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Chapter 1

Introduction

Almost all current research in phonology is done by hand. Phonologists collect data and and analyze
a small number of interesting forms with pencil and paper. Not only is this tedious, it is error-prone
and depends for its success on the linguist's intuition in picking samples to test. This thesis describes
Painil, a system for automating phonological analyses so that they can be performed on vast data
sets and with complete accuracy. Our primary goal for Paijini is coverage - to elegantly support as
many real analyses from the phonological literature as possible. To evaluate the system's capabilities,
we implement several challenging textbook examples and conclude with an implementation of our own
new analysis of some tonal data that have long perplexed the phonological community.

1.1 Generative Grammar and Generative Phonology

Generative grammar is a linguistic theory developed by Noam Chomsky and Morris Halle in the 1950's
at MIT. The basic premise of this theory is that the basis for human language capability is a genetic
endowment called Universal Grammar (UG). Generative grammarians claim that all languages are based
upon UG, and are therefore fundamentally identical - only the lexicon (vocabulary) and a small set of
parameters vary from language to language (Chomsky 1986).

The reason this theory is called generative grammar is that it is premised on the idea that every utterance
is generated by transforming some underlying representation (UR) into the correct surface representation
(SR). Historically, linguists have assumed that these transformations are ordered sequences of rules.2

Generative phonology is the portion of this overall theory that deals with sound changes - the physical
realization of language. Processes that induce the kinds of sound changes phonologists typically study
include things like plural formation; compounding; verb inflection; case, number, and gender marking;

1 Named after the 5th century B.C. Sanskrit grammarian.
2 Recently there has been a shift away from rules and towards constraints. Proponents of constraint-based approaches

claim that constraint-based accounts are easier to learn. We will confine ourselves to rule-based phonology in this thesis.
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CHAPTER . INTRODUCTION

and even word games like "pig latin".

Phonologists study these phenomena in an ongoing effort to determine the character of UG with respect
to phonology; in other words, to determine just what is "built into" human brains to handle all these
sound change processes - how the sounds are represented, what the set operations that can be performed
on these representations is, and how a child learns which sequence of operations is correct for each process
in his language.

C(homsky and Halle codified the theory of generative phonology in their landmark work The Sound
Pattern of English (SPE) (Chomsky and Halle 1968). At that time, phonologists viewed the sounds of
language (called segments or phonemes, depending on the role that the sounds play in the language)
not as atomic units, but as bundles of binary features. Most of these features correspond directly to
articulatory gestures; e.g., the feature [voiced], which distinguishes the [-voiced] [t] sound in "tip" from
the [+voiced] [d] sound in "dip", denotes whether or not the vocal cords are stiff or slack when the sound
is produced.

Chomsky and Halle combined this conception of linguistically meaningful sounds with a system based
on rewrite rules. These rules all take the form "rewrite A as B when it appears in the context C". For
example,

C -> [-voiced] /_ #

specifies that any word-final consonant (the # indicates a word boundary) should be devoiced.

Unfortunately, linguists discovered in the 1970's that these so-called "SPE-style" rules, although theo-
retically very powerful, do not allow natural analyses of many phonological phenomena. This realization,
which arose out of work on tone languages, prompted the development of autosegmental phonology.

1.2 Autosegmental Phonology and Feature Geometry

The tone language phenomena that gave the SPE framework trouble often involved what appeared to be
long distance effects, where a change in one part of an utterance affected another part many segments
away. Researchers traced this problem to the SPE theory's treatment of words as linearly ordered strings
of feature bundles.

The current theory instead arranges the features in a feature tree, and views each node in this tree as a
tier on which elements of that type move about. See Figure 1.1 for a typical view of the feature tree.
Figure 1.2 depicts the feature tree for the [d] sound in "dog".

Imposing a hierarchy on the features changes phonological theory significantly. First, it makes predictions
about what combinations of nodes can be manipulated at once. Consider the feature tree in Figure 1.1
again: since the anterior and round features are dominated by different nodes (Labial and Coronal),
we expect processes that simultaneously change these two features without also changing all the other

8



CHAPTER 1. INTRODUCTION

features dominated by the oral place node to be very rare or completely unattested. The data seems to
support such predictions; consider, for example, the Sudanese data in §3.3.

Second, a feature tree approach radically alters the notion of adjacency. If each node in the feature tree
defines its own tier, two segments may be adjacent on a particular tier but far apart on others, because
some segments may be unspecified for a particular tier; in other words, they may project no nodes onto
the tier. In Figure 1.2, for example, there is no Tongue Root node, because the canonical [d] feature tree
does not have a node on the Tongue Root tier. See the Japanese Rendaku data in §3.4 for an analysis
that depends on this new interpretation of locality.

Finally, feature tree theory posits links connecting nodes on the tiers together - these are the lines in
Figure 1.2. The feature tree describes which nodes can link together; the geometry in Figure 1.1, for
example, predicts that nodes of type Tongue Root can only have parents of type Laryngeal, and can
have children of types ATR and RTR.

Putting each node on its own tier therefore allows us to view a string of identical nodes on a particular
tier as a single node with multiple parents. This predicts processes that appear to change long strings
of features all at once (in reality by changing the single, multiply-linked feature). John Goldsmith
first proposed this idea, called the Obligatory Contour Principle (OCP), to handle tonal phenomena
(Goldsmith 1976) - since then it has become a cornerstone of phonological analysis. Giving each
feature its own tier potentially extends Goldsmith's principle to all features, not just tonal features.3

1.3 Why this problem is important

Almost all research in phonology is done by hand. Phonologists collect data, select the most interesting
forms, and analyze this subset by running the rules that they propose explain the data by hand, checking
the results by hand.

Not only is this tedious, it is also inaccurate and error-prone. Phonology is a complex natural phe-
nomenon. Imagine trying to predict the weather, the orbits of the planets, or the behavior of any other
complicated system without the aid of machines. Now that technology exists to automate analysis of
astronomical and meteorological data, going back to the old hand-checked analyses of thirty years ago
is unthinkable. There is no reason that the same kind of automation that has revolutionized so many
other scientific endeavors cannot be applied to the problem of phonological analysis.

Given suitable software, we envision a very different approach to phonological research. Whereas now
researchers must often duplicate the very time-consuming data collection and transcription tasks of
others, on-line databases of utterances in machine-readable form will allow linguists to analyze data
from many different languages.

Likewise, where linguists now painstakingly regenerate all their surface forms when they change a single
rule in an analysis, the software will be able to do this in a matter of moments. And since computers
can perform these tasks many times faster than humans can, such software paves the way for complete

3 In practice, it turns out that the OCP does not seem to apply to every tier; research on this topic is ongoing.
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CHAPTER 1. INTRODUCTION

phonological descriptions of languages, that can be tested on thousands or even millions of inputs.

Beyond its ability to markedly increase the pace and quality of phonological research, building a com-
putational phonology system requires the author to codify the theory. Automating analyses requires
us to take often vague explanations and specify them in complete detail, and to make explicit all the
assumptions that practitioners make. In short, it forces us to formalize the theory. We feel that this
kind of testing is crucial for any complex theory.

Finally, a computational phonology system has direct, practical value as part of a speech generation
system. Though we do not develop the idea in this thesis, connecting our system to a speech synthesizer
of the kind described by Stevens (1992) could ultimately make machines capable of producing speech
indistinguishable from a human's.

1.4 Our goals

Our primary goal is coverage. That is, we want to make implementation of as many phonological analyses
as possible completely straightforward.

This raises a philosophical point. We want our system not just to support implementations of particular
isolated phenomena, but to allow implementation of the entire phonology of any given language. If we
need only account for a small set of data and a few phonological processes, we are free to make all kinds
of ad hoc assumptions that work for the data, but which are not actually true of the language as a whole,
and which would prevent proper implementation of other aspects of the language's phonology.

In our account of the English plural in §3.1, for example, we do not need to treat the affricates properly -
simply defining them as +continuant atomic segments would be sufficient, and even a system supporting
only linear phonology (like RBT2, described in §1.7.2) could handle this sort of analysis. Supporting some
rules that generate the proper surface forms is not sufficient - we wish to allow direct implementation
of the particular analysis that we find in the literature.

A second goal is ease of use. Since we hope working linguists will use the system to implement (and
test) their analyses on large sets of data, it is important for the notation to be easy for a linguist to
understand. In particular, we demand an almost direct correspondence between the syntactic units the
program deals with and the linguistic units phonologists talk about. This means that rules that are
simple to write down in standard linguistic notation must also be tersely expressible with our system.

We are concerned with flexibility as well. The system must not assume too much about the linguistic
theory; otherwise it will not be useful once the theory changes. With this in mind, we need to build
as few specifics of the theory as possible into our system. This goal is unfortunately at odds with the
previous requirement. Consider a general-purpose programming language like C. While it is completely
flexible, it is very difficult to use for phonological analyses, because nothing about the theory is built
into it - every minute detail of an analysis must be specified in the C program. Our target, then, is
to strike a good balance between a system like C that assumes nothing, and a system like AMAR (see
below) that assumes too much.

10



CHAPTER 1. INTRODUCTION

Another important goal is efficiency. Since a primary motivation for writing the system is that we wish
to be able to test analyses on very large data sets, the program must be able to apply an analysis to an
input form in at most a matter of seconds on current hardware.

Finally, portability is a concern. We do not want a system that only runs within a particular programming
environment or only on certain kinds of hardware.

1.5 What makes this problem difficult

Several things make this problem difficult. First, the theory is still fairly informal. Although basic
operations have been formalized, written-out stipulations (in English, not notation) radically change
the meanings of many analyses in the literature. (See the Ilokano reduplication analysis in §3.5 for an
example of these kinds of textual qualifications to rules.) Consequently, trying to find a rich enough set
of primitives we can implement efficiently is difficult.

Furthermore, the theory is still changing rapidly. In the past 25 years phonological theory has been
revolutionized twice. A new research direction based upon constraints (Prince and Smolensky 1993) has
the potential to radically revise the theory yet again. This rapid progress makes it difficult to get a
snapshot of the theory. We suspect, too, that theories are being abandoned before they can be tested
adequately, in large part due to the lack of good computer aided phonology systems.

We have also found that implementing a reasonably complete system is considerably more difficult than
one might expect. Although the primitive autosegmental operations are fairly easy to implement, the
matching procedure that identifies the context in which to apply a rule is quite complex.

1.6 Things we are not trying to do

As we will see in the section on related work, different researchers have built computational phonology
systems for rather different reasons. We are not trying to address any of the following issues with this
system:

* Cognitive plausibility. We do not claim that this system implements what is in people's heads.

* Learning. Our system does not infer rules; the user must fully specify analyses.

* Parsing & speech recognition. We do not claim that this system is useful for parsing - only
for generation. We hope that Maxwell's parsing strategy (Maxwell 1994) can be applied to our
system, but already recognize some significant difficulties with adapting his ideas to any reasonably
complete implementation of autosegmental phonology.

Although these are all interesting problems, they are beyond the scope of this thesis.

11



CHAPTER 1. INTRODUCTION

1.7 Related Work

Many other researchers have tackled this problem, but the goals of their projects have varied considerably.
A few systems, like Kimmo and that of Bird and Ellison, come from an automata framework. In these
cases, the designers have set out to force the theory into a very constrained model that can be more
easily learned. The Delta system is designed to deal with problems in phonetics as well as phonology.
RBT2 is meant for transliteration tasks. AMAR is the only system designed with the goals we have
outlined for Paiini.

1.7.1 Kimmo

The KIMMO system (Koskenniemi 1983) was designed to model morphology, but has been applied to
phonological problems. It models language with a finite state transducer - there are no intermediate
representations and the "rules" are not ordered.

Kimmo is ideally suited to handling the morphology of languages like Finnish (for which it was built)
and Turkish. These languages are purely concatenative - all affixes go onto the ends or beginnings of
words. However, many languages have infixation processes, and Kimmo is incapable of handling these.
Furthermore, Antworth (1990) and Anderson (1988) point out that Kimmo cannot handle nonlinear
representations.

Both of these capabilities are essential in any system intended to support the kinds of rules that pho-
nologists have been writing since the late 1970's.

1.7.2 RBT2

We developed RBT2 (Rule Based Transliterator II) to handle transliteration between languages. In
particular, we were interested in producing IPA (International Phonetic Alphabet) output corresponding
to utterances written in English, German, Arabic, and Russian orthography.

RBT2 assumes an SPE-style (Chomsky and Halle 1968) representation, wherein sound segments are
viewed as unorganized bundles of features. While this proved sufficient for our task, it is inadequate
for many phonological problems, and in particular cannot handle the majority of the analyses in our
chapter of examples.

However, RBT2 did have a very natural notation that linguists could adapt to quite easily. We have
tried to retain this notation as much as possible in Paiini. In addition, we have carried RBT2's regular
expression operators over to Paxiini since we found them essential in implementing analyses drawn from
the earlier segmental phonology literature.

12



CHAPTER 1. INTRODUCTION 13

1.7.3 Delta

Delta (Hertz 1990) is a programming language for dealing with phonetic and phonological phenomena. It
is theoretically capable of handling any phonological data since it provides the ability to link in arbitrary
C code.4

Unfortunately, such power comes at a price - Delta rulesets are very complex and difficult to read, even
for a seasoned programmer and linguist. The following Delta code, for example, does what Pajini can
do in only a few short rules:

:: Forall rule for floating High tone assignment:

:: Forall floating H tones (bh = "before H", ah = "after H")...

forall (.tone ?^bh H !ah] & [%morph _bh ^ah]) ->
do

if
:: If the floating H occurs before a floating L,

:: move the H tone into the end of the preceding

:: morph. Otherwise, insert the H tone at the

:: beginning of the following morph. Moving the H

:: tone is accomplished by inserting a new H tone

:: and deleting the floating one.

([%tone _^ah L !al] & [%morph _^ah al]) ->
insert [%tone HI ...̂ bh;

else -> insert [%tone H ah...;

fi;

:: Delete original floating H & following sync mark:

delete tone ^bh...^ah;

delete %tone ah;

od;

:: Forall rule for sync mark merging:

:: For each morph (bm = "begin morph", am = "after

:: morph") ...

forall [%morph _^bm <> !am] ->

do

:: Set bs (begin syllable) and ^bt (begin tone)

:: to am (after morph):

^bs = am;

^bt = am;

repeat ->
do

:: Set bt before the next tone token to the

:: left. If there are no more tone tokens in

4 Most computer scientists assume (by Church's Thesis) that general-purpose programming languages like C can be used
to solve all problems that can be solved by any computing device we could build (Hopcroft and Ullman 1979). This says
nothing at all about the efficiency or simplicity of the solution, however.
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:: the morph (i.e., bt has reached bm), exit

:: the loop.

[%tone !bt <> _'bt];

(bt == bm) -> exit;

:: Set bs before the next syllable token to

:: the left. If there are no more syllable

:: tokens in the morph, exit the loop.

[%syllable !bs <> _'bs];
(^bs == bm) -> exit;

:: Merge the sync mark before the tone and the

:: sync mark before the syllable:

merge bt bs;

od;

od;

In general, Delta requires considerably more "micromanagement" than any of the other systems we
discuss in this section. This results in rules that go on for pages, and a system that is overall very hard
to use.

Furthermore, the representation Delta assumes is simply inadequate for contemporary analyses. Hertz
gives the following example:

noun
root

ml u s
C I V IC

Inucl 
syl I si
L I ]
2 3 

verb

root

I o

I V

Inuc
yl

I

I I

I I

I L l

5 6

j I a Ib i 
C I V I V IC I V I

I nuc I I nucl

syl I syl I

H I
7 8 9 10 11

The vertical bars are "sync marks" that both separate nodes from other nodes on the same tier and
identify which nodes dominate which others in the tree. Although this looks promising at first - the
representation is certainly better than the linear one that RBT2 uses - it has one fatal flaw. The
problem is that the representation is only two-dimensional - it does not allow tiers to have multiple
parents or children since there are no association lines.

As a result, analyses like the Sudanese place assimilation example in §3.3 are impossible to implement
properly - the Delta user must find some ad hoc work-around that relies only upon a 2D representation.
So Delta does not meet our goals.

word:

morph:

phoneme:

CV:

nucleus:

syllable
tone:

: 

1
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CHAPTER 1. INTRODUCTION

1.7.4 Bird and Ellison

As part of an ongoing project in machine learning of phonology, Bird and Ellison have developed a
"phonologist's workbench" built upon their one-level phonology framework (Bird and Ellison 1992).

They propose that all phonological processes can be implemented with manageably-sized finite automata.
If they are correct, the serious learnability problems with present phonological theories will turn out to
not be so serious after all - good news indeed.

However, it is not at all obvious that their very constrained model can actually handle all the data.
In particular, while they show how to implement some kinds of phonological rules, they have not yet
addressed difficult data like the Ilokano reduplication facts we account for in §3.5.

Furthermore, since their research interests are geared more towards machine induction of phonological
rules (certainly a noble goal!), they place less emphasis on implementing analyses that appear in the
phonological literature. Hence adapting an existing analysis to their notation (in order to test it out
on massive amounts of data, for example) is either difficult or impossible, depending on the analysis in
question.

1.7.5 AMAR

The only successful system 5 designed with our goals in mind is AMAR (Albro 1994). This system, like
Pdijini, assumes a feature-tree representation and offers a reasonably compact notation for expressing
autosegmental rules. In many ways, PS54ini follows naturally from experience with both RBT2 and
AMAR.

Within this framework, however, AMAR does have quite a few inadequacies that prevent one from
implementing many of our example analyses naturally:

Current theory is hard-wired

Much of the current theory is built into AMAR, which means that system will have trouble supporting
new analyses, or analyses designed to test new theories about phonological representations. In particular:

* C and V slots are given special status that cannot be changed.

* The set of boundaries that can be referenced (phrase, word, morpheme) cannot be increased.

* The user is given no control over fundamental operations like the association convention, the OCP,
and spreading.

* Feature values are limited to + and -.
5 As far as we know...

15



CHAPTER 1. INTRODUCTION

Missing essential features

We have found that AMAR lacks some features necessary for many textbook phonological analyses:

* AMAR lacks "not" links, which are fairly common in the literature. These links specify that a rule
should only fire when some node is not linked to a node of a particular type (or in some cases, to
a single specific node). We crucially rely on this feature in many of our examples.

* There is no way to mark any part of a match specification optional.

* AMAR provides no way to specify the order of precedence for tiers with respect to the position or
length of the match.

* It is impossible to implement edge-in association with AMAR, a process that data from Shona
(Hewitt and Prince 1989) seem to require.

* Regular expression operators are not supported. We depend on these in several of our analyses.

* There is no way to specify whether or not nodes that have been matched or inserted in a previous
cycle can be matched again. Again, this distinction is crucial in many of our analyses.

* Every match specification must list all connections. Using P5tini domain specifications, one can
specify things like "an X slot linked anywhere in the syllable." AMAR requires the rule author to
specify exactly where in the syllable the X attaches (onset, nucleus, or coda).

* AMAR has no equivalent to Pa5ini's initial, medial, and final node flags. Such qualifications are
extremely common in the phonological literature.

* Since AMAR cannot copy phonological material, reduplication phenomena like the Ilokano data
in §3.5 are nearly impossible to implement.

* All AMAR rules are iterative; there is no way to write a rule that applies exactly once without
appealing to boundaries.

* The notation is somewhat cumbersome; connections between nodes must be listed separately, and
the system does not fill in intervening tiers like PBxini does.

* AMAR's input system is too limited; it does not allow the user to specify a feature tree as input.
This has serious repercussions for analyses with complex underlying representations (e.g., the
Dschang data in §3.6).

In Pa4xini we correct all these shortcomings while maintaining AMAR's simplicity and ease of use.
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+/- continuant

+/- strident

+/- lateral

+/- stiff vf

+/- slack v

+/- spread

+/- constr

+/- ATR -

+/- RTR -

+/- nasal -

+/- consonantal

+/- sonorant

/-- rannni I ahal

+/- anterior
Corona

+/- distributed

+/- high

+/- low \ Dorsal

Place

+/- back /

Figure 1.1: Feature Tree
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+ consonantal

Figure 1.2: Feature Tree for the Phoneme [d]



Chapter 2

System Description

In this chapter we describe the features of Pagiini and show in detail how to use the system.

P5oini takes an input file describing the feature geometry, phonemes, and rules for a language process
and applies the rules to the list of input forms the user specifies. We will discuss each of these components
in detail.

2.1 Lexical Conventions

Like most general-purpose programming languages, P5oini tokenizes all input files. Whitespace char-
acters like spaces, tabs, and newlines are ignored except where they separate tokens. The input is
case-significant except with respect to keywords. In other words, case may distinguish user-assigned
names, but not keywords.

The tokens /* and */ begin and end a comment, respectively. All text inside a comment, including
newlines, is ignored, though comments may not be nested.

P5oini provides an alternative commenting style as well: it ignores all text from a // token until the
end of the line. The two kinds of comments can be used interchangeably.

A comment may appear anywhere except within a token or directive.

2.1.1 Keywords

Paini reserves the following keywords:
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after append at before block call change childless choice copy
decrement delete delink dlink edge effect effects erase exact final
first from generate geometry in increment initial insert inserted
iterative last leftmost lexicon link linked match matched matches
medial middle no nonfinal noninitial nop optional order parse
phoneme rematchable rightmost rule shared stray to trace under
unlink unlinked warnings within

These tokens (regardless of the case of the letters) may not be used to name user-defined units like
phonemes, feature geometry nodes, or lexicon entries.

2.1.2 Tokens

Feature geometry node names are strings of letters; no numbers are allowed. Feature and phoneme names
are strings of alphanumerics and underscores, but may not begin with an underscore. Double-quoted
strings may contain contain any characters.

