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Abstract

The performance of current Automatic Speech Recognition (ASR) systems deteriorates
severely in mismatched training and testing conditions. Signal processing techniques based
on the human auditory system have been proposed to improve ASR performance, especially
under adverse acoustic conditions. This thesis compares one such scheme, the Ensemble
Interval Histogram (EIH), with the conventional mel cepstral analysis (MEL).

These two speech representations were implemented as front ends to a state-of-the-art
continuous speech ASR and evaluated on the TIMIT database (male speakers only). To
characterize the influence of signal distortion on the representation of different sounds,
phonetic classification experiments were conducted for three acoustic conditions - clean
speech, speech through a telephone channel and speech under room reverberations (the last
two are simulations). Classification was performed for static features alone and for static
and dynamic features, to observe the relative contribution of time derivatives. Automatic
resegmentation was performed because it provides boundaries consistent with a well-defined
objective measure. Confusion matrices were derived to provide diagnostic information.

The most notable outcomes of this study are (1) the representation of spectral envelope
by EIH is more robust to noise - previous evidence of this fact from studies conducted
on limited tasks (speaker dependent, small vocabulary, isolated words) is now extended to
the case of speaker (male) independent, large vocabulary, continuous speech, (2) adding
dynamic features (delta and delta-delta cepstrum) substantially increases the performance
of MEL in all signal conditions tested, while adding delta and delta-delta cepstrum of EIH
cepstrum - computed with the same temporal filters as those used for MEL - results in a
smaller improvement. We suggest that in order to improve recognition performance with
an EIH front end, appropriate integration of dynamic features must be devised.
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Chapter 1

Introduction

Speech as constituted by articulated sounds is one of the most important modes of
communication between human beings. Speaking is a skill usually learnt in infancy and
used almost effortlessly from then onwards. The naturalness associated with speaking and
hearing gives little indication of the complexity of the problems of speech processing. Sev-
eral decades of research in different avenues of speech processing, such as the production,
transmission and perception of speech, have yielded remarkable progress, but many funda-
mental questions still lack definitive answers. Part of the problem lies in the unique nature
of speech as a continuous acoustic signal carrying a very large amount of information.

Speech is created by human beings by first forcing air through a constriction in the
throat causing a vibration of the vocal cords, then by carefully shaping this air flow with
the mouth by changing the relative position of the tongue, teeth and lips. The air pressure
variations emitted from the mouth effect acoustic waves which usually undergo a number
of changes while traversing the surrounding medium, before being perceived by the human
ear. The decoding of these acoustic waves in the ear is an intricate process starting with
the vibration of inner ear membranes and auditory nerve firings, converging via higher
level neural analysis into psychological comprehension by the human being. Problems in
various areas of speech processing have generally been approached in two ways, one of them
involves modeling of the actual physiological processes responsible for speech production
and perception, while the other treats speech as an acoustic signal exhibiting certain well-
defined properties, regardless of the mechanism of speech production.

Several voice communications applications in use today are based on the second ap-
proach [37]. Their success rate has improved with the advent of low-cost, low-power Digital
Signal Processing (DSP) hardware and efficient processing algorithms. Models of speech
synthesis have been implemented in systems used in voice mail, voice banking, stock price
quotations, flight information and recordings of read-aloud books. There are three main
features of concern in speech synthesis systems - intelligibility and naturalness of the syn-
thesized speech, the fluency and range of vocabulary of output speech, and the cost or
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complexity of the required software and hardware. For instance, announcement machines

using pre-recorded speech provide high quality speech with low complexity but also low

fluency, parametric systems like the Speak-n-Spell toy by Texas Instruments provide low

quality, medium fluency speech at low to medium complexity, and full text-to-speech (TTS)

systems such as those produced by Prose, DEC, Infovox and AT&T provide low to medium

quality speech with high fluency using high complexity. The ideal synthesizer would provide

high quality, high fluency speech using low complexity.

Research into the transmission of speech has yielded applications in wireless telecommu-

nications and audio-video teleconferencing. Speech coding is used to compress the acoustic

signal for transmission or storage at a lower bit-rate or over a narrow frequency bandwidth

channel. Transmission applications include the wired telephone network where tight speci-

fications are imposed in terms of quality, delay and complexity, the wireless network which

has tighter requirements on bit-rate than the wired network but has more tolerance in

quality and delay, and the voice security and encryption systems which generally use lower

quality, longer delay and lower bit rate algorithms because of low available bandwidths.

Applications of speech coding in storage are voice messaging and voice mail such as those

used in telephone answering machines, and voice response systems used as telephone query

processors in many large businesses. A growing area in speech transmission is the digital

coding of wideband speech for applications like Digital Audio Broadcasting (DAB) of com-

pact disk (CD) audio over Frequency Modulation (FM) channels, and surround sound for

High-Definition Television (HDTV).

Automatic speech recognition (ASR) is largely aimed at facilitating and expediting

human-machine interaction, e.g. replacing keyboards and control knobs with spoken com-

mands interpreted through a voice interface. Commercial applications include voice dialing

on mobile wireless phones, dictation, database access (e.g., flight reservations), eyes-free and

hands-free machine control in factories and laboratories. Speech recognition techniques are

also applied to speaker verification in banking, private branch exchanges (PBX), and along

with speech synthesis techniques to spoken language translation and spoken language identi-

fication. There are three main features of practical ASR systems. One is the type of speech

- isolated words (e.g., single words like "Collect" used for automatic collect-calling), con-

nected words (e.g., credit card validation, digit dialing), or continuous speech (e.g., fluently

spoken sentences). The second feature is speaker-dependence or speaker-independence, in-

dicating that the system requires 'retraining' for new speakers if it is speaker-dependent

and (generally) does not require retraining if it is speaker-independent. The third feature

is the vocabulary size, which currently ranges from 10-digit phone numbers to about 20,000

words. Grammar constraints are often imposed on the recognized output to narrow down

the possible choices via syntactic and semantic analyses. In the case of unrestricted in-

put such as normal conversational speech, interpreting the meaning of recognized strings

leads into another large area of research - natural language processing. The ultimate goal

of speech recognition technology is to correctly recognize everything spoken by any person

in any acoustic conditions, in the minimum possible time with the least cost.

14



The problem of speech recognition is made especially difficult by the variability in the
speech signal arising from speaker-related and environment-related factors. These factors
cause variations both across speakers and within a speaker. Speaker-related factors include
pitch (e.g., male/female), articulation, intonation, accent, loudness, emotional or physical
stress on the speaker, extraneous sounds (e.g., coughs, laughs, filled pauses such as "ums",
"ahs") and unnatural pauses. The main environment-related factors are background noise
(e.g., machine hum, side conversations, door slams, car engines), transmission channels (e.g.,
local or long-distance telephone lines, analog or digital telephone lines, wired or wireless
telephone network) and recording microphones (e.g., carbon button or electret microphones,
speakerphones, cellular phones). Since most of these are external variables and cannot be
eliminated, their effects must be incorporated within the recognition process.

1.1 Basic Continuous Speech Recognition System

Work on the recognition problem was started four decades ago by using clean (rela-
tively free of noise and distortion) isolated-word speech from a single speaker and bounding
the problem with constraints such as a small vocabulary and simple grammar. After a
series of breakthroughs in processing algorithms, ASR technology today has advanced to
speaker-independent, large-vocabulary, continuous-speech recognition being developed on
several systems around the world. Some examples of modern ASR systems are the HTK
at Cambridge University, UK [51], the speech recognition system at LIMSI, France [21],
the SPHINX system developed at CMU [25], the SUMMIT system at MIT [52], the TAN-
GORA system at IBM [17], the Tied-Mixture system at Lincoln Labs [33] and the speech
recognition system at AT&T Bell Labs [23]. Most of these systems adopt the pattern
matching approach to speech recognition, which involves the transformation of speech into
appropriate representations with signal processing techniques, creation of speech models via
statistical methods, and the testing of unknown speech segments using pattern recognition
techniques. Some of these systems also employ explicit acoustic feature determination (e.g.,
[52]) based on the theory of acoustic phonetics, which postulates that speech consists of
distinct phonetic units characterized by broad acoustic features originating in articulation
such as nasality, frication and formant locations. The ASR system used in this study is
based on the pattern recognition approach and does not use explicit acoustic features. It has
three main components - the signal representation module, the pattern matching module
and the word and sentence matching module - as illustrated in Figure 1-1 [24].

The first module, signal processing module, serves to extract information of interest from
the large quantity of input speech data, in the form of a sequence of 'feature' vectors (not
to be confused with the acoustic-phonetic features mentioned earlier). This parametric
representation generally compresses speech while retaining relevant acoustic information
such as location and energy of formants.

Speech is divided into smaller units (along time) called subword units, such as syllables,
phones and diphones, for the purposes of recognition. In the 'training' phase, feature vectors
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Figure 1-1: Schematic of an automatic speech recognition system.

extracted from speech segments corresponding to a subword unit are clustered together and

averaged using certain optimal algorithms to obtain a 'characteristic' unit model. A set of

models is obtained for all subword units in this fashion. In the 'testing' phase, the second

module, the pattern matcher, uses some distance measure to compare the input feature

vectors representing a given unknown speech segment to the set of trained unit models.

The choice of subword units affects recognition accuracy (e.g., context-dependent or context-

independent models [25, 24]), as does the choice of distance measure (e.g., Euclidean, log-

likelihood [12]).

A list of top N candidates recognized for each given unit is passed to the third module,

the word and sentence level matcher. This module performs lexical, syntactic and semantic
analysis on candidate strings using a language model determined by the given recognition

task, to yield a meaningful output. The third module is disconnected for the classification

experiments conducted here, and the pattern matcher is modified to perform classification

instead of recognition.

This study focuses on the choice of the signal representation module. Traditional spec-

tral analysis schemes window the input speech at short intervals (10-20 milliseconds) and

perform some kind of short-time Fourier transform analysis (STFT in chapter 6, [40]) to get

a frequency distribution of the signal energy, preferably as a smooth spectral envelope. Two

popular spectral analysis schemes are the filter bank model and the linear predictive coding

(LPC) model (chapter 3 in [39]). The filter bank model estimates signal energy in uniformly

or non-uniformly distributed frequency bands. LPC models the speech-sound production

process, representing the vocal tract configuration which carries most of the speech related

information. The filter bank and LPC representations are often transformed to the cepstral
domain because cepstral coefficients show a high degree of statistical independence besides

yielding a smoothened spectral envelope [29]. Cepstral analysis ([3]) is based on the theory

of homomorphic systems (chapter 12 in [32]). Homomorphic systems obey a generalized

principle of superposition; homomorphic analysis can be used to separate vocal tract and

source information for speech signals [31]. A variation on cepstral analysis is the mel cep-

strum, which filters speech with non-uniform filters on the mel frequency scale (based on
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human perception of the frequency content of sounds). These spectral analysis schemes and

others derived from them are primarily based on energy measurements along the frequency
axis.

1.2 Recognition in Noise

The speech signal is affected differently by various environment-related adverse acoustic
conditions such as reduced signal-to-noise ratio (SNR) in the presence of additive noise,
signal cancellation effects in reverberation or nonlinear distortion through a microphone

[18]. It is impractical to train for diverse (and often unknown) signal conditions, therefore
it is advisable to make the ASR system more robust. Several techniques for improving ro-

bustness have been proposed, including signal enhancement preprocessing [36, 7, 1], special
transducer arrangements [49], robust distance measures [47] and alternative speech repre-
sentations [28, 14, 45, 9]. Each of these techniques modifies different aspects of the ASR
system shown in Figure 1-1.

In the case of distortion by additive noise, well-established speech enhancement tech-
niques [27] can be used to suppress the noise. Such techniques generally use some estimate
of the noise such as noise power or SNR to obtain better spectral models of speech from
noise-corrupted signals. In particular, in [36] and [7], the enhancement techniques have been
directly applied to speech recognition. In [36], the optimal least squares estimator of short-
time spectral components is computed directly from the speech data rather than from an
assumed parametric distribution. Use of the optimal estimator increased the accuracy for a
speaker-dependent connected digit recognition task using a 10 dB SNR database from 58%
to 90%. This method, however, uses explicit information about the noise level, which the

algorithm in [7] avoids. In [7], the short-time noise level as well as the short-time spectral
model of the clean speech are iteratively estimated to minimize the Itakura-Saito distortion
[15] between the noisy spectrum and a composite model spectrum. The composite model
spectrum is a sum of the estimated clean all-pole spectrum and the estimated noise spec-

trum. For a speaker-dependent isolated word (alphabets and digits) recognition task using
10 dB SNR test speech and clean training speech, the accuracy improved from 42% without

preprocessing to 70% when both the clean training speech and the noisy testing speech were
preprocessed. The main limitation is the assumption of the composite model spectrum for
the noisy signal.

The work in [1] presents two methods for making the recognition system microphone-
independent, based on additive corrections in the cepstral domain. In the first, SNR-
dependent cepstral normalization (SDCN), a correction vector depending on the instan-
taneous SNR is added to the cepstral vector. The second method, codeword-dependent
cepstral normalization (CDCN), computes a maximum likelihood (ML) estimate for both
the noise and spectral tilt and then a minimum mean squared error (MMSE) estimate
for the speech cepstrum. Cross-microphone evaluation was performed on an alphanumeric
database in which utterances were recorded simultaneously using two different microphones

17



(with average SNR's of 25 dB and 12 dB). SDCN improved recognition accuracy from 19%-

37% baseline to 67%-76%, and CDCN improved accuracy to 75%-74%. The main drawbacks

of SDCN are that it requires microphone-specific training, and since normalization is based

on long-term statistical models it cannot be used to model a non-stationary environment.

CDCN does not require retraining for adaptation to new speakers, microphones or environ-

ments.

In [49], several single-sensor and two-sensor configurations of speech transducers were

evaluated for isolated-word recognition of speech corrupted by 95 dB and 115 dB sound

pressure level (SPL) broad-band acoustic noise similar to that present in a fighter air-

craft cockpit. The sensors used were an accelerometer, which is attached to the skin of

the speaker and measures skin vibrations, and several pressure-gradient (noise-cancelling)

microphones. Performance improvements were reported with various multisensor arrange-

ments as compared to each single sensor alone, but the task was limited since the testing

and training conditions were matched. Without adaptive training, there was no allowance

for time-varying noise levels such as those caused by changing flying speed and altitude.

Robust distance measures aim to emphasize those regions of the spectrum that are less

corrupted by noise. In [47], a weighted Itakura spectral distortion measure which weights

the spectral distortion more at the peaks than at the valleys of the spectrum is proposed.
The weights are adapted according to an estimate of the SNR (becoming essentially constant

in the noise-free case). The measure is tested with a dynamic time warping (DTW) based

speech recognizer on an isolated digit database for a speaker-independent speech recogni-

tion task, using additive white Gaussian noise to simulate different SNR conditions. This

measure performed as well as the original unweighted Itakura distortion measure at high

SNR's and significantly better at medium to low SNR's (at an SNR of 5 dB, this measure

achieved a digit accuracy of 88% versus the original Itakura distortion which yielded 72%).

A technique for robust spectral representation of all-pole sequences, called the Short-

Time Modified Coherence (SMC) representation, is proposed in [28]. The SMC is an

all-pole modeling of the autocorrelation sequence of speech with a spectral shaper. The

shaper, which is essentially a square root operator in the frequency domain, compensates

for the inherent spectral distortion introduced by the autocorrelation operation on the sig-
nal. Implementation of the SMC in a speaker-dependent isolated word recognizer showed

its robustness to additive white noise. For 10 dB SNR spoken digit database, the SMC

maintained an accuracy of 98%, while the traditional LPC all-pole spectrum representation

fell from 99% accuracy in clean conditions to 40%.

Rasta (RelAtive SpecTrAl) [14] methodology suppresses constant or slowly-varying com-

ponents in each frequency channel of the speech spectrum by high-pass filtering each channel

with a filter that has a sharp spectral zero at zero frequency [14]. This technique can be

used in the log-spectral domain to reduce the effect of convolutive factors arising from linear

spectral distortions, or it can be used in the spectral domain to reduce the effect of additive

stationary noise. For isolated digits, with training on clean speech and testing on speech

corrupted by simulated convolutional noise, the Rasta-PLP (Perceptual Linear Predictive)
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technique yielded 95% accuracy while LPC yielded 39% accuracy.

1.3 Motivation

While the energy based spectral analysis schemes such as LPC work well under similar

acoustic training and testing conditions, the system performance deteriorates significantly
under adverse signal conditions [4]. For example, for an alphanumeric recognition task, the
performance of the SPHINX system falls from 77-85% accuracy with matched training and
testing recording environments to 19-37% accuracy on cross conditions [1]. Robustness im-
proving techniques explicitly based on matched training and testing conditions, noise level,
SNR or the particular signal distortion, such as those described in Section 1.2, are clearly
not desirable for robustness to multiple adverse acoustic conditions. The human auditory
system seems to exhibit better robustness than any machine processor under different ad-
verse acoustic conditions; it is successful in correctly perceiving speech in a wide range of
noise levels and under many kinds of spectral distortions.

For robust speech recognition, speech processing models based on the human auditory
system have been proposed, such as the representation in [45]. In this model, first-stage
spectral analysis is performed with a bank of critical-band filters, followed by a model of
nonlinear transduction in the cochlea that accounts for observed auditory features such as
adaptation and forward masking [46, 13]. The output is delivered to two parallel chan-
nels, one of them yields an overall energy measure equivalent to the average rate of neural
discharge, called the mean rate response, the other is a synchrony response which yields

enhanced spectral contrast showing spectral prominences for formants, fricatives and stops.
This auditory model has yielded good results for isolated word recognition [16, 26].

The EIH is another speech representation motivated by properties of the auditory system
[9]. It employs a coherence measure as opposed to the direct energy measurement used in

conventional spectral analysis. It is effectively a measure of the spatial (tonotopic) extent of
coherent neural activity across a simulated auditory nerve. The EIH is computed in three
stages - bandpass filtering of speech to simulate basilar membrane response, processing of

the output of each filter by level-crossing detectors to simulate inner hair cell firings, and
the accumulation of an ensemble histogram as a heuristic for information extracted by the
central nervous system.

An evaluation of the EIH [9] was performed with a DTW based recognizer on a 39-word
alpha-digit speaker-dependent task in the presence of additive white noise. In high SNR

the EIH performed similarly to the DFT front end whereas at low SNR it outperformed

the DFT front end markedly. Another study [16] involved the comparison of mel cepstrum
and three auditory models - Seneff's mean rate response and synchrony response [44], and
the EIH. It was performed on a speaker-dependent, isolated word task (TI-105 database)

using continuous density Hidden Markov Models (HMMs) with Gaussian state densities.
On the average, the auditory models gave a slightly better performance than mel cepstrum
for training on clean speech and testing on speech distorted by additive noise or spectral
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variability (e.g., soft or loud speech, telephone model, recording environment model, head

shadow).
This study differs from the previous evaluations in six ways: it uses a continuous speech

database instead of isolated or connected word databases, the size of the database is much
larger than those used earlier (4380 sentences as compared to the 39-word and 105-word

vocabularies), phone classification is performed instead of word recognition, mixture Gaus-

sian HMMs are used in contrast to the DTW based recognizer or the Gaussian HMMs used
in previous experiments, static, and static and dynamic features are evaluated separately,
and in addition to the average results, a breakdown of the average results into results for

different phonetic groups is provided along with a qualitative analysis of confusion matrices

of these groups.

The two speech representations, mel cepstrum and EIH, are implemented as front ends

to a state-of-the-art continuous speech ASR and evaluated under different conditions of

distortion on the TIMIT database (male speakers). The TIMIT is used because it is a

standard, phonetically rich, hand segmented database. The recognizer is first trained on

clean speech and then tested under three acoustic conditions - clean speech, speech through

a telephone channel and speech under room reverberations (the last two conditions are

simulated; training speech is also evaluated).

Evaluation is based on phone classification, where the left and right phone boundaries
are assumed fixed and only the identity of the phone is to be established. Classification

is performed, instead of recognition (which assumes no such prior information about the

input speech), to focus on the front end and eliminate issues like grammar, phone insertion

and phone deletion that are involved in the recognition process. The objective here is to

observe the effects of signal distortion on the signal representation and statistical modeling.
The performance is displayed as average percent of phones correctly classified, and in

the form of confusion matrices to provide diagnostic information. Classification experiments

are conducted for (1) different sets of feature vectors, with and without time-derivatives, to

observe the relative contribution of dynamic information and for (2) different iterations of

automatic resegmentation of the database, which provides boundaries that are consistent

with a well-defined objective measure, and is used in most current ASR systems.

The organization of the thesis is as follows:

1. Chapter 2 sketches the process of sound production, and contains a short description of

different sound classes, which should serve to give some background for the discussion

of results in Chapter 5. The classification system used in this work is based on
an HMM recognition framework; a brief outline of Hidden Markov Models is also

included.

2. Chapter 3 describes the two signal representations, mel cepstrum and Ensemble In-

terval Histogram, evaluated in this study. A brief description of part of the human

auditory mechanism is given as background for EIH. The details of implementation

for both representations are provided. The method of calculation of dynamic features
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is described.

3. Chapter 4 contains a description of the experimental framework. The training and

testing subsets used from the TIMIT database are described, along with the set of

phones used for classification. The phone classification system and the distortion

conditions - telephone channel and room reverberation simulations - are described.

4. Chapter 5 lists the results obtained for different classification experiments, with static

features and static and dynamic features, and with automatically resegmented phone
boundaries. The average classification results are discussed, and broad trends in the
confusion matrices are observed.

5. Chapter 6 summarizes the work done in this thesis and the conclusions drawn from

the results. Possible directions for future research are provided.

1.4 Summary

This chapter introduced the problem of automatic speech recognition and some of the
issues in current speech research. The problem of recognizing noisy speech and different

approaches taken to attain robustness in speech recognition were described. The next
chapter contains a brief description of Hidden Markov Models and speech sounds, that
should serve as background for the results in Chapter 5.
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Chapter 2

Background

Speech is composed of a sequence of sounds carrying symbolic information in the nature,
number and arrangement of these sounds. Phonetics is the study of the manner of sound
production in the vocal tract and the physical properties of the sounds thus produced. This
chapter contains an outline of the physiology of sound production in Section 2.1.1 and a
brief description of the different sounds in American English classified by the manner of
production in Section 2.1.2. The references are drawn mainly from Chapter 3 in [40] and
Chapters 4 and 5 in [30]. A brief description of Hidden Markov Models (HMM's) is provided
in Section 2.2. Further reading on HMM techniques can be found in [38].

2.1 Speech Production and Speech Sounds

2.1.1 Speech Production

The message to be conveyed via spoken sounds is formulated in the brain and then
uttered aloud with the execution of a series of neuromuscular commands. Air is exhaled
from the lungs with sufficient force, accompanied by a vibration of the vocal cords (or vocal
folds) at appropriate times, and finally shaped by motion of the articulators - the lips, jaw,
tongue, and velum. Figure 2-1 is a sketch of the mid-sagittal cross-section of the human
vocal apparatus [39]. The vocal tract begins at the opening between the vocal cords called
the glottis, and ends at the lips. It consists of two parts, the pharynx (the section between
the esophagus and the mouth) and the oral cavity or the mouth. The nasal tract is the
cavity between the velum and the nostrils.

Depending on the pressure gradient across the glottis, the mass and tension of vocal
folds, two kinds of air flow are generated upwards through the pharynx, quasi-periodic
and noise-like. Quasi-periodic (harmonically related frequencies) pulses of air are produced
when the vocal folds vibrate in a relaxation oscillation at a fundamental frequency. These
excite the resonant cavities in the vocal tract resulting in voiced sounds like vowels. Broad-
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spectrum (wide range of unrelated frequencies) noise-like air flow is generated by forcing air

at a high enough velocity through a constriction in the vocal tract (while the vocal cords

are relaxed), so as to cause turbulence. This produces unvoiced sounds like /s/ (as spoken

in sad), /f/ (fit) by exciting the vocal tract with a noise-like waveform, and plosive sounds

like /b/ (big), /p/ (pig) when air pressure is built up behind a complete closure in the oral

cavity and then abruptly released.

/

ARTICULATORS

DIAPHI

Figure 2-1: Cross section of the speech-producing mechanism

The vocal tract is a tube with a non-uniform and variable cross-sectional area. The

nasal tract remains disconnected from the vocal tract for most sounds and gets acoustically

coupled to it when the velum is lowered to produce nasal sounds. The resonant frequencies

of the vocal tract are called formants; they depend on its dimensions in a manner similar

to the resonances in wind instruments. Different sounds are formed by varying the shape

of the tract to change its frequency selectivity. The rate of change of vocal tract con-
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figuration categorizes sounds as continuant and noncontinuant. The former are produced

when a non time-varying vocal tract configuration is appropriately excited, for e.g., vowels
and nasals (/m/ in mild) , and the latter are produced by a time-varying vocal tract, for
e.g., stop consonants (/d/ in dip) and liquids (/1/ in lip). Vowels, which are continuant

sounds, can be differentiated into close, open, high, low and rounded based on the positions

of the articulators. The consonants can also be alternatively classified by their place-of-

articulation, for e.g., labial (lips), alveolar (gums), velar (velum), dental, palatal or glottal,

along with the manner-of-articulation (plosive, fricative, nasals etc.). There are different
ways of characterizing sounds based on the physical mechanism of production.

