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Abstract
Feedback linearizing generator excitation control designs have demonstrated improved
performance over conventional controls, such as power system stabilizers, in simula-
tions. This type of control aims to cancel the nonlinearities in the dynamics of the
generator, resulting in a closed-loop system that is linear. However, feedback lineariz-
ing control. or FBLC, depends on a measurement of the rotor acceleration, which is
subject to considerable noise from shaft vibrations. This thesis examines the impact
that these vibrations have on the operation of FBLC. Several possibilities for reducing
the effects of torsional shaft dvnamics on control performance are also explored.

The torsional dynamics are represented by a linear model. The addition of these
dynamics does not affect the linearity of the closed-loop FBLC system, although the
closed-loop eigenvalue placement is distorted. Furthermore, the damping of the shaft
modes is much larger in the presence of FBLC. In fact, FBLC is capable of damping
out shaft oscillations that are otherwise unstable due to subsynchronous resonance.
However, the torsional dynamics greatly increase the tendency of the field voltage to
saturate at its upper and lower limits, degrading the performance of FBLC.

Several options for improving FBLC performance are considered. The accelera-
tion measurement may be low-pass filtered; however, the phase shift from the filter
in the torsional range is capable of exciting the shaft modes, leading to instability.
Redesigning FBLC to include torsional dynamics produces even larger oscillations in
the field voltage and poor performance in practical situations. An alternative control
strategy is sliding mode control, which allows for a range of modeling errors. Because
torsional oscillations produce large, high frequency uncertainties, sliding mode con-
trol does not provide any improvement over FBLC. Without modifications, FBLC is
observed to remain stable over large variations in shaft parameters.

Thesis Supervisor: Marija D. Ili
Title: Senior Research Scientist
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Chapter 1

Introduction

Recently, several nonlinear schemes for generator excitation control have been pro-
posed [1, 2]. These nonlinear schemes have demonstrated superior performance in
simulations to conventional controls. However, nonlinear generator excitation control
requires a measurement of the acceleration of the rotor, and this measurement is very
susceptable to noise arising from torsional vibrations in the generator shaft. The goal
of this thesis is to determine the effects of these vibrations on the performance of
nonlinear control and find ways to minimize the impact of the shaft dynamics on the
closed-loop operation of the system.

The principle nonlinear control method that is examined is Feedback Linearizing
Control, or FBLC. The rationale of FBLC is to use the control input to cancel the
nonlinearities of the generator dynamics and produce a closed-loop generator model
that is linear [2, 3]. Sliding mode control is another nonlinear control method which
allows for uncertainties in the system parameters. A sliding control design will be de-
veloped and compared with FBLC to see which design is less sensitive to the presence
of shaft oscillations.

There are two basic approaches for examining dynamical systems of interest in
this thesis. The first approach is to develop a state-space model for the system and
use analytical methods of study. In particular, if the state-space model is linear, there
is a large body of theory which can be applied in order to characterize the system's
behavior [4, 5]. The second method is to use numerical simulation routines to calculate
the response of the system to known inputs [6]. This method does not provide the
insight that the linear analysis does, but the simulation routines can provide accurate
results despite the presence of highly nonlinear dynamics. Simulation is also much
more generally applicable; it is not as restricted as the analytical methods. Both
methods complement each other very well; the simulation routines can verify the
predictions of the analysis and show the effects of dynamics not included in the linear
model.

The first step in studying the problem is to obtain a good dynamic model of the
shaft. Shaft models have been developed and used in the study of subsynchronous
resonance because of the importance of shaft dynamics in the phenomenon [7, 8, 9, 10].
Shaft models have also been used in other studies, such as the effect of torsional
dynamics on shaft fatigue [11]. The shaft models used for these purposes are linear
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models, and we will use a similar model to simulate shaft vibrations.
After a shaft model is developed, it is coupled with the generator model to form a

composite state-space model of the generator/shaft system. The feedback linearizing
controller without torsional modeling is used to control the generator/shaft with
torsional dynamics. It can be shown that this combination is still a stable linear
system, although the addition of torsional dynamics do alter the performance of the
system. The most significant consequence of the torsional dynamics is that they
cause the field voltage to experience high amplitude, high frequency oscillations. The
field voltage thus reaches its upper and lower limits much more frequently with the
presence of torsional oscillations. Field voltage saturation transforms the system into
a nonlinear, open-loop system, reducing the effectiveness of the control.

Since the field voltage oscillations cause problems, it is reasonable to try to re-
move the oscillations by averaging the field voltage over one cycle of a 60 Hz wave.
This technique, however, is observed to be ineffective and even damaging. The av-
eraged field voltage does not damp the torsional oscillations and in some cases, even
excites these modes. The use of a Butterworth filter on the acceleration measurement
allows more control of the phase, and in certain cases, is able to suppress the field
voltage saturation and effectively decouple the torsional dynamics from the low fre-
quency generator response, allowing FBLC to perform almost as well as it did without
torsional dynamics. However, this approach is potentially dangerous, as unmodeled
dynamics at certain frequencies are likely to be excited by the presence of the filter.

Another possible scheme for handling the torsional oscillations is to redesign the
controller to include torsional state information. However, this technique is observed
to produce enormous oscillations in the field voltage, and it provides little control of
the system.

The FBLC controller significantly reduces the damping of the torsional modes.
In fact, the damping of these modes is sufficient to prevent these modes from being
excited due to the presence of a series capacitor on the transmission line. FBLC
is capable of stabilizing a system which is otherwise unstable from subsynchronous
resonance. Since an FBLC controller with filtering is much less effective at damp-
ing out the torsional oscillations, it is not surprising that the filtering makes FBLC
less effective in stabilizing systems prone to subsynchronous resonance, although the
filtered controller is able to prevent the oscillations from growing without bound.

Since it may well be best to not modify FBLC to include torsional dynamics, it is
important to know whether FBLC without torsional modeling remains stable in the
presence of torsional dynamics. It is observed that the system does indeed remain
stable for a variety of parameter values, although proving this assertion is difficult.

Finally, a sliding mode controller will be implemented and tested on a generator
with torsional dynamics. It is expected that sliding control will improve on the
performance of FBLC, since sliding control takes into account uncertainties in the
model. However, it is observed that the uncertainties from torsional dynamics are
high frequency oscillations of large amplitude, and the resulting performance of sliding
control is essentially no different from FBLC.
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Generator I Infinite Bus

Figure 1-1: Diagram of the single machine, infinite bus model.

1.1 Single Machine Infinite Bus (SMIB) Model
Throughout this thesis, the system being studied is a single generator connected
through a transmission line to an infinite bus, as shown in Figure 1-1. This model
generally provides a good representation of a single generator connected to a large
network and will allow us to analyze the effects of torsional oscillations in the shaft
without being burdened by extraneous complications.

1.1.1 Generator Model
For the purposes of controller design, a third order dynamic model is used to represent
the generator. This model has a state vector [6 w Eq]T and evolves according to:

d6 = D -Oo (1.1)

- D+ EdH d
+

q - qPm (1.2)

doEq: T1 [ Eq (d- dd T End] (1.3)

E = (q - Xq)iq (1.4)

The third order generator model is used in all of the theoretical developments through-
out this text.

However, in numerical simulations a higher order model of the generator is used
in order to include the effects of generator dynamics that are not modeled in the
controller design. The generator model for simulations is a sixth order model with
state vector [6w E q E q E E]T) [2, 12, 13]. This model is used only for simulations
and is not used for theoretical explanations of the results.
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1.1.2 Model of the Network
The transmission line model is simply a constant admittance of G + jB between the
generator and the infinite bus (Figure 1-1). V1 = Vd1 + jVql is the generator voltage,
and V2 = Wd + jWq is the infinite bus voltage. Note that the transmission line
admittance includes the armature resistance and transient reactance, so that 1 1 may
be calculated by taking the inverse Park transform of Ed and Eq [2]:

Vl = (Ed + jEq)e- j( r/ 2- ) (1.5)

The exponential in this equation may be written as:

e- j( r/ 2- J) = sin 6 - j cos (1.6)

The real and imaginary components of V1 are easily found by multiplication:

Vdl = E sin 6 + Eq cos 6 (1.7)

Vq = E sin 6 - Ed cos 6 (1.8)

In the SMIB model, it is possible to express the armature currents id and iq as
functions of the state variable Eq. These equations are used in order to analytically
evaluate the partial derivatives which are required by nonlinear control methods.
Equation (1.5) demonstrates that the generator terminal voltage is a function of
Eq. Since V1 and V2 are both known, we can find the transmission line current

il = Idl + jIql:
I1 = (G + jB) ( 1 - V2) (19)

Upon substituting for 1 1 and V2 and separating the real and imaginary parts, we find:

Idl = G(Vdl - Wd) - B(Vql - Wq) (1.10)

qll = B(Vdl - Wd) + G(Vql - Wq) (1.11)

Finally, we apply a Park transform to I, to find the armature currents in the machine
frame of reference:

id + jiq = Ilej( 7r/ 2- 6) (1.12)
Note from complex algebra that:

ej (7/ 2- 6 ) = sin 6 + j cos 6 (1.13)

Combining equations (1.10) and (1.11) with equation (1.13):

id = [G(Vdl - Wd) - B(Vql - Wq)] sin - [B(Vdl - Wd) + G(Vql - Wq)] cos (1.14)

iq = [G(Vdl - Wd) - B(Vql - Wq)] cos 6 + [B(Vdl - Wd) + G(Vql - Wq)] sin6 (1.15)
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We will rearrange the terms into a more convenient form:

d (-GWd + BWq) sin 6 + (BWd + GWq) cos 6 + Vdl(G sin -B cos 6)

+ Vq (-Bsin - Gcos ) (1.16)

iq = (-GWd + BWq)cos6 - (BWd + GWq)sin6 + Vdl(Gcos 6 + Bsin6)
+ Vq (-B cos 6 + G sin 6) (1.17)

The next step in the derivation is to substitute equations (1.7) and (1.8) into
equations (1.16) and (1.17):

id = (-GWd+BWq)sin6+(BWd+GWq)cos6+ EGsin2 
+ (E'qG - EdB) sin 6 cos - E'B Cos2 6 - E'B sin2 6

+ (EB - EqG) sin cos 6 + EdG cos2 6 (1.18)

iq = (-GWd + BWq) cos6 - (BWd + GWq) sin 6 + EiB sin2 6
+ (EqB + EG) sin 6 cos 6 + EqG COS2 6 + EqG sin2 6

+ (-EG - E'B) sin cos + EB cos26 (1.19)

These equations reduce to:

d =- GE - BE' + (BWq - GWd) sin 6 + (BWd + GWq) cos 6 (1.20)

iq = GEq + BE + (-BWd - GWq) sin + (BWq - GWd) cos (1.21)

The final step is to remove Ed from these equations. Recall that in the third order
machine model, E} is expressed as an algebriac constraint:

Ed (xq - )iq (1.22)

Since Ed is a function of iq, we first substitute the relation for Ed into equation (1.21)
to find q explicitly as a function of Eq and network parameters:

GE' + (-BWd -GW) sin 6 + (BWq - GWd) cos (1.23)
I- 1 - B(Xq- Xjq) 

Similarly, id may be expressed

id = G(xq - 'q)iq - BE; + (BWq - GWd) sin + (BWd + GWq) cos (1.24)

Instead of substituting for iq in this last equation, we will simply express id as a
function of iq.

Feedback linearizing excitation control requires knowledge of the partial deriva-
tives o and a, [2]. Since we now have mathematical expressions for id and iq, we

q q
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can evaluate these partial derivatives analytically:

aEq (1.25)
aEq 1 B(Xq - xq)

aid G2(xq-X q) -, 2 (q) -B (1.26)
DEq 1 - B(xq -xq)

FBLC also requires the time derivative of id and iq, denoted as d and q. We can
express these derivatives analytically as well:

1-=~~ [[-Eq - (Xd- Xd)id] + Efd
1 - B(xq - xq) dO T

+ (w - o)[(-BWd - GWq) cos 6 + (GWd - BWq) sin 6]] (1.27)

B B
d - oT(E + (Xd-X id) T) o Efd + G(Xq -Xq)q

+ ( - wo)[(-GWq - BWd) sin 6 + (BWq - GWd) cos 6] (1.28)

In these equations, we have used the state equation from the generator model (equa-
tion (1.3)) to substitute for Eq.

1.1.3 Sample Model for Simulations
In order to obtain meaningful simulation results, the equations must include numbers
that are representative values of the generator and network parameters. The generator
parameters for all simulations in this thesis may be found under the Oswego unit (bus
4305) on page 102 in [12]. The network parameters are: G = 0.072758, B = -1.1126,
Wd = 0.9164, and Wq = 0.20473. With these parameters, the equilibrium value of 6,
denoted as 6, is 1.3036 radians.
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Chapter 2

Modeling of Torsional Dynamics

2.1 Model of Shaft Dynamics
Figure 2-1 shows a typical shaft in a power generator. The generator, turbine, and
shaft are commonly modeled as a series of rotating masses connected by torsional
springs. Each mass also experiences damping torques. The two turbines will be
denoted as masses 1 and 2, while the generator will be referred to as mass e.

We can develop a mathematical model for the system by starting with Newton's
law for rotating masses:

dt2 =E7i (2.1)
idt2

where J is the moment of inertia and Ti is one of n torques acting on the mass. The
equations for our shaft system are [7, 11]:

dt2 Tml - DiwL - K12(01 - 02) (2.2)

d2 02
J Tdm2 - D2w 2 - K(12(02 - 0) - K2e(0 2 - e) (2.3)

dt2

d 2
- Te - Dewe, - K 2e(0e - 2) (2.4)

Oi and wi are the angle and speed of each of the masses. Tml and -m2 are the me-
chanical torques generated by the turbines, while Te is the electrical torque used by
the generator. The springs are assumed to obey Hooke's Law; the restoring torque
is proportional to the angle of displacement. K12 and K 2e are the spring constants
for the two spring sections in the shaft. The damping torques are proportional to
the angular speed of the masses; Di represents the damping coefficient of each mass.
Some models [7] also include shaft damping torques which are proportional to the
speed difference across the shaft section. Such models include torque terms of the
form -D 1 2(W 1 - W2 ). Generally, the shaft damping torques are very small and often
neglected; this approach is used in [11] and is also used throughout this thesis.
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Figure 2-1: The torsional spring-mass model.