2.1.3 #include Directives

The directive #include may appear at the beginning of a line. It must be followed by a double-quoted
string, in which case it causes Pini to insert the named file verbatim in place of the #include
directive. For example,

#include "std.ph"

directs Pqini to insert the text in the file std. ph in place of the directive itself.

Included files may include #include directives, to a maximum nesting depth of 16 files.

2.2 Feature Geometry Declaration

In keeping with the current theory, Pjini requires the user to describe the feature tree that the
subsequent rules and data assume. This geometry declaration must be the first thing in every ruleset.
An example follows:

geometry {

word -> morpheme,

morpheme -> sigma,

sigma -> stress [5 4 3 2 1],
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sigma -> onset,

sigma -> rhyme,

rhyme -> nucleus,

rhyme -> coda,

onset -> X,

nucleus -> X,

coda -> X,

X -> consonantal [- +],

consonantal -> sonorant [- +],

sonorant -> continuant [- +],

sonorant -> strident [- +],

sonorant -> lateral [- +],

sonorant -> laryngeal,

sonorant -> pharyngeal,

laryngeal -> glottal,

laryngeal -> tongueroot,

glottal -> voiced [- +],

glottal -> slack_vf [- +],

glottal -> spreadgl [- +],

glottal -> constrgl [- +],

tongue_root -> atr [- +],

tongueroot -> rtr [- +],

sonorant -> supralaryngeal,

supralaryngeal -> softpalette,
supralaryngeal -> oral_place,

softpalette -> nasal [- +],

oral_place -> labial,

oralplace -> coronal,

oral_place -> dorsal,

labial -> round [- +],

coronal -> anterior [- +],

coronal -> distributed [- +],

dorsal -> high [- +],

dorsal -> low [- +],

dorsal -> back [- +],

X -> T,

T -> register [0O up down],

T -> modal [L M HI,

This is the Pxini feature geometry we will use for most of our examples, and corresponds closely to
the Halle-Sagey model (Halle 1992) shown in Figure 1.1.

Each line in the definition above establishes new nodes or connections in the feature geometry; for
example, the first line tells Pijini that the tree is rooted at the word tier, and that this tier directly
dominates the morpheme tier; i.e., that nodes on the word tier take children of type morpheme, and
that nodes on the morpheme likewise link to parents of type word.

Note that we list the parent before the child; Pa4ini requires the user to declare each parent before
any of its children are declared. This means that, for example, interchanging the first two lines of the
declaration is illegal - Paijini needs to know all of morpheme's parents before it can deal with its
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children. Practically speaking, this just means that the feature geometry has to be defined from top to
bottom; technically it means that the nodes have to appear in "topological order".l

P54ini pays no attention to the node names, except insofar as requiring nodes to be uniquely named.
In particular, Paiini assumes nothing about word or syllable structure - it treats nodes named "mor-
pheme" just as it treats nodes named "voiced". This means that Pdaini is flexible, and that testing out
different conceptions of the geometry (moraic versus X-slot syllable structure, for example) is simple -
nothing is hard-wired.

Note that square-bracketed lists follow some nodes; these declare feature values. Any node may have an
associated list of feature values; most will take + and - if they take features at all. However, features can
be given arbitrary names, and users may assign as many features to a node as desired. Note, however,
that no feature can have the same name as any node.

A few syntactic notes: The keyword "geometry" and the opening and closing brace are required. Node
declarations must contain exactly two node names, separated by the -> sequence. A comma must
separate consecutive declarations, and may optionally follow the last declaration before the closing
brace.

Henceforth we will refer to the declared feature geometry as the "defining geometry" for a ruleset to
distinguish it from the geometry of a particular input segment.

2.3 Elements

Now we need some way to create instances of the defining geometry; i.e., some way to write our equivalent
of [d] in segmental parlance. Using the same syntax we used for the geometry declaration would be
cumbersome indeed; instead Piini allows a linearized and abbreviated syntax. We call an instance of
the defining geometry declared this way an element.

An element can be as large as an entire word (in which case it will be rooted at a word node), or as
small as a single feature geometry node.2

2.3.1 Element Basics

Roughly speaking, element declarations are simply lists of node names enclosed in square brackets. For
example,

[word morpheme sigma]

1 We will revisit this notion when we discuss finding the leftmost, longest match in §2.8.1 . For now the practical
definition should suffice.

2 Such singleton nodes, called "floating" units in current linguistic parlance, play a crucial role in many tonal phenomena,
as we will see in the analysis of Margi tone in § sec:margi.

22



CHAPTER 2. SYSTEM DESCRIPTION

declares an element consisting of a word node with a single child of type morpheme, itself with a single
child of type sigma. We could give this element an onset, nucleus, and coda by adding these nodes onto
our declaration:

[word morpheme sigma onset nucleus coda]

Note that both these declarations instantiate elements with no segmental material; i.e., no voicing node,
no nasal node, etc. To put an X slot in the nucleus, we'd declare the element like so:

[word morpheme sigma onset nucleus X coda]

This illustrates a key point: we must order the nodes from top to bottom, just as we did with the
geometry declaration. In particular,

[word morpheme sigma onset X nucleus coda]

puts our X slot in the onset instead of the coda, and

[morpheme sigma onset nucleus X coda word]

declares a bizarre element consisting of two root nodes: one of type morpheme, containing the sigma,
onset, nucleus, X, and coda; and the other a bare word node.

Specifically, each node links up with the first previous node that can take that kind of child. Pjini
searches backwards through the element declaration to find the attachment point. For example, to
connect the nucleus node in

[sigma onset X nucleus coda]

Pijini looks back through the list, skipping over the X since, according to the defining geometry, nodes
of type X cannot take children of type nucleus. Looking back, Paqini finds the sigma node next, and
makes the nucleus node its child.

Technically speaking, nodes must be ordered according to an inorder traversal of the target element's
feature geometry.3

3 An inorder traversal is one that applies the following rule recursively: visit the parent first, then visit the children in
order from left to right.
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2.3.2 Elision

Having to list the morpheme node in

[word morpheme sigma onset X nucleus coda]

is a bit tedious, since our defining geometry specifies that only nodes of type morpheme can possibly link
above to words and below to sigmas. Fortunately, Pi4ini permits nodes it can infer from the defining
geometry to be omitted. This makes

[word onset X nucleus coda]

equivalent to the previous declaration: since nodes of type onset, nucleus, and coda can only link to
nodes of type sigma, Pdiini fills in the sigma automatically. By the same token, Pdaini infers the
existence of the morpheme node.

2.4 Features

Feature values can be assigned in several ways. The most common method applies only to the features
+ and -; these can be prepended to any node in an element list:

[+voiced -constrgl]

Other features must follow the node they modify, separated from the node name by a colon:4

[modal:H register:down]

[stress:4]

Finally, if a feature only applies to one type of node, the feature name may be used in place of the node
name. In our defining geometry, for example, the only nodes that take the feature H are modal nodes,
so we can write:

[H]

instead of

[modal: H]
4This syntax can be used with + and - as well.
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2.5 Numbering Nodes and Elements

In order to declare nodes with multiple parents, to reference nodes in other elements, and to declare
several nodes of the same type within a single element, we need to number nodes. Any nodes in an
element can be numbered, but all nodes of a given type within an element element must be given
different numbers. Numbering a node involves following its name and optional feature specification with
# and an integral number, as in the following examples:

[X#423 T#12 modal:H#1 +voiced#O]

We will call these element-internal numbers local ID's.

Entire elements can be numbered as well:

EX T H]#1

These are called element or global ID's. This allows us to refer to nodes in other elements by specifying
both local and global ID's, as follows:

[onset X#2:1] [X#1]#2

Here we've linked the onset in the first (non-numbered) element to the X slot with local ID 1 in element
2. We will see why this is useful when we discuss the matcher in §2.8.1.

2.5.1 Node Updates

How Paiini interprets a node in an element list depends on what precedes the node in the element
declaration. The first node of a particular type in an element always declares a new node in the
instantiated geometry; this is the case for all the non-numbered nodes in the preceding examples.

However, Pda~ini treats a node with no local ID that comes after a node of the same type in the same
element as an update to the earlier node. E.g.,

EX +voiced -voiced]

is equivalent to

[X -voiced]
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since Paxiini replaces the earlier node with the second. Note that this can only affect the features, and
if the features match the second node declaration has no effect; i.e.,

EX -voiced -voiced]

is equivalent to

[X -voiced]

However, if the second declaration has no features, any features in the earlier declaration are removed;

CX -voiced voiced]

is equivalent to

CX voiced]

In general, the update declaration completely replaces the earlier declaration.

An obvious question now, is "what if we want to have two of the same kind of node in an element'?"
This is what local ID's are for;

CX +voiced#l -voiced#2]

declares an element with two voiced nodes.5

Updates provide an easy way to instantiate an element that is very similar to an element we have already
declared. For example, given that we have defined a phoneme [d]6, we can write

Ed -voiced]

to get a [t] element by changing the [d]'s voiced node from + to -.

Paiini places no restrictions on how many nodes we can declare; if we really needed a thousand voiced
nodes, we could declare them (giving each its own unique ID) and P54ini would happily instantiate the
gigantic element.

5 Note that both will be linked to the single Glottal node that Paiini infers must be present.
6 We describe how to define phonemes in §2.6.
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2.5.2 Node References

We now have an element declaration syntax with which we can define any feature tree. Technically
speaking, however, not all phonological units are trees. We need to be able to declare arbitrary directed
acyclic graphs (DAGs)7 .

Whereas every node in a tree has at most one parent, DAG nodes can have multiple parents. This is
one instance where we need node references. A node reference is a node with a local and (optionally)
global ID specified. When Pajini sees such a node, it attaches the referenced node in the element right
where it would have attached a new node of the same type given a non-numbered node. For example,

CX T#1 H#1 T#2 H#1]

declares an element with an X slot linked to two different T node children, both of which are linked to
the same high tone. The first H#1 prompts P5aini to create a new modal H node; the second H node,
since it has the same local ID, simply references the earlier node.

We can also reference nodes in different elements, like so:

CX T H#1]#O X T H#O:i]

Here we have defined two elements. The first has an X slot with a tonal root node (T) child linked to
a high tone with local ID 1 (H#1). The second element also has an X slot and tonal root node, but its
tonal root node is linked to element O's high tone.

Such extra-element, or global references are only useful in match specifications, where consecutive ele-
ments are considered to be consecutive in the input stream. We describe match specifications in detail
in §2.8.1.

Note that all of a node's children must be specified locally in that node's element. This means that

CX T#2:i H] X T#1]#2

is not legal - instead we must write

CX T#2:l] X T#1 H]#2

7 Directed because we need to pay attention to parent/child relationships, and acyclic because we prohibit any node
from having a path back to itself.
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2.5.3 No Crossing Association Lines Allowed

A basic restriction current phonological theory places on representations is that association lines (the
lines connecting nodes together) may not cross. The motivation for this is that we want moving left
to right in a representation to correspond to moving forward in time (in keeping with the fact that
linguistic utterances are produced serially and not in parallel). If association lines cross, the order of the
phonological units is indeterminate. Consider the following element:

EX T#i H#i L#2 T#2 H#1 L#2]

The lines from T#2 to H#1 and from T#1 to L#2 cross, and hence these tonal nodes are both before and
after each other - a violation. Contrast this with

EX T#1 H#1 T#2 H#1 L#21

where one of the offending lines has been removed; now we have a legal element.

Paiini does not strictly prohibit crossing association lines, but the matcher will not always operate
properly on elements with crossing association lines. Consequently, Paijini warns the user any time it
determines that association lines cross during a derivation.

2.6 Phoneme Declarations

Every language has a phonemic inventory - a subset of all possible sounds that the language manipulates
with phonological rules. Since our inputs will use these sounds heavily, we would like to be able to give
them symbolic names.

Pa5iini allows us to define as many phonemes as we want, with declarations like the following:

phoneme t [ X +consonantal -sonorant -continuant +anterior -voiced ]

Phoneme declarations consist of the phoneme keyword, a unique phoneme name (which must not conflict
with any node or feature name), and an element declaration. Nodes can be numbered, but only with
local ID's - global ID's are not allowed, and the element's global ID will be ignored.

Once we have defined a phoneme, we can use it in element declarations in place of typing the element's
node list verbatim:

t +voiced]
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corresponds to

X +consonantal -sonorant -continuant +anterior -voiced +voiced 

which is equivalent to

X +consonantal -sonorant -continuant +anterior +voiced 

Phoneme names can appear in other phoneme declarations as well; e.g.,

phoneme d t +voiced]

says that a voiced [t] is a [d]. In general, phoneme names can be used anywhere node names can be
used, but note that phoneme names cannot be assigned numbers; hence all phoneme names declare new
material and never reference existing material.

2.6.1 Append directives

Once a phoneme has been declared, we can modify it with an append directive; this tells P5zini to tack
the material listed in the append directive onto the end of the named phoneme. For example,

phoneme d [ X +consonantal -sonorant -continuant +anterior 
append d [ +voiced ]

directs Pdxjini to add +voiced to the end of phoneme [d]'s declaration. Note that this will not change
any phonemes or lexicon entries defined in terms of [d]; in other words, P&iini does not re-evaluate all
the phoneme definitions after an append.

We generally use append to update phonemes defined in some standard include file that we wish to base
a whole set of rulesets on.

2.7 Lexicon Entry Declarations

Lexicon declarations are just like phoneme declarations, but are intended to deal with the next higher
level of phonological grouping - morphemes and words.

The declaration syntax is quite similar to the phoneme declaration syntax:
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lexicon "dog" [word sigma onset d nucleus aw coda g]

enters a word named "dog" into the lexicon with a single syllable and three phonemes (assuming that
phonemes [d], [], and [g] have been declared).

Like phoneme names, lexicon names can appear anywhere node names can. However, lexicon names
must be enclosed in double-quotes. 8

Again, Pdigini imposes no limit on the number of lexicon entries.

2.8 Rules

Once we have declared the feature geometry and all the phonemes, we can specify the rules we want
Paiini to apply, in the order we want it to apply them. A PARini consists of two parts: 1) a match
specification describing all contexts in which the rule is to apply, and 2) a list of actions to be taken if
P&iini finds a match. We call these actions effects.

The rule syntax is:

rule "name":

<rule flags>

match: <match specification>
effects: <list of effects>

where "name" is an arbitrary double-quoted name for the rule, <rule flags> is an optional list of rule
flags, described in §2.8.4, <match specification> is a match specification, described in §2.8.1, and
<list of effects> is a list of effects, described in §2.8.7.

The keywords effect and matches can be used in place of effects and match, respectively.

2.8.1 Match Specification Basics

We generally want a rule to apply only to certain inputs, or to certain parts an input string. And when
we do get a match, we want our effects to operate on particular matched nodes. The match specification
syntax allows us to tell Paiiini what input sequence to match, and what elements our effects will refer
to. An example match specification follows.

match: X H]

8 As a consequence, they can also have spaces in them, unlike phoneme names.
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This directs P5iini to apply the rule if the input contains an X slot linked to a high tone. The square-
bracketed list is an element, as described in §2.3. In fact, the match specification is simply a list of
elements. E.g.,

match: X H] X L]

will match an X slot linked to a high tone followed by another X slot linked to a low tone.

Here is where global ID's come into play.

match: X H#1]#O X H#O:1]

will match an X slot linked to a high tone followed by another X slot linked to the same high tone.

Adjacency

Consecutive elements will match only consecutive input nodes. For example,

match: X HI X L]

specifies that:

* no X node may intervene between the two X slots,

* no modal node may intervene between the H and L,

* no T node may intervene between the two elements.

Note the last restriction in particular, recalling that PAiiini infers intervening nodes in elements. Since
modal nodes do not link directly to X slots - tonal root nodes (T) must intervene - these elements
really reference material on the T tier as well, and hence prohibit any tonal root nodes from intervening
between the two elements.

This notion of adjacency applies over strings of elements. For example,

match: CX +voiced] X T H] X -voiced]

stipulates note only that the three X slots are adjacent (with no X slots intervening), but also that the
two voiced nodes are adjacent. Hence this match specification will not match input corresponding to
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[X +voiced] X T H voiced] X -voiced]

because the middle element projects a node onto the voiced tier, and this voiced node is not mentioned
in the match specification.

Superset Matching

By default a match element will match input elements that have all the nodes and links established by
the match element and any other nodes and links.9

This means that

match: X T]

will match all of the following input elements, as well as many others:

CX T.

CX T HI

CX T +voiced]

CX +consonantal -sonorant -continuant +anterior +voiced T H]
EX T#1 H#1 T#2 H#2]

The exact node flag forces an exact, rather than a superset match - see §2.8.2.

The Leftmost Match

A match specification will often match an input string in many different places - e.g., [X H] [X H] will
match the string [X H] [X H] [X H] at two different offsets.

Since we want the matcher's behavior to be completely predictable, Paiini finds the leftmost match by
default. (The rightmost rule flag, discussed in §2.8.4, overrides this behavior.)

Given our nonlinear representation, "leftmost" could be interpreted many ways. The method P54ini
uses to decide which of two possible matches is the leftmost match is as follows. Pini starts at
the highest node in the defining geometry and compares the leftmost nodes on this tier in each of the
candidate matches. If one match is leftmost with respect to this tier, P5iiini considers it the leftmost
overall; otherwise it does the same check on the next lower tier. If some candidate match has no node
at on all on a particular tier, that tier is skipped entirely.

9 This is, of course, subject to the adjacency requirements mentioned in the previous section.
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An obvious question is "what do we do for tiers with multiple children?" The answer is that the results
are not predictable by default - the matcher is only guaranteed to enforce the rule that

* If tier A dominates tier B in the defining geometry, tier A will be checked before tier B.

This rule establishes a so-called topological ordering on the defining geometry.

When it is necessary, we can specify the exact order that tiers will be considered - see §2.8.5.

The Longest Match

In the event that candidate matches are equally leftmost according to the definition above, Paini favors
the longest match. Here again, "longest" is too vague for our purposes; in fact, Pigini compares the
length of each match string on successive tiers, just at it compares ordering on successive tiers to find
the leftmost match.

The length of a sequence of nodes on a particular tier is just the number of nodes on that tier.

2.8.2 Node Flags

Phonological rules often refer to initial, medial, and final units; for example, syllable-final consonants
are devoiced in German, and a word-initial [p] is aspirated in English.

We can place these restrictions on nodes with node flags. Node flags directly precede the node they
modify; the order of the node flags is not significant.

Node flags actually modify the link between the following node and the preceding parent in the element.
This means that the initial flag in

match: [onset X#1 nucleus initial X#1]

applies to the link between the X slot and the nucleus, not the onset. In other words, this element will
match an onset and nucleus both linked to the same X slot, with the additional requirement that the X
slot be the leftmost X slot linked to the nucleus.10

With the exception of unlinked and , node flags only apply to match elements, not input elements.
(They are simply ignored in input elements.)

10 hin this case, the initial flag is probably redundant, since in any standard analysis an X slot in the onset is going to be
the first X slot in the nucleus if it's linked to the nucleus at all.
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Position flags

The initial node flag specifies that the node must be the leftmost child; likewise, final requires the
node to be the rightmost child. The medial flag permits only nodes that are neither initial nor final;
similarly, noninitial and nonfinal work as expected.

Note that we can write first instead of initial, last instead of final, and middle instead of medial.

Linkage flags

A match node may be marked unlinked, in which case it will only match a node with no parents.
Similarly, the childless flags tells the matcher to consider only nodes with no children.

The unlinked flag can be applied to input nodes as well; in this case the flag specifies that the node
is not linked to its parent, but is still within the domain defined by the parent. We typically use this
mechanism to put floating nodes in lexicon entries; see the Margi analysis in §3.2 for an example of this.

The ! flag

The ! node flag indicates that no node of the given type can be linked to the parent node. E.g.,

match: [X !T]

specifies that the X slot cannot be linked to any tonal root node. Features are significant;

match: X !+voiced]

indicates that the X slot can be linked to a voiced node, but only if the node does not have the + feature.

Local and global ID's change the interpretation of the ! flag;

match: X !voiced#2:1]

specifies that the X slot must not be linked to the voiced node with local ID 1 in element 2. It may be
linked to other voiced nodes, however.
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The' flag

The ~ flag is only useful in phoneme, lexicon, and input elements; it is ignored in match specifications.
Unlike other node flags, this flag cannot be combined with any other node flags; if it is set all other node
flags are ignored.

The - flag undefines a previously declared node. This is mainly useful when dealing with included
files. For example, we keep our standard defining geometry and phoneme definitions the file std.ph for
convenience, and include this file in our rulesets with #include directives. We can then make minor
changes to the phoneme definitions using and the append directive (described in §2.6.1), like so:

append phoneme i [ voiced 

This example removes the voiced node from the [i] phoneme, or "underspecifies [i] for voicing" in linguistic
terms.

Note that this flag may not be applied to nodes with global ID's.

The optional flag

The optional flags indicates that a node need not appear in the input, but that if it does it is to be
matched so that an effect can be applied to it. See the analysis of Japanese Rendaku in §3.4for a crucial
use of this flag.

The exact flag

The exact flag stipulates that the node may not have any parents or children not explicitly mentioned
in the match specification.

match: [X T H]

will match X T H L] and X#1 T#1 H X#2 T#1] while

match: [X exact T HI

will match neither of these. 1 1

1 The first element fails because the T node has an extra child; the second fails because it has an extra parent.
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The shared flag

By default, the matcher requires consecutive match nodes to match consecutive input nodes. The shared
flag relaxes this restriction, and allows a node to match an input node that has already been matched
by the preceding match node. For example,

match: X H] X H]

will match X H] X H] but not X H#1 H#2] - the second input string fails to match because it has
only one X slot. However,

match: X H] [shared X H]

will match both these input strings, because the X can be shared with the previous match node of type
X.

