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Abstract
The energy and moisture states in the soil and near-surface atmosphere evolve due
to fluxes that are themselves a function of these states. The resultant nonlinear
dynamical system has modes of variability and statistical signatures that depend on
the full coupling of all components of heat and moisture balance.

A conceptual land-atmosphere model - consisting of a 1-D (in the vertical), 4-
state balance for a soil layer and a turbulently-mixed atmospheric boundary layer -
is subjected to stochastic forcing. The statistics of the moisture and energy states are
computed; the covariability structure evolves through the state-dependent turbulent
and radiative fluxes in the land-atmosphere system and is not prescribed a priori.
The mathematical construct is exploited to explore several land-atmosphere interac-
tion processes and to identify and quantify their influence on regional hydroclimate.
Because the soil moisture and temperature are negatively correlated (dry-warm or
cool-moist), physical mechanisms that tend to restore each state individually (soil-
moisture control of evaporation and temperature dependence of saturation specific
humidity) act as anomaly-enhancing (positive) feedback mechanisms for the other
state. Dry anomalies are found to persist longer than moist anomalies, when evapo-
ration efficiency is formulated to switch between soil and atmospheric control. Two-
way interaction between the land and atmosphere is seen to be critical in establishing
the memory and covariability of the moisture and temperature states of the soil.

Although usually triggered by large-scale circulation anomalies (decreased precip-
itation), dry soil anomalies may persist and intensify due to local land-atmosphere
interactions. These interactions may, in turn, form feedback mechanisms that rein-
force the large-scale anomaly. Thus, the explorations with the 1-D model are relevant
to the persistence of hydrologic anomalies on both the local and the larger scale.

Thesis Supervisor: Dara Entekhabi
Title: Assistant Professor
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Chapter 1

Introduction

A particular feature of continental climates is that hydrologic anomalies, whether

moist or dry, tend to persist and intensify. This behavior is due to a complex set

of interactions among the atmosphere, oceans, and continents, on both the regional

and global scales (McNab and Karl 1989, Oglesby and Erickson 1989, Diaz 1983).

Understanding these interactions and the time sca!2s on which they operate has great

practical consequences, including the development of predictive measures for drought

or flood risk, and the onset and termination of anomalous conditions.

As the world faces the challenges of burgeoning population and global climate

change, the socioeconomic and environmental consequences of extreme events, such as

droughts, compellingly motivate investigation into the physical causes and statistical

properties of these extreme events. Droughts are characterized by persistence and

intensification, often with sudden transitions into or out of anomalously dry conditions

(Diaz 1983). In most cases, the historical record is not long enough to develop a

reliable drought climatology for a given region. Furthermore, in the face of possible

large-scale climate change, it is desirable to gain a physical understanding of drought

dynamics and a physical basis for drought forecasting, since past records cannot

provide information on drought probability in a changed climate.

Various techniques of time-series modeling - such as Markov chain (e.g., en

1990) and theory of runs (e.g., Moye et al. 1988) - have been applied in hopes of

making useful climate forecasts. Such statistical models require strong assumptions

concerning the underlying probability distribution and serial dependence of climatic

variables; a model that is free of such assumptions would be preferable. The statistical

signature of droughts results from complex interactions and feedbacks in the climate

system; therefore, a statistical-dynamical approach should be more fruitful than a

purely statistical analysis. Such an approach is based on a mathematical model that
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captures the essential interaction and feedback mechanisms in the land-atmosphere

system.

The land surface is the interface between the traditional domain of hydrologists

and that of meteorologists. Each domain is a complex, nonlinear system; in the past,

each group has tended to treat the other's domain as the fixed boundary conditions

or the external forcing to its own. In reality, because the land and atmosphere in-

teract, the system (from either point of view) alters its own boundary conditions

or forcing. The study of the fully-coupled land-atmosphere system is fairly recent;

Nicholson (1988) gives an interdisciplinary review, and Entekhabi (1994) describes ad-

vances since 1989. This introductory Chapter presents the issues of land-atmosphere

interaction and gives a context for this thesis within the broad range of recent inves-

tigations. The remainder of the thesis describes an abstract, conceptual model that

has been developed to study the coupled exchanges of water and energy at the land

surface, and to investigate their role in regional-scale climatic variability.

1.1 Land-Atmosphere Interaction

The land and the atmosphere are linked by exchanges of mass, energy, and momen-

tum. The moisture and temperature states of the land are major factors in regulating
these exchanges, particularly the coupled transfers of energy and water mass.

With respect to the exchange of water mass, soil moisture controls the partitioning

of precipitation into infiltration and runoff. The soil serves as a reservoir for the

storage of liquid water and the slow release of water vapor into the atmosphere. Water

that evaporates from the land may condense and fall again as precipitation into the

same land region, constituting an internal recycling mechanism (Brubaker et al. 1993,

Entekhabi et al. 1992, Rodriguez-Iturbe et al. 1991a,b). As for the energy exchange,

when soil water is available, excess energy can be dissipated by latent heat flux

(evaporation). When the soil is dry, the energy budget must be balanced through the

thermal radiation and sensible heat fluxes, which are less efficient mechanisms, in the

sense that they require elevated temperatures to provide an equivalent expenditure

of energy. Thus, the heat and moisture state of the soil controls the partitioning

of incident energy into outgoing longwave radiation and turbulent fluxes. The soil

moisture and temperature determine the Bowen ratio (the ratio of sensible to latent
heat flux). Moister soil has a lower surface albedo (resulting in greater absorption of

solar radiation) and a higher heat capacity (allowing a smaller change in temperature

for a given amount of absorbed energy), thus greater thermal inertia.
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Figure 1-1: Conceptual diagram of the pathways through which soil temperature,
soil moisture, near-surface air humidity, and near-surface air temperature mutually
influence one another.

The heat and moisture states of the land and the atmosphere are intertwined, and

water - with its high heat capacity and latent heat of phase change - is the major
actor. Figure 1-1 is a conceptualization of the interconnections between these system

states. The fluxes of water and energy from the land surface alter the water vapor and

temperature profiles in the atmosphere, with consequences for atmospheric downward

and upward longwave radiation. Clouds, formed by the condensation of atmospheric

water vapor, reflect shortwave radiation and act, in a significant way, as gray-body

emittors in the longwave. These combined factors affect the net radiation received

at the land surface. The inputs of water vapor and sensible heat at the bottom of
the air column provide energy for convection, enhancing the formation of clouds and

precipitation.

1.1.1 Anomalies and feedbacks

Numerous feedback mechanisms are inherent in this coupled system. A positive

feedback occurs when the system responds to a perturbation in such a way that the

perturbation is amplified. In a negative feedback, the system responds by damping
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or counteracting the perturbation.
The initiation or termination of a drought condition may depend on large-scale

(global or hemispheric) or remote causes, such as persistent circulation patterns or

teleconnections to sea-surface temperature anomalies (Namias 1983, McNab and Karl

1989). However, local positive feedbacks in the land-atmosphere system are believed

to contribute to the observed persistence and intensification of droughts. The pre-

cipitation recycling mechanism is a positive feedback, in that rainfall moistens the

soil and provides more water for evaporation, which in turn enhances the supply of

water mass for precipitation. The atmospheric demand for evaporation (potential

evaporation) depends on the temperature and humidity of the near-surface air and

is thus dependent on the evaporation that has already occurred within the region

(Bouchet 1963). An increase in albedo due to drying of the soil or removal of veg-

etation contributes to a net radiative heat loss, which enhances sinking motion and

further inhibits precipitation, leading to further drying (Charney 1975). Synoptic ob-

servations over the United States (Namias 1988) indicate that large-scale soil moisture

deficit may inhibit precipitation because the elevated surface temperature deepens the

adiabatically-mixed air layer and intensifies the mid-continental high-pressure ridge.

1.2 Review of the Literature

As in all scientific endeavors, research in land-atmosphere interaction advances through

simultaneous field observation, laboratory experiments, and analysis. Observations

enlighten theory, which in turn, provides speculation and hypotheses that must be

tested by observation. The diverse spatial scales of the Earth's hydrologic cycle and

climate system provide a challenge for observation. How do point processes - which

may or may not be well understood in themselves - integrate to large-scale responses,

what large-scale parameters are important, and how might they be estimated? Re-

cent large-scale field experiments such as HAPEX1 in France and Niger, and FIFE 2

in the United States constitute intensive multi-scale observational efforts to address

such questions. The development of technology for remote sensing of the Earth's

surface and atmosphere, together with new tools to interpret remotely-sensed data,

provides a wealth of new observations. In conjunction with the data-collecting effort,

theory and analysis must continue to pose useful questions to organize and interpret

1Hydrologic Atmospheric Pilot Experiment
2 First ISLSCP (International Satellite Land Surface Climatology Project) Field Experiment

16



the data.
To place this thesis in context, the following overview focuses on modeling studies

of the climatic effects of the coupled water and energy exchanges between the soil

and the near-surface atmosphere, or planetary boundary layer (PBL). Because re-

search in this area is heavily dependent upon experiments with numerical models

themselves undergoing development - the distinction between theory and laboratory

experiment becomes blurred; the results of a modeling study may tell us something

about the Earth or about the need to improve the model, usually both. Indeed, with
numerical models that incorporate observations through 4-D data assimilation (see,

e.g., National Research Council 1991), it becomes difficult to distinguish modeling

from observation. Therefore, the categories mentioned here lie along something of a

continuous spectrum between pure observation and pure theory.

1.2.1 Modeling studies

Investigations in this topic are mostly based on the use of numerical models of the at-

mosphere that integrate the atmospheric primitive equations (equations of state, con-
servation of energy, mass, and momentum) and parameterize the physics associated

with subgrid processes (hydrology, radiation, convection, etc.) on three-dimensional

global or regional domains. The atmospheric models may be considered to be ade-

quate numerical laboratories for larger-scale processes, conditional on the reliability

of their representation of physical processes.

General Circulation Models

Studies with General Circulation Models (GCMs) show that the presence of an inter-

active soil moisture reservoir adds memory to the near-surface atmosphere (Delworth

and Manabe 1988, 1989). Shukla and Mintz (1982) and Yeh et al. (1984) demonstrate

the important role of land-surface evaporation in the global climate. One of the ear-

liest such studies was Charney et al. (1977), which lent support to Charney's (1975)

hypothesis on Sahel drought. According to that hypothesis, an increase in albedo

due to drying of the soil or removal of vegetation contributes to a net radiative heat
loss, which enhances sinking motion and further inhibits precipitation, leading to fur-

ther drying. Walker and Rowntree (1977), Rind (1982), Rowntree and Bolton (1983),
Oglesby and Erickson (1989), and Serafini (1990) describe experiments with several

different GCMs, focusing on various aspects of continental climates. Recently, Meehl

(1994) has used a GCM to investigate the role of land-atmosphere feedbacks in the

17



Indian monsoon.

In general, in these experiments, dry surface moisture anomalies tend to persist

for longer periods than moist surface anomalies; this effect is more pronounced if

the anomaly is initially present at the onset of the summer season. These investi-

gations demonstrate the presence of dynamical feedbacks in the mutual interaction

of soil moisture and large-scale atmospheric processes; these feedbacks contribute to

climatic persistence. The model studies generally suggest that this effect is stronger

for droughts and dry anomalies.

Mesoscale models

Detailed 3-D models on the mesoscale are numerical laboratories for the study of

processes on scales that cannot be explicitly represented in the global models. Land-

atmosphere interaction experiments with mesoscale models have tended to focus on

the effect of surface heterogeneities on convection and cyclogenesis. Several numerical

studies of the evolution of the dry line over the southern Great Plains (Sun and Ogura

1979, Lanicci et al. 1987, Chang and Wetzel 1991, Fast and McCorcle 1991) indicate

that gradients in surface moisture availability lead to a significantly altered pre-storm

atmospheric environment.

In the absence of significant synoptic wind, variations in surface properties

such as soil moisture - drive spatial variability in the energy fluxes, inducing a

local thermally-direct circulation which in turn affects the net vertical transport of

mass, energy, and momentum for the region as a whole. Mesoscale models have

successfully replicated such sea-breeze and land-breeze phenomena; Segal and Arritt

(1992) provide a summary and bibliography.