2.2 Per Unit Equations
In common practice, per unit equations are used, where the quantities are dimension-
less and given with respect to a fixed base. To convert the torsional model to a per
unit system, we first multiply equations (2.2) through (2.4) by w,O which is the base
frequency of the system. Since Pi = Tiwo, where P is power, we have:

d2 01JWo d-t2 = Pml - Dlwowl - K12wo(01 - 02) (2.5)

d202
Jwo dt = Pm2 - D2wo 2 - K12wo(02 - 0) - K2 Wo(02 - Qe) (2.6)

d 2dt2e

JWO d2 -- - DeWoWe - K 2eWo(Oe - 02) (2.7)

Next, we define a base quantity and denote it by SB3. SB3 has dimensions of power.
After dividing the preceding equations by SB3, each term will be dimensionless. We
further define:

JW2Hi ° (2.8)
2 SB3

Di W2Di= S3 (2.9)
SB3

KiW2K Ki- (2.10)
SB3

Pi
Pi SB (2.11)

Hi has units of time, Kiu has units of time -1 , and Di, and Piu are dimensionless.
After dividing equations (2.5) through (2.7) by SB3 and substituting the quantities
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defined above, we obtain [7]:

2H1 d281 0 1 - 2
ogo dt2 = Plu - Dl-- (2.12)
w0 dt 2 W,

2H2 d202 w2 02 - 81 02 - e
= P2u - D2 -K 12_u - K2 eu (2.13)

gO dt2 Wo W o Wo

2He d28e Pe W - e e- 82 (2.14)
wo0 dt 2 Wo Wo

Up to this point, we have been giving angles with respect to an absolute, fixed
reference. However, electric machines normally operate at a given speed (), which
is non-zero. We wish to change the angles in the equations so that the component
which is proportional to () is eliminated. In other words, we will substitute:

8 = 6i + o t (2.15)

Actually, since 0i = 6 i, and the Wot terms cancel in equations (2.12) through (2.14),
we can simply replace 8i with 6i in these equations, giving:

2H 1 d2 61 _ 1 6 - 62(1
= Plu - D1u - 12- K12 (2.16)

Wo dt 2
Wo Wo

2H2 d252 o2 62 - 1 62 - e
2 = P2u - D2u- - K2eu - (2.17)

go dt 2 Wo Wo Wo

2He d2 6e We 6e - 2
2 = Peu - Deu 2e (2.18)

Wo dt 2
Wo Wo

Equations (2.16) through (2.18) are the per unit equations for the torsional shaft
system.

2.3 State-Space Model of Shaft
The equations in the previous section can be readily converted into a state-space
model. A state-space model has equations of the form [4, 5]:

= Ax + Bu (2.19)

y = Cx + Du (2.20)

x is the vector of states, u is the inputs, and y is the outputs. For the shaft model,
the choice of outputs is rather arbitrary and not related to the dynamics of the states;
hence, we are only concerned with equation (2.19) here.

The torsional model has six states; namely, the angle and rotational speed of each
mass. There are three inputs to the system: the two mechanical powers and the
electric power. Because:

6i = i - WO (2.21)
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we must include some constants in the state vectors. The conversion of equations (2.16)
through (2.18) into matrix form produces the state-space representation of the tor-
sional shaft model:

31

W1 - Wo

62

W2 - Wo

_)e - Wo

(2.22)

- Du
- D2.
+ Dn

0

K12u
2H1

0

0 _ K12u+K2eu
2H 2

O 0

O ~ K2
2H,

0 0 0

0 0 0

1 0 0

_ D2u
2H 2 2H 2

0

0 0 1

o _ K2u _ Deu
2He 2He

0 o 0

WO 0 O
2H1

O O 0

2H
2H2 0

O0 O O

2He -

2.4 Sample Torsional Shaft Model
In order to represent the effects of shaft oscillations on nonlinear control, a shaft model
with typical parameters is needed. The model developed here was created by using
values for Ji, Ki, and Di from examples in [7]. After converting these quantities to per
unit values, the parameters were normalized so that the shaft/generator system would
have a predetermined total inertia (Htot = 3.5s) while preserving the frequencies of
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(2.23)

0 1

_ K12u _ Dlu_
2H1 2H 1

O 0

K12
2H 2

0

0

(2.24)

B = (2.25)

P1.
U - P2.

-P.



Frequency (Hz)
1,2

3,4
5

6

-0.07 + j196.54
-0.07 ± j151.24

0.00
-0.14

31.28
24.07

Table 2.1: Eigenvalues and frequencies of the torsional state-space shaft model.

the original system. The resulting shaft parameters are:

H1 = 0.3474s K1 2 u = 20158s -1 D1l = 0.08869
H2 = 1.9927s K2eu = 40219s -1 D2 u = 0.5521 (2.26)
He = 1.160s Deu = 0.3131

Now that we have some representative numbers, we can build the matrices that
describe the state-space model for the shaft. With the parameters shown above, the
eigenvalues of the matrix in equation (2.24) are shown in Table 2.1. In this example,
the shaft has oscillatory modes at 24.07 Hz and 31.28 Hz. Typical shaft frequencies
are in the range of 10 to 50 Hz, so our example frequencies are well within that range
[7].
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Chapter 3

Effects of Torsional Dynamics on
Feedback Linearizing Control

3.1 The Combined Shaft and Generator Model
We will now develop a model for the entire shaft/generator system by combining the
shaft model of the last section with the third order model for the generator from the
introduction. Recall that the generator model includes the state variables 6, w, and
Eq, while Ed is treated as an algebraic variable. Notice that 6 = 6, and w = we,
meaning that two generator states are also state variables in the shaft dynamics.
These two states form a bridge between the shaft and the generator. The equations
for the shaft/generator model are:

e = We - Wo (3.1)

Wpe = _h_ [ e2-2e e De We - Eid - Eiq] (3.2)2 He W[IWO2e W0 WO J

E [-E - (Xd -Xdl)id + Efd] (3.3)

Ed = (xq - x)iq (3.4)

61 W1 - WO (3.5)

W_ 61 D 62
= - K - 2 -- Dlu + EK 12u- + P (36)2H1 L o - id - ] (3.6)

2 = W2 - Wo (3.7)

· 2 O= 2 [K1 2u - (K12u + K 2eu) -- D 2 + K 2 eu + P2u (3.8)
Notice Wo W Wo 7o0

Notice that P, - Edid + Eiq.
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3.2 Equilibrium Conditions
The model shown in the last section has three inputs. Since the two mechanical power
terms change very slowly with time and are virtually unchanged during a fault, we
would like to treat these terms as constants and remove them from the equations, so
that the only system input is the field voltage. To do this, we will need to find an
equilibrium point and subtract the conditions for equilibrium out of the equations,
so that only deviations from equilibrium are shown in the equations. We are only
concerned here with the steady state value of the six mechanical states (6i, wi).

To find an equilibrium point, we simply note that at equilibrium, all time deriva-
tives must be zero. We quickly discover that at equilibrium,

W1 = W2 = We = W (3.9)

Next, we must perform some algebra to find the steady state values of the angles. Re-
call from Chapter 1 that the steady state value of 6, is 60. Then, from equation (3.2),
we find that the equilibrium value 620 of 62 is:

Wo
62o = o + K2 (Peu + Deu) (3.10)

K2eu

where we have replaced Ed E + Eqiq with Peu. From equation (3.6):

61 = 620 + (P1 - D1u) (3.11)
K12u

or: W o Wo
61 = 6 + K (Plu - Dlu) + K (Peu + Deu) (3.12)

K12u K2eu

However, these equations are invalid and meaningless unless equation (3.8) is also
zero with these equilibrium values. Substitution of 61 = 1o, 62 = 620, and 6 e = o
into equation (3.8) gives the relation:

Plu - D - Peu - Deu - D2 + P2u = 0 (3.13)

or:

Plu + P2u = Peu + Dlu + D2u + Deu (3.14)

This equation simply states the obvious observation that the power in must equal the
power out in order for equilibrium to exist. Power enters the shaft/generator from the
mechanical turbines and is taken out by the generator and also the frictional damping
on each mass.

Note that Peu is not constant and changes significantly in a short time during a
fault. Therefore, equations (3.10) and (3.12) are only true if the equilibrium value of
Peu is used in these equations. Before continuing, we wish to remove Peu from the
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equations for 6 1, and 620:

61o = 6 + W- (Plu - Dlu) + (Plu + P2u - Dlu - D2u) (3.15)
K12u K2eu

Wo
620 = 60 + K (Pl + P2U - Di - D2 ) (3.16)

K2eu

Now that we know the equilibrium conditions and state values, we may rewrite
the generator/shaft model equations as:

6e = We - Wo (3.17)

W, 62 6 We 
e K 2 [ 2eu K2eu Deu Ed - qq] (3.18)

2H, W W, WO

E 1 [-Eq - (Xd - d)id + Ed] (3.19)

E = (xq - Xq)iq (3.20)

61 = Wl - o (3.21)

C, = -Kl2u -Dlu + K12 2 (3.22)
2H1 W W0 W J

62 = W2 - Wo (3.23)

w__ 61 - 62-620 W2 W- 0 6- 6,a
2 WO K12u51- - (K12u + K2eu) 2 - D2 W2 - + K2eu -

2H 2 WO Wo Wo W0

(3.24)

3.3 Conversion to Brunovsky Form
Since we wish to apply feedback linearizing control to the generator, we need to
convert the three generator states into Brunovsky form. (We will ignore the four
shaft states for now.) A third order system in Brunovsky form with one input has
states such that [2]:

Z1 = Z2 (3.25)

z2 = Z3 (3.26)

Z3 = p(z) + (Z)U (3.27)

where p(z) and (z) are nonlinear functions of the state variables z = [Zl Z2 z3]T. In
our case, since the only input to the generator is the field voltage, u = Efd.

The procedure for converting the third order model to Brunovsky form is discussed
in detail in [2, 3]; we only give here the result, which is:

Z1 = 6e - 60 (3.28)
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Z2 = W -Wo (3.29)

Z3 - We - 0 e (3.30)

Z3 = (e = p(Xg) + (Xg)Efd (3.31)

p(Xg) 2Ho -K2eU2 + K 2eu W + Deu W
2H, Do oo CWO

'' '" El Oi ' El Oid' ,-Edid+Edd +EdiqEd - EEqI
o o [E,0 aiq , aiZd J2HTo [E; + (d - )id] [ Eq, + Edd + iq (3.32)

9 - 2HeITo [E qq +E , iq (3.33)

The equation for Z3 = Le was derived by differentiation of equation (3.18); the partial
derivative terms are needed in order to account for the fact that id and iq are functions
of Efd [2].

Note that these equations are expressed in terms of the old state variables xg
[6e We EI]T . Although it is theoretically possible to transform xg into z, the transform
is extremely complex and difficult to express analytically. Since the components of
x9 are readily available through measurement, p and P are expressed as functions of
xg.

3.4 Feedback Linearization of the Generator
The theory of feedback linearization is discussed in great detail in [2, 3]; for now, it
simply suffices to say that by applying the following input:

u z - pd(Xg) (3.34)

the resulting system will be linear, with poles placed according to the components of
a = [ao al a2]T. The d subscript refers to the equations for p(xg) and 3(xg) used to
design the controller. A feedback linearizing controller (FBLC) was designed in [2],
and this design will be analyzed here. However, the design of the controller did not
account for torsional modes in the shaft; instead, pd(xg) and 3d(xg) were calculated
as:

co o [D)e Did Ldd27, ;/ E q :q_, . aid .Pd(Xg) - D Edd -E Eid- -dFlE q '2H d qq q da(335dq 

IO \"L[E t El ai + EHTl [idE + i (3.35)
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(3.36)/3d(Xg)=- W 2HTE[ qE +E + i q
2HTd 0 [EQ ' q

where H = H1 + H2 + He. Note that the shaft damping is assumed to be D instead
of Deu in the controller design.

Because (xg) = H3d(Xg), when the generator/shaft model is linearized with
pd(Xg), the resulting system is still linear, although some extra terms appear in the
relation for (e:

H T Wo - w 2 We We We 1
Z3 = ,e H a - K2eu + K2eu + Deu D I

He 2 He L4 C( o o o
(3.37)

The consequence of the additional terms of equation (3.37) is that the poles of the
system may be moved from their intended locations.

3.5 Feedback Linearized State-Space Model
The state-space model is formed simply by writing equations (3.17) through
and equation (3.37) in matrix form:

xR= Ax

0

0

1 0

0 1

aolH 2al H-K 2,, 2a2H+D-Deu
H e 2H

0 0

0

0

0

0 0

6e - 60

We - Lo

61 - 61o

61 - o
52 - 20

W2 - Wo

O O

O O

O O

0 1

0 _ K12u _ Dlu
2H1 2H1

0 0 0

0 0

0 0

0 K2eu
2He

0 0

K12 u
2H 1

0

0

1

(3.24)

(3.38)

(3.39)

(3.40)

K2HL 2H0 K12 0 0 _ K12.+K2eu2H2 2H2 2Ha

Note that, with the feedback linearizing controller, the system is
inputs). Furthermore, the components of the state vector x are all

closed loop (no
deviations from
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Frequency (Hz)
1

2,3

4,5
6,7

-6.99
-4.12 + jl.04

-2.69 ± j195.55
-12.52 ± j150.52

0.1662
31.12
23.96

Table 3.1: Eigenvalues and frequencies of the shaft/generator model with feedback
linearizing control.

equilibrium. It is both interesting and important to point out that even though the
shaft dynamics were not modeled in the controller design, the closed-loop generator
system with feedback linearizing control (FBLC) remains linear in the presence of the
shaft dynamics.

3.6 Sample Model of FBLC with Torsional Dy-
namics

Since we have a model for an FBLC-controlled generator with shaft dynamics, we
can use the shaft model parameters from Section 2.4 to find the eigenvalues of the
entire shaft/generator system with feedback linearizing control, as represented by
equation (3.40). We will assume that the controller was designed to place three poles
at -5, so that a = -125, a = -75, and a2 =-15. With this controller design, the
resulting eigenvalues of the system are shown in Table 3.1. Notice that the torsional
modes are still present at 24 Hz and 31 Hz, but the damping of these modes has
increased greatly with the addition of FBLC. Furthermore, the poles which were
originally located at -5 have now moved. Two of these poles form a conjugate pair,
giving rise to a slow oscillatory mode at 0.17 Hz.
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3.7 Verification of the Feedback Linearized Gen-
erator Model with Shaft Dynamics

It would be nice to find a way to show that the model in equation (3.40) is a valid
representation of the system. In fact, it is possible to do so by forming a model of the
generator, shaft, and FBLC controller and numerically simulating the model. The
simulation results should be the same as the results predicted by equation (3.40).

We will compare the two models by disturbing the states slightly from equilib-
rium and then observing the transient response. Using the same state vector as
equation (3.39), the initial values of the states for the test will be:

x(0) =

1.45 x 10- 6

1.18 x 10- 2

-3.80 x 10-2
0

0

0

0

(3.41)

From linear systems theory, the time response of a state-space system to a given
initial condition is [4, 5]:

x(t) = eAtx(0) (3.42)

The predicted time response is calculated by applying equation (3.42) with A as
defined in equation (3.40).

The predicted and simulated responses to the given disturbance are shown in
Figures 3-1 through 3-7. Note that since the purpose is to verify the matrix model,
the generator model used in these simulations is the third order model. The predicted
and simulated results are virtually identical, thus indicating that the state matrix of
equation (3.40) is an accurate model of a feedback linearized generator with torsional
shaft dynamics.

Another way to verify the matrix model is to perform a numerical linearization of
the model used for the simulations. The linearization can be performed by the same
math package used to perform the simulations. Table 3.2 shows the eigenvalues of
the simulated model linearized at the equilibrium point. These eigenvalues are almost
identical to the eigenvalues of A in equation (3.40), again establishing the validity of
the linear matrix model.