Given a choice between a match that uses sharing and one that does not, the matcher prefers the match
that uses sharing. This means that our example will choose X H#1 H#2] over X H] X HI.

The rematchable flag

As we will see in §2.8.4, rules may be iterative, meaning that they apply again and again to the same
input string until they fail to match. Unless we tell it otherwise, the matcher will not consider input
nodes that have been matched in a previous iteration of the same rule on the same input string. The
rematchable flag tells the matcher to allow the flagged node to be matched again and again if possible.
'rTo understand the difference, consider

match: X H]

This will match a sequence of X H] elements, which is usually what we want. However, it will fail to
match both high tones in the element X H#1 H#2] because the matcher will refuse to match the same
X slot twice. In cases where we need the other behavior, we can mark the X as rematchable:

match: [rematchable X H]

Note, however, that the matcher will never match exactly the same set of input nodes twice; at least one
node must differ, even if all nodes are marked rematchable. This prevents the matcher from getting
stuck in endless loops while searching for a match.
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Nevertheless, it is fairly easy to send the matcher into an infinite loop with the rematchable keyword,
and Paiini will not detect this condition - it will blindly run forever. So the rematchable node flag
must be used with care.

The match matched rule flag marks all nodes rematchable. We discuss this in §2.8.4.

2.8.3 Domain Specifications

Phonological rules often apply only within certain domains. The Japanse Rendaku analysis in §3.4, for
example, looks at voicing within a particular morpheme and not beyond it. We can restrict matches to
particular domains in Paqini with domain specifications.

To give any match node a domain specification, we follow the node whose domain we wish to limit by
linked within and a node reference. For example,

match: [sigma X linked within sigma]

stipulates that the X slot must be part of the referenced syllable. This eliminates the need to specify
the exact geometry of the elements to be matched; instead of specifying that the X slot must be linked
to the onset, nucleus, or coda, we simply require it to be linked somewhere within the syllable.

The node reference can be global as well;

match: [sigma X linked within sigma#1i#0 [X linked within sigma#O:l]

will only match an X slot that is shared by two syllables.

A single node can have multiple domain specifications; for example,

match: [word sigma X linked within sigma X linked within word#2:1] [word#1]#2

will match an X slot that is linked within a syllable in one word and also linked in the following word.

The linked keyword is optional; if it is omitted the node does not have to be linked within the dominator
- it merely has to be within the dominator's scope. We establish the scope of unlinked nodes in input
elements with the unlinked node flag; this flag indicates that the node is not linked to its parent, but
is within the domain of the parent and of every node the parent is linked to.12

Note that domain-specified nodes can take node flags. In this case, the flag modifies the relationship
with the dominator in the obvious way:

12At present, there is no direct way to tell Paiini to assign an unlinked node to another domain. A workaround is to
link the node and then immediately unlink it; this will establish the ephemerally linked parent as the new dominator.
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match: [word sigma initial X linked within sigma]

will match the first X linked anywhere within a syllable.

2.8.4 Rule Flags

Whereas node flags provide very fine control over the matcher's behavior, rule flags make broader
adjustments that affect every node in the match specification.

The iterative flag

Unless we tell it otherwise, the matcher will apply a rule exactly once to the input form - this means
that we can only modify the leftmost or rightmost match in the input string.

The iterative rule flag specifies that Paiini is to keep applying the rule to the input until it fails
to find a match. Each iteration, or cycle will apply to the leftmost (or rightmost) match, with the
stipulation that nodes that have been matched in a previous cycle cannot be matched again. This rule
produces the behavior we generally want - to search over the string, changing all portions of the input
that match.

The rightmost flag

The matcher finds the leftmost match unless we set the rightmost flag, in which case it finds the
rightmost match. We can combine this flag with iterative to search over the input from right to left.

While it may seem at first like rightmost iterative and iterative will produce the same end result,
there are many analyses in the literature that depend on right-to-left searching. In fact, data from lan-
guages like Hausa (Newman 1986) suggests that this may parameterize a proposed Universal Grammar
operation called the Universal Association Convention.

The edge in flag

Data from Shona (Hewitt and Prince 1989) and Bambara (Rialland and Badjim6 1989) argue for edge-in
matching, where each cycle alternates between looking for the leftmost and rightmost match.

The edge in rule flag enables this behavior. If the rule is also marked rightmost, the first match will
be a rightmost match, the second will be a leftmost match, and so on. If the rightmost flag is omitted,
the first match will be a leftmost match, the second will be a rightmost, and so on. In other words, the
rightmost/leftmost distinction determines which side of the input the iteration will begin with.
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The edge in flag has no effect unless it is paired with the iterative flag.

The match matched and match inserted flags

As we saw in the discussion of the rematchable node flag in §2.8.2, we sometimes need to permit the
matcher to match an input node that has already been matched in a previous cycle. An example of this
is the implementation of the OCP in the Margi analysis in §3.2. The match matched rule flag applies
the rematchable node flag to every node in the match specification.

Similarly, the match inserted flag permits the matcher to consider input nodes that have been inserted
in a previous cycle.

Note that even if both these flags are on, the matcher will never match exactly the same set of input
nodes twice; it always requires some input node to change - in other words, some tier must be advanced.

The no warnings flag

When we discuss effects in §2.8.7, we will see that some effects will fail to apply because the nodes they
apply to fail to match input nodes. When this happens, P&aini will print a warning. The no warnings
flag prevents Pa4iini from print these warnings for a given rule; this is useful when we design a rule in
which we know that not all of the effect will ever apply. We will see how this can happen when we deal
with regular expression operators in §2.8.6.

The trace flag

Since Paini rules can be quite complex, it is often useful to see exactly what the matcher is matching
at each stage in the derivation. The trace flag enables code to print the result of each operation PAini
performs.

The optional flag

Many phonological processes apply optionally or only in certain cases; e.g., the English syllable liason
process that changes [i:z.a:r-old-.gz] ('These are old eggs') into[6i:.za:.rol-.dgz] only occurs during rapid
speech (Giegerich 1992).

The optional flag marks rules that are not mandatory. Pa~iini currently ignores this flag.
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2.8.5 Tier Order Declaration

In the discussion of the leftmost and longest match in §2.8.1 and §2.8.1, we saw that the matcher
compares candidate matches tier by tier, starting at the top of the defining geometry.

We occasionally need to be more precise about the order the matcher is to visit the tiers. To do this,
we can simply list the tiers in the rule flags section. For example, the declaration

rule "example":
X TH

match: ...

will prompt Piaini to compare candidate matches first with respect to the X tier, then with respect to
the tonal root node (T) tier, and finally on the modal tier. It is important to realize that Paini will
not consider any other tiers - it will only look at the ones we list if we list any at all.

Notice the use of H in the example above. As in element declarations, we can substitute a feature name
for a tier name if the feature only associates with a single tier.

Although the order of the tiers in the tier order declaration is significant, other rule flags may precede,
intervene in, or follow a tier node declaration. For example, the following declarations equivalent:

rule "example 1":
iterative

XTH
rightmost

match: ...

rule "example 2":

X iterative T rightmost H
match: ...

rule "example 3":
X TH
iterative

rightmost
match: ...

2.8.6 Regular Expression Operators

Thus far we have considered only fixed length matches. Our match specifications describe exactly what
nodes must be present and absent, and no nodes may intervene between consecutive matched nodes.
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Nowadays, most phonologists would argue that this is sufficient to handle the attested phenomena;
indeed reference works on phonology rarely even discuss the machinery we will introduce in this section,
except in very limited form (Kenstowicz 1994) (Goldsmith 1990) (Durand 1990).

The mechanisms here are not part of the phonological theory proper, but but they make many rules
much simpler to state, and they allow us to accommodate aspects of the theory that are not yet codified
or fully understood.

Our implementation of McCarthy and Prince's Ilokano Reduplication analysis in §3.5 draws upon these
operators in order to deal with some unformalized stipulations that the researchers place on the deriva-
tions.

The ? operator

We have already seen that the optional node flag denotes an optional node; the ? operator analogously
marks an entire element as optional. A match specification like

match: X T H] X]? X T H]

will match input matching either

match: X T H] iX] X T H]

or

match: X T H] X T H]

In other words, the middle CX] may be either present or absent, but if it is present, it will be matched,
since PAigini always finds the longest possible match.

The * and + operators

The * operator tells Pduini to match zero of more occurrences of the modified element.1 3

The specification

match: CX] *

13 In phonological analyses a zero subscript usually denotes this; e.g., Co means "a string of zero or more C slots." Our
notation provides a superset of this capability.
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will match a sequence of zero or more X slots, while

match: [X T]*

will match a sequence of X slots, each linked to its own tonal root node.

The + is exactly the same except that it will matches one or more elements; i.e., it acts like * but does
not allow the material to be omitted entirely.

The * and + operators can be used in conjunction with node flags like shared and rematchable as well.

These operators are often used in iterative rules; however, care must be taken to put some fixed-length
material in the match specification - a rule like

rule "runs forever":

iterative

match: [XI*

effects: ...

will send the matcher into an infinite loop, because it allows the matcher to match nothing (zero X slots)
over and over.

Upper and lower bounds

Contemporary phonological analyses almost never appeal to counting; rules like "delete the tone on
the third vowel" are now regarded as ad-hoc. From a theoretical standpoint, users should avoid these
operators in new analyses. However, older analyses did sometimes appeal to counting, and in the interest
of supporting such accounts Piiini provides a way to put upper and lower bounds on the number of
times an element can be matched. The syntax is as follows:

match: [X] {1,3}

This will match one, two, or three X slots; no more and no fewer.

Omitting the second number in the pair removes the upper bound. Hence [X] {0} is equivalent to [X]*,
and [X { 1 } is equivalent to [X]+.

The I operator

Padini interprets the I operator as an "or". For example,
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match: X H I X L]

will match either an X slot linked to a high tone, or an X slot linked to a low tone.

It may seem like the I is simply a shorthand for writing two different rules, but this is not the case.
Compare the first rule below with the second two rules:

// single rule approach

rule "example 1":

iterative

match: X H] I X L]

// two-rule approach

rule "example 2a":
iterative

match: X HI

rule "example 2b":

iterative

match: X L]

The second two rules together will apply to all the high toned X slots and then - after all the high
toned X slots have been dealt with - all the low-toned X slots. In contrast, the first rule will deal with
high and low toned X-slots in the order they appear, from left to right. This difference is often crucial;
see, for example, the Ilokano Reduplication analysis in §3.5.

Parentheses

In match specifications with many regular expression operators, it may not be obvious which operators
apply to which elements. Furthermore, we often wish to group elements together and apply operators
to the entire group.

Paiini support arbitrary parenthesization of elements; parentheses enclose groups that are to be treated
as units with respect to operators. For example,

match: (X H] I X L])*

will match a sequence of zero or more units, where each unit is either an X slot linked to a high tone, or
an X slot linked to a low tone.

Extraneous parentheses are perfectly legal - the following two examples are equivalent:
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match: X H]

match: ((((([X HI)))))

Of course, the parentheses must be balanced or P~Aini will report an error.

2.8.7 Effects

We have seen how to describe the context in which a rule is to apply. Now we explore the range of
operations we can perform on match input nodes. We call these operations effects.

Effects operate on referenced nodes. Nodes with both global and local ID's are resolved as before, but
for notational convenience the interpretation of an effect node reference with a single ID is different.
Whereas in match specifications P54ini assumes that the single ID is the local ID, Pini treats single
ID's in effect reference nodes as global ID's. This reflects the fact that we usually want to refer to nodes
by element number in effects since we do not put element in effects lists, only nodes.

This means that

delete X#2:1

refers to the X slot with local ID 1 in element 2, whereas

delete X#2

refers to the only X slot in element 2. If the referenced X slot were not the only X slot in element 2, we
would have to specify a local ID to disambiguate the reference.

Furthermore, non-numbered nodes are still treated as node references in effects. This means that

delete X

refers to the only X slot in the match specification. If there is more than one X slot in the match
specification, Paijini will report that it cannot properly resolve the reference.

LINK and DELINK

The LINK and DELINK effects affect the connections between input nodes - LINK creates a new connec-
tion, while DELINK removes an existing connection.
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LINK expects two node references, separated by the to keyword. DELINK syntax is the same, except that
the keyword is from instead of to. Examples follow:

match: CX childless T#1 [unlinked H#2

effect: link H#2 to T#1

match: CX T H#1 X T HI#2

effect: delink H#1 from T#1

delink H#2 from T#2

When running a LINK effect, Pgini will notify the user if link already exists. Likewise, Pixini will
alert the user if the nodes referenced by a DELINK effect are not connected. These warnings can be
suppressed with the no warnings rule flag.14

CHANGE, INCREMENT, and DECREMENT

These effects change feature values. CHANGE takes a node reference and a feature name, and changes the
referenced node's feature to the named value. E.g.,

match: X H]

effect: change H to L

changes the high tone to a low tone.15 Pini will warn the user if the change has no effect; i.e., if the
referenced node already has the target feature.

INCREMENT changes the referenced node to the next feature in the defining node's feature list. In other
words, Piaini looks back at the feature geometry declaration (see §2.2) and finds the feature that follows
the current feature value in the node's declared feature list. If the current feature value is the last one
in the last, Paijini assigns the referenced node the first feature value in the last; i.e., the INCREMENT
effect wraps around at the end of the list.

DECREMENT is analogous; it finds the previous feature and assigns the value to the referenced node. Here
is an example:

match: [X H]

effect: decrement H

Note that all these operations completely replace the referenced node's prior feature value. There is
currently no way to tell P&aini to add features to a node; every node has exactly one feature value at
a time.

14 Although we will not explicitly state it in the rest of the section, note that all effect warnings are disabled by the no
warnings rule flag.

15 Note that this also illustrates that feature values can be substituted for node names, as usual.
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DELETE

The DELETE effect removes an entire subtree 16 from the matched input. Specifically, it deletes the
referenced node and every node connected to the referenced node by a path of child links.

Furthermore, DELETE breaks any connections between deleted nodes and nodes that survive the deletion
operation. (This just ensures that the remaining nodes won't have links that go nowhere.)

Consider the following rule:

rule "example":
match: [syllable onset initial X]

effect: delete X

This matches the first X slot in the onset of a syllable and deletes it, taking the entire subtree rooted at
the X-slot with it. This would typically delete an entire phoneme.

STRAY ERASE

This effect does the same thing as DELETE, except that it will only perform the deletion if the referenced
node is unlinked (i.e., has no parents). This is provided to make stray erasure rules, which are very
common, easier to write.

INSERT

This effect directs P5Iini to insert an element into the input stream. The INSERT keyword must be
followed by an element declaration describing the element to be inserted. The syntax is identical to the
standard element declaration syntax described in §2.3, except that references to nodes in other elements
are not permitted.

In addition to the element description, we need to give Paijini information about where to put the
element. There are three relevant keywords: BEFORE, AFTER, and UNDER. Each must be followed by a
node reference.

Every INSERT effect must have at least one placement specification. Furthermore, if both a BEFORE and
an AFTER specification are provided, only the BEFORE specification will be used.

The meanings of BEFORE and AFTER are "immediately before" and "immediately after", respectively. An
UNDER placement specification names the intended parent of the inserted material. If this is omitted

'6 Technically, "successor graph."
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and the input node the material is to be inserted before or after has multiple parents, the result of the
INSERT effect is not predictable. P5zini prints a warning in this case.

The rule

rule "example":
match: [word initial sigma]

effect: insert [sigma onset d nucleus aw coda g] before sigma

inserts a syllable linked to [dog] before the referenced syllable (sigma). This rule assumes that the
referenced sigma node will have a single parent - this is the parent the inserted material will be linked
to.

Every once in a while, we need to refer to inserted material in a later effect. To accommodate this,
Paiini allows inserted elements to be given new global ID's. These ID's must differ from all global ID's
in the match specification and other INSERT effects. This allows us to write

rule "example":

match: [word final sigma final X within sigma voiced]#1

effect: insert [d glottal voiced]#2 after X#1

link voiced#i to glottal#2

to insert a [d] suffix (unmarked for voicing) and assimilate voicing with the previous segment in a single
rule.

COPY

COPY works much like INSERT; the only difference is that instead of specifying the material to be inserted
with an element declaration, we provide a reference node whose subtree is to be cloned. For example,

rule "example":

match: [word initial sigma]

effect: copy sigma before sigma

makes an exact copy of the entire referenced syllable and links it to the referenced syllable's parent
immediately before the syllable.

We generally only need this effect to handle reduplication phenomena. See the Ilokano analysis in §3.5
for an example of a reduplication process.
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One difference between COPY and INSERT is that there is no way to assign a new global ID to copied
material as we can with inserted material.

NOP

Every rule must have at least one effect; the effects list cannot be empty. Sometimes when developing a
complex rule, we wish to test only the rule's match specification (usually with the trace rule flag set).
In these cases we can put a NOP effect, which takes no arguments, in the effect list as a placeholder. The
NOP effect does nothing.

2.8.8 When Effects Cannot Apply

Effects can fail to apply (and generate a warning message in the process) for two reasons:

* A node referenced in the effect corresponds to a match node that did not match an input node.

* A node referenced in the effect corresponds to a match node for which the matching input node
was deleted.

An effect that fails to apply for either of these reasons does no harm. In fact, exploiting this property
allows us to write simpler rules in many cases. Consider the following rule from our account of Japanese
Rendaku in §3.4:

rule "compounding":

match: [word +compound morpheme#1

morpheme#2 initial glottal within morpheme#2
optional voiced]

effects:

// Delete the voiced node if there already is one.
delete voiced

insert [+voiced] under glottal

Note that the voiced node is optional. The first effect will delete this node if it is present in the input;
otherwise the DELETE effect will have no effect at all.

This rulel7 from the Ilokano analysis in section illustrates another way to use this aspect of effects:

rule "anchor template":

17Slightly abridged.
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match: (X childless V#1 [unlinked -consonantal]#2) I

(EX childless C]#3 [unlinked +consonantal]#4)

effect:

link consonantal#2 to V#1

link consonantal#4 to C#3

In this case, which effect that actually operates depends upon which half of the I gets matched. Both
effects will never apply in a single cycle. This trick allows us to deal with both possible cases in the
same rule. It is essential for some iterative rules, as the Ilokano implementation also shows.

2.8.9 Blocks and the CALL Directive

Some rules, such as the OCP (implemented the Margi analysis in §3.2) need to be applied multiple times
in a single derivation. Typically these rules fix up illicit configurations, and there is reason to believe
(Kenstowicz 1994, page 528) that in reality they apply continuously - in other words that they apply
after every intermediate stage of a derivation.

While Pa4Iini does not provide any way to define continuous rules, it does offer a syntactic construct
that makes it easy to insert a rule at many points in a ruleset without having to retype it each time.
This construct is the CALL directive.

The CALL directive takes a single argument - the name of a rule block. A rule block contains one or
more rules, and is declared like so:

block "block name":

<rule-declaration>

<rule-declaration>

where "block-name" is any double-quoted string to name the block and <rule-declaration> is a rule
declaration as described in §2.8. Block names must be unique.

The following example shows how to define and call a block:

block "example block":
rule "test":

iterative

match: [X HI

effect: delete H
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// do other things here

CALL "example-block"

Note that the block declaration is itself executed; in the example above, the "test" rule will be run twice
-- once where the block is declared, and once when the block is CALLed.

2.8.10 The GENERATE Directive

Perhaps the most important directive Piigini recognizes is the GENERATE directive. This directive
prompts Paxini to run the specified input string through the rules (defined earlier in the file) in order.

The directive takes a double-quoted string naming the input form and an element declaration describing
the input form to be run through the ruleset. Typically the inputs will reference phonemes and lexicon
entries, although this is not required.

An example GENERATE directive follows:

generate "dogs" ["dog" +plural]

This example assumes that a "dog" lexicon entry has been defined, and that the defining geometry has
a plural node that takes feature +.
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Examples

In this chapter we implement several analyses from the literature. The first two examples - the English
plural and Margi contour tones - are tutorial in nature. The remaining examples were selected for
the challenges they present any computational phonology system; we know of no other system that can
handle these examples elegantly.

We close with our own analysis of a fairly large and complex set of tonal data from Bamileke-Dschang
that other researchers have not analyzed satisfactorily. We propose a change to the phonological theory
to handle the data, and implement our analysis to test the new theory.

3.1 The English Plural

In this section we implement an analysis of the English plural that takes advantage of our feature
geometry representation and suggests a particular interpretation of the coronal affricates I[] and [c].

Consider the following data:
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noun plural gloss
kaeb kaebz 'cabs'
kAf kAfs 'cuffs'
kaet kets 'cats'
dog dogz 'dogs'
bas bAsiz 'buses'
brAg brAiz 'brushes'
jAj jAjiZ 'judges'
crc criz 'churches'
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It is clear why the plural suffix surfaces as [s] versus [z] - the suffix is unmarked for voicing and
assimilates the voicing of the final segment.

The first portion of the ruleset, then, includes the standard feature geometry and phoneme definitions
from the file std.ph, defines the lexicon entries listed in the table above, and declares the rule that
inserts the plural suffix:

* English Plural

#include "std.ph"

//
// Lexicon entries

//
lexicon "cab" [

morpheme

sigma#1i

onset#1 k

nucleus#1 ae

coda #1 b

]

lexicon "church" [

morpheme

sigma#1

onset#1 ch

nucleus#1 r

coda #1 ch

I

rule "insert plural suffix":

match: [word +plural final X within word]#1

effect: insert [z -voiced] after X#1

This first rule matches any plural word1 with an X slot; in particular, it will match the final X slot.
Since the X node has a domain specification, it does not have to be attached to the word in any specific
way; there need only be some path from the word node to the X slot.2 Practically speaking, the domain
specification frees us from having to list out all the places the X slot could attach - the onset, nucleus,
or coda of the syllable. (Consider the plural [az] 'ahs', as in "oohs and ahs;" the final X slot in the base
noun is in the nucleus.)