2.1.2 Speech Sounds

PHONEMES
in American English

Vowels Consonants Semivowels Diphthongs

Front Mid Back

iy (eat) er (bird) uw(boot)
ih (it) ah (but) uh (foot)
eh (pet) ax (about) ow (boat)
ae (at) ao (baud) .

aa (father)

. . ay (sky)
oy (toy)
aw (wow)
ey (wait)

Liquids Glides

r (red) w (wet)
I (let) y (yes)

. ... --

Fricatives Nasals wnisper Anrcaes Stops

m (mom) h (had) jh (ar) /
n (nun) ch (char)
ng (sing) /

Voiced Unvoiced Voiced Unvoiced

v (van) f (fit) b (big) p (pop)
dh (this) th (thin) d (dig) t (tip)
z (zoo) s (sit) g (get) k (kit)
zh (measure) sh (she)

Figure 2-2: Phonemes in spoken American English

For the purposes of speech recognition, speech is segmented into subword units called

phones, which are the acoustic realizations of abstract linguistic units called phonemes.

Phonemes are the sound segments that carry meaning distinctions, identified by minimal

pairs of words that differ only in part ([30]). For example, fat and cat are different sounding
words that have different meanings. They differ from each other only in the corresponding
first sounds /f/ and /c/, which makes /f/ and /c/ phonemes. Figure 2-2 shows the set of
phonemes in spoken American English. The figure is based on the categorization in Chapter
4 in [30].

1. Vowels
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Vowels are produced by an essentially time-invariant vocal tract configuration excited

by quasi-periodic air pulses, and are the most stable set of sounds. They are generally

longer in duration than consonants, and are spectrally well-defined. All vowels are

voiced sounds.

Different vowels can be characterized by their first, second and/or third formants,

which are determined by the area function - the dependence of the area on the distance

along the vocal tract. The area function depends mainly on the tongue hump, which

is the mass of the tongue at its narrowest point. Vowels can be classified by either

the tongue hump position as front, mid, back vowels (shown in Figure 2-2), or by the

tongue hump height as high, mid, low vowels. The vowel formant space is illustrated

in Figure 2-3 based on formant values taken from Chapter 4 in [30]. The vowels are

divided into different categories used later in Chapter 5, front, central and back, and

high, mid and low.

Zuu-

300-

HIGH

F 400-
1

500
n

MID
H
z 600

700-

LOW

ann-

2400 2200 2000 1800 1660 1400 1200 1000 800
FRONT CENTRAL BACK

F2 (hertz)

Figure 2-3: The vowel formant space

2. Diphthongs

Diphthongs are described as combinations of certain 'pure' vowels with a second sound

and are voiced. Figure 2-2 shows four diphthongs /ay/,/oy/, /aw/, /ey/.

According to Chapter 3 of [40], a diphthong is defined as a gliding monosyllabic speech

item that starts at or near the articulatory position for one vowel and moves to or
toward the position for another. It is produced by smoothly varying the vocal tract

configuration from that for the first vowel to the configuration for the second vowel.

In Chapter 5 in [30], diphthongs are described as combinations of vowels and glides

(glides are described after the liquids, which come next). /ay/, /ey/ and /oy/ are
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combinations of the corresponding vowels and the glide /y/. /aw/ is a vowel followed
by the glide /w/, as /ow/ sometimes is (the diphthong /ow/ in mow, as opposed to
the vowel /ow/ in boat).

3. Liquids

Liquids and glides are sometimes described as semivowels. Both are gliding transitions
in vocal tract configuration between the adjacent phonemes. They consist of brief
vowel-like segments and are voiced sounds, but their overall acoustic characteristics

depend strongly on the context (neighboring phonemes).

The liquids are /r/ and /1/. /r/ has low values for all first three formants, and is the
only phoneme in American English that has a third formant below 2000 Hz. /1/ shows
a slight discontinuity at vowel junctures, and is the only English lateral consonant
(created by allowing air to pass on either side of the tongue). Both phonemes have
an alveolar place-of-articulation.

4. Glides

The glides are /w/ and /y/, and are voiced sounds. They are always followed by
vowels, and have a labial and alveolar place-of-articulation respectively. They do not
exhibit formant discontinuities at vowel junctures.

5. Nasals

The nasal sounds /m/, /n/ and /ng/ are produced by lowering the velum to acousti-
cally couple the nasal tract to the vocal tract, with glottal excitation and a complete
constriction of the vocal tract at some point in the oral cavity. Sound is radiated

through the nostrils in this case and the mouth acts as a resonant cavity. The res-
onances of the spoken nasal consonants and nasalized vowels are spectrally broader

(more damped) than those of vowels.

The total constriction made in the vocal tract is different for the three nasals: /m/
is a labial, /n/ an alveolar and /ng/ is a velar sound. The closures for these three
sounds are made in the same place as the corresponding stops. Both kinds of sounds
are produced with complete closure of the oral cavity, the difference is in the aperture
of the velic port. For nasals, air is released through the nose and since there is no
pressure buildup, no burst occurs when the oral closure is released.

All three nasals have a prominent low frequency first formant, called the nasal formant.

There are clear and marked discontinuities between the formants of nasals and those
of adjacent sounds.

6. Fricatives

Fricatives are characterized by the frictional passage of air flow through a constriction
at some point in the vocal tract. The steady air stream used to excite the vocal tract
becomes turbulent near the constriction. The back cavity below the constriction traps
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energy like the oral cavity in the case of nasals and introduces anti-resonances in the

sound radiated from the lips.

There are two kind of fricatives, voiced and unvoiced. /v/, /dh/, /z/, /zh/ are voiced

and /f/, /th/, /s/, /sh/ are unvoiced. The sounds in the two sets correspond exactly

in terms of places-of-articulation, which are labio-dental, dental, alveolar and palatal

respectively.

Out of the unvoiced fricatives, /th/ and /f/ have little energy, whereas /s/ and /sh/
have a considerable amount. All the unvoiced fricatives except /f/ show no energy

below 1200 Hz. The voiced fricatives show energy in the very low frequency range,

referred to as the voice bar.

7. Stops

Stops (or stop consonants) are noncontinuant, plosive sounds. There are two kinds

of stops, /b/, /d/, /g/ are voiced and /p/, /t/, /k/ are unvoiced. These also corre-

spond in their places-of-articulation, which for both sets are labial, alveolar and velar

respectively.

No sound is radiated from the mouth during the time of total constriction of the vocal

tract; this time interval is called the 'stop gap'. However, in the case of voiced stops,

some low frequency energy is often radiated through the walls of the throat when the

vocal cords can vibrate in spite of a total constriction in the tract. The distinctive

characteristic of stops visible in a spectrogram is the presence of two distinct time

segments, the closure and the burst. If the stop is followed by a voiced sound, the

interval after the burst and before the sound is called the voice onset time (VOT).

In the case of unvoiced stop consonants, after the stop gap, there is a brief period
of friction followed by an interval of aspiration before voiced excitation begins. The

duration and frequency content of the frication noise and aspiration vary with the

unvoiced stop.

Stops are noncontinuants, generally of short duration, and are more difficult to identify

from the spectral information alone. Their properties are greatly influenced by the

context.

8. Affricates

An affricate consists of a stop and its immediately following release through the ar-

ticulatory position for a continuant nonsyllabic consonant. The English affricates are

/ch/ and /jh/, /ch/ is a concatenation of the stop /t/ and the unvoiced fricative /sh/.

Similarly /jh/ is a combination of the voiced stop /d/ and the voiced fricative /zh/.

The two affricates function as a single unit but their spectral properties are like other

stop-fricative combinations.

Affricates also display a closure-burst in the spectrogram, followed by the fricative

region.
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9. Whisper sounds

The phoneme /h/ is produced by exciting the vocal tract with a steady air flow
without vibration of the vocal cords. Turbulence is produced at the glottis. This is
also the mode of excitation for whispered speech. The spectral characteristics of /h/

depend on the vowel following /h/ because the vocal tract assumes the position for
the following vowel during the production of /h/.

2.2 Hidden Markov Models

The two speech representation, mel cepstrum and EIH, are described in Chapter 3.
It is shown how a speech utterance, consisting of periodic measurement samples of the
acoustic waveform, can be converted into a sequence of observation vectors, each of which

corresponds to a fixed-length window or frame of N speech samples. The sequence of
feature vectors, called a template, can therefore serve as a model of the speech utterance.

However, different templates obtained from the same person speaking at different times are

not identical. Clearly, there is even more variation across different speakers. One way to

capture this variability is to model speech as a stochastic sequence.
A commonly used stochastic framework used in speech recognition is hidden Markov

modeling (HMM). An overview of Hidden Markov Models can be found in [38]. HMMs
are stochastic models of the speech signal designed to represent the short time spectral
properties of sounds and their evolution over time, in a probabilistic manner. An HMM
as used in speech recognition is a network of states connected by transitions. Each state
represents the hidden probability distribution for a symbol from finite set of alphabets, such

as a phone from a list of allowed phones. This output probability density function is used to
determine the observation sequence by maximum likelihood estimation, using the transition
probabilities associated with going from one state to the next.

Three key problems of HMMs are [38]:

1. Given the observation sequence 0 = 0102 ... OT, and a model A, what is the efficient

way to find P(OA), the probability of the observation sequence given a model ? This
is referred to as the scoring problem, i.e., given a model, compute the likelihood score
of an observation. This is a measure of how well the utterance matches the model.

2. Given the observation sequence and the model, how should a state sequence Q =

q1q2 ... qT which is optimal in some meaningful sense be chosen ? This is referred to
as the segmentation problem, because each vector Oi in the sequence is assigned to a
state. For left-to-right models, since each transition can only be to the same state or
the next state, this is equivalent to dividing the observation sequence into N segments,

each corresponding to a state. That is, a set of transition times rl, T2,..., rN, are
obtained so that the vectors Oj, where ri < j < ri+l are assigned to state Si.

3. How should the model parameters A = (A, B, r) be adjusted so as to maximize
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P(OIA)? This is called the training problem, encountered when a maximum like-

lihood model for a word, syllable, etc. must be built from some training utterances.

The solutions of these problems are detailed in [38] and further references contained

therein. A brief description of the solutions to each of the problems is given next.

The objective of training is to find a A so as to maximize the likelihood of P(O[A).

The absolute maximum is difficult to find, and only iterative algorithms like the estimate-

maximize (EM) algorithms can be used to find locally maximum solutions. A widely known

training algorithm of this type is the Baum-Welch reestimation algorithm [34].
The actual training procedure used in experiments here is also an EM algorithm, called

the segmental k-means training algorithm [41]. It trains a subword model out of several

utterances of the same subword through the following steps:

1. Initialization: Each speech utterance, represented by a sequence of feature vectors,

is uniformly segmented into states i.e. each state in a subword initially has roughly

the same number of feature vectors assigned to it. The TIMIT hand segmentation is

used to obtain phone boundaries.

2. Estimation: Using the data thus segmented, the parameters of each state are esti-

mated. The feature vectors in each state are clustered into different mixture compo-

nents using a K-means algorithm. The mean vectors, the variance vectors and the

mixture weights are estimated for each cluster. The sample mean and covariance of

the vectors in each cluster are used as maximum likelihood estimates of the mean

vector and covariance matrix of each mixture component in the state. The weight

of each mixture component is estimated based on the proportion of vectors in each

cluster. This gives a first set of HMMs for all the states of all subword units.

3. Segmentation:

The HMM thus estimated is used to resegment the training data into new units with
Viterbi decoding.

4. Iteration: Steps 2 and 3 are repeated until convergence.

The acoustic space can be modeled by a finite number of distinguishable spectral shapes,

which correspond to the states of an HMM. Alternatively, the speech signal can be viewed

as being composed of quasi-stationary segments produced by stable configurations in the

articulatory structures, connected by transitional segments produced during the time the
articulatory structures evolve from one stable configuration to another. Each state of an

HMM can thus either represent a quasistationary segment in the speech signal or a transi-

tional segment. More generally, each state of an HMM can be used to model some salient

features of sound so that it can be distinguished from other neighboring states.

In addition, HMMs can be hierarchical, such that each state or node can be recursively

expanded into another HMM. Thus at the highest level, there can be a network of words,

where each word is represented by a state in the HMM. Each word can expand into an HMM,
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whose states each represent a particular phone. Each of these word states can further be
expanded into an HMM whose states each represent some acoustic sound or phone model.

2.3 Summary

This chapter outlined the speech production process, and described some characteristics
of sounds classified by the manner of production. An outline of the Hidden Markov Modeling

(HMM) procedure was also provided. The next chapter discusses the two feature extraction

schemes that are used to represent speech, the mel cepstrum and the EIH.
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Chapter 3

Signal Representations- Mel

Cepstrum and Ensemble Interval

Histogram

The two signal representations evaluated in this thesis are described in this chapter. The
mel cepstrum (MEL) representation is based on Fourier analysis, and the Ensemble Interval
Histogram (EIH) is based on auditory modeling. A brief introduction to the theoretical basis
for both front ends is provided, followed by a description of the computational procedures.
A short comparison of the two front ends is given at the end.

3.1 Mel Cepstrum

3.1.1 Mel Scale

Psychophysical studies have shown that human perception of the frequency content of
sounds, for either pure tones or speech signals, does not correspond to a linear scale. The
human ear is more sensitive to lower frequencies than the higher ones [48]. For each tone
with a certain actual frequency in hertz, a subjective pitch is measured on the 'mel' scale.
The pitch of a 1 kHz tone at 40 dB higher than the perceptual hearing threshold is defined
as 1000 mels. The subjective pitch is essentially linear with the logarithmic frequency above
1000 Hz.

MEL accounts for this frequency sensitivity by first filtering speech with a filterbank
which consists of filters that have increasing bandwidth and center-frequency spacing with
increasing frequency [5].
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3.1.2 Computation of MEL

PREEMPHASIS

x [n]

(i)

MEL-SCALE FILTER BANK

I1

Figure 3-1: Computation of MEL Cepstrum coefficients.

MEL is computed in a standard manner [5, 42], as shown in Figure 3-1. The input speech

at 8 kHz is windowed by a 20 ms long Hamming window every 10 ms, its magnitude-squared

spectrum is pre-emphasized and passed through the mel-scale filter bank.

The mel filter bank consists of 24 triangular bandpass filters covering a bandwidth of

4 kHz. From 0 to 1 kHz there are 10 filters spaced linearly with a 200 Hz bandwidth per

filter. Above 1 kHz there are 14 variable length filters spaced logarithmically (the center

frequencies are powers of 1.1). The number of filters, NF, is selected to cover the signal

bandwidth [0, fs/2] Hz, where f, is the sampling frequency, NF = 24 and f, = 8 kHz.

Let f be the center frequency of filter 1, 1 c [1, NF]. The lower and upper passband

frequencies are f_ and f,+, respectively, with f = 0 and f,, < f,/2 Vl. The triangular
filter for an N-point DFT magnitude spectrum X[k] is defined over DFT frequency index

k [0, N/2] as

F [k] = | ((k)fs - fC,_l)/(fc - fCtl) L1 < k < Cl

(fcl+ - ()fs)/(fc 1 +l - f) C < k < U1 ,

where Cl = 1 'N U = 'f%.N, LI = h .N are the DFT indices corresponding to
the Ith filter's center, upper and lower frequencies respectively.
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The log energy output of filter 1, denoted as mfb(l), is computed as

1 Ul 
mfb(l) = log( Fl[k]X[k]), where Al = Fl[k], (3.1)

A k=L 1 k=L 1

Al is a normalizing factor introduced to account for the varying bandwidths of the filters.
The outputs from all NF filters constitute a mel-filter bank vector.

The mel filter bank vectors are further transformed into cepstral coefficients which show
a high degree of statistical independence. This is because the cosine transform used to
obtain cepstra is close to the optimal orthogonalizing Karhunen-Loeve transform [29].
Cepstral coefficients are computed from the mel filter bank vectors using the inverse cosine

transform as given by

1 NF

mcc(i) = NF - mfb(l)cos(i(l- i = 1,...,NF- 1. (3.2)
1=1

The mcc(0) coefficient is a measure of the average log energy in the speech frame. The
energy used in the feature vectors in this work is the frame-normalized energy (normalized
0 to -75 db as required for the classification system). One MEL frame is processed every
10 ms.

3.2 Ensemble Interval Histogram

In recent years, the use of auditory models that perform comparably to the human audi-
tory system in tasks related to speech perception has been proposed for speech processing.
In speech coding, for example, bit rate can be lowered based on perceptual tolerance to
acoustic deviations in speech [43]. In a similar fashion, spectral feature extraction modules
based on auditory models that incorporate perceptual invariance to adverse signal condi-
tions (for e.g., noise, channel distortions) and phonetic variability (for e.g., due to inter and
intra speaker differences) may prove to be viable front ends for robust speech recognition.
These models are based on physiological and psychophysical studies of the auditory system
[35, 19]; the pre-auditory nerve region of the human auditory system is briefly described in
Section 3.2.1.

3.2.1 The Human Auditory System

An introductory treatment of the science of speech and hearing is given in [6], from
where most of the following description has been extracted.

Figure 3-2 is a sketch of a part of the auditory system. The ear has three parts, the
outer ear, the middle ear and the inner ear. The outer ear consists of the pinna, the largely
cartilaginous projecting portion, and the ear canal, an air-filled passageway terminated in
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the eardrum, that acts like an acoustic resonator (amplifying frequencies around 3-4 kHz).

The middle ear consists of the tympanic membrane (eardrum) and a mechanical trans-

ducer consisting of the three auditory ossicles, malleus (hammer), incus (anvil) and the

stapes (stirrup), which converts sound impinging on the eardrum into mechanical vibra-

tions in the inner ear. The hammer is rigidly attached to the eardrum and successively

transmits its motion to the anvil and stirrup, where the stirrup is connected to the oval

window on the inner ear. The middle ear amplifies sound pressure from the outer ear to

the inner ear by about 35 times with the lever action of the ossicles.
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(b) Longitudinal section of the unrolled cochlea
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(c) Cross section through the unrolled cochlea

Figure 3-2: Parts of the human auditory mechanism

The inner ear consists of the cochlea and the auditory (cochlear) nerve, a small intricate

system of cavities in the bones of the skull. The first major transformation of sound from

mechanical vibrations to nerve impulses takes place in the cochlea. The cochlea is a coiled
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fluid-filled chamber that can be 'unrolled' as shown in Figure 3-2(b). The cochlear partition

is a membranous structure that divides the cochlea into two parts (scala vestibuli and scala

tympani) along most of its length. The interior of this partition forms a third region called

the cochlear duct, as shown in the cross section of the cochlea in Figure 3-2(c). The basilar

membrane separates the cochlear duct from the scala tympani, and is connected to a bony
shelf that extends out of the central core of the cochlea. The relative widths of the basilar
membrane and the bony shelf vary gradually along the length of the cochlea, the basilar
membrane being the narrowest at the basal end (about 0.04 mm) and the widest at the
apical end (about 0.5 mm). The membrane is very stiff and light near the oval window but

slack and massive at the apical end.

The cochlear structure is excited through the oval window by motion of the stirrup. The
mechanical properties of the basilar membrane determine to a large extent the response of
the cochlear partition to this excitation. A pulse-like excitation, such as a click, causes

the partition to first bulge downwards at the basal end into the scala tympani. This bulge
in the partition then travels along the cochlea toward the apical end, broadening as it

moves. A sine-wave excitation causes vibrations in the entire partition, but the amplitude of
vibration at different points along the partition depends on the applied frequency. For high
frequencies, the point of maximum amplitude is near the basal end, and for low frequencies,
the vibration is highest near the apical end (the partition goes through a more complex

motion than a simple up and down vibration in each cycle). All this leads to a spatial
separation of the maximum response to stimulation at different frequencies.

Conversion of the mechanical motion of the cochlear partition and the attached basilar
membrane into neural signals takes place in the Organ of Corti, a collection of cells lying

on the basilar membrane in the cochlear duct. The sensory receptors in the Organ of Corti
are the hair cells, which have very fine hairs at one end that make contact with the tectorial
membrane, the other end rests on the basilar membrane. Two kinds of hair cells lie on
either side of a 'V-shaped' pair of rods constituting the Corti's Arch. The inner hair cells
(IHC's) lie on the side of Corti's Arch closest to the central core of the cochlea. The outer
hair cells lie on the other side of the arch. There is one row of inner hair cells and three

rows of outer hair cells along most of the length of the basilar membrane, adding to about
3500 inner cells and 20,000 outer cells. Nerve fibers from the auditory nerve extend into the

Organ of Corti, and the endings of these fibers lie close to the hair cells. When the basilar

membrane vibrates in response to sound waves, the hair cells get bent and stimulate the
nerve fibers producing electrochemical pulses that are sent to the brain along the auditory
nerve.

The mechanical displacement of the basilar membrane at any given place can be viewed

as the output signal of a band-pass filter with a spectral resonance peak at the characteristic
frequency (CF). The CF is characteristic of the place along the membrane, and its log is
approximately proportional to the distance along the membrane. The displacement of the
basilar membrane is reflected in the AC component of the IHC receptor potential. Receptor

cells, such as the hair cells in the Organ of Corti, receive sensory information from their
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environment and help to code it into the electrochemical pulses that are transmitted to the

nervous system. The transformation from mechanical motion to receptor potential (voltage)

involves several nonlinearities. One of them is the half-wave rectification resulting from the

unidirectional depolarization of the IHC. Each IHC is innervated by about 10 auditory

fibers whose spontaneous activity discharge depends on the fiber diameter and size of the

synaptic region between the fiber and inner hair cell, and on the threshold of response.

Studies of cochlear mechanics and of the mechanical to neural transduction in the cochlea

provide valuable information about the processing of sounds in the pre-auditory nerve stage

of the auditory periphery. The auditory nerve connects the cochlea to the central nervous

system and is the only afferent 1 path between them. This makes it the sole carrier of

speech-signal information to the central nervous system, and therefore the first step in

the modeling. Studies of the population response of single auditory nerve fibers in cats

to speech-like signals have provided information about the encoding of such sounds in the

auditory nerve. However, relatively little is known about the functioning of the auditory

mechanism beyond the auditory nerve, lumped as the 'central processor'.

Most auditory models differ in the structural properties of the central processor, which
can be described by the following two characteristics: place-nonplace component, which

determines whether the processor uses explicit information about the nerve fiber's tonotopic

place of origin in the cochlear partition, and the rate-temporal component, which determines

whether the central processor uses instantaneous firing rate measurements alone or higher

order statistics as well. The EIH belongs to the nonplace-temporal category, it omits place

information and uses only the temporal properties of the global neural response.

The EIH utilizes detailed physiological modeling of the auditory periphery to simulate
the firing activity of the auditory nerve, followed by a heuristic transformation to account

for the higher order processing. It is a measure of the spatial (tonotopic) extent of coherent

neural activity across the simulated auditory nerve [10].

3.2.2 Computation of EIH

The EIH is computed in three stages - bandpass filtering of speech to simulate basilar

membrane response, processing of the output of each filter by level-crossing detectors to

simulate IHC firings, and the accumulation of an ensemble histogram as a heuristic for

information extracted by the central nervous system [9] as shown in Figure 3-3.

The first stage models the middle ear with a bank of mel scale filters. The mel-like

bandpass filters (similar in shape and distribution to mel filters) are spaced from 0-4 kHz.

In this study, 85 filters are used to cover the frequency range, which is approximately

equivalent to 2 more filters being placed in between adjacent mel scale filters equally spaced

in logarithmic frequency. This stage represents the auditory periphery up through the level

of the auditory nerve.
The mechanical to neural transduction is modeled in the second stage. The ensemble of

'i.e., conveying nerve spikes towards a nerve center

38



S(t)
.....

Figure 3-3: Computation of EIH Cepstrum coefficients.

nerve fibers innervating a single IHC is simulated with an array of level-crossing detectors

at the output of each mel-like filter used in the first stage. Each detector models a fiber of a

specific threshold, and a neural firing is simulated as the positive-going level crossing. The

thresholds are distributed across a range of positive values which accounts for the half-wave

rectification of the IHC receptor potential. The value assigned to detector-level j of every

filter is a random Gaussian variable with mean Lj and standard deviation 0.2Lj. The means
Lj are uniformly distributed on a log scale over the amplitude range characteristic of speech

sounds. The detectors are pseudorandomly assigned a range of positive levels to reflect the

variability of the nerve fiber diameters and synapse-connection sizes. The nerve fiber firing

activity is therefore modeled as a point process produced by a level-crossing detector. This

neglects the probabilistic nature of the neural firing mechanism, so the level crossings are to

be interpreted as the combined firing activity of a collection of fibers originating in different

IHC's located close enough along the basilar membrane to exhibit similar cochlear tuning
characteristics.

