
Software Management Techniques for Translation
Lookaside Buffers

by

Kavita Bala

Submitted to the Department of Electrical Engineering and
Computer Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

January 1995

© Massachusetts Institute of Technology 1995. All rights reserved.

Author
Department of Electrical E'ngineering and Computer Science

January 19, 1995

Certified by.
William E. Weihl

Associate Professor
Thesis Supervisor

Certified by......... .' 7J 4Wxy

An I .
M. Frans Kaashoek
Assistant Professor

Thesis Supervisor

Accepted by vv.
FrOlic R. Morgenthaler

Chairman, Departmenta Committee bn Graduate Students
MASSACHUSETTS INSTITUTF1. .. .

APR 13 1995

.

/.....
I

.... ;- -- -

\ n

Software Management Techniques for Translation

Lookaside Buffers

by

Kavita Bala

Submitted to the Department of Electrical Engineering and Computer Science
on January 19, 1995, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract
A number of interacting trends in operating system structure, processor architecture,
and memory systems are increasing both the rate of translation lookaside buffer (TLB)
misses and the cost of servicing a TLB miss. This thesis presents two novel software
schemes, implemented under Mach 3.0, to decrease both the number and the cost of
kernel TLB misses (i.e., misses on kernel data structures, including user page tables).
The first scheme is a new use of prefetching for TLB entries on the IPC path, and
the second scheme is a new use of software caching of TLB entries for hierarchical
page table organizations.

For a range of applications, prefetching decreases the number of kernel TLB misses
by 40% to 60%, and caching decreases TLB penalties by providing a fast path for over
90% of the misses. Our caching scheme also decreases the number of cascaded TLB
traps due to the page table hierarchy, reducing the number of kernel TLB misses
by 20% to 40%. For these applications, TLB penalties range from 1% to 5% of
application runtime; our schemes are very effective in reducing kernel TLB penalties,
improving application performance by up to 3.5%. We also demonstrated the impact
of increasing the number of client/server processes, and increasing the data accessed
by a process, on TLB miss handling times. For these synthetic benchmarks, our
schemes, especially the integrated scheme with both prefetching and caching, perform
very well improving runtimes for fine-grained benchmarks by up to 10%. Processor
speeds continue to increase relative to memory speeds; a simple analytical model
indicates that our schemes should be even more effective in improving application
performance on future architectures.

Thesis Supervisor: William E. Weihl
Title: Associate Professor of Computer Science and Engineering

Thesis Supervisor: M. Frans Kaashoek
Title: Assistant Professor of Computer Science and Engineering

Acknowledgments

I would like to thank my advisors, Bill and Frans, for their ideas, and suggestions.

Under their guidance I have learned how to approach research problems. I would also

like to thank them for their patience during the rough patches of this work. I have

learned a lot over these past two years, and I am sure everything I have learned will

help me in the years to come.

I would like to specially thank Carl Waldspurger for his invaluable advice and

time. Carl has been a great support and his technical contributions have helped the

work immensely. It has been a pleasure interacting with him as a colleague and friend.

Thanks to both Wilson Hsieh and Carl for their contribution to early ideas in this

work.

I would like to thank Krishna, my brother, for the support he has given me over the

years, and the many discussions we have had on how the world of Computer Science

works. Thanks also to friends, Donald Yeung, Patrick Sobalvarro, and Sivan Toledo,

for their support. I would also like to thank Simrat, Joemama, and my parents for

their encouragement.

Thanks to Anthony Joseph for his help with X, and Rich Uhlig for his comments

and help with Mach. Thanks to everybody who helped me with drafts: Andrew

Myers, Debby Wallach, Kevin Lew, Paige Parsons, Ulana Legedza. I would also like

to thank everybody who gave me valuable feedback on my presentation: especially

John Kubiakowitz, Ken Mackenzie, Kirk Johnson, and Steve Keckler. Thanks to

Professor Anant Agarwal and Kirk for lending me their machine.

Thanks also to Paul Leach and the anonymous referees of the OSDI committee

for their comments.

Contents

1 Introduction

2 Background

2.1 Virtual Memory Organizations .

2.2 TLB Miss Handling

3 Software TLB Mangement

3.1 Prefetching TLB Entries

3.1.1 When to prefetch.

3.1.2 What to prefetch

3.1.3 How many entries to prefetch

3.1.4 Trace data .

3.1.5 Implementation

3.2 Software Cache of TLB Entries . . .

3.2.1 Implementation

3.2.2 STLB organization

3.3 Prefetching with the Software TLB

3.4 Summary

4 Experiments

4.1 Platform and Benchmarks . . .

4.2 Methodology

4.3 Results: TLB Miss Penalties . .

4.3.1 Prefetching TLB entries

4

8

12

12

14

16

. 16

. 17

. 17

. 18

. 18

.20

.21

. 23

. 24

. 25

. 25

26

26

28

29

29

..

....................

....................

4.3.2 Software Cache of TLB Entries . .

4.3.3 Prefetching with the Software TLB

4.4 Results: Application Speedup

4.5 Synthetic benchmark.

4.5.1 Hypothesis 1

4.5.2 Hypothesis 2

4.5.3 Hypothesis 3

4.5.4 Conclusions

5 Analytical Model of TLB Schemes

5.1 Parameters of Model.

5.2 Model

5.3 6 on Different Architectures . . .

5.3.1 Assumptions.

5.4 Same Cache Miss Rate

5.5 Different Cache Miss Rate

5.6 Conclusions

6 Related Work

7 Conclusions

5

. 33

. 34

. 39

. 39

. 40

. 45

. 48

. 50

51

. 51

.52

.53

. 54

. 54

. 57

. 62

63

65

.

.

.

.

.

.

.

List of Figures

2-1 Mach 3.0 Page table hierarchy 13

3-1 STLB lookup path 22

4-1 Kernel TLB misses: Mach, PTLB 31

4-2 Costs and benefits of PTLB 32

4-3 Costs and benefits of STLB 36

4-4 Costs and benefits of PTLB+STLB 37

4-5 Increase in the number of servers: TLB miss counts 42

4-6 Increase in the number of servers: Normalized kernel TLB penalties . 43

4-7 Increase in data accessed: TLB miss counts 46

4-8 Increase in data accessed: Normalized kernel TLB penalties 47

6

List of Tables

2.1 Average TLB miss penalties

3.1 Trace data: Percentage of TLB misses

3.2 Average TLB penalties for a direct-mapped STLB

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

Baseline application statistics

Rate of TLB misses

Kernel TLB miss counts: Mach, PTLB

Kernel TLB penalties: Mach, PTLB

TLB misses and STLB hit rates.........

Cascaded TLB misses

Kernel TLB penalties: Mach, STLB

Kernel TLB miss counts: Mach, PTLB+STLB

Kernel TLB penalties: Mach, PTLB+STLB

Application speedup

Speedup: Fine Granularity

Speedup: Medium Granularity

Speedup: Coarse Granularity

7

15

19

23

..27

..28

..30

........... ..33

........... ..34

..35

..35

..38

..38

. 39

........... . .48
.. 49

......49

Chapter 1

Introduction

A number of interacting trends in operating system structure, processor architecture,

and memory systems are increasing both the rate of translation lookaside buffer (TLB)

misses and the cost of servicing a TLB miss. This thesis presents two novel software

schemes to decrease both the number and the cost TLB misses. The first scheme is a

new use of prefetching of TLB entries between communicating processes. The second

scheme is a new use of software caching of TLB entries for hierarchical page table

organizations.

We have implemented these techniques under the Mach 3.0 microkernel on an

R3000-based machine, and have evaluated their performance on a range of video and

file-system applications. We have also studied synthetic benchmarks that demonstrate

the impact of increasing the number of client/server processes, and increasing the data

accessed by a process, on TLB miss handling times. In the applications studied, our

schemes proved to be very effective in decreasing TLB penalties. Processor speeds

continue to increase relative to memory speeds; we developed a simple analytical

model to understand the impact of architectural trends on TLB miss handling.

First, we motivate the importance of software TLB mangement schemes. The

TLB is an on-chip hardware cache of virtual address to physical address translations.

TLBs have traditionally been fairly small and organized as highly associative caches,

e.g., the MIPS R2000/3000 architecture has a 64-entry fully associative TLB. When

an address translation is found cached in the TLB, the TLB accelerates memory

8

references. However, when an address translation is not found in the TLB, a TLB miss

takes place and the translation has to be looked up in the operating system page

tables. CISC architectures in the past handled TLB misses in hardware, e.g., the i386

has a hardware-managed TLB. However, the trend in processor architectures over the

past few years has been towards RISC-based organizations. This trend has motivated

some architecture designers to move handling TLB misses into software. Several

modern RISC architectures, e.g., the MIPS R2000/3000/4000, Digital's Alpha, and

the HP PA-RISC, adopt this approach. This move to software handling of TLB

misses simplifies the hardware design considerably. The ability to handle TLB misses

in software also permits greater flexibility to the operating system in the organization

of page tables. For example, different operating systems can implement different

page table organizations for the same architecture. However, handling TLB misses in

software increases the time to handle a miss.

Another trend in memory system development further increases TLB miss times.

As CPU speeds continue to increase relative to memory speeds [21], the time to access

entries in the operating system page tables increases. This further increases the time

to service a TLB miss. Also, studies indicate that operating systems benefit less than

applications from improvements in caching techniques [8]. Therefore, the time spent

in servicing TLB misses relative to the application runtime is likely to increase on

future architectures.

While these trends in processor architecture and memory system latency increase

the time to service a TLB miss, trends in operating system organization are also

increasing the number of TLB misses. Modern microkernel-based operating systems

such as Mach 3.0 [1] and Amoeba [19] provide minimal primitives within the kernel for

VM management, inter-process communication and scheduling. All other OS func-

tionality is provided by user-level server processes which reside in different protection

domains. This is unlike traditional monolithic operating systems, such as Ultrix [11],

which provide all functionality within the kernel. The benefits of microkernel-based

operating systems are increased flexibility, portability and modularity. However, the

existence of user-level server processes requires frequent communication between client

9

processes, the kernel, and server processes. Since more communicating processes have

to be simultaneously mapped by the TLB, the number of TLB misses in these sys-

tems is greater than that in monolithic operating systems [28]. Furthermore, many

microkernel-based systems use virtual memory rather than physical memory for most

OS data structures. This increases the number of pages in the active working set that

require TLB entries.

As researchers continue to improve inter-process communication (IPC) perfor-

mance [5, 18], TLB penalties will become an increasing fraction of the IPC cost

[4, 14]. In addition, recent commercial standards, such as OLE [12] and OpenDoc

[25], place an increasing emphasis on inter-application communication. This empha-

sis on increased communication between processes, could result in an increase in the

number of TLB misses.

Thus, current trends are increasing both the rate of TLB misses and the relative

cost of servicing a miss. The net effect of all these factors is that the impact of

TLB misses on overall system performance is increasing [2, 8]. While TLB penalties

have been recognized as a problem, proposed solutions typically require expensive

hardware [28, 20].

In this thesis we present two schemes to address this problem that rely only on

software mechanisms; no additional hardware is required. These techniques reduce

both the number and the cost of TLB misses. The first technique involves prefetching

TLB entries during IPC. This well-known technique has not been applied before in

the context of TLB management. After an IPC, many page table accesses that cause

TLB misses are highly predictable. Prefetching these entries in the kernel during the

IPC can eliminate many misses. We implemented and evaluated our techniques under

the Mach 3.0 microkernel on an R3000-based machine. For a range of applications,

prefetching decreases the number of kernel TLB misses by 40% to 60%.