One-dimensional PBL models

Lower-dimensional models provide insight by allowing specific processes to be iso-

lated from the large, complex system. Sasamori (1970), Zdunkowski et al. (1975), and

Siebert et al. (1992) use fine-grid numerical models of the coupled soil and atmosphere

column to demonstrate the critical role of the soil moisture state in partitioning the

incoming energy to latent and sensible heat fluxes. The partitioning of the available

energy into sensible and latent heat in turn affects the PBL forcing of the ground and

turbulent transfer efficiency at the surface. The 1-D model of Camillo et al. (1983)

explicitly accounts for the feedback mechanisms between the land-surface energy and

moisture balances, in order to estimate regional evapotranspiration. Raddatz (1993)
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includes a vegetation cover to study the sensitivity of the PBL to transpiration and

heat and moisture diffusion in the soil column. Ek and Cuenca (1994) demonstrate

the significant impact of variation in soil-texture parameters on the surface fluxes

and boundary-layer development, particularly for dry to moderate soil moisture con-

ditions.

1.2.2 Simple models

Reduced mathematical models simplify the system to a small number of equations,

in which the relationship between land-atmosphere parameters and solutions is more

transparent than in the numerical models, with their many equations in as many

unknowns. These approaches trade detailed physical realism for analytic tractability

and insight. The chief role of these simplified models is to focus on clearly identifying

and quantifying the physical processes that constitute two-way land-atmosphere in-

teraction and develop into feedback mechanisms. The model introduced in this thesis

is designed to meet these same requirements.

Examples of previous such attempts at simplified modeling have focused exclu-

sively either on the water or on the energy balance at the surface. Otterman (1990)

develops ordinary differential equations in two variables (air and ground temperature)

for the surface-effected warming of the planetary boundary layer; the solution incor-

porates two-way thermal exchange and demonstrates the role of land-surface radiative

properties in the surface-to-PBL heat transfer efficiency. Entekhabi et al. (1992) use

a univariate stochastic differential equation to derive probability density functions

of soil moisture, incorporating the water-mass feedback mechanism of precipitation

recycling. The model described in this thesis is a four-variable system of stochastic

differential equations, including both energy and water-mass feedback processes.

1.2.3 Regional evaporation and energy advection

Evaporation - the expenditure of energy to effect the phase change of water from

its liquid to its more mobile vapor phase - couples the energy and water mass

exchanges at the land-atmosphere interface. Brutsaert (1988) discusses the history

of scientific understanding of evaporation, and current approaches to modeling this

critical process. Many of these approaches (the combination equation, Penman-

Monteith, Priestley-Taylor) can be considered one-way interactions, in the sense that

they describe the atmosphere acting on, but not responding to, the moisture state of

the soil. Efforts to incorporate the two-way interaction include the Bouchet-Morton
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complementary relationship (Bouchet 1963, Morton 1976) (accounting for the energy

made available when evaporation is not occurring at the potential rate) and its fur-

ther development in Brutsaert and Stricker's (1979) advection-aridity approach, as

well as studies of fetch length and boundary-layer formation. De Bruin (1983) and

McNaughton (1976) use simple budget expressions for the planetary boundary layer

(PBL) to estimate the influence of surface evaporation control on energy advection

and enhanced evaporative demand. Betts et al. (1994) show that enhanced surface

evaporation into the PBL also increases the diurnal cycle in available energy for con-

vection, which in turn affects the cloudiness and precipitation over the region.

1.2.4 Precipitation-temperature relationships

A number of statistical studies show that the observational record reflects the in-

fluence of land-atmosphere interaction on climate variability. van den Dool (1984)

shows that the persistence in monthly mean air temperature (MMAT) is strongly

influenced by the hydrothermal inertia of the land surface. Huang and van den Dool

(1993) further demonstrate that in inner continental regions, positive anomalies in

MMAT are preceded by strong negative anomalies in monthly mean precipitation

(MMP). The highest (negative) lagged cross-correlation is evident in interior conti-

nental United States and the lag period is one month (or less). Zhao and Khalil

(1993) analyze extended climatological records and confirm the strong MMAT-MMP

negative correlation over the interior continent, especially in summer. Kemp et al.

(1994) search for temporal discontinuities and dissimilarity in recovery from different

sign anomalies in the same records. They show that drought periods are characterized

by variability characteristics that are not evident in the record when conditions are

near normal. The influence of feedback mechanisms are thus important to the study
of climate variability.

1.3 Goals and Overview

The major hypothesis guiding this work is that the nonlinearity and inherent feed-

backs in the coupling of water and energy in the two-way interaction between the soil

and the near-surface atmosphere are significant factors in the statistical behavior of

hydroclimatic anomalies. For example, can these linkages explain why dry anomalies

are more likely to persist and intensify than moist anomalies? Stationary probability

distributions do not provide information about the temporal behavior of excursions
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Figure 1-2: Summary of external dynamic processes affecting precipitation (left) and
internal feedbacks involving soil moisture (right). After Meehl (1994).

from the mean. The decorrelation time scale in an auto-regressive model (such as

applied by Delworth and Manabe 1988, 1989) is a linear measure of persistence, and

does not distinguish between the characteristics of transition from normal to dry or

moist conditions, and the recovery of normal conditions from anomalies of opposite

sign. A physically-based stochastic model is used here to provide quantitative mea-

sures for the strength of pathways hitherto only qualitatively presented, as in Figure

1-1.

Figure 1-2 distinguishes between internal (or local) and external (or large-scale)

conditions that can contribute climatic feedback. This figure uses a negative precipi-

tation anomaly as an example; similar diagrams could be constructed for every process

linking the land and the atmosphere through exchanges of mass and energy. In each

case, local (internal) versus large-scale (external) factors may be distinguished. As

the arrows connecting the two columns indicate, the local and external conditions

affect one another. The model discussed herein pertains to the right-hand side of dia-

grams such as Figure 1-2. The local feedbacks are isolated by treating the large-scale

forcing as random perturbations, essentially severing the right-to-left arrows.

The limitations of numerical models of the atmosphere are due to the fact that the
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investigation of land-atmosphere interaction and its role in modulating the variability

of climate requires integration periods on the order of decades so that reliable low-

frequency statistical features associated with the long memory of the land component

are established. Such multi-decadal simulations are computationally burdensome

and cannot be routinely and repeatedly performed. Furthermore, there are numerous

other interactions and transients in the numerical atmospheric models which make

it difficult to isolate the partial effect of components. The model presented herein is

part of a class of models that may be used in parallel with numerical atmospheric

models to investigate the role of land-atmosphere interaction and temporal variability.

Some of the details (and major processes) that are neglected in the model discussed
here are implicitly part of atmospheric models; nonetheless some simulations and

analyses may be performed with the analytical or stochastic construct here that are

not feasible with the atmospheric models. Depending on the objective of the analysis,

the trade-off between these two classes of land-atmosphere interaction models may

be used to define an optimal multi-level and multi-scale investigative approach.

Chapter 2 describes the formulation of the land-atmosphere problem in terms

of a system of four coupled ordinary differential equations and explores the system's

equilibrium behavior and sensitivity. In Chapter 3, randomness is added to the model

forcing and the properties of the response are described. Chapter 4 explores the

temporal characteristics of the system's recovery from anomalous states, and Chapter

5 is a quantitative analysis of the physical sources of positive and negative feedbacks

in the coupled water-energy system. Finally, in Chapter 6, the work is summarized

and its implications and future extensions are discussed.
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Chapter 2

Analytical Formulation

2.1 Introduction

The goal of the modeling exercise described in this Chapter is to obtain a description of

the land-atmosphere system that can be subjected to available analytical techniques.

To that end, the modeling philosophy is to substantially simplify the system, while

maintaining the interactions as realistically as possible.

The relative simplicity of the present formulation will shed light on feedback (both

hydrologic and meteorologic) causes and effects. Extension of the model to include

random forcing (Chapter 3) is made in the form of the multivariate Ito equation, a

system of stochastic ordinary differential equations. The formulation allows the com-

putation of joint probability density functions for the state variables and conditional

statistics relevant to the termination or amelioration of anomalous conditions. These

statistical measures may be derived for various values of external or internal param-

eters using analytical methods. In addition to its analytic tractability, the model's

computational simplicity allows the creation of long time series in simulation mode,

from which serial cross-dependence may be derived.

2.2 Slab Model

The model represents the area-averaged surface hydrothermodynamic balance for an

inner-continental region of characteristic length L and the region's interaction with
the near-surface portion of the overlying atmosphere. This lumped model treats the

soil layer and the near-surface atmosphere as reservoirs with storage capacities for

heat and water. The transfers between the reservoirs are regulated by four states:
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depth-averaged relative soil saturation (or soil moisture, s), soil temperature (Tg),

air-slab specific humidity (qm) and air-slab potential temperature (m).

The horizontal extent of the region (L) is conceptually equivalent to the length

scale over which generally homogeneous heat and moisture conditions are present,

and over which advective and radiative effects can equilibrate. In mid-continental

regions without marked orography, such an area may cover up to 104 to 105 km2 .

The soil layer is assigned an active depth and a porosity. The capacity of the

soil to absorb incident water is modeled as dependent on the depth-averaged relative

soil saturation; this approximation neglects the instantaneous dynamics of infiltration

and exfiltration, but is appropriate for longer climatic time scales.

The atmospheric reservoir is treated as a developed, vertically-mixed turbulent

boundary layer with height h, on the order of 1 km. We refer to this layer as the

"air slab." In this idealized mixed layer, specific humidity and potential temperature,

defined as

e= T ef) (2.1)

are, by definition, invariant with height. Here, T is the thermodynamic temperature,

p the pressure, ref a reference pressure, and Rd and Cpa the dry-air gas constant

and specific heat under constant pressure. Customarily, Pref is taken as 1000 mb.

Potential temperature is, by definition, conserved under adiabatic pressure change;

it is therefore the appropriate conserved temperature quantity in a well-mixed, un-
saturated layer, as opposed to actual temperature, which does change with height.

Specific humidity [g H20 per kg air] is also conserved under adiabatic mixing. The

model assumes a gradient in both humidity and potential temperature in the sur-

face sublayer, defined as the first few to tens of meters above the land surface. The

turbulent fluxes of sensible and latent heat into the mixed-layer require a surface-

to-mixed-layer gradient; however, the turbulent flux parameterization used in this

model (described in Section 2.2.4) does not require the specification or assumption of

temperature or humidity profiles within the surface sublayer.

The model profiles of potential temperature and specific humidity are shown

schematically on the right in Figures 2-1 and 2-2, respectively.

Figure 2-1 illustrates the model energy balance. The two energy states are air-

slab potential temperature (m) and ground temperature (Tg). The fluxes are treated

as follows (beginning on the left of the figure): A fraction of the solar (shortwave)

radiation at the top of the atmosphere (RSe) is reflected by clouds; of what arrives

at the land surface (RS), a fraction is reflected according to the albedo (a), and the
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Figure 2-1: The slab model energy budget. The states and fluxes are shown on the
left, and the assumed potential temperature profile on the right.

remainder is absorbed in the ground reservoir. Thermal radiation from the overly-

ing atmosphere (RLd) is partially absorbed in the air slab, according to the slab

emissivity/absorptivity (eol, a function of air-slab thickness and humidity), and the

remainder reaches the land surface. The air slab itself radiates in the longwave, both

upward (RLu) and downward (RL.d); and the ground supplies an upward longwave

flux (RLg,), a portion of which is absorbed in the air slab, according to Ecol. The

surface turbulent fluxes of latent (AE) and sensible (H) heat are taken as positive

when directed upward from the ground to the air, and the turbulent entrainment at

the top of the slab (Htop) is taken as positive when directed upward out of the slab.

Consistent with the assumption of adiabatic mixing in the shallow air slab, conden-

sation is assumed to occur above the turbulently-mixed boundary layer; therefore,

the latent heat of condensation does not contribute to the model's air-slab energy

balance (as indicated by the dashed lines for AE in Figure 2-1). The lateral advection

of sensible heat is indicated by Hin and Hot.