The coherent activity across the simulated fiber array is measured by determining the
similarity in the short-term interval probability density functions of individual level-crossing
detectors. An estimate of the interval probability density function of a level is obtained

by computing a histogram of the intervals from the point process data (time intervals
between successive upward-going level crossings). To obtain a frequency-domain function,
the histogram of the reciprocal of the intervals is computed. The similarity across all levels
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and channels is measured by collecting individual histograms into one ensemble interval

histogram (EIH) for 128 frequency bins ranging from 0-4 kHz. This is done every 3.2 ms

with a back-in-time window whose width depends on different values of CF. The width is

greater at the lower frequencies than the higher frequencies to model observed properties of

auditory nerve fibers. At time to, intervals produced by a level-crossing detector located at

characteristic frequency CFo are collected over a window of length l0 that ends at time

to. This representation exhibits fine frequency resolution at low CF's and fine temporal
resolution at high CF's.

A data reduction and smoothing is performed on the 128-component EIH vectors. The

frame 'energy' is calculated from the histogram as the sum over 128 bins. Cepstral-like

analysis is then performed on the normalized EIH (normalized so that the sum equals 1)

to get 12 coefficients. The dynamic range of the frame energy is about 0 to -2.0 units

of 'loudness'. An EIH frame is computed every 3.2 ms, then three successive frames are

averaged to get an EIH frame every 9.6 ms.

3.3 Comparison of MEL and EIH

For both the speech representations, the first stage of analysis is performed using mel-

scale filters. In the case of MEL, the 'filters' are not used to filter incoming speech as

such, in the case of EIH, they are used as filters in the conventional sense. The significant

difference in approach is in the second stage, as shown in Figure 3-4, namely the energy-

based approach versus the coherence-based approach.

SMOOTHED
MEL

SPEECH INPUT SPEECH REPRESENTATION

-SMOOTHED
EIH

Figure 3-4: Comparison of MEL and EIH

The third stage in both cases is the envelope smoothing, based on homomorphic analysis

(Chapter 12 in [32], [31]), yielding 12 cepstral coefficients.

A plot of the frame energy of an utterance is shown in the Appendix in Figure A-3 for

MEL and for EIH.

3.4 Dynamic features

The 12-component vectors obtained from both front-ends are variously augmented by

the energy term and/or the corresponding dynamic features for different experiments. Two
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sets of static features and two sets of static and dynamic features are used. The four

sets of parameters are : spectral envelope alone (12 cepstral coefficients for MEL and

for EIH), spectral envelope and energy (13 coefficients), spectral envelope and its
time derivatives (12 cepstral coefficients, 12 delta cepstrum and 12 delta-delta cepstrum,
giving 36 coefficients for MEL and for EIH), and spectral envelope and energy and their

respective time derivatives (12 cepstral coefficients, 12 delta cepstrum, 12 delta-delta
cepstrum, 1 energy, 1 delta energy and 1 delta-delta energy, giving 39 coefficients for MEL

and for EIH).

For both the front ends, dynamic features are computed as follows.

The delta cepstrum of the sequence of cepstral vectors is approximated by an orthogonal

polynomial over a finite length window of (2K+1) frames centered around the current vector

(K = 2 corresponding to a 5-frame window) ([23], Chapter 4 in [39]), as

K

Al(m) = [ E kcl_k(m)] Gcorr I m m Q (3.3)
k=-K

where Gorr is a gain term chosen to equalize the variances of l(m) and Ail(m).

The delta-delta cepstrum is calculated from the delta cepstrum as

A 2cl(m) = K- [A+l 1(m) - Al_l (m)], (3.4)

where A 1l (m) is the estimated mth delta cepstrum coefficient evaluated at frame I as in

Equation 3.3, and K is a scaling constant fixed at 0.375 [23].

It should be noted that the dynamic features for both speech representations were
calculated with the same method. Since there was no previous study on the calculation

of dynamic information for EIH, the MEL temporal filters were used for EIH as well.

3.5 Summary

This chapter discussed the characteristic features of the two speech representations -
the mel cepstrum analysis and the Ensemble Interval Histogram. The motivation behind
the two front ends was briefly discussed along with the procedures for computing their

respective parameters. The next chapter describes the experimental framework used to
compare the two front ends for phone classification.
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Chapter 4

Experimental Framework

The database used is the TIMIT [22], because it is a standard, phonetically rich database

available with phonetic transcriptions. The recognizer is first trained on clean TIMIT
training set (male speakers only) and then the TIMIT test set (male speakers only) is
tested under three acoustic conditions - clean speech, speech through a telephone channel

and speech under room reverberations (the last two conditions are simulated). Evaluation
is based on phone classification, where the left and right phone boundaries are assumed

fixed and only the identity of the phone is to be established. To focus on the front end,

classification is performed instead of recognition, eliminating issues like grammar, phone
insertion and phone deletion. The goal of this study is to observe the effects of signal

distortion on the signal representation and statistical modeling.
The TIMIT speech files are provided at 16 kHz sampling rate with 16 bit Pulse Code

Modulation (PCM) samples. They are first lowpass filtered and downsampled to 8 kHz. The

MEL and EIH cepstral coefficients are then calculated with appropriate spectral analysis;
12 coefficients are computed for both. These frames are augmented with either the energy

and/or first and second order derivatives to obtain static and dynamic features, as described
at the end of Chapter 3.

4.1 Database

The TIMIT database is available on a CDROM (NIST Speech Disc CD1-l.l,October
1990). The speech was recorded using a Sennheiser HMD-414-6, close-talking, noise-

cancelling, headset-boom microphone in sound-treated room. The database consists of

about 6225 words and 6300 sentences spoken by 630 male and female speakers from 8 ma-
jor dialect regions of the U.S. Each speaker utters 10 sentences which are designed to cover
a variety of phonetic contexts in spoken American English. The database is divided into
training and testing sections with no overlapping speakers. Out of the 10 sentences per
speaker, 2 are common to all speakers in both testing and training and have been left out to
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avoid undue bias towards certain phonetic contexts. The remaining 8 sentences per speaker

are used for testing or training. Only the utterances by male speakers (326 train, 112 test

speakers) are used in this study.

The hand-labeled phonetic transcriptions of the speech files provided in the TIMIT

database are used to obtain phone boundaries for classification. To focus on broader phone

classes, the 61 phones used in TIMIT segmentation are collapsed into a set of 47 phones

shown in Table 4.1. The allophone listed for each phone is the original phone that was

combined or removed. The closures for all the stops (/b/,/d/,/g/,/p/,/t/,/k/) and the

affricates (/jh/,/ch/) are merged with the respective stops and affricates. Some other similar

sounding phones have been combined, such as the /hh/ (hay) and /hv/ (ahead) pair, the

/uw/ (boot) and /ux/ (toot) pair, and the three different schwa sounds in about, debit and
suspect. The glottal stop (merged with epenthetic silence) was found to possess too small

a variance in the model training process, so it has been ignored. A single silence model is

used for the silences in the beginning and end of utterances and the mid-utterance pauses.

Table 4.1: Set of 47 phones used and their TIMIT allophones

Phone Word Allophn Phone Word [ Allophn Phone Word I Allophn D
h# silence pau aa father ae bat
ah butt ao bought aw bout
ax null ax-h ix axr butter ay bite
b bee bcl ch child d day dcl

dh then eh bet el bottle
em bottom en button er bird
ey wait f f in g game gcl
hh home hv ih bit iy beet
jh joke k key kcl 1 like
m mom n noon ng sing eng
ow boat oy boy p pay pcl
r red s sea sh she
t tea tcl th thin uh book

uw boot ux v very w well
y yes z zoo zh measure

dx muddy nx winner

4.2 Classification System

The HMM continuous speech recognition framework used in this study is described in

detail in [23]. Each speech unit is modeled as a left-to-right 3-state HMM (except silence,

which is single state). A continuous density is used to describe the observation probability

density of each state as a weighted sum (mixture) of multivariate Gaussian densities (a
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maximum of 32 Gaussian mixture components are used per state). The covariance matrix
for each Gaussian mixture component is assumed diagonal. The self and forward transitions
within and between states are assumed equally likely.

Context-independent subword unit models are trained using a variant of the segmental
k-means algorithm [41] with the given TIMIT segmentation. This process does not modify
the TIMIT phone boundaries or the state boundaries within a phone (which are determined
by uniformly segmenting each subword, except silence, into 3 states); these boundaries are
maintained in the experiments with different feature vectors.

In the testing phase each speech segment is compared with all phone models using the
Viterbi algorithm [50]. Likelihood scores are obtained for the top 1 and top 3 candidate
phones.

New phone (and state) boundaries for the training data can be determined via Viterbi
decoding with the current HMM models. The new training data segmentation can be
used to build a new set of HMM models. The phone boundaries for the test data are

modified in correspondence to the model-building iterations. This is done for the automatic
resegmentation experiments. Initially, the TIMIT segmentation is used to train a set of

HMM's. For each iteration after that, a set of HMM's is first trained using the current

training data segmentation. These HMM's are used to classify the speech data (clean
training speech, clean test speech, test speech passed through the two distortion simulations)

using phone boundaries given by the current segmentation. This set of HMM's is also used
to resegment the respective data (both the train and test sets) via Viterbi decoding. The
process is then repeated with this new set of phone boundaries for the next iteration of
resegmentation. In this study, the results for 3 iterations are recorded. The process of
resegmentation changes phone and state boundaries, therefore the resultant sub-word units
used in these classification experiments are phone-like units and do not necessarily agree
with the phoneme labels associated with them.

4.3 Distortions

The TIMIT (male) testing data is run through two kinds of distortion simulations

telephone channel and room reverberation. Waveforms and spectrograms of a clean, sample
TIMIT sentence and its two "noisy" versions are attached in the Appendix in Figure A-2

for illustration purposes.

4.3.1 Telephone Channel Distortion

The telephone channel simulation is illustrated in Figure 4-1. White noise is first added
to the signal. The acoustic conditions in the telephone channel are simulated, but the
telephone handset or receiver is not modeled.

The telephone channel simulation "wire" [20] provides several choices of telephone chan-
nels and noise, for example, AT&T data or voice channels, doppler shift, phase jitter, har-
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Figure 4-1: Telephone channel simulation

monic disturbance, sinusoidal tones and gaussian noise. The frequency response of the

different telephone channels is calculated from actual channel measurements (attenuation

observed at different delays along the channel).
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Figure 4-2: Telephone channel frequency response

The AT&T LC1 characteristic channel used has a pass-band of 300 Hz to 2600 Hz.

Gaussian noise is added to the test sentence, which is then passed through the telephone

channel. A plot of the channel frequency response is attached in Figure 4-2.

4.3.2 Room Reverberation Distortion

The room reverberation simulation is illustrated in Figure 4-3. The microphone shown
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is not modeled.

ROOM REVERBERATION SIMULATION
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Figure 4-3: Room reverberation simulation

The reverberation program models the effects of echo and reverberation encountered
in an enclosure with sound-reflecting walls. It calculates the source-to-receiver impulse
response in a rectangular room, using a time-domain image expansion method [2]. The
resulting impulse response, when convolved with a speech signal, simulates room reverber-
ation of the speech.

n filter.d (S.F.:1600.0) left:up/down wve md:play between marks right:menul
Time: 0.51131sec D: 0.51200 L: 0.00000 R: 0.51200 CF: 1 95)

0.80

0.60 i
0.40

0.20

0.00

Figure 4-4: Room reverberation impulse response

The length, width and height of the room, the reflection coefficients of the six surfaces
and the locations of the source and observer are adjusted so as to get a realistic reverberation
time 1 between 250 and 550 ms. This is convolved with a test speech utterance (sentence)
to get the reverberated speech waveform. The conditions used here are a room 10 feet by

'For present purposes, roughly defined as the time it takes the impulse response to fade to 10- 3 of its
maximum value.
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11 feet by 12 feet, reflection coefficients equal to .90 for all six surfaces, with the speaker at

coordinates (1',1',2') and the microphone at (9',8',11'). A plot of the impulse response is

shown in Figure 4-4.

4.4 Summary

This chapter described the experimental framework used to compare the two speech rep-

resentations, mel cepstrum and EIH - the speech database used, the phonetic classification

system, and the distortions used to simulate realistic adverse conditions. The next chapter

reports the results obtained from several experiments conducted within this framework.

48



Chapter 5

Results and Discussion

The Mel Cepstrum (referred to as MEL) and Ensemble Interval Histogram (referred
to as EIH) signal representations were evaluated for phone classification on the TIMIT
database (male speakers) under different conditions of distortion, in the speech recognition
framework provided by a continuous-speech HMM recognition system. These experiments
were conducted as a primary means to characterize the performance of the two front ends in
representing different sounds under various adverse conditions. Different signal conditions
were realized by using clean speech, speech passed through telephone channel simulation
and speech passed through room reverberation simulation (the two distortion simulations
were described in Chapter 4). The classifier was trained on clean train speech, and tested
on the three signal conditions of test speech. Clean train speech was also evaluated to
provide a benchmark performance. Context-independent grammar-free phone classification
was performed with static features alone, and with static+dynamic features. The influence
of automatic resegmentation of the phone boundaries was also tested. Section 5.1 describes
the experimental conditions in greater detail.

The average percent accuracy for each signal condition is listed in the tables in Sec-
tion 5.2 along with comments on the broad trends in these tables. For each percentage in
the top 1 tables, a corresponding phonetic confusion table is attached in the Appendix to
provide diagnostic information. Some remarks on the on-diagonal and off-diagonal behavior
of different phones are presented in Section 5.3.

5.1 Experimental Conditions

Classification experiments were conducted for the following two conditions.

1. Feature vectors: Four sets of feature vectors were used: two sets of static features
(spectral envelope, and spectral envelope and energy), and two sets of static+dynamic
features (spectral envelope and its derivatives, and spectral envelope and energy and
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their respective derivatives). The dynamic features were calculated as described in

Chapter 3.

Static features were evaluated separately to observe the relative contribution of dy-

namic information.

For each feature set, appropriate feature vectors were extracted from clean training

speech and used for training HMM's; the corresponding feature vectors were extracted

from test speech in different signal conditions and used for testing.

2. Phone boundaries: Two kinds of phone boundaries were used for classification: the

given hand segmented TIMIT phone boundaries, and phonetic boundaries obtained by

automatic resegmentation of both training and testing data within the HMM frame-
work. The resegmentation experiment was performed only for the full feature vector

(39 elements consisting of 12 cepstral coefficients and energy, and their respective first

and second time derivatives). The HMM's were trained on clean training speech.

The effects of automatic segmentation were studied because of two reasons : (1) it

provides boundaries that are consistent with a well-defined objective measure, and (2)

most current ASR systems use speech models based on automatic segmentation.

Likelihood scores for phonetic classification were obtained via Viterbi decoding. No

grammar or context information was used. Section 5.2 contains tables of average percent

correct classified phones under different conditions.

5.2 Average Results

Section 5.2.1 summarizes the feature vector conditions. It contains tables listing the

percentage of phones classified as the top 1 or 3 candidates with the TIMIT segmentation.

The static and dynamic features are listed in the columns, where Env is the cepstral

envelope (as represented by cepstral coefficients), Ener is the frame energy, A and A2 are

the first and second order time derivatives respectively. In the remainder of the chapter,

the braces are used to represent the feature set used. For example, [Env, Ener, A-A 2

Env, A-A2 Ener] represents the full static+dynamic feature set (39 parameters).

Section 5.2.2 summarizes the phone boundary conditions. It contains tables listing the

percentage of phones classified as the top 1 or 3 candidates with TIMIT hand segmentation

and with 1, 2 or 3 iterations of automatic resegmentation. This is done for the full feature

vector (39 coefficients). The successive iterations are listed in the columns.

The rows in all the tables represent different testing conditions. The first row, Tr,

represents the clean training speech. The other three rows represent the performance of the

three acoustic conditions of the testing speech: Cl is clean speech, Te is the speech passed

through the telephone channel simulation and Rv is the speech passed through the room

reverberation simulation.

In all tables, the average percentage is calculated as shown in Equation 5.1,
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(5.1)

where X is the average percent accuracy, ci is the number of times phone i gets classified

correctly out of a total of ti occurrences of phone i, i 100 is the percent correct for each

phone, and et_-- is the a-priori probability of the occurrence of phone i (out of 46 phones
46-1 ti

listed in Table 4.1).

5.2.1 Static and Dynamic Features

Table 5.1: Correct phone as top 1 candidate, TIMIT phone boundaries
Static Static+Dynamic

Features Features
Env Env , Ener Env Env , Ener

A-A2 A-A2
MEL EIH MEL EIH MEL EIH MEL EIH

Tr 52.1 48.4 55.3 50.4 69.5 61.7 72.9 64.0
Cl 46.3 43.2 49.6 45.3 62.3 55.0 66.2 57.6
Te 10.1 20.8 12.8 22.7 30.0 35.0 37.2 37.0
Rv 9.7 9.7 11.2 11.5 16.7 15.2 18.7 17.3

Table 5.1 shows the percent accuracy when the correct phone is classified as the top

candidate, using the original TIMIT hand-segmentation. Looking at the rows, the training
speech (Tr) yields the highest accuracy for all feature sets for both front ends, followed by

clean test speech (Cl). The two "noisy" versions of test speech yield lower accuracy than

clean speech, and out of them, Te performs better than Rv. Looking at the columns, the
static features augmented by the dynamic features yield higher accuracy than the static
features alone, which is expected [8].

Table 5.2: Relative increase in accuracy, in percent, with the addition of features to [Env]
(Feature-Env .100), correct phone as top 1 candidate, TIMIT phone boundariesEnv

Addition to Env of
Ener A-A 2 Env Ener,A-A 2 Env

A-A 2 Ener
MEL EIH MEL EIH MEL EIH

T r 6.1 4.1 33.4 27.5 39.9 32.2
C1 7.1 4.9 34.6 27.3 43.0 33.3
Te 26.7 9.1 197.0 68.3 268.3 77.9
Rv 15.5 18.6 72.2 56.7 92.8 78.4
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Table 5.2 lists increase in accuracy, in percent, relative to the accuracy with spectral
envelope (calculated as Feature-Env.100), obtained across different feature vector conditions.Env
Adding energy to the spectral envelope results in small improvements overall. Addition of

dynamic features results in large improvements, especially for MEL in the case of Te. EIH

shows smaller percent increases than MEL in most cases. Tr generally yields the lowest

improvements with the addition of parameters.
Table 5.3 lists the relative differences in performance between MEL and EIH, calculated

relative to the average of MEL and EIH as MEL+EIH.100 from Table 5.1.
2

Table 5.3: Relative differences, in percent, between MEL and EIH, (MEL-EIH .100), correct
2

phone as top candidate, TIMIT phone boundaries

Static Static+Dynamic
Features Features

Env Env, Ener Env Env , Ener
A-A2 A-A2

Tr 7.4 9.3 11.9 13.0

C1 6.9 9.1 12.4 13.9

Te -69.3 -55.8 -15.4 0.5

Rv 0.0 -2.6 9.4 7.8

Five remarks can be made about the differences in performance between MEL and EIH.

1. MEL yields higher accuracy than EIH for clean train and test speech. This is in

accordance with results seen in [16, 9].

2. EIH outperforms MEL for Te, test speech passed through telephone channel simula-

tion, for the first three feature vector types.

3. For Rv in Table 5.3, the numbers seem to be haphazard ; the percent accuracy from

Table 5.1 is a very low number, suggesting mostly chance "hits".

4. Adding dynamic information improves performance for both representations, as shown

in Table 5.2.

5. Adding dynamic information to MEL is more effective than it is for EIH, as Table 5.2

shows.

The increase in accuracy for clean speech exhibited by both speech representations with

the addition of dynamic features can be attributed to the incorporation of information

about coarticulation and changing spectral structures in the dynamic features. For Te,
which is essentially bandpass filtered speech (the simulation also adds white noise, which is

assumed to be negligible in the following discussion), the effect of dynamic information can

be explained in the frequency domain as follows.
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Y(w) = Htc(Lo) X(w) (5.2)

where w is the DFT frequency, X(w) is the Fourier transform of the original speech signal,
Htc(w) is the frequency response of the telephone channel (assumed to be linear) and Y(w)
is the Fourier transform of the distorted signal. In the cepstral domain, where the (real)
cepstrum is defined as the logarithm of the magnitude of the Fourier transform of the speech
signal, this relation becomes

y = htc + x (5.3)

where x is the cepstrum of the original speech signal, htc is the cepstrum of the channel
frequency response and y is the cepstrum of the distorted speech signal.

Delta cepstrum of the signal computed across times tl and t2 (this is for illustration
only, the actual delta cepstrum is calculated as described at the end of Chapter 3) is

Ay = yl - y2 = htl + x1 - (htc2 + x2) = x1 - x2 (5.4)

assuming a constant channel response, i.e., htcl = htc2 = constant.
One reason why dynamic features have a deleterious effect on the EIH representation

could be the frequency-dependent time window used in EIH analysis. As explained in Chap-
ter 3, an EIH feature vector is computed by averaging three consecutive frames of "cepstral"
coefficients. Each of these "cepstral" vectors corresponds to the histogram computed at a
rate of one every 3.2 ms. Each histogram is accumulated from level crossings made by
speech windowed with a back-in-time window. The width of this window is not constant
over frequency; it depends on CF, the characteristic frequency of the mel-like bandpass
filter corresponding to the level-crossing detector contributing to the histogram. The width
is greater at the lower frequencies than at the higher frequencies, as shown in Figure 5-1.

At time to, intervals produced by a level-crossing detector located at characteristic
frequency CFo are collected over a window of length 10 that ends at time to. This is done
once every 3.2 ms. Therefore, for low frequencies like 100 Hz, the past time considered
is 100 ms, for middle frequencies like 1 kHz, the time considered is 10 ms, and for high
frequencies like 4 kHz, the past time considered is 2.5 ms. Also for the (averaged) EIH
feature vectors at the 9.6 ms rate, this corresponds to past times equal to 100 ms, 10 ms
and 2.5 ms respectively. Delta cepstrum is calculated over 5 frames, centered at the current
frame. For MEL, this corresponds to 20 ms of speech before the current time to and 20
ms of speech after it, since MEL is calculated at the rate of a frame every 10 ms, with a
frequency-independent time window of 20 ms. For EIH, however, this method of derivative
calculation involves different time segments of speech for different frequencies which causes
a mismatch across different cepstral coefficients. An appropriate method of calculating delta
coefficients must be devised for EIH. The experiments in this work were performed with
the available method as a start.

Besides the correctly classified cases reported in the previous discussion, statistics were
collected for phones classified in the top 3 candidates. These serve to give an estimate of
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Figure 5-1: Variation of EIH time window with frequency

Table 5.4: Correct phone in top 3 candidates, TIMIT phone boundaries

Static Static+Dynamic
Features Features

Env Env , Ener Env Env , Ener
A-A 2 A-A2

MEL EIH MEL EIH MEL EIH MEL EIH
Tr 79.6 75.1 82.3 77.2 90.9 85.9 92.9 87.7
Cl 75.7 71.6 78.7 74.0 87.9 82.2 90.4 84.4
Te 30.2 44.6 34.6 47.5 56.7 59.7 64.4 62.3
Rv 23.1 24.6 27.8 27.8 31.9 34.2 39.5 37.1

Table 5.5: Relative differences, in percent, between MEL and EIH, ('MEL- EIH .100), correct
2

phone in top 3 candidates, TIMIT phone boundaries

Static Static+Dynamic
Features Features

Env Env, Ener Env Env , Ener
A-A 2 A-A 2

Tr 5.8 6.4 5.7 5.8
Cl 5.6 6.2 6.7 6.9

Te -38.5 -31.4 -5.2 3.3
Rv -6.3 0.0 -7.0 6.3
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the performance expected with grammar constraints on the classification process. Table 5.4

shows fairly high accuracies in the case of static+dynamic features, high 80's for the clean

test speech and 60's for telephone channel simulation speech. These numbers are still too low

to be considered for practical applications, especially since these are results for classification,

not recognition.

Table 5.5 shows the relative differences in performance between MEL and EIH, calcu-
lated relative to the average of MEL and EIH as MEL+EIH .100 from Table 5.4. Comparing

2
it to Table 5.3, it is seen that for Tr and Cl, the relative differences between MEL and

EIH across different feature vectors have a smaller range for top 3 candidates than for top

1 candidate. Also for Te, the differences are in general smaller in magnitude for top 3

candidates. For Rv, the performance trends of top 1 and top 3 candidates are different.
Section 5.2.2, average results obtained with different iterations of automatic resegmen-

tation of the training and testing data are displayed.