The second technique introduces a software cache for the TLB, called the software

TLB (STLB). On several architectures, handling some types of TLB traps is quite

expensive (on the order of several hundred cycles). By introducing a large software

cache for TLB entries and checking it early in the TLB miss trap handler, this ap-

10

proach reduces the time for servicing expensive misses. In addition, in systems with

hierarchical page table organizations, page tables themselves are mapped. A hit in

the STLB avoids further references to the page tables. Preventing cascaded misses

reduces the total number of TLB misses by about 20% to 40% for the applications we

studied. For a range of applications, caching decreases TLB penalties by providing a

fast path for over 90% of the misses.

For these applications, TLB penalties range from 1% to 5% of application runtime;

our schemes are very effective in reducing kernel TLB penalties, improving application

performance by up to 3.5%. We implemented a synthetic benchmark to study the

impact of increasing the number of client/server processes, and increasing the data

accessed by a process, on TLB miss handling times. Our schemes perform very well

under these scenarios, improving runtimes for fine-grained benchmarks by up to 10%.

Since processor speeds continue to increase relative to memory speeds, we expect our

schemes to be even more effective in improving application performance on future

architectures.

Our experiments assume a microkernel-based operating system. However, these

techniques can be applied to other operating system organizations, such as large single

address space systems [7] and systems with software segmentation [29]. Furthermore,

with the current emphasis on application-controlled resource management [3, 13],

our prefetching techniques could become even more effective, since the prefetching

strategy can be tailored for individual applications. Prefetching can also be integrated

with other VM functions such as prefetching cache entries.

An outline of the thesis follows: Chapter 2 presents background material on page

table organizations and VM management. Chapter 3 describes the two schemes, the

scheme integrating both techniques, and implementation details. In Chapter 4, the

experimental methodology followed to evaluate the schemes is explained, and results

are presented. Chapter 4 also presents a synthetic benchmark that demonstrates the

impact of multiple clients and servers on application runtime. Chapter 5 presents

a model for TLB penalties on faster architectures. In Chapter 6 we discuss related

work, and finally, in Chapter 7 we present conclusions.

11

Chapter 2

Background

In this chapter we present some background material on virtual memory organizations

and the impact that the memory organization has on TLB miss handling penalties.

2.1 Virtual Memory Organizations

Virtual memory (VM) supports the abstraction of different processes, giving each

process its own private address space. The VM system translates virtual memory

addresses to physical memory addresses. These translations and associated protec-

tion information are stored in page tables; one page table for each address space.

Translation lookaside buffers (TLB) speedup this translation by caching page table

entries.

On architectures supporting software-managed TLBs, the VM management sys-

temrn has the flexibility to choose its page table organization. Some common page ta-

ble organizations are inverted page tables and forward-mapped page tables. Inverted

page tables are typically used on large address space architectures, e.g., HP-UX im-

plements an inverted page table for the PA-RISC [15]. Forward-mapped page tables

are typically used on 32-bit architectures, e.g., Mach 3.0 implements a 3-level page

table hierarchy for the MIPS R2000/3000 [27]. The organization of the page table

affects the time to handle TLB misses.

Figure 2-1 depicts the page table hierarchy implemented by Mach 3.0 for a MIPS

12

Root
Page Table

L3

Physical
Memory

Kernel
Page Table

L2

" L1K.,I
:,

I%,

.

0

User
Page Table

'"L1

I

'., j I ...
II .e

Kernel VM

Us-er Page

User VM

Figure 2-1: Mach 3.0 Page Table Hierarchy. Mach 3.0
table hierarchy on a MIPS R3000-based machine.

implements a 3-level page

13

I

t

0
0
a

nxel :age

�1

II
II
II
I
I

II
II
I
I
I

II
I
I

R3000-based machine. The light gray rectangles correspond to pages. There are four

types of page table entries (PTEs): L1U, L2, L1K, and L3. As can be seen from

the figure, L1U (Level User) PTEs map the pages of user address spaces, and are

stored in user page tables. The user page tables themselves reside in the kernel's

virtual address space, and therefore need to be mapped. L2 (Level 2) PTEs map user

page tables, and are stored in the kernel page table. L1K (Level 1 Kernel) PTEs map

kernel data structures, and are also stored in the kernel page table, like L2 PTEs.

Since the kernel page table resides in the kernel's virtual memory itself, it needs to

be mapped. L3 (Level 3) PTEs map the kernel page table. A page pinned down in

physical memory at the root of the hierarchy holds the L3 PTEs [28].

2.2 TLB Miss Handling

The page table organization affects the types of TLB misses, and the cost of TLB

misses. For the three-level page table hierarchy depicted in Figure 2-1, each type of

PTE corresponds to a type of TLB miss. In addition, TLB-invalid and TLB-modify

misses manipulate protection bits. Thus, there are six types of TLB misses on the

MIPS R3000: L1U, L1K, L2, L3 misses, TLB-invalid, and TLB-modify misses. TLB-

modify misses modify protection bits associated with TLB entries. Our proposed

schemes do not deal with TLB-modify misses and they are not mentioned further. A

TLB-invalid miss takes place on user addresses that are marked invalid by the virtual

memory system. These misses require the intervention of the VM system and are

handled identically both in unmodified Mach and in the modified versions of Mach

implementing our proposed schemes. Typically, these misses require bringing in a

page from the disk.

Table 2.1 presents the average cost of each miss type, in CPU cycles, for a 40MHz

R3000-based DECStation 5000/240 running Mach 3.0. The cycle counts reported in

the table were measured using the IOASIC counter on the 25 MHz system bus. This

counter is a free-running 32 bit counter that is incremented once per TURBOchannel

clock cycle (40 ns for the DECstation 5000/240). The time to service TLB traps

14

Type of miss Penalty (cycles)
L1U 10 or 30-40
L1K 512
L2 555
L3 407
TLB-invalid 338

Table 2.1: Average TLB Miss Penalties. Average penalties, measured in CPU
cycles, for TLB misses under Mach 3.0 on a 40 MHz R3000-based DECstation. These
averages were measured using the IOASIC counter. The cycles counts for the misses
exhibited fairly high variability.

exhibited fairly high variability, on the order of a couple hundred cycles. This vari-

ability is probably due to different number of cache misses on different invocations of

the TLB miss handler.

Since L1U misses are the most frequent, the architecture provides a special trap

handler, making them fast. The special L1U trap handler executes 9 instructions and

one memory load. If the memory load hits in the cache the handler executes in 10

cycles; otherwise, the L1U miss handler executes in about 30-40 cycles. All other

misses are slow, since they are serviced by a generic trap handler that handles all

traps except for L1U TLB misses.

Our proposed prefetching and caching schemes decrease the number of L1K, L2,

and L3 misses, from now on referred to as the kernel TLB misses. Kernel TLB misses

typically account for greater than 50% of TLB penalties [28]. Since L1U miss handling

is extremely fast, and TLB-invalid misses require the intervention of the VM system,

our schemes do not service these types of TLB misses.

15

Chapter 3

Software TLB Mangement

This chapter presents the two software TLB management schemes proposed and stud-

ied in this thesis. The first section presents the issues involved in prefetching TLB

entries followed by a brief discussion of the prefetching implementation. The second

section presents software caching for TLB entries, and discusses its implementation.

In the third section of this chapter we discuss implementation issues involved in in-

tegrating the two schemes, and finally, we summarize the schemes in the last section.

3.1 Prefetching TLB Entries

One software approach to decrease TLB overheads is to prefetch page table entries

into the hardware TLB. "Prefetching" in this context means that the TLB entries are

looked up in an auxiliary data structure and entered into the hardware TLB before

they are needed. Thus, if a TLB entry that is prefetched is subsequently used, this

scheme avoids taking a software TLB trap at the time of use. Successful prefetching

reduces the number of TLB misses and thus eliminates the overhead of invoking TLB

miss handlers. It should be noted that, unlike in some architectures, "prefetching" in

this context does not mean overlapping memory latency with useful computation.

When prefetching TLB entries, three issues must be resolved:

* when to prefetch,

16

* what entries to prefetch, and

* how many TLB entries to prefetch.

To resolve these issues we collected trace data of the TLB misses in the system.

This trace data helped us make informed decisions about prefetching.

3.1.1 When to prefetch

Prefetching TLB entries would appear to be useful on context switches between differ-

ent protection domains. The intuitive reason for this is that when a context is switched

to a different protection domain, the TLB entries of the domain being switched to

may not be resident in the TLB. Also, TLB manipulation instructions on current

architectures can only be done in "privileged mode", and therefore, manipulating the

TLB from user space is expensive. Since control is transferred to the kernel on a

context switch, prefetching TLB entries on a context switch is much cheaper.

Contexts are switched implicitly on inter process communication (IPC) between

concurrently executing processes, and explicitly by the scheduler. When several com-

municating processes are executing they compete for slots in the TLB. Since there are

a relatively small number of available TLB slots, the number of TLB misses increases.

In this situation, prefetching on the communication path can be useful.

When a task is being activated by the scheduler, the TLB entries of the task

being switched to may not be resident in the TLB. Therefore, scheduler calls to

thread wakeup are another place where prefetching would appear to be useful.

3.1.2 What to prefetch

A process is typically structured such that its stack segment and code segment are al-

located at opposite ends of the process's virtual address space, while the data segment

is allocated somewhere in the middle of the address space. L1U entries are the entries

which map the pages of a process's stack or code segment. L2 entries map these L1U

entries. Since the code, stack and data segments are scattered in the process's virtual

address space, at least three L2 entries will be required to map a process. Therefore,

17

we hypothesized that prefetching the L2 entries mapping the process's stack, code,

and data segments on IPCs could be beneficial.

3.1.3 How many entries to prefetch

There is a trade-off between the benefits of prefetching and the overheads added by

prefetching. On the one hand, prefetching more entries could result in increased

benefits by eliminating more TLB misses. On the other hand, prefetching entries

that are not subsequently used could evict useful entries from the TLB, and thus

increase the total number of TLB misses. Also, more overhead is added to the IPC

path as more entries are prefetched. Therefore, aggressive prefetching could result in

performance degradation.

3.1.4 Trace data

We collected trace data to help us make informed decisions about the different ways in

which prefetching could be implemented. In our experiments with the microkernel-

based operating system Mach 3.0, for the applications we studied, we found that

context switches through IPC were far more frequent than explicit context switches

through the scheduler. Therefore, we decided to prefetch TLB entries on the IPC

path. However, prefetching can also be implemented on the scheduler context switch.

Depending on the granularity of the scheduling quantum, the benefits of prefetching

TLB entries on explicit context switches might or might not be worthwhile.

We hypothesized that prefetching the TLB entries that map a process's data

segment, PC and SP would be useful. To test this hypothesis we collected traces of

TLB misses, and the PC and SP of the process taking the misses, and compared the

miss addresses with the addresses we planned to prefetch. From the traces we learned

that in addition to the above TLB entries, for communicating processes, prefetching

TLB entries that map message buffers and those that map IPC data structures is

also useful. Table 3.1 presents a list of the frequent TLB miss addresses and their

contribution to overall kernel TLB misses.

18

Percentage
Address Type TLB Misses
Kernel IPC data, L1K miss 14%
Kernel IPC data, L3 miss 11%
User PC, L2 miss 10%
User SP, L2 miss 15%
Message buffers, L2 miss 10%
Message buffers, L3 miss 10%

Table 3.1: Trace data: Percentage of TLB misses. This table presents the
percentage of TLB misses for the kernel's IPC data, and a user-level process's PC,
SP and message buffers.