3.8 Reduction of the Feedback Linearized Gen-
erator Model with Shaft Dynamics

As we have seen, the model for the generator/shaft system has seven states. We
would like to be able to reduce the order of the model to facilitate our analysis. Some
possible methods for doing so are examined below.
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Predicted Impulse Response

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time (s)

Figure 3-1: Predicted response of 6 - 6 to a small disturbance.

Simulated Impulse Response

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time (s)

Figure 3-2: Simulated response of 6 - 6 to a small disturbance.
essentially identical to the predicted response.

This response is
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Predicted Impulse Responsex 10-3

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time (s)

Figure 3-3: Predicted response of w - w, to a small disturbance.

Simulated Impulse Response

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time (s)

Figure 3-4: Simulated response of w - w, to a small disturbance. Again, this response
matches the predicted response.
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Predicted Impulse Response
0.8

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time (s)

Figure 3-5: Predicted response of cJ to a small disturbance.

Simulated Impulse Response

time (s)

Figure 3-6: Simulated response of 6J to a small disturbance. The simulation produces
the expected result.
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Simulated Impulse Response

3

2.5

2

1.5

1

0.5

0 0.5 1 1.5 2 2.5
time (s)

Figure 3-7: Simulated response of
not saturate at its upper or lower

Eld to
limits,

3 3.5 4 4.5 5

a small disturbance. The field voltage does
so the system remains linear for all time.

Eigenvalue
-7.00

-4.12 ± jl.05
-2.69 ± j195.55
-12.52 ± j150.52

Frequency (Hz)

0.1665
31.12
23.96

Table 3.2: Eigenvalues and frequencies of the numerically linearized shaft/generator
model with feedback linearizing control. These values match closely to the values in
Table 3.1.
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3.8.1 Singular Perturbations
One method for model reduction is based on the argument that some states settle
down to equilibrium much more quickly than others. If the state vector x is broken
down into a slow component xl and a fast component x2, then the state-space model:

x- Ax (3.43)

may be written as:
xl = Allxl + A1 2x 2 (3.44)

X2 = A21x 1 + A22x 2 (3.45)

We can convert x2 from a dynamic state to an algebraic variable by imposing the
condition:

x2 = 0 (3.46)

meaning that after any appreciable time, the states in x2 will have reached steady
state. With this condition, x 2 is related to xl by:

x2 - -A 2
1 A 21x 1 (3.47)

and the model reduces to [14]:

xi = [All - A 12A 2 lA 2 1]xI (3.48)

We would like to assume that the torsional dynamics (61, 2, WC, w2) are fast
relative to the generator dynamics. Unfortunately, this method does not work when
applied to the feedback linearized generator/shaft model. Note in Table 3.1 that the
real parts of the eigenvalues are all of the same order of magnitude, meaning that
disturbances will decay at approximately the same rate in all of the states. These
eigenvalues indicate that none of the states decays at a fast rate relative to the other
states; therefore, there is no basis for time scale separation. If we try to apply this
method, we find that A 12A- 1 A 21 = 0 and the reduced order model is:

XI = All 1x (3.49)

The eigenvalues of All are -0.02 and -22.69j130.57. None of these eigenvalues are
close to the eigenvalues in Table 3.1. If the singular perturbations assumption were
valid, we would find that the eigenvalues of the reduced system are a subset of the
eigenvalues of the full order system. The main cause for this situation is the fact that
in this case, O( All) O(A 12 ). The starting assumption in singular perturbation
theory is that the model has O(IIA11 I) O(lIAI2 2 l) = 1 and O(A1I2ll) O(A 21 l) =
e < 1. Consequently, we must find another approach for examining the dynamics of
the system.
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3.8.2 Selective Modal Analysis
Another method for obtaining a reduced order model is known as selective modal
analysis, or SMA. In this method, a participation matrix is used to determine which
states contribute to the various modes of the system. Recall that the unforced system:

x= Ax (3.50)

has the solution:
x(t) = eAtx(O) (3.51)

If we assume that A is diagonalizable, then by definition [15]:

M-'AM = D (3.52)

where:

D = r 1 (3.53)

An
W1

x -t .w x( ztv (3.55)

This equation shows howare the eigenvalues of A, while vi arend th right eigenvectors andof A dicT are the
left eigenvectors. Notice that wivj equals imode of theand if i systemIf we rerite
equation (3.51) in terms of the eigenvalues and eigenvectors, we find that [16]:

n

x(t)= w x(O)e itvi (3.56)

This equation shows how the eigenvalues and eigenvectors of A dictate the system
response. Each right eigenvector vi indicates a mode of the system, which decays
(or grows) at a rate determined by Ai. The left eigenvector WiT indicates how much

contribution the initial state x(O) gives to mode i.
The participation matrix P is calculated by performing element-by-element rnul-

tiplication (not standard matrix multiplication) of the matrices (M-1 )T and M. In
other words, each column of P consists of the element-by-element product of wi and
vi. If Pki denotes the element in the k-th row and i-th column of P, then Pki indicates
the contribution of the k-th state to the i-th mode, or equivalently, of the i-th mode
to the k-th state. To illustrate what this means, let's set the initial value of state k
to 1 while all other states start at zero. The response of the k-th state for all time
will then become [16]:

n

Xk(t) Z= Pkie it (3.57)
i-1
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Equation (3.57) clearly demonstrates that the elements in each column of the k-th
row show how much of each mode appears in the time response of the k-th state.

Next, we'll choose x(O) = vj so that only the j-th mode is excited. Since all terms
of the summation in equation (3.56) will be zero except for i = j, we have [16]:

x(t) = W je jtvj (3.58)

The dot product may be expressed as elements of P:

X(t) = Pki Aj tvj (3.59)

We already know that the summation in equation (3.59) is one; in fact, the sum of
the elements along any row or column of P will always be one. This form of the
equation, however, illustrates how the element in the k-th row of the j-th column is
a description of how much state k contributes to mode j.

Now that we have an understanding of the participation matrix, we can calculate
P for our torsional generator/shaft system and interpret the results. Using a standard
math package, we find that the participation matrix, with our representative choices
for parameter values, is given in Table 3.3. The state and eigenmode order is the same
as in equation (3.39) and Table 3.1. We notice from the first row that 6, depends
primarily on the first three modes of the system. However, 2, a torsional state, is also
extremely important in these modes. We also note that Lje has a small dependence on
modes 6 and 7, in which 1 and w participate significantly. We therefore can conclude
from P that it is not possible to decouple the shaft states from the generator states
when examining our dynamic model.
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1 I Column 2 1 Column 3
Row 1 629.5
Row 2 -9.78
Row 3 1.78
Row 4 0.52
Row 5 0.53
Row 6 -624.6
Row 7 3.03

Column 4

0.03 + jO.01
0.05 + jO.03
0.04 + j.04
0.28 - jO.05
0.28 - jO.05
0.14 - jO.00
0.17 + jO.01

-314.4 - j864.8 -314.4 + j864.8
5.04 + j7. 80 5.04 - j7.80

-0.72 - j0.63 -0.72 + j0.63
-0.21 - j0.18 -0.21 + jO.18
-0.21 - jO.19 -0.21 + jO.19
312.7 + j 85 9 .1 312.7 - j859.1
-1.23 - j1.09 -1.23 + j1.09

Column 6
0.07 -
0.29 -
0.28 +
0.17 +

jO.04
jO.03
jO.05
jO.04

0.17 + jO.04
-0.03 - j0.01
0.04 - j0.05

Column 7
0.07 +
0.29 +
0.28 -
0.17 -

jO.04
j0.03
jO.05
jO.04

0.17 - jO.04
-0.03 + jO.01
0.04 + jO.05

Column 5
0.03 - jO.01
0.05 - jO.03
0.04 - jO.04
0.28 + jO.05
0.28 + jO.05
0.14 + jO.00
0.17 - jO.01

Table 3.3: Participation matrix of the feedback linearized generator with torsional
dynamics.
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Chapter 4

Field Voltage Saturation

Mathematically, a generator with FBLC will always behave as a linear system. How-
ever, in the real world there are many unmodeled dynamics and physical limitations
that distort the linearity of the system. One of the most important limitations is field
voltage saturation. The field voltage Efd has both a minimum and maximum limit and
can not exceed these boundaries. For all simulations in this thesis, 0 < Efd < 6.16.

Once the field voltage saturates at the maximum or minimum limit, the closed-
loop, linear generator/controller system becomes an open-loop, nonlinear system.
Typically, in simulations, the field voltage saturates immediately following a distur-
bance of significant magnitude and then comes out of saturation as the generator
states return toward equilibrium.

The torsional dynamics are observed to greatly increase the tendency of the field
voltage to saturate. If the shaft dynamics are not modeled, the field voltage generally
saturates for only a short period following a disturbance (see Figures 4-1 through 4-
13). However, the presence of shaft dynamics causes Efd to swing rapidly between
the upper and lower limits for a much longer time after the disturbance (Figures 4-2
through 4-14).

The large swings in Efd primarily result from the high frequency oscillations pro-
duced in the shaft acceleration. The shaft dynamics also produce oscillations in Pd(Xg)

which add to the oscillations observed in the acceleration measurement. Notice in
Figure 4-6 that the amplitude of the high frequency oscillations in 52 is about 6 rad/s 2

at t = 0.5s. Since Efd includes the acceleration measurement multiplied by a2/d(xg),

these oscillations have an amplitude of about 12 in Efd, which is clearly more than
sufficient to saturate Efd at both limits. Additionally, there are high frequency oscil-
lations of amplitude 12 in pd(xg), which appear in Efd with an amplitude of about
1.5. Figure 4-15 is a plot of:

ATz - Pd(Xq)f(t) = x (4.1)

which is the field voltage without the saturation limits. (Note that the field voltage
with saturation limits is the quantity that affects the dynamics in the simulation.)
The high frequency oscillations have amplitude of approximately 13 at t = 0.5s, thus
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Model Without Torsional Dynamics
U. 1

0.1

0.05

'c 0

a

.-0.05

-0.1

_n 15

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time (s)

Figure 4-1: Response of 6 - 6, to a 0.5 second fault, without torsional modeling.

Model With Torsional Dynamics

cu
v

ai)
_0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time (s)

Figure 4-2: Response of 6 - 6, to a 0.5 second fault, with torsional modeling. The
torsional dynamics affect the response of 6, although 6 still returns to equilibrium
within a reasonable time.

41

^"



Model Without Torsional Dynamics

-v.0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time (s)

Figure 4-3: Response of wc - w, to a 0.5 second fault, without torsional modeling.

Model With Torsional Dynamics

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time (s)

Figure 4-4: Response of w - w, to a 0.5 second fault, with torsional modeling. The
torsional oscillations appear in a, although their amplitude is small.

42

U. 0

0.4

0.2
a)

E
o

-0.2ca)

E0

-0.4

-0.6

n 

0.5

(I

0
I

a)
E

-0.5
a)
ESo

-1

n a:_



Model Without Torsional Dynamics

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time (s)

Figure 4-5: Response of LJ to a 0.5 second fault, without torsional modeling.

Model With Torsional Dynamics

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time (s)

Figure 4-6: Response of c to a 0.5 second fault, with torsional modeling. The shaft
oscillations form a large portion of the acceleration measurement.
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Model Without Torsional Dynamics

6
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4
'-3

ILU
3
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0
0 0.5 1.5 2 2.5 3 3.5 4 4.5 5

time (s)

Figure 4-7: Response of Efd to a 0.5 second fault, without torsional modeling. Efd

only saturates briefly following a disturbance.

Model With Torsional Dynamics
7

6

5

4

LLI
3

2

0
0 0.5 1 1.5 2 2.5

time (s)
3 3.5 4 4.5 5

Figure 4-8: Response of Efd to a 0.5 second fault, with torsional modeling. Clearly,
the torsional dynamics cause Efd to saturate for an extended period following the
disturbance.
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Model Without Torsional Dynamics
0vv
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Figure 4-9: Response of d(Xg) to a 0.5 second fault, without torsional modeling.

Model Without Torsional Dynamics
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Figure 4-10: Response of pd(Xg) to a 0.5 second fault, without torsional modeling.
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Model With Torsional Dynamics
I I I I I I I I

0.5 1 1.5 2 2.5
time (s)

3 3.5 4 4.5

Figure 4-11: Response of pd(Xg) to a 0.5 second fault, with torsional modeling.

Model With Torsional Dynamics

s00

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time (s)

Figure 4-12: Response of pd(Xg) to a 0.5 second fault, with torsional modeling. The
shaft oscillations are noticeable, but they do not dominate the measurement.
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Model Without Torsional Dynamics

-o
I

a)

time (s)

Figure 4-13: Response of Pd(Xg) to a 0.5 second fault, without torsional modeling.

Model With Torsional Dynamics

Cu"o
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time (s)

Figure 4-14: Response of Pd(Xg) to a 0.5 second fault, with torsional modeling.
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Field Voltage Without Saturation

Figure 4-15: Ed calculated without the saturation

validating the preceding argument.

for a 0.5 second fault.limits
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Chapter 5

FBLC with Field Voltage
Averaging

We have seen that the presence of shaft dynamics causes high amplitude, high fre-
quency swings to appear in the field voltage. These swings cause the field voltage
to saturate frequently and limit the performance of the system. In this chapter, we
will use a field voltage averaging method to reduce the high frequency swings and
examine its impact on the system.

5.1 Field Voltage Averaging Simulations
The averaging scheme is quite simple; the previous equation for Efd will be averaged
over one cycle of a 60 Hz wave to obtain the field voltage. Mathematically:

Efd = t-T pd(g)dr (5.1)

where To = 1/60s. This method of averaging is used for the simulations shown in
Figures 5-1 to 5-7, using the same 0.5 second fault as in Figures 4-1 to 4-14. Although
the averaged field input initially responds adequately to the disturbance, it does not
return the rotor angle to its equilibrium value. Furthermore, the averaged field voltage
does not attenuate the shaft vibrations; consequently, the field voltage exhibits high
frequency rail-to-rail swings, even though the control was designed to remove these
swings in the first place.

5.2 Heuristic Model of the System with FBLC
Averaging

Unfortunately, the insertion of the integral into the field voltage input creates a
system that is nonlinear, so it is not possible to produce a matrix like equation (3.40)
that represents the generator/shaft system with averaged feedback linearized control.
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FBLC with 60 Hz Averaging
U. :

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time (s)

Figure 5-1: Response of 6 - 6 to a 0.5 second fault with FBLC averaging. Clearly, 6
does not return to equilibrium within a reasonable time.

FBLC with 60 Hz Averaging

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time (s)

Figure 5-2: Response of w - w0 to a 0.5 second fault with FBLC averaging.
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FBLC with 60 Hz Averaging

0

Figure 5-3:
oscillations

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time (s)

Response of cU to a 0.5 second fault with FBLC averaging. The torsional
are much more poorly damped when field voltage averaging is used.

FBLC with 60 Hz Averaging

time (s)

Figure 5-4: Response of Efd to a 0.5 second
ingly, more saturation occurs with averaging in
intended to prevent the saturation!

fault with FBLC averaging. Amaz-
place, even though the averaging was
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FBLC with 60 Hz Averaging
i , , , ....

0.5 1 1.5 2 2.5
time (s)

3 3.5 4 4.5

Figure 5-5: Response of pd(Xg) to a 0.5 second fault with FBLC averaging, showing
a large, brief spike when the fault is corrected.