5.2.2 Automatic Resegmentation

This part of the study was done to examine the effects of automatic resegmentation

as compared to hand segmentation. Automatic resegmentation is of interest because of

two reasons: (1) it provides subword boundaries that are consistent with a well-defined

objective measure and can be changed automatically to achieve some sort of optimization

within the given framework, and (2) most current ASR systems use speech models based

on automatic segmentation, one of the goals of this study is to compare the two front ends

on a state-of-the-art system. The second reason also explains the use of static+dynamic

features (39) in the following experiments. It should be kept in mind, however, that the

results reported here were obtained with dynamic features that are not necessarily suited
to EIH, as discussed in Section 5.2.1.

Table 5.6 lists results obtained from iterations of resegmentation of training and testing
data, with the HMM model trained anew at each iteration, as explained in Chapter 4.

Table 5.6: Correct phone as top 1 candidate: Static+Dynamic features [Env, Ener, A-A 2

Env, A-A 2 Ener]

Automatic resegmentation: iteration number
None One Two Three

MEL EIH MEL EIH MEL EIH MEL EIH
Tr 72.9 64.0 72.5 65.7 78.3 73.4 79.2 74.2
Cl 66.2 57.6 67.6 60.9 72.0 67.3 72.8 67.9
Te 37.2 37.0 36.1 39.6 42.1 44.5 44.8 45.4
Rv 18.7 17.3 44.4 38.9 50.3 43.4 50.7 44.3

Overall, accuracy improves with an increasing number of iterations, which is expected

because the process of resegmentation and retraining yields a better fit between the HMM
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and the given training speech each time. Convergence is quickly reached; little improvement

can be observed in Table 5.6 going from the second to the third resegmentation. The last

column corresponding to the third resegmentation contains the highest results obtained with

the given classification system for top 1 candidates for MEL and EIH. EIH outperforms MEL

for Te, and the difference in performance is statistically significant for a significance level

of 0.001 with the McNemar test, as explained in greater detail in Section 5.2.3.

Table 5.7 shows the increase in accuracy, in percent, relative to the accuracy with TIMIT

segmentation (calculated as Iteratin-T IMIT .100), obtained with different resegmentation

iterations. The most dramatic change in performance going from TIMIT segmentation to

one resegmentation is observed in Rv for both MEL and EIH, an increase in accuracy

of 137.4% and 124.9% respectively. The smallest percent increase is seen in Tr for most

iterations. EIH shows a greater percent increase than MEL for Tr, Cl and Te.

Table 5.7: Relative increase in accuracy, in percent, with successive iterations of automatic
resegmentation (Iteraton-TIMIT.o1), correct phone as top 1 candidate, Static+Dynamic

features [Env, Ener, A-A 2 Env, A-A2 Ener]

Error rate reduction : iteration number
One Two Three

MEL EIH MEL EIH MEL EIH
Tr -0.5 2.7 7.4 14.7 8.6 15.9

Cl 2.1 5.7 8.8 16.8 10.0 17.9

Te -3.0 7.0 13.2 20.3 20.4 22.7

Rv 137.4 124.9 169.0 150.9 171.1 156.1

One possible reason for the marked effect of resegmentation in the case of Rv is the "echo

effect" of reverberation. From Figure 4-4 which shows the reverberation impulse response

used, an estimate of the "echo time" can be read off to be 20 to 40 ms. The spectrograms in

Figure A-2 show a "smearing" of 40 to 60 ms in reverberated speech, beyond the boundaries

for clean speech. This time range corresponds to 4 to 6 frames for MEL and EIH. TIMIT

phone boundaries given for clean test speech roughly shift forward by a few frames when

the speech undergoes reverberation. The first automatic resegmentation of the reverberated

speech takes into account the shifted boundaries and that is why classification accuracy

improves with the newly resegmented boundaries. Besides the phone boundaries, it also

changes the state boundaries within phones which were uniform for experiments with the

initial (TIMIT) segmentation.

The first iteration alleviates the predominant mismatch between the phone boundaries

of clean test speech and the reverberated test speech, after which the improvement becomes

gradual. It is worthwhile to recall that the training data is resegmented independently of

the classification performance of the test data, and the "improved" phonetic boundaries of

the reverberation speech (and other test sets) do not affect subsequent model building.

Sample TIMIT segmentation and one iteration of resegmentation are shown in the Ap-

56



pendix in Tables A.1 and A.2, for MEL and EIH representations of the test speech sentence

in different signal conditions. The waveforms and spectrograms of the sentence are shown
in Figures A-1 and A-2. The tables list each phone, its starting frame number, and the
number of frames in the phone. Major changes with resegmentation of the utterance are
the insertion of silence at different places for the two front ends, and for Rv, a forward shift

of an average of 3.4 frames for MEL and 4.9 frames for EIH.

Table 5.8 lists the relative differences in performance between MEL and EIH, calculated
relative to the average of MEL and EIH as MEL+EIH .100 from Table 5.6. The magnitude of

2
the difference roughly decreases with increasing iterations for Tr and Cl, the least difference
for both is at the second iteration. For Te, the difference shows a large decrease after one

iteration, after which its starts increasing. For Rv, the difference shows a large increase
after one iteration, and increases upto the second iteration.

Table 5.8: Relative differences, in percent, between MEL and EIH, (MEL-EIH H.0), correct
2

phone as top candidate, Static+Dynamic features [Env, Ener, A-A 2 Env, A-A 2 Ener]

Automatic resegmentation:
iteration number

None One Two Three
Tr 13.0 9.8 6.5 6.5
Cl 13.9 10.4 6.7 7.0
Te 0.5 -9.2 -5.5 -1.3
Rv 7.8 13.2 14.7 13.5

Table 5.9 shows the cases where the correct phone is in the top 3 candidates. The last

column projects the best performance of MEL and EIH in the HMM classification system

with the given training and testing data and training parameters, assuming some form of
lexical and semantic analysis on the output of the classifier. The accuracies for Te and Rv
are in the 70's and 80's; these numbers give promise for further research.

Table 5.9: Correct
Env, A-A2 Ener]

phone in top 3 candidates, Static+Dynamic features [Env, Ener, A-A 2

Automatic resegmentation: iteration number
None One Two Three

MEL EIH MEL EIH MEL EIH MEL EIH
Tr 92.9 87.7 92.3 88.4 95.1 92.8 95.6 93.5
Cl 90.4 84.4 90.7 86.5 93.2 90.6 93.7 91.4
Te 64.4 62.3 62.3 65.8 66.8 69.4 69.5 70.6
Rv 39.5 37.1 73.6 67.6 80.1 72.6 80.2 73.7

Table 5.10 lists the relative differences in performance between MEL and EIH, calculated
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relative to the average of MEL and EIH as MEL-EIH .100 from Table 5.9. Comparing it to
2

Table 5.8, it is seen that for Tr, Cl and Rv, the relative differences between MEL and EIH

across different resegmentations are smaller for top 3 candidates than for top 1 candidate.

For Te, the differences are in smaller in magnitude for top 3 candidates, for the first two

resegmentations.

Table 5.10: Relative differences, in percent, between MEL and EIH, ( MEL-EIH.100), cor-
2

rect phone in top 3 candidates, Static+Dynamic features [Env, Ener, A-A 2 Env, A-A 2

Ener]

Automatic resegmentation:
iteration number

None One Two Three
Tr 5.8 4.3 2.4 2.2

Cl 6.9 4.7 2.8 2.5
Te 3.3 -5.5 -3.8 -1.6

Rv 6.3 8.5 9.8 8.4

5.2.3 Statistical Significance

For the top 1 average percent correct results discussed in Section 5.2, the McNemar

significance test [11] was conducted. The McNemar test takes into account the speech

segments (tokens) correctly classified by one front end and incorrectly classified by the

other front end, to determine whether the difference in performance between two front ends

tested on the same data is statistically significant.
The following method is described in detail in [11], it is briefly outlined here. Let N10

be the number of tokens classified correctly by MEL and classified incorrectly by EIH, and

No0 be the number of tokens classified incorrectly by MEL and classified correctly by EIH.

Let k = N10 + No0 . If k is large enough, (k > 50), and N 10 is not too close to k or 0, let

W I o- 2 2 (5 5)

P, the probability that the two front ends have equal error-rates, can be calculated as

P = 2Pr(Z > w) (5.6)

where Z is a Gaussian random variable R(0, 1) and w is the realized value of W. For a

significance level of a, values of P smaller than a indicate that the performance of the

two front ends is significantly different, while values of P larger than a indicate that the

performance of the two front ends is very similar.
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At a significance level of 0.001, all the results in Tables 5.1 and 5.6 are statistically
significant, except for Te with [Env, Ener, A-A 2 Env, A-A 2 Ener], and Rv with the first
three feature sets with TIMIT segmentation.

5.3 Confusion Matrices

In Section 5.2, the average results yielded information on the overall performance of the
two representations for clean and "noisy" signal conditions. In Appendix B, more detailed
analysis is attempted by using confusion matrices. A confusion matrix shows how often a
given phone is confused with any of the other phones. The a[i, j] element of each N X N
confusion matrix A is the number of times the phone Pi gets classified as phone Pj, expressed
as a percentage of the total occurrences of phone Pi. A diagonal element, a[i, i], represents
percent accuracy of Pi, and an off-diagonal element, a[i, j], i # j, represents the percentage
of times Pi gets mis-classified as Pj. Elements along a row add up to 100%. An additional
(N + 1) column lists the number of occurrences of each phone Pi.

Table 5.11: Grouping of 47 phones into 18 groups used in the confusion matrices

Symbol Group Phones
FH Front,High vowels iy beet , ih bit
FM Front,Mid vowels eh bet
FL Front,Low vowels ae bat
CM Central,Mid vowels ah bud
CH Central,High vowels er bird
BH Back,High vowels uw boot , uh book
BM Back,Mid vowels ao baud, ow boat
BL Back,Low vowels aa father
Dp Diphthongs ey wait , ay bite

aw bout , oy boy
Lq Liquids r red , axr butter

I like , el bottle
G1 Glides y yes, w well
Ns Nasals m mob, em bottom

n nod, en button
nx winner, ng sing

FV Fricatives,Voiced z zoo, zh measure
v very , dh then

FU Fricatives,Unvoiced s sea, sh she
f fin, th thin

SV Stops,Voiced b bee, d day
g game, dx muddy

SU Stops,Unvoiced p pea , t tea, k key
Af Affricates ch child , jh joke

Wh Whisper sound h hot

Confusion matrices were extracted for the 46
ble 4.1 and collapsed into confusions between 18

phones (leaving out silence) listed in Ta-
acoustically similar subgroups formed as
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shown in Table 5.11. The acoustic groups were created according to Chapter 2 in [30],

especially the vowel groups.

The confusion matrices are organized according to the signal conditions of testing speech.

Appendix D contains Tr, clean training speech. Appendix E contains Cl, clean test speech.

Appendix F contains Te, test speech passed through the telephone channel simulation.

Appendix G contains Rv, test speech passed through the room reverberation simulation.

In each appendix, confusion matrices for the four feature sets are listed first, in order as

[Env], [Env, Ener], [Env, A-A 2 Env], and [Env, Ener, A-A 2 Env, A-A 2 Ener], followed by

confusion matrices for one, two and three iterations of automatic resegmentation. For each

condition, MEL and EIH are listed on the same page to make comparison easier.

A qualitative analysis of the confusion matrices involving observation of accuracies of

distinct phone groups, of major confusions among groups, and of the confusion patterns in

noisy conditions is provided in Appendix B. Some inferences drawn therein highlight the

usefulness of confusion matrices for diagnostic purposes. For example, while the low values

of average percent accuracies for Rv for both speech representations have no meaning for

practical purposes, the confusion matrices corresponding to these averages contain informa-

tion that differentiates the two speech representations. Quantitative methods can be used

for rigorous analysis of the confusion matrices, but that is the subject of future research.

5.4 Summary

The results of the evaluation of the two speech representations, MEL and EIH, on

a phonetic level using average percent classification accuracies were discussed in detail.

Results of the McNemar significance test were reported. A qualitative analysis of confusion

matrices for phone groups was provided (in the Appendix). Some previous results were

confirmed, and interesting trends emerging in this study were noted, as summarized in the

next chapter.
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Chapter 6

Summary and Future Work

6.1 Summary of Work

The goal of this study was to compare the performance of two speech representations,

the traditional Fourier-based mel cepstrum and the auditory-based Ensemble Interval His-
togram (EIH), for large vocabulary, speaker independent continuous speech recognition
using a state-of-the-art speech recognition system.

Phonetic classification was performed instead of recognition to focus on the speech
representation, eliminating other issues like grammar, phone insertion and phone deletion
involved in the recognition process.

Similar first-stage filters and frame-rates were used for the two representations, and both
were transformed into the standard cepstral coefficients (12 for each). Dynamic features

were calculated in identical fashion for the two representations.

Static features only, and static and dynamic features were evaluated separately to ob-
serve the relative contribution of dynamic information on the two representations under
different signal conditions.

The TIMIT database was used because it is a standard, phonetically rich database,

available with phonetic transcriptions.
Simulations of acoustic distortions found in realistic situations - through a telephone

channel and under room reverberations - were used.
TIMIT segmentation as well as automatic resegmentations within the HMM classifica-

tion framework were used.

Along with the average performance, confusion matrices were extracted for phone groups

to observe the behavior of individual phone classes.

6.2 Conclusions

To summarize, the comparative study of the two speech representations, MEL and EIH,
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yielded the following results:

* In general, addition of dynamic parameters to the feature vector results in an in-

crease in performance, and automatic resegmentation also results in an increase in

performance.

* MEL outperforms EIH in clean continuous speech, as it does for isolated speech re-

ported in [9, 16]. The difference is small with static features alone, and increases with

the addition of dynamic features. The smaller contribution of dynamic features for

EIH as compared to MEL is a trend found in all acoustic conditions. One explanation

for it is that the method of computation of cepstral time derivatives is inappropriate
for EIH. Delta cepstrum is calculated over five frames centered at the current frame,

thus accounting for 20 ms of speech behind and 20 ms of speech ahead of the current

time, at a frame rate of 10 ms. Delta-delta cepstrum is also calculated over time

frames taken to be uniform over all cepstral coefficients. For EIH, however, the time-

window is frequency dependent and it varies inversely with frequency. Determining

the set of dynamic parameters appropriate to EIH is beyond the scope of this study.

Here, dynamic features for EIH were computed using the same temporal filters as

those used for MEL.

* EIH outperforms MEL for the speech passed through the telephone channel simula-

tion. This is in agreement with [16] where the auditory models including EIH per-

formed better than MEL under spectral distortion (for conditions with higher baseline

error rates). Here the difference is the greatest for static features (about 10% for top 1

candidate and 14% for top 3 candidates). The magnitude of this difference decreases

with the inclusion of dynamic features, possibly for reasons discussed earlier.

* On clean speech, for both front ends, the frequency with which voiced fricatives are

confused as unvoiced fricatives is higher than the frequency with which unvoiced

fricatives are confused as voiced fricatives. Also, the frequency with which voiced

stops are confused as unvoiced stops is higher than the frequency with which unvoiced

stops are confused as voiced stops.

* Under the telephone channel distortion, the sounds most affected are voiced and

unvoiced fricatives for MEL, voiced and unvoiced stops for EIH, and affricates for

both. With static features only, for MEL, most sounds are mis-classified as voiced

stops and nasals. For EIH with static features, most sounds are mis-classified as nasals

and liquids.

* Both front ends perform poorly for speech passed through the room reverberation

simulation, with the TIMIT segmentation. The numbers are very low, suggesting

mostly chance "hits". The performance of both front ends improves markedly with

automatic resegmentation of the test and train data.
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* Under the room reverberation distortion, the sounds most affected for MEL are most

of the vowels; for EIH they are some of the vowels, the voiced stops and voiced

fricatives. For all feature sets for both MEL and EIH, many sounds are mis-classified

very frequently as the whisper sound (h as in help).

* From some examples of clean speech studied in detail, the addition of dynamic in-

formation to the feature vector improves performance for sounds with slowly varying

formant structures, such as diphthongs, but not for sounds containing abrupt changes

in their spectral configuration, such as stops and affricates.

Previous studies suggested that EIH performs worse than MEL in clean speech, but is

more robust in adverse conditions. These studies were conducted on a limited task, i.e.,

speaker dependent isolated words (small vocabulary) speech recognition. Our study extends

these observations to the task of speaker (male) independent, continuous speech recognition.

The most notable outcomes of our study are (1) the representation of spectral envelope

by EIH is more robust to noise - previous evidence of this fact is now extended to the

case of speaker independent, continuous speech, (2) adding dynamic features (represented

by delta and delta-delta cepstrum) substantially increases the performance of MEL in all

signal conditions that were tested. Adding delta and delta-delta cepstrum of EIH cepstrum
- computed by using the same temporal filters as those used for MEL - results in much

smaller improvement. We suggest that in order to improve recognition performance with

an EIH front end, appropriate integration of dynamic features must be devised.

6.3 Future Work

As shown by the results of this work, the next step is to determine a suitable method
of incorporating dynamic information into the EIH representation.

A more objective and better defined analysis of confusion matrices is needed for quan-

tifying the information contained therein.
Classification tests with matched acoustic conditions of training and testing speech,

under distortion, can be performed to observe phonetic confusions for the two speech rep-
resentations.

Two more general avenues of research are (1) to use a different distance measure in the

Viterbi search in the HMM recognition framework, and (2) to try context-dependent phone
modeling.
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Appendix A

Waveforms, spectrograms and

phonemic boundaries

This Appendix is included for illustration purposes. Waveforms, spectrograms and

phonemic boundaries for the utterance "Y'all should have let me do it" under different

signal conditions are attached. In the main thesis, these are referred to in Sections 4.3 and

5.2.2. A frame-energy plot for MEL and EIH is also attached; it is referred to in Section 3.3.
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Figure A-1 shows the waveforms of a test utterance in three signal conditions: clean,

under telephone channel simulation, and under room reverberation simulation. The abscissa

in all cases represents time in seconds, the ordinate represents the signal value.
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Figure A-1: Waveforms of clean, telephone-channel and room-reverberation versions of the
sentence " Y'all should have let me do it."
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Figure A-2 shows the spectrograms of a test utterance in three signal conditions: clean,
under telephone channel simulation, and under room reverberation simulation. The abscissa
in all cases represents time in seconds, the ordinate represents frequency in hertz.

Time: 0.0040 Freq: 0.00 Value: 25 D: 0.00000 L: 2.06625 R: 2.06625 (F: )
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Time: 0.0040 Freq: 0.00 Value: 9 0:0.00000 L: 2.06625 R: 2.06625 F:

J
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Figure A-2: Spectrograms of clean, telephone-channel and room-reverberation versions of
the sentence " Y'all should have let me do it."
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Table A.1 shows sample TIMIT segmentation and one iteration of automatic resegmen-

tation for the utterance represented by MEL.

Table A.1: Phone boundaries for the sentence "Y'all should have let me do it" under
different signal conditions, represented by MEL

TIMIT 1 Automatic resegmentation for:
segmentation Cl Te Rv

Unit First No. of First No. of First No. of First No. of
Frame Frames Frame Frames Frame Frames Frame Frames

silence 1 14 1 13 1 14 1 15

y 15 9 14 11 15 10 16 12
ao 24 18 25 18 25 20 28 6

silence 34 5
1 42 9 43 7 45 5 39 16

sh 51 9 50 11 50 9 55 7

uh 60 7 61 6 59 8 62 8
dx 67 3 67 4 67 4 70 5
ax 70 6 71 5 71 5 75 5

v 76 7 76 7 76 3 80 5
1 83 5 83 4 79 10 85 4

eh 88 8 87 8 89 5 89 11
t 96 5 95 5 94 6 100 3

silence 100 1
m 101 5 100 6 101 4 103 5
iy 106 11 106 11 105 13 108 16
d 117 8 117 7 118 5 124 5

uw 125 9 124 13 123 11 129 11
ah 134 12 137 8 134 9 140 8

silence 148 1
t 146 13 145 12 143 14 149 14

silence 159 47 157 50 157 50 163 44
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Table A.2 shows sample TIMIT segmentation and one iteration of automatic resegmen-

tation for the utterance represented by EIH.

Table A.2: Phone boundaries for the sentence "Y'all should have let me do it" under
different signal conditions, represented by EIH

TIMIT 1 Automatic resegmentation for:
segmentation Cl Te Rv

Unit First No. of First No. of First No. of First No. of
Frame Frames Frame Frames Frame Frames Frame Frames

silence 1 14 1 13 1 17 1 15

y 15 10 14 12 18 8 16 12

ao 25 19 26 20 26 22 28 26
1 44 9 46 6 48 4 54 4

sh 53 9 52 12 52 11 58 9
uh 62 8 64 6 63 7 67 7
dx 70 3 70 4 70 4 74 3
ax 73 6 74 4 74 4 77 5
v 79 7 78 8 78 7 82 3
1 86 6 86 8 85 9 85 9

eh 92 8 94 5 94 6 94 11
silence 105 1

t 100 6 99 7 100 4 106 3
m 106 4 106 5 104 7 109 4
iy 110 12 111 11 111 12 113 14

silence 127 2
d 122 8 122 9 123 3 129 3

uw 130 9 131 14 126 19 132 22
ah 139 13 145 7 145 8 154 3
t 152 13 152 13 153 10 157 8

silence 165 49 165 52 163 54 165 52
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A plot of the frame energy of an utterance is shown in Figure A-3 for MEL and for EIH.

Mel Cepstrum

20 40 60 80 100 120 140 160 180 200
Number of frames (rate = 10 milliseconds)

EIH

0
(0
a)
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-0-J
'a
N
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E
0ozz

20 40 60 80 100 120 140 160 180 200
Number of frames (rate = 9.6 milliseconds)

Figure A-3: Frame energy for the sentence "Y'all should have let me do it" (clean), repre-
sented by MEL and by EIH
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Appendix B

Observations from confusion

matrices

As described in Section 5.3, the confusion matrices are organized according to the sig-

nal conditions of testing speech, Tr (clean training speech), Cl (clean test speech), Te

(test speech passed through the telephone channel simulation) and Rv (test speech passed
through the room reverberation simulation), in Appendices D, E, F and G respectively.

Here, some observations drawn from these confusion matrices are listed.

Section B.1 points out some observations on the on-diagonal behavior of the confusion
matrices. Changes in performance of both speech representations with different feature

vectors or resegmentation iterations are observed for particular sounds.

Section B.2 points out some observations on the off-diagonal behavior of MEL and EIH.
Frequent confusions for particular classes and changes in the "distribution" of confusion

matrices with different experimental conditions are observed.

B.1 On-diagonal trends of confusion matrices

The on-diagonal elements of the confusion matrices are listed in Tables C.1, C.2, C.3

and C.4, to compare the performance of the two front ends for different acoustic groups.

In all the tables, the four feature sets with TIMIT segmentation are listed first, in order as

[Env], [Env, Ener], [Env, A-A 2 Env], and [Env, Ener, A-A 2 Env, A-A 2 Ener], followed by
one, two and three iterations of automatic resegmentation with the full feature set [Env,
Ener, A-A2 Env, A-A2 Ener]. The percent accuracies for phone groups are rounded to
integers, and the larger number out of MEL and EIH is printed boldface. These numbers
are a breakdown of the average classification accuracies in Tables 5.1 and 5.6 into accuracies
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for each of the 18 acoustic groups

Two kinds of statistics were extracted from the on-diagonal accuracies of MEL and

EIH for 18 phone groups, relative differences in performance between MEL and EIH for

all conditions, and relative performance increases with the addition of features or with

iterations of resegmentation for MEL and for EIH.

The relative differences in performance between MEL and EIH for 18 acoustic groups

are displayed in Tables C.5, C.6, C.7 and C.8. These are calculated relative to the average

of MEL and EIH as MELEIH .100.The negative differences are printed boldface; they rep-

resent cases where EIH outperforms MEL. These tables correspond to average performance

Tables 5.3 and 5.8.

The relative increases in accuracy for MEL and for EIH for 18 phone groups are dis-

played in Tables C.9, C.10, C.11 and C.12. In each table, the first three columns contain

accuracy increases for three feature sets relative to the accuracy with spectral envelope,

calculated as Feature-Env .100, and the last three columns contain accuracy increases for 3

resegmentation iterations relative to the accuracy with TIMIT segmentation, calculated as

Iteration-TIMIT o100 The larger number out of MEL and EIH is printed boldface. These
TIMIT

correspond to Tables 5.2 and 5.7.

Some observations from these three sets of tables are listed below for Cl, Te and Rv

(Tr is not discussed).

1. Cl, clean test speech

* Relative differences between MEL and EIH (Table C.6)

EIH scores higher than MEL with at least one of the static features for the

vowels CH, CM, FH, BM and BL (in descending order). EIH scores close (within

5% relative difference) to MEL for FL, Lq and FU for both static features. It

performs much worse (more than 10% relative difference) than MEL with either

of the static features for Wh, Ns, Gl, FM, BH, Af, Dp, FV and SV.

With both sets of static+dynamic features, EIH scores higher than MEL for the

vowel CH. It scores close (within 5%) to MEL with either feature set for the

vowels BL, Dp, FL, CM, and FH. It performs much worse (more than 10%) than

MEL with either set for Wh, FM, SV, BH, Gl, FU, SU, Ns, Lq and BM.