Prefetching L1K entries mapping kernel data structures could eliminate the as-

sociated L3 misses, thus eliminating about 25% of kernel TLB misses. Prefetching

L2 entries mapping the code and stack segments of processes could eliminate another

25%, while prefetching L2 entries mapping a process's message buffers could eliminate

another 20%.

Prefetching the data segment of a process is not easy under Mach. The reason is

that Mach 3.0 supports sparse memory allocation, i.e., a process can map physical

pages to any location in its virtual address space. Thus allocation of memory in non-

contiguous locations of the virtual address space of a process is permitted [6]. While

this is a useful feature of Mach's VM management system, it is not easy to dynamically

determine the location of the "data segment" of a process. UNIX maintains a variable

called the break which points to the data segment of a process. A Mach process does

not have such a UNIX style break. Therefore, L2 entries mapping the data segment

of a process could not be easily prefetched.

The inability to prefetch the TLB entry mapping a process's data segment makes

prefetching L3 entries beneficial. To understand this we present some details of Mach's

implementation of the page table hierarchy on the MIPS R2000/3000. An L1U entry

maps one page of a user process's address space. Each page on the MIPS R2000/3000

is of size 4KB; therefore, each L1U entry maps 4KB of data. Since each page table

entry is 4 bytes in size, a page of L1U entries has 1024 L1U entries. Thus, an L2 entry

19

mapping a page of L1U entries, maps 1024 L1U entries, i.e., 1024 x 4KB = 4 MB of

user data. Similarly an L3 entry maps 1 page of L2 entries, i.e., 1024 x 4 MB = 4 GB

of data (which is bigger than the address space of a process; a process has a 2 GB

virtual address space). Thus, only one L3 entry is required to map the entire virtual

address space of a process. Therefore, even though the L2 entry for the data of a

process is not prefetched, prefetching the L3 entry associated with message buffers at

least eliminates cascaded misses when handling subsequent L2 misses on the process's

data.

Therefore, we decided to prefetch the following TLB entries:

* L1K entries mapping IPC data structures,

* L2 entries mapping the process's stack and code segments,

* L2 entries mapping message buffers, and

* L3 entries associated with the L2 entries mapping message buffers.

Thus, the trace data indicated that up to 70% of kernel TLB misses could be

eliminated by prefetching. In our experiments, we found that prefetching eliminated

25% to 65% of kernel TLB misses for the applications we studied. We also learned

from the trace data that the remaining 30% of TLB misses were scattered over a

range of addresses; a TLB miss on any particular address was relatively infrequent.

Therefore, more aggressive prefetching was not worthwhile.

3.1.5 Implementation

Our implementation maintains TLB entries to be prefetched in a separate auxiliary

data structure called the Prefetch TLB (PTLB). The PTLB is a table maintained

in unmapped, cached physical memory. Since it is unmapped, a cascade of misses

is avoided when looking up an entry in the PTLB. The PTLB is maintained as a

direct-mapped table storing L1K, L2, and L3 TLB entries. PTLB entries are kept

consistent with the kernel page tables efficiently, by invalidating them when the kernel

invalidates page table entries.

20

TLB entries are prefetched on the IPC path between different protection domains.

On the first IPC made by a process, the L2 entries corresponding to the process's

program counter (PC), stack pointer (SP), and message buffers are probed in the

hardware TLB. This probe is done using the MIPS instruction tlbp. If the requested

address is found in the hardware TLB, its associated PTE is returned and stored in

the PTLB. If the requested address is not found in the hardware TLB, the probe is

repeated on the next IPC made by this process. However, this is relatively infrequent

because the TLB entries of a process making an IPC are typically in the hardware

TLB. Subsequently when the process is receiving a message, its PC, SP, and message

buffer addresses are looked up in the PTLB. If present, their associated PTEs are

placed in the hardware TLB.

Similarly for kernel IPC data structures, the first access to the data invokes the

generic trap handler. After returning from the generic trap handler, the address is

stored in the PTLB. On subsequent accesses to the data, the PTE is prefetched and

then the data is accessed. It should be noted that prefetching does not add overhead

to the TLB trap handler, but only to the IPC path; however, this overhead is not

very large (adding only about 25-60 cycles to a path of length 3500-4000 cycles).

3.2 Software Cache of TLB Entries

In this section we present our second scheme to decrease the cost and number of TLB

misses: a software cache for TLB entries. Architectures with software-managed TLBs

incur large penalties in TLB miss handling due to

1. the use of generic trap handlers, and

2. cascaded TLB misses resulting from hierarchical page table organizations.

To address this problem, our second scheme proposes using a large second-level

software cache of TLB entries, which we refer to as the software TLB (or STLB).

When an L1K, L2, or L3 entry is entered into the hardware TLB, it is also stored in

the STLB. On subsequent misses in the hardware TLB, the STLB code branches off

21

Memory Access

TLB Miss
Generic

Trap Hand

0
S
S

- TLB Miss?
ier

Yes

STLB
Lookup

Done

Figure 3-1: STLB lookup path.
path.

A pictorial representation of the STLB lookup

the generic trap handler path at the beginning, and does a quick lookup in the STLB.

On an STLB hit, the STLB entry is inserted into the hardware TLB. On an STLB

miss, the code branches back to the generic trap handler path. When the generic trap

handler updates the hardware TLB, it also updates the STLB with the PTE. Figure

3-1 depicts the code path for an STLB lookup.

Thus, the first benefit of the STLB is that it provides a fast trap path for TLB

misses, and on an STLB hit this avoids the overhead (such as saving and restoring

registers) of the generic trap handler. The second benefit of the STLB is that it

eliminates cascaded TLB misses. Cascaded TLB misses occur because the page tables

are hierarchically organized with the lower levels of the hierarchy in mapped memory.

The TLB trap handler code tries to resolve a TLB miss by looking in the next higher

level in the page table hierarchy. However, this lookup can itself cause a TLB miss

(up to a depth of three in Mach's page table organization), resulting in a cascade of

TLB misses. The STLB provides a flat space of TLB entries in unmapped physical

memory, and thus prevents such cascaded TLB misses.

22

Penalty (cycles)
STLB

MissMiss Type
L1K
L2, Path 1
L2, Path 2
L3

105

114

160

105

582
625
625
408

512
555
555
338

Table 3.2: Average TLB penalties for a direct-mapped STLB. An STLB miss
adds about 70 cycles to the TLB trap path. The first L2 path through the STLB is
more frequent than the second L2 path, and has been optimized to take less time.

As with any cache, the STLB can be organized in many different ways - direct-

mapped, direct-mapped with a victim cache [17], n-way associative, or fully associa-

tive [21].

3.2.1 Implementation

Like the PTLB, the STLB resides in unmapped, cached physical memory, and there-

fore does not occupy page table entries in the hardware TLB. The organization and

the size of the STLB affect its hit rate. We first studied a direct-mapped organization

of the STLB, with the following sizes: 1K entries (DM 1K), 4K entries (DM 4K). The

direct-mapped organizations index into the STLB and check only one entry to find a

match with the faulting address.

Table 3.2 presents the average time, in CPU cycles, that the direct-mapped STLB

takes to service TLB misses. The two different L2 paths correspond to L2 misses that

take place when in user space, and L2 misses that take place when in kernel space. A

direct-mapped STLB hit takes about 115-160 cycles for L2 hits and about 100 cycles

for L1K and L3 hits. The difference in timings is because Mach 3.0 replaces L2 entries

using a FIFO policy, and a random replacement policy is followed for L1K and L3

entries. An STLB miss adds about 70 cycles to the trap path. On an STLB hit, this

scheme decreases the overhead of the generic trap handler by providing fast access to

a large number of page table entries.

23

w

Hit Mach

Since the STLB code branches off the generic trap handler path, it adds some

overhead to other traps. However, this code has been optimized so that it adds only

4 cycles to system calls and interrupts, which are by far the most frequent kinds of

traps1

3.2.2 STLB organization

To evaluate the benefits of associative organizations of the STLB, we implemented

a 2-way set-associative STLB. In the 2-way set-associative organization, the check

of the first set is referred to as the first level of associativity, and the check of the

second set as the second level of associativity. If the associativity were implemented

in hardware then these two levels would be checked simultaneously. However, since

the associativity is implemented in software, the levels are checked sequentially. We

measured the average TLB miss times for this STLB organization, and found that

the access time for an L1K miss in the first level of associativity is 105 cycles (the

same as for a direct-mapped organization), while the access time for the second level

of associativity is about 170 cycles. Thus, for the same size of STLB, if the hit rates of

the two organizations are comparable, the direct-mapped organization will be faster.

However, if an associative organization does provide higher hit rates, an STLB hit

would still be faster than the generic trap handler, and a set-associative organization

would be beneficial.

Preliminary experiments with large direct-mapped organizations showed high hit

rates which were comparable to the hit rates obtained with set-associative organiza-

tions. Therefore, incurring the penalty of the software associativity was not worth-

while for the benchmarks studied. However, if later studies indicate that higher

associativity results in significantly higher hit rates, then the extra penalty of imple-

menting associativity in software could be compensated by its overall benefits.

1 The STLB code adds only 11 cycles to the other traps, such as Bus Error, Address Error, and
Floating Point exceptions, which are relatively infrequent.

24

3.3 Prefetching with the Software TLB

Prefetching decreases the number of L1K, L2, and L3 TLB misses, while the STLB

makes TLB misses faster and eliminates cascaded misses. We integrated the two

schemes to study if the joint scheme further decreases TLB penalties. Integrating the

two schemes is fairly straightforward since both schemes use a table in unmapped,

cached physical memory to store page table entries. Therefore, in the integrated

scheme, both the prefetching and the STLB code access the same table of cached

page table entries from the IPC code and the trap handler code respectively.

While prefetching and the STLB are both very effective at reducing TLB penalties,

they eliminate opportunities to reduce TLB penalties from each other. This is because

L3 misses are typically the result of a cascade of misses in the page table hierarchy.

Since the STLB decreases the number of cascaded TLB misses, prefetching L3 entries

is not very useful. In fact, it could have the negative effect of evicting useful entries

from the TLB. Therefore, the integrated scheme only prefetches L1K and L2 entries

on the IPC path. Since the DM 4K organization of the STLB performed well, the

PTLB+STLB implementation uses a direct-mapped table with 4K entries.

3.4 Summary

In this chapter we presented our proposed TLB management schemes, and the issues

involved in their implementation. Our first technique prefetches TLB entries on the

IPC path between communicating processes. We used trace data to decide which

TLB entries to prefetch, and we prefetch TLB entries mapping IPC data structures,

and the program counter, stack pointer, and message buffers of user-level processes.

Our caching (STLB) scheme maintains a flat cache of TLB entries; thus, this

scheme provides a fast path for TLB misses, and eliminates cascaded misses. We

studied different organizations of the STLB, and found that a direct-mapped STLB

has high hit rates and is effective in speeding up TLB misses. We also discussed the

issues involved in integrating both the prefetching and caching scheme.

25

Chapter 4

Experiments

In this chapter, we discuss the benchmarks used to evaluate our proposed TLB man-

agement schemes, and the experimental methodology followed. We then present

experimental data that demonstrates the impact of these schemes on the number

of TLB misses and the time spent in handling kernel TLB misses. We found that

prefetching decreases the number of kernel TLB misses by 40% to 60%, and caching

decreases TLB penalties by providing a fast path for over 90% of the misses. For the

applications studied, kernel TLB penalties account for 1% to 5% of overall application

runtime. For these applications, our schemes improve application runtime by up to

3.5%. Finally, we present a synthetic benchmark to model applications with different

runtimes, and TLB behavior. We found that increasing the number of communicating

processes, and increasing the amount of data accessed by processes, increases TLB

miss handling penalties. Our schemes are very effective in these scenarios, speeding

up runtimes of fine-grained benchmarks by up to 10%; coarser-grained benchmarks

improve by up to 5%.