The water mass balance is illustrated in Figure 2-2. The water mass states are slab

specific humidity (qm) and relative soil saturation (s). Precipitation (P) is formed

from the combined contributions of laterally advected water vapor (Qi,) and evapora-

tion from the ground (E). A fraction of precipitation becomes runoff (R) and leaves
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Figure 2-2: The slab model water budget. The states and fluxes are shown on the
left, and the assumed specific humidity profile on the right.

the system, and the remainder is added to the ground reservoir. Water vapor is lost

from the air slab by lateral outflow across the fixed boundaries of the region (Qout).

The entrainment of dry air across the top of the mixed layer is indicated by Qtop

(positive upwards, indicating that the effect of this entrainment is to dry the slab).

2.2.1 Coupled energy and water balance equations

Using the symbols introduced in Figures 2-1 and 2-2 and Appendix A, Brubaker and

Entekhabi (1994) write the heat and water budgets for the air slab and the soil layer.

The result is a set of four differential equations for the time evolution of the energy

and water state variables:

ds 1 [P - R - E] (2.2)
dt pnZh

dt (p - h)g [Qin - Qout + Qtop + E-P] (2.3)
dTg 1
dt Z [RS (1 - ) + RLd (1 - eo1) + RLsd - RLgu - H - E] (2.4)

dom 1
dt Cpa ( -h/ [(RLad + RLgu) col - RLsd - RLsu + Hin - Hout + H

+ Htop . (2.5)
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The functional forms and parameterizations of the terms in (2.2) through (2.5) are

discussed in Sections 2.2.2-2.2.6.

Equations (2.2) to (2.5) express the interlocking nature of soil and near-surface

atmospheric water and energy states. The soil water mass and energy budget equa-

tions (2.2) and (2.4) share the term E; evaporation is both an output of water mass

and an expenditure of the energy of phase change; in addition, the dependence of the

soil volumetric heat capacity (Coil) on s links these two equations. The air-slab water

mass and energy equations (2.3) and (2.5) are coupled by the humidity dependence of

the longwave fluxes RLd and RLsu and of the column emissivity (col). The soil and

air-slab heat states Tg and 6m are linked by the turbulent sensible heat flux (H) and
the radiative exchanges between the air slab and the soil (RLg, and RLd), appearing
with opposite signs in (2.4) and (2.5). For the soil and air-slab water mass states, the

coupling is the difference P - E, the net vertical transfer of water mass from the air to

the soil, which appears with opposite sign in (2.2) and (2.3). Atmospheric moisture

(2.3) affects ground temperature (2.4) via the humidity dependence of the longwave

fluxes.

The denominators in (2.2) through (2.5) represent the storage capacities of the

respective heat and water reservoirs in the slab model. The product pnZh in (2.2) is

the active soil pore volume in terms of water mass per unit area; p, is the liquid water

density, n is the soil porosity, and Zh the hydrologically active soil depth. In (2.4),

ZtCoil is the soil layer bulk heat capacity, equal to active soil volume per unit area

(or thermally active depth, Zt) multiplying the volumetric soil heat capacity. The

term (h - Ps)/g in (2.3) and (2.5) is the air slab mass per unit area, where Ph is the

pressure at h, the top of the air slab, and ps is the surface pressure. The mixed-layer

depth variables h, Ph, and ps, are invariant in this model; P8 is set to 1000 mb [equal

to Pref in equation (2.1)]. In (2.5) the column mass multiplies the air specific heat at

constant pressure (Cp,) to give the air-slab bulk heat capacity.

The effect of the entrainment of warm, dry air due to the growth of the boundary

layer depth is represented by the fluxes Qtop = pAq and Htop = pCpa in

equations (2.3) and (2.5), where Aq and AO are the difference between, respectively,

the specific humidity and potential temperature of the mixed layer and the drier air

directly above the height of the mixed layer.
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2.2.2 Radiative fluxes

The shortwave solar radiation reaching the ground (RS) is modeled as

RS = RSe (B1 + B2 N8) (2.6)

where RSe is the shortwave flux density at the top of the atmosphere, and the term

in parentheses is a correction for cloud, in which N. is sunshine duration (the ratio

of actual to total possible hours of sunshine) and B1 and B 2 are empirical constants.

We use averaged values of the constants given for several midwestern U.S. cities in

Brutsaert (1982, p. 132). We estimate Ns as a function of near-surface relative

humidity, as discussed below [equations (2.17)-(2.18)]. RSe is computed as a function

of latitude and day of the year (and time of day, if the diurnal cycle is included):

RSe = S ( )oso00 (2.7)

where S is the solar constant (1353 W m-2), dm/d the ratio of mean to instantaneous
earth-sun distance (here assumed equal to one), and 0o the solar zenith angle. For

daily values of insolation, integration of (2.7) gives

RSe = - d ) (Ho sin Ao sin + cos A cos sin H.) (2.8)

where Ao is latitude, 6 the solar inclination angle, and H. the half-day hour angle

(Liou 1980).

A fraction of RS is reflected by the land surface according to the surface albedo

(a), which we model as a function of soil moisture as follows:

a = 0.17 - 0.085s, (2.9)

similar to Idso et al. (1975). The soil becomes lighter in color and more reflective as

it dries.

The upwelling ground thermal flux (RLg,) is computed according to the Stefan-

Boltzmann law; soil emissivity is generally very near unity, so we set it equal to one;

Thus,

RLo, = c al(2.10)
To compute the atmospheric thermal fluxes (RLda, RLd, and RLsu), we use a broad-
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band, plane-parallel slab emissivity formulation, following Brutsaert (1975), adjusted

to suit this model's assumed temperature and moisture profiles; the derivations appear
as Appendix B. The clear-sky downwelling longwave flux density from the air column

above the mixed-layer air slab is:

RLadc = (efective Th (2.11)

where efective is an effective emissivity for the overlying atmosphere (see Appendix

B) and Th is the absolute temperature at height h, i.e.,

Th = 0m ( /CP's * (2.12)

The expressions for the clear-sky longwave fluxes downward at the bottom, and up-

ward at the top, due to radiation within the air slab itself may be given in terms of

slab potential temperature by virtue of its defined relationship to actual temperature
in the mixed layer. Thus,

RL.UC = ao4 t(qm) (2.13)

RLadc = crl(qm) (2.14)

where t and e4 , the effective longwave emissivities of the mixed-layer air column,

are functions of qm and take into account the profile of actual temperature (T) in

the mixed layer (see Appendix B). Because T decreases with height and the effect of

humidity on the absorption path length is weighted by the square-root of pressure,

el is greater than t . These terms are defined and derived in Appendix B. The

longwave radiation fluxes in (2.10) and (2.11) are attenuated by partial absorption

in the mixed layer air column, assuming absorptivity equal to emissivity (Kirchoff's

law for a black-body), and taking the column emissivity (see Appendix B) to be

ecol = 0.75a 1/7 (2.15)

where a is the scaled amount of (mainly water vapor) mass in the air column be-

tween h and Ps. The mixed layer air column absorbs the impinging longwave energy

according to col(RLda + RLgu), and the amount (1 - col)RLda reaches the ground,

where it is fully absorbed.

Clouds are efficient gray-body emittors; their effect is modeled by an empirical
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correction multiplying the clear-sky longwave fluxes,

K = 1 + 0.17N2 (2.16)

(TVA 1972) where Nc is cloudiness (the fraction of sky covered by cloud). Due to

observational bias in climate records, cloudiness and sunshine duration sum to about

120 percent - rather than the expected 100 percent - on a seasonal basis (Angell

1990). Because the empirical cloud corrections in (2.16) and (2.6) are derived from

those biased records, we use

Ns + Nc = 1.2 (2.17)

to obtain the value of Ns required in (2.6).

Cloudiness, N¢, is parameterized as a function of relative humidity in the mixed-

layer,

Nc = 1.0 - 0.8 exp(-RHurf). (2.18)

Equation (2.18) is developed specifically for this model, to determine cloudiness as

a function of the model states; its applicability to other uses is not implied. The

cloudiness term Nc ranges between 0.2 (when RHsurf is 0) and 0.71 (when RHsurf

is 1.0); thus the allowed range of sunshine duration Ns is from 0.49 to 1. In (2.18)

RHurf is the relative humidity of the mixed-layer air just above the surface sublayer

where the actual temperature may be assumed approximately equal to 8m,

RHsf = - (qm ) (2.19)
q*(Om, Ps)

where saturation specific humidity q* (T, p) is computed from the integrated Clausius-

Clapeyron relation,

q*(T,p) e" exp[ To A I. (2.20)

where R, is the gas constant for water vapor, co the psychrometric constant (0.622),

and 4c0 and To reference values (co = 6.11 mb at To = 273.15K). Equation (2.20)

neglects the temperature dependence of the latent heat of vaporization (A); the range

of A is small over the temperature range of the model. Brutsaert (1982) gives more

detailed expressions for saturation specific humidity.
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2.2.3 Advection and precipitation

The lateral advection of atmospheric water vapor is modeled as follows,

Qin = ( - Ph)/9qin (2.21)L

Qout = (Ps- Ph)/9Uqm (2.22)
L

where Qin is the horizontal flux of water vapor into the region, and Qot the horizontal

flux of water vapor out of the region, both vertically integrated from the surface to

the top of the air slab. These quantities are treated as an air mass flow multiplying an

effective specific humidity for the inflow (qin) and multiplying the region's mixed-layer

specific humidity (qm) for the outflow. The latter treatment assumes that air leaving

the region possesses the humidity characteristic of the region. The air mass flow per

unit area is the product of column mass between p8 and ph, and low-level wind speed,

divided by the length of the region in the direction of the air flow.

Similar to the lateral advection of moisture, there may be lateral advection of sen-

sible heat from surrounding regions. To include such fluxes [Hin and Hot in equation

(2.5)], equations similar to equations (2.21) and (2.22) may be included, with the

difference that qin is replaced by CpOin and qm by CpaOm. Under conditions of strong

and persistent temperature gradients, the advection of sensible heat is important. In

our model, over spatial scale L, the large fluxes of energy are principally in the verti-

cal (large radiative exchange between the soil, air slab, and free atmosphere). Lateral

advection of sensible heat may be easily incorporated using an additional parameter

in. Here, to isolate the local water-energy coupling, we neglect this source of heating

or cooling.

Precipitation is the most important forcing to the soil water balance and is the

most difficult to parameterize in this lumped model. We apply a formulation similar

to the Kuo (1965) scheme used in numerical atmospheric models. Here, the moisture

entering the mixed layer is partitioned between moistening the air and condensing

out as precipitation, according to a moistening parameter, b. This parameter dic-

tates what fraction of the entering water vapor goes to moistening the air-slab; the

remaining fraction becomes precipitation,

P = (1 -b)(Qin + E). (2.23)

The partitioning of precipitation into infiltration and runoff (R) is treated as a

31



function of soil moisture, with the runoff ratio expressed as

R_R = Sr (2.24)
P

(Entekhabi et al. 1992, Rodriguez-Iturbe et al. 1992). Equation (2.24) expresses

the fact that moist soils generally partition a larger fraction of the precipitation into

infiltration-excess and partial-area runoff losses. Rather than an event-based surface

runoff function, this expression comprises the longer-term total runoff, incorporating

percolation and baseflow (as in Eagleson 1978).

2.2.4 Surface turbulent fluxes

Turbulent mixing across the gradient of temperature and humidity in the surface

sublayer results in fluxes of latent and sensible heat into the mixed layer. We apply

Stull's (1994) parameterization for mixed convection, which was developed rpecifically

for mixed-layer models and estimates surface fluxes based on surface and mixed-layer

values of moisture and temperature. By this scheme, the sensible heat flux is

H = CHE (Tg - m) PCpa, (2.25)

and the potential evaporation (that which would occur if the soil were saturated, all

else being equal) is

Ep = CHE [q*(Tg, p) - qm], (2.26)

where CHE is the transfer coefficient for the turbulent fluxes. Stull (1994) gives

CH, = (.001U + 0.00025B) . (2.27)

In (2.27), WB is a buoyancy velocity scale, given by

WB = [-hAOv, (2.28)

where 0, is the virtual potential temperature in the mixed-layer, and AO,, is the virtual

potential temperature difference between the skin (surface) and mixed-layer. In the

model, humidity in the mixed layer tends to be very low, with the result that ,, O Om.