FBLC with 60 Hz Averaging

o
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time (s)

Figure 5-6: Response of pd(xg) to a 0.5 second fault with FBLC averaging.
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FBLC with 60 Hz Averaging
-6.

-6.

-7.
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-8.
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Figure 5-7: Response of d(xg) to a 0.5 second fault with FBLC averaging.

However, we will use a rather heuristic argument to produce a pseudo-linear model
that will provide insight into the observed results of averaged FBLC.

First, recall that the system without averaging is linear and has seven modes.
Three of the modes have zero or low frequency, and the other four modes have fre-
quencies in the torsional range. In the discussion of singular modal analysis, we noted
that each mode in a linear system evolves independently of the other modes. If a mode
is not initially excited by the initial conditions (i.e. wTx(0) = 0 for that mode), then
the mode will remain unexcited for all time, regardless of what happens in the other
modes. We will model the averaged FBLC system as a composition of seven modes
that continue to act independently, an assumption that we justify later.

Second, note that the averaging process acts as a low-pass filter. Signals that
change slowly appear as constants to the integration, and consequently are virtually
unchanged by the averaging. However, the amplitude of high frequency signals is
greatly reduced by the averaging process. We will assume that all quantities except
cw change slowly during 1/60 s and can be treated as constants in the integration.

Third, we note that wc includes components from all seven modes. As noted earlier,
each mode operates at a different frequency. We will assume that the integration
of wc is equivalent to multiplying each modal component of J by a constant which
depends on the frequency of that mode. This constant is 1 for low frequency modes,
and approaches 0 for high frequency modes. This approximation is reasonable since,
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using equation (3.56):

n
&(t) = E W/Tx(0)eit[0 0 10 0 0]Vi (5.2)

i=l

Using the notation:
Ai = i + jwi (5.3)

we can now write:
n

j(t) = E wiTx(0)eit[O 0 1 0 0 0 ]viejit (5.4)
i=l

Notice in Table 3.1 that for all of the modes in the system, the real parts of the
eigenvalues are much larger than -60, so that during 1/60 of a second, we can treat
eait as a constant. As a result:

1 t n
T XIt &(T)dT = A C(wi)wTx(O)eit[O 0 1 000 0]vie jwit (5.5)

To To C (T L =i=1 i=

C(wi) is a constant which reflects the amount of attenuation imposed by the integra-
tion on e wt. In fact, C(wi) can be adjusted to reflect the effects of all sorts of filters,
so that equation (5.5) is valid for any sort of filter applied to e,, as long as To is short
enough to meet the previous assumptions regarding ai. Note that C(wi) is a complex
number and carries both magnitude and phase information.

The effect of the filtering of ui is that the constant a2 is replaced by a2C(wi).
Since C(wi) has a different value for different modes, we must use a different matrix
A to represent each mode of the system. We will henceforth use the notation Ac(,,)
to denote the matrix A from equation (3.40) with the element in the third row and
third column replaced by:

2a2C(wi)H + D - De,,a33= (5.6)

Based on all of the assumptions in this section, if a given eigenvalue and eigenvector
pair of frequency wi represents a mode of AC(,,), then that mode must also be a
mode of the averaged FBLC system. We know this must be true from the following
reasoning: If the initial condition (x(0)) of the averaged FBLC system is a multiple
of the eigenvector Vk, meaning that only mode k is excited, then x = Ac(W,)x for all
time and mode k will evolve in the same fashion as if the system were linear with
matrix Ac(,,) The modes are implicitly defined to act independently of each other.
By finding the eigenvectors and eigenvalues of Ac(,)) for each modal frequency wi
and picking out the modes that represent modes of the averaged FBLC system, we
can construct a matrix to represent a linear model of the averaged feedback linearized
system.
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5.2.1 Calculation of C(wi) for 60 Hz Averaging
We are now ready to find a formula for C(wi) for the averaging scheme used in the
simulations. If the input signal to the averager is ewt, then:

To JIt e"' TdT = -(et - e (tTo)) (5.7)

After factoring out an ejwt and expanding the complex exponentials into real and
imaginary parts, this equation becomes:

eiWTdT = _eJ [1- cos(wTo) + j sin(wTo)] (5.8)
To To jwTo

We can bring the j inside the brackets, giving:

± ft eWTdT = 1 - ejWt[sin(wTo) + j(cos(wT) - 1)] (5.9)
To t-To wT0

We will now concentrate on the quantity inside the brackets. We wish to replace that
quantity with an equivalent polar representation. In other words, we want to find A
and X such that:

Aei = sin(wTo) + j(cos(wTo) - 1) (5.10)

This equation is the same as:

A cos + jA sin = sin(wTo) + j(cos(wTo) - 1) (5.11)

Equation 5.11 comprises two real equations with two unknowns. A is easy to find by
taking the square root of the sum of the squares of the real and imaginary parts:

A = Vsin2(wTo) + cos 2 (wTo) - 2 cos(wTo) + 1 (5.12)

which reduces to:
A = 2 -2 2cos(wTo) (5.13)

The angle 0 is obtained by dividing the imaginary part by the real part:

tan $ = cos(wTo)-1 (5.14)
sin(wTo)

Therefore, the average of et over To is:

1 [t edT 2-2cos(wTo) t (515)
To t-To wTo 

and by definition:

C ) - 2-2cos(wTo) ej (5.16)
wT
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tan - cos(wTo)- 1
sin(wTo)

Equation (5.16) describes how sinusoids are attenuated by the integration. Clearly,
as wTo becomes large, C(wTo) approaches zero. However, what happens when w - 0?
To answer this question, we note that the cosine function may be expressed as a
infinite series [17]:

2 34

cos = 1 2 + - - (5.17)
2! 4!

Therefore, when x is small, 1 - cosx x2, and:

C(W)l T= 1 (5.18)
wTo

We expect this result, since we know that low frequency signals pass through the
averaging process unaltered.

Equation (5.16) tells us how complex exponentials are attenuated, but in the real
world, there are only sines and cosines. Actually, since:

cos(wt + 0) = ljee j t le-j e-jwt (5.19)
2 2

I jo j~t J'O~1
sin(wt + 0) -- e t 1 e-je-jwt (5.20)

2j' 2j

the sine and cosine terms in the system response are the result of the sum of two
modes with conjugate eigenvalues and eigenvectors, as shown by equations (5.19),
(5.20), and (3.56). Since the averaged FBLC system produces real outputs, we expect
that C(w) and C(-w) will also form a conjugate pair. Denoting:

tan _ cos(-wTo)-1 (5.21)
sin(-LTo)

we see that sin 0- = sin 4, but cos _ = -cos A. These relations require that:

_ = ~r - e (5.22)

Finally, since:

C(-w) - T"'""5(-W'; jd~ T~--~LOS(Ul~ ~ l~rlJ (5.23)C(-W) = - /- 2 2cs(-uT°) 2 o/2- 2 cs(T°) r+ ) (5.23)wTo LoTo

and therefore:
C(-) /2- 2cos(wTo) _jo (5.24)

indicating that C() and C ) are indeed complex conjugate

indicating that C(w) and C(-c) are indeed complex conjugates.

56



Frequency (Hz)
1

2,3

4,5
6,7

-6.99
-4.12 ± jl.04
0.19 + j198.92

-2.24 ± j160.64

0.1662
31.66
25.57

Table 5.1: Eigenvalues and frequencies of the linear model of averaged feedback lin-
earizing control.

5.2.2 Computation of Linear Model
We are finally in a position to build the linear model of the averaged feedback lin-
earized generator/shaft system. We start with the eigenvalues from Table 3.1. The
first three eigenvalues and corresponding eigenvectors are of low frequency and can
be directly used in the averaged FBLC model.

Next, we employ an iterative scheme to find the remaining modes. We select
an initial guess for wi from the eigenvalues of A. Then we calculate C(Wi) and
subsequently Ac(,,). We obtain a new guess for wi from the eigenvalues of Ac(,,) and
continue iterating until convergence. There is no proof that this algorithm actually
does converge, but the frequencies are observed to experience only small shifts as
C(wi) changes, and for this example, three to six iterations are sufficient to provide an
accurate estimate for wi. Finally, we select the eigenvalue of Ac(w,) that has imaginary
part wi and its corresponding eigenvector to add to the linear averaged FBLC model,
along with their conjugates. (The conjugate eigenvalue and eigenvector are modes of
Ac(-wi).) This process is repeated for each high frequency mode; in our case, there
are two such modes.

Finally, the matrix Aavg of the averaged FBLC system is calculated via equa-
tion (3.52):

Aavg = MDM -1 (5.25)

A linear model was calculated for the sample torsional FBLC model that has
been used throughout this thesis. The eigenvalues of this linear model of an averaged
FBLC system are given in Table 5.1. The model predicts that one of the torsional
modes is unstable.
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5.3 Response of Linear Model
We can now compare the linear model of averaged FBLC with the simulated model.
The initial conditions for the two simulations are:

x(O) =

2.33 x 10 - 5

2.12 x 10 - 3

1.68 x 10- '
0

0

0

0

(5.26)

As before, this represents a minor disturbance from equilibrium, one that is small
enough to keep Efd from saturating. The simulations of the averaged FBLC model
and the responses predicted by the linear model are shown in Figures 5-8 to 5-16.
Clearly, averaged FBLC is unstable, as predicted by the linear model. In fact, the
oscillations grow faster than predicted. The main source of error in the linear model
would appear to be the assumption that pd(Xg) varies slowly over time. Although the
linear response does not perfectly match the averaged FBLC simulations, it seems
that the linear model does provide an explanation for the observed instability.

5.4 Conclusions
Based on these simulations, it is clear that removing the high frequency oscillations
in the field voltage also removes the damping of the torsional modes. The eigenvalues
of Ac(,,) demonstrate that when a2 is small, the only damping of the torsional modes
is the natural damping on each mass. Furthermore, the phase shift in the filtering of
Efd causes the torsional modes to become unstable, a claim again demonstrated by
eigenvalue computation of Ac(,,). Interestingly, it is observed in all simulations that
the field voltage continues to saturate even with the low pass filtering of Efd, leading to
the conclusion that filtering the field voltage is both ineffective and counterproductive.
The high frequency oscillations in Efd are vital for damping the high frequency modes.
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Figure 5-8: Simulated response of 6- 6 to a small disturbance with averaged FBLC.
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Figure 5-9: Disturbance response of 6 - 6 calculated by the linear model.
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Simulation of FBLC with Averaging
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Figure 5-10: Simulated response of w-wo to a small disturbance with averaged FBLC.
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Figure 5-11: Disturbance response of w - wo calculated by the linear model.
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Figure 5-13: Disturbance response of c calculated by the linear model.
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Figure 5-16: Simulated response of /3d(Xg) to a small disturbance with averaged FBLC.
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Chapter 6

Butterworth Filtering of the
Acceleration Measurement

In the last chapter, we saw that averaging of the field voltage did not succeed in
attenuating the torsional oscillations and even led to instability. We will now try
to generalize the concept of field voltage averaging by instead adding a low pass
Butterworth filter to the acceleration measurement. This approach has the same
pitfalls as field voltage averaging, but the filter design can be adjusted to prevent the
phase shifts that lead to instability.

6.1 Description of a Butterworth filter
The transfer function of a Butterworth filter of order N will be written as HN(S) and
is defined by [18]:

1
HN(S)HN(-) + (/ ) (6.1)1 ± (s/jW,)2N

where ow is the cutoff frequency in rad/s. By solving the denominator for s = 0, it is
not hard to see that the poles of HN(s)HN(-S) will be located at:

S =(-1)/12N(j~ ) (6.2)

which are evenly spaced around the origin on a circle of radius wc. If sp is a pole of
HN(s), then -sp will be a pole of HN(-S). To create a stable and causal Butterworth
filter, we need to choose the poles that are in the left half plane. By definition, a
Butterworth filter has no zeros [18]. We will use Butterworth filters of first, second,
and fourth order, all with a cutoff frequency of 10 Hz, or w, = 207r. This cutoff
frequency is chosen since it lies below the natural frequency of most shaft dynamics.

As before, we will use a frequency separation argument to obtain a linear model
of the system. However, since only the acceleration measurement is being filtered,
and the filter is linear, then the entire system with a third order generator model is
itself linear! This means that we now have two linear models: a full order model,
and a reduced order model of seventh order derived using the same arguments as
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in Chapter 5. This gives us an excellent opportunity to test the accuracy of the
frequency separation argument used in the last chapter. If the reduced order model
is accurate, then clearly the extra modes arising from the filter are decoupled from
the rest of the system. We note that if c is filtered, the attenuation coefficient C(w)
is equal to the transfer function HN(jw) of the filter.

6.2 First Order Butterworth Filter
We begin with the simplest Butterworth filter. From equation (6.2), the poles of
H1 (s)H1(-s) are at -w, and w,. We clearly desire that the pole of Hi(s) be at -w,,
so the transfer function becomes [18]:

H1 (s) = c (6.3)
S + Wc

The transfer function is normalized such that H 1(0) = 1. This transfer function may
also be represented as a first order dynamic system. It can be converted directly to
a state-space description in controllability canonical form [5]:

1fl = -WcXf + Uf (6.4)

Yf = WcXfl (6.5)

uf represents the filter input, Xfi is filter state i, and yf is the filter output. We will
use the same notation for higher order filters.

6.2.1 Reduced Order Model of FBLC with First Order But-
terworth Filter

Using the same arguments as the last chapter, we can derive a seventh-order model
of the feedback linearized system with a first order Butterworth filter placed on the
acceleration measurement. The first three modes in Table 3.1 are assumed to vary
slowly and included directly in the reduced order model. The other modes are cal-
culated with an iterative technique, using C(w) = Hl(jw). The eigenvalues of this
system are shown in Table 6.1. The system is still predicted to be stable, although
the torsional modes have less damping than before.

6.2.2 Full Linear Model of FBLC with First Order Butter-
worth Filter

The full order model of this system is actually quite easy to produce. The filter
input u is equal to a,. Note that only Efd depends on the filtered acceleration
measurement; consequently, pd(xg) depends on yf, the filtered measurement of ze,,
while p(xg) is a function of the actual quantity ae. Therefore, the state equation for
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Frequency (Hz)
1

2,3

4,5
6,7

-6.99
-4.12 ± jl.04

-0.41 ± j197.57
-1.85 ± j155.96

0.1662
31.44
24.82

Table 6.1: Eigenvalues and frequencies of the reduced linear model of feedback lin-
earizing control with a first order Butterworth filter of acceleration.

ce is:

H
ae - H (ao(S - 6,) + al ( - w,) + a2yf)

He

-2Hc w -K2ueu + K 2eu + Deu-- DYf (6.6)2 He WO W, W, 

When this equation and the dynamics of the filter are incorporated into the full state
model, the result is:

Xbl = AblXbl (6.7)

Xbl 

6 - o
We -o

ae
61 - 10

W - Wo

62 - 20

_ 2 - WO
X f

(6.8)
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Frequency (Hz)
-17.36

-3.18 i jl.38
-0.41 i j197.57
-1.81 + j156.00

-35.08

Table 6.2: Eigenvalues and frequencies of the linear model
control with a first order Butterworth filter of acceleration.