4.1 Platform and Benchmarks

In this section, we discuss briefly the platform on which the experiments were con-

ducted, and the benchmarks used to evaluate the performance of our schemes.

Our experimental platform consists of Mach 3.0 running on an R3000-based DEC-

26

Application
videoplay
jpeg-play
mpegplay
IOzone
ousterhout
mab

Kernel TLB misses
(thousands)

41.5 98.4 71.1
6.2 10.0 9.4

46.8 116.0 82.7
2.9 0.1 2.9

11.2 16.3 15.5
33.3 22.4 33.9

Table 4.1: Baseline application statistics. This table gives the breakdown of the
different types of kernel TLB misses under unmodified Mach 3.0. The counts are in
thousands.

station 5000/240. In our experiments, we use the Mach 3.0 microkernel MK82, the

Unix server UX41, and the XllR5 server Xcfbpmax. Thus, our experiments consist

of three user-level processes: the Unix server, the X server, and the client application,

all communicating through the kernel using IPC.

The R3000 has a 64-entry fully associative TLB. The hardware supports using

the TLB in two partitions. The upper partition of 56 entries supports a random

replacement policy and Mach uses it to hold L1U, L1K, and L3 entries. Mach uses

the lower partition of 8 entries to hold L2 entries with a FIFO policy.

The benchmarks studied were mpegplay, jpegplay, and video_play, which are

X applications, and ousterhout, IOzone, and mab (modified Andrew benchmark),

which are file-system-oriented applications. A full description of the benchmarks can

be found in [20]. Table 4.1 presents the number of L1K, L2, and L3 misses for each

application. This data was obtained by running each application multiple times on a

freshly booted system.

Since each of these applications has a different runtime, it is important to consider

the rate of TLB misses. We define the pressure on the TLB as the rate of TLB misses.

Therefore, a great pressure on the lower partition of the TLB means that the rate of

L2 TLB misses is high. Similarly, a great pressure on the upper TLB partition means

that the rate of L1K, L3, and L1U misses is high.

27

[L1K L21 L3

Total Kernel
TLB Misses

videoplay 211000
jpegplay 25600
mpegplay 245500
IOzone 5900
ousterhout 43000
mab 89600

Runtime
(sec)

Rate
(misses/sec)

37 5700
58 440
78 3150

114 50
52 830

214 418

Table 4.2: Rate of TLB misses for applications. This table presents the rate of
TLB misses for each of the benchmarks.

Table 4.2 presents the total number of TLB misses, the runtime, and the rate

of TLB misses for each of the benchmarks. The video applications video_play,

mpegplay, and jpeg_play communicate with the X server, which in turn commu-

nicates with the UX server. Therefore, these applications communicate with the X

server and the UX server. For these applications the TLB has to simultaneously map

the client, and multiple servers. The file-system applications mab, ousterhout, and

IOzone communicate only with the UX server. For these applications the TLB has

to simultaneously map only one client and one server. This explains why the rate of

TLB misses is higher for the video "multiple-server" applications video_play, and

mpeg_play, as opposed to the "single-server" applications. jpeg_play is an exception

compared to the other two video applications because it accesses much less data,

while running for a substantial amount of time. ousterhout has a higher TLB miss

rate than the other two "single-server" applications because it accesses more data.

4.2 Methodology

There are several sources of variability in application runtimes: network traffic,

Mach's random page replacement policy [8], and the "aging" of the kernel [26]. To

eliminate these sources of variability and obtain accurate timings, we took the follow-

ing steps. First, we took the machine off the network. Second, we ran all experiments

28

I Application I

with freshly booted kernels. Third, we collected 50 data points for each benchmark.

As the system stays up for a long time the number of L1K misses increases. This is

because as the kernel "ages" it starts allocating kernel data structures from mapped

virtual memory. Our schemes will give increasing benefits as the number of L1K

misses. However, to keep the variability in the measurements low we collected all

data with freshly booted kernels.

Collecting multiple data points decreased the variability in runtime measurements.

TLB penalties are a relatively small percentage of overall application runtime, there-

fore, it is important that the variability in measurements be small. For all the experi-

ments conducted average application runtimes (X) and standard deviations (a) were

measured. For all the data presented in this thesis, a/X for jpegplay was less than

0.3%, for videoplay it was less than 0.8%, for mpeg_play ac/X was less than 1.0%,

for mab it was less than 1.2%, for IOzone it was less than 1.5%, and for ousterhout

it was less than 4.0%.

4.3 Results: TLB Miss Penalties

In this section, we present the impact of our schemes on the number of TLB misses,

and the kernel TLB miss penalties. The impact of our schemes on overall runtime is

presented in Section 4.4.

4.3.1 Prefetching TLB entries

We implemented our prefetching scheme under Mach 3.0 with a PTLB of size 4K

entries. This size was chosen because experiments with the STLB suggested that 4K

entries with a direct-mapped organization of the PTLB would achieve high hit rates.

Figure 4-1 shows the decrease in the number of kernel TLB misses for each of

the three types of misses - L1K, L2, and L3. The figure indicates that prefetching

TLB entries decreases the number of each type of TLB miss by about 50% for all

of the applications except IOzone and mab; we discuss these two exceptions below.

Table 4.3 summarizes the data presented in Figure 4-1. The last column of Table 4.3

29

IApplication
videoplay
jpegplay
mpegplay
IOzone
ousterhout
mab

Kernel TLB Misses
Mach PTLB Removed

211.0 103.9 50.8%
25.6 14.9 42.0%

245.4 116.1 52.7%
5.9 5.7 4.1%

43.0 22.2 48.5%
89.6 67.0 25.2%

Table 4.3: Kernel TLB miss counts: Mach, PTLB. The first two columns
present the total kernel TLB miss counts, in thousands. The last column presents
the percentage of kernel TLB misses eliminated by prefetching.

presents the overall decrease in the number of TLB misses due to prefetching.

Prefetching TLB entries on the IPC path eliminates 40% to 50% of the kernel

TLB misses for all benchmarks except IOzone and mab. As explained in Chapter 4.2,

IOzone and mab communicate only with the UNIX server, whereas the video-oriented

applications communicate with the UNIX server and the X server. Therefore, the

pressure on the TLB is lower for these applications, as indicated by their lower rate

of TLB misses. This explains why prefetching does not significantly benefit these

applications. ousterhout has a higher rate of TLB misses; therefore, even though it

is a "single-server" application it benefits from prefetching.

Figure 4-2 shows normalized kernel TLB miss penalties for each of these applica-

tion. In this figure, the time taken to service kernel TLB misses under unmodified

Mach is assumed to be 1. The solid gray bars represent the normalized time to service

kernel TLB misses under the modified kernel with the PTLB. The striped gray bars

represent the prefetching overheads added to the IPC path. Prefetching an entry into

the TLB takes about 60 cycles, while probing the TLB and not prefetching an entry

because it already exists takes about 25 cycles (this case occurs about twice as of-

ten as successful prefetching). The figure shows that prefetching typically eliminates

about 50% of the kernel TLB miss penalties. As can also be seen, the overhead added

to the IPC path is not very high for these applications.

Table 4.4 presents the measured kernel TLB penalties, in millions of CPU cycles,

30

rM L1K, Mach
a L1K, PTLB

_ L2, Mach
= L2, PTLB
WL3, Mach
M L3, PTLB

video jpeg mpeg IOzone ouster mab
play play play hout

Figure 4-1: Kernel TLB misses: Mach, PTLB. Kernel misses under unmodified
Mach are shown in black; misses under PTLB are shown in gray.

31

I

1

q

q

Icn

a:'U,

0

U,
I,

1 a

* Mach

l PTLB
l IPC Overhead

video jpeg
play play

mrnpeg IOzone
play

ouster mab
hout

Figure 4-2: Costs and benefits of PTLB. Normalized kernel TLB penalties are
reported; the normalization is done with respect to unmodified Mach, i.e., the time
measured to service kernel TLB misses under unmodified Mach is considered to be 1.
The solid gray bars show the normalized time to handle kernel TLB penalties under
the modified kernel with the PTLB. The striped gray bars represent the normalized
overhead added on the IPC path due to prefetching.

32

1 _I .u-l

0.8-

0.6-

0.4-

I q

*tF-

N
emlE

c$004
k

·e

To

Z
0.2-

0.0 -

Application
videoplay
jpegplay
mpegplay
IOzone
ousterhout
mab

Kernel TLB Penalty
(million cycles)

Mach PTLB
108.0 41.6

13.0 6.0
124.6 48.2

3.4 2.7
28.6 17.4
52.0 29.8

Table 4.4: Kernel TLB penalties: Mach, PTLB. The table presents the measured
time to service kernel TLB misses under unmodified Mach and PTLB, in millions of
CPU cycles.

for these applications under Mach and PTLB. Kernel TLB misses typically constitute

greater than 50% of the overall TLB penalties in an application. The remaining

penalties are due to L1U and TLB-invalid misses. Even though L1U misses are highly

optimized, their frequency is so high that they contribute significantly to overall TLB

penalties.

In summary, prefetching benefits all applications and decreases TLB overheads

significantly, usually eliminating about 50% of the kernel TLB miss penalties.

4.3.2 Software Cache of TLB Entries

The experimental environment and benchmarks for the STLB are the same as those

for the PTLB, as described in Section 4.1. As discussed in Section 3.2.2, the direct-

mapped organizations were found to have very high hit rates and so set-associative

organizations were not explored further. In the results presented below, DM 1K refers

to a direct-mapped organization of the STLB with 1K entries. Similarly DM 4K refers

to a direct-mapped organization of the STLB with 4K entries.

Table 4.5 presents the number of kernel TLB misses for the two STLB configu-

rations and the associated STLB hit rates. The number of kernel TLB misses under

unmodified Mach 3.0 has been included for comparison. The hit rates achieved by

DM 1K range from 70% to 99%. The hit rates achieved by DM 4K are higher, and

33

Application
videoplay
jpegplay
mpegplay
IOzone
ousterhout
mab

DM 1K
Total
211.0

25.6
245.4

5.9
43.0
89.6

Total I Hit rate
202.4 70.9%
20.2 84.4%

197.5 82.5%
4.4 98.5%

33.2 85.9%
88.0 70.6%

Total I Hit rate
163.3 100.0%

17.4 99.8%
173.8 97.2%

4.3 99.3%
29.0 99.3%
63.9 92.5%

Table 4.5: TLB miss counts and hit rates under Mach and STLB. This
table presents total kernel misses in thousands under unmodified Mach 3.0, and the
two direct-mapped STLB configurations, DM 1K and DM 4K. Hit rates for the STLB
configurations are also presented. DM 1K is the direct-mapped STLB with 1K entries,
while DM 4K is the direct-mapped STLB with 4K entries.

are close to 100%.

The two STLB configurations also result in an overall decrease in the number of

kernel TLB misses. This is because when a TLB miss hits in the STLB, the cascade of

TLB misses to higher levels of the page table hierarchy is eliminated. Table 4.6 shows

that under Mach 3.0 nearly 30% of the kernel TLB misses for each application are

such cascaded misses. Due to its higher hit rate the larger STLB eliminates almost

all of these cascaded misses.