For AO, we use m - Tg, which neglects the small buoyancy contribution of humidity

differences.

The term containing U. in equation (2.27) accounts for forced convection due to
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wind shear. The term containing WB accounts for buoyancy-driven free convection.

The constants multiplying the velocities are values estimated by Stull (1994) for

summer in Oklahoma. Saturation specific humidity at the soil-air interface, q* (T, p)

is computed from equation (2.20).

Actual evaporation is a fraction of the potential value, controlled by the evapora-

tion efficiency (), that is,

E = Ep (2.29)

where 6 is modeled as a function of soil moisture,

= Sc (2.30)

Mahfouf and Noilhan (1991) compare a number of formulations of /f. Actual evap-

oration equals the potential value when the soil is at or near saturation. In most

formulations, the evaporation efficiency (or moisture availability factor) /3 decreases

to zero as the soil dries. Equation (2.30) is a general expression of this relationship.

The formulation of , is examined in further detail in Chapter 4 where transitions

from soil-controlled to energy-4-imited evaporation regimes are considercd.

2.2.5 Air-slab thickness and slab-top air entrainment

In nature, the atmospheric mixed-layer height (h) is not constant. The mixed layer

grows during the day as surface heating generates turbulent mixing, which entrains

the overlying air. The layer shrinks or may even vanish at night, in the absence of

solar radiation. Furthermore, h varies from day to day and from season to season,

due to variability in the mechanisms producing turbulent mixing.

In the interest of model simplicity and analytic tractability, we have decided

against fully modeling the diurnal evolution of mixed-layer depth in our climatic

model (2.2) - (2.5). Instead, the entrainment of warm, dry air from above during the

mixed layer's growth and decay is parameterized. The diurnal details of boundary

layer height and the momentum budget are important in pollution transport studies,

for example, but this study is concerned with the longer time scales of the region's

heat and moisture states. Otterman (1990) also assumes a fixed h in a linear model

of land-atmosphere thermal interaction. The model's fixed h is a major assumption;

we now discuss its implications.

As an illustration of the mixed layer's behavior in nature, Figure 2-3 shows the

diurnal course of potential temperature profiles during the development of the mixed
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layer for a June day at the FIFE site in Kansas. The first sounding, at 0607 (Central

Standard Time), shows a stable profile with dO/dz greater than zero at all heights.

By 0820, the surface has warmed enough that the near-surface profile is unstable

(dO/dz < O0); convection has begun and warmer air is being entrained from above.

By 0938, a layer with nearly uniform 0 extends to 500 m. As sensible heat flux from

the surface and turbulent motion at the top of the mixed layer continue to bring

warm air into the mixed layer, it increases its potential temperature to 280C at 1713.

Due to entrainment of the overlying air, the mixed-layer has grown in depth to more

than 1500 m in this time. In the last frame of Figure 2-3, the highly stable capping

inversion is clearly visible, and the disappearance of the near-surface unstable layer is

noted. By 0557 of the following day (the dashed line in the first frame of the figure),

the profile has returned to its stable starting point, in the absence of surface heating
and turbulent mixing.

To compute the diurnal evolution of h fully requires consideration of turbulent

kinetic energy, including both free and forced turbulence production (Tennekes and

Driedonks 1981). Mixed-layer growth models have shown good skill at predicting

mixed.layer height over the daylight hours and with appropriate initial conditions

and forcing terms (Steyn 1990, Novak 1991, Culf 1992, Driedonks 1982). Some work

has been done on modeling the nocturnal collapse of the mixed layer (Binkowski 1983).

Because the processes controlling dh/dt at night are different from those controlling

it during the day, a discontinuous function would be required.

We assume that the model h is, in an averaged sense, an effective value for longer

than daily time scales, but the model equations must account for the roles played

by variability in h. First, h appears in the denominators in (2.3) and (2.5) through

the value of Ph, controlling the bulk heat and water storage capacities of the air slab.

Second, the longwave atmospheric fluxes and emissivity/absorptivity are computed

as functions of slab thickness. Neglecting variability in h may create the result that

the soil is artificially insulated by a blanket of air. When the layer is too thick

(thin), its rate of change of humidity and temperature will be slower (faster) than it

should, because a given energy input is assumed to be mixed into too large (small)

an air mass. We note that, although in reality the buoyantly-mixed layer collapses

at night, a residual layer may remain (Stull 1988), possessing the characteristics of

the layer before its collapse. The air near the ground cools and a stable profile

develops with high potential temperature remaining in the elevation range of the

former mixed layer. If this is the case, then the fixed h assumption is not as drastic for

radiative calculations as it would be for momentum and pollutant transport modeling.
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Figure 2-3: The development of the convectively-mixed layer, as shown by the profiles
of potential temperature during a June day in FIFE. Times are given in Central
Standard Time.
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Additionally, air motion at night generates mixing by forced convection, sustaining a

thin mixed layer. The expressions for the turbulent fluxes, which assume exchanges

of heat and moisture between the surface and the entire thickness of the air slab, are

less correct for a nighttime profile than for the daytime. In general, the turbulent

surface fluxes are quite small at night and do not contribute strongly to daily average

values.

Finally, the turbulent sensible heat flux at the slab top for a developing mixed layer

under standard potential-temperature profile assumptions (Tennekes 1973, Driedonks

1981) is given by

o'W'h = AOdh (2.31)
dt

where O'w'h is the correlation between potential temperature and vertical air motion

at height h, AO the jump in potential temperature at the base of the inversion that
caps the mixed layer, and dh/dt the instantaneous rate of mixed-layer growth. A

frequent assumption in the mixed-layer literature (e.g., Tennekes 1973) states that

the inversion-base sensible heat entrainment is proportional to the surface sensible

heat flux,

Htop = -AtopH. (2.32)

The entrainment of dry air due to the growth of the boundary layer is also repre-

sented in equation (2.3) and can be treated similarly to the entrainment of potential

temperature. In this version of the model, we neglect the equivalent effects on air-slab

specific humidity but note that the entrainment of potential temperature simultane-

ously decreases the relative humidity of the mixed air layer as well as warming it. By

using (2.32), we include the effect of mixed-layer growth on sensible heat entrainment,

while avoiding the introduction of additional differential equations in h and AO, and

the jump in humidity at the capping inversion.

2.2.6 Soil heat capacity

The volumetric heat capacity of the soil is expressed as a mass-weighted average of

the heat capacities of the soil components including the soil water,

Csoil = (1.94vmin + 2 .5 0vorg + 4.19s n) 106 [J m - 3 K - 1'] (2.33)

where Vmin and vorg are, respectively, the volume fractions of mineral soil and or-

ganic matter, and the constants are the product of density and specific heat for each
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component (Brutsaert 1978, p. 146).

2.3 Equilibrium Behavior and Sensitivity to
Parameters

2.3.1 Climatic equilibrium

The four model equations (2.2) - (2.5) are solved for equilibrium, i.e., ds/dt = 0,

dqm/dt = 0, dTg/dt = 0, dOm/dt = 0. For the climatic equilibrium solutions, the
solar forcing is at perpetual summer solstice, using the daily insolation rate with no

diurnal cycle. The model parameters consist of climatic forcing terms (wind speed

U, and incoming humidity qin) and a set of internal regional properties (soil type,
reservoir volumes). Values of the internal parameters were selected as appropriate

to a mid-latitude continental interior. These parameters were not used to tune the
model output; rather, the values listed in Table 2.1 were selected and estimated

independently from the literature. The moisture partitioning parameter, b, is set

to 0.3, consistent with other schemes of this type reported in the literature (Kuo
1965, Arakawa and Chen 1986). As a test of model sensitivity to the climatic forcing

parameters, the equilibrium solution was obtained for a range of values of the large-

scale (external) parameters qi and U.. In all cases, the numerical technique obtained

the same solution vector from disparate initial guesses; this is evidence - although

not rigorous proof - that the solutions are unique. The default-parameter climatic

equilibrium solution is denoted by i and tabulated in Table 2.2.

The turbulent heat fluxes couple the soil and atmospheric heat and moisture

states, and they work to reduce gradients in these states at the boundary. The wind-
speed controls the efficiency of this coupling through the turbulent transfer coefficient

in (2.27). As a test of the model, Figure 2-4 shows the difference in the soil-air tem-

perature as the wind-speed is changed over a range. The land-atmosphere coupling

is increased (temperature gradient at boundary reduced) when forced convection is
efficient at high wind-speeds. With reduction of the wind-speed, as evident in Fig-

ure 2-4, both the soil and air-slab temperatures rise and the temperature difference

increases slightly, as the heat forcing is dissipated by alternate mechanisms, namely

thermal radiation and buoyant (free) convection.

With increasing advective moisture supply (qin), the equilibrium precipitation and

soil saturation increase (Figure 2-5). Evaporation, after increasing nearly linearly
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Table 2.1: Default Parameter Values in the Equilibrium Experiments

Symbol Definition Units Value

h height of mixed layer (air slab) [m] 1000

Ps surface pressure [mb] 1000

Ph pressure at slab top [mb] 880

Atop entrainment parameter (Eq. 2.32) [ ] 0.2

b moistening parameter (Eq. 2.23) [ ] 0.3

Zh hydrologically active soil depth [n] q.2 (climatic)

0.15 (diurnal-cycle)

Zt thermally active soil depth [m] 0.4 (climatic)
0.15 (diurnal-cycle)

n soil porosity [] 0.25

Vmin mineral volume fraction of soil [ ] 0.5

Vorg organic volume fraction of soil [ ] 0.25

c exponent in evaporation efficiency [] 1.0
(Eq. 2.30)

c coefficient in runoff ratio (Eq. 2.24) [ ] 1.0

r exponent in runoff ratio (Eq. 2.24) [ ] 2.0

U, mixed-layer wind speed [m s- 1] 4.0

L length scale of region [km] 500

qin effective humidity of incoming air [g kg-'] 8.0
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Figure 2-4: Soil-layer temperature, air-slab potential temperature and the tempera-
ture difference, in the climatic equilibrium solutions, as functions of the near-surface
wind speed, U,.

in the low range of qin, attains a nearly constant value of about 5.5 mm day - l.

This asymptotic value reflects the fact that actual evaporation is the product of

potential evaporation and soil saturation [equation (2.29)]. Potential evaporation (the
dotted curve in Figure 2-5), a nonlinear function of soil temperature, is high when

the system is dry (and warm), decreasing as the equilibrium solution becomes moister

(and cooler). This decreasing Ep function multiplies the increasing s, resulting in the

nearly constant E.
Sensitivity tests were also conducted on b; the results are similar to the sensitivity

to qin, in the reverse sense: increasing b partitions more incoming moisture to the

air slab and less to the soil layer. Thus, P and s decrease, and Eo increases with

increasing b; E is nearly constant for b less than about 0.40.

2.3.2 Equilibrium with diurnal cycle

The model is designed to apply to short-term climate time scales (weeks to months).

However, the realism of the characterization is tested by examining the model response

to a diurnal cycle in the solar forcing. For these tests, the interactive soil depths (Zt

and Zh) are set to 0.15 m, representing appropriate penetration depth for waves of

heat and moisture over the course of a day. Otherwise, the parameters are assigned
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Figure 2-5: The water mass fluxes and soil saturation in the climatic equilibrium
solutions, as functions of the effective incoming specific humidity, qi,.

the same values as in the climatic equilibrium solutions (Table 2.1); the model was

not calibrated to match any particular data set. The diurnal-cycle equilibrium is
defined as the solution x(t) such that x(t) = x(t - 24 hours), that is, a periodic
diurnal cycle in the model states. The diurnal-cycle solution mean values and ranges

are tabulated in Table 2.2, denoted by angled and square brackets, respectively. The

expected value of a nonlinear function of x(t) is, in general, not equal to the nonlinear

function evaluated at the expected value of x. The nonlinearity of the model is most

apparent in the temperature variables: (Tg) and (m) are somewhat cooler than Tg

and Om.