At the second and third iterations of resegmentation, EIH outperforms MEL for

the vowels CH, FL, FM and CM. In the third resegmentation, EIH scores close

(within 5%) to MEL for Dp, Lq, BM, FH and Gl, and it scores lower than 10%

(relative difference) below MEL for SV, Wh and BL.

CH is classified better by EIH for all conditions.

Relative increases in accuracy for MEL and for EIH (Table C.10)

'The percent accuracy for each phone group is computed by weighing the accuracy of each constituent

phone by its relative occurrence, as explained for the average accuracies in Section 5.2.
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With the addition of Ener to Env, the sounds that show large improvements
are CM, Wh, G1, FV and SU for MEL and Wh, Af, CH and CM for EIH (in

descending order of relative increase). The smallest increases are shown by BL,
FM, Dp, CH and FL for MEL, and BH, FM, FL, Dp and FU for EIH (in ascending

order of relative increase).

With the addition of Ener and all the derivatives, the sounds with the most
improvements are CM, BM, FH and FM for MEL, and Wh, CM, BL and G1 for

EIH. Those with the smallest improvements are Af, Ns, FU, SU, Dp and FL for

MEL, and FU, SU, SV, Lq, BH and Af for EIH.

In the third resegmentation, the highest improvements relative to TIMIT seg-

mentation are shown by CM, BL, BH and SV for MEL, and CM, FM, BH and

Wh for EIH. The lowest increases are shown by Af, Ns, Dp and CH for MEL,

and Af, Dp, BL and Ns for EIH.

Stops are composed of a closure followed by a burst, visible as a dark vertical line in

the spectrogram, seen on pages 84 through 90 in [30]. Affricates are considered to be

a combination of a stop followed by a fricative, and they also exhibit sharp spectral
changes from stop closure to stop burst as seen on pages 242 and 243. It is reasonable

to expect that dynamic information which represents the time changes of the spectral
envelope would significantly improve classification accuracy. This does not, however,

seem to be the case in Table C.10; in the second and third columns looking within

the phone groups for each front end, for MEL, Af shows low error-rate reduction, and
for EIH, SV shows low error-rate reduction. Af shows a high error-rate reduction for
EIH.

2. Te, test speech passed through telephone channel simulation

* Relative differences between MEL and EIH (Table C.7)

With both sets of static features, EIH outperforms MEL for all sounds except

SV, G1, CH and Ns with the first set and SV, G1, Af and Ns with the second set.

With the second set of static+dynamic features, MEL outperforms EIH for SU,

SV, G1, Lq, FL, CM, Ns, FM and Wh.

In the third resegmentation, MEL outperforms EIH for SU, SV, Af, Lq, FL, G1,
Ns and BL.

Sounds that are classified better by EIH across almost all conditions are the
vowels FH, CM, CH, BH, BM, Dp and the fricatives FV, FU.

It must be kept in mind that high accuracies for certain sounds do not necessarily
reflect better performance. The next section, B.2, which contains observations

on the off-diagonal behavior of confusion matrices, points out examples of phone
groups that a large number of other groups get classified as, including the correct

group itself. As a result, the accuracy of these groups seems high. This is
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significant for the noise conditions, Te and Rv. Here, the sounds in question

are SV, Ns and Wh for MEL, and Ns, SV, Lq and Wh for EIH.

* Relative increases in accuracy for MEL and for EIH (Table C.11)

With the addition of Ener to Env, the sounds that show large improvements are

Af, FH, BH and SV for MEL and Af, CH, BH and FH for EIH. The smallest

increases are shown by FV, FU, BL and Ns for MEL, and SU, GI, SV, FV and

FU for EIH.

With the addition of Ener and all derivatives to Env, largest relative increases

are shown by CM, FH, SU, FV and BH for MEL, and Gl, CH, FV, Af and BH

for EIH. The lowest increases are shown by Ns, BL, Lq and SV for MEL and SU,

SV, Ns and Lq for EIH.

In the third resegmentation, the highest increases relative to TIMIT segmentation

are shown by FU, Af, FV and SU for MEL and SV, SU, CM and Gl for EIH.

The lowest improvements are shown by CH, Wh, FM, Dp and Ns for MEL and

FH, Dp, CH, Ns and BM for EIH.

An interesting trend in Table C.3 is the consistently low accuracy of FV and FU for

MEL, of SU and SV for EIH, and of Af for both MEL and EIH. The spectrograms

of FU, unvoiced fricatives, on page 93 of [30] show very little energy in low frequency

regions, and a large amount of energy distributed almost uniformly in frequency re-

gions above 1200 Hz. FV, voiced fricatives shown on page 94, also exhibit a large

distribution of energy in high frequency regions above 1200 Hz, and some in the low

frequency regions below 500 Hz (called a "voice bar"). Affricates are similar to frica-

tives in the region after the stop burst, where they have energy primarily in the high

frequency regions.

The telephone channel simulation adds white noise to clean speech, and then filters

the noisy speech with a bandpass filter that has a passband of 300-2600 Hz, shown

in Figure 4-2. The effect of channel filtering is additive in the cepstral domain and

is countered slightly for these sounds by the inclusion of cepstral derivatives in the

feature vector. These accuracies are such low numbers possibly because the speech

spectrum outside the passband, below 300 Hz and above 2600 Hz, gets irretrievably

attenuated by the bandpass filter. Also, the mel-scale filterbank used as the first stage

in both front ends models the frequency content of speech beyond 1 kHz in much less

detail than the part of the spectrum before 1 kHz.

3. Rv, test speech passed through room reverberation simulation

Relative differences between MEL and EIH (Table C.8)

EIH outperforms MEL for all vowels, with both sets of static features. The

absolute classification accuracies are very low.

With the second set of static+dynamic features, EIH outperforms MEL for BL,

BM, FL, Dp, CH and FU.
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At the third resegmentation, EIH outperforms MEL for BL, BM, Dp, CH, FL,
FU, and BH.

Across all conditions, EIH outperforms MEL for FL, CH, BM, BL, Dp and FU.

It consistently falls short of MEL for Af, FV, SV, SU, Wh and Ns.

The absolute percent accuracies for all feature sets obtained with TIMIT segmen-
tation are very low numbers, so the observations made here could be misleading.

Also, as pointed out in the previous section on Te, the accuracies of certain
sound groups must not be taken at face value because several groups are very
frequently classified as these groups. For Rv, the accuracies for all feature sets

with TIMIT segmentation are in question, and Wh is the most confused-with
sound. The others are SU, FU and FV for MEL and FU, BM, BL and Dp for
EIH (from confusion matrices G.1 through G.14).

* Relative increases in accuracy for MEL and for EIH (Table C.12)

With the addition of Ener and all derivatives to Env, the sounds with the largest
improvements are CM, FM, FH, FL and Dp for MEL and FL, FH, FM, SV and
CH for EIH. Lowest improvements are shown by Wh, FU, Af, FV and SV for

MEL, and FU, Ns, Wh, Lq and G1 for EIH.

With the third resegmentation, the performance improvements relative to TIMIT
segmentation are the largest for CM, FL, FM, BL and BM for MEL, and for CM,
Ns, SV, FM and G1 for EIH. The lowest increases are shown by Af, Wh, BH,

CH, Dp and FV for MEL for MEL and BL, Dp, CH, BM, FL and FU for EIH.

It would be reasonable to expect that the sounds with very short durations, such

as stops, would suffer the most under reverberation, but here stops seem to perform
better than some of the vowels, especially SV for MEL and SU for EIH. In Table C.4,

with the full static+dynamic feature set (the fourth column), MEL yields the lowest

scores in the case of CM, BL and FM and EIH yields the lowest scores for CM, FM

and SV. Sounds that score the lowest in the third resegmentation are BL, CH, FM

and BM for MEL, and CM, FM, Af and SV for EIH.

B.2 Off-diagonal trends of confusion matrices

In this section, some prominent characteristics of the confusion matrices are listed for
Cl, Te and Rv. One set of static features and one set of static+dynamic features is

considered in detail in most cases - [Env, Ener], and [Env, Ener, A-A 2 Env, A-A 2 Ener].

The pairs of phone groups that are confused most often with each other are enclosed in
square brackets [P1,P2].

1. Cl, clean test speech

* [Env, Ener] (Matrices E.3,E.4)
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For MEL, [CH,Lq] and [Dp,BL] are the main confusable pairs. For EIH, [Dp,FH]

and [Dp,BL] are the main confusable pairs, Dp is confused equally with FH, CM

and BL. For both MEL and EIH, [FV,FU] and [SV,SU] are confusable pairs. For

both MEL and EIH, FV is classified as FU more often than FU is classified as

FV. For MEL, SV is classified as SU more often than SU is classified as SV.

[Env, Ener, A-A 2 Env, A-A 2 Ener] (Matrices E.7 and E.8)

For both MEL and EIH, [FH,Dp], [CH,Lq], [FV,FU] and [SV,SU] are the main

confusable pairs. For both MEL and EIH, FV is classified as FU more often than

FU is classified as FV, and SV is classified as SU more often than SU is classified

as SV. For MEL, [FM,FL] is also a confusable pair, FL is confused equally with

FM and Dp.

With static+dynamic features for both MEL and EIH, CM is confused with

several other groups. For EIH, Wh is very scattered as well. Here in Matrices B.1

and B.2, the detailed confusions for some phones that CM is frequently confused

with in matrices E.7 and E.8 are shown. CM consists of the TIMIT phones ah

(but), ax (about), ax-h (suspect) and ix (debit). For the classification experiments

with 46 phones, ax-h and ix were combined into ax as shown in Table 4.1.

Performance of MEL and EIH for the sound group BL is considered in some detail

here. BL consists of the back, low vowel, aa (father). From the spectrograms on pages

102 and 111 in the book [30], it is expected that BL, shown as /a/ in the book, would

be confused the most with BM, specifically with the vowel shown as the inverted "c"

(ao in baud), because these two sounds have similar locations of formants.

For MEL, with static features as shown in matrix E.3, BL (accuracy 40%) is confused

the most with Dp (23%), followed by BM (16%). With the addition of dynamic

information, in matrix E.7, BL (accuracy 62%) is confused the most with BM (16%)

followed by Dp (12%). The decrease in mis-classified instances of BL is the most

for Dp, (0% decrease in BM, 11% decrease in Dp). This is reasonable because the

addition of dynamic information is expected to reflect the changing formant locations

of diphthongs.

For EIH, with static features in matrix E.4, BL (accuracy 43%) is confused the most

with Dp and BM (equally with both, 17%). With the addition of dynamic information,

in matrix E.8, BL (accuracy 61%) is confused the most with BM (15%) followed by

Dp (13%). The decrease in mis-classified instances of BL is more for Dp, (2% decrease

in BM, 4% decrease in Dp). The overall increase in EIH accuracy with the addition of

dynamic information is less than that in MEL, possibly because of reasons discussed
in Section 5.2.1.

* 3 iterations of automatic resegmentation (Matrices E.13 and E.14)

For both MEL and EIH, the confusable pairs are [FM,FL], [CH,Lq], [FV,FU] and

[SV,SU]. The voiced and unvoiced fricatives and the voiced and unvoiced stops
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Table B.1: Detailed confusions for CM, central vowels; Test set: Clean; TIMIT segmenta-
tion; Static+Dynamic features [Env, Ener, A-A 2 Env, A-A2 Ener]; MEL

ah ax er iy ih uh uw ey aw ay oy 1 r Total

ah 75 4 2 3 5 5 2 3 397

ax 8 50 5 17 7 4 2 1 1 2 2032

er 84 1 12 304

iy 2 85 3 7 1087

ih 3 12 1 6 59 3 5 8 1 1 731

uh 12 11 3 10 49 9 2 2 2 117

uw 3 7 5 2 78 1 1 327

ey 1 7 4 83 2 2 505

aw 6 91 2 116

ay 5 2 2 89 1 404

oy 1 1 8 86 2 1 80

1 1 1 1 1 90 814

r 1 12 1 82 995

Table B.2: Same conditions as in Matrix B.1; EIH

ah ax er iy ih uh uw ey aw ay oy 1 r Total

ah 69 5 2 1 3 1 4 6 4 1 3 385

ax 8 51 2 6 14 5 5 2 1 2 2 2 1873

er 83 1 2 11 333

iy 3 82 5 9 1051

ih 6 13 2 8 53 2 5 9 2 723

uh 19 14 8 40 10 2 3 2 3 115

uw 2 6 2 7 6 2 71 1 1 294

ey 1 9 4 79 2 3 499

aw 8 90 120

ay 7 1 2 86 2 408

oy 1 1 1 8 89 79

1 1 3 2 1 3 1 86 1 752

r 1 2 14 1 1 77 958
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show the same behavior as discussed for [Env, Ener, A-A 2 Env, A-A 2 Ener]. For

MEL, other confusable pairs are [FH,CM] and [BM,BL], and for EIH, [FH,Dp]

is another confusable pair.

2. Te, test speech passed through telephone channel simulation

* [Env, Ener] (Matrices F.3,F.4)

For MEL, all phone groups are confused very frequently with SV, several groups

are confused frequently with Ns and some with Lq. Very few phone groups are

classified as FV, BH or FH, and none are classified as CM or FU (possibly for

reasons discussed in Section B.1). For EIH, most phone groups are confused

very frequently with Ns, and less frequently with Lq and SV. Very few groups

are classified as SU. The consonants are confused much more frequently with Ns

and Wh than in the case of MEL.

* [Env, Ener, A-A 2 Env, A-A 2 Ener] (Matrices F.7 and F.8)

The addition of dynamic features to spectral envelope and energy reduces con-

fusion dramatically. For MEL, much fewer groups are confused with SV and

Ns than with static features. Very few groups are classified as FU or FV. Most

of the consonants are confused frequently with Wh. Some confusable pairs are

[FM,FL], [FL,Dp] and [CH,Lq]. For EIH, much fewer groups are confused with

Ns than with static features, also fewer groups are confused with SV or Lq. Very

few groups are classified as SU. [FH,Dp] is the only confusable pair observed.

* 3 iterations of automatic resegmentation (Matrices F.13 and F.14)

For MEL, confusions of consonants with Wh decrease from those with TIMIT

segmentation. Confusions with SV and Ns increase slightly. Some confusable

pairs are [FL,Dp], [CH,Lq] and [Ns,SV]. For EIH, confusions with most of the

vowels (especially CM, BH and Dp) and Lq decrease. The confusable pairs are

[FH,Dp] and [CH,Lq].

3. Rv, test speech passed through reverberation simulation

* [Env, Ener] (Matrices G.3,G.4)

For both MEL and EIH, all phone groups are confused very frequently with

Wh. With smaller frequency, several groups are confused with SU, SV and FV

for MEL and Dp, Lq and SU for EIH. For MEL, the majority of phone groups

are classified as groups towards the right side of the matrix, in the consonants.

For EIH most confusions fall into the middle of the matrix, in the back vowels,

semivowels and nasals. For MEL, very few groups are classified as vowels. For

EIH, few groups are classified as the front and central vowels and SV.

* [Env, Ener, A-A 2 Env, A-A 2 Ener] (Matrices G.7 and G.8)

With the addition of derivatives to envelope and energy, the general pattern of
the confusion matrices does not change appreciably.

78



After one iteration of automatic resegmentation, a dramatic change takes place in the
distribution of phone groups in the confusion matrices, seen by comparing matrices G.7
and G.9, and matrices G.8 and G.10.

* 3 iterations of automatic resegmentation (Matrices G.13 and G.14)

For MEL, most groups are confused with Wh, then with FU, SU and Ns. For
EIH, most groups are confused with Wh, most vowels are confused with the back
vowels, Dp and Lq.
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Appendix C

Diagonal elements of confusion

matrices
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Table C.1: Train set: Clean; Percent correct for 18 phone groups; correct phone as top 1
candidate

Static Static+Dynamic Automatic resegmentation:
Features Features iteration number

Env Env, Ener Env Env , Ener One Two Three

A-A 2 A-A 2

MEL EIH MEL EIH MEL EIH MEL EIH MEL EIH MEL EIH MEL EIH

FH 55 58 58 59 73 68 76 69 75 69 79 77 80 77
FM 41 35 41 36 55 49 59 50 57 53 63 62 64 62
FL 62 63 64 64 76 71 76 72 76 72 79 79 80 80
CM 29 32 35 35 47 44 54 48 51 50 63 63 64 65
CH 60 63 62 66 77 76 80 78 79 77 80 85 81 85
BH 52 47 52 47 71 63 75 64 73 65 81 75 81 76
BM 58 59 59 61 76 71 77 75 77 76 80 79 81 80
BL 48 48 48 49 69 67 72 68 69 67 75 74 77 75
Dp 74 70 74 69 89 86 88 87 89 89 90 90 90 90
Lq 62 59 64 60 76 71 78 73 77 74 83 81 84 81
G1 64 54 66 55 83 74 86 78 87 81 91 87 91 88
Ns 83 71 86 75 91 84 93 86 94 88 95 91 95 91
FV 61 54 65 58 74 68 77 70 77 72 83 78 84 79
FU 82 78 84 80 91 82 92 83 93 85 95 91 95 91
SV 63 56 65 57 76 66 80 68 79 68 86 74 86 74
SU 73 69 77 71 81 74 85 76 86 79 89 81 89 82
Af 84 75 87 79 88 80 92 82 90 82 92 86 93 86
Wh 63 39 69 47 79 62 87 70 86 72 92 84 92 84

Table C.2: Test set: Clean; Percent correct for 18 phone groups; correct phone as top 1
candidate

Static Static+Dynamic Automatic resegmentation:
Features Features iteration number

Env Env, Ener Env Env , Ener One Two Three

A-A2 A-A 2

MEL EIH MEL EIH MEL EIH MEL EIH MEL EIH MEL EIH MEL EIH

FH 49 53 51 54 67 64 70 65 70 66 73 72 76 72
FM 35 31 34 31 50 38 50 41 50 47 51 54 55 55
FL 60 58 60 58 71 68 72 70 75 71 73 78 76 78
CM 26 29 32 31 43 42 49 45 48 48 60 60 60 62
CH 45 50 45 55 62 64 61 67 64 70 64 73 62 75
BH 48 44 50 43 59 52 63 52 64 59 72 64 72 68
BM 50 53 52 55 69 65 74 67 75 74 76 75 78 75
BL 45 41 40 43 60 60 62 61 63 61 70 69 71 64
Dp 69 62 68 62 82 80 83 81 85 83 85 85 85 85
Lq 58 56 60 57 70 64 73 66 72 70 77 76 78 76
G1 59 50 64 53 79 69 83 74 85 78 88 84 89 85
Ns 80 66 83 70 88 79 91 83 92 85 93 88 93 88
FV 56 51 60 54 64 61 68 63 71 66 75 71 75 70
FU 80 77 81 77 88 80 91 82 92 85 93 90 94 89
SV 59 54 62 56 69 59 72 61 73 63 80 67 80 67
SU 70 66 75 68 79 72 84 74 86 77 87 79 88 80
Af 83 69 85 78 83 78 88 82 89 79 91 84 89 85
Wh 60 34 66 41 77 48 84 60 86 65 90 76 91 78
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Table C.3: Test set: Telephone channel simulation; Percent correct for 18 phone groups;
correct phone as top 1 candidate

Static Static+Dynamic Automatic resegmentation:
Features Features iteration number

Env Env, Ener Env Env , Ener One Two Three

A-A2 A-A 2

MEL EIH MEL EIH MEL EIH MEL EIH MEL EIH MEL EIH MEL EIH

FH 2 32 5 42 42 63 51 65 45 64 47 67 54 67
FM 7 22 9 24 39 37 42 41 39 44 46 52 43 52
FL 29 63 30 67 68 71 77 71 76 73 80 78 85 78
CM 1 17 1 22 18 31 37 35 26 37 44 46 48 49
CH 20 18 20 31 43 60 52 67 50 65 48 70 52 71
BH 2 19 4 25 26 44 34 47 29 52 41 58 44 60
BM 24 36 31 43 58 66 61 73 58 75 67 77 66 78
BL 41 46 29 53 55 57 59 60 66 60 62 67 66 65
Dp 24 42 39 46 74 81 74 83 67 85 75 86 77 87
Lq 49 58 53 56 73 59 75 61 76 65 79 71 80 72
G1 20 12 26 10 65 55 70 56 72 64 75 70 78 74
Ns 89 82 83 83 86 79 86 82 87 87 89 87 90 87
FV 0 12 0 11 5 34 7 34 3 31 8 39 10 38
FU 0 15 0 14 0 30 2 32 4 40 7 37 7 37
SV 42 20 80 18 61 14 67 15 74 27 79 22 79 23
SU 1 8 1 4 13 4 22 2 22 3 28 3 30 3
Af 4 7 15 13 6 10 16 18 22 18 31 26 30 22
Wh 14 57 20 58 68 73 78 76 75 82 79 89 78 89

Table C.4: Test set: Reverberation simulation; Percent correct for 18 phone groups; correct
phone as top 1 candidate

Static Static+Dynamic Automatic resegmentation:
Features Features iteration number

Env Env, Ener Env Env , Ener One Two Three

A-A 2 A-A 2

MEL EIH MEL EIH MEL EIH MEL EIH MEL EIH MEL EIH MEL EIH

FH 3 4 6 7 19 14 23 18 41 41 47 47 47 45
FM 1 2 2 4 4 6 10 8 30 23 36 23 38 26
FL 2 8 16 18 9 32 13 43 43 54 54 63 51 65
CM 0 2 1 3 4 4 5 5 35 14 46 19 48 22
CH 6 11 15 16 16 25 20 32 33 44 35 47 33 44
BH 11 11 19 21 26 26 36 30 54 56 59 62 59 67
BM 11 36 9 41 15 50 14 51 41 69 43 73 41 71
BL 2 23 3 39 7 40 7 51 18 64 28 67 23 65
Dp 6 24 17 35 17 47 30 56 44 73 55 73 53 73
Lq 14 17 15 14 26 18 31 20 61 49 67 58 68 58
G1 14 16 14 16 32 19 35 19 63 52 70 59 70 60
Ns 24 17 29 16 33 18 36 18 79 76 84 74 84 76
FV 32 8 36 9 31 17 35 19 58 33 63 40 62 43
FU 35 50 30 51 34 51 33 50 66 87 70 86 69 86
SV 20 3 21 5 21 7 22 9 53 25 60 30 61 31
SU 22 14 26 16 42 17 40 18 72 45 71 46 73 48
Af 53 12 48 16 59 15 58 15 63 26 64 25 63 28
Wh 66 41 60 42 57 44 61 47 92 78 92 86 93 88
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Table C.5: Train set : Clean; Relative differences, in percent, between MEL and EIH
(MEL-EIH.100 ) for 18 phone groups, correct phone as top 1 candidate

2

Static Static+Dynamic Automatic resegmentation:
Features Features iteration number

Env Env , Ener Env Env, Ener One Two Three

A-A 2 A-A2
FH -5 -3 7 9 8 3 4
FM 15 13 13 17 7 2 3

FL 0 0 6 5 6 0 0
CM -10 0 6 11 1 0 -1
CH -5 -6 2 2 2 -6 -4
BH 11 12 12 16 11 8 7

BM -2 -3 6 3 1 1 2

BL 1 -1 2 4 3 1 3

Dp 7 7 3 2 0 0 0

Lq 5 7 7 7 5 2 3

G1 18 19 11 10 8 3 4

Ns 15 14 8 7 6 5 4

FV 11 11 8 10 7 6 6

FU 5 5 10 10 9 4 5

SV 11 13 14 16 15 15 14

SU 6 8 9 12 9 9 8

Af 11 10 10 11 9 7 8

Wh 46 39 24 21 18 8 10

Table C.6: Test set :
MEL+EIH I100) for 18

2

Clean; Relative differences, in percent, between MEL and EIH
phone groups, correct phone as top 1 candidate

84

Static Static+Dynamic Automatic resegmentation:
Features Features iteration number

Env Env, Ener Env Env, Ener One Two Three

A-A 2 A-A2
FH -7 -5 4 7 6 2 4
FM 12 11 26 20 5 -6 0
FL 3 2 4 4 6 -6 -2
CM -10 3 3 7 0 0 -3
CH -10 -21 -3 -9 -9 -14 -19
BH 10 14 14 19 9 11 6

BM -7 -5 7 10 2 1 4

BL 9 -8 1 1 3 2 10

Dp 11 9 2 3 2 0 1

Lq 3 5 9 10 3 1 2
G1 16 19 13 12 9 5 4
Ns 19 17 10 9 8 6 6

FV 9 11 6 8 7 6 7
FU 4 5 10 11 8 4 5
SV 9 11 15 16 14 18 17
SU 6 9 9 12 11 10 9
Af 18 8 7 7 11 8 5
Wh 55 46 45 33 27 17 15



Table C.7: Test set: Telephone channel simulation; Relative differences, in percent, between
MEL and EIH (MELEIH.100) for 18 phone groups, correct phone as top 1 candidate