1We handle syntactic features like plural, progressive, etc. by giving them nodes that attach directly to word in the
defining feature geometry.

2 Though we use within in this rule, we should technically qualify this as linked within to prevent matching any
floating X slots in the word's domain. Since we know that we will never have floating X slots in our data, however, we can
safely use the shorter form.
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The INSERT effect appends the plural suffix, which we declare as a [z] with its voiced node removed.
Ultimately, we need to harmonize voicing so that the suffix picks up the final X slot's voicing. But notice
what happens in forms like 'churches', where [i] is inserted - in these cases the [z ~ voiced] does not
pick up the final X slot's voicing; instead, it gets its voicing from the epenthetic [i].3 So we need to insert
the [i] before the voicing assimilation:

rule "insert vowel":

match: [word +plural X#1 within word

+continuant#1 coronal#1

final X#2 within word

+continuant#2 coronal#2 #1

effect: insert [ibar] before X#1:2

This rule matches the final two X slots in the word (the last of which will be the previously inserted [z
' voiced] segment), but only if both segments are non-obstruents produced with the coronal articulator
([s], [z], [t], [d], and, as we will explain shortly, [] and i[]). Given a match, the INSERT effect will insert
an [i] between the two segments.

The final rule carries out the voicing assimilation:

rule "assimilate voicing":

match: [word +plural X#1 within word glottal#1 voiced#1

final X#2 within word glottal#2 ]#1

effect: link voiced#1:1 to glottal#1:2

Here again we match the final two X slots in the word, only this time we focus on the glottal articulator.
Since the inserted [z voiced] has no voiced node, we simply link the previous node's voiced node to
the final bare glottal node - this makes the [z voiced] share voicing with the previous segment.

Note that if the preceding segment is unspecified for voicing (an example might be [h]), the effect will
not apply and the suffix will be left without a voicing specification. To handle such cases, researchers
often posit feature-filling rules that assign default values to unmarked features. We do not address this
problem in this example ruleset, but we could add such rules using the standard Pd;ini rule syntax.

3.1.1 Theoretical Issues

One of the reasons this process is interesting theoretically is that it provides useful evidence regarding
the structure of affricates like [] and [j]. [Ewen 1982] argues that affricates should be analyzed not as

3 Our standard phoneme definitions file marks all vowels +voiced, which is usually what we want. We will see in §3.4
that this simple approach does not work for Japanese.
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single segments, as the [] notation suggests, but as sequences like [tS].

We can cast this in terms of feature geometry by proposing that affricates contain two continuant
nodes linked to the same X slot, where the first is marked [-continuant] and the second is marked
[+continuant].4

This proposal predicts that rules that deal with the left side of an affricate will see the segment as
-continuant, while rules that look at the right side of the affricate will see a +continuant feature -
a supposition supported by data from Zoque (Sagey 1986) (left side) and the present analysis of the
English plural (right side).

3.1.2 Putting the Rules to Work

At the end of the ruleset we generate our test words:

generate "cabs" [word +plural "cab"]

generate "cuff" [word +plural "cuff"]

generate "cats" [word +plural "cat"]

generate "dogs" [word +plural "dog"]

generate "bus" [word +plural "bus"]

generate "brushes" [word +plural "brush"]

generate "judges" [word +plural "judge"]
generate "churches" [word +plural "church"]

Here is the output for 'churches':

generating "churches"...

applying "insert plural suffix": rule fired
applying "insert vowel": rule fired

applying "assimilate voicing": rule fired

Final output:

word(1) [matched c]

plural(l) [matched c] [ + ]
morpheme (1)

sigma #1(1)

onset #1(1)

X(1)

consonantal(l) [ + ]
sonorant(1) [ - ]

continuant #1(1) [ - I
continuant #2(2) [ + ]
supralaryngeal(1)

oral_place(1)

4This corresponds to the fact that [t] is -continuant and [] is +continuant.
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coronal(1)

anterior(l) [ - ]

laryngeal (1)

glottal(1)

voiced(l) [ - ]

rhyme (1)

nucleus #1(1)

X(2)

consonantal(2) [ + ]

sonorant(2) [ + ]

supralaryngeal(2)

oral_place(2)

coronal(2)

anterior(2) [ + ]

laryngeal (2)

glottal(2)

voiced(2) [ + ]

coda #1(1)

X(3)

consonantal(3) [ + ]

sonorant(3) [ - ]

continuant #1(3) [ - ]

continuant #2(4) [ + ]

supralaryngeal(3)

oral_place(3)

coronal(3)

anterior(3) [ - ]

laryngeal(3)

glottal(3)
voiced(3) [ - ]

X(4) [matched cl]

consonantal(4) [matched cl] [ - ]

sonorant(4) [matched cl] [ + ]

supralaryngeal(4)

oral_place(4)
dorsal(i)

high(i) [ + ]

low(1) [ - ]

labial(i)

round(l) [ - ]

laryngeal(4) [matched cl]

tongue_root(1)

atr(i) [ - ]

glottal(4) [matched cl]

voiced(4) [matched cl] [changed cl] [ + ]

X(5) [matched cl]

consonantal(
5) [matched cl] [ + ]

sonorant(5) [matched ci] [ - ]

continuant(5) [ + ]

supralaryngeal(5)
oral_place (5)

coronal(4)

anterior(4) [ + ]
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strident(l) [ + ]
laryngeal(S) [matched cl]

glottal(S) [matched cl] [changed cl]

voiced(4) [matched cl] [changed cl] [ + 

Scrutinizing the output reveals a problem: the [iz] suffix is crammed into the coda of the final syllable
- an invalid syllabification. Again, we could write rules to resyllabify the output but have skipped this
here for the sake of simplicity. 5

5More complex resyllabification problems arise in other languages; we comment on this thorny issue in §4.1.1.
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3.2 Margi Contour Tones

[Hoffman 1963] describes describes the two types of verbal suffixes in Margi, a Chadic language spoken
in Nigeria. The following data show the tone alternations these suffixes induce: 6

verb type 1: b gloss
ci cibi 'tell'
gha ghabi 'reach'
fi fibi 'make swell'

verb type 2: na gloss
si sn&i 'lead astray'
dla dlana 'overthrow'
bdlfi bdlnai 'forge'

Note how the tones on the suffixes change, and how the contour tones on the stems disappear. We will
look at what causes these changes.

Or ruleset will implement an analysis by Kenstowicz (1994); this analysis makes use of most of the
standard autosegmental devices, and is thus a good test for our system.

As usual, we include the standard definitions file std.ph and define our lexicon entries. However, we
need to add tonal root nodes to those phonemes that can take tones (the so-called tone-bearing units).
In Margi the vowels alone take tones, so the following code suffices:

//
// Add tonal root node to vowels.

// This makes them tone-bearing units (TBU's).

//
append phoneme i [ T ]

append phoneme u [ T ]

append phoneme o [ T ]

append phoneme schwa [ T ]

append phoneme a [ T ]

Kenstowicz posits that the type one suffixes like [ba] have high tones, while the type two suffixes like
[na] have no tone at all. A key point is that no tones are linked initially; they are connected according to
the Universal Association Convention. This rule proceeds from left to right, connecting unlinked tones
to bare tonal root nodes. A PAini declaration for this rule follows.

rule "association convention":

iterative

match: X T !modal]#1 unlinked modal]#2

effect: link modal#2 to T#1

6 Transcription note: we transcribe tones with accent marks - h indicates a low-toned [a], a indicates a high-toned [a],
and A denotes a low-high contour tone.
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Note the use of the ! node flag to indicate a tonal root node with no modal (base) tone linked to it.
Also note that despite the fact that the two elements appear to be ordered, neither will precede or follow
the other since they match nodes on different tiers. (There is no tier that both elements project a match
node onto.) In cases like this, the textual ordering of the elements makes no difference.

If this rule is to be useful, our inputs must start out with unlinked tones. An example lexicon entry
from this ruleset shows how to do this:

lexicon "gha" [ // 'reach'
morpheme

sigma#1

onset#1 g h
nucleus#1 a

unlinked L

The unlinked flag puts the node within the domain of the nucleus, but does not link it to the nucleus.
Furthermore, PAilini will not fill in the intermediate nodes (like T) from the nucleus to the tonal node
as it will for linked children.

The previous rule accounts for the surface forms of many of the verbs, but one wonders what happens
with verbs like fi that have two tones. We answer this question with the following docking rule:

rule "docking":
iterative

rightmost

match: X T] unlinked modal]

effect: link modal to T

This rule matches any tone that remains unlinked after the association convention has applied and
"docks" it onto the final tonal node.

These rules are sufficient to handle many derivations. However, what happens in a form like [dlana],
where the verbal suffix has no tone? Given that [dli + na] -- [dlan], we might posit a default rule
assigning a low tone to those tone-bearing units that end the derivation toneless. However, this gives
the wrong result for [si + na]:

sa(H) + na UR with floating H tone
sina association convention
-- docking (inappl.)

sana default L tone
*sanh surface form

58



CHAPTER 3. EXAMPLES

The solution to this problem is a common one in autosegmental analyses - we employ a rule that
spreads a tone onto all the free tonal nodes. In P&4ini notation, the rule that works for Margi is:

rule "spreading":
iterative

match matched

match: CT modal]#1 T !modal]#2

effect: link modal#1 to T#2

This rule marches across the input from left to right looking for linked tonal root nodes adjacent to bare
tonal root nodes. When it finds such a match, it links the tone to the bare tonal root node. Hence it
spreads the tone until it runs into an association line.

Note the match matched flag - we need this so that the input corresponding to the second element can
be matched again in the next cycle (as the match for the first element).

This rule not only generates [sini] correctly, but also handles disyllabic verbs like [ndibyi] that have
only a single tone underlyingly.

The verbs we have looked at so far have fallen into three classes, each class corresponding to a row in
our tables above. Each class has its own tonal pattern: H, L, or LH. However, Hoffman reports a fourth
stem class, that he calls the "changing verb" class. These verbs surface with a low tone when unaffixed,
but get a high tone when suffixed with a type one suffix like [bi] or [g6ri]:

verb affixed gloss
hi. h6bi 'take'
fk firjg6ri 'take many'

The second form, in particular, seems bizarre indeed - we begin with a low-toned stem and get a surface
form with all high tones.

Pulleyblank (1986) suggests that such stems are inherently toneless - that their lexicon entries have
bare tonal nodes, and hence that they pick up the tones around them. The data above supports this
proposal. Consider the derivation of [farjg6ri]. If the stem is toneless, the association convention will
link the high tone contributed by the suffix to the first tonal root node in the stem. The spreading rule
will then spread this high tone to all the other tonal nodes.

The only thing left to account for is the low tone on these stems when they appear in isolation. To
handle this, Pulleyblank proposes a defaulting rule that fills empty tonal root nodes with low tones. We
express this simple rule as follows:

rule "default tone":
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iterative

match: ET !modal]

effect: insert [L] under T

Finally, while it is not strictly necessary in explaining this data, we follow our default tone insertion with
an instance of the Obligatory Contour Principle (OCP), a general constraint first proposed by Goldsmith
(1976):

rule "OCP":

iterative

match matched

no warnings

match: (CT H#1 [unlinked H* [shared T H#2) I

(CT L#3 [unlinked HI* [shared T L#4)
effect:

// case 1: successive high tones:
delink H#2 from T#2

link H#1 to T#2

// case 2: successive low tones:

delink L#4 from T#4

link L#3 to T#4

The OCP stipulates that adjacent nodes on the tonal tier must differ; i.e. that a sequence like HHH or
LL is invalid. What appears to be a string of like tones on the surface, then, is a single tonal node linked
to multiple parents. Our rule enforces this representation by changing strings of like tones, a tone at a
time, into a single tone. This rules makes a good example because it requires us to use some of the more
rarely used Pdiiini machinery.

First; of all, we use the I regular expression operator described in §2.8.6 so that we match the tones in
the order they appear. Though we could write this as two rules - one for low tones, and one for high
tones - the I provides a way to keep both cases in the same rule so we only have to declare the rule
flags once.

Likewise, we exploit the fact that Paijini will not execute an effect if a node referenced in the effect
failed to match an input node. Only two effects will ever apply when this rule fires.

We also put the shared node flag to good use here. Without it, the rule will not match a single tonal
root node linked to two like tones - a clear OCP violation. The shared flag allows the second T match
node to match the same input node as the first T match node.
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The match matched rule flag is also crucial. If we omit it, the rule will not match the same tonal root
node twice, which means that a sequence like T H] T H#1 H#2] will get reduced to T H#1]#1 CT
H#1:1 H#2] instead of T HI#1)#1 [T H#1:1].

Finally, note the use of the * operator. This allows any number of floating tones to intervene between
the two offending tones. It makes our OCP rule ignore floating tones entirely.

Our last rule in this account implements stray erasure. This is another very common sort of autosegmen-
tal rule - it simply deletes any unlinked material. This reflects our intuition that unlinked phonological
units are not pronounced (Kenstowicz 1994, page 285-6).

rule "stray erasure":

iterative

match: [unlinked modal]

effect: stray erase modal

Technically speaking, we do not need the unlinked flag in the match specification - the stray erase
effect will delete only unlinked input nodes.

The output for [fibs] follows.

generating "fiba 'make swell"'...

applying "association convention": rule fired

applying "docking": rule fired

applying "spreading": rule did not fire

applying "default tone": rule did not fire

applying "OCP": rule fired

applying "stray erasure": rule fired

Final output:

word(l)

morpheme (1)

sigma #1(1)

onset #1(1)

X(1)

consonantal(I) + ]

sonorant(I) -
continuant(1) [ + ]
supralaryngeal(1)

oral_place(1)

labial(1)

laryngeal(1)

glottal(1)
voiced(l) [ - ]

rhyme (1)
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nucleus #1(1)

X(2)

consonantal(2) [ - ]
sonorant(2) [ + ]

supralaryngeal(2)

oral_place(2)

dorsal(1)

high(1) [ + ]
low(1) [ - ]
back(1) [ - ]

labial(2)

round(l) [ - ]
laryngeal (2)

tongue_root(1)

atr(1) [ + ]
glottal(2)

voiced(2) [ + ]
T(1)

modal #1(1) [ L ]
morpheme (2)

sigma #1(2)

onset #1(2)

X(3)

consonantal(3) [ + ]
sonorant(3) [ - ]

continuant(2) [ - ]
supralaryngeal(3)

oral_place(3)

labial(3)
laryngeal (3)

glottal(3)

voiced(3) [ + ]
rhyme (2)

nucleus #1(2)

X(4)

consonantal(4) [ - ]
sonorant(4) [ + ]

supralaryngeal(4)

oral_place(4)

dorsal (2)

high(2) [ - ]
low(2) [ + ]
back(2) [ + ]

labial(4)

round(2) [ - ]
laryngeal (4)

tongue_root(2)

atr(2) [ + ]
glottal(4)

voiced(4) [ + ]
T(2)

modal #2(2) [ H ]
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3.3 Sudanese Place Assimilation

In this section we will look at some data from Sudanese Arabic that argues for giving place of articulation
full status in the phonology as a separate tier. While the Halle-Sagey model (Halle 1992) does give
place of articulation its own oral place tier, the motivation for this comes primarily from phonetics
and physiology, not phonology. The Sudanese data we analyze here suggest that phonological rules
can manipulate all the features in oral place subtree at once, and hence that oral place is indeed a
phonological entity.

Hamid (1984) describes a process whereby the coronal nasal [n] assimilates the following consonant's
oral place (point of articulation). Thus [n] becomes labial [m] before [b], coronal [n] before [z], velar []
before [k], labiodental [rj] before [f], and palatalized [ii] before ]:

Kenstowicz (1994) points out that we can explain all this data by positing a single rule that, once the
first vowel in the stem is deleted, spreads oral place node of the stem's second X slot to the first X slot,
and then deletes the first X slot's oral place subtree. The following P54ini code implements this rule:

rule "assimilate oral place":

match: [word +imperfect

initial X#1 within word

supralaryngeal#1 oralplace#1
X#2 within word

oralplace#2 ]#1

effect: delete oralplace#1:1
link oralplace#1:2 to supralaryngeal#1:1

Handling the other parts of these derivations (deleting the first vowel and adding the prefix [ya]) is fairly
straightforward. We do the first of these operations before the assimilation and the second after the
assimilation.

imperfect
ya-mbah.
ya-rfid
ya-nzil
ya-nsif
ya-nsur
ya-ijah
ya-ijkur
ya-i xar
ya-Ugul
ya-nhar
ya-nqas
ya-nhab

-
- - - - - - -

-
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perfect gloss
nabah
nafad
nazal
nasaf
nagar
naljah
nakar
naxar
nagal
nahar
ni~is
nahab

'bark'
Csave'

'descend'
'demolish'
4spread')

'succeed'
'deny'
4puncture'

'transfer''
'slaughter'
'fall asleep'
4rob'
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rule "delete first vowel":

match: [word +imperfect

X within word

initial -consonantal within word
-consonantal within X]

effect: delete X

// assimilation rule goes here

rule "prefix":

match: [word +imperfect initial sigma within word]#1

effect: insert [sigma onset# y nucleus#1 a] before sigma#1

change imperfect to -

Note that as in the English Plural example in §3.1, we would need to resyllabify the output this ruleset
generates to ensure well-formed syllables. A few stray erasure rules are in order as well. Since neither
of these tasks is particularly illuminating, we will skip the details here.

A sample run on [nabah] 'bark' follows.

generating "bark (im.)"...
applying "delete first vowel": rule fired

applying "assimilate oral place": rule fired

applying "prefix": rule fired

Final output:
word(1) [matched cl]

imperfect(l) [matched cl] [changed cl] [ - ]
morpheme (1)

sigma(l) [inserted cl]

onset 1(1) [inserted cl]

X(1) [inserted cl]

consonantal(l) [inserted cl] [ - ]
sonorant(1) [inserted cl] [ + ]

continuant(1) [inserted cl] [ + ]
laryngeal(1) [inserted cl]

glottal(1) [inserted cl]

voiced(l) [inserted cl] [ + ]
rhyme(l) [inserted cl]

nucleus #1(1) [inserted cl]

X(2) [inserted cl]

consonantal(2) [inserted cl] [ - ]
sonorant(2) [inserted ci] [ + ]

supralaryngeal(i) [inserted cil]
oralplace(1) [inserted cl]

dorsal(l) [inserted c]

high(1) [inserted c] [ - ]
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low(1) [inserted cl] [ + ]

back(1) [inserted cl] [ + ]

labial(l) [inserted cl]

round(l) [inserted cl] [ - ]

laryngeal(2) [inserted cl]

tongue_root(1) [inserted cl]

atr(1) [inserted cl] [ + ]

glottal(2) [inserted cl]

voiced(2) [inserted cl] [ + ]

sigma #1(2) [matched cl]

onset #1(2)

X(3)

consonantal(3) [ + ]

sonorant(3) [ + ]

continuant(2) [ - ]

supralaryngeal(2)

soft_palette(l)

nasal(l) [ + ]

oral_place(2)

labial(2)

laryngeal (3)

glottal(3)

voiced(3) [ + ]

rhyme (2)

nucleus #1(2)

sigma #2(3)

onset #2(3)

X(4)

consonantal(4) [ + ]

sonorant(4) [ - ]

continuant(3) [ - ]

supralaryngeal(3)
oral_place (2)

labial(2)

laryngeal(4)
glottal(4)

voiced(4) [ + ]

rhyme (3)

nucleus #2(3)

X(5)

consonantal(5) [ - ]

sonorant(5) [ + ]

supralaryngeal(4)

oral_place (3)

dorsal(2)

high(2) [ - ]

low(2) [ + ]

back(2) [ + ]

labial(3)

round(2) [ - ]

laryngeal(5)
tongue_root(2)

atr(2) [ + ]
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glottal(5)

voiced(5) [ + ]
coda #2(1)

X(6)

consonantal(6) [ - ]
sonorant(6) [ + ]

laryngeal (6)

glottal(6)

spread_gl(1) [ + ]
voiced(6) [ - ]

pharyngeal (1)
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3.4 Japanese Rendaku

Now we turn to some data from Japanese compounding (It6 and Mester 1986). Notice that in each of
the forms in the top half of the table the initial consonant in the second noun gets voiced. The challenge
is to explain why the voicing does not occur in the forms in the bottom half of the table.

steml + stem2 compound
+ ke

'hair'
+ koe

'voice'
+ seme

'torture'
+ kami

'paper'
+ §ita

'tongue'
+ tanuki

'raccoon'
+ kaze

'wind'
+ tabi

'tabi'
+ Sinogi

'avoiding'
+ kotoba

'words'
+ tokage

'lizard'

-+ edage
'split hair'

unarigoe
'groan'

-- mizuzeme
'water torture'

- origami
'origami paper'

nekojita
'aversion to hot food'

kodanuki
'baby raccoon'

kitakaze (*kitagaze)
'freezing north wind'

Sirotabi (*irodabi)
'white tabi'

taikutsusinogi (*taikutsujinogi)
'time killler'

- onnakotoba (*onnagotoba)
'feminine speech'

dokutokage (*dokudokage)
'Gila monster'

Ito and Mester point out that in the forms where the voicing fails to apply, there is a voiced obstruent in
the second stem. While we could write a P5iini rule to implement exactly this intuitive notion by using
the * operator to skip [-voiced] nodes intervening between the first consonant and the voiced obstruent,
such a rule is theoretically unappealing because it relies on nonlocal context. Since the vast majority 7

of phonological processes can be explained by rules that use only local context (i.e., directly adjacent
nodes), and since a locality requirement on all rules makes for a much simpler theory 8 , we would greatly
prefer an explanation of these facts that requires only local context.