Abl =

0 1

00

aoH 2aiH-K 2 _
He 2He

0 0

0 0

0 0

0 0 0

1 0 0

oD,, 0
2He

0 0 1

0 _K12U _DL
2H 1 2H 1

0 0 0

0

0

0

0

K12u
2H 1

0

of feedback linearizing

0

0

0

0

K2&s, wc(2a 2 H+D)
2He 2He

0

0

1

0

0

0

0 _ K12u +K2e
2H2

1 0 0

This model was verified by using
values of this system are shown in
nearly identical to those given by
dynamics do not match up so well.

the same techniques as in Section 3.7. The eigen-
Table 6.2. Note that the torsional eigenvalues are

7 the reduced order model, but the low frequency
. It would appear that the errors can be attributed

to the approximation that these modes were constant; according to their eigenvalues,
they decay fast enough to be affected by the filter.

6.2.3 Response of First Order Filtering to a Small Distur-
bance

We now have three models to simulate; a full linear description, a reduced order
linear model, and a higher order dynamic model which includes subtransient generator
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1

2,3

4,5
6,7
8

0.2197
31.44
24.83

0K2eu
2H2

0

K12Lu
2H 2

0 0

_ D2u
2H2

0

0

-Wc

(6.9)
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dynamics. All of these models were simulated using an initial condition of:

Xbl =

1.71 x 10- 5 -

1.24 x 10-2
-3.48 x 10-1

0

0

0

0

0

(6.10)

The simulation results are shown in Figures 6-1 through 6-12. The simulated response
is in good agreement with the response of the full order linear model. The reduced
order model exhibits little difference from the other models in the response of cb but
a significant difference in the magnitude of the peak in 6. However, all three models
agree on the amount of damping present in the shaft modes.

6.3 Second Order Butterworth Filtering
Next, we will look at using a second order filter. The poles of H2(s) occurs at Wc

e j( 3 '/ 4 )

and We - j( 37r/4 ) , and the transfer function can be written as:

2

H2(s) -(s - wceJ(37/4 ))(s - Wce-j(3 /4 )) (6.11)

The denominator can be multiplied out to produce:

2cL

H2 (s) s2 _ wc(e(37r/4) + e-j(3r/ 4))s + W2 (6.12)

The sum of the complex exponentials is -v1/, so the second order Butterworth trans-
fer function is [18]:

2

H2 (s ) = (6.13)
s2 + WcS- + W2

The dynamic model of this filter may be represented as:

[ 1f2 ] [-a) gX0 1 Xfi 1 [0]
O -W/ ° Xf *+ Uf (6.14)

[ X~f2 ]0 [ I2 1 J

yf =[WC O Xf] (6.15)
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First order Butterworth filtering of Accelerationx 10 -4
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0

Figure 6-1:
Butterworth
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Simulated response of 6 - 6 to a small disturbance with first order
filtering of a.

-4 Linear Model of First Order Butterworth Filtering
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Figure 6-2: Disturbance response of 6 - 6 calculated by the reduced linear model.
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Full Linear Model: First Order Butterworth Filtering

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time (s)

Figure 6-3: Disturbance response of 6 - 6, calculated by the linear model.
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Figure 6-5: Disturbance response of w - w, calculated by the reduced linear model.

Full Linear Model: First Order Butterworth Filtering
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Figure 6-6: Disturbance response of w - w calculated by the linear model.
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First order Butterworth filtering of Acceleration
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Figure 6-7: Simulat
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Figure 6-8: Disturbance response of LJ calculated by the reduced linear model.

72

1.5

1

0.5

0

<cu

oC

a0

E
0

-0.5

-1

0I 

-1.5 0
0 0.5

! I ! a 

1.

AI

II

I

111111111111ENNIA~L~

_ . .

L . I I I I I I I 

I ! I I I I I



Full Linear Model: First Order Butterworth Filtering
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Figure 6-9: Disturbance response of cb calculated by the linear model.

First order Butterworth filtering of Acceleration

ll

:R

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time (s)

Figure 6-10: Simulated response of Ed to a small disturbance with first order But-
terworth filtering of c.
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First order Butterworth filtering of Acceleration
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Figure 6-11:
Butterworth

Simulated response of pd(Xg) to a small disturbance with first order
filtering of &'.

First order Butterworth filtering of Acceleration

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time (s)

Figure 6-12: Simulated response of fd(Xg) to a small disturbance with first order
Butterworth filtering of cD.
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Frequency (Hz)
1

2,3

4,5
6,7

-6.99
-4.12 + jl.04
0.22 ± j196.74
1.63 ± j152.80

0.1662
31.31
24.32

Table 6.3: Eigenvalues and frequencies of the reduced linear model of feedback lin-
earizing control with a second order Butterworth filter of acceleration.

Number(s)
1

2,3

4,5
6,7
8,9

Eigenvalue
-21.07

-3.02 + jl.41
0.22 + j196.74
1.60 + j152.82

-32.88 i j31.23

Frequency (Hz)

0.2247
31.31
24.32
4.97

Table 6.4: Eigenvalues and frequencies of the linear model of feedback linearizing
control with a first order Butterworth filter of acceleration.

6.3.1 Linear Models of FBLC with Second Order Butter-
worth Filtering

As before, we develop a seventh-order model of the system by calculating a matrix
Ac(,,) for each frequency. The eigenvalues of this model are shown in Table 6.3. The
model predicts that both torsional modes are unstable. This result is expected since
a second order Butterworth filter inverts the signals in the stopband.

The full order linear model is derived by the same procedure as before; setting
uf = a, and feeding yf into the equation for Efd. Table 6.4 gives the eigenvalues of
this linear model, which has nine states.

6.3.2 Simulations of Second Order Butterworth Filtering
We will now simulate the response of the three models available to describe FBLC
with second order Butterworth filtering of the acceleration measurement. The initial
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conditions are:

Xb2

2.77 x 10-'
1.74 x 10- 3

-1.08 x 10-2
0

0

0

0

0

0

The responses of the three models are shown in Figures 6-13 to 6-24. All three models
give basically the same response, although the oscillations grow a little more rapidly
in the reduced linear model than in the other two models. As predicted earlier, the
-180 ° phase shift in the stopband excites the torsional oscillations.

6.4 Fourth Order Butterworth Filter
Finally, we will look at the fourth order Butterworth filter. The phase shift in the
stopband of this filter is a full -360 °, so we expect that the torsional modes will not
be excited when the fourth order filter is used. First, we derive the transfer function
of the filter. According to equation (6.2), the poles are located at s = wcej(57r/ 8),
weej(7 r

/8)
) wc e - j( 5 7r/ 8), wc e - j(77 r/ 8) The transfer function of the filter may therefore be

written as:

4H4(s) (± (+H4 () 2 - wc(eJ(57r/8) + e-J(5r/8))S + W2)(2 _- (e(77r/8) + e-j(77r/8))S + W2)

(6.17)
Summing the complex exponentials gives:

4we

H4(s) = (s2 + 0.7654wcs + w2)(s 2 + 1.8478wcs + w2 ) (6.18)

Finally, multiplying out the denominator, we have:

4

H4 w (6.19)
s4 + 2.6131wcs3 + (2 + /f)C2s2 + 2.6131w3s + W4 (6.19)

The value 2.6131 is an approximation of 2 cos r/8 + 2 cos 3wr/8.
The dynamic model of this filter may be derived using the same procedure as
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Second order Butterworth filtering of Acceleration
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Figure 6-15: Disturbance response of 6 - 6, calculated by the linear model.
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6-17: Disturbance response of w - w0 calculated by the reduced linear

Figure 6-18: Disturbance response of w -g )o calculated by the linear model.
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Second order Butterworth filtering of Acceleration
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Figure 6-20: Disturbance response of cD calculated by the reduced linear model.
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Full Linear Model: Second Order Butterworth Filtering
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Figure 6-21: Disturbance response of (c calculated by the linear model.
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Second order Butterworth filtering of Acceleration
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Frequency (Hz)
1

2,3

4,5
6,7

-6.99
-4.12 ± jl.04

-0.09 ± j196.59
-0.22 ± j151.31

0.1662
31.29
24.08

Table 6.5: Eigenvalues and frequencies of the reduced linear model of feedback lin-
earizing control with a fourth order Butterworth filter of acceleration.

Eigenvalue
-0.09 ± j196.59
-0.22 ± j151.31

-71.68
-31.57 i j58.06
-2.70 ± jl.44

-11.87 + j22.89

Frequency (Hz)
31.29
24.08

9.24
0.2287

3.64

Table 6.6: Eigenvalues and frequencies of the linear model of
control with a first order Butterworth filter of acceleration.
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(6.21)

6.4.1 Linear Modeling of FBLC with Fourth Order Butter-
worth Filter

Once again, we create a full linear model and a reduced linear model of the feedback
linearized system with fourth order Butterworth filtering of the acceleration mea-
surement. The eigenvalues of the reduced order linear model are in Table 6.5, and
Table 6.6 contains eigenvalues of the full linear model.
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6.4.2 Simulation of FBLC with Fourth Order Butterworth
Filtering

We use the same procedure as before; the two linear models and the nonlinear model
are simulated. The initial condition is:

Xb4 =

- 3.55 x 10- 7

1.95 x 10 - 3

-1.29 x 10-2
0

0

0

0

0

0

0

0

(6.22)

and the responses, simulated and predicted, are given in Figures 6-25 to 6-36. The
stopband phase shift is now one full cycle (-360°), so the shaft modes are not excited,
although they remain lightly damped. The three models show good agreement on the
response of the system, particularly for the rotor acceleration. As with the first order
filter, the reduced linear model shows a much larger peak in the response of the rotor
angle, although the shape of the response is fundamentally the same.

With a fourth order filter, the high frequency attenuation is large enough in the
torsional range to reduce the oscillations in Efd to a very small amplitude. It is
therefore natural to ask whether this system will perform well if a larger fault is
applied. The half second fault that was used earlier was simulated, and the results are
shown in Figures 6-37 to 6-42. The resulting performance is the best of any simulation
so far with torsional dynamics. The response of d is close to the response that had
been previously obtained without torsional dynamics. The torsional dynamics are
noticeable in w, Efd, and especially , although they do not appear to affect the
response of the rotor angle. However, it must be cautioned that use of this technique
involves some risk; any unmodeled dynamics near the cutoff frequency of the filter
are very likely to be excited.

6.5 Conclusions
The Butterworth filtering tests reinforce the assertion that the stopband phase shift
in the filter of the acceleration measurement causes the dynamics with frequencies in
the stopband to become excited. The fourth order Butterworth filter delays signals in
its stopband by one full cycle, so that dynamics at these frequencies do not become
unstable. The simulations of the fourth order Butterworth filter produced impressive
results in the rotor angle response, even though the torsional oscillations continue for
a long time following the disturbance in w and w.
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Fourth order Butterworth filtering of Accelerationx 10-4

Figure 6-25:
Butterworth
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Figure 6-26: Disturbance response of - 6 calculated by the reduced linear model.
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Full Linear Model: Fourth Order Butterworth Filtering
3

2.5

2

1.5

1

0.5

0

0 05
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time (s)

Figure 6-27: Disturbance response of 6 - 6 calculated by the linear model.
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Figure 6-28: Simulated response of w - w, to a small disturbance with fourth order
Butterworth filtering of cb.
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Fourth order Butterworth filtering of Acceleration

Figure 6-31: Simulated
terworth filtering of c. with fourth order But-response of c2 to a small disturbance
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Figure 6-32: Disturbance
response of 5~ calculated by the reduced linear model.
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Full Linear Model: Fourth Order Butterworth Filtering

0.15

0.1

-0.05

C

E° -0.05
a

0
-0.1

-0.12

- 0.2.
_r0.O

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
time (s)

Figure 6-33: Disturbance response of cb calculated by the linear model.

Fourth order Butterworth filtering of Acceleration

time (s)

5

Figure 6-34:
Butterworth

Simulated response of Efd to a small disturbance with fourth order
filtering of .

89

0.2

2.

2.

2.

2.

L-2.

-o
W 2.

2.

2.

2.

_ _

5



Fourth order Butterworth filtering of Acceleration
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Figure 6-37: Simulated response of 6 - 6 to a 0.5 second fault with fourth order
Butterworth filtering of 6j.
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Simulated response of w - wo to a 0.5 second fault with fourth order
filtering of cD.
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Fourth order Butterworth filtering of Acceleration
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Simulated response of d(xg) to a 0.5 second fault with fourth order
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The examples in this chapter also provide a basis for evaluating the frequency
separation argument for developing a linear model of a system with filtered signals.
The resulting linear models produced very accurate results for the torsional modes,
but the results for the low frequency modes were not nearly as good. This observation
can be explained by noticing that the torsional modes have eigenvalues with real parts
near zero, so that the amplitude of the modes remains nearly constant with time.
Note that the cutoff frequency of the Butterworth filter is much lower (10 Hz) than
the base frequency for the averaging technique (60 Hz); therefore, the low frequency
modes decay relatively fast and can not assumed to be unaffected by the filter. The
expansion of the frequency separation technique to include the effects of growth and
decay of the modes, along with connecting these ideas with existing linear systems
theory, is a topic for further research.
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Chapter 7

Inclusion of Torsional Dynamics in
the Controller Design

In previous sections, we used a controller design that did not account for the presence
of shaft oscillations. We now wish to modify the control design to account for these
previously unmodeled dynamics.

7.1 Measurement of the Shaft State Variables
As illustrated by the singular modal analysis, it will be necessary to include some
shaft states in our analysis, particularly 62. There are several possible approaches to
obtaining values of these states.

7.1.1 Direct Measurement of 62
An obvious approach to finding 62 is to simply use another shaft encoder to directly
measure its value. This method has the advantage of not depending on estimates
of shaft and generator parameters. However, a second shaft encoder involves more
expense, and physically accessing the shaft to place an encoder at the turbine closest
to the generator may be quite difficult.

7.1.2 Direct Calculation of 62

Recall from the feedback linearizing controller equations that four states were mea-
sured: 6 e, We, e, and Eq. Since the generator was assumed to be a third order
model, one of these values was redundant; given any three of these measurements, it
is theoretically possible (although computationally difficult) to find the fourth.

However, since we are no longer treating the shaft as rigid, it turns out that the
four measurements taken by the controller actually provide information about four
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states of the system: 6e, We, E', and 62. Indeed, recall from equation (3.2) that:

W,[ 62 6e We
Le 2He K2eu - K2eu- - Deu- - Eid- iq (7.1)

Notice that every quantity in this equation, except for 62, may be measured. We can
therefore use this equation to find 62 from the measurements of the other states:

1
62 = 6e + K [2He D + D w(Eiq + Edid)] (7.2)

This equation may be used to provide torsional state information to the controller
so that the controller can compensate for the presence of shaft dynamics. However,
before continuing, there are several important points to make. First, we are usually
concerned with the shaft angle difference 62 - e instead of the value of 62 with respect
to a fixed reference; therefore, we do not normally need to use e in this equation.
Second, this estimate of 62 depends on good estimates of system parameters, especially
the shaft spring constant K2eu. Third, since the form of the controller equation
requires w2 - we, equation (7.2) must be differentiated numerically in order to be
used by the controller; this process can introduce further errors. Although there are
numerous possible sources of error, this technique can nevertheless provide a good
measurement of 62 without inserting another shaft encoder to measure 62 directly; in
simulations, the measurement of 62 via this method is identical to the value of the
actual state variable.