Static Static+Dynamic Automatic resegmentation:
Features Features iteration number

Env Env , Ener Env Env , Ener One Two Three
A-A 2 A-A 2

FH -176 -154 -40 -24 -35 -35 -22
FM -104 -91 5 3 -11 -11 -19
FL -75 -75 -4 7 5 3 9
CM -178 -188 -50 6 -35 -5 -1
CH 10 -43 -34 -25 -26 -39 -29
BH -158 -148 -53 -34 -58 -36 -31
BM -41 -33 -14 -17 -25 -14 -16
BL -12 -58 -4 -2 10 -8 2
Dp -54 -17 -8 -11 -23 -13 -12
Lq -17 -6 22 21 16 11 10
G1 47 88 17 22 11 7 5
Ns 8 1 9 5 0 2 3
FV -186 -192 -148 -134 -161 -136 -117
FU -200 -199 -196 -180 -162 -140 -134
SV 72 127 127 125 93 115 110
SU -164 -109 113 172 152 159 161
Af -54 14 -56 -12 20 18 29
Wh -120 -99 -7 3 -10 -11 -13

Table C.8: Test set : Room reverberation simulation; Relative differences, in percent, be-
tween MEL and EIH (MMELEIH .100) for 18 phone groups, correct phone as top 1 candidate

2
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Static Static+Dynamic Automatic resegmentation:
Features Features iteration number

Env Env , Ener Env Env , Ener One Two Three
A-A 2 A-A 2

FH -37 -10 26 21 -2 0 4
FM -68 -53 -25 30 26 45 38
FL -112 -11 -114 -105 -23 -14 -23
CM -139 -84 6 6 85 81 75
CH -54 -6 -41 -45 -28 -30 -28
BH 0 -8 1 17 -2 -5 -12
BM -109 -128 -110 -113 -50 -52 -54
BL -165 -168 -143 -153 -111 -81 -96
Dp -123 -70 -92 -61 -49 -28 -31
Lq -20 12 36 42 21 15 14
G1 -11 -10 53 59 19 17 15
Ns 38 59 62 66 5 12 11
FV 123 120 58 58 53 44 37
FU -35 -52 -41 -41 -27 -20 -21
SV 147 129 105 79 71 67 66
SU 43 46 83 74 47 43 42
Af 129 99 120 116 83 88 75
Wh 47 37 25 25 16 7 6



Table C.9: Train set: Clean; Relative increase in accuracy, in percent, for 18 phone groups,
correct phone as top 1 candidate

Addition to Env of Resegmentation iteration number
Ener A-A 2 Env Ener,A-A2 One Two Three

Env, Ener
MEL EIH MEL EIH MEL EIH MEL EIH MEL EIH MEL EIH

FH 5 2 33 17 38 19 -1 0 4 12 5 12
FM 0 3 34 40 44 43 -3 6 7 24 8 24
FL 3 2 23 13 23 14 0 0 4 10 5 11
CM 21 9 62 38 86 50 -6 4 17 31 19 35
CH 3 5 28 21 33 24 -1 -1 0 9 1 9
BHO 0 37 34 44 36 -3 2 8 17 8 19
BM 2 3 31 20 33 27 0 1 4 5 5 7
BL 0 2 44 40 50 42 -4 -1 4 9 7 10
Dp 0 -1 20 23 19 24 1 2 2 3 2 3
Lq 3 2 23 20 26 24 -1 1 6 11 8 11
G1 3 2 30 37 34 44 1 4 6 12 6 13
Ns 4 6 10 18 12 21 1 2 2 6 2 6
FV 7 7 21 26 26 30 0 3 8 11 9 13
FU 2 3 11 5 12 6 1 2 3 10 3 10
SV 3 2 21 18 27 21 -1 0 8 9 8 9
SU 5 3 11 7 16 10 1 4 5 7 5 8
Af 4 5 5 7 10 9 -2 0 0 5 1 5
Wh 10 21 25 59 38 79 -1 3 6 20 6 20

Table C.10: Test set: Clean; Relative increase in accuracy, in percent, for 18 phone groups,
correct phone as top 1 candidate

Addition to Env of Resegmentation iteration number
Ener A-A 2 Env Ener, A-A 2 One Two Three

Env , Ener
MEL EIH MEL EIH MEL EIH MEL EIH MEL EIH MEL EIH

FH 4 2 37 21 43 23 0 2 4 11 9 11
FM -3 0 43 23 43 32 0 15 2 32 10 34
FL 0 0 18 17 20 21 4 1 1 11 6 11
CM 23 7 65 45 88 55 -2 7 22 33 22 38
CH 0 10 38 28 36 34 5 4 5 9 2 12
BH 4 -2 23 18 31 18 2 13 14 23 14 31
BM 4 4 38 23 48 26 1 10 3 12 5 12
BL -11 5 33 46 38 49 2 0 13 13 15 5
Dp -1 0 19 29 20 31 2 2 2 5 2 5
Lq 3 2 21 14 26 18 -1 6 5 15 7 15
G1 8 6 34 38 41 48 2 5 6 14 7 15
Ns 4 6 10 20 14 26 1 2 2 6 2 6
FV 7 6 14 20 21 24 4 5 10 13 10 11
FU 1 0 10 4 14 6 1 4 2 10 3 9
SV 5 4 17 9 22 13 1 3 11 10 11 10
SU 7 3 13 9 20 12 2 4 4 7 5 8
Af 2 13 0 13 6 19 1 -4 3 2 1 4
Wh 10 21 28 41 40 76 2 8 7 27 8 30
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Table C.11: Test set : Telephone channel simulation; Relative increase in accuracy, in
percent, for 18 phone groups, correct phone as top 1 candidate

Addition to Env of Resegmentation iteration number
Ener A-A 2 Env Ener,A-A 2 One Two Three

Env , Ener
MEL EIH MEL EIH MEL EIH MEL EIH MEL EIH MEL EIH

FH 150 31 2000 97 2450 103 -12 -2 -8 3 6 3
FM 29 9 457 68 500 86 -7 7 10 27 2 27
FL 3 6 134 13 166 13 -1 3 4 1010 10
CM 0 29 1700 82 3600 106 -30 6 19 31 30 40
CH 0 72 115 233 160 272 -4 -3 -8 4 0 6
BH 100 32 1200 132 1600 147 -15 11 21 23 29 28
BM 29 19 142 83 154 103 -5 3 10 5 8 7
BL -29 15 34 24 44 30 12 0 5 12 12 8
Dp 62 10 208 93 208 98 -9 2 1 4 4 5
Lq 8 -3 49 2 53 5 1 7 5 16 7 18
G1 30 -17 225 358 250 367 3 14 7 25 11 32
Ns -7 1 -3 -4 -3 0 1 6 3 6 5 6
FV -100 -8 1150 183 1650 183 -57 -9 14 15 43 12
FU -100 -7 -100 100 400 113 100 25 250 16 250 16
SV 90 -10 45 -30 60 -25 10 80 18 47 18 53
SU 0 -50 1200 -50 2100 -75 0 50 27 50 36 50
Af 275 86 50 43 300 157 38 0 94 44 88 22
Wh 43 2 386 28 457 33 -4 8 1 17 0 17

Table C.12: Test set: Room Reverberation Simulation; Relative increase in accuracy, in
percent, for 18 phone groups, correct phone as top 1 candidate

Addition to Env of Resegmentation iteration number
Ener A-A 2 Env Ener,A-A 2 One Two Three

Env , Ener
MEL EIH MEL EIH MEL EIH MEL EIH MEL EIH MEL EIH

FH 100 75 533 250 667 350 78 128 104 161 104 150
FM 100 100 300 200 900 300 200 188 260 188 280 225
FL 700 125 350 300 550 438 231 26 315 47 292 51
CM 150 50 900 100 1150 150 600 180 820 280 860 340
CH 150 45 167 127 233 191 65 38 75 47 65 38
BH 73 91 136 136 227 173 50 87 64 107 64 123
BM -18 14 36 39 27 42 193 35 207 43 193 39
BL 50 70 250 74 250 122 157 25 300 31 229 27
Dp 183 46 183 96 400 133 47 30 83 30 77 30
Lq 7 -18 86 6 121 18 97 145 116 190 119 190
G1 0 0 129 19 150 19 80 174 100 211 100 216
Ns 21 -6 38 6 50 6 119 322 133 311 133 322
FV 12 12 -3 112 9 138 66 74 80 111 77 126
FU -14 2 -3 2 -6 0 100 74 112 72 109 72
SV 5 67 5 133 10 200 141 178 173 233 177 244
SU 18 14 91 21 82 29 80 150 78 156 82 167
Af -9 33 11 25 9 25 9 73 10 67 9 87
Wh -9 2 -14 7 -8 15 51 66 51 83 52 87
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Appendix D

Confusion Matrices - Train set :

Clean
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Table D.1: Train set: Clean; Static features [Env]; TIMIT segmentation; MEL

FH FM FL CM CH BH BM BL Dp Lq Gl Ns FV FU SV SU Af Wh Total

55 3 1 6 1 7 14 2 7 2

8 41 11 14 3 1 2 15 3 1

1 13 62 3 2 17

16 6 2 29 1 9 6 1 8 7 2 4 6

2 2 60 1 1 29

13 5 52 4 2 6 9 2 4

6 1 58 6 7 15 5

3 8 13 48 21 6

4 4 4 4 1 4 74 1

1 2 11 3 9 2 2 62 3 1 2

7 5 5 2 9 64 3 3

1 2 1 2 83 4

2 3 3 12 61

1 2

3 2 2

10

2 2 7 5
2 4

6

2

1

2

1

1

4

17 4 3 2

82 3 4

1 63 11 2

7 10 73 4

6 2 2 84

2 2 2 4 3 4 2 8 1 63
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FH

FM

FL

CM

CH

BH

BM

BL

Dp

Lq

G1

Ns

FV

FU

SV

SU

Af

Wh

6102

2273

1632

9099

1154

1721

2539

1602

3684

8585

2102

8204

5195

7384

5568

8932

1291

1123

2

Table D.2: Same conditions as in Matrix D.1; EIH

FH FM FL CM CH BH BM BL Dp Lq G1 Ns FV FU SV SU Af Wh

58 3 1 6 2 6 1 12 2 5 2

13 35 11 13 4 2 2 14 2 1

2 11 63 3 1 17

14 4 2 32 2 7 6 2 6 7 2 5 3 4 1 3

2 2 2 63 1 2 26

16 1 7 1 47 7 2 7 8 2 2

6 2 59 7 5 14 4 1

1 3 9 14 48 17 6

7 5 5 4 1 1 5 70 1

1 3 9 2 10 2 2 59 3 3 2 1

6 3 6 2 9 54 7 3 2 2 3 1 2

2 1 1 2 1 2 2 4 2 71 4 5

2 1 3 2 3 1 3 54 17 5 3 4

11 78 3 6

3 1 1 1 1 2 3 2 7 3 1 56 13 2

2 2 6 13 69 5

5 7 3 8 75

6 3 3 4 1 1 2 1 5 4 3 4 2 10 1 8 3 39

-��

Total

FH
FM

FL

CM

CH

BH

BM

BL

Dp

Lq

GI

Ns

FV

FU

SV

SU

Af

Wh

6084

2273

1633

9033

1154

1717

2539

1602

3685

8506

2039

8148

5028

7360

5364

8378

1271

1089



Table D.3: Train set: Clean; Static features [Env, Ener]; TIMIT segmentation; MEL

FH FM FL CM CH BH BM BL Dp Lq GI Ns FV FU SV SU Af Wh Total

FH 58 3 1 5 2 7 13 2 6 1 6102

FM 9 41 11 14 3 1 2 14 2 1 2274

FL 1 12 64 3 2 16 1633

CM 13 4 2 35 1 9 6 1 7 8 2 4 5 2 1 9104

CH 3 2 62 1 1 27 1154

BH 14 6 52 4 2 6 9 2 2 1 1721

BM 6 1 59 6 7 13 5 2539

BL 2 8 14 48 20 5 1602

Dp 4 4 5 5 1 4 74 3685

Lq 1 3 9 3 8 2 2 64 3 1 2 8586

Gl 7 4 5 2 8 66 3 3 2101

Ns 1 1 2 86 4 3 8208

FV 2 2 3 1 2 65 16 4 2 1 5204

FU 10 84 2 3 7391

SV I 1 1 2 1 7 5 1 65 12 2 5570

SU 1 2 5 10 77 4 8933

Af 4 3 2 2 87 1291

Wh 2 1 3 1 2 1 4 3 4 2 6 69 1117

Table D.4: Same conditions as in Matrix D.3; EIH

FH FM FL CM CH BH BM BL Dp Lq GI Ns FV FU SV SU Af Wh Total

FH 59 4 1 6 2 6 11 1 5 1 6097

FM 13 36 11 14 5 2 2 13 2 1 2273

FL 3 10 64 4 1 16 1633

CM 11 3 1 35 2 7 6 1 5 7 3 5 3 3 2 1 3 9104

CH 3 3 1 66 1 2 22 1154

BH 17 1 7 1 47 7 2 6 8 2 2 1722

BM 7 2 61 7 5 12 4 2540

BL 1 3 9 1 14 49 17 5 1602

Dp 7 5 6 4 1 1 5 69 3685

Lq 1 1 3 8 2 10 2 2 60 3 3 2 8574

G1 6 4 5 2 9 55 7 3 2 2 2 1 2 2025

Ns 1 1 2 1 1 2 4 1 75 4 5 8100

FV 1 1 2 2 3 4 58 16 5 3 2 5004

FU 12 80 3 4 7369

SV 2 1 1 1 2 3 1 8 4 1 57 13 1 5353

SU 2 2 5 14 71 4 8498

Af 6 6 2 6 79 1281

Wh 5 2 2 4 1 3 4 4 5 2 8 1 6 3 47 1071
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Table D.5: Train set: Clean; Static+Dynamic features [Env, A-A 2 Env]; TIMIT segmen-
tation; MEL

FH FM FL CM CH BH BM BL Dp Lq G1 Ns FV FU SV SU Af Wh Total
73 4 1 5 3

7 55 14 8 2 1 1

2 9 76 2

16 5 1 47 7 4

1 1 77

10 4 71 3

3 1 76

2 5 1 10

3 1 2 2

2 824
4 2 1

1 1

1

2 1 1

9 29 2
1 10

2 6 6 2 2

17

1 4 5 1
6 3 7 2

69 11 1

2 89

2 76 3 1

1 5 83 1

91 2 2

1 1 74 14 4 2

6 91 2 1

1 4 4 1 76 10 1

1 2 4 8 81 2

3 5 1 2 88

1 1 1 1 2 2 5
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FH

FM

FL

CM

CH

BH

BM

BL

Dp

Lq

G1

Ns

FV

FU

SV

SU

Af

Wh

6102

2274

1632

9095

1154

1721

2539

1602

3685

8587

2100

8206

5225

7382

5582

9005

1291

113579

Table D.6: Same conditions as in Matrix D.5; EIH

FH FM FL CM CH BH BM BL Dp Lq Gl Ns FV FU SV SU Af Wh Total

FH 68 4 1 6 3 10 1 5 6099

FM 11 49 12 10 2 2 1 10 2 2274

FL 2 9 71 3 13 1633

CM 15 4 1 44 1 6 3 2 7 6 3 3 1 1 2 1 9128

CH 1 2 1 76 1 17 1154

BH 10 1 6 1 63 5 2 4 7 1723

BM 4 1 71 6 4 9 3 2540

BL 1 5 1 11 67 12 2 1602

Dp 4 1 2 2 2 86 3685

Lq 2 7 2 5 2 71 4 2 8603

G1 4 1 3 3 2 7 74 2 1 2108

Ns 1 1 2 1 84 3 4 8221

FV 2 1 1 2 68 14 4 3 2 5197

FU 11 82 2 3 7372

SV 1 2 6 5 66 15 1 5544

SU 2 3 3 14 74 4 8861

Af 5 6 2 6 80 1278

Wh 5 2 1 3 1 3 2 2 7 4 3 62 1123

.

..

7 1 4 ---



Table D.7: Train set: Clean; Static+Dynamic features [Env, Ener, A-A 2 Env, A-A 2 Ener];
TIMIT segmentation; MEL

4

8 2

2

54
80

3

4

4 1

2

1 7

3 7 1 3
1 8 1

1 10

7 4 1 4 5 1 2

15

75 3 4 3

1 77 6 3 6 2

10 72 10 2

2 88

1 4 2 78 3

2 2 1 486 1

93 2

FH FM FL CM CH BH BM BL Dp Lq G1 Ns FV FU SV SU Af Wh

76 4 1

8 59 12

2 8 76

15 4 1

1 1

9

1

3 1 2

3

2

1 77 13 4 1

6 92 1 1

3 4 80 10 1

1 1 3 7 85 2

2 3 1 2 92

1 1 1 3 3

6102

2274

1633

9101

1154

1721

2539

1602

3685

8586

2100

8205

5223

7392

5583

9001

1291

1135

93

FH
FM
FL

CM

CH

BH

BM

BL

Dp

Lq

G1

Ns

FV
FU

SV

SU

Af

Wh 1

Table D.8: Same conditions as in Matrix D.7; EIH
FH FM FL CM CH BH BM BL Dp Lq G1 Ns FV FU SV SU Af Wh Total

FH 69 4 6 3 9 1 4 6102

FM 12 50 12 10 2 1 1 10 1 2274

FL 2 8 72 3 13 1633

CM 13 3 1 48 1 6 3 2 6 6 3 3 1 1 1 1 9151
CH 1 2 78 1 15 1154

BH 10 6 1 64 5 2 4 7 1725

BM 3 2 75 6 4 7 2 2540

BL 1 5 1 10 68 11 2 1602

Dp 4 1 2 2 2 87 3685

Lq 2 7 2 5 2 73 4 1 8611

G1 4 3 2 2 6 78 2 2117

Ns 1 1 86 3 4 8230

FV 2 1 3 70 14 5 3 1 5228

FU 11 83 2 2 7387

SV 1 6 5 68 15 1 5590

SU 1 2 3 14 76 3 8983

Af 5 4 2 5 82 1291

Wh 4 2 2 2 2 2 2 5 3 1 70 1129

= Total
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Table D.9: Train set: Clean; Static+Dynamic features [Env, Ener, A-A2 Env, A-A 2 Ener];
1 iteration of automatic resegmentation; MEL

FH FM FL CM CH BH BM BL Dp Lq GI Ns FV FU SV SU Af Wh Total

FH 75 4 1 4 3 7 3 6102

FM 7 57 15 7 2 8 2 2274

FL 2 7 76 2 12 1633

CM 15 5 2 51 7 4 2 4 5 1 9094

CH 1 2 79 16 1154

BH 9 4 73 3 3 5 1721

BM 3 1 77 7 3 7 2 2539

BL 2 4 1 10 69 12 1 1602

Dp 3 1 2 1 2 89 3685

Lq 2 8 2 4 1 1 77 3 8585

G1 2 2 2 1 4 87 2101

Ns 94 1 2 8205

FV 1 77 13 4 2 5224

FU 4 93 2 1 7393

SV 3 3 79 11 1 5579

SU 1 2 7 86 2 9007

Af 3 3 1 3 90 1291

Wh 1 1 1 1 1 2 2 2 86 1138

Table D.10: Same conditions as in Matrix D.9; EIH

FH FM FL CM CH BH BM BL Dp Lq GI Ns FV FU SV SU Af Wh Total

FH 69 5 1 5 2 10 5 6100

FM 10 53 11 10 2 1 1 9 1 2274

FL 1 7 72 2 16 1633

CM 13 4 1 50 7 3 2 5 5 3 2 1 1 1 9119

CH 1 2 77 17 1154

BH 10 5 1 65 6 1 4 6 1724

BM 3 1 76 6 3 7 3 2540

BL 1 3 2 12 67 13 2 1602

Dp 3 1 2 2 2 89 3685

Lq 2 9 2 5 2 74 3 1 8601

G1 4 2 3 1 5 81 2 2106

Ns 1 1 88 3 4 8190

FV 1 3 72 14 4 2 1 5169

FU 10 85 2 2 7388

SV 1 6 4 68 16 1 5492

SU 1 2 3 12 79 3 8811

Af 5 6 2 5 82 1289

Wh 3 1 2 2 2 3 3 3 3 2 2 72 1102
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Table D.11: Train set : Clean; Static+Dynamic features [Env, Ener, A-A2 Env, A-A 2
Ener]; 2 iterations of automatic resegmentation; MEL

79 3 1

7 63 12

1 7 79

12 4 1

1

5 3

7 1 1

1

63 6 2

80
7 3 81 2

3 80

1 4 8

3 2 2

2 6 13
2 1 1

5

7

1 9

3

2 3 4
16

2 2

6 2 5 2
75 9 1

2 90

83 2

3 91

1

95 1 2

83 11 3

3 95 1

2 3 86 6

1 2 5 89 2

2 3 1 2 92

111 92

6101

2274

1633

9090

1154

1721

2538

1601

3685

8585

2102

8203

5222

7394

5572

8995

1291

1138

77 4 5

8 62 10 9

1 7 79 1

12 3 63

8 1 5

3

2 4

3 1 1 1

2

2

2 2

3

2

7

7 1

9

2

5 2 1 2 4 2

85 12

75 4 2 2 1

1 79 6 2 6 2

8 74 10 2

2 90

7 1 3 1 81 2 1

1 1 1 3 87 1

1 91 2 3

2 78 13 3 1

6 91 1

3 5 1 74 14

2 3 9 81 3

4 6 1 3 86

1 2 2 1 1

95

FH FM FL CM CH BH BM BL Dp Lq G1 Ns FV FU SV SU Af Wh
FH

FM

FL

CM

CH

BH

BM

BL

Dp

Lq

G1

Ns

FV
FU
SV

SU

Af

Wh

Table D.12: Same conditions as in Matrix D.11; EIH
FH FM FL CM CH BH BM BL Dp Lq G1 Ns FV FU SV SU Af Wh

FH
FM

FL

CM

CH

BH

BM

BL

Dp

Lq

G1

Ns

FV
FU

SV

SU

Af

Wh

6103

2274

1633

9151

1154

1724

2539

1601

3685

8623

2122

8233

5240

7386

5512

8963

1290

1134

1

84

. _

..