Figure 4-3 presents the normalized kernel TLB penalties under the different STLB

configurations and unmodified Mach. The striped bars represent the overhead im-

posed by the STLB on system calls. Table 4.7 presents the unnormalized kernel TLB

penalties under unmodified Mach and the two STLB configurations. As is evident

from the figure and the table, DM 4K reduces TLB penalties significantly.

4.3.3 Prefetching with the Software TLB

Table 4.8 presents the counts of kernel TLB misses under unmodified Mach and

PTLB+STLB, and the percentage of kernel TLB misses eliminated. The last column

presents the STLB hit rates. The hit rates are lower than those obtained for the

STLB configuration DM 4K in Table 4.5. This is because the total number of kernel

34

Mach DM 4K

Application
Cascaded Misses (thousands)
Mach DM 1K DM 4K

videoplay 61.4 35.8 0.0
jpegplay 7.9 1.0 0.0
mpegplay 72.3 13.1 3.3
IOzone 1.7 0.0 0.0
ousterhout 13.1 2.9 0.0
mab 26.4 12.6 0.2

Table 4.6: Cascaded TLB misses, in
sands, under unmodified Mach 3.0, and
DM 1K and DM 4K.

thousands. Cascaded TLB misses, in thou-
the two direct-mapped STLB configurations,

Application
videoplay
jpegplay
mpegplay
IOzone
ousterhout
mab

TLB penalty
(million cycles)

108.0 60.7 15.7
13.0 4.2 1.9

124.6 41.7 21.4
3.4 0.7 0.6

24.0 7.9 3.9
52.0 31.6 13.2

Table 4.7: Kernel TLB penalties: Mach, STLB. Kernel TLB penalties under
Mach 3.0, and the two direct-mapped STLB configurations, DM 1K and DM 4K, in
millions of CPU cycles.

35

Mach DM 1K DM 4K

* Mach

E DM 1K

IDM 4K
EI Handler Overhead

1.0-

0.8

0.6-

0.4-

0.2-

0.0-
video
play

jpeg
play

mpe g IOzone ouster
hout

mab

Figure 4-3: Costs and benefits of STLB. Normalized TLB penalties are reported.
The dark gray bars represent the normalized kernel TLB penalties for the larger
STLB configuration, while the lighter gray bars correspond to the smaller STLB
configuration. The striped gray bars indicate the normalized measured overhead
added. The overhead is the same for both STLB configurations, since it depends on
the number of system calls, and is independent of the STLB size.

36

0

WF*3Cl

W
lia

sir

W

N
I-Z

E

Z

-

* Mach

PTLB+STLB
E2 IPC and Handler Overhead

I .U -

0.8-a

m 0.6-

' 0.4-

Cu

0
Z

0.2-

An F
video jpeg mpeg IOzone ouster mab
play play play hout

Figure 4-4: Costs and benefits of PTLB+STLB. Normalized TLB penalties
are reported. The gray bars represent the normalized kernel TLB penalties for the
PTLB+STLB. The striped gray bars indicate the normalized measured overhead
added to the IPC path by prefetching, and the trap handler path by the STLB.

37

.1 r

.

I Application

videoplay
jpeg-play
mpegplay
IOzone
ousterhout
mab

Kernel TLB Misses

Mach
211.0
25.6

245.4
5.9

43.0
89.6

PTLB+
STLB

111.8
13.8

128.6
4.1

21.1
52.8

Table 4.8: Kernel TLB miss counts: Mach, PTLB+STLB. Total kernel TLB
miss counts, in thousands, under Mach and PTLB+STLB. The third column presents
the percentage of kernel TLB misses eliminated by the STLB and prefetching, and
the last column gives the hit rate for the STLB.

Application
videoplay
jpeg-play
mpegplay
IOzone
ousterhout
mab

Table 4.9: Kernel TLB penalties: Mach,
ties are measured in millions of CPU cycles.

Kernel TLB Penalty
(million cycles)

Mach IPTLB+STLB
108.0 11.4

13.0 1.6
124.6 18.4

3.4 0.6
24.0 3.4
52.0 13.6

PTLB+STLB. The kernel TLB penal-

TLB misses is decreased due to prefetching. Figure 4-4 shows normalized kernel TLB

miss penalties under unmodified Mach in black. The solid gray bars represent the

normalized kernel miss penalties under the PTLB+STLB, and the striped gray bars

indicate the normalized overheads added by prefetching and the STLB. Table 4.9

presents the measured kernel TLB penalties, in millions of CPU cycles, under Mach

and the PTLB+STLB. As seen in Figure 4-4 and Table 4.9, the integrated scheme is

very effective in decreasing TLB penalties.

38

Percent
Removed

47.0%
46.2%
47.6%

31.2%
50.9%
41.1%

Hit
Rate

100.0%
99.7%
96.2%
99.3%
99.1%
90.9%

!
I

Application || Prefetch
videoplay 3.52%
jpegplay 0.91%
mpegplay 1.69%
IOzone 0.19%
ousterhout 0.77%
mab 0.96%_

STLB
DM 1K DM 4K

2.18% 3.53%
0.15% 0.21%
0.27% 1.73%
0.85% 0.59%
0.76% 1.53%
0.76% 0.80%

PTLB+STLBI
3.04%
0.27%
1.09%
0.99%
1.65%
0.25%

Table 4.10: Application Speedup. The overall application speedup obtained by the
proposed schemes is presented in this table. Speedup is measured as the percentage
of application time saved by using our schemes.

4.4 Results: Application Speedup

In this section, we present the impact of our proposed schemes on overall appli-

cation performance. Speedup is measured as the decrease in application runtime as

a percentage of the application runtime under unmodified Mach. As seen from Table

4.10, prefetching results in speedups of up to 3.5% of overall application runtime; the

larger STLB, DM 4K, also provides speedups of up to 3.5%. DM 1K does not perform

as well for all applications, due to its lower hit rate. The integrated scheme performs

well, improving application performance by up to 3% of overall application runtime.

The integrated scheme does not outperform the other two schemes for these appli-

cations, because it incurs the overhead of both schemes. The synthetic benchmark

presented in the next section motivates the importance of the integrated scheme.

For these applications, kernel TLB penalties account for 1% to 5% of overall

application runtime [28]. Therefore, our proposed schemes eliminate a significant

fraction of these penalties.

4.5 Synthetic benchmark

To better understand the impact of our proposed schemes on a range of applications,

we implemented a synthetic benchmark which we present in this section. We wanted

to capture the TLB behavior of a range of applications with different data access

39

patterns, different number of communicating processes, and different runtimes. We

study applications with different runtimes by classifying applications on the basis

of their "granularity". A fine-grain process communicates very frequently, while a

coarser-grain process computes more, and communicates less frequently.

Keeping the above goal in mind, the parameters that can be specified to this

synthetic benchmark are as follows:

* Number of servers and clients.

* Amount of data accessed by a user process.

* The granularity of a user process.

Each run of this benchmark consists of a number of iterations of a client ran-

domly selecting a server to communicate with. If a client picks a server i out of

the N servers, the communication pattern for that iteration of the benchmark is

Client - Serveri -+ Serveri+l -+ -+ Servers. This pattern, of a chain of servers

communicating with each other, is similar to the pattern of an application commu-

nicating with the X server, which in turn communicates with the UX server. Other

patterns of communication can also be specified to the benchmark, however, we ex-

pect the above pattern to be the typical pattern of communication in multi-server

environments.

We used this benchmark to test the following hypotheses:

* Hypothesis 1: The number of user processes affects the number of TLB misses.

* Hypothesis 2: The amount of data accessed by a user process affects the

number of TLB misses.

* Hypothesis 3: The granularity of communicating processes impacts the effect

of TLB miss handling on overall runtime.

4.5.1 Hypothesis 1

We wanted to test the hypothesis that the number of user processes affects the total

number of TLB misses. Therefore, we considered the case of a single client communi-

40

cating with N servers, where N varies from 1 to 10. Figure 4-5 presents the number

of TLB misses under unmodified Mach and each of the proposed schemes, for each

of the cases considered. The number of data elements accessed by a process is fixed

at 30 data elements per IPC. This value corresponds to the case of some benchmarks

presented in earlier sections.

From Figure 4-5 we see that when the number of servers increases from one to

two, the number of TLB misses increases dramatically. This is because when there

is only one server, the lower partition of the TLB has to map only one client and

one server. Since each process requires not more than four entries (one each for its

code, stack, data, message buffers), all the L2 entries of the two processes fit in the

lower partition of the TLB. As the number of processes increases, the pressure on

the lower partition keeps increasing. The prefetching scheme does uniformly well

over the range of servers, eliminating 60% to 65% of the total kernel TLB misses.

The STLB eliminates 25% to 30% of kernel TLB misses by eliminating cascaded

misses. The PTLB+STLB scheme benefits both from prefetching and the elimination

of cascaded misses by the STLB. Therefore, the number of kernel TLB misses under

the PTLB+STLB scheme is the lowest of all, until the number of servers exceeds

seven. At seven servers, the hit rates of the STLB and the PTLB+STLB decrease

because of their direct-mapped organization; when the number of servers exceeds

seven, both these schemes start providing decreasing benefits.

The TLB misses under the STLB and the PTLB+STLB depicted in Figure 4-5

are primarily serviced through hits in the STLB. Therefore, they are less expensive

than the TLB misses in the prefetching scheme. To understand the impact on overall

kernel TLB miss penalties, Figure 4-6 presents the normalized kernel TLB penalties

for each scheme and the associated overheads. All the schemes are very effective

in decreasing overall kernel TLB penalties. The prefetching scheme does uniformly

well. As mentioned above, the STLB and PTLB+STLB scheme do very well until

the number of servers exceeds seven after which they provide decreasing benefits.

However, for the entire range of servers, the PTLB+STLB scheme does the best,

decreasing TLB penalties by 70% to 80%.

41

* Mach
i PTLB

* DM 4K
R PTLB+STLB

1 2 3 4 5 6 7 8 9 10
Number of servers

Figure 4-5: Increase in the number of servers: TLB miss counts. This figure
depicts the number of total kernel TLB misses under Mach 3.0 and each of the
proposed schemes when the number of servers is increased.

42

,o

o~

ef

I Mach
E PTLB
1DM 4K

9 PTLB+STLB

· Overhead

2 3 4 5 6 7 8
Number of servers

9 10

Figure 4-6: Increase in the number of servers: Normalized kernel TLB
penalties. This figure depicts the normalized kernel TLB penalties under Mach 3.0
and each of the proposed schemes when the number of servers is increased.

43

1.0-

0.8 -
Wn

4)
I=
M
P7

W

4
F-C

W

N
... 4

Z

0.6-

0.4-

0.2-

0.0-

To study the impact of an increase in the number of client processes on TLB miss

handling, we ran a similar experiment with an increase in the number of clients while

keeping the number of servers fixed at three and four. We found that the qualitative

trend of the results was the same. However, increasing the number of clients does

not increase the number of TLB misses as fast as increasing the number of servers.

This is because Mach permits clients to handoff control to the server they are sending

requests to. Thus, in one scheduling quantum, control can be passed several times

between a client and a server before the client gets descheduled and the next client is

selected to run. Therefore, client execution is not as finely interleaved as the servers,

thus relieving some of the pressure on the TLB.

As mentioned above, the STLB achieves very high hit rates, nearly 100%, until

the number of servers becomes greater than seven. Then the STLB hit rate starts

dropping. This is a consequence of the limited capacity and the direct-mapped orga-

nization of the STLB. To explore if a set-associative organization would help in perfor-

mance we ran our experiments with a 2-way set-associative STLB. We found that the

set-associative organization provided slightly higher hit rates than the direct-mapped

organization for our experiment with one client and multiple servers. However, in our

experiment with a fixed number of servers and multiple clients, the set-associative

organization provided greater hit rates than the direct-mapped organization. Thus,

depending on the pattern of TLB accesses the 2-way set-associative organization could

provide greater benefits than the direct-mapped organization.