7.1.3 Estimating Shaft States by Using an Observer
It is theoretically possible to design an observer to estimate the shaft states based
on estimated values of the system parameters; however, this task is left for future
research.

7.2 Design of Feedback Linearizing Control with
Torsional States

Now that we have calculated 62 (and implicitly W2), we may redesign our feedback
linearizing controller to take advantage of the new information. The resulting closed-
loop system should have poles placed very close to the intended locations. For ex-
tremely small perturbations, the system behavior is as expected; in Figure 7-1, the
simulation response of with the modified controller is seen to agree with the pre-
dicted response of a linear system with all closed-loop poles at -5. However, the
field voltage saturates very easily, and once this occurs, the system experiences large
swings and does not settle for a significant time. Simulations of a larger disturbance
are shown in Figures 7-2 through 7-7. When the controller is redesigned to include
torsional effects, the oscillations in p(xg) are enormous. The available range of Efd

96



1

1

1

1

za

ci)

0 0.5 1 1.5 2 2.5 3
time (s)

Figure 7-1: Response of 6 - 56 (solid line) and expected response (dashed line).
The two responses are essentially identical; the differences appear to be caused by
simulator error.

is not nearly sufficient to handle torsional vibrations. Note: The simulations in this
section used a third order generator model.
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Figure 7-2: Response of 6 - 6, to a 0.5 second fault with FBLC that accounts for
torsional oscillations.
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Chapter 8

Effects of Feedback Linearizing
Control on Subsynchronous
Resonance

We saw in Chapter 3 that feedback linearizing control greatly increases the damping
of the shaft modes in the system. We would now like to see what effect the increased
damping has on subsynchronous resonance, since the torsional dynamics play a pivotal
role in this phenomenon.

8.1 Introduction
Subsynchronous resonance is normally associated with the use of series capacitor com-
pensation on transmission lines. By placing a capacitor in series with a transmission
line, the reactance of the line appears reduced from the generator's perspective, and
more power can be transferred on the transmission line. However, there is a price
to pay: the capacitor in series with the inductance of the transmission line produces
an RLC network which oscillates at its natural frequency. These oscillations produce
a subsynchronous current (frequency below 60 Hz) which is negatively damped by
the generator. If the positive damping of the subsynchronous current in the system
is insufficient, the system will be unstable, and the subsynchronous oscillations will
grow with time [8, 9, 19, 20, 21].

The phenomenon of subsynchronous resonance has been discussed in the literature
for over fifty years. Originally, only the electrical and magnetic dynamics of the
generator were considered when studying subsynchronous resonance. However, in
1970, unstable subsynchronous oscillations resulted in two shaft failures at the Mohave
generating station in Nevada; this event illustrated that the torsional dynamics of the
generator shaft, which have natural frequencies in the subsynchronous range, play a
major role in subsynchronous resonance [10].
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8.2 Model of the Network
In order to analyze subsynchronous resonance, it is necessary to develop models for
the generator, the generator shaft, and the network. The generator and shaft models
have been developed in earlier chapters. However, in order to properly model the
effects of capacitively compensated transmission lines, it will be necessary to create
a dynamic model for the network.

The electrical network is usually modeled with ideal resistors, inductors, and ca-
pacitors that have the following voltage-current relations [22]:

VR = ZRIR (8.1)

fVL = L + ZLIL (8.2)
dt

C = Cdt + YCVC (8.3)

Normally, the voltage and current phasors are assumed to vary slowly with time, so
the time derivatives are ignored. However, subsynchronous currents appear in phasor
notation with a time-varying component. For example, a subsynchronous current of
30 Hz:

i(t) = 5 cos 60rt (8.4)

is represented by the phasor:
I = 5e- j60 rt (8.5)

since i(t) = R(eiwot), where w, = 1207r. Therefore, the time derivatives in equa-
tions (8.2) and (8.3) can not be neglected. In fact, these derivatives can be used to
set up a state-space model for the network.

The network we will consider is shown in Figure 8-1. It consists of a generator,
a transmission line, a series capacitor, and an infinite bus. As described earlier, the
transmission line resistance and reactance includes generator resistance and transient
reactance, so that we can treat the states Ed and E as the voltage at the gener-
ator bus (after an inverse Park transform). The voltage and current at bus 3 (the
connection between the transmission line and the series capacitor) will be the state
variables for the network. Note that we neglect any shunt capacitance to ground on
the transmission line. The current is therefore the same throughout the network.

Since the current through the transmission line inductance is simply I3, we may
write:

V1 -3 - X d + (R + jX)i (8.6)
w, dt

The capacitance voltage is equal to V3 - V2, where V2 = Wd + jWq is the infinite bus
voltage. This observation leads to the following equation:

dt3 + joC( W)i =C + jWOC(3 - Wd - jWq) (8.7)
dt
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Figure 8-1: Network for subsynchronous resonance simulation.

These equations can be used to define two complex-valued or four real-valued states.
Denoting 3 = Id3 + jIq3 and V3 = Vd3 + jVq3, we have the following state equations
for a fourth order network with capacitive compensation:

Id3 = o [Vdl - Vd3 - RId3 + XIq3] (8.8)

Iq3 = W [Vql- Vq3 - RIq3 - XId3] (8.9)

Vd3 = 'd3 + Wo(Vq3 - wq) (8.10)C
1

Vq3 = Iq3 - Wo(Vd3 - Wd) (8.11)

8.2.1 Natural Frequency of the Network
The network resonance frequency is very close to the frequency at which the inductive
and capactive reactances are equal. (The resistive damping causes a tiny shift in the
resonance frequency.) Since ZL = jwL and Zc = (jwC) - l, we can estimate the
natural frequency by finding w = w, such that ZL = -Zc; this occurs when:

= L (8.12)
LC

Because the generator rotates at 60 Hz, currents oscillating at the resonance frequency
appear to the generator as supersynchronous currents at wl = 1207r + w, and subsyn-
chronous currents at w2 = 120r - w,. The supersynchronous currents are generally
well damped by the system and pose no threat; it is the subsynchronous currents that
can cause instability, particularly if they excite one of the shaft modes[8, 9].
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8.2.2 Sample Network Parameters
As before, we will now select parameter values from typical examples in order to
perform our simulations of the system. For the transmission line, R = 0.058526
and X = 0.89497; this corresponds to the admittance given in Chapter 1. V2, the
infinite bus voltage, was chosen so that V3 maintained an equilibrium value of 0.9164+
j0.20473 regardless of the capacitance selected; this was done so that the system would
maintain the same equilibrium point while examining different capacitor values. With
these network constraints, the generator will have the same equilibrium as in previous
simulations. Series capacitance values are normally expressed as a percentage of
compensation, which is equal to the ratio -ZC/ZL with both impedances calculated
at w, = 120r. Note that smaller values of C have larger reactances and therefore
provide more compensation; however, smaller compensating series capacitors also
make the system less stable, as demonstrated by the simulation results.

8.3 Simulation Results
Once the models are determined, it is a fairly straightforward process to simulate
them. The simulations were performed by disturbing the line current slightly from
its equilibrium value and then observing the system.

8.3.1 Constant Exciter Control
First, a constant exciter control was used to demonstrate the natural dynamics of the
system. The simulator includes a routine to numerically derive a linearized state-space
representation of a system at any given operating point. The resulting eigenvalues of
the linearized model for three selected capacitance values are shown in Figure 8.1. The
eigenvalues clearly show the supersynchronous and subsynchronous current modes,
the torsional modes, and the generator modes. With a large capacitor in series with
the transmission line, the system remains stable. However, at 23.0% compensation,
the subsynchronous frequency drops to about 31.3 Hz and interacts with a torsional
mode at that frequency, causing instability. Figures 8-2 and 8-3 show the rotor
angle and line current for this system, which illustrate the growing subsynchronous
oscillations. These types of oscillations caused the shaft failures at Mohave. At 35.9%
compensation, the subsynchronous currents interact with the torsional mode at 24
Hz, again leading to instability. It is interesting to note that a model of the system
that neglects torsional dynamics suggests that the system is stable for all of these
capacitance values, thus illustrating the important role that the torsional dynamics
have in subsynchronous resonance.

8.3.2 Power System Stabilizer Control
In order to provide a means of evaluating the performance of FBLC, a standard power
system stabilizer (PSS) design was simulated extensively in [1, 2, 12]. This design is
also used here in order to determine the effectiveness of a power system stabilizer in

104



Frequency (Hz)
2.96%

23.0%

35.9%

-9.90 ± j441.1
-8.95 + j312.6
-0.058 ± j196.6
-0.051 ± j151.6

-34.84
-30.90

-0.459 + j6.71
-4.88
-0.328

-10.41 + j557.4
-7.95 ± j196.1
0.808 ± j196.5
0.061 i j152.2

-35.87
-32.25

-0.644 i j7.65
-0.356
-5.03

-10.55 ± j602.7
-0.053 ± j196.4
-9.35 ± j151.7
3.85 i j151.5

-36.79
-33.60

-0.832 + j8.40
-0.378
-5.14

70.20
49.75
31.29
24.13

1.07

88.71
31.21
31.27
24.22

1.22

95.92
31.26
24.15
24.11

1.34

Table 8.1: Eigenvalues and frequencies of the linearized system for three example
series capacitor values.
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Constant Exciter: C = 0.0129 F
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Figure 8-2: Rotor angle (6) of a system prone to subsynchronous resonance, illustrat-
ing the growing subsynchronous oscillations.
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Figure 8-3: Line current (real part) of a system exhibiting subsynchronous resonance.
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Power System Stabilizer: C = 0.0129 F
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Figure 8-4: Rotor angle (6) of a series compensated network with a PSS controlled
generator. The PSS is not able to prevent the subsynchronous oscillations from
growing.

suppressing high frequency oscillations. The simulation results of a generator with
a PSS controller and the network shown in Figure 8-1 with 23.0% compensation are
presented in Figures 8-4 through 8-6. Clearly, the PSS is not able to damp out the
subsynchronous oscillations.

8.3.3 Feedback Linearizing Control
The next step is to examine what effect FBLC has when placed on a system prone
to subsynchronous resonance. The results of a test run with FBLC poles at -5 and
23.0% series compensation are shown in Figures 8-7 through 8-12. These simulations
show that even though the series capacitance is at a critical value, FBLC is capable of
stabilizing the system. Note that the field voltage reacts at a high frequency during
the transient. Although these results seem quite surprising, the placement of the poles
at -5 causes the generator to act as a low pass filter and damp out high frequency
components, such as subsynchronous oscillations. If the poles are moved out to -50,
then the subsynchronous oscillations will no longer be damped by the system, and
the torsional dynamics are likely to be excited by subsynchronous currents. This is
indeed the case, as shown by Figures 8-13 through 8-18.

The large, fast swings in Efd shown in Figure 8-12 are generally undesirable. To
reduce these swings, a fourth order Butterworth filter was added to the acceleration
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Power System Stabilizer: C = 0.0129 F
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Field voltage of a series compensated network with a PSS controlled
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FBLC, Poles at -5: C = 0.0129 F
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Figure 8-7: Rotor angle ( - 60) of a system with FBLC. FBLC has damped out the
subsynchronous oscillations.

FBLC, Poles at -5: C = 0.0129 F
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Figure 8-8: Plot of w - w, for a system with FBLC.
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FBLC, Poles at -5: C = 0.0129 F
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Figure 8-9: Rotor acceleration () for a system with FBLC. The
oscillations die out rapidly, even though they are excited by the
currents in the network.
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Figure 8-10: Line current (real part) of a system with FBLC.
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FBLC, Poles at -5: C = 0.0129 F
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Figure 8-11: Line current (imaginary part) of a system with FBLC.

FBLC, Poles at -5: C = 0.0129 F
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Figure 8-12: Field voltage of a system with FBLC, showing the large, rapid swings
to counteract the subsynchronous oscillations.
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FBLC, Poles at -50: C = 0.0129 F
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Figure 8-13: Rotor angle (6 - 6,) of a system with FBLC, poles at -50. FBLC does
not stabilize the system.
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Figure 8-14: Plot of (w - w,) of a system with FBLC, poles at -50.
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FBLC, Poles at -50: C = 0.0129 F

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time (s)

Figure 8-15: Rotor acceleration () of a system with FBLC, poles at -50.

FBLC, Poles at -50: C = 0.0129 F
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Figure 8-16: Line current (real part) of a system with FBLC, poles at -50.
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Figure 8-17: Line current (imaginary part) of a system with FBLC, poles at -50.
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Figure 8-18: Field voltage of a system with FBLC, poles at -50. The voltage actually
swings less frequently with the faster poles but it does not effectively counteract the
subsynchronous oscillations.

114

2



measurement to reduce the swings while still providing the control necessary to sta-
blize the system. The results of the acceleration filtering method with poles placed
at -5 is shown in Figures 8-19 through 8-24. These results are very surprising, since
we might expect that the high frequency oscillations in the field voltage are too small
to stabilize the subsynchronous modes. However, the simulations reveal that the tor-
sional modes do not grow. Since we know that the subsynchronous oscillations do
grow if the field voltage is constant, we know that an equilibrium point cannot be
reached with a constant Efd. We will try simulating a smaller disturbance to see what
happens. The results of a smaller disturbance are shown in Figures 8-25 to 8-30. The
system appears to reach a state of dynamic equilibrium where the subsynchronous
oscillations maintain a constant amplitude.
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FBLC with Acceleration Filtering: C = 0.0129 F

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time (s)

Figure 8-19: Rotor angle (6 - 6o) of a system with FBLC and a filtered acceleration
measurement. The control input is able to stabilize the system.

FBLC with Acceleration Filtering: C = 0.0129 F
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Figure 8-20: Plot of w - w, for a system with FBLC and a filtered acceleration
measurement.
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FBLC with Acceleration Filtering: C = 0.0129 F
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Figure 8-21: Rotor acceleration () of a system with FBLC and a filtered acceleration
measurement. The torsional oscillations decay very slowly, although they remain
stable.

FBLC with Acceleration Filtering: C = 0.0129 F
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Figure 8-22: Line current (real part) of a system with FBLC and a filtered acceleration
measurement.
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FBLC with Acceleration Filtering: C = 0.0129 F
0.285

0.28

0.275

0.27

0.265

- 0.26

0.255

0.25

0.245

0 24
0

Figure 8-23:
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Figure 8-24: Field voltage of a system with FBLC averaging and a filtered acceleration
measurement.
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FBLC with Acceleration Filtering: C = 0.0129 F

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time (s)

Figure 8-25: Rotor angle (6 - 6) of a system with FBLC and a filtered acceleration
measurement.
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Figure 8-26: Plot of w - w for a system with FBLC and a filtered acceleration
measurement.
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FBLC with Acceleration Filtering: C = 0.0129 F
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Figure 8-27: Rotor acceleration (w) of a system with FBLC and a filtered acceleration
measurement. The torsional oscillations maintain a constant amplitude over time.