The equilibrium diurnal cycles in the temperature variables and the turbulent
fluxes are shown in Figure 2-6. Tg has a diurnal range of 10 degrees, taking its
lowest value of 15.5°C at 0600 and peaking at 25.7°C at 1600. The model's four-hour

lag between maximum solar radiation (at 1200) and maximum ground temperature

(at 1600) is consistent with theory (Lettau 1951) and observation (e.g., Novak and

Black 1985). The mixed-layer potential temperature (m) has a smaller amplitude

than Tg, about 2 degrees, and lags the ground temperature, reaching its minimum at

1100 and its maximum at about 2200. The latent and sensible heat fluxes peak at

1530. The heat flux into the ground (G) is positive (warming the ground) until 1600
when it reverses sign (cooling the ground). By definition, the model energy fluxes are
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Table 2.2: Comparison of Climatic and Diurnal-Cycle Model Equilibrium Solutions

Climatic Diurnal-cycle

Equilibrium Equilibrium

Z (X) j [nin X max]

8[ ] 0.613 0.615 [0.610 0.621]

qm [g kg - 1] 4.27 4.25 [ 4.12 4.37 ]

Tg [deg C] 20.9 20.3 [ 15.5 25.7 ]

Om [deg C] 15.4 15.1 [ 14.1 16.0 ]

P [mm day- 1] 8.42 8.38 [ 6.32 11.1 ]

E [mm day - 1] 5.26 5.21 [ 2.26 9.06 ]

Ep [mm day-'] 8.58 8.46 [ 3.67 14.7 ]

H [W m - 2 ] 48.3 48.8 [ 3.81 109 ]

Rnet [W m -2 ] 198 198 [ -81 610 ]

balanced, due to computing G as the closure in (2.4).

The model's Tg is averaged over a soil slab 0.15 m deep, and m over a 1 km

deep air slab; furthermore, the model results are for a diurnal cycle at equilibrium,

i.e., there is no net change in storage over the course of a day. Therefore, direct

comparisons with observations of the diurnal cycle of soil surface temperature or

near-surface air temperature are difficult, because most observations do not describe

slab-averaged values or equilibrium conditions. Computationally allowing the surface

radiation to act on the entire layer rather than modeling the vertical diffusion of
energy through the soil results in an earlier maximum and a less sinusoidal diurnal

cycle, in comparison to observations (see, e.g., Novak and Black 1985).

In general, observational studies of the boundary layer focus on 0 in the developing

boundary layer during the day, not the averaged quantity with which the model Om

should be compared. In Figure 2-7, we present data on the diurnal range of potential

temperature at different heights in the atmosphere during nine clear days in the FIFE

experiment (Days 152, 154, 155, 156, 192, 227, 228, 229 and 232, spanning early June

through mid-August). These days were selected from the full set of clear days because

radiosonde data were available covering the hours 0600 to 1800 CST, corresponding

to about one hour after sunrise through two hours before sunset; these sampling

times should capture the minimum and maximum 0 in the lowest kilometer of the

atmosphere. For each sounding, we averaged the potential temperature over layers

of 100 m thickness; the diurnal 0 range for each 100 m layer equals the difference
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Figure 2-6: The diurnal cycles of soil temperature and slab potential temperature
(a), and components of the surface energy budget (b) in the diurnal-cycle equilibrium
solution; the prescribed solar forcing is shown at the top of the figure.
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Figure 2-7: Profile of the diurnal range of atmospheric potential temperature during
nine clear days of FIFE IFCs 1, 2, and 3.

between the maximum and the minimum values of the layer-averaged 9. Figure 2-7

gives the mean diurnal range for the nine days analyzed; between 500 and 1500 m the

daily range is about 4 degrees. The model diurnal range is lower than this composite

mean value but is of the correct order of magnitude, when compared to the 10-degree

range of soil temperature.

An important test of the model is whether the net energy at the soil surface is

partitioned correctly between the latent and sensible heat fluxes. We compare the

model to several sets of observations, with the following caveats: First, as noted

above, the model results represent a climatic equilibrium state (average moisture,

temperature, precipitation, cloudiness, etc.), which is not necessarily represented by

any one-day set of observations; second, the surface energy exchange is controlled

by site-specific factors including roughness length and soil albedo, and time-varying

factors including solar radiation, wind speed, and soil moisture. To address the first

issue, we selected smooth observational daily cycles, indicating consistency in the

forcing throughout the day. For the second issue, we selected data sets that are

representative of bare soil or sparse vegetation, where the data were taken near the

summer solstice at middle latitudes (for compatibility in the solar forcing), under

fairly moist bare soil conditions. The model was not tuned or calibrated to fit any

of these observations. The studies selected for comparison are: (1) The SAMER 2
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Table 2.3: Comparison of Model and Observed Diurnal Cycle of Surface Fluxes

Peak Value (Time of Peak)

[W m- 2] ([Solar Time])

Bowen Ratio

Site/Study R H AE at Noon

HAPEX-MOBILHY (1) 600 (1100) 180 (1245) 480 (1115) 0.35

Agassiz, B.C.( 2) 660 (1200) 100 (1200) 400 (1300) 0.28

Boardman, Ore(3) [N/A] 200 (1400) 400 (1430) 0.53

FIFE IFC 1,2,3 (4) 530 (1200) 120 (1100) 340 (1200) 0.35

(Model( 5 ) 610 (1200) 109 (1530) 260 (1530) 0.41

(1) June 16, SAMER 2. Values estimated from Fig. 6a of Noilhan and Planton (1989),
except Bowen ratio at Noon, which is mentioned in the text.

(2) May 30. Values estimated frorn Fig. 2a of Novak and Black (1985).

(3) June 14. Values estimated from Figs. 5 and 6 of Doran et al. (1992), "corn" data.

(4) Summer months. Composite of FIFE IFC 1,2, and 3 (includes clear, cloudy, and
overcast days). Values estimated from Fig. 6 of Smith et al. (1992).

(5) June 21. Model equilibrium solution with diurnal cycle.

Numerical values for (1)-(4) are ±10 W m- 2 in the energy terms, ± 15 in in the times,
due to inaccuracy in reading from printed figures. For compatibility, the time axes have
been shifted to solar time for each location.

site of HAPEX-MOBILHY as reported in Noilhan and Planton (1989) (June 16, soya

over loam, z0 = 0.02m); (2) a site at Agassiz, British Columbia, as reported in Novak

and Black (1985) (May 30, bare loam/silt-loam soil), and (3) a site near Boardman,

Oregon, as reported in Doran et al. (1992) (irrigated corn field with sparse canopy).

In addition, we compare the model diurnal cycles to composite data from the FIFE

intensive field campaigns (IFCs) 1, 2, and 3, as calculated by Smith et al. (1992) .

As a composite of clear, cloudy, and overcast days, these results are perhaps the best

observational data for comparison with the steady-state model results.

In Table 2.3, we present the peak values and time of peak for H and AE, as well

as the Bowen ratio (H/AE) at noon for these studies and for the model equilibrium

diurnal solution. The peak value and time of peak for net radiation (R,) are included

as well, as one check on the adequacy of comparison. The model is not in perfect
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agreement with any of the observations, but there are considerable differences among

the observations themselves. The model's noon Bowen ratio is close to those of all

the selected observations, except Boardman, the highest of the observations. The

model's peak H is higher and the peak AE lower than the observations. The model's

peak AE and H occurs late, with respect to these data sets.

Another measure to test the model is the diurnal pattern of the partitioning

between sensible- and latent-heat surface fluxes. Here we estimate the evaporative

fraction, defined as AE/(Ret - G) and compare it with Verma et al.'s (1992; Figure

5) observations at FIFE. Figure 2-8a shows the model's daytime evaporative fraction.

Comparison with Verma et al.'s (1992) observations in Figure 2-8b is favorable, both

in magnitude and diurnal shape, indicating that the model is capable of represent-

ing the moist thermodynamic factors that go into the determination of partitioning

available energy into latent and sensible heat fluxes.

2.4 Summary

The land-atmosphere system for a large region is represented by a system of four

ordinary differential equations, suitable for analysis in the form of the multivari-

ate Fokker-Planck equation, when randomness is added in future work. The major

assumptions of the model are adiabatic mixing in the boundary layer, and a time-

invariant atmospheric boundary layer height (although the contribution of warm, dry

air entrainment at the boundary-layer top is included).

The equilibrium solutions of the four-variable model are appropriate for mid-

latitude continental climates. This result is satisfying, given that the model temper-

atures are not tied to any boundary value that would force them to a solution (such

as a fixed deep-ground temperature) but rather evolve to equilibrium by satisfying

the physical linkages and interactions among water and energy states. The diurnal

phase and amplitude of the states and fluxes are further indicators of the model's

validity and robustness; in particular, the lag between ground and air temperature

maxima indicates that the land-air energy fluxes are operating correctly. The energy

flux comparisons to data are inexact; however, the model appears to do a reasonable

job of partitioning net radiation into sensible and latent heat fluxes in appropriate

proportions for bare-soil mid-latitude summer conditions and over the diurnal cycle.

The equilibrium response to the external forcing parameters wind speed and incom-

ing effective specific humidity indicate that variability in these parameters will force

variability in the states, when random noise is added to the model.

45



1.8

1.6

I1

i 1
0.6

0.2

1
wU

6 10
Hour od Day

15 20

600 900 1200 1500 1800

Hours

Figure 2-8: (a) Daytime Evaporative Fraction in the diurnal-cycle equilibrium solu-
tion. (b) Verma et al. (1992) observations of the diurnal cycle of evaporative fraction
over water-stressed grasslands during the FIFE experiment.
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Subsequent Chapters in this thesis explore the time scales of variability and co-

variability in the model climate's response to a variable external forcing. This work

will provide understanding of the role of water-energy coupling and land-atmosphere

interaction in climatic variability and persistence.
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Chapter 3

Stochastic Extension

3.1 Introduction

In this Chapter, feedback processes in land-atmosphere interaction are identified

using the model of the soil and the turbulently-mixed near-surface atmosphere hy-

drothermal balance described in Chapter 2. The system of four ordinary differential

equations is subjected to stochastic forcing, and the statistics of the heat and mois-

ture states, as well as the fluxes that relate them, are computed. The closed-form

mathematical construct of the model is exploited to systematically explore several

land-atmosphere interaction processes and to specifically identify and quantify their

influence on the statistical signature of the hydroclimatic regime.

The analysis of Chapter 2 is expanded to include the influence of noise on the

system and to map the univariate and joint statistics of the states under random

excitation. The source of noise is considered to be in the advection of air mass; the

regional wind speed is taken to be composed of a mean component with additions of

uncorrelated white-noise as perturbations around this mean value. The wind speed

parameter is selected as the source of randomness because it is a key physical parame-

ter, affecting both large-scale advection and local turbulence. This study is limited to

the case of white-noise forcing in order to specifically isolate those interactions within

the system that filter the noise and preferentially add gain to the lower frequencies of

the output. Thus, the factors in the land-atmosphere system that add memory and
covariability may be identified and isolated.

The noise in the wind speed affects the moisture advection and turbulent fluxes

at the surface. These effects are routed through the system via the internal math-

ematical structure of the system, i.e., through the coupled fluxes and states. The
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variability, covariability, and serial dependence that are evident in the output of the

excited dynamical system are thus due to the internal interactions between the soil

and atmosphere water and energy states. The fluxes (radiation, turbulent fluxes,

precipitation) are thus consistent with one another and adhere to strict physical lim-

itations and constraints.

The resulting covariance structure is due to land-atmosphere interaction and is

not prescribed a priori. This is in contrast to other approaches to the stochastic sim-

ulation of hydrologic and climatic state variables in which the covariability structure

is an input parameter of the model (for example, the simulation of heat and moisture

states by multivariate autoregressive-moving average [ARMA] time series analysis

requires the definition of the covariability structure at the very outset).