Ito and Mester propose an underspecification analysis. In other words, some phonemes are underspecified
and therefore project no nodes at all onto certain tiers (much as consonants - since they are not tone-
bearing units - fail to project nodes onto the tonal root node tier in Margi; see §3.2). Ito and Mester

7Evidence suggests all, in fact. (Kenstowicz 1994)
8 Simpler in the sense that the range of phenomena that can be described is more limited. Linguists claim that simpler

theories are better, appealing not only to Occam's Razor, but to learnability arguments as well - if the range of possible
rules is smaller, learning a particular rule is easier. (Kenstowicz 1994, page 153) Furthermore, if the context is unbounded,
rules within theory are unlearnable since the probability of getting a positive example goes to zero as the size of the context
goes to infinity.

eda
'branch'

unari
'moan'

mizu
'water'

ori
'fold'

neko
'cat'

ko
'child'

kita
'north'

Siro
'white'

taikutsu
'time'

onna
'woman'

doku
'poison'
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argue that only the voiced obstruents are specified for voicing in Japanese; i.e. that all other phonemes
simply leave the voiced tier empty. They posit a late rule that fills in the gaps with default values so
the phonemes get pronounced properly.

Given this proposal, a compound like ori + kami undergoes the voicing because the voicing tier is empty
following the initial [k], since the sonorant [m] is underspecified for voicing and hence projects no node
onto this tier.

In contrast, kita + kaze fails to undergo the voicing process, because the obstruent [z] is marked for
voicing. Compare this to ko + tanuki, where the voicing rule does apply; here the second stem contains
an obstruent, but the obstruent is unvoiced [k], and hence projects no voicing node. This derivation is
particularly interesting because it shows that the intervening nasal [n], like its labial counterpart [m],
has no voicing node.

The P4ini rules that implement this analysis should be straightforward to readers who have already
gone through the previous analyses, so we will include them here without much comment. However, note
the use of append and the - node flag to implement the underspecification, and the crucial use of the
domain specification in the first two rules to limit the context to nodes within the second morpheme. 9

The implementation first applies the voicing operation, then undoes it produces the illegal configuration
of two voiced nodes in the same morpheme. 10°

#include "std.ph"

//
// First we remove

//
append phoneme i

append phoneme I

append phoneme e

append phoneme eh

append phoneme ae

append phoneme u

append phoneme U

append phoneme o

append phoneme sch

append phoneme a
append phoneme aw

//
// Now remove voicing

// voiced obstruents.

//

all the vowels' voicing specifications.

[ voiced I
[ -voiced ]
C[ voiced I
C voiced I
C[ voiced I
C[ voiced I

[ voiced I
[ -voiced I
[ 'voiced ]
C[ voiced I

C voiced I

specifications from all but the

9This argues that forms like edage still surface when they precede other morphemes containing voiced obstruents, a
claim borne out by the data (Kenstowicz 1994, page 511).

I 0This is a general prohibition in Japanese called Lyman's Law; it applies in many other derivations as well, and is thus
motivated by data beyond what we have shown here. (Kenstowicz 1994, page 162)
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append

append

append

append
append

append

append

append

phoneme p

phoneme k

phoneme t

phoneme f

phoneme s

phoneme sh

phoneme ts

phoneme ch

//
// Nasals are unspecifie

//
append phoneme m

append phoneme n

[ voiced ]

E[ voiced ]

[ voiced ]

[ voiced ]
[ voiced ]
[ 'voiced ]
[ voiced ]
[ voiced ]

id for voicing as well.

C voiced ]

C[ voiced ]

// (lexicon entries omitted for brevity's sake)

rule "compounding":

no warnings

match [word +compound morpheme#1

morpheme#2

initial glottal within morpheme#2

optional voiced]

effects:

//
// Delete the voiced node if there already is one.

// This rule will not apply if no voiced node got matched.

//
delete voiced

insert [+voiced] under glottal

change compound to -

rule "lyman's law":
iterative

match: [morpheme +voiced#l

+voiced#2

effect: delete voiced #1:1

within morpheme

within morpheme]#1

rule "feature-fill voicing (sonorants)":
iterative

match: [+sonorant glottal !voiced]

effect: insert [+voiced] under glottal

69



CHAPTER 3. EXAMPLES

rule "feature-fill voicing (obstruents)":

iterative

match: [-sonorant glottal !voiced]

effect: insert [-voiced] under glottal

The success of analyses like these argues strongly for a feature geometry view of the segment. With-
out; this representation we must appeal to more complex rule formalisms that support long-distance
operations and contexts (Kenstowicz 1994, page 163).

Finally, notice that we have completely ignored the value of the voicing feature in this account - our
rules depend only on the presence or absence of voicing nodes, regardless of these nodes' +/- feature
values. This interpretation of the voiced feature as monovalent makes many theoretical predictions.
Some of these are examined in (It6 and Mester 1986) and (Lombardi 1991).

A sample run on kita + kaze follows.

generating "freezing north wind (kitakaze)"...

applying "compounding": rule fired

applying "lyman's law": rule fired

applying "feature-fill voicing (sonorants)": rule fired

applying "feature-fill voicing (obstruents)": rule fired

Final output:
word(1)

compound(l) [ - ]

morpheme(1)

sigma #1(1)

onset 1(1)

X(1)

consonantal(I) [ + ]
sonorant(I) [matched cl] [ - I

continuant(1) [ -
supralaryngeal(1)

oralplace(1)
dorsal(1)

laryngeal(1) [matched cl]

glottal(i) [matched cl]

voiced(l) [inserted cl] [ - ]
rhyme (1)

nucleus #1(1)

X(2)

consonantal(2) [ - ]

sonorant(2) [ + ]

supralaryngeal(2)
oralplace(2)

dorsal (2)

high(i) [ + ]
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low(1) [ - ]

back(1) [ - ]

labial(1)

round(l) [ - ]

laryngeal (2)

tongue_root(l)

atr(1) [ + ]

glottal(2)

voiced(2) [ + ]

sigma #2(2)

onset #2(2)

X(3)
consonantal(3) [ + ]

sonorant(3) [matched c2] [ - ]

continuant(2) [ -

supralaryngeal(3)

oral_place (3)

coronal(1)

anterior(1) [ + ]

laryngeal(3) [matched c2]

glottal(
3) [matched c2]

voiced(3) [inserted c2] [ - ]

rhyme (2)

nucleus #2(2)

X(4)

consonantal(4) [ - ]

sonorant(4) [ + ]

supralaryngeal(4)

oral_place(4)
dorsal(3)

high(2) [ - ]

low(2) [ + ]

back(2) [ + ]

labial(2)

round(2) [ - ]

laryngeal (4)

tongue_root(2)

atr(2) [ + ]

glottal(
4)

voiced(4) [ + ]

morpheme(2)

sigma #1(3)

onset #1(3)

X(5)
consonantal(5) [ + ]

sonorant(5) [matched c3] [ - ]

continuant(3) [ - ]

supralaryngeal(5)

oral_place (5)

dorsal (4)

laryngeal(5) [matched c3]

glottal(5) [matched c3]

voiced(5) [inserted c3] [ - ]
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rhyme (3)

nucleus #1(3)

X(6)

consonantal(6) [ - ]
sonorant(6) [ + ]

supralaryngeal(6)

oralplace(6)

dorsal (5)
high(3) [ - ]
low(3) [ + ]
back(3) [ + ]

labial(3)

round(3) [ - ]
laryngeal(6)

tongue_root(3)

atr(3) [ + ]
glottal(6)

voiced(6) [ + ]
sigma #2(4)

onset #2(4)

X(7)

consonantal(7) [ + ]
sonorant(7) [ - ]

continuant(4) [ + ]
supralaryngeal(7)

oral_place(7)

coronal(2)

anterior(2) [ + ]
strident(l) [ + ]
laryngeal (7)

glottal(7)

voiced(7) [ + ]
rhyme (4)

nucleus #2(4)

X(8)

consonantal(8) [ - ]
sonorant(8) [ + ]

supralaryngeal(8)

oral_place(8)

dorsal(6)

high(4) [ - ]
low(4) [ - ]
back(4) [ - ]

labial(4)

round(4) [ - ]
laryngeal (8)

tongue_root(4)

atr(4) [ + ]
glottal(8)

voiced(8) [ + ]
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3.5 Ilokano Reduplication

McCarthy and Prince (1986) report the following data for a reduplication process in Ilokano, a Philippine
language.

This kind of phenomenon, where some portion of the base form appears to be copied, is called redupli-
cation.

Initially it is tempting to explain the data by positing a rule that copies the entire first syllable. Unfor-
tunately, this makes false predictions like [*ba-basa] and [*a-adal].

The correct analysis, proposed by Marantz (1982) and further developed by McCarthy and Prince,
involves template filling, a process that plays a major role in Semitic languages (McCarthy 1975).

Specifically, these researchers suggest that the reduplication rule makes a copy of the entire word, and
then fits as much of the material as possible into a CCVC template. Not coincidentally, this pattern is
the maximal syllable in Ilokano. Our first three rules, then, copy the word, remove the C and V slots
from the copy (thereby turning all the segments into floating units), and insert the template.' l

#include "cv.h"

// Stage 1: Duplicate the entire word.

rule "reduplication stage 1 (duplicate word)":

match: [word +progressive morpheme]

effect: copy morpheme under word before morpheme

// Stage 2: Delink all consonantal nodes in copied material.

rule "reduplication stage 2 (delink consonantal nodes)":
iterative
match matched

no warnings

For this ruleset we include the file cv. h instead of the usual std. h. This is necessary because std. h does not distinguish
between C and V slots; it only deals with X slots, whereas cv. h assigns X two child tiers - C for consonants and V for vowels.
Using std. h simplifies rulesets for many languages because it makes a match element declaration like X consonantal]
unambiguous; contrast this with the CV case, where the consonantal node could link to either a C or a V.

root progressive gloss
basa ag-bas-basa 'read'
adal ag-ad-adal 'study'
da-it ag-da-dait 'sew'
takder ag-tak-takder 'standing'
trabaho ag-trab-trabaho 'work'
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match: [word +progressive initial morpheme

X within morpheme C consonantal]#1 I

[word +progressive initial morpheme

X within morpheme V consonantal]#2
effect: delink consonantal#i from C

delink consonantal#2 from V

// Stage 3: Delete the duplicated morpheme node and all its inferiors.
// Since we have delinked all the consonantal nodes, this won't
// affect the segmental material.

rule "reduplication stage 3 (delete morpheme)":

match: [word +progressive initial morpheme]
effect: delete morpheme

// Stage 4: Insert the reduplication template.

rule "insert template":
match: [word +progressive initial morpheme]
effect:

insert [

morpheme

sigma
onset X#1 C#1

X#2 C#2

nucleus X#3 V#3

coda X#4 C#4

] before morpheme

Kenstowicz (1994) points out that this kind of analysis is only expressible given a model that puts
skeletal and segmental material on different tiers. He goes on to discuss some unformalized stipulations
on the feature-filling procedure:

Marantz notes certain technical details in getting the association to work correctly. First,
it must be "phoneme-driven" in the sense that segments are matched one by one to the
template. Mapping in the opposite direction (from the skeletal template to the segmental
tier) creates immediate problems: given the sequence [bas], mapping C1 to [b] and C2 to [s]
prevents matching V to [a] without crossing an association line.

Second, the mapping must restrict itself to a continuous portion of the segmental tier. It may
skip positions in the template when the latter is not expanded fully; for example, in mapping
[ad], we must skip the first two C-slots, and for [dait], we must skip the second C-slot. But
why can't the final C-slot match with a phoneme farther down the line, skipping the [i] and
generating the impossible *[dat-da-it]? The requirement that only a contiguous region of the
phonemic string can be mapped blocks this unwanted outcome... (p. 624)
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This kind of textual (as opposed to notational) rule qualification is quite common in the literature,
so any system intended to support real-world analyses must be powerful enough to cope with such
stipulations. Fortunately, we can put a few of P&jini's more powerful features to use to implement the
template-filling operation properly. The first is tier ordering.

To make the filling operation phoneme-driven, we have P5iini compare the relative positions of can-
didate matches first on the consonantal tier.12 Specifically, we find the leftmost bare C/V node and
unlinked matching consonantal node, giving preference to those matches with earlier consonantal nodes.
This always matches the leftmost consonantal node to the leftmost C/V slot it can be paired with.13

In order to implement the second stipulation Kenstowicz mentions, we have to break up the rule into two
pieces. The first finds an anchor point - the leftmost template slot that matches the first consonantal
node. The second part then fills in the rest of the template, enforcing the requirement that the filled
material be contiguous. In Paigini parlance, this just means that we can only link a consonantal node
to a C/V slot if the consonantal node directly follows a consonantal node that has already been linked.
Since the anchor node is the only one that does not need to obey this stipulation, it gets its own rule.

rule "anchor template":

no warnings
consonantal

match: (X childless V]#1 [unlinked -consonantal]#2) I

([X childless C]#3 [unlinked +consonantal]#4)

effect:

// Vowel case:
link consonantal#2 to V#1

// Consonant case:
link consonantal#4 to C#3

rule "fill template":

iterative

match matched

no warnings

match: (X consonantal linked within X]

CX] *

CX childless V]#i [unlinked -consonantal]#2)

I // or

(CX consonantal linked within X]

[x] *
CX childless C#3 [unlinked +consonantal]#4)

effect:

// Vowel case:
link consonantal#2 to V#1

// Consonant case:

12By default it would look at the C and V tiers first, which would give us a template-driven mapping.
13 Only +consonantal nodes can link to C slots; only -consonantal nodes can link to V slots.
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link consonantal#4 to C#3

As in the implementation of the OCP in Margi (§3.2), we use the I operator to fill in the slots in the
order they appear, rather than matching all the [-consonantal] nodes before any of the [+consonantal]
nodes. In this case, however, rewriting the rule as two rules will break it; the use of I is crucial.

The X]* expressions handle another technical detail. Recall from §2.8.1 that consecutive nodes in match
specifications will match only consecutive input nodes. Without the XI * expressions, Piigini will only
fill adjacent consonantal nodes into adjacent C/V slots. This results in the incorrect *[b-basa], where
the [b] links to the first C slot and the [a] cannot link to the second C slot.

Finally, we need to insert the prefix [ag-] and erase stray material. Since these rules are not very
interesting, we will skip the discussion of them. See §A.6 for the complete ruleset text.

A sample run on [da-it] follows.

generating "agdadait"...

applying "reduplication stage (duplicate word)": rule fired

applying "reduplication stage 2 (delink consonantal nodes)": rule fired

applying "reduplication stage 3 (delete morpheme)": rule fired

applying "insert template": rule fired

applying "anchor template": rule fired

applying "fill template": rule fired

applying "add prefix ag-": rule fired

applying "stay erasure 1": rule fired

applying "stray erasure 2": rule fired

applying "stray erasure 3": rule fired

applying "stray erasure 4": rule fired

Final output:

word(1)

progressive(1) [ - ]
morpheme (1)

sigma(1)

rhyme (1)

nucleus (1)

X(1)

V(1)

consonantal(1) [ - ]
sonorant(1) [ + 

supralaryngeal(1)

oralplace(1)
dorsal(1)

high(1) [ - ]

low(l) [ + ]
back(1) [ + ]

labial(1)

round(l) [ - ]

laryngeal(1)
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tongueroot (1)

atr(l) [ + ]

glottal(1)

voiced(l) [ + ]

coda(l)

X(2)
C(1)

consonantal(2) [ + ]

sonorant(2) [ - ]

continuant(l) [ - ]

supralaryngeal(2)

oral_place(2)

dorsal(2)

laryngeal(2)

glottal(2)

voiced(2) [ + ]

sigma(2)
onset (1)

X #1(3)

C #1(2)
consonantal(3) [ + ]

sonorant(3) [ - ]

continuant(2) [ - ]

supralaryngeal(3)

oral_place(3)
coronal(l)

anterior(l) [ + ]

laryngeal(3)

glottal(3)

voiced(3) [ + ]

rhyme(2)

nucleus (2)

X #3(4)

V #3(2)

consonantal(4) [ - ]

sonorant(4) [ + ]

supralaryngeal(4)

oral_place(4)
dorsal(3)

high(2) [ - ]

low(2) [ + ]

back(2) [ + ]

labial(2)

round(2) [ - ]

laryngeal(4)

tongue_root(2)

atr(2) [ + ]

glottal(4)
voiced(4) [ + ]

morpheme(2)
sigma #1(3)

onset #1(2)

X(5)
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C(3)
consonantal(5) [ + ]

sonorant(5) [ - ]
continuant(3) [ - ]
supralaryngeal(5)

oral_place(5)

coronal(2)

anterior(2) [ + ]
laryngeal(5)

glottal(5)

voiced(5) [ + ]
rhyme (3)

nucleus #1(3)

X(6)
V(3)

consonantal(6) [ - ]
sonorant(6) [ + ]

supralaryngeal(6)

oralplace(6)

dorsal (4)
high(3) [ - ]
low(3) [ + ]
back(3) [ + ]

labial(3)

round(3) [ - ]
laryngeal(6)

tongue_root(3)

atr(3) [ + ]
glottal(6)

voiced(6) [ + ]
sigma #2(4)

rhyme (4)

nucleus #2(4)

X(7)
V(4)

consonantal(7) [ - ]
sonorant(7) [ + ]

supralaryngeal (7)
oral_place(7)

dorsal (5)

high(4) [ + ]
low(4) [ - ]
back(4) [ - ]

labial(4)

round(4) [ - ]
laryngeal(7)

tongue_root(4)

atr(4) [ + ]
glottal(7)

voiced(7) [ + ]
coda #2(2)

X(8)

C(4)
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consonantal(8) [ + ]

sonorant(8) [ - ]

continuant(
4) [ - ]

supralaryngeal(8)

oral_place(8)
coronal(3)

anterior(3) [ + ]

laryngeal(8)
glottal(8)

voiced(8) [ - ]
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3.6 Register Tone in Bamileke-Dschang

We have seen that P54ini can handle a wide range of textbook examples. In this section we will explore
a "real world" phonological analysis with a large data set that phonologists have not yet adequately
explained. 4 The data is from Bamileke-Dschang compounding (Hyman 1985) (Pullyblank 1982), and
is shown in tables 3.1 and 3.2.15

What is fascinating about this data is the behavior of the downsteps - they seem to appear out of
nowhere and move around randomly.

Both Pulleyblank and Hyman have attempted to analyze the Dschang downstep data and have run into
problems that require tonal metathesis and a variety of ad hoc fixup rules. Both these researchers based
their analyses on the assumption that the downsteps correspond to low tones on a second "register" tier
- a tier that behaves exactly like the primary "modal" tier. 1 6 Here we propose a slightly different view
of the register tier, and use Pdiini to test this new theory on the Dschang data.

We propose that nodes on the register tier behave differently than their modal tier counterparts. In
particular, since register shifts are relative to the previous register setting, whereas modal changes are
absolute, we believe that it is in fact counterintuitive for the register tier to obey the OCP like the modal
tier.

We find evidence supporting this intuition in Babungo, a Grassfields Bantu language spoken in Cameroon.
Schaub (1985) reports the following surface forms resulting from N 1 + N 2 compounding in Babungo:

compound gloss
bi i 'the goat of the nobleman'
to !Si 'the head of the nobleman'
to !!bi 'the head of the goat'

The double downstep in the third example argues directly against the OCP on the register tier. 17

Removing the OCP constraint and giving register nodes full status in the theory allows a simpler and
more natural analysis of the Dschang data using standard autosegmental rules.

First we establish which phonemes are tone-bearing units. Dschang appears to treat only syllable heads
14hi fact, this data has proven so difficult that Bird (1993) has done a machine-aided analysis of the data to check

Hyman's transcriptions.
15Transcription notes: Tones are marked as in the Margi example (§3.2). Extra tone marks at the ends of morphemes

indicate whether the tone rises, falls, or stays level. We will not deal with this aspect of the data here. A raised exclamation
point indicates a tonal downstep - a shift in tonal register that lowers all the following tones until the end of the morpheme.
The capital V in, e.g. entry three in table 3.2, is a vowel slot that assimilates the features of the neighboring vowels. We
will deal only with tonal phenomena in this analysis, so we will not explain this assimilation process or any other segmental
changes here.

1 This terminology follows (Snider 1990).
17Recall that the OCP prohibits two consecutive nodes with the same feature value - this means that [down] [down] is

not allowed.
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as tone-bearing units (Hyman 1985), and we can see from the data that nasals and glottal stops can act
as tone-bearing units when necessary. The following Pdaini code implements these aspects of Dschang:

//
// Add tonal root node to vowels.

// This makes them tone-bearing units (TBU's).