FBLC with Acceleration Filtering: C = 0.0129 F
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Figure 8-28: Line current (real part) of a system with FBLC and a filtered acceleration
measurement.
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FBLC with Acceleration Filtering: C = 0.0129 F
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Figure 8-29: Line current (imaginary part) of a system with FBLC and a filtered
acceleration measurement.
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Figure 8-30: Field voltage of a system with FBLC averaging and a filtered acceleration
measurement.
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Chapter 9

Robust Stability of Feedback
Linearizing Control to Torsional
Dynamics

As shown earlier, when the shaft dynamics are added to the feedback linearizing
control model, the composite model is still linear. Furthermore, the model was stable
for the typical parameter values that were chosen and is even capable of damping out
torsional oscillations that would otherwise be unstable. We will now examine whether
feedback linearizing control remains stable for a wide range of shaft parameters. To
perform this task, we will use known techniques for stability robustness analysis of
linear systems [23]. Fortunately, since the shaft dynamics preserve the linearity of the
closed-loop system, these techniques are applicable, whereas in most cases, unmodeled
dynamics result in a nonlinear system, which is much more difficult to analyze.

9.1 Characteristic Polynomial of the System
Most robust stability literature is concerned with the stability of the roots of a poly-
nomial whose coefficients are unknown, but within a certain known range. In our
case, we wish to determine whether the roots of:

X(s) = IsI- A = 0 (9.1)

all lie in the left half plane (i.e. have negative real parts). The matrix A is defined
in equation (3.40). Since the matrix is rather sparse, the characteristic polynomial of
A may be calculated by using cofactor expansion. The resulting polynomial is:

X(s) = 7 + C6 S6 + C5 S5 + C4 S4 + C3 S3 + C2 S2 + C1S + CO (9.2)

Dlu D2u Deu - D - 2a2H
g 2H 2H 2 2HeD6- 2H1 22H
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K12u
C5 =

2H1

+ K 12 u + K2eu D 1,u2H2 H+
2H2 4H 1

Diu (Deu - D - 2a2H) +
4HHe

(Kl2u + K2eu)Dlu + K12 uD2

4H1H 2

)2u K 2eu - 2a1H
H2 2He

D2,(Deu - D - 2a2H)
4H2He

Dlu(K2eu - 2alH)+ Kl 2u(Deu - D- 2a2H)
4HH,

D2u(K2e. - 2alH) + (K2u + K2e,) (Deu - D - 2a2H)
4H 2He

Di,D2u(Deu- D - 2a2 H) H
+ 8HlHH- ao He8HH2He He

K1l2u-K2eu

4H1H2

C1

Cn

K12.(K 2eu - 2alH) - 2DlaoH
4H1He

K12u(K2eu - 2alH) - 2D2uaoH - 2K2eualH
4H2He

([Kl2u + K2e]Dlu + K12uD2u)(Deu - D - 2a2H) + DuD 2u(K2eu - 2alH)
8H1 H2He

K12u aoH (K 2 u + K2eu)aoH , K12uK2eu(Deu - D- 2a2H)
2H He 2 H2H 8H H 2He

K12u(Dlu + D2u)(K2eu - 2alH) - 2DluK2eualH - 2DluD2uaoH

4H H2 He

In these equations, H1, H2, He, K 12u, K2eu, Dluv D2 u, and Deu are all shaft pa-
rameters which are not known precisely and may vary significantly for a given system.
H and D are controller constants and are fixed, known values. These quantities are
used to estimate the total rotational inertia and damping of the shaft. For the sample
parameter values from Section 2.4, the characteristic polynomial is:

X(s) = 7 + 45.66s6 + (6.17 x 104)s5 + (2.02 x 106)s4 + (8.94 x 108)s3
+ (1.34 x 1010)s2 + (6.63 x 1010)s + 1.10 x 1011 (9.3)

9.2 Definition of Robust Stability
It is now time to define precisely what is meant by robust stability.
introduced here are developed in [23].

Given a polynomial:

p(s, q) = an(q)sn + an-1(q)sn-1 + ... + al(q)s + ao(q)

The terms

(9.4)

where the coefficients ai (q) are real functions of uncertain quantities q = [q1 q2 ... qm]T
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and q < qi < q+, the polynomial p(s, q) is robustly stable if and only if all roots
of p(s, q) = 0 are in the left half plane for all q E Q, where Q denotes the set of
all possible uncertainty vectors q. Furthermore, it is assumed that an(q) 0 for
all q E Q. This condition is equivalent to stating that p(s, q) has invariant degree,
meaning that the number of roots is the same for all q. Clearly, equation (9.2) has
invariant degree.

The manner in which the uncertain quantities qi appear in the polynomial coeffi-
cients is known as the uncertainty structure. If each qi appears in only one coefficient,
the polynomial has an independent uncertainty structure. If at least one qi appears
in more than one coefficient, but every term of every coefficient has at most one un-
certain quantity, the uncertainty structure is affine linear. If there are terms which
contain products of different qi, but there are no powers of any qi greater than one, the
structure is multilinear. An uncertainty structure with higher powers of at least one
qi is polynomic. The uncertainty structure for the torsional shaft/generator system
with FBLC is a multilinear structure.

9.3 Kharitonov's Theorem
Perhaps the most well-known and simplest tool for robust stability analysis is Kharito-
nov's Theorem. Kharitonov's Theorem is a conclusive test for the stability of an
independent uncertainty structure. Such a polynomial may be written as:

p(s, q) = qs + qn n-1 + ' + qs + qo (9.5)

where, as before, qi - qi < q. Kharitonov's Theorem asserts that p(s, q) = 0 is
robustly stable if and only if the following four Kharitonov polynomials are stable
[23]:

K1(s) = q + qs + q +s + q+s + 4+ q- 5+ q+ 6 +q+s7+ (9.6)

K2(s) = q + qi-s + qj-2 + q-3 S + q4 S + q+s5 + q-s + qs 7 + (9.7)+ 1 2 3 4 5 6 +7K3(s) = +q2 3+ ql + qs + qs4+q5s5 6+ +q+s 7 + (9.8)40 + 41 2 3 4 5 +6 7

K4 (s) = q + q+s + q+s2 + q3 s 3 + qs 4 + 5 + q+ S6 + - 7 +(9.9)

The proof of Kharitonov's Theorem is outlined in the next section.
The good news about this theorem is that it provides a simple, conclusive test

for robust stability. By calculating the roots of four polynomials, we will have infor-
mation about an entire set of an infinite number of polynomials. The bad news is
that the required uncertainty structure rarely occurs in practice. It is possible to ap-
ply Kharitonov's Theorem to any uncertainty structure by finding the minimum and
maximum values of each coefficient; this technique is called overbounding [23]. How-
ever, the results of overbounding are conservative; if Kharitonov's Theorem concludes
stability for the overbounded structure, then the original structure is robustly sta-
ble; however, the converse is not true. If Kharitonov's Theorem determines that the
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overbounded structure is not robustly stable, we need other techniques to determine
whether the original system is robustly stable.

9.4 Value Set and the Zero Exclusion Condition
For any generalized uncertainty structure, robust stability may be determined by
means of the value set. The value set at a given frequency w is defined as the region
covered by p(jw , q) for all q E Q. For specialized uncertainty structures, the value
set has a distinct shape, which will be discussed later [23].

The value set is used to conclusively determine robust stability of p(s, q) through
the Zero Exclusion Condition. This condition states that p(s, q) is robustly stable if
and only if at least one member of p(s, q) is stable, and the value set p(jw, q) does
not include the point zero at any frequency w, where 0 < w < oc. The proof of the
Zero Exclusion Condition is based on the following argument: Clearly, if p(s, q) is
robustly stable, then the roots of p(s, q) = 0 must always be in the left half plane,
and p(jw, q) can never be zero, since jw is on the imaginary axis. Furthermore, if
p(s, q) is not robustly stable, then for some q8 E Q and q Q, p(s, qs) is stable
while p(s, qu) is not. As q travels on a path from q to q,, at least one root of
p(s, q) travels from the left half plane to the right half plane; for some q* on the
path, that root crosses the imaginary axis at jc*, and therefore p(jw*, q*) = 0. Note
that because the coefficients of p(s, q) are assumed to be real, it is sufficient to check
the positive imaginary axis, since imaginary roots occur in conjugate pairs. A formal
proof may be found in [23].

9.4.1 The Kharitonov Rectangle
The Zero Exclusion Condition is the basis for the proof of Kharitonov's theorem. It
turns out that the value set for an independent uncertainty structure is a rectangle.
To see this, note from equation (9.5):

P(jwo, q) = (qo - q2 o2 + q4Wo - ... ) + j(qlwo - q3wo + ) (9.10)

Assuming that wo > 0, the real part of p(jwo, q) is maximized when q = q+, q2 =

q2 and is minimized when , q4 = q4, and is minimized when qO q, q2 = q q4 = Similarly, the
imaginary part reaches a maximum at q q+, q3 = q3 , q5 = q, *' and a minimum
at ql = ql, q3 = q+, q5 = q5, Since the real and imaginary parts are maximized or
minimized independently, the value set will have the shape of a rectangle, as shown in
Figure 9-1. Notice that the Kharitonov polynomials mark the vertices of the rectangle
[23]. It is possible to show [23] that the Zero Exclusion Condition for the Kharitonov
rectangle is satisfied if and only if the four Kharitonov polynomials are stable.

9.4.2 Affine Linear and Multilinear Uncertainty Structures
If the uncertainty structure is affine linear, it can be shown that the value set will be
a convex polygon [23]. For multilinear uncertainty structures, the value set no longer

125



K2 o)

K1 (jo) K3 ( o)

Figure 9-1: The Kharitonov rectangle, showing the Kharitonov polynomials as the
vertices.

has a well defined shape. However, an upper bound for the value set of a multilinear
structure may be determined using the Mapping Theorem [23]. First, it is necessary
to calculate p(jw, q) for all of the extreme points of q. The extreme points are the
points where each qi is at either its minimum or maximum value. Notice that Q
has the shape of a box; the extreme points correspond to the corners of the box.
Furthermore, the number of extreme points is equal to 2 m, where m is the number of
uncertainties.

Next, the value set p(jw, q) is included within the convex hull of the extreme
points. The convex hull of a set of points is the polygon which has a subset of the
points as vertices and leaves none of the points outside of the polygon. (See [23] for
a formal definition of convex hull.) If the uncertainity structure is affine linear, then
the convex hull of the extreme points is the value set.

9.5 Analyzing the Torsional Shaft/Generator Sys-
tem

We now have the required tools to analyze the robust stability of the shaft/generator
system. Notice that since the coefficients ai are always negative (it is clearly unde-
sirable to place the FBLC closed-loop poles in the right half plane), all of the terms
in each coefficient of the characteristic polynomial are positive. This feature makes
it easy to find the minimum and maximum values of these coefficients. However, this
is the only "nice" feature of the characteristic polynomial; it has a multilinear uncer-
tainty structure, and as we shall see, it is not possible, without an exorbitant amount
of computation, to conclusively establish robust stability over a wide variation of
many system parameters.
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Ki (s)
46.74

6.17 x 10 4

2.00 x 106
8.94 x 108
1.37 x 1010
6.63 x 101°0
1.10 x 1011

K2(s)
45.26

6.18 x 104

2.06 x 106
8.93 x 108
1.32 x 101°0
6.63 x 1010
1.10 x 1011

K3 ()
45.26

6.17 x 104

2.06 x 106
8.94 x 108
1.32 x 1010
6.63 x 1010
1.10 x 1011

K4 ( )
46.74

6.18 x 104

2.00 x 106
8.93 x 108
1.37 x 101°0
6.63 x 1010
1.10 x 1011

Table 9.1: The coefficients of the four Kharitonov polynomials used to examine robust
stability for variations in the damping constants.

9.5.1 Damping Parameters
We will first examine whether the system remains stable when the damping coeffi-
cients vary over a wide range. Assume that the per unit damping terms lie within
the following ranges:

0 < D1 < 0.32

0 < D2 < 2

0 < D,, < 1.2

while the other parameters are fixed. Overbounding with Kharitonov's theorem is
sufficient to establish that the system is robustly stable to these parameter variations.
The coefficients of the four Kharitonov polynomials are shown in Table 9.1. It is easy
to show that the roots of these polynomials are all in the left half plane.

9.5.2 Spring Constant Parameters
Next, we would like to know whether the system is robustly stable to a large variation
in the spring constants K12 and K2e,,, while the other parameters remain constant.
We will set the ranges of the spring constants as:

10000 < K 12u < 40000

20000 < K2eu, < 80000

Unfortunately, Kharitonov's theorem with overbounding does not provide a conclu-
sion of robust stability. It is necessary to resort to calculation of the value set for
0 < w < 1000. Note that at w, = 1000:

6

W >Eiw= (9.11)
i=O
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Value Set: 0 <= w <= 20x 1013
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Figure 9-2: Value set for 0 < w < 20.

and therefore p(jw, q) can not be zero for w > wc. w is known as the cutoff frequency.
A cutoff frequency exists for every p(jw, q) [23], so that it is not necessary to generate
an infinite number of value sets in order to verify the Zero Exclusion Condition.

The value sets for 0 < w < 1000 are shown in Figures 9-2 through 9-8. For
135 < w < 265, the convex hull of the extreme points does include the zero point.
To show that the value set at these frequencies does not include zero, two convex
hulls are generated: one for 10000 K 12 < 10000 * (w/131)2, and another for
10000 * (w/131)2 < K12 _L < 40000. The value set p(jw, q) is contained in the union
of the two smaller convex hulls. Since the value set does not include zero at any
frequency, we conclude that the system is robustly stable to the specified parameter
variations in the spring constants.
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Value Set: 0 <= w <= 20

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Real x 1011

Figure 9-3: Value set for 0 < w < 20.

Value Set: 20 <= w <= 130

-1 0 1 2 3 4 5 6
Real x 1014

Figure 9-4: Value set for 20 < w < 130.
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Figure 9-5: Value set for 135 < w < 265.
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Figure 9-6: Value set for 135 < w < 265.
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Value Set: 270 <= w <= 1000

Real x 109

Figure 9-7: Value set for 270 < w < 1000.
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Figure 9-8: Value set for 270 < w < 1000.
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Chapter 10

Sliding Control

Since the torsional vibrations in the shaft produce uncertainties in p(xg) and 3(xg),
we would like to try using a control methodology that is designed to account for these
uncertainties. One such method is known as sliding control [24]. In a sliding control
design, the system states are designed to follow a desired trajectory despite inaccu-
racies in the model. We will choose the desired trajectory to reflect the response of a
linear system. The sliding control equations are designed for a system in Brunovsky
form. Recall that the third order generator can be placed in Brunovsky form:

z1 = Z2 (10.1)

z2 = Z3 (10.2)

i = p(z) + (z)u (10.3)
with z = [(6 - 6) (w _- w) ]T and u = Efd. The control is designed so that z(t) will
follow a specified trajectory, which we will denote as z*(t). The tracking error will be
written as:

= z - Z* (10.4)

10.1 The Sliding Surface
Sliding control gets its name because the system states move along a time-varying
surface. The surface is a function of both time and the state vector z(t) and is defined
as s(z, t) = 0, where [24]:

s(z, t) = + A Zl (10.5)

where A is a positive constant and n is the order of the system. In our case, we know
that n = 3, and therefore:

s(z, t) = z1 + 2AZ1 + A2Z1 (10.6)
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which may be written as:

s(z, t) = i 3 + 2z 2 + A2z1 (10.7)

If the initial state is such that:
z(0) = z*(0) (10.8)

then the tracking problem z(t) = z*(t) or = 0 is equivalent to s(z, t) = 0. This
means that perfect tracking is achieved if equation (10.8) is satisfied and z(t) remains
exactly on the surface for all time. If z(0) : z*(0), but s(z,t) = 0, then s forms
a differential equation in zl whose solution consists of decaying exponentials. This
means that if z(t) is on the surface for all time, z(t) approaches z*(t) exponentially
with a time constant of (n - 1)/A. When z is on the surface, the system is said to be
in sliding mode. The key of sliding control is that a first order problem in s replaces
an n-th order vector problem [24].