We conclude that increasing the number of user-level processes increases the num-

ber of TLB misses. It should be noted that techniques which propose using superpages

will suffer from the same problems. This is because the code, data, and stack seg-

ment of a process cannot be contiguously mapped in physical memory. Therefore,

the number of L2 misses will be the same for those techniques. Our schemes are very

effective in decreasing the number of TLB misses as the number of user processes

increases. At some point our schemes also reach their limitations, but this is to be

expected given the finite capacity and associativity of software schemes.

44

4.5.2 Hypothesis 2

We wanted to test the hypothesis that the amount of data accessed by a user-level

process affects the number of TLB misses. To test this hypothesis we ran two experi-

ments; the first experiment consisted of one client communicating with three servers,

the second experiment consisted of one client communication with four servers. In

each experiment we varied the amount of data accessed by each user process. We

present below the results for the 4-server case (the 3-server case exhibited the same

qualitative trends).

A measure of the amount of data accessed by a process is the number of L1U TLB

misses per IPC. This captures the extent to which each process uses the TLB before

making an implicit context switch through IPCs. For the applications presented

in Section 4.1, the number of L1U misses per IPC ranged from 10 to 40. In our

experiments each user process randomly selects a data element from a 4MB table in

its address space. A 4MB table consists of 1024 4KB pages. A random access into

such a large table is likely to result in an L1U miss. Therefore, the number of words

accessed per IPC in our experiment is likely to be the same as the number of L1U

misses per IPC. In our experiments the data words accessed per IPC ranged from

5 to 50.

Figure 4-7 presents the total number of kernel TLB misses under unmodified Mach

and the proposed schemes. As the amount of data accessed by a process increases,

the number of L1U misses increases. Therefore, a greater number of LIK, L1U, and

L3 entries are evicted from the upper partition. This effect puts more pressure both

on the upper and lower partition of the TLB. Beyond the point of 40 data elements

accessed per IPC, the upper partition of the TLB is being almost completely over-

written on every IPC, and the number of kernel TLB misses saturates. Therefore, as

the amount of data accessed increases, the rate of increase in TLB misses decreases.

Prefetching eliminates about 60% to 65% of the kernel TLB misses. The STLB

eliminates about 25% of kernel TLB misses. The hit rates achieved by the STLB and

the PTLB+STLB are very high (almost 100%). Figure 4-8 presents the normalized

kernel TLB penalties for each scheme. Prefetching decreases kernel TLB miss penal-

45

* Mach
a PTLB
I DM 4K

[PTLB+STLB

5 10 15 20 25
Data

30 35
accessed

40 45 50

Figure 4-7: Increase in data accessed: kernel TLB miss counts. This figure
depicts the total number of kernel TLB misses under Mach 3.0 and each of the
proposed schemes when the amount of data accessed by each process is increased.
The X-axis depicts the number of words accessed by each process per IPC.

46

150-

0a
0

q
crt*S

~-1o50-1=1 00 -94

E*

;* 50-

0 h..1-ILJLJc.J,..I S " -·

I Mach
f PTLB

IDM 4K
PTLB+STLB

L Overhead

5 10 15 20 25 30 35
Data accessed

1
40 45 50

Figure 4-8: Increase in data accessed: Normalized kernel TLB penalties.
This figure depicts the normalized kernel TLB penalties under Mach 3.0, and each
of the proposed schemes when the amount of data accessed is increased. The X-axis
depicts the number of words accessed by a user-level process per IPC.

47

1.0-

0.8-

0.6-

0.4-

0.2-

E
WU,

a

N

CU
-

Cd0z

n n
V.V I

Il

Fine Granularity
Servers PTLB DM 4K I PTLB+STLB

3 3.0% 8.3% 6.8%
4 2.3% 6.4% 6.4%
5 2.3% 10.2% 7.5%
6 4.8% 7.1% 10.3%

7 5.1% 7.5% 9.6%
8 3.6% 7.8% 11.0%
9 2.7% 7.4% 9.5%
10 2.3% 6.0% 9.8%

Table 4.11: Speedup for fine-grained applications. This table presents the
speedup achieved by each of the proposed schemes, for fine-grained applications.

ties by about 50% to 55%, the STLB decreases TLB penalties by about 80%, and the

integrated PTLB+STLB decreases TLB penalties by about 80% to 85%.

We conclude that as the data accessed by user-level processes increases, the num-

ber of TLB misses increases and the proposed schemes are effective in decreasing

kernel TLB penalties.

4.5.3 Hypothesis 3

We wanted to test the hypothesis that the granularity of a process affects the impact

of the TLB management schemes on the overall runtime. The granularity of an

application is determined by the amount of computation the process performs between

communications. Fine-grained applications are very IPC-intensive, communicating

often; coarser-grained applications have a lower rate of IPCs. The granularity of an

application impacts its overall runtime. We measure the granularity of an application

in terms of the time to make an IPC, referred to as TIpc. Our benchmark models

fine-grained applications, which continuously makes IPCs to the server, medium-

grained applications which compute for 2 TIpc before making an IPC call, and coarse-

grained applications which compute for 5 TIPC before making an IPC. Each of these

benchmarks accesses 30 words of data between IPCs.

For the multiple-server experiment the application speedups for the fine-grained

48

Medium Granularity
Servers PTLB [DM 4K PTLB+STLB
3 2.4% 3.2% 3.2%
4 2.5% 3.2% 5.5%
5 3.0% 4.3% 6.6%
6 2.2% 3.6% 7.4%
7 1.9% 4.3% 6.3%
8 1.6% 3.7% 6.9%
9 1.7% 4.6% 5.6%
10 1.1% 3.2% 5.9%

Table 4.12: Speedup for applications
presents the speedup achieved by each of
medium granularity.

with medium granularity. This table
the proposed schemes, for applications of

3 1.8% 2.8% 3.8%
4 1.8% 2.9% 4.4%
5 1.8% 2.4% 4.8%
6 1.5% 2.0% 3.6%
7 0.5% 2.2% 4.0%
8 0.4% 2.0% 4.4%
9 0.0% 2.1% 3.9%

10 0.3% 2.2% 3.2%

Table 4.13: Speedup for coarse-grained applications. This table presents the
speedup achieved by each of the proposed schemes, for coarse-grained applications.

49

Servers PTLB DM 4K PTLB+STLB

. , I , .

. Coarse Granularity

benchmarks are listed in Table 4.11, for the medium-grained benchmarks in Table

4.12, and for the coarse-grained benchmarks in Table 4.13. We see that as the gran-

ularity of an application increases the benefits of the TLB management schemes

decreases. For very fine-grained benchmarks the benefits are high ranging from

6% to 10%. The STLB, and the integrated scheme do very well when compared

to the prefetching scheme because they speedup all TLB misses. As the number of

servers increases, the integrated scheme outperforms the STLB because it decreases

the total number of TLB misses to a greater extent than the STLB. For coarse-grained

benchmarks, the benefits of these schemes range from 2% to 4.5%.

We ran the experiment with a fixed number of clients and servers and varying

amounts of data, with all three granularities mentioned above. The results obtained

were qualitatively the same.

We conclude that the granularity of the benchmark affects the impact of the TLB

handling schemes on overall application runtime. The integrated scheme performs

the best of all the schemes; for coarse-grained benchmarks it improves benchmark

runtimer by 3% to 5%, while for fine-grained benchmarks it improves performance by

up to 11%.

4.5.4 Conclusions

In this section we implemented a synthetic benchmark to study the impact of our TLB

management schemes on applications with different data access patterns, different

number of communicating processes, and different runtimes. We used the benchmark

to test several hypothesis about the TLB behavior of applications.

We found that increasing the number of clients and servers increases the pressure

on the TLB. Increasing the data accessed by each user-level process also increases the

pressure on the TLB. In these cases our schemes, especially the integrated scheme,

are very effective in decreasing kernel TLB penalties. We modelled applications with

different runtimes using our synthetic benchmarks, and found that for coarse-grained

benchmarks our schemes improve benchmark runtimes by 3% to 5%, while for fine-

grained benchmarks they improve performance by up to 11%.

50

Chapter 5

Analytical Model of TLB Schemes

In this chapter we present an analytical model of application runtime and TLB miss

handling penalties. The model captures the architecture and application parameters

which determine the time spent by an application in handling TLB misses. As CPU

speeds increase faster than memory speeds we expect that TLB miss penalties will

become an increasing fraction of application runtime. Also, we expect that improve-

ments in caching techniques on modern architectures will benefit applications more

than the TLB handler [8]. Our goal is to use our model to understand how these

architectural trends will impact TLB miss handling times and application runtimes.

5.1 Parameters of Model

In this model the parameters to characterize the runtime of an application are:

* The number of instructions that the application executes: IApp.

* The number of instructions (excluding TLB miss handling) that the operating

system executes: Ios.

* The number of instructions executed in handling TLB misses: IT.

* The number of cache misses induced by an application: CApp. The cache miss

rate for an application is denoted by MApp and is given by CApp/IApp. (Note:

51

The "standard" definition of cache miss rate is the fraction of cache accesses

that miss. M, as expressed above, captures the number of cache misses per

instruction.)

* The number of cache misses induced by the operating system activity excluding

the TLB miss handler: Cos. The cache miss rate for the OS is denoted by Mos

and is given by Cos/los.

* The number of cache misses induced by the TLB Miss Handler: CT. The cache

miss rate for the TLB miss handler is denoted by MT and is given by CT/IT.

* The time, in cycles, to service a cache miss on an architecture: Tc.

* The TLB speedup, denoted by ST, captures the effect of the proposed TLB

management schemes on the TLB miss handling time. ST is the percentage

decrease in TLB management time; i.e., if a TLB management scheme, for

example prefetching, decreases the TLB penalties by 50%, ST = 0.5. Note that

the speedup is with respect to TLB miss handling time and not with respect to

the entire application runtime.

5.2 Model

In this model, the runtime of an application (in cycles) is expressed as:

R = IApp +- CAppTC + los + CosTc + IT + CTTC

= IApp(1 + MAppTC) + IOS(1 + MosTc) + IT(1 + MTTC)

We wish to concentrate on the TLB miss handling performance, therefore, we

merge the application and the OS component, and now use the subscript A to refer

to the application+OS component.

Therefore,

R = IA(1 +MATC) + IT(1 + MTTC) (5.1)

52

6 denotes the benefit of a particular TLB management scheme, like prefetching or

the STLB. 6 is the decrease in the TLB miss handling time divided by the runtime

of the application under the unmodified kernel. Using the notation presented above,

the time saved in application runtime is: ST x Time to handle TLB misses.

Therefore,

(ST x Time to handle TLB misses)
R

ST IT(1 + MTTC)
IA(1 + MATC) + IT(1 + MTTC)

5.3 6 on Different Architectures

The goal is to obtain values of 6 on different architectures to study the importance

of TLB miss handling on modern architectures. The experiments conducted in this

thesis used a MIPS R3000-based machine. We instantiate the above equations to

this architecture, denoted by the superscript R3K. We denote the modern new

architecture with the superscript of new.

Instantiating equations 5.1 and 5.2 for the R3000 and new architecture we get,

RR3 K IR3K(1 + MAR3KTR3K) 3K(+(1 +R3KTR3K) (5.3)

Rn = Ie M(1 newTnew) + aITew(1 + MeT"ew) (5.4)
RR3K 3KIsR3K + MR3KTR3K)

EneSw S Ie(] + MrwTeC) (5.6)

Aeu (1 + MAe TCew) + Iew(I T + MwTw)(e5

The difference in the cache miss rates M new and MR3K captures the change in the

size and organization of the caches for the two architectures.