Total

= Total



Table D.13: Train set: Clean; Static+Dynamic features [Env, Ener, A-A2 Env, A-A2
Ener]; 3 iterations of automatic resegmentation; MEL

FH FM FL CM CH BH BM BL Dp Lq G1 Ns FV FU SV SU Af Wh Total

FH 80 3 1 4 2 5 3 6102

FM 7 64 12 7 6 2274

FL 1 7 80 2 1 9 1633

CM 12 4 1 64 6 2 2 2 4 1 9098

CH 81 16 1154

BH 7 4 81 2 2 2 1720

BM 3 1 81 6 2 5 1 2539

BL 1 4 8 77 8 1 1601

Dp 3 1 2 2 2 90 3685

Lq 1 6 1 3 84 2 8582

G1 2 1 1 1 2 91 2102

Ns 95 1 2 8204

FV 84 10 3 5225

FU 3 95 1 7394

SV 2 3 86 7 5576

SU 1 2 5 89 2 9004

Af 2 3 1 1 93 1291

Wh 1 92 1140

Table D.14: Same conditions as in Matrix D.13; EIH

FH FM FL CM CH BH BM BL Dp Lq G1 Ns FV FU SV SU Af Wh Total

FH 77 4 5 2 7 2 6103

FM 8 62 10 8 11 7 1 2274

FL 1 7 80 2 9 1633

CM 11 3 65 5 2 1 2 4 2 1 9145

CH 1 85 12 1154

BH 7 1 5 76 4 2 1 1722

BM 3 1 80 6 2 5 2 2539

BL 2 3 8 75 10 1 1602

Dp 3 1 1 2 90 3685

Lq 2 7 1 2 1 81 2 8621

G1 2 1 1 3 88 2120

Ns 91 2 3 8244

FV 2 79 12 3 1 5241

FU 7 91 1 7389

SV 3 5 74 14 5545

SU 2 3 9 82 3 8991

Af 4 5 1 3 86 1291

Wh 1 3 1 2 2 1 2 84 1136
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Appendix E

Confusion Matrices - Test set :

Clean
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Table E.1: Test set: Clean; Static features [Env]; TIMIT segmentation; MEL

FH FM FL CM CH BH BM BL Dp Lq G1 Ns FV FU SV SU Af Wh

FH

FM

FL

CM

CH

BH

BM

BL

Dp

Lq

G1

Ns

FV
FU
SV

SU

Af

Wh

49 3 1 8 1 8 14 2 9 2 1

8 35 12 14 4 2 18 4 1

1 13 60 1 1 19 2 1

15 6 2 26 1 10 7 2 9 9 2 4 5 2

3 2 2 45 1 2 2 41

14 6 1 48 4 3 7 10 2 2 1

5 1 50 7 8 18 8

1 2 8 15 45 21 7

4 4 4 5 1 2 7 69 1 1

1 2 12 2 10 2 2 58 4 2 2

9 4 6 2 13 59 3 1 1

1 1 2 2 1 80 5 6

2 3 1 3 1 3 56 18 5 4 4

10 80 4 5

2 1 3 3 2 7 5 2 59 13 2

2 4 9 10 70 4 1

5 4 3 4 83

4 2 1 4 2 4 3 3 3 2 10 1 60

1

3

1

1

1

34

2059

867

519

3049

414

525

918

559

1207

3378

810

2765

1744

2518

1913

2883

359

367

53 3 7 2 7 1 11 2 7 2

14 31 11 14 4 2 3 1 13 4 1

3 12 58 2 21

13 4 2 29 2 7 8 2 5 8 2 5 3 3 2 1

2 4 2 50 1 1 36 1

14 9 1 44 6 2 9 9 2 2 1

5 2 53 6 6 19 6

1 2 10 1 18 41 17 9

7 5 6 7 1 2 7 62 2

2 9 2 11 2 3 56 3 4 2

6 5 6 2 12 50 7 3 2 3 2 1

2 1 1 2 1 2 2 5 2 66 4 1 6

1 3 2 3 1 4 51 18 5 4 6

13 77 3 6

2 1 1 1 1 2 4 2 7 4 2 54 14 2

1 2 2 6 14 66 5

1 3 8 5 13 69

7 2 4 2 2 5 7 6 4 3 10 9 5

98

Table E.2: Same conditions as in Matrix E.1; EIH

FH FM FL CM CH BH BM BL Dp Lq G1 Ns FV FU SV SU Af Wh

FH
FM

FL

CM

CH

BH

BM

BL

Dp

Lq

G1

Ns

FV
FU
SV

SU

Af

Wh

- -

l

�

Total

Total
2048

867

520

3033

414

524

918

559

1207

3362

785

2739

1693

2514

1816

2715

354

354



Table E.3: Test set: Clean; Static features [Env, Ener]; TIMIT segmentation; MEL

TotalFH FM FL CM CH BH BM BL Dp Lq G1 Ns FV FU SV SU Af Wh

2058

867

520

3052

414

525

918

559

1207

3379

810

2762

1743

2522

1915

2885

359

357

51 3 1 8 2 8 13 2 9 1

9 34 13 14 4 1 2 1 16 4

2 13 60 2 20 1

12 5 2 32 1 10 7 2 7 9 2 4 4 2

3 3 2 45 2 2 41

13 7 1 50 6 2 6 102 2 2

4 2 52 7 8 16 9

2 2 7 16 40 23 9

5 4 5 6 1 2 7 68 1

1 1 2 10 3 9 2 2 60 4 2 2

8 3 6 2 12 64 3 1

1 1 2 1 83 5 5

2 2 3 2 3 60 18 4 3 3

11 81 3 4

2 3 2 7 5 2 62 14 2

1 3 5 11 75 4

3 3 3 6 85

4 2 2 1 2 5 3 4 9
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1

1

66

FH

FM

FL

CM

CH

BH

BM

BL

Dp

Lq

G1

Ns

FV

FU

SV

SU

Af

Wh

Table E.4: Same conditions as in Matrix E.3; EIH

FH FM FL CM CH BH BM BL Dp Lq Gl Ns FV FU SV SU Af Wh Total

FH 54 4 1 8 2 7 1 11 2 7 1 2055

FM 14 31 11 16 5 1 2 13 3 867

FL 3 13 58 1 20 1 520

CM 11 4 1 31 2 8 7 2 5 9 3 6 3 3 1 1 4 3036

CH 2 4 2 55 1 1 2 30 1 414

BH 15 9 1 43 7 2 7 8 2 2 1 525

BM 5 2 55 6 8 15 6 918

BL 1 2 10 1 17 43 17 7 559

Dp 7 4 5 7 1 2 7 62 1 1207

Lq 3 9 2 11 2 2 57 3 4 2 1 3375

G1 6 5 6 1 11 53 7 3 2 2 2 1 1 780

Ns 1 1 2 1 2 2 5 2 70 5 6 1 1 2720

FV 1 3 2 2 1 4 54 17 6 3 4 1683

FU 13 77 3 5 2518

SV 2 1 1 2 4 1 8 4 1 56 14 2 1811

SU 2 2 5 15 68 4 2752

Af 1 2 4 4 8 78 355

Wh 6 1 3 1 6 6 6 6 3 7 1 7 3 41 345



Table E.5: Test set: Clean; Static+Dynamic features [Env, A-A2 Env]; TIMIT segmenta-
tion; MEL

67 4 1 7

9 50 13 9 3

4 8 1 6
2 9 2

2 13 71 13

16 5 2 43 8 4 2 6 7 2 2

62 1 1 32

10 1 7 1 59 6 2 5 8 1

3 2 69 7 4 10 4

2 5 1 17 60 13

5 1 2 4 1 4 82

2 10 1 6 2 70 4 1 1

6 1 2 2 6 79 1

2 1 88 2

1 2 2 64 19

1

3

5 3 1

6 88 3 2

1 1 5 4 1 69 15 1

1 2 5 8 79 2

3 4 4 4 83

1 2 3 3 1 52 77
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FH FM FL CM CH BH BM BL Dp Lq G1 Ns FV FU SV SU Af Wh

FH

FM

FL

CM

CH

BH

BM

BL

Dp

Lq

G1

Ns

FV

FU

SV

SU

Af

Wh

2059

867

520

3053

414

525

918

559

1207

3379

810

2763

1752

2523

1919

2913

359

372

Table E.6: Same conditions as in Matrix E.5; EIH

FH FM FL CM CH BH BM BL Dp Lq Gl Ns FV FU SV SU Af Wh Total

FH 64 4 7 1 3 9 1 7 1 2058

FM 13 38 11 14 4 2 2 12 2 867

FL 4 12 68 1 1 14 520

CM 13 3 1 42 1 7 4 2 7 6 3 3 1 1 2 1 3052

CH 2 2 64 1 1 1 27 414

BH 9 1 10 1 52 7 2 8 8 524

BM 3 2 65 7 4 13 5 918

BL 1 6 1 15 60 13 2 559

Dp 5 1 3 4 1 4 80 1207

Lq 3 9 2 7 1 3 64 5 2 1 3387

G1 6 2 3 2 7 69 4 1 1 1 817

Ns 1 2 1 2 1 79 4 5 1 2767

FV 2 4 61 18 5 4 2 1749

FU 12 80 3 4 2516

SV 1 2 1 7 6 59 19 2 1902

SU 1 3 4 14 72 4 2865

Af 3 4 6 8 78 357

Wh 6 1 2 1 1 3 3 5 2 3 11 1 5 4 48 360

.

Total



Table E.7: Test set: Clean; Static+Dynamic features [Env, Ener, A-A 2 Env, A-A 2 Ener];
TIMIT segmentation; MEL

70 4 1 6 3 8 1 4

9 50 14 10 3 2 1 8 2

1 12 72 1 12

15 4 2 49 8 4 2 5 6 1 2

1 1 61 1 2 33

10 7 1 63 5 1 5 6

3 1 747 3 8 3
2 6 1 16 62 12

5 1 3 3 1 3 83

2 8 1 5 2 73 4 1

5 1 2 1 6 83

1 1 91

1 2

4

1

21

2 2

68 19 5 2 1

6 91 2 1

5 1 72 15 1

1 3 8 84 2

2 2 4 5 88

2 3 1 3
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FH FM FL CM CH BH BM BL Dp Lq G1 Ns FV FU SV SU Af Wh

FH

FM

FL
CM

CH

BH

BM

BL

Dp

Lq

G1

Ns

FV

FU

SV

SU

Af
Wh

2058

867

520

3053

414

525

918

559

1207

3378

810

2763

1755

2524

1917

2914

359

37184
Table E.8: Same conditions as in Matrix E.7; EIH

FH FM FL CM CH BH BM BL Dp Lq Gl Ns FV FU SV SU Af Wh Total

FH 65 5 8 1 3 9 1 6 2059

FM 13 41 12 13 3 2 2 10 2 867

FL 3 10 70 1 14 520

CM 12 3 1 45 1 6 4 2 6 6 3 3 1 1 3057

CH 1 1 67 1 2 2 24 414

BH 9 12 2 52 7 2 7 8 525

BM 3 1 67 7 5 11 4 918

BL 1 6 1 15 61 13 2 559

Dp 5 1 2 4 4 81 1207

Lq 3 9 2 7 2 66 4 2 1 3389
G1 6 1 2 2 2 6 74 3 1 1 820

Ns 1 2 83 4 5 1 2771

FV 2 1 4 63 18 5 4 2 1761

FU 12 82 2 3 2522

SV 1 1 8 6 61 19 1 1923

SU 3 3 15 74 3 2907

Af 4 3 3 7 82 1 359

Wh 5 4 1 2 2 4 4 4 6 4 2 60 367

Total



Table E.9: Test set: Clean; Static+Dynamic features [Env, Ener, A-A2 Env, A-A 2 Ener];
1 iteration of automatic resegmentation; MEL

FH FM FL CM CH BH BM BL Dp Lq Gl Ns FV FU SV SU Af Wh Total

FH 70 5 1 6 3 7 5 2059

FM 7 50 16 10 3 1 1 8 3 867

FL 1 11 75 13 520

CM 15 5 2 48 1 8 5 3 4 6 1 3048

CH 1 1 1 64 1 1 30 414

BH 9 6 2 64 6 1 4 5 525

BM 2 75 6 3 8 3 918

BL 5 1 14 63 13 3 559

Dp 4 1 2 2 3 85 1 1207

Lq 2 10 2 5 1 1 72 4 1 3378

G1 5 2 2 4 85 810

Ns 92 2 3 2763

FV 3 71 17 5 1 1753

FU 5 92 2 1 2526

SV 4 4 73 15 1 1914

SU 1 3 7 86 2 2918

Af 2 1 3 5 89 359

Wh 1 1 2 3 3 2 86 373

Table E.10: Same conditions as in Matrix E.9; EIH

FH FM FL CM CH BH BM BL Dp Lq Gl Ns FV FU SV SU Af Wh Total

FH 66 5 7 3 10 5 2058

FM 10 47 11 12 3 1 2 9 2 867

FL 2 8 71 1 16 520

CM 12 5 1 48 1 7 4 3 4 6 2 1 1 3046

CH 1 1 70 1 1 23 414

BH 9 10 59 8 5 6 524

BM 2 1 74 6 4 8 4 918

BL 1 5 16 61 13 2 559

Dp 5 1 2 3 1 4 83 1207

Lq 3 9 2 6 2 70 4 1 3385

G1 5 2 2 6 78 2 1 1 821

Ns 1 2 85 3 4 2760

FV 4 66 17 5 3 2 1739

FU 11 85 2 2 2523

SV 1 1 6 6 63 18 1 1877

SU 3 3 13 77 2 2855

Af 4 5 3 8 79 358

Wh 4 2 2 4 3 4 6 3 1 65 357
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Table E.11: Test set: Clean; Static+Dynamic features [Env, Ener, A-A 2 Env, A-A 2 Ener];
2 iterations of automatic resegmentation; MEL

FH FM FL CM CH BH BM BL Dp Lq GI Ns FV FU SV SU Af Wh Total

FH 73 4 1 7 3 6 4 2059

FM 8 51 16 11 2 1 7 2 866

FL 1 12 73 1 12 520

CM 12 4 1 60 6 4 2 3 4 2 3047

CH 1 64 1 32 414

BH 7 7 1 72 4 3 3 525

BM 3 2 76 6 3 7 3 917

BL 1 5 11 70 10 1 559

Dp 4 1 2 2 1 3 85 1206

Lq 2 8 2 4 77 3 1 3377

G1 4 2 3 88 810

Ns 93 2 2 2761

FV 2 75 16 4 1752

FU 4 93 2 2526

SV 4 4 1 80 8 1914

SU 1 3 6 87 2 2911

Af 1 2 3 3 91 359

Wh 1 2 2 1 1 90 369

Table E.12: Same conditions as in Matrix E.11; EIH

FH FM FL CM CH BH BM BL Dp Lq GI Ns FV FU SV SU Af Wh Total

FH 72 6 7 3 8 3 2057

FM 8 54 12 13 2 6 2 867

FL 2 8 78 1 10 520

CM 11 4 1 60 5 3 3 2 4 3 1 3061

CH 1 173 22 414

BH 9 11 64 7 4 1 1 525

BM 2 1 75 6 3 8 4 917

BL 1 5 13 69 10 1 559

Dp 5 1 2 2 3 85 1207

Lq 2 9 2 4 1 76 3 1 3392

G1 4 2 1 4 84 820

Ns 1 88 3 4 2771

FV 2 71 17 4 2 1 1763

FU 7 90 1 1 2524

SV 1 5 6 1 67 16 1 1889

SU 3 3 11 79 2 2901

Af 3 6 2 5 84 358

Wh 4 2 2 4 3 1 5 76 367
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Table E.13: Test set: Clean; Static+Dynamic features [Env, Ener, A-A 2 Env, A-A 2 Ener];
3 iterations of automatic resegmentation; MEL

76 4 7

7 55 15 10

1 12 76 1

13 4 1 60

7 8

2

4

4 1 2 2

2

3

3

2

5

6 3

9

3

6 3 3 2 4 2

62 2 34

72 5 3 2 1

2 78 6 3 6 2

12 71 9 1

4 85

8 1 4
1 2

78 3

3 89

1

93 2 2

1 75 16 4

4 94 1

3 4 80 9

1 3 6 88 2

2 2 3 3 89

1 3 1 1

FH FM FL CM CH BH BM BL Dp Lq G1 Ns FV FU SV SU Af Wh

72 5 7

9 55 13 10 2

2 10 78 1

11 3 1 62

1 75

6 11

2

1 5

5 1 2 2

2 8

4

3 1

2

1

8

6 2

9

3

6 3 2 2 4 2

21

68 6 4 2

75 6 3 8 4

14 64 12 1

4 85

2 4 1 76 3 1

2 1 4 85 1
1 88 4 4

2 70 17 5 2 1

8 89 1

6 6 1 67 16

3 3 10 80 2

3 6 1 5 85

1 2 4 2 1 4
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FH FM FL CM CH BH BM BL Dp Lq Gl Ns FV FU SV SU Af Wh

FH

FM

FL

CM

CH

BH

BM

BL

Dp

Lq

G1

Ns

FV

FU

SV

SU

Af

Wh

2059

867

520

3051

414

525

918

558

1207

3378

809

2760

1753

2526

1914

2912

359

372

Table E.14: Same conditions as in Matrix E.13; EIH

91

Total

FH

FM

FL

CM

CH

BH

BM

BL

Dp

Lq

G1

Ns

FV

FU

SV

SU

Af

Wh

2056

867

520

3060

414

524

918

559

1207

3396

820

2771

1764

2521

1902

2910

357

369

1

78

-- -

.-

_ 
.

.

Total



Appendix

Confusion Matrices - Test set:
Telephone Channel Simulation
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Table F.1: Test set: Telephone channel simulation; Static features [Env]; TIMIT segmen-
tation; MEL

FH FM FL CM CH BH BM BL Dp Lq G Ns FV FU SV SU Af Wh Total

FH 2 1 4 3 3 31 53 2059

FM 7 10 2 1 11 6 18 45 867

FL 1 29 10 47 12 1 520

CM 1 3 1 1 2 4 7 11 19 49 3054

CH 20 1 1 38 37 414

BH 2 4 11 2 21 57 525

BM 24 12 18 30 2 13 918

BL 2 13 41 16 9 2 17 559

Dp 6 1 6 24 3 22 35 1207

Lq 6 5 3 7 49 2 7 20 3379

GI 8 5 16 20 35 14 810

Ns 3 89 7 2765

FV 3 42 44 3 2 4 1755

FU 19 54 9 3 15 2527

SV 1 56 42 1924

SU 30 66 3 2923

Af 10 75 4 4 7 359

Wh 3 3 1 49 29 14 374

Table F.2: Same conditions as in Matrix F.1; EIH

FH FM FL CM CH BH BM BL Dp Lq G1 Ns FV FU SV SU Af Wh Total

FH 32 4 2 12 4 3 5 23 10 5 2057

FM 6 22 16 10 22 1 9 10 9 10 2 867

FL 2 6 63 1 12 2 8 4 1 520

CM 7 4 2 17 1 4 3 3 5 14 25 7 9 3066

CH 18 1 71 2 6 414

BH 11 13 19 2 2 16 3 23 6 5 525

BM 1 3 3 36 8 11 25 4 4 3 918

BL 2 4 10 46 20 12 1 3 559

Dp 6 5 10 4 1 8 42 4 7 9 1 1207

Lq 1 4 1 7 2 3 58 3 15 2 2 3391

G1 5 2 1 5 3 7 12 45 1 2 16 821

Ns 1 1 5 82 3 4 2781

FV 1 4 40 12 9 8 2 19 1772

FU 1 20 7 15 5 51 2526

SV 4 43 9 2 20 3 16 1941

SU 3 26 5 2 7 8 48 2926

Af 34 4 11 4 4 7 36 357

Wh 2 1 2 1 4 4 23 2 2 57 375
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Table F.3: Test set: Telephone channel simulation; Static features [Env, Ener]; TIMIT
segmentation; MEL

107

FH
FM

FL

CM

CH

BH

BM

BL

Dp

Lq

G1

Ns

FV
FU

SV

SU

Af

Wh

FH FM FL CM CH BH BM BL Dp Lq GI Ns FV FU SV SU Af Wh

5 1 2 4 3 3 34 46

1 9 8 2 1 16 7 14 40

2 30 22 33 13

1 1 1 2 3 6 13 22 48

20 1 1 46 1 1 27

3 4 1 4 9 3 22 54

31 8 17 30 2 11

2 20 29 28 9 11

3 2 4 39 3 18 28

5 7 2 4 53 2 7 19

1 8 3 13 26 32 14

2 83 14

2 17 70 3 2 5

4 1 61 9 7 19

17 80

3 91 1 4

3 74 6 15 2

1 2 32 44 20

Table F.4: Same conditions as in Matrix F.3; EIH

FH FM FL CM CH BH BM BL Dp Lq Gl Ns FV FU SV SU Af Wh

42 5 2 11 2 6 3 4 13 8 3

7 24 19 9 4 3 1 1 11 8 5 6 1

2 8 67 1 13 1 4 3

7 4 2 22 1 6 3 4 5 13 17 6 10

1 31 2 57 1 5

13 1 14 1 25 3 3 14 3 13 5 5

1 3 4 43 10 13 18 1 3 2

3 4 10 53 18 9 1

8 6 11 4 1 1 1 9 46 2 3 7

2 6 2 9 2 3 56 2 13 2 2

7 2 2 8 1 8 10 45 2 14

1 5 83 3 4

2 5 41 11 8 8 1 1 21

2 14 7 14 3 2 57

4 47 10 1 18 1 14

3 29 7 2 6 4 49

1 26 3 10 1 3 13 42

2 2 2 3 5 23 2 1 58

Total

2059

867

520

3054

414

525

918

559

1207

3379

810

2765

1755

2527

1924

2923

359

374

.

Total
FH
FM/

FL

cm
CH

BH

BM~

BL

Dp

Lq

GI

Ns

FV
FU
SV

Su
Af
Wh

2059

867

520

3070

414

525

918

559

1207

3396

821

2781

1773

2527

1941

2929

359

376



Table F.5: Test set: Telephone channel simulation; Static+Dynamic features [Env, A-A2

Env]; TIMIT segmentation; MEL

FH FM FL CM CH BH BM BL Dp Lq G Ns FV FU SV SU Af Wh Total

FH 42 6 2 7 1 1 7 4 7 20 2 2059

FM 9 39 21 3 3 1 1 14 7 1 867

FL 1 12 68 15 2 520

CM 10 9 3 18 1 2 4 4 13 17 1 14 3 3054

CH 1 43 1 1 2 50 414

BH 11 2 8 2 26 7 5 12 8 17 2 525

BM 1 2 58 9 8 17 4 918

BL 2 16 55 22 3 559

Dp 6 2 6 4 74 2 3 1207

Lq 6 4 1 3 73 5 3 2 3378

G1 4 3 3 9 65 11 2 810

Ns 2 86 8 2765

FV 3 14 5 30 5 39 1755

FU 4 4 4 1 86 2523

SV 11 61 2 23 1923

SU 3 23 13 61 2920

Af 2 18 37 6 36 359

Wh 1 1 3 3 1 13 7 1 68 374

Table F.6: Same conditions as in Matrix F.5; EIH

FH FM FL CM CH BH BM BL Dp Lq G Ns FV FU SV SU Af Wh Total

FH 63 6 1 6 1 3 10 2 2 4 2 2056

FM 11 37 16 8 4 2 2 13 4 867

FL 3 10 71 15 520

CM 15 6 2 31 1 8 5 2 11 9 1 5 4 3063

CH 1 1 1 60 2 1 32 414

BH 12 2 8 2 44 10 3 8 6 3 1 525

BM 2 1 66 8 6 11 4 918

BL 2 3 1 16 57 18 3 559

Dp 6 2 2 3 1 4 81 1 1207

Lq 2 9 2 9 1 4 59 6 4 1 3394

G1 9 2 3 4 2 6 55 10 7 818

Ns 1 1 1 2 2 79 2 2 7 2775

FV 2 1 1 13 34 14 4 28 1750

FU 3 4 30 61 2517

SV 1 2 21 25 8 14 1 24 1913

SU 1 2 10 11 14 4 4 55 2892

Af 1 9 6 33 1 10 37 356

Wh 4 1 2 5 1 1 7 73 369
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1

7

1

13

7

4

Table F.7: Test set: Telephone channel simulation; Static+Dynamic features [Env,Ener,
A-A 2 Env, A-A 2 Ener]; TIMIT segmentation; MEL

51 6 2 12 1 2 7 4 3 11 2058

7 4 3 11

2 1 10 5

2058

867

520

3051

414

525

918

559

1207

3379

810

2755

1738

2518

1891

2884

356

373

.0 77 10 1

7 3 37 1 3 4 4 8 17 7

52 2 1 41

2 13 3 34 7 2 12 5 9

1 3 61 10 5 15 3

2 15 59 19 3

2 7 1 1 4 74 2

1 6 3 1 2 75 5 3 1

1 1 3 1 8 70 9 2

2 86 9

2 12 7 1 30 2

5 2 4 3
8 67 4

24 22

1 25 28 16

3 10 7

1

44

86

20

53

29

78

6 2 2
8 4 11

10 1 2 2

13 2

16

35 1 7 5 2 9 9 1 4

67 1 3 1 2 23

9 2 47 10 3 7 4 2

2 1 73 9 6 6 2
3 1 15 60 18

2 3 83

2 9 2 10 1 3 61 5 3

2 2 5 2 8 56 9

1 1 2 82 2 2

2 1 1 15 34 13 3

2 6 32

2 26 25 7 15
1 2 14 12 14 4

9 4 26 2

2 1 2 2 9 1
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FH FM FL CM CH BH BM BL Dp Lq G1 Ns FV FU SV SU Af Wh

FH

FM

FL

CM

CH

BH

BM

BL

Dp

Lq

G1

Ns

FV
FU

SV

SU

Af

Wh
Table F.8: Same conditions as in Matrix F.7; EIH

FH FM FL CM CH BH BM BL Dp Lq G1 Ns FV FU SV SU Af Wh

1FH

FM

FL

CM

CH

BH

BM

BL

Dp

Lq

G1

Ns

FV
FU

SV

SU

Af

Wh

65 6 1

12 41 16

3 9 71

14 5 2

1 1

11 1

2

6 1 3

8

3

5

1

2059

867

520

3069

414

525

918

559

1207

3396

820

2778

1748

2520

1925

2904

359

369

1

7

6

27

59

21

49

39

76

2

18

. ..