3.2 System of Stochastic Differential Equations

The model is forced by solar radiation at the top of the atmosphere and by near-

surface wind--speed, which advects moisture from the neighboring regions and deter-

mines the magitu;ide of the transfer coefficient for the sul-face turbulent fluxes. In

Entekhabi and Brubaker (1994), wind-speed is taken to be composed of a mean com-

ponent plus (zero-mean, serially-independent, normally-distributed) perturbations

with variance aU2,

U. = U + adwt dwt = N(O, 1) and E [dwtdw,] = 6(t - v) (3.1)

where E[] is the expectation operator and 6(.) is the Dirac delta function. Here noise

dwt is the increment of a Wiener process. Because of the differential formulation of

this stochastic equation, its integration in time (using techniques reported in Pardoux

and Talay 1984) is independent of the numerical time step.

The functions that are affected by (3.1) are the regional moisture advection terms

Qin, and Qot as well as the turbulent heat fluxes AE and H. The moisture and heat

advection terms are given by:

Qin qin

t (Ps - ph)/g 1qm (U + audwt) (3.2)

Hin L in"

Hout 0m
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The surface turbulent fluxes are given (after Stull 1994 ) as

H = [ (U + oUdwt) + 2WB] (Tg - m) (3.3)

AE = P [C1 (U + audwt) + C2WB] (q*(Tg) - qm) (3.4)

where WB is a buoyancy velocity scale. The variables in (3.1) - (3.4) are defined in

Chapter 2 and tabulated in Appendix A.

In this application, only vapor convergence (Qin and Qout) is required to maintain

a regional hydrologic cycle. Sensible heat convergence due to lateral temperature

gradients (Hin and Hout) is small, relative to the large radiative exchanges between

the soil, boundary-layer air, and the atmospheric profile. This parameterized heat

advection is not necessary - in contrast with the moisture convergence, which is

needed to maintain a hydrologic cycle.

The unit noise term is represented for an increment of time as the differential of

the Wiener process dwt. After substitution of (3.2) - (3.4) in (2.2) - (2.5) together

with this definition, the time evolution of the system is described by a continuous

stochastic differential equation that may be compactly written as

dxt = G(xt)dt + g(xt)dwt, (3.5)

where the time-varying state vector xt = [s qm Tg Om] has been defined.

In (3.5), the deterministic function G(xt) represents the drift in the state variables,

due to the radiative and turbulent fluxes as well as the steady component of moisture

advection in incremental time dt. The four components of the drift function are as

follows:

G1 = 1 ((1 - R) (1 - b) MqiJU+

[(1- R) (1 -b) - 1] B (C1 U + C2WB) p[q* (Tg, ps) -qm]}

G2 -= (P-Ph)/g {b [MqinU + 3 (C1U + C2WB) p [q* (Tg, Ps) - qm]] - MqmU}

G3 = C Z1 {RS(1 - a) + RLd (1-Eo1) + RLd - RLg
- PCp (C1U. + C2wB) (Tg - Om) (3.6)

-Ax (C1U + C2WB) p [q (Tg, ps) - qm]

G4 = pp {(RLda + RLgu) col - RLgU - RL d
+ (1 + AtOP)pCPa (C1U. + C2WB) (Tg - Om)

+MCpaOinU - MCpaOmU}

The fluctuating part of wind-speed affects the system in proportion to the deter-
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ministic function g(xt). Because the wind speed is a physical parameter of the system,

the influence of its random fluctuations on the system is modulated by the state of the

system at the time of the event [see (3.1) - (3.4)] The functional dependence of this

diffusion term on the state (xt) indicates complexity in land-atmosphere interaction

and the presence of multiplicative stochastic forcing. The four components of the

diffusion function are as follows:

91 = p Zh {(1-R)(1 - b) Mqin+pnZh
[(1 -R) (1 - b) - 1] PCp [q* (Tg, ps) - qm]} a

92 = (P-b)/ {b[Mqin + /Clp [q* (Tg, p) - q]] - Mqmau} ou (3.7)
93 = c.olzt {pCpaCl (Tg - ) - Clp [q (Tg, Ps)-qm]} 'u

94 = I(p.lSp)/g {(1 + Atop)PCpa,C (Tg -m) + MCpain - MCpaOm} O'u

Although the system is forced by serially-independent white noise, the output

of the model is serially dependent with some statistical memory, due to the storage

and interactions in the system. The random fluctuations in wind speed that drive

the system are routed and distkibuted among components of the system through the

state-dependent fluxes of eiergy arid water mass. Any resulting temporal covariability

among the model states results from the physical linkages that are implicit in the

model and not from pre-assigning a correlation structure to the variables.

3.3 Control Solution of Stochastic Model

The system of stochastic differential equations is numerically integrated in time, using

an Euler-type discretization (Pardoux and Talay 1984). The advantage of this scheme

over the Mil'shtein (1974) algorithm used in Entekhabi et al. (1992) is that the fluxes

and other derived states may be uniquely determined for incremental periods of time.

In these integrations, the assumed adiabatic condition of non-saturation in the mixed-

layer is monitored and found satisfied. The statistical moments and lagged auto- and

cross-covariances for the basic states and derived states are estimated for analysis.

The model parameters for the Control case are identical to those used in Chapter 2

for equilibrium conditions (see Table 3.1). The solutions described in this Chapter

are forced by a constant, daily-average solar input, at perpetual summer solstice,

without a diurnal cycle.
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Table 3.1: Parameter Values in the Control Stochastic Experiment

Symbol Definition Units Value

h height of mixed layer (air slab) [m] 1000

PS surface pressure [mb] 1000

Ph pressure at slab top [mb] 880
Atop entrainment parameter for sensible heat at [ ] 0.2

slab top
b moistening parameter [ 0.3

Zh hydrologically active soil depth [m] 0.2

Zt thermally active soil depth [m] 0.4

n soil porosity [ 0.25

c exponent in evaporation efficiency [ l 1.0

e coefficient in runoff ratio [ 1.0

r exponent in runoff ratio [ 2.0

U. mean mixed-layer wind-speed [m s- l] 4.0

Cu I standard de-viation of wind-speed [m s-1] 1.5

L length scale of region [kn] 500

qin effective specific humidity of incoming air (g H 20) (kg air)-' 8.0

3.3.1 Marginal probability distribution of the states

The stochastic differential equation (3.5) representing land-atmosphere interaction is

integrated, and the long-term statistical behavior is determined by computing relevant

measures. Comparison of the equilibrium state x of the model resulting from G(*) =

0 and the central tendency of the stochastic case or expectation E[xt] is illuminating

in that it illustrates whether the covariabilities of heat and moisture in the land

and atmosphere contribute to the definition of regional climate. Table 3.2 lists the
deterministic solution values from Chapter 2 alongside the mean of the simulated

stochastic time-series in (3.5) for the basic model states as well as selected fluxes.

The stochastic forcing as conceptually represented in (3.1) and more precisely

defined in (3.5) is gaussian and serially independent. The model states are stochastic

processes with joint distributions characterizing their fluctuations. Partly due to the
fact that the noise is multiplicative as evident by the diffusion function g(.) in (3.5),

the model state stochastic processes are not necessarily gaussian. Figure 3-1 shows the

estimated frequency distributions of the simulated time-series for the model states;

they are representations of the marginal distributions of the state vector xt. The
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Table 3.2: Moments of State Variables and Turbulent Fluxes

Equilibrium Stochastic Solution

Solution Control Low-variance High-variance

(au = 1.5) (au = 1.0) (au = 2.0)

£ [Units] a I 7Y o | > z |z a: | I

s __ 0.613 [] 0.612 0.029 -0.28 0.612 0.019 -0.18 0.612 0.039 -0.40

qm 4.27 [s/kg] 4.27 0.32 0.85 4.27 0.21 0.54 4.27 0.43 1.20

Tg 20.9 deg C] 20.9 1.9 0.38 20.9 1.3 0.25 20.9 2.5 0.52

Om 15.4 de cl] 15.5 1.2 0.25 15.5 0.8 0.15 15.5 1.6 0.34

P 8.42 [mm/day] 8.41 2.61 0.06 8.41 1.74 0.04 8.41 3.49 0.09

E 5.26 [mm/day] 5.26 1.44 1.49 5.26 0.95 0.31 5.26 1.96 0.71

Ep 8.58 mm/day] 8.65 2.52 0.62 8.62 1.65 0.39 8.69 3.45 0.90

H 48.3 /[Wm2] 48.4 21.5 0.95 48.4 14.1 0.62 48.6 29.2 1.31

Rnet 198 (W/m2] 199 11 -0.62 198 7 -0.40 199 15 -0.85

relative soil saturation and atmospheric potential temperature are nearly gaussian

in form; their mean, standard deviation, and skewness (, , y,) are tabulated in

Table 3.2. The atmospheric specific humidity and both temperature variables are

positively skewed; the skewness coefficient for humidity is 0.85, which indicates a

strong departure from the gaussian character of the input noise. The difference in

magnitude of the range for the two temperature states may be partially explained

by the difference in the heat capacity of the air-slab and soil reservoirs. The heat

capacity of the one-kilometer air slab is about 1.2 x 106 J K- 1 m- 2, and that of the

soil layer varies depending on the soil moisture content, but lies around 0.9 x 106 J

K- 1 m- 2 for the mean state of the control solution. The higher range for ground

temperature is also partially due to the fact that the energy forcing is accomplished

by the absorption of solar radiation at the surface; the air slab is then heated mostly
by thermal radiation from the land surface.

3.3.2 Marginal probability distribution of the fluxes

The frequency distribution of the moisture and energy fluxes are determined by ana-

lyzing the time series of the integrated stochastic differential equation. These states

are consistent in that they are linked by covarying state variables. The precipitation

is nearly gaussian (Figure 3-2) because it largely responds directly to the noise input.

The coefficient of skewness for this derived state is small, as indicated in Table 3.2.

53



000000

10 0o° 0
0 0

0 0

S I

1.5 ... 0 005 0a ~0..5 -- ) 0.54 0.56 0.58 0.6 0.62 0.64 O. 0.68 0.

0 00

0 0 05

qm ( Icg /()]

0
0

0
0

v-n0

00000
0 0

0 0
0
0

0
0

0oa ooo

'i0 12 1 --- e 18 20
Tg (deg C

5

22 24 28 28 30

-0.3

0.2

0.1

7 -- 12 14 16 18 20 22
Thetam [dog C]

24 - 28- 28 -- -30

Figure 3-1: Probability density functions for the four state variables in the Control
simulation: (a) relative soil saturation, (b) atmospheric specific humidity, (c) soil
temperature, and (d) air potential temperature.
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The land evaporation and potential evaporation in Figure 3-2 are highly skewed and

have positive coefficients of skewness.

The sensible heat flux is sharply asymmetric as evident in Figure 3-2 (with skew-

ness coefficient 0.95 as listed in Table 3.2). The sensible heat flux is the mechanism

by which the ground temperature and the air temperature equilibrate at short time-
scales. Its magnitude is generally small because large imbalances are not allowed to

persist, given this strong coupling tendency. At the same time, negative sensible heat

fluxes are relatively less probable at perpetual summer solstice because the ground

is heated by solar radiation, and any inversion in the temperature structure is soon

destroyed by both free and forced convection. These two factors, a small mean and a
tendency to limit sensible heat flux to be generally larger than zero, result in redis-

tributing probability mass and creating a positive skew when the system is excited

by random fluctuations.

The net radiation, on the other hand, is sharply skewed in the opposite direction,

having a skewness coefficient of -0.62; Figure 3-2 clearly shows this characteristic.

After solar radiation, the net radiation at the surface is mostly composed of outgoing

terrestrial radiation, which is proprtional to the fourth power of ground temperature.
When the net radiation is large or on the increase, the ground heats rapidly and the
outgoing thermal flux from the surface becomes a more efficient cooling mechanism

since the elevated temperature is raised to the fourth power. Large net radiation

values are thus sharply constrained at the higher magnitude end; the statistical sig-

nature of this feedback is a redistribution of probability mass such that the skewness

is large and negative.