In order to evaluate bne, we have to know Inew, Mnew, Tnew, and STew. One way

of doing this is to use 6 R3K as a starting point, and make assumptions comparing

"new with IR3K, Mnew with MR3K, Tnew with T R3K, and SSe with SR3K

53

5.3.1 Assumptions

Different instruction sets of the two architectures could make the instruction counts

vary dramatically. However, for RISC-based architectures the difference should not

be as great. Another factor that impacts the time to execute I instructions is the

move to dual-issue architectures. To simplify the model, we will assume that the

number of instructions executed remains the same, i.e. It"' is the same as IR3K

The new architecture might have a different organization of TLB miss handling

when compared to the MIPS R3000. For example, both the Alpha and the R3000

have a specialized fast trap for L1U misses. Additionally, the Alpha has a specialized

fast trap for LK misses. However, for this model we will assume that Iqew is the

same as ITR3K.

We also assume that Sew = STR3K. This assumption seems reasonable because the

effectiveness of the TLB mangement schemes to decrease TLB miss penalties should

not be different on an architecture with a similar TLB miss handling organization.

There are two cases to be considered: when the cache miss rate M on the new

architecture is the same as on the R3000, and when it is different. The rest of the

chapter will deal with these two cases.

5.4 Same Cache Miss Rate

In this section we present the model assuming that the cache miss rate remains

the same on the two architectures being studied. This assumption simplifies the

equations considerably and helps in gaining an insight into the parameters which

affect the behavior of TLB miss handling. We conclude this section with a prediction

of the benefits of the TLB management schemes on a faster architecture, using some

realistic values for the model parameters.

Now we study the case where the new architecture has the same processor and

memory architecture as the MIPS R3000 but operates at a different clock speed, (i.e.,

the new architecture has a faster CPU). M remains the same since the memory orga-

nization does not change, i.e., cache sizes and organization are the same. Therefore,

54

since CPU speeds increase faster than memory speeds, the only change will be that

Tic3K < Te w.

If the cache miss rate remains the same, 5new and 5R3K are of the form,

6new _ (a + bTew)
(a' + bToew)

6R3K - (a + bTC3K)

(a' + bT 3K)

where,

a = STIT

b= STCT

a' = IT + IA

b' = CT + CA

new R3K a + bTew a + bTCR3
+ a' + b'Tcew a' + bTCR3K

R3k + (a'b - ba)(Toew - T R3K)
Rne RR3K

6 new R3K ST new T R3K)
+ RneWRR3K (IACT - ITCA)(TC -Tc)

In terms of the cache miss rate,

,W 6R3K STITIA -ew T R 3)
6ne = K + wRK(MT - MA)(T - TC3K) (5.7)

WVe conclude that on a faster architecture with the same cache organization and

instruction set, increases if the cache miss rate of the TLB handler is greater than

the cache miss rate of the application+OS.

The intuitive explanation of this result is as follows: on a faster architecture with

a slower memory speed relative to the CPU, the benefits of the TLB management

schemes will increase if the TLB component of runtime is affected more than the

application component of runtime by the slower cache miss time.

55

Predictions

To make some predictions about the faster architecture we instantiate Equation 5.7

with some realistic values of the parameters and study the impact of these parameter

settings on 6.

* ST = 0.5. This value corresponds to a 50% decrease in TLB handling penalties

due to a TLB management scheme, for example, prefetching.

* IA = 0.5ReW. This value implies that we estimate the number of applica-

tion+OS instructions to be about 50% of the application runtime on the faster

architecture. The rest of the time is spent in cache miss servicing and TLB miss

handling.

* IT = 0.06RR3K. For the applications we have studied, IT is about 50% of TLB

miss handling times, and the TLB miss handling times are about 5-15% of the

application runtime. Therefore, this value of IT seems reasonable.

* MT - MA = 0.05. This difference in the cache miss rate of the TLB and

the application is fairly conservative. If the application exhibits better cache

performance this difference gets even higher. This value corresponds to some

applications in [8].

We see that,

anew = 6R3K + 0.015(MT - MA)(Te - T3K)

Substituting for MT - MA,

bnew = 5R3K + 0.00075(Tew - T R3K) (5.8)

Equation 5.8 gives a rough rule of the benefits of the TLB management schemes

for an application on a faster architecture with the same cache miss rate. From

this equation we expect that on a faster architecture the TLB management schemes

provide increasing benefits proportional to the change in the cache miss times of the

two architectures.

56

We use Equation 5.8 to study the impact of TLB miss handling on an extension

of the MIPS R3000 architecture, denoted by the superscript R3K-ext. R3K-ext has

the same processor and memory architecture as the MIPS R3000, but it has a faster

CPU. TCK is 24 cycles [9]. TCR3K-ext is the time to service a cache miss on a machine

with a faster CPU of 100 MHz. Assuming that the memory system is the same on

the faster architecture, TR 3 K -ext = 60. Substituting in Equation 5.8 we get,

6 R3K-ext = 8 R3K + 0.027 (5.9)

In terms of the percentage of application runtime, the benefits of the TLB schemes

onil the faster architecture increase by 2.7% of the application runtime.

To summarize, in this section we used the model to compare two architectures

with the same CPU and memory architecture but with different clock speeds. We

also used the model to predict the impact that the TLB management schemes have

on application performance on such architectures.

5.5 Different Cache Miss Rate

In this section we use the model to study architectures which have different cache

sizes/organizations, and different clock speeds; i.e., this section considers the effect

that the change in the cache miss rate has on 6. We use the model to predict the

impact of the TLB management schemes on these new architectures. Specifically, we

will use our model to study the impact of TLB miss handling on a modern architecture

with architectural parameters similar to Digital's Alpha. We will use the superscript

a to denote this new architecture, and as earlier the MIPS R3000 will be denoted by

R3K.

,= 6R3K+ STIT(1 + MT)
IA(1 + M`2T) + IT(1 + MYTC)

STIT(1 + M 3KTR3CK)

IA(1 ± MA3KT3K) + T(1 + MT3KT 3K)
R3K -STITIA [T(M _ Mr)- T 3K(MR3K A3 K

+ RMR3K) (5.10)
+V~T~,T~ ~MI-MT3K (5.10)

57

We can check that if the cache miss rate remains the same, i.e., MA, = MA 3K, and

MT = MT3K,, then the above formula works out to be the same as Equation 5.7.

A modern faster architecture might have a bigger on-chip cache or a better cache

organization. The effect of this change in cache size/organization is that MAR and MT

could be less than the values of MAR3K and MTR3K respectively. Let MR = A X MAR3K

(where 0 < yA < 1), and MT = T M3K (where 0 < YT 1). We expect

that YA < T, because the TLB handler code is invoked infrequently and we expect

that the TLB handler will not benefit as much as the application and the OS from

the better/bigger cache.

Note: a large value of -y means the better/bigger cache is not helping much. A

small value of y means the cache miss rate has been reduced by the better/bigger

cache. In the extreme case, -y = 1 means the better/bigger cache did not make

any difference, and -y = 0 means the better/bigger cache completely eliminate cache

misses.

Substituting the above in Equation 5.10 and dropping the superscript R3K on

M, we get,

a= SR3K±STITIA ,= j 3K + RTIR3K[T('(YTMT - AMA)-TC (MT MA)

+TTCK (YTMTMA - AMAMT)]

sR3K+ RSTII A[MT(^ITTC - TCRK)-MA(AT - TC3K)
+ " Rc'R3K

+TC -TC MTMA(iT - Y/)] (5.11)

To further analyze Equation 5.11 we consider different scenarios. These scenarios

study the impact of y on the value of 6. We expect that AT > yA, and therefore, the

second scenario studies this case.

Scenario 1 (Worst Case): YA = T =

This scenario corresponds to the case where both the TLB handler and the application

cache miss rates are affected in the same way by the better/bigger cache. With this

58

assumption we find that,

= TK IA (5.12)6R 3 K + ST IA(MT-MA)(fTC _ TR3 K) (5.12)

To intuitively understand Equation 5.12 we note that on a faster architecture, if

we assume that the TLB and the application component are affected in the same way

by the new cache organization (i.e., same 7s), then 6 increases if:

* MT > MA, i.e., the cache miss rate of the TLB component of runtime is greater

than the cache miss rate of the application component. This implies that on a

faster architecture the TLB handler component will be affected more than the

application component by the the slower cache access time. Therefore, 6 will

increase.

* ? > TR3K/TC. If -y is larger than TCR3K/Tc then the better/bigger cache does

not provide very large benefits. Therefore, the faster architecture with the

slower cache access time is greatly impacted by cache behavior and 6 increases.

However, if the faster architecture with the better/bigger cache has a greatly

reduced number of cache misses, i.e., y is small, then cache misses have less of

an impact on the overall performance of the application (when compared to the

old architecture). Therefore TLB miss penalties are not as important as on the

old architecture, and 6 decreases. In the worst case, = 0, i.e. all cache misses

are eliminated: in this case, 6 " < R3K because the TLB component of runtime

decreases on a faster architecture and therefore, the TLB schemes provide less

benefits. The break even point 6" = R3K is achieved when y = TCR3K/Ta.

We reproduce Equation 5.7 here for ease of reference.

+ RnI RR3K(MT - MA)(TCew - T 3K) (5.7)

Comparing this equation with Equation 5.12 we see that the equations are basi-

cally the same except for the y factor in Equation 5.12. The intuition is that if the

59

application and the TLB are both affected equally by the better/bigger cache, the

lower the value of y the less is the importance of the TLB management schemes.

We use the above equation to compare the TLB behavior of an application on the

MIPS R3000 with an architecture similar to Digital's Alpha. The superscript R3K

denotes the MIPS R3000 40 MHz chip, and the superscript a denotes a 150 MHz chip

with architectural parameters similar to Digital's Alpha. We instantiate this equation

using the same assumptions as those made for Equation 5.8 and get,

= E5R3K + 0.00075(Tc -TC 3 K) (5.13)

TCR 3 K as before is 24 cycles; To = 60 cycles [10]. It should be noted that this value

takes into account the fact that when building faster chips architects also improve

the memory system of the computer. Substituting in Equation 5.13, and assigning a

value of = 0.8 we get,

ba = R3K + 0.018

This is lower than what was obtained in Equation 5.9 because the better/bigger

caches make TLB miss handling less of a problem. From this equation we learn that

the benefits of the TLB management schemes increase by 1.8%. Therefore, for an

application such as videoplay, for which 5R3K was 3.5%, 6 = 5.3%.

However, this scenario of 7YA = -yT is not very realistic. As mentioned earlier, the

TLB handler is unlikely to benefit from the better cache organization as much as the

application. Therefore, we expect that yT > -fA and study this scenario below.

Scenario 2 (Realistic case): -yT > yA

This scenario studies the case where applications exhibit greater locality than the

TLB handler code. TLB misses are infrequent, and therefore, when invoked the TLB

handler code tends not to hit in the cache. However, we expect that applications

benefit to a greater extent by the improved cache. This statement is not always true

and is application-dependent.

60

We reproduce Equation 5.11 here for convenience.