We therefore desire that s = 0 for all time. This constraint will be achieved if the
control input u is selected so that, for s - 0 and a positive constant /7:

ld
s d 82 -lsl (10.9)2 dt -

This condition means that all system trajectories that are off of the surface must
travel toward the surface. The time to reach the surface will be less than s(t = )/7r
[24]. Furthermore, equation (10.9) guarantees that z(t) will reach the surface in a
finite time, if z(0) is not on the surface.

10.2 Choosing a Control Input
We can formulate a control law for the sliding controller by differentiating s with
respect to time:

S = Z 3 + 2AZ 2 + 2 Z1 (10.10)

Substituting for the derivatives and setting s = 0:

Pd(Z) + d(Z)U - 3 + 2Ai 3 + A2 i 2 = 0 (10.11)

where Pd(z) and Pd(Z) represent the estimated values of these quantities that are used
by the controller. Solving for u = ue gives the nominal control input:

-Pd(Z) + 23 - 2i 3 - 2 ~2Ue = ( ) d( /Zd (z(10.12)

In order to ensure that u satisfies equation (10.9) despite the presence of uncertainties
in p(z) and P(z), an extra term is added to the control input:

-= Pd(Z) + 3 - 2Ai3 - A222 - k sgn(s)u = (10.13)
fd(Z)
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sgn(s) is the sign function, defined as:

sgn(s) = 1 s> 0 (10.14)
-1 s < 0

If the error Ip(z) - Pd(Z) < F and B-1 < (Z)/ 3d(Z) < B, then the control input
will satisfy equation (10.9) if:

k > B(F + 7) + (B - l)uIe (10.15)

The implementation of equation (10.13) as a control law results in a system that
tracks the desired trajectory very closely. However, note that the control input in
equation (10.13) is discontinuous across the surface. Consequently, because switching
does not occur at an infinite speed, the control will chatter as s rapidly oscillates
around zero [24]. In the next section, we will see how to prevent chattering while still
maintaining good performance.

10.3 The Boundary Layer
In order to prevent chattering, it is necessary to remove the constraint that s be
perfectly zero; instead we will constrain Isl < . Conceptually, this means that
instead of trying to remain exactly on the surface, we will remain near the surface
within a boundary layer of thickness O. It can be shown that if z(0) = z*(0) and
IsI < for all time, then the tracking error will be limited such that [24]:

Ii(t)l < (2 A)A_l (10.16)

If z(0) Z= z*(0), then this bound is approached exponentially with a time constant of
(n - 1)/A if Isl < 1 for all time.

Outside of the boundary layer, the control law for u is the same as before. To
achieve a boundary layer, we simply change the control law to:

-Pd(Z) + z - 2Xz2 - A2 - k sat(s/) (10.17)
3 (10.17)

=d(z)

sat(s) is the saturation function, defined as:

sat(s) = 1 s > 1
-1 s < -1 (10.18)
s -1 <s<1

Since equation (10.9) is still satisfied for all points outside the boundary layer, all
trajectories must point towards the layer. We will treat the boundary layer thickness
D as constant, although it can be allowed to vary with time [24].
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10.4 Selection of Controller Parameters
The sliding mode controller design includes several parameters. The parameter A
is referred to as the control bandwidth. As shown by equation (10.16), a larger A
results in less tracking error, even if large modeling errors are present. However,
the maximum allowable A is limited by the presence of high frequency unmodeled
dynamics and time delays.

The parameter r7 represents the time required for the states to reach the surface.
Note from equation (10.15) that increasing k results in an increase in 7r, reducing the
reaching time. However, a larger k increases the tendency and magnitude of control
chattering, which means that a larger will be needed; consequently, the tracking
error on the surface will be larger. The boundary layer thickness q) is generally chosen
to be as small as possible while still preventing control chattering [24].

10.5 Sliding Mode Controller Design for a Gen-
erator

We are now ready to design a sliding control design for the third order generator
model. Because the field voltage can not vary infinitely, the following design is actually
a hybrid FBLC/sliding control scheme. First, we choose the desired trajectory to be
the response of the following linear system:

i* = Az* (10.19)

0 1 0
A= 0 0 1

a a a2

This is the same system that we were trying to create using FBLC. The trajectory
may therefore be written as the following time function:

z*(t) = eAtz(0) (10.20)

where we have chosen z*(0) = z(0) so that the control always operates on the sur-
face. Although the calculation of the trajectory seems to be a formidable task, the
appropriate time functions are the solutions of the differential equation:

*(3) _Z ( 3)- a2z1 - alzl - aoz* = 0 (10.21)

If a2 = -15, al = -75, and a = -125 (eigenvalues at -5, just as we did with
FBLC), the desired trajectory is:

z*(t) = Ale-5t + A2te-5t + A3t2e- st (10.22)

z*(t) = (-5A 1 + A2)e-5 t + (-5A 2 + 2A3)te- 5t - 5A3t2e- 5t (10.23)
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z3(t) = (25A1 - 10A2 + 2A 3)e-5t + (25A2 - 20A3)te- 5t + 25A3 t2e- 5 t

Al = zi(0)

A2 = 5z 1 (O) + z2(O)

A 3 = 12.5zl(0) + 5z2 (0) + 0.5z3(0)

The controller parameters were selected as A = 5, k = 1, and = 0.25.
To handle field voltage saturation, the following algorithm was used. Initially,

z* = 0 so that the desired trajectory is at equilibrium and constant for all time. The
controller is implemented as a discrete time system with sampling frequency of 100
Hz. At each time step, the controller calculates a new value of Efd using the sliding
control laws. If Efd saturates at either limit, then at the next time step, the value of
Efd is calculated by the FBLC control law, i.e.:

aTZ - Pd(Z)
Efd = pd(Z) (10.25)

As long as the value of Efd remains saturated, the FBLC control law is applied. When
Efd comes out of saturation, the state vector z at that time step becomes the initial
state of the desired trajectory, and sliding control is again applied to the system.
Sliding control is maintained as long as Efd does not saturate. In this algorithm,
FBLC is used to monitor the field voltage and determine when to restart sliding
mode control.

10.6 Simulations of a Sliding Mode Control
In order to examine the effects of torsional dynamics on a sliding mode controller,
numerical simulations are performed. The controller is tested by simulating the same
0.5 s fault that was used in earlier simulations. Plots of the simulation results are
shown in Figures 10-1 to 10-8. According to the simulations, the response of sliding
mode control to torsional oscillations is virtually the same as that of FBLC. The
uncertainty in p(xg) because of torsional oscillations is clearly very large, although
because the oscillations are at a high frequency, it appears that they are averaged out
by the controller and the resulting performance is no different from FBLC. A plot of
we - w2 is given in Figure 10-9; since p(xg) includes the quantity K2eu(we - w2 ), where
K2eu is on the order of 104 , the spring constant terms dominate the quantity p(xg).
Since the uncertainties in p(xg) are so large, even large changes in the parameters A,
k and 1 of the controller did not affect the simulation results.
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Simulation of Sliding Mode Controller

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time (s)

Figure 10-1: Response of 6 - 6, to a 0.5 second fault with sliding control.

Simulation of Sliding Mode Controller

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time (s)

Figure 10-2: Response of w - w, to a 0.5 second fault with sliding control.
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Simulation of Sliding Mode Controller
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Figure 10-3: Response of &b to a 0.5 second fault with sliding control.
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Simulation of Sliding Mode Controller
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Figure 10-4: Response of Efd to a 0.5 second fault with sliding control.
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Simulation of Sliding Mode Controller

0o
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Figure 10-5: Response of p(xg) to a 0.5 second fault with sliding control.

Simulation of Sliding Mode Controller
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time (s)

Figure 10-6: Response of pd(Xg) to a 0.5 second fault with sliding control.
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Simulation of Sliding Mode Controller
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Figure 10-7: Response of /(xg) to a 0.5 second fault with sliding control.
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Figure 10-8: Response of d(Xg) to a 0.5 second fault with sliding control.
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Chapter 11

Conclusions

The purpose of this thesis is to determine the effects that torsional shaft oscilla-
tions have on nonlinear generator control methods; specifically, feedback linearizing
control and sliding mode control. The torsional oscillations are of interest because
they greatly influence the acceleration of the generator rotor, and this acceleration
measurement is an integral part of nonlinear control methods.

The model that was used to represent the torsional dynamics, which is typical of
most models used, has oscillatory modes that are lightly damped. It is both interesting
and important that the torsional model couples with the model of an FBLC-controlled
generator in such a way that the composite model remains linear. This result is helpful
since linear systems are much more easily analyzed and understood than nonlinear
systems. The addition of FBLC greatly improves the damping of the shaft modes,
a result that is in retrospect not surprising since the placement of the FBLC closed-
loop eigenvalues was intended to filter out high frequency disturbances, including
frequencies in the torsional range.

Although the theoretical model of feedback linearizing control with torsional dy-
namics is well behaved, the torsional oscillations create large amplitude oscillations in
the field voltage that cause the field voltage to swing rapidly between its upper and
lower bounds. Even with the field voltage saturation, the low frequency components
of Efd are generally still sufficient to provide a good response to simulated faults,
although the time required to return to equilibrium is lengthened with the additional
dynamics present.

Since the rail-to-rail swings in Ef d are undesirable, an attempt was made to remove
these swings by averaging the field voltage over 1/60 of a second. However, the results
of this technique were not impressive; in a simulated fault, the rotor angle did not
return to equilibrium, and the torsional modes were found to be unstable around
equilibrium. In fact, the lack of damping on the torsional modes caused Efd to swing
from limit to limit for an even longer time than without the field voltage averaging.

A theoretical, though imperfect, linear model was developed for studying the
effects of averaging and explaining the results. The model showed that:

1. The amplitude reduction of the high frequency components of the acceleration
eliminates any damping of the torsional modes created by the controller; the
only remaining damping is the natural damping in the shaft system itself.
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2. The phase shift of the high frequency components resulting from the filtering of
the acceleration measurement is capable of exciting the shaft modes and causing
instability.

These hypotheses from eigenvalue analysis of the model were confirmed by the sim-
ulated results of placing a Butterworth filter on the acceleration measurement. The
torsional modes were lightly damped with the presence of any filter on Ab. The second
order Butterworth filter, with a phase shift of -180 ° in the stopband excited the tor-
sional modes, while a fourth order Butterworth filter did not excite the modes, since
it has a stopband phase shift of -360 ° . Therefore, it is clear from the simulations
and modeling that lowpass filtering of the field voltage or acceleration measurement
is capable of producing an unstable system, although the fourth order Butterworth
filter did result in improved performance of FBLC in the simulations.

Another method of compensating for torsional dynamics is to change p(xg) and
3(xg) in the controller to include torsional state information. For miniscule signals,

this method indeed produces the desired results; the response of the generator states
is isolated from the torsional states, and the eigenvalues of the linear system are
placed at the intended locations. However, the torsional dynamics introduce very
large oscillations in p(xg) and P(xg); for even a small disturbance, the range of Efd

is much too small to provide adequate control, and the generator states are observed
to take a long time to return to equilibrium.

FBLC is observed to greatly improve the damping of the shaft dynamics. In fact,
this additional damping is strong enough to stabilize a system that would otherwise
be unstable due to subsynchronous resonance. If filtering is applied to the accel-
eration measurement to reduce the field voltage swings, the controller is much less
effective at damping torsional modes in this situation, although the controller is able
in simulations to limit the amplitude of the shaft oscillations and prevent them from
growing indefinitely.

Since it may not be desirable to modify FBLC in order to improve its performance
in the presence of shaft dynamics, it is natural to ask whether the torsional dynamics
can interact in such a way as to cause FBLC to become unstable. The stability
robustness tests strongly suggest that the answer is no, although the proof of this
assertion for all possible combinations of shaft parameters has not been shown.

Finally, the sliding mode control is observed to provide no improvement in per-
formance over FBLC. The uncertainties in the model are of large amplitude and high
frequency, and the sliding mode controller is unable to compensate for them. Con-
sequently, like FBLC, the low frequency component of the field voltage is able to
provide a reasonable response, although the performance is not able to match the
results obtained when torsional dynamics are not modeled in the simulations.
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Appendix A

Linear Matrix Models of FBLC
with Torsional Dynamics

This appendix contains the state matrix of the linear model of feedback linearizing
control with torsional dynamics. Also included are the reduced linear models used to
examine Butterworth filtering of the acceleration measurement along with the linear
model of FBLC with field voltage averaging over 60 Hz.
is given by equation (3.39).

Linear model of FBLC with torsional dynamics:

1

0

-17564
0

0

0

0

0

1

-45.39
0

0 -2
0

0 5'

In all cases, the state vector

0 0 0

0 0 0

0 0 0

0 1 0

!9009 -0.13 29009
0 0 0

058 0 -15150

0

0

17338
0

0

1

-0.14

(A.1)

Linear model of FBLC with field voltage averaging:

0

0

-310370
0

0

0

10092

1

0

-21353
0

0

0

0

0

1

-19.08
0

0

0

0

0

0

-67123
0

-29009
0

5058

0

0

578.1
1

-0.13
0

0

0

0

377050
0

29009
0

-15150

0

0

20515
0

0

1

-0.14

(A.2)

Reduced linear model of FBLC with first order Butterworth filtering of the accel-
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eration measurement:

0 0 0

1 0

-19.50 -11591
0 0

0 -29009
0 0

0 5058

0

0 0

247.1 269680
1 0

-0.13 29009
0 0

0 -15150

Reduced linear model of FBLC with second order Butterworth filtering of the
acceleration measurement:

Abr2 =

0

0

-300450
0

0

0

10092

1

0

-17915
0

0

0

0

0

1

-11.28
0

0

0

0

0

0

14551
0

-29009
0

5058

0

0

86.59
1

-0.13
0

0

0

0

285500
0

29009
0

-15150

0

0

17599
0

0

1

-0.14

(A.4)

Reduced linear model of FBLC with fourth order Butterworth filtering of the
acceleration measurement:

0 1 0 0

0 0 1 0

-260140 -17463 -15.59 -1731.8
0 0 0 0

0 0 0 -29009

0 0 0 0

10092 0 0 5058

0 0 0

0 0 0

-32.76 261490 17271
1 0 0

-0.13 29009 0
0 0 1

0 -15150 -0.14
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0

-258500
0

0

0

10092

1

0

-19346
0

0

0

0

0

0
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0

0

1

-0.14
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