Total
51 6 2

6 42 24

12 1 2

5 4

Total



Table F.9: Test set: Telephone channel simulation; Static+Dynamic features [Env, Ener,
A-A 2 Env, A-A 2 Ener]; 1 iteration of automatic resegmentation; MEL

FH FM FL CM CH BH BM BL Dp Lq Gl Ns FV FU SV SU Af Wh Total

FH 45 6 3 9 2 6 3 3 15 6 2058

FM 5 39 27 3 3 2 8 6 2 4 867

FL 10 76 11 1 1 520

CM 6 8 4 26 1 3 4 5 9 13 9 12 1 3053

CH 50 1 1 43 2 414

BH 9 2 10 1 29 6 3 12 5 13 7 1 524

BM 58 14 8 15 3 918

BL 3 9 66 17 3 559

Dp 5 4 9 4 67 3 3 3 1207

Lq 1 6 4 1 3 76 3 3 2 3379

G1 5 1 2 1 8 72 8 2 809

Ns 1 87 11 2763

FV 2 16 3 32 2 42 1727

FU 2 4 13 4 76 2470

SV 7 74 4 13 1902

SU 29 22 48 2906

Af 1 38 10 22 26 358

Wh 17 7 75 374

Table F.10: Same conditions as in Matrix F.9; EIH

FH FM FL CM CH BH BM BL Dp Lq Gl Ns FV FU SV SU Af Wh Total

FH 64 7 1 7 2 10 1 2 3 2 2059

FM 10 44 17 8 2 1 1 11 3 1 867

FL 2 7 73 17 520

CM 12 7 2 37 5 4 3 7 7 5 1 7 3070

CH 2 65 1 1 28 414

BH 10 1 9 2 52 10 2 5 3 3 3 525

BM 2 75 7 7 4 3 918

BL 2 3 1 14 60 18 3 559

Dp 6 1 2 1 3 85 1 1207

Lq 1 9 2 10 2 65 4 3 2 3394

G1 6 1 2 3 5 64 5 11 821

Ns 1 87 2 2 6 2783

FV 1 21 31 16 7 22 1773

FU 5 5 40 1 48 2521

SV 1 30 19 3 27 16 1934

SU 2 16 8 7 13 3 49 2906

Af 2 7 5 40 4 18 23 359

Wh 1 1 2 8 1 1 82 376
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Table F.11: Test set: Telephone channel simulation; Static+Dynamic features [Env, Ener,
A-A 2 Env, A-A 2 Ener]; 2 iterations of automatic resegmentation; MEL

FH FM FL CM CH BH BM BL Dp Lq G1 Ns FV FU SV SU Af Wh Total

FH 47 6 3 14 2 6 3 2 14 2 2058

FM 4 46 25 6 3 7 4 2 1 867

FL 7 80 11 520

CM 5 7 3 44 3 3 4 5 10 10 5 1 3049

CH 1 48 1 47 414

BH 6 1 15 41 4 3 8 2 13 4 520

BM 2 67 9 5 12 3 918

BL 3 1 13 62 18 2 559

Dp 3 2 8 2 4 75 1 2 1207

Lq 1 6 4 2 79 2 3 2 3379

G1 5 2 1 7 75 7 2 810

Ns 89 9 2761

FV 2 18 8 2 35 3 30 1686

FU 2 7 11 5 1 73 2243

SV 8 79 3 8 1878

SU 1 26 28 44 2846

Af 1 38 8 31 20 358

Wh 12 5 79 374

Table F.12: Same conditions as in Matrix F.11; EIH

FH FM FL CM CH BH BM BL Dp Lq Gl Ns FV FU SV SU Af Wh Total

FH 67 7 1 7 2 8 1 4 2 2059

FM 8 52 15 7 3 1 1 7 3 1 867

FL 2 7 78 11 520

CM 10 6 1 46 5 3 2 4 7 5 2 7 3071

CH 70 1 1 25 414

BH 8 10 58 9 4 4 3 525

BM 1 77 7 5 4 3 918

BL 3 9 67 18 2 559

Dp 5 1 2 2 3 86 1207

Lq 1 8 2 6 2 71 3 2 3 3396

G1 5 1 1 4 5 70 4 8 821

Ns 1 87 2 2 6 2780

FV 15 39 12 6 24 1769

FU 3 5 37 55 2519

SV 1 28 22 8 22 17 1930

SU 1 12 6 15 5 3 54 2915

Af 1 5 7 30 3 26 28 359

Wh 1 1 5 89 376
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Table F.13: Test set: Telephone channel simulation; Static+Dynamic features [Env, Ener,
A-A 2 Env, A-A 2 Ener]; 3 iterations of automatic resegmentation; MEL

FH FM FL CM CH BH BM BL Dp Lq Gl Ns FV FU SV SU Af Wh Total

FH 54 5 3 13 2 5 2 2 11 2 2054

FM 6 43 29 7 2 6 4 1 867

FL 1 5 85 8 520

CM 5 7 4 48 3 2 4 6 9 7 4 3046

CH 52 1 43 414

BH 8 1 17 1 44 4 1 7 2 10 4 521

BM 3 66 10 6 10 3 918

BL 3 12 66 16 559

Dp 5 1 8 1 4 77 1 2 1206

Lq 1 5 3 1 180 3 2 1 3376

G1 4 1 1 6 78 6 1 809

Ns 90 8 2756

FV 1 2 1 16 10 2 35 4 29 1660

FU 2 5 7 8 7 1 69 2064

SV 8 2 79 3 8 1875

SU 2 31 30 35 2804

Af 2 1 35 8 30 22 357

Wh 13 6 78 372

Table F.14: Same conditions as in Matrix F.13; EIH
FH FM FL CM CH BH BM BL Dp Lq G Ns FV FU SV SU Af Wh Total

FH 67 7 1 6 2 8 1 3 2 2059

FM 8 52 18 7 3 1 7 3 867

FL 2 6 78 13 520

CM 10 5 1 49 6 3 3 5 6 5 1 5 3071

CH 71 1 1 24 414

BH 9 1 9 60 8 4 1 4 2 2 525

BM 2 78 7 5 5 2 918

BL 1 3 10 65 18 1 559

Dp 4 1 2 1 1 3 87 1207

Lq 1 8 2 5 1 72 3 3 3 3395

G1 6 3 4 74 3 7 820

Ns 87 2 2 6 2781

FV 17 38 14 7 23 1766

FU 3 4 37 55 2522

SV 29 23 6 23 16 1929

SU 1 2 1 15 9 15 7 3 45 2897

Af 2 6 6 42 3 22 19 359

Wh 1 2 4 1 89 376
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Appendix

Confusion Matrices - Test set :

Room Reverberation Simulation
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Table G.1: Test set: Room reverberation simulation; Static features [Env]; TIMIT seg-
mentation; MEL

114

FH

FM

FL

CM

CH

BH

BM

BL

Dp

Lq

G1

Ns

FV

FU

SV

SU

Af

Wh

FH FM FL CM CH BH BM BL Dp Lq G1 Ns FV FU SV SU Af Wh

3 1 1 3 2 2 11 3 13 4 8 19 2 28

1 2 2 2 4 11 2 29 43

2 1 1 18 16 60

3 2 3 3 1 7 11 9 5 14 2 37

1 6 1 2 22 2 1 2 5 9 20 27

11 1 3 12 7 18 2 12 13 2 17

3 11 1 5 5 22 1 11 1 28 29

1 2 3 1 22 1 29 39

1 1 6 1 2 17 25 42

2 4 6 2 2 14 4 3 11 6 17 29

1 6 3 9 14 15 7 2 7 7 4 24

1 2 1 1 1 2 2 2 24 7 5 5 8 36

2 1 1 4 2 7 3210 9 9 7 12

21 35 2 14 14 12

3 1 1 1 2 1 2 7 4 15 10 5 20 8 4 14

1 1 1 2 3 11 7 7 22 10 32

2 18 8 2 453 11

1 2 1 2 3 2 3 6 2 9 2 66

Table G.2: Same conditions as in Matrix G.1; EIH

FH FM FL CM CH BH BM BL Dp Lq Gl Ns FV FU SV SU Af Wh Total

FH 4 1 2 2 6 1 3 5 5 4 1 7 8 2 46 2030

FM 1 2 3 1 3 2 3 7 6 2 5 4 7 52 864

FL 2 8 2 26 2 2 56 520

CM 1 1 2 2 7 2 4 8 5 8 3 14 8 2 32 3039

CH 1 11 1 6 4 2 37 2 7 1 3 22 412

BH 3 2 11 4 1 1 8 13 5 1 11 6 32 517

BM 1 4 36 8 5 11 8 3 8 15 917

BL 21 23 10 5 4 8 26 559

Dp 2 2 2 1 1 2 6 14 24 4 1 2 2 36 1207

Lq 2 2 17 7 4 17 6 6 7 9 22 3352

G1 1 1 4 10 2 9 16 10 1 11 5 4 23 776

Ns 2 2 5 2 2 5 4 7 5 5 17 7 2 32 2750

FV 4 1 1 5 6 5 2 4 7 3 12 8 20 3 3 15 1706

FU 1 1 2 2 4 1 4 5 50 6 3 18 2518

SV 6 2 4 3 2 4 4 3 7 11 5 17 3 9 3 4 2 12 1894

SU 3 1 3 1 2 2 1 5 5 4 10 3 20 3 14 5 18 2865

Af 2 1 2 6 5 8 10 32 4 12 17 355

Wh 3 2 2 3 4 3 3 6 2 6 1 9 7 6 41 347

Total

2026

828

501

2927

397

518

900

543

1190

3272

777

2570

1700

2465

1887

2867

352

364



Table G.3: Test set: Room reverberation simulation; Static features [Env, Ener]; TIMIT
segmentation; MEL

Pi F'M I'L C'M (H lit BM BL p Lq M Ns FV 'U V U At Wh 'Ibtal
6 1 1 2 2 7

1 2 4 2 1 4

1 16

1 1 5 2
1 1 1 15 3 2

2 19

8 9 2 1

1 3 1
3 2 4 1 1 2 1

2 6 5 1

1 6 2

2 3 1 2 1

1 2 2

4 1 2

1

2

1

1 2

2

2 2 11 5 18 1 5 9 3 24

7 3 1 1 9 3 20 37

8 7 4 24 38

3 4 2 8 12 5 5 10 1 38

3 22 2 2 3 6 14 23

2 3 13 8 21 1 6 4 18

.3 8 3 2 2 8 21 23

.1 2 2 16 34 29

7 1 2 4 7 26 28

4 15 1 5 4 2 5 18 29

1 10 14 16 9 2 6 3 5 25

4 2 2 29 8 1 4 8 30

2 5 2 10 36 7 8 8 4 9

29 30 3 7 11 17

3 6 4 17 10 2 21 10 4 8

1 1 2 4 11 6 10 26 9 25

4 24 7 1 4 48 9

2 4 5 4 6 2 10 1 60
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FH

FM

FL

CM

CH

BH

BM

BL

Dp
Lq

G1

Ns

FV
FU

SV

SU

Af

Wh

2057

867

520

3039

414

525

918

559

1207

3371

763

2732

1701

2521

1900

2883

358

348

Table G.4: Same conditions as in Matrix G.3; EIH

FH FM FL CM CH BH BM BL Dp Lq Gl Ns FV FU SV SU Af Wh Total

FH 7 2 2 2 3 9 5 4 4 3 1 7 8 3 38 2055

FM 2 4 4 2 2 5 3 4 14 5 1 2 4 7 41 866

FL 4 18 4 42 1 28 520

CM 2 1 3 1 5 7 4 6 6 4 6 3 13 7 1 30 3040

CH 2 1 1 16 2 8 10 4 31 2 2 1 17 414

BH 3 2 21 4 2 2 7 11 2 1 14 5 1 24 524

BM 1 9 41 14 8 7 3 2 2 12 918

BL 23 39 17 2 3 12 559

Dp 2 5 4 1 2 3 6 18 35 3 1 1 19 1207

Lq 3 4 18 10 6 14 4 4 7 6 22 3377

G1 2 1 7 9 1 2 9 16 10 2 10 4 4 22 768

Ns 2 3 7 2 4 5 5 11 5 2 16 1 7 1 28 2745

FV 4 2 1 5 9 5 2 5 6 2 12 9 19 2 2 13 1681

FU 1 1 1 4 2 3 3 5 51 5 3 16 2522

SV 6 2 5 2 2 6 4 3 9 11 3 17 4 7 5 5 1 9 1879

SU 2 1 3 1 2 1 1 5 5 3 11 2 19 4 16 4 17 2864

Af 2 1 3 2 6 4 5 8 29 4 16 17 355

Wh 4 1 3 4 5 2 5 5 4 5 2 8 6 4 42 334
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Table G.5: Test set: Room reverberation simulation; Static+Dynamic features [Env, A-A 2
Env]; TIMIT segmentation; MEL

19

2 4 1

2 9
2

2

5 3

3 2

4

1

5

2

4 2 3

1

2 1

4 2 1 9

2 7

2

5

2

2

4 5 12 2 7 2

5 5 3 3 7
15

4 3 6 3 6 12 6
.6 3 1 38 1 2 4

26 7 16 5 6 1

4 15 1 1 13 5 2 10

2 7 2 2 20

2 17 2 13

2 3 5 1 2 26 2 4 2 9

3 1 1 11 32 13 3 1

2 1 3 4 33 4 3

4 6 1 8 31 7

26 34

9 3

4

1 1 2

7 10

3 29

12

8 19

4 16

4 13

27

39

18

7 23

7 13

3 9

7 13

2 19

2

1

1

2

3

5

11

21

30

58

21

10

10

18

26

36

12

11

19

6

5

2 10 2 15 7 4 21 14 2 5

1 2 4 7 9 15 42 4 7

1 3 7 4 3 20 59 3

6 1 3 4 5 5 11 1 57
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TotalFH FM FL CM CH BH BM BL Dp Lq G1 Ns FV FU SV SU Af Wh

FH

FM

FL

CM

CH

BH

BM

BL

Dp

Lq

G1

Ns

FV

FU

SV

SU

Af

Wh

1969

750

358

2841

373

499

807

450

1005

3163

781

2339

1592

2404

1832

2773

356

339

Table G.6: Same conditions as in Matrix G.5; EIH

FH FM FL CM CH BH BM BL Dp Lq Gl Ns FV FU SV SU Af Wh Total

FH 14 1 3 1 5 6 5 4 2 1 9 5 3 40 2034

FM 5 6 55 5 1 1 8 7 2 2 4 6 42 864

FL 2 32 1 2 15 45 520

CM 2 1 4 5 5 4 6 6 4 8 6 12 8 1 26 3020

CH 1 1 1 2 25 1 4 8 2 29 2 1 2 1 19 413

BH 2 1 26 4 2 3 5 8 3 2 11 4 2 25 521

BM 2 6 50 12 6 5 5 2 10 918

BL 1 1 23 40 14 3 2 13 559

Dp 4 1 2 3 2 4 11 47 4 1 19 1207

Lq 1 1 3 3 17 9 6 18 3 4 7 6 18 3342

GI 2 5 11 3 8 19 8 3 10 1 4 3 22 795

Ns 5 3 7 3 5 4 4 10 5 1 18 2 6 2 25 2745

FV 4 1 1 4 12 5 1 4 5 1 10 17 16 3 2 2 12 1670

FU 1 2 2 1 4 13 51 1 1 1 20 2481

SV 7 3 3 3 2 7 3 2 8 10 3 18 5 7 7 4 2 7 1863

SU 3 1 2 2 2 3 5 2 9 8 18 9 17 3 13 2801

Af 1 3 3 9 22 21 6 2 15 15 341

Wh 4 1 1 2 4 2 5 5 2 5 3 12 5 5 44 353
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Table G.7: Test set: Room reverberation simulation; Static+Dynamic features [Env, Ener,
A-A 2 Env, A-A 2 Ener]; TIMIT segmentation; MEL

FH FM FL CM CH BH BM BL Dp Lq GI Ns FV FU SV SU Af Wh Total

FH 23 1 7 5 5 6 15 2 7 1 4 4 2 17 2058

FM 4 10 3 6 6 7 6 4 3 3 2 17 2 25 867

FL 2 8 13 1 7 1 2 7 9 1 48 520

CM 3 5 4 4 8 5 7 12 5 7 13 1 23 3045

CH 1 1 20 2 1 1 1 39 2 3 2 1 9 14 414

BH 2 4 36 1 7 15 3 6 2 2 6 2 12 525

BM 3 8 14 2 5 14 7 1 4 20 18 918

BL 1 3 7 7 4 1 9 35 1 30 559

Dp 6 4 2 2 1 2 30 2 1 8 14 1 26 1207

Lq 1 2 4 5 1 3 31 2 4 6 6 5 13 15 3376

G1 2 1 4 1 10 35 13 5 5 8 2 11 782

Ns 4 3 3 13 2 4 5 36 5 3 2 5 13 2725

FV 2 1 10 5 1 1 7 12 35 6 5 5 3 5 1696

FUI 3 1 36 33 2 5 6 12 2516

SV 6 2 1 11 3 4 9 17 9 3 22 10 1 2 1896

SU 2 6 1 2 6 9 7 16 40 5 3 2870

Af 1 2 2 4 12 4 5 8 58 3 359

Wh 3 1 7 1 6 6 5 3 4 61 353

Table G.8: Same conditions as in Matrix G.7; EIH

FH FM FL CM CH BH BM BL Dp Lq GI Ns FV FU SV SU Af Wh Total

FH 18 1 3 2 6 7 5 4 2 2 8 4 2 35 2058

FM 8 8 10 5 1 5 1 1 10 7 1 3 5 1 33 867

FL 1 3 43 1 2 23 24 520

CM 2 1 5 1 5 5 4 7 7 4 7 6 12 6 1 26 3056

CH 2 2 1 1 32 3 5 9 5 22 1 1 15 414

BH 2 2 30 5 2 3 5 8 1 1 12 3 2 21 525

BM 2 7 51 14 8 5 3 6 918

BL 1 1 2 19 51 16 2 1 6 559

Dp 5 1 4 3 1 3 11 56 4 1 10 1207

Lq 1 1 4 4 15 8 8 20 2 3 7 4 19 3389

G1 2 5 8 4 9 19 8 4 10 2 4 2 23 793

Ns 6 3 8 3 6 5 3 12 5 18 2 6 20 2763

FV 4 1 1 4 1 11 5 5 6 11 19 17 2 2 10 1701

FU 1 1 2 2 1 4 14 50 1 1 19 2512

SV 7 2 3 3 2 7 2 2 8 9 1 19 7 7 9 5 5 1884

SU 3 1 3 2 2 4 4 1 11 9 18 11 18 1 11 2870

Af 1 2 3 2 9 23 19 5 3 15 15 358

Wh 4 3 4 2 5 4 2 5 4 10 5 3 47 362
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Table G.9: Test set: Room reverberation simulation; Static+Dynamic features [Env, Ener,
A-A2 Env, A-A2 Ener]; 1 iteration of automatic resegmentation; MEL

FH FM FL CM CH BH BM BL Dp Lq Gi Ns FV FU SV SU Af Wh Total

FH 41 3 1 13 7 5 1 12 2 3 1 1 9 2052

FM 4 30 15 8 2 3 2 7 3 6 3 16 860

FL 2 7 43 1 6 8 2 29 516

CM 7 3 2 35 8 4 2 5 6 5 3 2 3 14 3002

CH 33 3 1 50 2 2 4 412

BH 3 9 54 4 2 5 7 6 2 1 4 522

BM 3 6 41 3 6 12 2 1 4 6 13 913

BL 2 4 1 8 18 12 2 10 9 32 557

Dp 8 3 6 3 1 1 2 44 6 4 20 1202

Lq 2 5 5 6 1 2 61 1 3 1 2 1 3 6 3358

G1 1 3 4 2 12 63 4 2 1 1 3 807

Ns 1 79 2 5 1 9 2734

FV 1 7 58 11 7 4 9 1708

FU 22 66 3 2 7 2509

SV 1 8 5 1 53 18 3 9 1887

SU 4 2 9 72 4 7 2861

Af 16 14 1 5 63 359

Wh 1 1 2 92 368

Table G.10: Same conditions as in Matrix G.9; EIH

FH FM FL CM CH BH BM BL Dp Lq GI Ns FV FU SV SU Af Wh Total

FH 41 4 3 4 12 10 1 3 1 2 17 2058

FM 4 23 22 6 2 3 1 3 21 1 2 11 867

FL 3 54 1 31 9 519

CM 10 3 2 14 14 5 6 10 3 1 6 2 1 20 3061

CH 1 2 44 2 1 2 4 39 1 3 414

BH 4 3 1 56 8 2 4 2 2 3 2 10 522

BM 1 2 69 16 5 2 2 918

BL 1 15 64 16 2 559

Dp 5 1 5 1 2 8 73 3 1207

Lq 6 3 17 4 3 49 3 3 1 8 3389

G1 2 2 11 1 6 52 5 2 5 1 1 10 820

Ns 1 2 1 76 1 1 13 2762

FV 1 1 2 12 33 34 2 3 9 1733

FU 6 87 6 2524

SV 1 2 1 3 3 21 15 5 25 12 2 8 1867

SU 1 6 6 12 10 45 3 16 2854

Af 1 12 58 26 2 356

Wh 2 2 3 1 6 2 2 78 368

118



Table G.11: Test set : Room reverberation simulation; Static+Dynamic features [Env,
Ener, A-A 2 Env, A-A 2 Ener]; 2 iterations of automatic resegmentation; MEL
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FH FM FL CM CH BH BM BL Dp Lq Gl Ns FV FU SV SU Af Wh

47 3 14 9 4 10 2 2 6

8 36 14 10 1 5 1 6 3 3 2 9

2 9 54 3 7 4 2 18

6 3 2 46 9 3 25 5 5 2 2 9

1 35 3 53 1 4

2 10 59 2 2 4 3 8 3 3

3 9 43 5 418 4 2 2 3 6

2 10 3 10 28 18 2 1 5 4 17

9 3 6 4 2 1 2 55 1 1 2 1 9

3 4 5 4 1 167 1 3 1 1 2 4

3 3 11 70 3 2 1 2

84 1 4 6

1 1 6 63 11 8 3 6

23 70 2 1 3

1 9 6 1 60 11 2 7

1 3 4 11 71 5 4

18 14 1 64

2 1 2 92

Table G.12: Same conditions as in Matrix G.11; EIH

FH FM FL CM CH BH BM BL Dp Lq Gl Ns FV FU SV SU Af Wh Total
FH 47 3 3 3 13 7 2 1 2 16 2056

FM 5 23 27 6 3 5 2 18 2 1 8 867

FL 2 63 1 25 7 520

CM 9 2 2 19 17 4 6 7 4 8 2 18 3058

CH 1 47 1 1 1 3 41 2 414

BH 5 4 62 9 1 3 2 1 2 2 9 522

BM 1 2 73 12 6 2 2 918

BL 1 15 67 13 1 1 559

Dp 5 2 4 1 2 2 6 73 5 1207

Lq 1 5 3 13 3 3 58 2 3 7 3389

G1 2 2 9 1 5 59 4 2 4 9 821

Ns 1 1 2 1 74 2 1 14 2769

FV 1 2 10 40 30 2 2 10 1761

FU 6 86 7 2525

SV 1 1 2 19 16 6 30 11 1 9 1863

SU 1 4 6 14 9 46 3 16 2873

Af 12 58 25 3 358

Wh 1 1 2 2 1 4 86 372

-- . .. .

Total
FH
FM/

FL

CM/

CH

BH

BM

]BL

Dp

Lq
GI

Ns

FV
FU
SV

SU

Af

Wh

2059

865

519

3025

414

522

911

555

1207

3371

807

2741

1733

2511

1897

2864

359

372



Table G.13: Test set : Room reverberation simulation; Static+Dynamic features [Env,
Ener, A-A 2 Env, A-A 2 Ener]; 3 iterations of automatic resegmentation; MEL

15 8 4 10 1

10 1 3 1 7 2

2 1 7

48 9 2 2 5 4 5

33 3 54 1

10 59 4 1 4 2 8

4 9 41 3 6 15 3 1

9 2 7 23 17 2 2

4 1 2 53 1 1

3 4 5 3 1 68 1 3

3 3 10 70 3

84
6

2

3

8

5

2

2 1

1 1

62 11

23 69

2058

865

520

3025

413

522

913

556

1206

3374

805

2744

1741

2514

1895

2877

359

372

2

4

9

1 2 93

1

2

120

1

1

1

1

3

3

2

1

1

2

2

8 7 2 61 12 2

1 3 4 10 73 4

20 14 3 63

6

9

19

9

3

4

9

21

13

4

2

6

7

4

7

4

FH FM FL CM CH BH BM BL Dp Lq G1 Ns FV FU SV SU Af Wh

47 3

6 38 14

2 9 51

6 2 1

1

3

1 2

8 4 5

1

FH

FM

FL

CM

CH

BH

BM

BL

Dp

Lq

G1

Ns

FV

FU

SV

SU

Af

Wh
Table G.14: Same conditions as in Matrix G.13; EIH

FH FM FL CM CH BH BM BL Dp Lq G1 Ns FV FU SV SU Af Wh Total

FH 45 4 3 3 13 7 4 1 2 16 2056

FM 6 26 25 6 3 4 2 17 2 8 867

FL 1 3 65 2 23 6 520

CM 9 3 2 22 17 4 6 7 5 1 5 2 18 3060

CH 2 1 44 1 2 3 43 3 414

BH 3 4 67 7 2 2 2 1 2 1 8 523

BM 2 3 71 14 6 2 2 918

BL 2 15 65 15 1 2 559

Dp 4 2 5 2 2 6 73 5 1207

Lq 1 4 3 14 3 3 58 2 3 7 3389

G1 2 2 9 1 6 60 3 2 4 10 820

Ns 1 2 76 2 1 14 2772

FV 2 2 9 43 29 2 2 10 1767

FU 6 86 7 2524

SV 1 2 2 19 16 6 31 11 1 10 1872

SU 1 4 7 13 9 48 3 13 2867

Af 15 54 28 1 358

Wh 1 1 1 2 1 3 88 373

Total

I

3 1

1 5

5

2 3
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