~S = SR3K + RSRK [MT(YTT- TRK) - MA(YAT - TR3K)

+TT K MT M A (T - A)] (5.14)

We have already studied the worst case for the TLB management schemes of

T = A in Scenario 1. We now study the best case for the TLB management

schemes:

Best case: fYT = 1; A = 0

This case corresponds to the case when the entire application fits in the better/bigger

cache. However, the TLB handler has the same cache miss rate as earlier (i.e., the

better/bigger cache does not help the TLB miss handling code). Substituting in

Equation 5.11 we get,

= R3K R [MT(To - T 3K) + MATRK
+ RcRR3K

+TTC KMTMA] (5.15)

Using the same values used in obtaining Equation 5.8 and setting MT = 0.07 and

MA = 0.02, we get

6 = R3K + 0.00075

Therefore, for an application such as video-play, for which 6 R3K is 3.5%, 6

would be 11%. Thus, in this scenario the TLB management schemes can improve

performance by up to 11% of the application performance. We should note however

that this is an ideal case.

Realistic cases: A = 0.5

We expect that bigger and better organized cache would not eliminate all application

cache misses. Therefore, depending on the application, A = 0.5 is a more realistic

value. AT depends on several parameters like the application, and the conflicts in the

61

cache, but we expect YT > A. We explore two different values of yT, and the impact

IT has on 6.

?yT = 1: In this case,

6 = R3K + 0 .051

Therefore, for an application such as videoplay, for which 6 R3K is 3.5%, 6 is 8.6%.

-7T = 0.8: In this case,

5 = R3K + 0.032

Therefore, for videoplay, 6 is 6.7%. Thus, even in more realistic cases we see

that the TLB management schemes can provide greater benefits on a faster architec-

ture.

5.6 Conclusions

In this chapter we have studied an analytical model which captures the architecture

and application parameters which characterize the benefits of the TLB management

schemes proposed in this thesis. We further analyzed the model to compare the TLB

behavior of an application on a fast architecture with the same cache organization

as a slow architecture. Also, we studied the impact of moving to architectures with

better/bigger cache organizations and predicted the behavior of the TLB management

schemes for some realistic values of the parameters of the model.

62

Chapter 6

Related Work

Prefetching and caching are two well-known techniques that have been widely applied

in computer systems [22, 24], but have not been applied to software management of

TLBs. Most of the previous work has focussed on hardware caches.

Huck and Hays [15] have explored an idea similar to the STLB in the context

of the HP PA-RISC. Their Hashed Page Table (HPT) is a page table organization

suited for large address spaces. The faulting virtual address is used to index into the

HPT and a match is attempted between the faulting address and the HPT entry. If

no match is found, a fault is taken to the OS. Collision entries are then looked up in

software. This scheme replaced an earlier one in the HP-UX operating system, which

used an inverted page table organization. Huck and Hays simulated both hardware

and software implementations of the HPT.

The work in this thesis, which has been implemented on a different architecture,

complements Huck and Hays work in a number of ways. The entirely software-based

implementation is in the context of hierarchically-organized forward-mapped page ta-

bles and we study the effect of nested TLB traps. We obtained measurements from a

running system for a range of applications and found that a direct-mapped organiza-

tion of the STLB was very effective. Experiments showed that a 2-way set-associative

software STLB adds more overhead, as compared to a simple direct-mapped organiza-

tion. Further, our work studies the benefit of prefetching TLB entries in the context

of a microkernel-based OS environment with several communicating processes, where

63

TLB performance is more critical.

Another complementary approach to decreasing TLB miss handling costs is to

provide variable-sized pages called "superpages"; thus, a single TLB entry can map

large contiguous regions of memory. The PowerPC architecture [16] supports the

use of superpages. Researchers [23] have looked at the architectural and OS support

required to effectively use superpages.

Our proposed schemes deal with several issues not addressed by the "superpage"

approach. A process's program counter, stack pointer, and message buffers, are allo-

cated at different places in the process's address space. It is not practical to allocate

the code, stack, and data segments of these processes contiguously in physical mem-

ory. Therefore, superpages will not benefit these entries and they will still need

different L2 entries in the TLB. Our schemes are effective in dealing with such TLB

misses.

As operating systems move to modular organizations supporting finer-grained

processes interacting with each other, the number of L2 TLB misses will increase.

Since the TLB is a shared resource, contention for the TLB will be high. As our

synthetic benchmark indicated, our schemes continue to decrease TLB penalties as

the number of user-level processes increases.

Our schemes are also useful for dynamically allocated data structures, and in sys-

tems supporting garbage collection, where ensuring that all important data structures

are contiguous in physical memory is not easy. Thus, our schemes can complement

the superpage solution in reducing TLB miss penalties.

64

Chapter 7

Conclusions

A number of interacting trends in operating system structure, processor architec-

ture, and memory systems are increasing both the rate of translation lookaside buffer

(TLB) misses and the cost of servicing a TLB miss. This thesis presents two entirely

software-based solutions to decrease TLB penalties, and the issues involved in their

implementation.

The first scheme prefetches TLB entries on the IPC path between communicating

processes. Trace data indicated that prefetching TLB entries which map IPC data

structures, and the program counter, stack pointer, and message buffers of user-level

processes, is beneficial. For a range of applications, prefetching decreases the number

of kernel TLB misses by 40% to 60%.

The second scheme maintains a flat cache of TLB entries (STLB). This scheme

provides a fast path for TLB misses, and eliminates cascaded misses. For the applica-

tion we studied, eliminating cascaded misses reduces the total number of TLB misses

by about 20% to 40%. We also found that a direct-mapped organization of the STLB

achieves very hit rates of greater than 90% for a range of applications.

For these applications, TLB penalties range from 1% to 5% of application runtime;

our schemes are very effective in reducing kernel TLB penalties, improving application

performance by up to 3.5%.

Using synthetic benchmarks, we also demonstrated the impact of increasing the

number of client/server processes, and increasing the data accessed by a process, on

65

TLB miss handling times. For these synthetic benchmarks, our schemes, especially

the integrated scheme with both prefetching and caching, perform very well improving

runtimes for fine-grained benchmarks by up to 10%.

Processor speeds continue to increase relative to memory speeds; we developed

a simple analytical model which indicates that our schemes should be even more

effective in improving application performance on future architectures.

66

Bibliography

[1] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and

M. Young. Mach: A new kernel foundation for UNIX development. In Summer

USENIX, pages 93-113, Atlanta, GA, June 1986.

[2] T. Anderson, H. Levy, B. Bershad, and E. Lazowska. The interaction of archi-

tecture and operating system design. In Proceedings of the Fourth Conference on

Architectural Support for Programming Languages and Systems, pages 108-119,

Santa Clara, CA, April 1991.

[3] B. Bershad, C. Chambers, S. Eggers, C. Maeda D., McNamee, P. Pardyak,

S. Savage, and E. Sire. SPIN - an extensible microkernel for application-specific

operating system services. Technical Report TR94-03-03, University of Wash-

ington, February 1994.

[4] B.N. Bershad. The increasing irrelevance of IPC performance for microkernel-

based operating systems. In USENIX Workshop on Microkernels and Other

Kernel Architectures, pages 205-211, Seattle, WA, April 1992.

[5] B.N. Bershad, T.E. Anderson, E.D. Lazowska, and H.M. Levy. Lightweight re-

mote procedure call. In Proceedings of the 12th Symposium on Operating Systems

Principles, pages 102-113, Litchfield Park, AZ, December 1989.

[6] J. Boykin, D. Kirschen, A. Langerman, and S. LoVerso. Programming under

Mach. Addison-Wesley Publishing Company, 1993.

[7] J.S. Chase, H.M. Levy, E.D. Lazowska, and M. Baker-Harvey. Lightweight shared

objects in a 64-bit operating system. In Proceedings of the Conference on Object-

67

Oriented Programming Systems, Languages and Applications, pages 397-413,

Vancouver, Canada, October 1992.

[8] B. Chen and B. Bershad. The impact of operating system structure on memory

system performance. In Proceedings of the 14th Symposium on Operating Systems

Principles, pages 120-133, Asheville, NC, December 1993.

[9] Digital Equipment Corporation. DECstation and DECsystem 5000 Model 240

Technical Overview. Digital Equipment Corporation, 1991.

[10] Digital Equipment Corporation. DEC3000 Model 500/500S Technical Summary.

Digital Equipment Corporation, 1992.

[11] Digital Equipment Corporation. The Ultrix Operating System, V.4. Digital

Equipment Corporation, 1994.

[12] Microsoft Corporation. Microsoft OLE programmer's reference. Microsoft Press,

1993.

[13] D. Engler, M. F. Kaashoek, and J. O'Toole. The operating system kernel as

a secure programmable machine. In Proceedings of the 6th European SIGOPS

Workshop, Germany, September 1994.

[14] W. Hsieh, M. F. Kaashoek, and W. E. Weihl. The persistent relevance of IPC

performance: New techniques for reducing the IPC penalty. In Proceedings of

the 4th Workshop on Workstation Operating Systems, pages 186-190, Napa, CA,

October 1993.

[15] J. Huck and J. Hays. Architectural support for translation table management in

large address space machines. In Proceedings of the 20th International Sympo-

sium on Computer Architecture, pages 39-50, San Diego, CA, May 1993.

[16] Motorola Inc. PowerPC 601: RISC Microprocessor User's Manual. Prentice-

Hall, Inc., 1993.

68

[17] N. Jouppi. Improving direct-mapped cache performance by the addition of a

small fully-associative cache and prefetch buffers. In Proceedings of the 17th In-

ternational Symposium on Computer Architecture, pages 364-373, Seattle, WA,

May 1990.

[18] J. Liedtke. Improving IPC by kernel design. In Proceedings of the 14th Sympo-

sium on Operating Systems Principles, pages 175-188, Asheville, NC, December

1993.

[1.9] S.J. Mullender, G. van Rossum, A.S. Tanenbaum, R. van Renesse, and H. van

Staveren. Amoeba: a distributed operating system for the 1990s. IEEE Com-

puter, 23(5):44-53, May 1990.

[20] D. Nagle, R. Uhlig, T. Mudge, and S. Sechrest. Optimal allocation of on-chip

memory for multiple-API operating systems. In Proceedings of the 21st Interna-

tional Symposium on Computer Architecture, pages 358-369, Chicago, IL, April

1994.

[21] D. Patterson and J. Hennessy. Computer architecture: a quantitative approach.

Morgan Kaufman Publishers, 1989.

[22] D. Patterson and J. Hennessy. Computer organization and design: the hard-

ware/software interface. Morgan Kaufman Publishers, 1993.

[23] M. Talluri and M. Hill. Surpassing the TLB performance of superpages with

less operating system support. In Proceedings of the Sixth Conference on Archi-

tectural Support for Programming Languages and Systems, pages 171-182, San

Jose, CA, October 1994.

[24] A. S. Tanenbaum. Modern Operating Systems. Prentice-Hall, Inc., 1992.

[25] OpenDoc Design Team. OpenDoc technical summary. In Apple's World Wide

Developers Conference Technologies CD, San Jose, CA, April 1994.

[26] R. Uhlig. Private communication, 1993.

69

[27] R. Uhlig, D. Nagle, T. Mudge, and S. Sechrest. Software TLB management in

OSF/1 and Mach 3.0. Technical report, University of Michigan, 1993.

[28] Richard Uhlig, David Nagle, Tim Stanley, Trevor Mudge, Stuart Sechrest, and

Richard Brown. Design tradeoffs for software managed TLBs. ACM Transactions

on Computer Systems, 12(3):175-205, August 1994.

[29] R. Wahbe, S. Lucco, T. Anderson, and S. Graham. Efficient software-based fault

isolation. In Proceedings of the 14th Symposium on Operating Systems Principles,

pages 203-216, Asheville, NC, December 1993.

70