//
append phoneme i [ T ]

append phoneme u [ T J

append phoneme o [ T ]

append phoneme schwa [ T ]
append phoneme a [ T ]
append phoneme aw [ T ]
append phoneme gstop [ T ]
append phoneme n [ T ]
append phoneme ny [ T ]
append phoneme ng [ T ]

rule "TBU cleanup":
iterative

match matched
no warnings

match: [ onset T #1 I coda T ]#2

effect: delete T#1

delete T#2

We posit several continuous rules - rules that apply after every rule in the derivation. These rules
simply repair any illegal configurations that may arise.1 8 Since there is no direct way to tell P5xini that
a rule is continuous, we declare our rules as a block and then CALL the block (§2.8.9) after each rule.

block "continuous": // rules that apply continuously
rule "contour reduction":

iterative

match: [ T L#1 H#2 down#1 ]

effect: delink L from T

rule "down deletion":

iterative

18 As we can see from the data, the sequence H! L is prohibited; we reduce it to HL. Likewise, LH contours cannot take
downsteps, and a single TBU cannot be double-downstepped.
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match: [ H #1 [ T L down ]#2

effect: delete down

rule "double downstep reduction":
iterative
match matched

match: [ T down#1 down#2 ]
effect: delete down#i

rule "floating L deletion":
iterative

match: [unlinked L]

effect: stray erase L

Our first main rule explains the downsteps in the lower half of table 3.1. We claim that the [ma] prefix
has a linked downstep underlyingly; the following "downstep hopping" rule moves the downstep to the
right.

rule "downstep hopping":
iterative

match matched

match: [ morpheme T#1 within morpheme L#1 down#1
T#2 within morpheme !register ]#1

effect: link down#1 to T#2

delink down#1 from T#1

The rule stipulates that a downstep hops off a TBU linked to a low tone and onto the following TBU
if that TBU does not already have a linked downstep. This rule explains why the downsteps appear on
the final TBU's in forms like table 3.1 #17.19 Note that a downstep will not hop off a morpheme -
here is another case where the ability to restrict rule application to certain domains is crucial.

The next rule explains why the [] in entries 25 through 32 of both tables gets a high tone, and why
high tones in the second stems in these forms are so common.

rule "H spreading right":

19 It also explains why entry 19 in the same table keeps its downstep in the penultimate TBU - we claim the stein
[mambht] is linked to two downsteps underlyingly, and hence the second downstep prevents the first from moving off of
[mi].
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iterative

match matched

match: [ T H ]#1 [ T L !register 1#2

effect: link H#1 to T#2

delink L#2 from T#2

stray erase L#2

The rule spreads a high tone onto a folowing low-toned TBU if the TBU has no downstep. Since the
nouns [A?] 'country' and [sij] 'tail' have high tones linked to their final TBU's, this rule spreads the
high tone onto the associative marker [] and the final stem. Unlike the downstep hopping rule, this rule
crucially applies across morpheme boundaries.

An additional spreading process applies in several compounds where the final stem is either [mambhu]
or [matso0]. We have written this as two separate PaJiini rules for simplicity's sake; we could have used
the I regular expression operator to combine both cases into a single match pattern, but the present
approach seems more readable.

rule "H spreading left 1":

match: T L #1

T L #2

C word final T within word H down 1 #3

effect: link H#3 to T#2

delink L#2 from T#2

link down#3 to T#2

delink down#3 from T#3

rule "H spreading left 2":

match: [ T H 1#1

T L #2

[ word final T within word H down 1 #3

effect: link H#3 to T#2

delink L#2 from T#2

Note that the rule is not iterative. It states that a word-final TBU with a high tone and a downstep
will spread to the previous TBU, taking the downstep with it. A stipulation, however, is that the rule
will not produce the illegal H!L configuration; it simply fails to move the downstep in such cases. (This
is the case that the second rule above handles.)

Our final rule describes what happens to floating downsteps. This is imortant because we posit an
underlying unlinked downstep in the stem [jijii] - this explains why [sag] is downstepped in entry 16 of
table 3.2. It also correctly predicts entries 5 and 6 in this table, if we assume that the associative vowel
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[a] is first deleted. 20

rule "down docking":
rightmost

match: T unlinked down within T #1 C T ]#2

effect: link down to T#2

The rule specifies that a downstep links the to the following tone-bearing unit. Note that this rule does
not work properly if the domain T is not specified; without it, the downstep will just attach to the
rightmost TBU in the word!

There are a few other rules, but these handle details like stray erasure. For a complete account, including
the underlying representations of all the stems, see the ruleset text in §A.7.

Our analysis correctly predicts 61 of the 64 forms listed in the two tables. Two of the forms, #5 and #6
in table 3.2, work properly if we assume the missing associative marker [a] is deleted before the downstep
docking rule applies. (Or perhaps the docking rule is continuous.)

Form 8 in table 3.2 is perplexing. We predict the resulting form, except that the associative marker gets
a high tone where we predict a low tone. Since this does not happen to the [dzh] stem anywhere else,
we suspect this is a marked case.

A sample run on entry 26 in table 3.1 follows.

generating "country of roosters"...

applying "TBU cleanup": rule fired

applying "contour reduction": rule did not fire
applying "down deletion": rule did not fire

applying "double downstep reduction": rule did not fire
applying "floating L deletion": rule did not fire

applying "down hopping": rule fired

applying "contour reduction": rule did not fire

applying "down deletion": rule did not fire

applying "double downstep reduction": rule did not fire

applying "floating L deletion": rule did not fire

applying "H spreading right": rule fired

applying "contour reduction": rule did not fire

applying "down deletion": rule fired

applying "double downstep reduction": rule did not fire

applying "floating L deletion": rule did not fire

applying "H spreading left 1": rule did not fire

applying "H spreading left 2": rule did not fire

applying "contour reduction": rule did not fire
applying "down deletion": rule did not fire

20We assume there is some explanation for this data using segmental rather than tonal data.
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applying "double downstep reduction": rule did not fire

applying "floating L deletion": rule did not fire

applying "down docking": rule did not fire

applying "contour reduction": rule did not fire

applying "down deletion": rule did not fire

applying "double downstep reduction": rule did not fire

applying "floating L deletion": rule did not fire

Final output:

word(1)

morpheme (1)

sigma #1(1)

rhyme (1)

nucleus #1(1)

X(1)

consonantal(1) [ - ]

sonorant(1) [ + ]
supralaryngeal(1)

oralplace(1)

dorsal(1)

high(1) [ - ]
low(1) [ + ]
back(1) [ + ]

labial(l)

round(l) [ - ]

laryngeal(1)

tongue_root(1)

atr(1) [ + ]

glottal(1)
voiced(l) [ + ]

T(1)

modal #1(1) [ L 

sigma #2(2)

onset 2(1)

X(2)

consonantal(2) [ + ]

sonorant(2) [ + ]
lateral(l) [ + ]
supralaryngeal(2)

oralplace(2)
coronal(1)

anterior(I) [ + ]

laryngeal(2)

glottal(2)
voiced(2) [ + ]

rhyme(2)
nucleus #2(2)

X(3)
consonantal(3) [ - ]

sonorant(3) [ + ]
supralaryngeal(3)

oral_place(3)

dorsal (2)
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high(2) [ - ]
low(2) [ + ]
back(2) [ + ]

labial (2)

round(2) [ - ]
laryngeal (3)

tongue_root(2)

atr(2) [ + ]
glottal(3)

voiced(3) [ + ]
T(2)

modal #2(2) [ H ]
register(l) [ down ]

coda #2(1)

X(4)

consonantal(4) [ - ]
sonorant(4) [ + ]

laryngeal (4)
glottal(4)

constrgl(1) [ + ]
voiced(4) [ - ]

morpheme (2)

sigma #1(3)

rhyme(3)

nucleus #1(3)

X(5)

consonantal(5) [ - ]
sonorant(5) [ + ]

T(3)

modal #2(2) [ H ]
morpheme(3)

sigma #1(4)

onset #1(2)

X(6)

consonantal(6) [ + ]
sonorant(6) [ + ]

continuant(1) [ - ]
supralaryngeal(4)

soft_palette(1)

nasal(l) [ + ]
oral_place(4)

labial(3)
laryngeal (5)

glottal(5)

voiced(5) [ + ]
rhyme(4)

nucleus #1(4)

X(7)

consonantal(7) [ - ]
sonorant(7) [ + ]

supralaryngeal(5)

oral_place(5)

dorsal(3)
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high(3) [ - ]

low(3) [ - ]

back(3) [ + ]

labial(4)

round(3) [ - ]

laryngeal(6)

tongue_root(3)

atr(3) [ - ]

glottal(6)

voiced(6) [ + ]

T(4)

modal #2(2) [ H ]

coda #1(2)

X(8)
consonantal(8) [ + ]

sonorant(8) [ + ]

continuant(2) [ - ]

supralaryngeal(6)

oral_place(6)

coronal(2)

anterior(2) [ - ]

dorsal (4)

soft_palette(2)

nasal(2) [ + ]

laryngeal(7)

glottal(7)

voiced(7) [ + ]

sigma #2(5)

onset #2(3)

X(9)
consonantal(

9) [ + ]

sonorant(9) [ - ]

continuant(3) [ - ]

supralaryngeal(7)

oral_place(7)
dorsal (5)

laryngeal (8)

glottal(8)

voiced(8) [ - ]

rhyme (5)

nucleus #2(5)

X(10)

consonantal(10) [ - ]

sonorant(10) [ + ]

supralaryngeal(8)
oral_place(8)

dorsal(6)

high(4) [ - ]

low(4) [ - ]

back(4) [ + ]

labial(5)

round(4) [ + ]

laryngeal(9)
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tongueroot(4)
atr(4) [ + ]

glottal(9)

voiced(9) [ + ]
T(5)

modal #1(3) [ L ]
coda #2(3)

X(11)

consonantal(11) [ - ]
sonorant(11) [ + ]

supralaryngeal(9)

oral-place(9)

dorsal(7)

high(S) [ - ]
low(5) [ + ]
back(5) [ + ]

labial(6)

round(S) [ + ]
laryngeal (10)

tongue_root(5)

atr(5) [ + ]
glottal(10)

voiced(10) [ + ]
X(12)

consonantal(12) [ - ]
sonorant(12) [ + ]

laryngeal(11)

glottal(11)

constr_gl(2) [ + ]
voiced(11) [ - ]
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+ e + m5ndzwi
+ e + m50kkia? 0

+ e + m5mbhii'
+ e + m5ts56

+ e + mandzwi
+ e + ma5kib?0

+ e + m5mbhfi'
+ e + m5ts5j
+ e + m5ndzwi
+ e + m0kiio?
+ e + m5mbhi'
+ e + m5ts5j
+ e + m5ndzwl
+ e + m5kkit? 0

+ e + m5mbhi6'
+ e + m5tsSij
+ a + m5ndzwi
+ i + mkiit?°

+ a + m5mbh6'
+ i + m5tsJrj
+ a + m5ndzwi
+ i + m5rjk3?°

+ a + m5mbh6i'
+ i + m5ts5j
+ a + m5ndzwi
+ i + mb5kta?°

+ i + m5mbhi'
+ a + m5ts3rj
+ i + m5ndzwi
+ i + m5rjki3?0

+ a + m5mbhi'
+ i + mtsj

f5 m5ndzwi

f5 m5jkib? °

ef5 m5m!bhi

- f5 m5ts5 O

i dz! a m5ndzwi

iidz! a mSijki3?
idzh !I m5m!bhi
idz!- mbts5
- !d5j m5ndzwi

-- h!d5r m5agkb? °

- h!d5U m5m!bhi
--4 h!dj mSts5j

jijil m5ndzwi
- ji m.p kio?

- l.i mm!bhi
jijl m5tsa5
az5b m5n!dzwi

-- azSb 5 ma5!kh3? °

z5jb 5 !m6mbhi

az5b 5 !m6ts5U

- l5rj 5a mSn!dzwl
- 10 5 mSa!kit?°

-* hlj !m6mbh4

- h &lal !mts50
!a? a m6ndzwia l? a m6aki3?

a!-i? a mSm!bhi
!i i ma!tsjrj

&sir3 i m6ndzwi
hsai a ma6jkit? 0

hsIj i mm!bh4
asa ma ts50

'chief of leopards'
'chief of roosters'

'chief of dogs'
'chief of thieves'

'axe of leopards'
'axe of roosters'

'axe of dogs'
'axe of thieves'

'horn of leopards'
'horn of roosters'
'horn of dogs'
'horn of thieves'
'machete of leopards'
'machete of roosters'

'machete of dogs'
'machete of thieves'

'song of leopards'
'song of roosters'
'song of dogs'
'song of thieves'
'stool of leopards'
'stool of roosters'

'stool of dogs'
'stool of thieves'

'country of leopards'
'country of roosters'
'country of dogs'
'country of thieves'
'tail of leopards'
'tail of roosters'

'tail of dogs'
'tail of thieves'

Table 3.1: 32 tone combinations of bisyllabic nouns in N 1 + N2 associative constructions

1. ef5

2. ef5

3. ef5

4. ef5

5. fidzh'
6. fidza'
7. iidza'
8. fidza'
9. fid5j'

10. id5i '

11. hdij'
12. id5j'
13. jiji
14. jiji
15. jiji
16. jii
17. hz5b

18. kz5b

19. z5b

20. az5b

21. &lo'r

22. hli 3 '
23. hli'j
24. ala5 '

25. Ma?'

26. li?'
27. ala'
28. ali?'
29. ,sigj
30. ahsir

31. khsa

32. saj
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+ + i +n
+ e + kD '
+ e + Vmj'
+ e + s50

+ + n&
+ e + kh&'

+ e + Vmi'
+ e + s6u
+ + na
+ e + kha'

+ e + sVm6

+ e + s50
+ e + na
+ e + kaj'
+ i + VmS'
+ e + s56

i+ +na
+ i + kao'
+ + VmS'
+ a + s61
+ + ni
+ a + khu'
+ a + Vmj'
+ + s6U
+ i + n
+ a + kho '
+ + Vm6'
+ i + s&3
+ i + n
+ a + ka '
+ a + Vmj'
+ a + s5

- f na
bf5 kaqo°

f5 !m
6f5 s0
fidz !n i

fidzh !kijo

fidzi sj
fi n!d n

fi!d5i k.o
- !d5 !m S

-- fi4d5 s5
ji n
jiJi rjna

jipi k!0

- zjb 5 n.

Lzvb kk 

- zb so
MlSj 5 nh

l Oi 5 kj o

MS0D 5 s0

!zi i na
a!l i? ko °

hl&t? 

- l? sS
-- * asr n

- as6 j i kkj°

-4 i 65

4 *s mis61J

'chief of animal'
'chief of squirrel'
'chief of child'
'chief of bird'
'axe of animal'
'axe of squirrel'
'axe of child'
'axe of bird'
'horn of animal'
'horn of squirrel'
'horn of child'
'horn of bird'
'machete of animal'
'machete of squirrel'
'machete of child'
'machete of bird'
'song of animal'
'song of squirrel'
'song of child'
'song of bird'
'stool of animal'
'stool of squirrel'
'stool of child'
'stool of bird'
'country of animal'
'country of squirrel'
'country of child'
'country of bird'
'tail of animal'
'tail of squirrel'
'tail of child'
'tail of bird'

Table 3.2: 32 tone combinations of associative bisyllabic N 1+ monosyllabic N2

1. f5

2. f5

3. f5
4. ef5

5. fidza'

6. iidza'

7. fdza'
8. hdza'
9. fid5j'

10. iid3 '

11. id5 o '

12. fidij'
13. pi

14. hji

15. ipi

16. jii
17. az5b
18. azib

19. azib
20. hzjb
21. hlaI3 l
22. Mi5'r

23. Mla5

24. lS'

25. la?'
26. Ml'

27. MI?'
28. MI?'
29. s&
30. sirj
31. ,si
32. asij
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Chapter 4

Conclusions

In this chapter we evaluate the system relative to the goals set forth in chapter 1. We then discuss
possible future work.

4.1 System Evaluation

Recall that we began the project with five goals. We address each in turn.

4.1.1 Coverage

We feel that the most important contribution the system makes is its broad coverage of the range of
analyses that phonologists write. We picked several examples that we felt would be quite difficult to
implement as analyzed by researchers. We have no doubt that more limited systems could handle much of
the data, but not with the same analysis the linguists employed. P&4ini does not require the phonologist
to significantly alter an analysis for the sake of implementation - we feel that this makes it a good tool.

However, there are some important phenomena that P~Aini cannot handle. The major one is stress.
Since there are many different theories, most of which are totally unlike theories governing the rest of
phonology, we felt that stress was better left for a later incarnation of the system.

Paijini also cannot handle complex syllabification problems. Such phenomena are not yet fully under-
stood, but it seems clear that phonologists need some new mechanisms to explain data from Berber
(Dell and Tangi 1991) (Dell and Elmedlaoui 1985). Involved resyllabification analyses like Harris (1990)
proposes for Spanish are also more difficult to implement than we would like.

Finally, Pijini probably needs an effect that specifies that a particular floating element is to be moved
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into another node's domain. For example, it may prove crucial to be able to express rules like "move
the floating high tone into the next word". Currently, the only way to change a floating element's
domain is to link it to a new parent and then immediately delink it. This solution is not only odious
but insufficient, since this only works for domains that the floating node can link directly to.

4.1.2 Ease of use

We feel that we have met this goal given the confines of ASCII-only input. The notation we developed
for P5xini is straightforward, though we suspect that the node numbering may take some getting used
to. To make the system much easier to use will require "upgrading" to a windowing environment that
allows input and match elements to be built up on the screen interactively, using exactly the same kinds
of diagrams that phonologists use (suitably extended for the extra degree of precision we require of our
rules).

4.1.3 Flexibility

We are surprised at how little we had to hard-code into Pa4iini. P5xini will handle any feature tree (an
arbitrary DAG), any number of features, elements of any size, arbitrarily large rule sets, etc. Available
memory is the only factor limiting the major components of the system. In this regard we feel that the
system is very successful.

However, since we did have to assume a rule-based approach to phonology, the system is incompatible
incompatible with current research in constraint-based approaches. In addition, because P5j4ini assumes
a multi-dimensional feature DAG model, any analysis that assumes a radically different representation
will not be implementable with Puicini. (We know of no such alternatives with any significant support
in the phonological community, however.)

4.1.4 Efficiency

We are less pleased with the performance of the system. Although it is within our stated speed bounds
(at most several seconds per form), we only achieve these results on fairly fast machines.1

We suspect that system performance could be significantly improved with better memory management.
P4i/ini tends to allocate huge numbers of pointers to small chunks of memory - things like lists of
child and parent nodes that are small but which we do not wish to place any hard-coded size bound
on. Worse, dynamically resize these arrays. We believe that some simple changes to the system could
greatly reduce the amount of time the program spends doing memory management.

More worrisome is the theoretically exponential time bound on the matcher. We used a dynamic pro-
gramming approach to ensure polynomial time performance for fixed length match patterns, but were

'150Mhz Silicon Graphics Indigo workstations.
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forced to resort to an exponential backtracking algorithm for regular expression matching. 2 This means
that excessive use of the * and + operators can cause the matcher to "go away and never come back". In
practice, however, we have found no analyses that require heavy use of these operators, and, as we have
already noted, the theory predicts that these operators should not be necessary at all. We mainly use
them to implement unusual stipulations on rule application or to solve technical problems implementing
trickier rules like the OCP.

4.1.5 Portability

Pdfini is written in YACC (Johnson 1986), Lex (Lesk 1986), and C (Kernighan and Ritchie 1988). We
found YACC surprisingly easy to use - it made specification and subsequent modification of the input
file format simple.

These are all standard Unix tools that require no special run-time environment. We have taken care
not to rely on specific integer or pointer sizes, structure layout details, or any other machine-dependent
behavior. As a consequence, our code compiles and runs without modification on a variety of systems.3

Paiini assumes no special workstation capabilities. It should run without major changes on PC's and
Macintoshes as well.

4.2 Future Work

There are many possible directions to take from here. One possibility is to explore the new constraint-
based approaches to phonology. These theories change the way surface representations are generated,
but assume the same feature tree representation that we have already implemented in Pa-iini.

Another idea is to explore applying Maxwell's (1994) underspecification technique for segmental phono-
logical parsing to autosegmental phonology, using P&ailni as a test bed.

Finally, we hope to improve Paigini, so that it will be able to handle stress and syllabification properly.
We also intend to look into making the program faster, with the goal of achieving real-time generation
of surface representations that could be fed to an articulator-based speech synthesis system.

2 We represent regular expressions with nondeterministic finite automata. In theory these could be converted into equiv-
alent deterministic automata that we could match against in polynomial time. However, because our match specifications
deal with multiple tiers, the alphabet size is too large to permit this given memory limitations.

3We have extensively tested the Sparc and SGI versions. We expect that the code will run on any Unix system.
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Complete Rulesets for all Examples

This appendix lists the complete text of each ruleset, including the definitions of the lexicon entries.
Each example is explained in a corresponding section in chapter 3.

A.1 Standard Definitions

The following two files define the feature geometry and phonemes used in our examples. The first,
std.ph, defines an X-slot model; the second, cv.ph, defines a CV model.

