZD

I ' I. N3

I Io
de6S. OGz

I.D 
U T10 

Y J10 'SU

143

Oi
sr

a
IL
U
a - IE ; iWrs

, - t I m
m- J _

-- z Z
-

i· -a ill t,
in

Azcm a

L
CEL

Lrl

LU
ai

9 I

'nJ

?an

7 II 0

--I I 

I-Z_

-Nc
.aNCi::=bUO
ICNaNCEL

JLLa~t7X

AM
cn

(D

L~i

a
0

a
r
(IHU
Li
.a
I-

6;

a([

0
U

i

U LO

FJlITO

J1T'

I-U Ca,

I-

a
Itu

a

i

1 i a

30 ggs

xyl8ll

ijm
d

H
z
Z

U

a

a

aDf

UI

I

a

rT

LI

IT

OT

al

•L~ 
IT-

Z0

a

nzu

lL

-In
Z V

U A

11

FSSi

It
nIu)

a A

* ~ Ii. I

X ^1~~i
!ImG

TTL f ar~

d96Z

-H----
g _-I-----

-Int------R

iorwI U

DI
To ZI

o TS6
I N dS6Z

tr 5

· El-----
w C

M

U,a
CD
U .nTO '

_
Y n 0 0 n 

· ·

_· _ -w
n

5 * . * 4 * * *MO= 909
" z jM U, di Mour0. -1 "", "t'i i � I . our

HIM44 I
-~ ru

14111MA1111
O 0 O .1I

-M

=.. II t [ 

*)4 W-vd 

blic-7

I

rr _u . _

r . _

..
.-

- ^ ̂

I I

-' IIJ W

I

3'

-

i

I IT

I i ]II i 

i



E

L.Ju

U U -

1 1,20 In
O s T

1 &1117 LT

15 lO 
P $

£ TdC6SIT

1 

-S1 gT

7~~~~~~0

6 es,

5 9 Ts

± I T

ma ILD-ata

- To- ,, ,, wIr- uff d95eI~~~~

7i1 uuls F)
J

ON ON

S __4~l
__'N

-L inTO 

r U~
bmr' 

9 ;ga' ;UX
IUrmr-JL U

.f l Wu f .

N

I
0in

Yrlhi L 

wvI Ub; t

*UW Ur __

- _flTO'1

u II D t'I o
T

D1 M

TO'

*, CAr 8lmT~~ml
20

IR

M41.3

RTll

sol
1k4:
la

84M2

A

"a8
my

m.

a:-

a:

Un

IF

BTEw
.%-e

.t

F-T- 9B~

i

L

L

,

IA

i

P - Z Z
J AjI

I

U
.nTi ·

r4 W-

U

aT

I*T|

-9

. 11

~~~~. f lsaZ

6N dF:6Z
a

= 09 A

Ag A

. T 80

-- To T
019 (11

I a

I I

U)

30ml:oJU

Ohl

I F-

ner

U)0([a:a:,i

.. Jin0Umz
JLJ
a:u

cc
.I-
OLd

{/1acCa:U)0U)8
m°

LYCE
T7

E

144

aB3
,%i
Lo

0
(]:i1

0
(C

LI

i.J81-

C,Z

z
i.i

£
0

I
rn

LU

I-
in

.1tf-
'__

_.IH1

U

I

D

a

Z0
HI--

Ca:
0

i

zC
:3

Z

z

C V)Z 1
Cy CU

2

Z~-Li.J~

w (

CfI
:2
C

0z-0
-I

I

a

LF)
In

0U11IDm

a,(
LU)

C:

lull
I-(EL

F-1 10/
-CI
-am(Ia:

- |-

Jf i

�E

-t

_

: -
S-

1

.

l

I
._

I.- .m

I

--- l-

I I

-

I-T-

___F_
IG__
I_9

¥_ If1

_

..7v.
= 1.

II I

N

01

a,

8

'rD

UIZ

-Js js naH- ,o -E-

u~~~~~~~~~~~~~~~~~~~~~~

22
NC]L

T

ca.

a:I-
0u
(Ccc

tj
brYLi

z

L
Ld

z0

I-Z
H
H

cn

Za-
h OLi R0

145

tI'

A

to

0
a:0..i
cc

a
cz0

in

I
U
CccI
I--C

cc

i

b

g

a

E
cc

Lau
n. a

1 · -
.! I

I I .

I

I IT

- -

N

-

I I

146

Bibliography

[1] A.K. Agerwala and T.G. Rauscher. Foundations of Microprogramming Architec-

ture, Software, and Applications, chapter 1. Academic Press, 1976.

[2] Altera Corporation. Altera MAX+plus TTL Macro Functions, August 1990.

[3] Altera Corporation. Altera Data Book, August 1993.

[4] Altera Corporation. Altera FLEX 8000 Handbook, May 1994.

[5] Jeffrey M. Arnold. The SPLASH 2 software environment. In IEEE Workshop

on FPGAs for Custom Computing Machines, pages 88-93, April 1993.

[6] Jonothan William Babb. Virtual Wires: Overcoming Pin Limitations in FPGA-

based Logic Emulation. Master's thesis, Massachusetts Institute of Technology,

February 1994.

[7] Patrice Bertin and Herve Touati. PAM Programming Environments: Practice

and Experience. In IEEE Workshop on FPGAs for Custom Computing Ma-

chines, pages 133-137, April 1994.

[8] Dileep Bhandarkar. RISC Architecture trends. In Proceedings Advanced Com-

puter Technology, Reliable Systems and Applications, Bologna, Italy, May 1991.

[9] S. Casselman. Virtual computing and the virtual computer. In IEEE Workshop

on FPGAs for Custom Computing Machines, pages 43-49, April 1993.

147

[10] 0. Cholwon. A stream processor for motion compensation and image rendition.

Master's thesis, Massachusetts Institute of Technology, 1993.

[11] C.P. Cowen and S. Monaghan. A reconfigurable monte-carlo clustering processor.

In IEEE Workshop on FPGAs for Custom Computing Machines, pages 59-65,

April 1994.

[12] Andre DeHon. DPGA-coupled mircroprocessors: Commodity ICs for the early

21st century. Transit note #100, MIT Artificial Intelligence Laboratory, January

1994.

[13] David E. Van den Bout. The Anyboard: Programming and enhancements. In

IEEE Workshop on FPGAs for Custom Computing Machines, pages 68-76, April

1993.

[14] Dave Van den Bout Joe Morris Douglas Thomas Scot Labrossi Scott Wingo and

Dean Hallman. Anyboard: An FPGA-based, reconfigurable system. In IEEE

Design & Test of Computers, pages 21-30, September 1992.

[15] Digital Equipment Corporation. VAX Hardware Handbook, 1982.

[16] Jack Dongarra. PDS: The performance database server. Web page:

http://performance.netlib.org/, University of Tennessee, April 1995.

[17] Richard C. Dorf. The Electrical Engineering Handbook, pages 1654-1656. CRC

Press, Boca Raton, FL, 1993.

[18] Ralph Duncan. A survey of parallel computer architectures. Computer, February

1990.

[19] Patrick W. Foulk. Data-folding in SRAM configurable FPGAs. In IEEE Work-

shop on FPGAs for Custom Computing Machines, pages 163-171, Napa, Cali-

fornia, April 1993.

148

[20] The Free Software Foundation. The C preprocessor, 1990.

[21] The Free Software Foundation. Texinfo, 1992.

[22] The Free Software Foundation. Using AS, The GNU Assembler, 1994.

[23] K. Ghose. On the VLSI realization of complex instruction sets using RISC-

like components. In Proceedings of VLSI and Computers. First International

Conference on Computer Technology, Systems and Applications, Hamburg, West

Germany, May 1987.

[24] Maya Gokhale and Ron Minnich. FPGA computing in a data parallel C. In

IEEE Workshop on FPGAs for Custom Computing Machines, pages 94-101,

April 1993.

[25] Regina L. Haviland Greg J. Gent, Scott R. Smith. An FPGA-based custom

coprocessor for automatic image segmentation applications. In IEEE Workshop

on FPGAs for Custom Computing Machines, pages 172-179, Napa, California,

April 1994.

[26] John L. Hennessy and David A. Patterson. Computer Architecture A Quantita-

tive Approach. Morgan Kaufmann, San Mateo, California, 1990.

[27] IBM Microelectronics. PowerPC 603 RISC Microprocessor User's Manual, 1994.

[28] Christian Iseli and Eduardo Sanchez. Beyond superscalar using FPGAs. In 1993

IEEE International Conference on Computer Design: VLSI in Computers &1

Processors, pages 486-490, October 1993.

[29] V. Michael Bove Jr. and John A. Watlington. Cheops: A data-flow system for

real-time video processing. Technical report, MIT Media Laboratory, June 1993.

[30] V. Micheal Bove Jr. and Andrew B. Lippman. Scalable open-architecture tele-

vision. SMPTE Journal, January 1992.

149

[31] D.V. Klein. RISC vs. CISC from the perspective of compiler/instruction set

interaction. In Proceedings of the Autumn 1989 EUUG Conference, September

1989.

[32] Adnan H. Lawai. Scalable coding of HDTV pictures using the MPEG coder.

Master's thesis, Massachusetts Institute of Technology, 1994.

[33] X.-P. Ling and H. Amano. WASMII: A data driven computer on a virtual

hardware. In IEEE Workshop on FPGAs for Custom Computing Machines,

pages 33-42, April 1993.

[34] Micron Semiconductor, Inc. Micron 1994 SRAM Data Book, December 1993.

[35] Richard Nass. Competitive video compression-decompression schemes forge

ahead. Electronic Design, 42(13), June 1992.

[36] Karin Schmidt Reiner W. Hartenstein Alexander G. Hirschbiel Micheal Ried-

muller and Michael Weber. A novel ASIC design approach based on a new

machine paradigm. IEEE Journal of Solid-State Circuits, 26(7), July 1991.

[37] S. Seshadri. Polynomial evaluation instructions, a VAX/VMS assembly language

instruction. VAX Professional, 10(2), 1988.

[38] Irene J. Shen. Real-time resource management for Cheops: A configurable,

multi-tasking image processing system. Master's thesis, Massachusetts Institute

of Technology, 1992.

[39] Daniel V. Pryor Mark R. Thistle and Nabeel Shirazi. Text searching on SPLASH

2. In IEEE Workshop on FPGAs for Custom Computing Machines, pages 172-

177, April 1993.

[40] David M. Lewis Marcus H. van Ierssel and Daniel H. Wong. A field programmable

accelerator for compiled code applications. In 1993 IEEE International Confer-

150

MITLibraries
Document Services

Room 14-0551
77 Massachusetts Avenue
Cambridge, MA 02139
Ph: 617.253.5668 Fax: 617.253.1690
Email: docs@mit.edu
http://libraries.mit.edu/docs

DISCLAIMER OF QUALITY
Due to the condition of the original material, there are unavoidable
flaws in this reproduction. We have made every effort possible to
provide you with the best copy available. If you are dissatisfied with
this product and find it unusable, please contact Document Services as
soon as possible.

Thank you.

Pages are missing from the original document.
l:/I