The key role of the land surface in energy balance is the partitioning of available

energy between the latent and sensible turbulent heat fluxes. A diagnostic measure

of this partitioning is the Bowen ratio (Bo = H/AE) which is physically related

to the heat and moisture availability at the surface. Sensible heat is the relatively
less efficient mechanism of dissipating heat from the surface; therefore, high Bowen

ratios are associated with elevated temperatures. The sensible and latent heat flux

values have a joint probability distribution that is consistent with heat and moisture
availability at the surface. Due to the stochastic forcing and fluctuating values of

temperature and moisture content at the surface, the Bowen ratio is a stochastic
process in this model as well. Figure 3-3 shows the joint probability distribution of
these fluxes for the Control simulation. Superposed on this figure are sloped lines of

constant Bowen ratio. Consistent with the discussion above of the system's resistance

to temperature inversions, very little probability mass lies in the region of negative
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56

I

0 0
0

00
00

0
0

0
0000_
, 090000on

0.03

0.02

0.01

240 2 50

II --- CJUJOJ- ZZ ZE -=n.- _ _ _ 
u

nnl

Ill ------------- , _ _ ____------------LB---i--A---C·�l

D

D

I , I I I, I 

I

0

---------

V

u -----



120

1oi

". 

20

-20

-20

I I i I 

2.0 1.0 0.5 , I / ,

I I / -

0.25

, 

,I I 0.0

LS - - - - - - - - - - - - - - - - - -

50 100 150 200 250
LE W m-2)]
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Bowen ratio.

The equilibrium Bowen ratio (for moist, homogeneous surfaces with minimal air

vapor deficit - the lower limit to evaporation given an amount of available energy

at the surface) is proportional to the inverse of the Clausius-Clapeyron relation or

y/ (Philip 1987). As the temperature is lowered, the equilibrium Bowen ratio grows

rapidly; tabulated values of y/A show a rapid rise for low temperatures (Eagleson

1970). To the equilibrium Bowen ratio we must add the effects of soil-controlled evap-

oration and departures from equilibrium assumptions. The rapid loss of probability

mass along lines of increasing Bowen ratio in Figure 3-3 is consistent with this simple

analysis.

The joint probability distribution of sensible and latent heat fluxes is integrated
to derive the marginal distributions for the Bowen ratio and evaporative fraction EF,

where
AE 1

EF = E= 1 (3.8)
Rnt - G 1 + Bo

There is considerable variability in the Bowen ratio and it has a negative skew (Figure

3-4). The evaporative fraction is more peaked due to its mathematical definition in

(3.8) and has a positive skew. In this respect, where the Bowen ratio fails to upgrade

its status from a diagnostic to a predictive measure due to its larger variability, the
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Figure 3-4: Probability density functions for evaporative fraction EF and Bowen ratio
Bo in the Control model simulation.

evaporative fraction may be capable of limited use in predictive rather than diagnostic

mode.

Table 3.2 also includes statistics summarizing the results of experiments in the

sensitivity to a,, the variance of the random input. Due to the assumption that
the random forcing has a gaussian marginal distribution, the variance parameter au

may only be increased to the level (with respect to the mean U) such that negative

wind-speeds are probabilistically very infrequent. This condition is satisfied for the

sensitivity cases reported in Table 3.2. In the high variance case (au = 2.0), the

standard deviations of the states are increased generally in proportion to the increase

in au(+33%). In the low variance case (au = 1), the standard deviations decrease in

proportion to that of the noise. In both the low and high variance cases, the means

are virtually unchanged. With respect to the noise forcing, the system appears nearly

linear in its first two statistical moments.

However, a linear system would transform a gaussian input to gaussian outputs.

The non-zero skewness of some model states arises from nonlinearity and feedbacks in

the system. As the level of noise increases, the magnitude of the skewness increases,

indicating that the noise is preferentially amplified in the high range of the positively-

skewed variables and in the low range of the negatively-skewed variables. For example,

skewness of 0.52 for Tg in the high variance case, compared to 0.38 in the control

case, is indicative of different physical mechanisms for dissipating heat at different
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temperatures. At high temperatures (encountered in the high variance case), the net

thermal radiative loss from the soil and air slab system is inefficient in dissipating heat.

This is due to the strong coupling of the ground and near-surface air temperatures.

The system must achieve even higher temperatures to maintain energy balance. Such

contrasts between the different mechanisms for dissipating the radiative forcing at the

surface are more clearly identified by analyzing the temporal scales associated with

each mechanisms in the context of the serial dependence in the model states.

3.3.3 Serial dependence in the model states

The discussion so far on the probability distribution of the model states and derived

states does not address the serial dependence in the fluctuations of these variables.

The auto-correlation statistic is used to explore the degree of dependence between a

variable at a particular time and its evolved state some time (at lag r) later. The
stochastic model is forced with white-noise that is serially independent. Any serial

dependence that may be evident in the model output is strictly due to the internal

structure of the model. The most important source of gain in the model (gain defined

in terms of a function that transfers fluctuations from one frequency to another in a

preferential mode) is the thermal and moisture inertia associated with the size of the

heat and water reservoirs at the land surface and in the air slab. The interactions in

the model also contribute significantly and in a non-trivial manner to the gain as will

be shown below.

Figures 3-5a to 3-5d represent the lagged auto-correlation functions estimated for

the four model states. They are strictly a sum of exponential functions due to the

Markovian nature of (3.5). To associate an approximate scalar time-scale with each

process, we use the functional form of the single-exponential simple-Markovian auto-

correlation function exp(-T/T*) where r* is now an approximate (but conveniently

scalar) measure of memory for the process. The value of the time-scale r* is estimated

for each function by selecting the e-folding of the decorrelation with increasing lag.

The relative soil saturation is characterized by r* of 9 days, and it is the most per-

sistent of all model states (Figure 3-5a). The specific humidity in Figure 3-5b has a

more rapid decorrelation ( r* = 3 days ) since it is directly affected by the stochastic

forcing through the advection term.
The two temperature variables exhibit decorrelation patterns that are indicative of

strong influences of land-atmosphere interaction as will be discussed now. In Figure 3-

5c, the ground temperature decorrelates very rapidly at first and then reduces its rate
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Figure 3-5: Autocorrelation functions for four state variables in the Control simula-
tion: (a) relative soil saturation, (b) atmospheric specific humidity, (c) soil tempera-
ture, and (d) air potential temperature.

60



of decorrelation significantly (note the slope of the auto-correlation function near zero-

lag). This phenomenon may be explained by considering an anomaly in wind-speed

during the stochastic realization. The soil is generally forced by solar radiation, and

it dissipates its heat through the turbulent fluxes and longwave radiation. If a warm

ground temperature anomaly is established, the temperature difference between the

ground and the mixed-layer is likely to be increased as well, enhancing the efficiency

of the turbulent sensible heat flux - but only until that flux has worked to restore the

nominal or equilibrium temperature gradient, not necessarily the equilibrium ground

temperature. After that point, the dissipation of heat from the ground occurs mostly

through thermal radiation (from the surface to the atmosphere above and from the
mixed layer to space), which is a considerably less efficient mechanism with longer

time-scales. The dissipation of heat by thermal radiation contains a positive feedback

(back radiation from the overlying air) and it thus adds memory to the system.

The turbulent heat flux mechanism initially and rapidly dissipates soil temperature

anomalies (as evident in the rapid, initial decorrelation of temperature anomalies);

nevertheless sensible heat flux is only an atmospheric coupling mechanism for the

surface, and the dissipation of heat from the soil-atmosphere system ultimately occurs

by thermal radiation which introduces memory and serial dependence in the process.

This is evident by the slow decorrelation rates at the larger lags in Figure 3-5c and by

r* = 6 days for 0m (Figure 3-5d). This behavior is further apparent in the upcoming

discussion of lagged cross-covariances.

The derived states - that is, the fluxes - have small r* values; the precipitation,
latent heat flux, and sensible heat flux are decorrelated rapidly. If the model were

forced by colored noise for its large-scale forcing, some serial dependence would also

become evident in these time-series. Delworth and Manabe (1988) find decay time

scales on the order of one to two months for the soil moisture state in the Geophys-

ical Fluid Dynamics Laboratory (GFDL) General Circulation Model (GCM). The

e-folding found in that model ranges from 1.2 months in the tropics to 1.9 in the

mid-latitudes and 2.5 in the polar regions. It should be noted that the total soil

water storage capacity in the GFDL GCM is 15 centimeters whereas the model here

uses 5 centimeters for the Control case. If we also use a 15 centimeter storage ca-

pacity, the model soil moisture serial dependence time-scale is increased to 19 days.

The difference is simply due to the serial dependence of the random forcing. The

precipitation time-series in the model here is essentially white noise. The GFDL

GCM produces strong serial dependence in the precipitation time-series (Delworth

and Manabe, 1988). The time-scale of the precipitation process adds to that of the
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soil moisture. In fact Delworth and Manabe (1988) perform simple simulations with

a dissipative soil moisture model that is forced by white noise precipitation. The

time-scale associated with that model for the set of climate conditions roughly sim-

ilar to those in this study is only 16 days. Wang et al. (1994) analyze a stochastic

differential system similar to (3.5) that may be forced by colored-noise and whose

properties may be analyzed using the Fokker-Planck equation.

3.3.4 Covariability structure

The stochastic differential equation representing heat and moisture balance for land

and near-surface atmosphere with land-atmosphere interaction is forced by noise in

its wind-speed fluctuations; any resulting covariability in model states or fluxes is due

to the internal structure, feedbacks, and interactions. The degree of covariability and

delayed cross-dependence is measured by estimating the lagged cross-covariance of

the simulated time-series.

Figure 3-6a is the lagged cross-covariance function for the air specific humidity and

potential temperature. For negative lags the specific humidity leads the temperature,

and for positive lags the temperature leads humidity. These two states are positively

correlated; higher specific humidity values increase the thermal radiative emissivity

and absorptivity of the air-mass. The thermal radiative fluxes are affected, and the

back-radiation to the surface is increased (the greenhouse effect). To dissipate the

increased heating induced by a rise in humidity, the temperature must rise further so

that the energy is lost by thermal radiation to space. The statistical signature of this

feedback is positive correlation between humidity and temperature anomalies near the

same time. The slower decorrelation with humidity leading potential temperature is

due to the comparatively longer time-scales of thermal radiation, compared to the

faster-response turbulent latent heat flux, which plays a greater role with potential

temperature leading humidity: increased air temperature drives an increase in poten-

tial evaporation due to the enhanced air vapor deficit; however, the disequilibrium is

quickly corrected by the responding increase in evaporation from the soil (if moisture

is available).

The positive correlation between soil temperature and air potential temperature

(Figure 3-6b) reflects the strong link between the two energy reservoirs. The land

surface heats the mixed layer by sensible heat flux and outgoing thermal radiation,

following solar heating of the surface. Energy is absorbed in the atmosphere, and an

elevated temperature is the only way for the whole system to dissipate energy to space.
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Due to the absorption of thermal radiation in the slab and elevated temperatures being

the only effective way of dissipating energy from the system to space, the two land

and air temperatures are strongly linked with positive correlation. Figure 3-6b shows

the lagged cross-covariance of the two temperature state variables; as argued above,

the correlation is generally positive and symmetric, indicative of the strong influence

of the thermal radiation feedbacks between the two over a wide range of time scales.

At the scale of the fast-response turbulent sensible heat flux, the negative correlation

is evident in the sharp valley that is created by this latter mechanism around the

origin (lag equal to zero). An anomalous sensible heat flux (due to a wind-speed

perturbation) may bring soil temperature below a nominal value, and perturb air

temperature above a nominal value. Such opposite-sign anomalies take away from the

positive correlation near zero lag; as shown in the inset, the fast-response turbulent

heat flux rapidly restores the system from such disequilibrium, returning to high

positive correlation in less than one day. On the other hand, the thermal radiation

that affects (and couples) both temperatures acts on a longer time-scale, and it is

argued that it will induce overall positive correlation bctween the two variables. In

the inset it is also apparent that the maximum correlation between the ground and air

temperatures occurs with a lag of nearly 1 day with the ground temperature leading.