/*
* std.ph

* Standard feature geometry and phoneme definitions

geometry {
//
// Modified Halle-Sagey Articulator Model with X-slot model syllables.
//
word -> morpheme,
morpheme -> sigma,
sigma -> stress [5 4 3 2 1],
sigma -> onset,
sigma -> rhyme,
rhyme -> nucleus,
rhyme -> coda,
onset -> X,
nucleus -> X,
coda -> X,
X -> consonantal [- +],
consonantal -> sonorant [- +],
sonorant -> continuant [- +],
sonorant -> strident [- +],
sonorant -> lateral [- +],
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sonorant -> laryngeal,
sonorant -> pharyngeal,
laryngeal -> glottal,
laryngeal -> tongueroot,
glottal -> voiced [- +],
glottal -> slack_vf [- +],
glottal -> spreadgl [- +],
glottal -> constrgl [- +],
tongueroot -> atr [- +],
tongueroot -> rtr [- +],
sonorant -> supralaryngeal,
supralaryngeal -> softpalette,
supralaryngeal -> oralplace,
softpalette -> nasal [- +],

oralplace -> labial,
oralplace -> coronal,
oralplace -> dorsal,
labial -> round [- +],
coronal -> anterior [- +],

coronal -> distributed [- +],

dorsal -> high [- +],
dorsal -> low [- +],

dorsal -> back [- +],

// no subtree here by default

// Tonal features
X -> T,
T -> register [0O up down],
T -> modal [L N H],

// Pseudo-features used to drive rules
word
word
word
word
word

-> plural [- +],
-> compound [- +1,
-> perfect [- +1,
-> imperfect [- +],
-> progressive [- +],

//
// Base forms
//
phoneme C
phoneme V

X +consonantal ]
X -consonantal +sonorant dorsal -high -low -back -round -atr +voiced]

//
// consonants

//
phoneme p
phoneme b
phoneme k
phoneme g
phoneme x
phoneme t
phoneme d
phoneme f
phoneme v
phoneme theta
phoneme eht
phoneme dh
phoneme s
phoneme z
phoneme sh

I
I
I
I
I
I
I
I
F
F
F
I
I

C -sonorant -continuant
p +voiced ]
C -sonorant -continuant
k +voiced ]
k +continuant ]
C -sonorant -continuant
t +voiced 
C -sonorant +continuant
f +voiced ]
C -sonorant +continuant
theta +voiced ]
eth ]
C -sonorant +continuant
s +voiced ]

F C -sonorant +continuant

labial -voiced ]

dorsal -voiced 

+anterior -voiced ]

labial -voiced ]

+anterior -strident -voiced ]

+anterior +strident -voiced 

+strident +distributed -voiced 

}
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phoneme zh [ sh +voiced ]

// affricates
phoneme ts
phoneme dz
phoneme ch
phoneme dj

// liquids
phoneme 1
phoneme r

// nasals
phoneme m
phoneme n
phoneme ng
phoneme ny

[ C -sonorant -continuant#1 +continuantt2 +anterior -voiced ]
[ ts +voiced 
[ ts -anterior]
[ ch +voiced 

[ C +sonorant +lateral +anterior +voiced 
[ C +sonorant +anterior +voiced ]

C C +sonorant -continuant +nasal labial +voiced ]
[ C +sonorant -continuant +anterior +nasal +voiced 
[ C +sonorant -continuant -anterior +nasal dorsal +voiced I
[ C +sonorant -continuant +anterior +nasal +voiced +distributed ]

// glides etc.
phoneme y
phoneme w
phoneme h
phoneme gstop
phoneme gs

[
I
[
[
[II
I

X -consonantal +sonorant
y +round 
X -consonantal +sonorant
X -consonantal +sonorant
gstop 

+continuant +voiced ]

+spreadgl -voiced 
+constrgl -voiced 

//
// vowels
//
phoneme i
phoneme I
phoneme ibar
phoneme e
phoneme eh
phoneme epsilon
phoneme ae
phoneme u
phoneme ubar
phoneme U
phoneme o
phoneme schwa
phoneme a
phoneme aw

//
// examples of
//
phoneme ph
phoneme pg
phoneme kw

[ V +high +atr ]
[ V +high ]
[ I back ]
[ V +atr ]
[V]
[ eh ]
[ V +low]
[ V +back +atr +round ]
[ u -back I
[ V +high +back +round ]
[ V +back +atr +round ]
[ V +back ]
[ V +low +back +atr ]
[ V +low +back +atr +round ]

common modifications

p +spreadgl ]
[ p +constrgl 
[ k +round ]

// aspirated p
// glottalized p
// labial k
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/*
* cv.ph
*

* CV feature geometry

geometry {

//
// Modified Halle-Sagey Articuli
//
word -> morpheme,
morpheme -> sigma,
sigma -> stress [5 4 3 2 1],
sigma -> onset,
sigma -> rhyme,
rhyme -> nucleus,
rhyme -> coda,
onset -> X,

nucleus -> X,

coda -> X,
X -> V,

X -> C,
V -> consonantal [- +],
C -> consonantal [- +],
consonantal -> sonorant [- +],
sonorant -> continuant [- +],
sonorant -> strident [- +],
sonorant -> lateral [- +],
sonorant -> laryngeal,
sonorant -> pharyngeal,
laryngeal -> glottal,
laryngeal -> tongueroot,
glottal -> voiced [- +],
glottal -> slackvf [- +],
glottal -> spread_gl [- +],
glottal -> constr_gl [- +],
tongue_root -> atr [- +],
tongue_root -> rtr [- +],
sonorant -> supralaryngeal,
supralaryngeal -> soft_palette,
supralaryngeal -> oral_place,
soft_palette -> nasal [- +],
oral_place -> labial,
oral_place -> coronal,
oral_place -> dorsal,
labial -> round [- +],
coronal -> anterior [- +],
coronal -> distributed [- +],
dorsal -> high [- +],
dorsal -> low [- +],
dorsal -> back [- +],

ator Model with CV model syllables.

// no subtree here by default

// Tonal features
X -> T,
T -> register [O up down],
T -> modal [L M H],

// Pseudo-features used to drive rules
word -> plural [- +],
word -> compound [- +],
word -> perfect [- +],
word -> imperfect [- +],
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word -> progressive [- +],
}

//
// Base forms
//
phoneme Cons
phoneme Vowel

X C +consonantal ]
X V -consonantal +sonorantdorsal -high -low -back -round -atr +voiced]

/
// consonants
//
phoneme p
phoneme b
phoneme k
phoneme g
phoneme x
phoneme t
phoneme d
phoneme f
phoneme v
phoneme theta
phoneme eth
phoneme dh
phoneme s
phoneme z
phoneme sh
phoneme zh

// affricates
phoneme ts
phoneme dz
phoneme ch
phoneme dj

I
I:

I:
I
I
I
I
I
I
I:
I
I
I
I:

I[

F
F
[
[
F
[
[
[
[
[
[
[

Cons -sonorant -continuant labial -voiced ]
p +voiced ]
Cons -sonorant -continuant
k +voiced ]
k +continuant ]
Cons -sonorant -continuant
t +voiced ]
Cons -sonorant +continuant
f +voiced ]
Cons -sonorant +continuant
theta +voiced ]
thorn 
Cons -sonorant +continuant
s +voiced ]
Cons -sonorant +continuant
sh +voiced I

[ Cons -sonorant
[ ts +voiced I
[ ts -anterior]
[ ch +voiced ]

-continuant:

dorsal -voiced 

+anterior -voiced I

labial -voiced 

+anterior -strident -voiced I

+anterior +strident -voiced 

+strident +distributed -voiced ]

.1 +continuant#2 +anterior -voiced ]

[ Cons +sonorant +lateral +anterior +voiced 
[ Cons +sonorant +anterior +voiced I

[ Cons +sonorant
[ Cons +sonorant
[ Cons +sonorant

-continuant
-continuant
-continuant

+nasal labial +voiced 
+anterior +nasal +voiced 
-anterior +nasal dorsal +voiced ]

// glides etc.
phoneme y
phoneme w
phoneme h
phoneme gstop
phoneme gs

//
// vowels
//
phoneme i
phoneme I
phoneme ibar
phoneme e
phoneme
phoneme
phoneme

eh
epsilon
ae

[ X C -consonantal +sonorant +continuant +voiced ]
[ y +round ]
[ X C -consonantal +sonorant +spreadgl -voiced ]
[ X C -consonantal +sonorant +constrgl -voiced ]
[ gstop 

[ Vowel +high +atr ]
[ Vowel +high ]
[ I ~back ]
[ Vowel +atr I
[ Vowel ]
[ eh I
[ Vowel +low]

// liquids
phoneme 1
phoneme r

// nasals
phoneme m
phoneme n
phoneme ng
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phoneme u [ Vowel +back +atr +round ]
phoneme u_bar [ u back ]
phoneme U [ Vowel +high +back +round ]
phoneme o [ Vowel +back +atr +round ]
phoneme schwa [ Vowel +back ]
phoneme a [ Vowel +low +back +atr ]
phoneme aw [ Vowel +low +back +atr +round ]

//
// examples of
//
phoneme p_h
phoneme p_g
phoneme k_w

common modifications

[ p +spread_gl ]

[ p +constr_gl ]

[ k +round ]

// aspirated p
// glottalized p
// labial k
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A.2 The English Plural

/*
* English Plural
*/

tinclude "std.ph"

/*
* [Kenstowicz 1994, p. 500]

* The distribution of the English plural represents a rule sensitive to
* the right side of an affricate: [i-z] becomes [z] (and then s] by
* voicing assimilation) unless deletion would create successive
* [+continuant] segments sharing the Coronal articulator. Deletion is
* thus possible in cab-[z], cuff-[s], and cat-Ls] but not in buss-[iz]
* and brush-[iz]. The fact that deletion is blocked after the coronal
* affricates [ch] and [dj] now makes sense: they terminate in [+continuant]
* and hence would give rise to successive [+continuant] specifications:
* judg-Liz], church-[iz].
*/

//
// Lexicon entries
//
lexicon "cab" 
morpheme
sigmaX1
onset1 k
nucleust1 ae
coda 1 b

]
lexicon "cuff" 
morpheme
sigmat1
onsetS1 k
nucleusti schwa
coda X1 f

]
lexicon "cat" [
morpheme
sigmat

onsettl k
nucleusX1 ae
coda 1 t

]
lexicon "dog" 
morpheme
sigmai1
onsetX1 d
nucleusX1 aw
coda 1 g

]
lexicon "bus" 
morpheme
sigmaS1
onset1i b
nucleust1 schwa
coda 1 s

]
lexicon "brush" [
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morpheme
sigmat1

onsett1 b r
nucleus#1 schwa
coda 1 sh

]
lexicon "judge" [
morpheme
sigma#1
onsett1 dj
nucleust1 schwa
coda 1 dj

]
lexicon "church" [
morpheme

sigma*1
onsetS1 ch
nucleusX1 r
coda 1 ch

]

//
// Rules
//
block "plural":

rule "insert plural suffix":
match: [word +plural final X within word]1i
effect: insert [z voiced] after Xi

// This epenthesis is probably a language-wide fixup process, not
// peculiar to pluralization:
rule "insert vowel":

match: [word +plural X1 within word +continuant#1 coronalt1
final X*2 within word +continuantt2 coronalt2 ]1l

effect: insert [ibar] before X1:2

rule "assimilate voicing":
match: [word +plural X*1 within word glottalt1 voiced#1

final X2 within word glottalX2 ]1
effect: link voicedi1:1 to glottaltl:2

// resyllabify here

//
// Samples
//
generate "cabs" [word +plural "cab"]
generate "cuff" [word +plural "cuff"]
generate "cats" [word +plural "cat"]
generate "dogs" [word +plural "dog"]
generate "bus" [word +plural "bus"]
generate "brushes" [word +plural "brush"]
generate "judges" [word +plural "judge"]
generate "churches" [word +plural "church"]
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A.3 Margi Contour Tones

/*
* Margi Counter Tones
*

* [Hoffman 1963]

* See [Kenstowicz 1994, p. 317] for an explanation of this account.
*/

#include "std.ph"

//
// Add tonal root node to vowels.
// This makes them tone-bearing units (TBU's).

//append phoneme i T 
append phoneme i [ T I
append phoneme u [ T ]
append phoneme o [ T ]
append phoneme schwa [ T ]
append phoneme a [ T ]

//
// The u phoneme is actually higher than we define it in the
// standard inventory, but this doesn't affect the tonal phenomena
/ we're modeling here.
//
lexicon "cu" [ // 'speak'
morpheme

sigma#1
onseti1 ts
nucleust1 u

unlinked H
]
lexicon "gha" [ // 'reach'
morpheme

sigma#1
onseti1 g h
nucleust a

unlinked L

]
lexicon "fi" [ // 'swell'
morpheme
sigmaS1
onsetS1 f
nucleust1 i

unlinked LX1
unlinked H2

]
lexicon "sa" [ // 'go astray'
morpheme

sigmat1
onsett1 s
nucleust1 a

unlinked H
]
lexicon "dla" [ // 'fall'
morpheme
sigmat1
onsetS1 d 1
nucleus a
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unlinked L
]
lexicon "bdlu" [ // 'forge'
morpheme

sigmati
onsetXi b d 1
nucleus$1 u

unlinked Li1
unlinked H2

]
lexicon "ndabya" [ // 'touch'
morpheme

sigmati
onsetS1 n d
nucleusX1 a

unlinked H1
sigmaX2
onsetX2 b y
nucleusX2 a

]
lexicon "mbidu" [ // 'blow'
morpheme
sigmaX1

onsett1 m b
nucleust1 i

unlinked L1
sigma#2

onsett2 d
nucleust2 u

unlinked H1
]
lexicon "ulu" [ // 'see'
morpheme

sigmat1
nucleust1 u

unlinked L1i
sigmaS2

onset#2 1
nucleust2 u

//
// So-called "changing verbs".
// These have no tone underlyingly.
//
lexicon "fa" [ // 'take'
morpheme
sigmat1

onsett1 f
nucleust1 a

]
lexicon "hu" [ // 'take'
morpheme

sigmat1
onsett1 h
nucleusX1 u

]

//
// Affixes
//
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lexicon "na" [
morpheme
sigma1
onsett1 n
nucleusti a

/I
]
lexicon "ba" [
morpheme
sigmaX1
onsetS1 b
nucleust1 a

u]

// '(verbal suffix)'

/ no underlying tone

// '(verbal suffix)'

alinked H

I
lexicon "[ng]g[schwalri" 
morpheme

sigmaS1
onsetS1 ng
nucleust1 schwa

sigmaX2
onsetS2 r
nucleus#2 i

unlinked H
]

// '(verbal suffix)'

//
// Rules
//
rule "association convention":

iterative

match: [X T !modal]1i [unlinked modal1]2
effect: link modalt2 to T1

rule "docking":
iterative
rightmost

match: [X T [unlinked modal]
effect: link modal to T

rule "spreading":
iterative
match matched

match: [T modal]li T !modal]t2
effect: link modalt1 to T2

rule "default tone":
iterative

match: T !modal]
effect: insert [L] under T

rule "OCP":
iterative
match matched
no warnings

match: (T HI]1 [unlinked HI* [shared T H]X2) (T L]X3 [unlinked HI* [shared T L4)
effect:
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// case 1: successive high tones:
delink H#2 from T#2
link H1 to T2

// case 2: successive low tones:
delink L4 from T#4
link L#3 to T4

rule "stray erasure":
iterative
match: [unlinked modal]
effect: stray erase modal

//
// Samples
//
generate "ciba 'tell"' [word "cu" "ba"]
generate "ghaba 'reach"' [word "gha" "ba"]
generate "fiba 'make swell"' [word "fi" "ba"]

generate "sana 'lead astray"' [word "sa" "na"]
generate "dlana 'overthrow"' [word "dla" "na"]
generate "bdluna 'forge"' [word "bdlu" "na"]

generate "fa[ng]g[schwa]ri 'take many"'
[word "fa" "[ng]g[schwa]ri"]

// -> HH
// -> LH
// -> LH

// -> HH
// -> LL
// -> LH (actually -> bdl[schwa]L naH)

// -> HHH

generate "hu" [word "hu"] // -> L
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A.4 Sudanese Place Assimilation

/*
* Sudanese Arabic Imperfect
* Point of articulation assimilation

* [Hamid 1984]
*/

*include "std.ph"

/*
* [Kenstowicz 1994, p. 158]
*

* The presence of the cavity nodes in the feature tree ... is motivated
* more on phonetic than on phonological grounds. However, it is clear
* that many phonological processes single out the Labial, Coronal, and
* Dorsal articulators. For example, in Sudanese Arabic the coronal
* nasal [n] assimilates the point of articulation of the following
* consonant, becoming the labial [m] before b], the coronal [n] before
* Ez], and the velar [engma] before k].
*/
phoneme pharyngeal_h [h pharyngeal]
phoneme pharyngealstop [gstop pharyngeal]

lexicon "bark" 
morpheme

sigma#i
onset*1 n
nucleus#1 a

sigma#2
onset#2 b
nucleus#2 a
coda2 pharyngealh

]
lexicon "save" [

morpheme
sigma#1
onset#1 n
nucleusX1 a

sigma#2
onsetX2 f
nucleus*2 a
coda#2 d

]
lexicon "descend" 

morpheme
sigmaX1
onset#1 n
nucleus#1 a

sigmaS2
onset#2 z
nucleusX2 a
coda#2 1

]
lexicon "demolish" 
morpheme
sigmaS1
onsetX1 n
nucleus#1 a

sigmaX2
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onset#2 s
nucleus*2 a
coda#2 f

]
lexicon "spread" [
morpheme
sigma#1
onset1i n
nucleus1I a

sigmaX2
onset#2 sh
nucleus#2 a
coda#2 r

]
lexicon "succeed" [
morpheme

sigmaX1
onsetX1 n
nucleusi1 a

sigma#2
onsetX2 dj
nucleus#2 a
codat2 pharyngeal_h

]
lexicon "deny" [
morpheme
sigmaX1
onsetS1 n
nucleusX1 a

sigmaX2
onset#2 k
nucleus#2 a
codaX2 r

]
lexicon "puncture" [
morpheme

sigmaX1
onsett1 n
nucleust1 a

sigmaX2
onsetS2 x
nucleusX2 a
codaX2 r

]
lexicon "transfer" [
morpheme
sigmal1
onsetS1 n
nucleusX1 a

sigmaX2
onset#2 g
nucleust2 a
codaX2 1

]
lexicon "slaughter" [
morpheme
sigmaX1
onsetS1 n
nucleust1 a

sigmat2
onsett2 pharyngeal_h
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nucleust2 a
coda#2 r

]
lexicon "fall asleep" [
morpheme
sigmat1
onsetti n
nucleust1 i

sigma#2
onset#2 pharyngealstop
nucleus#2 i
coda#2 s

]
lexicon "rob" [
morpheme
sigma$1
onseti1 n
nucleus$1 a

sigmat2
onsett2 h
nucleus*2 a
coda#2 b

]

//
// Rules
//
block "imperfect":

rule "delete first vowel":

//
// We find the first vowel in the word and delete the X
// slot it's linked to.
//
// The match specification is a bit roundabout because
// we want to include the X in the match but don't know where
// it will be in the word -- it might be initial or medial,
// and might be in the onset or the nucleus of the first syllable.
//
// Note that "-consonantal within X" places an additional
// restriction on the previously declared -consonantal node;
// it does not introduce a new node. (To do that, we'd just
// have to give the two -consonantals different numbers.)
//
match: [word +imperfect

X within word
initial -consonantal within word

-consonantal within X]
effect: delete X

rule "assimilate oral place":
//
// Now we spread the second X slot's oral place node to the
// the first X slot and delete the first X slot's oral place
// subtree.
//
// Note that we'll only get a match if the second X slot
// has an oral place node. This is key, and explains why
// the pharyngeal [h] and pharyngeal stop do not alter the
// first segment -- these segments have no oral place
// specification.
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//
match: [word +imperfect initial X1 within word supralaryngeall1 oral_placet1

XX2 within word oralplace#2 1
effect: delete oralplacetl:1

link oralplace1:2 to supralaryngealXtl:

rule "prefix":
//
// Now we add the [ya] prefix.
//
match: [word +imperfect initial sigma within word]*1
effect: insert [sigma onset1 y nucleusti a] before sigmat1

change imperfect to -

// resyllabify here

//
// Examples
//
generate "bark (im.)" [word +imperfect "bark"]
generate "save (im.)" [word +imperfect "save"]
generate "descend (im.)" [word +imperfect "descend"]
generate "demolish (im.)" [word +imperfect "demolish"]
generate "spread (im.)" [word +imperfect "spread"]
generate "succeed (im.)" [word +imperfect "succeed"]
generate
generate
generate

"deny (im.)" [word +imperfect "deny"]
"puncture (im.)" [word +imperfect "puncture"]
"transfer (im.)" [word +imperfect "transfer"]

//
// Oral place assimilation does not occur in these derivations:
//
generate "slaughter (im.)" [word +imperfect "slaughter"]
generate "fall asleep (im.)" [word +imperfect "fall asleep"]
generate "rob (im.)" [word +imperfect "rob"]

// -> ya-mbah
// -> ya-[mg]fid
// -> ya-nzil
// -> ya-nsif
// -> ya-n~shur
// -> ya-n-djah
// -> ya-[ng]kur
// -> ya-[ng]xar
// -> ya-[ng]gul

// -> ya-nhar
// -> ya-n[pharyngealstop]as
// -> ya-nhab
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A.5 Japanese Rendaku

/*
* Japanese Rendaku Voicing

*/

*include "std.ph"

* [Kenstowicz 1994, p. 162]

* The combination of voiced obstruents within a root avoided in the
* native Japanese vocabulary. Thus, while voiceless obstruents and
* voiced and voiceless obstruents combine freely,

* futa 'lid' fuda 'sign' buta 'pig'

* voiced ones do not (*buda).

* The constraint is actively enforced by blocking or undoing an
* otherwise general rule voicing the initial obstruent in the second
* member of a compound (Lyman's Law). Thus:

* iro 'color' + kami 'paper' -> irogami
* kami 'divine' + kaze 'wind' -> kamikaze (*kamigaze)

* Ito and Nester express the contrast ... as a dissimilation process
* that deletes the voicing specification inserted in compounds when
* another one follows in the same morpheme.

* It is worth observing that if the intervening vowels are not
* underspecified for voicing ... the rule becomes much more complex.

:..

* Nester and Ito try to reconcile the contradictory results from Japanese
* with the hypothesis that [voiced] is in fact a UG monovalent feature
* marking just voiced obstruents.
*/

//
// First we remove all
//
append
append
append
append
append
append
append
append
append
append
append

phoneme
phoneme
phoneme
phoneme
phoneme
phoneme
phoneme
phoneme
phoneme
phoneme
phoneme

i
I

e

eh
ae
u
U
o

schwa
a

aw

the vowels' voicing specifications.

[ -voiced ]
[ 'voiced ]
C[ voiced ]
[ -voiced I
[ 'voiced ]
[ -voiced ]
[ -voiced ]
[ 'voiced I
[ -voiced I
[ -voiced ]
[ -voiced ]

//
// Now remove voicing specifications from all but the voiced obstruents.
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//
append
append
append
append
append
append
append
append

phoneme p

phoneme k
phoneme t

phoneme f
phoneme s

phoneme sh
phoneme ts
phoneme ch

[ voiced I
[ -voiced ]

[ -voiced ]

[ voiced ]

[ -voiced ]

[ voiced I
[ voiced ]

[ -voiced I

//
// Nasals are unspecifi,
//
append phoneme m
append phoneme n

//
// Lexicon entries
//
lexicon "kami" [
morpheme

sigma#1
onset#1 k

nucleus#1 a
sigma#2
onset#2 m
nucleus#2 i

lexicon "kaze" [
morpheme

sigma#1
onset#l k

nucleus#1 a
sigma#2

onset#2 z

nucleus#2 e

]
lexicon "iro" [

morpheme
sigma#1
nucleus#i i

sigma#2
onset#2 r

nucleus#2 o

]
lexicon "eda" [
morpheme

sigma#1
nucleus#1 e

sigma#2
onset#2 d
nucleus#2 a

]
lexicon "ke" [

morpheme
sigma#1
onset#1 k
nucleus#1 e

lexicon "unari" [
morpheme

ed for voicing as well.

[ voiced ]

[ voiced ]

// 'divine', 'paper'

// 'wind'

// 'color'

// 'branch'

// 'hair'

// 'moan'
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sigma#1
nucleus u

sigma#2
onsetX2 n

nucleus#2 a
sigma#3
onsetX3 r
nucleus#3 i

]
lexicon "koe" [ // 'voice'
morpheme
sigmaX1
onsetX1 k
nucleus*l o

sigma#2
nucleusX2 e

]
lexicon "mizu" [ // 'water'
morpheme
sigmaX1
onset#1 m
nucleus#1 i

sigmaX2
onsetX2 z
nucleusX2 u

]
lexicon "seme" [ // 'torture'
morpheme
sigma#l
onset*l s
nucleus#1 e

sigma#2
onsetX2 m
nucleusX2 e

]
lexicon "ori" [ // 'fold'
morpheme

sigma#l
nucleus# o

sigmaX2
onset#2 r

nucleusX2 i

]
lexicon "neko" [ // 'cat'
morpheme

sigmal1
onsetl1 n
nucleusi1 e

sigma*2
onsetS2 k
nucleusX2 o

]
lexicon "sita" [ // 'tongue'
morpheme

sigma#1
onsetS1 sh
nucleus#1 i

sigma#2
onset#2 t

nucleus#2 a
I
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lexicon "kita" [ // 'north'
morpheme
sigmaS1
onset#1 k

nucleusil i

sigma#2
onset#2 t

nucleus#2 a

]
lexicon "siro" [ // 'white'
morpheme
sigma#1
onset#l sh
nucleus#1 i

sigma#2
onset#2 r

nucleus#2 o

]
lexicon "tabi" [ // 'tabi'
morpheme
sigma#l
onset#l t

nucleus#l a

sigma#2
onset#2 b
nucleus#2 i

]
lexicon "taikutsu" [ // 'time'
morpheme
sigma#1
onsetl t

nucleus#l a

sigma#2
nucleus#2 i

sigma#3
onset#3 k

nucleus#3 u
sigma#4
onset#4 ts
nucleus#4 u

]
lexicon "sinogi" [ // 'avoiding'
morpheme
sigma#1
onset#l sh
nucleus#l i

sigma#2
onset#2 n

nucleus#2 o

sigma#3
onset#3 g
nucleus#3 i

]
lexicon "onna" [ // 'woman'
morpheme

sigma#l
nucleus#1 o

coda#1 n
sigma#2

onset#2 n
nucleus#2 a

11:3
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]
lexicon "kotoba" [ // 'words'
morpheme
sigmaX1
onsett1 k
nucleusX1 o

sigma#2
onset#2 t
nucleusX2 o

sigmaX3
onsetX3 b
nucleus#3 a

]
lexicon "doku" [ // 'poison'
morpheme
sigmaX1
onsett1 d
nucleusXi o

sigmaX2
onset#2 k
nucleusX2 u

]
lexicon "tokage" [ // 'lizard'
morpheme

sigma#1
onsett1 t
nucleusX1 o

sigmaX2
onset#2 k
nucleusX2 a

sigmaX3
onsetX3 g
nucleus#3 e

]
lexicon "ko" [ // 'child'
morpheme
sigmati
onsett1 k
nucleusX1 o

]
lexicon "tanuki" [ // 'raccoon'
morpheme
sigmaX1
onsett1 t
nucleust1 a

sigmaX2
onsett2 n
nucleusX2 u

sigmaS3
onsetS3 k
nucleust3 i

]

//
// Rules
//
rule "compounding":

no warnings

match [word +compound morphemet1 morphemet2 initial glottal within morphemet2 optional voiced]
effects:
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//
// Delete the voiced node if there already is one.
// This rule will not apply if no voiced node got matched.
//
delete voiced
insert [+voiced] under glottal
change compound to -

rule "lyman's law":
iterative

match: [morpheme +voiced1l within morpheme +voiced*2 within morpheme]t1
effect: delete voiced 1:1

rule "feature-fill voicing (sonorants)":
iterative

match: [+sonorant glottal !voiced]
effect: insert [+voiced] under glottal

rule "feature-fill voicing (obstruents)":
iterative

match: [-sonorant glottal !voiced]
effect: insert [-voiced] under glottal

//
// Samples
//
generate "split hair (edage)"

[word +compound "eda" "ke"]
generate "groan (unarigoe)"

[word +compound "unari" "koe"]
generate "water torture (mizuzeme)"

[word +compound "mizu" "seime"]
generate "origami paper (origami)"

[word +compound "ori" "kami"]
generate "aversion to hot food (nekozita)"

[word +compound "neko" "sita"]
generate "baby raccoon (kodanuki)"

[word +compound "ko" "tanuki"]

generate "freezing north wind (kitakaze)"
[word +compound "kita" "kaze"]

generate "white tabi (sirotabi)"
[word +compound "siro" "tabi"]

generate "time-killer (taikutsusinogi)"
[word +compound "taikutsu" "sinogi"]

generate "feminine speech (onnakotoba)"
[word +compound "onna" "kotoba"]

generate "Gila monster (dokutokage)"
[word +compound "doku" "tokage"]

// -> edage

// -> unarigoe

// -> mizuzeme

// -> origami

// -> nekojita

// -> kodanuki

// -> kitakaze (*kitagaze)

// -> sirotabi (*sirodabi)

// -> taikutsusinogi (*taikutsujinogi)

// -> onnakotoba (*onnagotoba)

// -> dokutokage (*dokudokage)
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A.6 Ilokano Reduplication

/*
* Ilokano Reduplication
*

* [McCarthy and Prince 86]

* For a complete explanation, see [Kenstowicz 1994, p.623]
*/

#include "cv.ph"

//
// Lexicon entries
//
lexicon "basa" [ // 'read'
morpheme
sigma1
onset#1 b
nucleust1 a

sigmaS2
onsetX2 s
nucleus*2 a

]
lexicon "adal" [ // 'study'
morpheme
sigma#1
nucleus#1 a

sigma#2
onset#2 d
nucleus#2 a
coda#2 1

]
lexicon "dait" [ // 'sew'
morpheme

sigma#1
onset#1 d
nucleus1i a

sigmal2
nucleus#2 i

coda#2 t

]
lexicon "takder" [ // 'standing'
morpheme
sigmaS1
onsetS1 t

nucleus#1 a
coda1i k

sigmaX2
onset*2 d
nucleus#2 e

codaX2 r

]
lexicon "trabaho" C // 'work'
morpheme
sigmaX1
onset#1 t r
nucleus#1 a

sigma2
onset#2 b
nucleus*2 a
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sigma#3
onset*3 h
nucleus#3 o

//
// Rules
//
block "progressive":

//
// Stage 1: Duplicate the entire word.
//
rule "reduplication stage 1 (duplicate word)":

match: [word +progressive morpheme]
effect: copy morpheme under word before morpheme

//
// Stage 2: Delink all consonantal nodes in copied material.
//
rule "reduplication stage 2 (delink consonantal nodes)":

iterative
match matched
no warnings

match: [word +progressive initial morpheme X within
[word +progressive initial morpheme X within

effect: delink consonantali1 from C
delink consonantal#2 from V

morpheme C consonantal]t1 I
morpheme V consonantal]32

//
// Stage 3: Delete the duplicated morpheme node and all its inferiors.
// Since we have delinked all the consonantal nodes, this won't
// affect the segmental (feature tree) material.
//
rule "reduplication stage 3 (delete morpheme)":

match: [word +progressive initial morpheme]
effect: delete morpheme

//
// Stage 4: Insert the reduplication template. Not coincidentally,
// the template is is the maximal syllable (CCVC) for Ilokano.
//
rule "insert template":

match: [word +progressive initial morpheme]
effect:

insert [

morpheme
sigma
onset X1 C1

X2 C2
nucleus X*3 V*3
coda XX4 C4

] before morpheme

//
// Stage 4: Now associate floating consonantal nodes with matching
// consonantal nodes in the template. This fills in the
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// template with as much reduplicated material as possible.
//
// We first have to find an anchor point. Ilokano requires
// the first segment of the reduplicated material to be
// matched with the template, but note that it need not
// associate with the first C/V slot in the template.
//
// Once we've found an anchor, we continue matching up
// segments with free C/V slots in the template. We stop,
// however, when we get to a segment that cannot be matched.
// Getting this right is crucial:
//
// adal -> agadadal (*agadladal)
//
// This is why we have to do this stage with two rules ---
// we have to require all but the first reduplicated segment
// to be next to a segment that's already been matched with
// the template so we don't skip over segments that can't
// match (like [a] in adall).
//
// Note that we need both parts of the "'" (or) in the same
// match specification. If we try to do all the vowels and
// then all the consonants, we could get crossing association
// lines.
//
// Finally, when searching for the anchor we want to look for
// the leftmost consonant. By default, the matcher gives
// precedence to higher tiers when deciding which of two matches
// is the leftmost, so in this case it would favor a match that
// involved the first C/V slot in the template even if it matched
// with a noninitial reduplicated segment. Specifying that
// the matcher should only consider the consonantal tier when making
// ordering judgments is a simple way to always grab the first
// consonantal node.
//
rule "anchor template":

no warnings
consonantal

match: ([X childless V]X1 [unlinked -consonantal]#2)
([X childless C3 [unlinked +consonantal]#4)

effect:
// Vowel case:
link consonantal#2 to V1

// Consonant case:
link consonantalt4 to CX3

rule "fill template":
iterative
match matched
no warnings

match: ([X consonantal linked within X [X]* [X childless VlXi [unlinked -consonantal]#2)
([X consonantal linked within X [X]* [X childless C1]3 [unlinked +consonantal]S4)

effect:
// Vowel case:
link consonantal*2 to Vi

// Consonant case:
link consonantal4 to C3
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//
// Stage 5: Add the prefix ag-
//
rule "add prefix ag-":

match: [word +progressive initial sigma]
effect: insert [sigma nucleus a coda g] before sigma

change progressive to -

//
// Stage 6: We erase any material that's not linked:
//
// - Delete any segments that didn't get linked to
// C or V nodes.

//
// - Delete any V and C nodes from the template
// that didn't get filled.
//
// - Delete any X slots that have no children.
//
// - Remove any onsets or codas with no children.
//
rule "stay erasure 1":

iterative

match: [unlinked consonantal]
effect: delete consonantal

rule "stray erasure 2":
iterative
no warnings

match: [childless C]
effect: delete C

delete V

I [childless VI

rule "stray erasure 3":
iterative

match: [childless X]
effect: delete X

rule "stray erasure 4":
iterative
no warnings

match: [childless onset]
effect: delete onset

delete coda

I [childless coda]

// For absolute correctness, we should merge the two morphemes
// into a single morpheme since the reduplicated string acts
// as a unit with respect to morphology.

//
// Samples
//
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generate "agbasbasa" [word +progressive "basa"]
generate "agadadal" [word +progressive "adal"]
generate "agdadait" [word +progressive "dait"]
generate "agtaktakder" [word +progressive "takder"]
generate "agtrabtrabaho" [word +progressive "trabaho"]
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A.7 Register Tone in Bamileke-Dschang

/*
* Register tone in Bamileke-Dschang
*/
#include "std.ph"

//
// Add tonal root node to vowels.
// This makes them tone-bearing units (TBU's).
//
append
append
append
append
append
append
append
append
append
append

phoneme
phoneme
phoneme
phoneme
phoneme
phoneme
phoneme
phoneme
phoneme
phoneme

i
u
o
schwa
a

aw

gstop
n

ny
ng

[TI
[T]
[TI
[T]
[TI
[TI
[TI
[TI
[TI
[TI

phoneme bare_V [X -consonantal +sonorant]

lexicon "chief" [
morpheme

sigmal#1
nucleus#1 e L#1

sigma#2
onset#2 f
nucleus*2 aw L#1

]
lexicon "axe" [
morpheme
sigma*l
nucleus*1 n L1

sigma#2
onset#2 d z

nucleus#2 a L#1
sigma#3
nucleus#3 bareV L1 down

]
lexicon "horn" [
morpheme
sigma#l
nucleus#1 n L1

sigma#2
onset#2 d

nucleus#2 aw L#1 down
coda#2 ng

]
lexicon "machete" [
morpheme
sigma#1
nucleus#1 ny L1

sigma#2
onset#2 ny
nucleus#2 i L#1 H2 unlinked down

]
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lexicon "song" [
morpheme
sigmal1
nucleusil a Li

sigmaX2
onsetX2 z
nucleus*2 aw L1
codai2 b

]
lexicon "stool" [
morpheme
sigmal1
nucleust1 a L1

sigmaX2
onseti2 1
nucleus#2 schwa L1
codai2 ng

]
lexicon "country" [
morpheme
sigma1
nucleus#1 a Li

sigmaX2
onsetX2 1
nucleusX2 a H2 down
codaX2 gstop

]
lexicon "tail" [
morpheme
sigmaX1
nucleusXl a Li

sigmaS2
onsetX2 s
nucleusX2 a H2
codai2 ng

]

lexicon "leopard" [
morpheme
sigmaX1
onseti1 m
nucleusi1 schwa L1 down
codai1 n

sigmaX2
onsetX2 d z w
nucleus#2 i L1

]
lexicon "rooster" [
morpheme
sigma#1
onseti1 m
nucleusi1 schwa L1 down
codai1 ng

sigmaX2
onsetS2 k
nucleusX2 u L1
codaX2 aw gstop

]
lexicon "dog" [
morpheme
sigmaS1
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onsetl1 m
nucleusl#1 schwa L#1 down#1
coda#1 m

sigma#2
onset#2 b h
nucleus#2 u H#2 down#2

]
lexicon "thief"
morpheme
sigma#1
onset#1
nucleus#1
coda#1

sigma#2
onset#2
nucleus#2
coda*2

]

schwa L#1 down
t

s

aw L H*3

ng

lexicon "animal" [
morpheme
sigma#1
onset#1 n
nucleus#1 a unlinked H1 L#2

]
lexicon "squirrel" [
morpheme
sigma#1
onset#1 k
nucleusl1 a unlinked H#1 L#2
coda ng

]
lexicon "child" [
morpheme
sigma#1
onset#1 m
nucleus#1 aw H1 down

]
lexicon "bird" [
morpheme
sigma#1
onset#1 s
nucleus#1 schwa H#1
coda ng

]

// affixes

lexicon "e" [

morphemel#1
unlinked nucleus
unlinked H

]
lexicon "a" [

morpheme
sigma#1
nucleus#1 bare_V L

]

//
// Rules
//
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rule "TBU cleanup":
iterative
match matched
no warnings

match: [ onset T ] I
effect: delete T1

delete T2

[ coda T ]12

block "continuous": // rules that
rule "contour reduction":

iterative

apply continuously

match: [ T L$1 H2 downil ]
effect: delink L from T

rule "down deletion":
iterative

match: [ H 1]1 T L down 1#2
effect: delete down

rule "double downstep reduction":
iterative
match matched

match: [ T down#1 down*2 ]
effect: delete down#1

rule "floating L deletion":
iterative

match: [unlinked LI
effect: stray erase L

rule "downstep hoppng":
iterative
match matched

match: [ morpheme T31 within morpheme L81 downi1 T2 within morpheme !register ]31
effect: link downS1 to T#2

delink downS1 from Tl1

call "continuous"

rule "H spreading right":
iterative
match matched

match: T H 1]1 [ T L register 1X2
effect: link H1 to T2

delink L2 from T2
stray erase L#2
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call "continuous"

rule "H spreading left 1":
match: [ T L ]1

[ T L ]#2
[ word final T withinword H down ] #3

effect: link H3 to T#2
delink L2 from T*2
link down#3 to T2
delink downS3 from T3

rule "H spreading left 2":
match: [ T H ]1*

[ T L 2
[ word final T withinword H down ] X3

effect: link H3 to T2
delink L2 from TX2

call "continuous"

rule "down docking":
rightmost

match: [ T unlinked down within T ]#1 T 2
effect: link down to TX2

call "continuous"

rule "stray erasure":
iterative

match: [unlinked HI
effect: stray erase H

//
// Examples
//

// table 1

generate "chief of leopards" [word "chief" "e" "leopard"]
generate "chief of roosters" [word "chief" "e" "rooster"]
generate "chief of dogs" [word "chief" "e" "dog"]
generate "chief of thieves" [word "chief" "e" "thief"]
generate "axe of leopards" [word "axe" "e" "leopard"]
generate "axe of roosters" [word "axe" "e" "rooster"]
generate "axe of dogs" [word "axe" "e" "dog"]
generate "axe of thieves" [word "axe" "e" "thief"]
generate "horn of leopards" [word "horn" "e" "leopard"]
generate "horn of roosters" [word "horn" "e" "rooster"]
generate "horn of dogs" [word "horn" "e" "dog"]
generate "horn of thieves" [word "horn" "e" "thief"]
generate "machete of leopards" [word "machete" "e" "leopa
generate "machete of roosters" [word "machete" "e" "roost
generate "machete of dogs" [word "machete" "e" "dog"]
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generate "machete of thieves" [word "machete" "e" "thief"]
generate "song of leopards" [word "song" "a" "leopard"]
generate "song of roosters" [word "song" "a" "rooster"]
generate "song of dogs" [word "song" "a" "dog"]
generate "song of thieves" [word "song" "a" "thief"]
generate "stool of leopards" [word "stool" "a" "leopard"]
generate "stool of roosters" [word "stool" "a" "rooster"]
generate "stool of dogs" [word "stool" "a" "dog"]
generate "stool of thieves" [word "stool" "a" "thief"]
generate "country of leopards" [word "country" "a" "leopard"]
generate "country of roosters" [word "country" "a" "rooster"]
generate "country of dogs" [word "country" a" "dog"]
generate "country of thieves" [word "country" "a" "thief"]
generate "tail of leopards" [word "tail" "a" "leopard"]
generate "tail of roosters" [word "tail" "a" "rooster"]
generate "tail of dogs" [word "tail" "a" "dog"]
generate "tail of thieves" [word "tail" "a" "thief"]

// table 2
generate "chief of animal" [word "chief" "e" "animal"]
generate "chief of squirrel" [word "chief" "e" "squirrel"]
generate "chief of child" [word "chief" "e" "child"]
generate "chief of bird" [word "chief" "e" "bird"]
generate "axe of animal" [word "axe" "e" "animal"]
generate "axe of squirrel" [word "axe" "e" "squirrel"]
generate "axe of child" [word "axe" "e" "child"]
generate "axe of bird" [word "axe" "e" "bird"]
generate "horn of animal" [word "horn" "e" "animal"]
generate "horn of squirrel" [word "horn" "e" "squirrel"]
generate "horn of child" [word "horn" "e" "child"]
generate "horn of bird" [word "horn" "e" "bird"]
generate "machete of animal" [word "machete" "e" "animal"]
generate "machete of squirrel" [word "machete" "e" "squirrel"]
generate "machete of child" [word "machete" "e" "child"]
generate "machete of bird" [word "machete" "e" "bird"]
generate "song of animal" [word "song" "a" "animal"]
generate "song of squirrel" [word "song" "a" "squirrel"]
generate "song of child" [word "song" "a" "child"]
generate "song of bird" [word "song" "a" "bird"]
generate "stool of animal" [word "stool" "a" "animal"]
generate "stool of squirrel" [word "stool" "a" "squirrel"]
generate "stool of child" [word "stool" "a" "child"]
generate "stool of bird" [word "stool" "a" "bird"]
generate "country of animal" [word "country" "a" "animal"]
generate "country of squirrel" [word "country" "a" "squirrel"]
generate "country of child" [word "country" "a" "child"]
generate "country of bird" [word "country" "a" "bird"]
generate "tail of animal" [word "tail" "a" "animal"]
generate "tail of squirrel" [word "tail" "a" "squirrel"]
generate "tail of child" [word "tail" "a" "child"]
generate "tail of bird" [word "tail" "a" "bird"]
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