This is consistent with the results of Chapter 2, where investigations into the role of

the diurnal cycle indicate that the land-atmosphere system is forced by solar heating

of the surface and the air temperature heating is mostly through the sensible heat

flux and absorption of terrestrial outgoing thermal radiation following this surface

heating.

3.4 The Role of Feedbacks in Land-Atmosphere
Interaction

The lagged cross-covariance between ground temperature and relative soil satu-

ration for the Control experiment is plotted in Figure 3-7a. The instantaneous and

lagged dependence between the two variables is negative since dry soil anomalies are

associated with greater partitioning of the available energy into sensible (rather than

latent) heat flux. This turbulent heat flux mechanism is relatively less efficient, the

ground temperature rises, and a temperature anomaly of the opposite sign ensues. A

similar argument may be made for a positive soil moisture anomaly which instanta-

neously leads to greater partitioning to latent heat flux (lower Bowen ratio) and an
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efficient cooling of the surface. The long memory associated with the soil moisture

state (see Figure 3-5a) insures that the influence persists and the soil moisture lead-

ing soil temperature decorrelates slowly with lag. Figure 3-7a also shows that the

soil temperature leading moisture content is also persistent at large lags due to the

influence of the soil temperature on evaporation through the potential evaporation.

The saturation vapor pressure at the surface increases sharply with increasing tem-

perature; the enhanced gradient in the near-surface vapor pressure induces elevated

potential evaporation rates and enhancement of negative soil moisture anomalies due

to the drying.

We now exploit the simple mathematical structure of the model to perform some

experiments that will allow us to quantify the effects of feedbacks and land-atmosphere

interactions on the statistical signatures of climate variability. In Figure 3-7a, the soil

temperature and moisture lagged cross-dependence are presented for the case in which

the land-atmosphere coupling in the model is reduced to a one-way interaction in that

the feedback mechanisms are severed. This is achieved by evaluating the drift and

diffusion coefficients G(.) and g(.) at the mean state of the atmosphere as obtained

from the Control simulation. The surface still receives the same mean radiative forcing

from the atmosphere, but the surface fluxes are not allowed to alter the state of the
atmosphere. This is essentially the case of No-Feedback.

In Figure 3-7a, it is evident that without land-atmosphere feedback, the covari-

ability between soil temperature and soil moisture is considerably reduced. [In this

experiment, the suppression of land-atmosphere feedback is simply represented by the

use of the constant stationary mean mixed-layer potential temperature () instead
of Om(t); a very similar result is obtained when qm is used for qm(t) in addition.] Co-

variability between soil temperature and soil moisture is critically dependent on the

atmospheric energy-balance feedback. When it is not required to respond to changing

air temperature, the fast-restoring sensible heat flux can instantaneously dissipate soil
temperature anomalies. In addition, in this No-Feedback case, downwelling thermal

radiation cannot add memory to ground temperature anomalies. Through the effect
on potential evaporation, the loss of memory in ground temperature contributes a loss

of memory in soil moisture as well; the two-way positive feedback between moisture

and temperature anomalies is suppressed. In the No-Feedback case (Figure 3-7a), the

covariance with s leading is reduced more than with Tg leading; the sensible heat

flux can instantly dissipate Tg anomalies, so that the water balance's influence on Tg

through f(s) and the slowly varying s is not so effective (this is further illustrated by

fixing /3 in an additional simulation at the end of this Section). On the other hand, s
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Figure 3-7: Lagged cross-covariances for soil moisture and soil temperature: (a) in
the Control simulation and the No-Feedback case where land-atmosphere interaction
is limited, and (b) when the thermal radiation and sensible heat flux are constrained
in order to establish the pathways of the feedback.
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anomalies retain some persistence due to memory implicit in the water balance alone;

the contemporaneous negative correlation in s and Tg anomalies, together with persis-

tence in soil moisture anomalies, results in nonzero lagged covariances when Tg leads

s. This simple experiment demonstrates that, in terms of fluctuations and memory,

the water-energy linkage at the soil surface is established largely via the near-surface
atmosphere.

To pinpoint the pathways of these influences, the No-Feedback experiment in

Figure 3-7a is repeated, but now in going from the Control to the No-Feedback case

(through G(-,) and g(lm)), we take smaller steps and differentiate between the role of

the two restoring forces in coupling ground and air temperatures. In Figure 3-7b, two

intermediary steps are taken; first, the #m is used only in the thermal longwave fluxes,

and second Am is used in only sensible heat. These cases are denoted by [LW(Om)]

and [ H(3,,)]. In the first step towards the No-Feedback case, the thermal radiative
fluxes are not allowed to interact [LW(0m)]. The lagged cross-covariance is reduced

by about 25% but not to the low levels of the No-Feedback case. When the turbulent
heat flux mechanism is not allowed to be interactive with the atmosphere [H(-n)], the

lagged cross-covariance is reduced nearly to the No-Feedback case. Figures 3-7a and

3-7b are evidence of the importance of land-atmosphere interaction and the two-way

coupling of the soil and near-surface atmospheric states in establishing the persistence

and covariability of hydrothermal conditions over land.

The most influential factor that controls the degree of soil water balance control on

the surface energy balance (as evident in the persistent dependence of soil temperature

and moisture with moisture leading temperature anomalies; also evident in the serial

auto-dependence of soil temperature) is the partitioning of the available energy into
sensible and latent heat flux. The Bowen ratio is functionally dependent on the soil

moisture through the evaporation efficiency 13(s). Figure 3-8a shows the lagged auto-
covariance of soil temperature for two situations; first the nominal hydrologic reservoir

size Zh is used as in the Control case in Figure 3-5c. The second curve corresponds to

the situation when the hydrologic capacity Zh is doubled. This example shows that

the serial dependence of the ground temperature (an energy state) is sensitive to the

specification of the hydrologic reservoir. This sensitivity is lost when the evaporation

efficiency 3(-) is evaluated at the fixed mean soil saturation s, A(s). In this case, the
serial dependence of ground temperature as evident in the lagged auto-covariance in

Figure 3-8b is identical for both the nominal 1 x and 2 x Zh cases. The decorrelation

is also much more rapid, since sensible heat flux replaces latent heat flux as the

main mechanism to dissipate anomalies. When the latent heat flux is the dominant
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Figure 3-8: Evaporation efficiency communicates variability in soil moisture to soil
temperature: (a) the Control simulation is subject to doubling of its hydrologic reser-
voir Zh. (b) simulation with fixed evaporation efficiency P(s), again with nominal and
doubled hydrologic reservoir Zh.

mechanism (in terms of controlling the response, not necessarily in magnitude), the

dependence of 3 on the slowly-varying soil moisture adds to the serial dependence

in surface energy balance and ground temperature. This experiment indicates that

the evaporation efficiency (.) and its role in partitioning the available energy into
sensible and latent heat fluxes is the agent through which the soil moisture conditions

principally contribute to the variability of soil temperatures.

3.5 Conclusions

The partitioning of atmospheric radiative and precipitation forcing at the land surface

into turbulent fluxes and storage defines the regional hydrothermal climate, and it has

major influences on the patterns of temporal variability in the system. The feedbacks

and interactions that govern these processes are dependent on the heat and moisture

states of the soil and the near-surface atmosphere.

Routing white noise through the 4-state stochastic model results in a physically

consistent covariability response, including consistent budgets of moisture and heat in

land-atmosphere system due to the state-dependent turbulent and radiative fluxes;
transmission of ground solar heating to the air by thermal re-radiation; and a thermal

radiation feedback (greenhouse effect). The variabilities and covariabilities in the

68



model's basic and derived states are consistent in that they are borne out of the
structure of the interactions and feedbacks. Statistical analyses of these fluctuations
are used to identify feedbacks in land-atmosphere interaction. The analytic structure

of the model is used to explore these processes in detail and specifically map the

pathways of interactions. Experiments in which various feedback mechanisms are

suppressed are used to establish the influence of heat and moisture partitioning at

the land surface on climatic and hydrologic variability. The suppressed-feedback

experiment demonstrates the importance of two-way land-atmosphere coupling in

establishing memory and covariability of the soil moisture and temperature states.
Due to nonlinearity and feedbacks, the initiation and persistence of perturbations

of different type and magnitude depend on what system state the external forcing

encounters, not only the sign, magnitude, and persistence of the forcing. The cross-

covariance, as used in this Chapter, is a linear measure and does not distinguish

between transitions into, or recovery from, different regions of state space. The struc-

ture of the model allows the use of both analytical tools and stochastic simulations

to explore the temporal behavior of the system.
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Chapter 4

Recovery from Anomalies

4.1 Introduction

Meteorologic drought may be broadly defined as a decreased precipitation supply

to a region, resulting from reinforcement of large-scale circulation anomalies. The

ensuing soil-moisture deficit is termed hydrologic drought; although causally related,

the two types of drought are different phenomena having different onset and recovery

characteristics (McNab 1989). It has been observed that an end to a meteorologic

drought - i.e., a return to normal precipitation patterns - does not immediately or

necessarily bring about recovery from the hydrologic drought, partly due to the time

lag associated with the moisture reservoirs in surface and subsurface storage zones

(Figure 4-1). This Chapter presents and evaluates the hypothesis that the physical

interaction between soil water and energy balance contributes significantly to this

delay.

If the hydrologic drought (soil moisture deficit) persists and there is a strong cou-

pling of land surface processes and atmospheric conditions, it is then possible that the

land-atmosphere interaction forms feedback mechanisms which reinforce meteorolog-

ical droughts. Large-scale forcing mechanisms that initiate meteorological droughts

may thus be reinforced in magnitude and persistence through local interaction with

the land surface. This Chapter reports on these local land-atmosphere interaction

processes which serve as (positive and negative) feedback mechanisms in climate

variability.

The influence of the land surface in reinforcing large-scale induced drought con-

ditions are evident in regions such as the African Sahel and Midwest United States.

Nicholson (1986, 1989) argues that land-atmosphere interaction is an important factor
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Figure 4-1: Conceptual diagram of how meteorologic drought signial translates to
hydrologic drought. After McNab (1989).

in perpetuating drought episodes in the Sahelian region, although the initial drought

trigger is probably some change in large-scale atmospheric dynamics. Synoptic obser-

vations over the United States (Namias 1988) indicate that large-scale soil moisture

deficit may inhibit precipitation because the elevated surface temperature deepens the

adiabatically-mixed air layer and intensifies the mid-continental high-pressure ridge.

Escape from such reinforced anomaly conditions comes about through a strong exter-

nal forcing such as disturbances and seasonal shifts in atmospheric general circulation.

Considered alone, the soil moisture state is self-restoring: As the soil matrix over

a hillslope becomes moister, less infiltration occurs because the infiltration capacity

is generally a decreasing function of soil saturation. More importantly for the soil

water balance, the moisture state determines whether evaporation can occur at a rate

to satisfy the atmospheric demand. Potential evaporation (Ep) occurs if the soil is

sufficiently saturated; otherwise, evaporation proceeds at less than the potential rate.

As a result, when the soil is anomalously moist, it both evaporates more efficiently and

reduces the infiltration additions to storage. When dry, the soil restricts evaporation

and enhances infiltration. These mechanisms work to restore the moisture state from

anomalies of either sign toward a stable equilibrium value - a negative feedback.
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However, when the coupled water-energy system is considered, positive feedbacks

are possible. The soil moisture state and the temperature state are negatively corre-

lated due to the deficit in latent heat flux and the corresponding substitution of the

less efficient sensible heat flux cooling mechanism. Dry soil tends to be associated

with a high surface temperature; high temperature raises Ep, which - depending

on the severity of the anomaly - may lead to further drying, or even when pre-

cipitation returns, the elevated evaporative demand may exhaust the newly-supplied

water before the soil moisture reservoir can be replenished. With high soil tempera-

ture, net available energy increases and the potential vapor gradient is increased due

to the temperature dependence of saturation specific humidity; in addition a warm

surface enhances free convection, which contributes to greater efficiency in turbulent

transport.
These positive feedbacks in the linked water and energy budgets at the land sur-

face are local, in the sense that they are independent of large-scale persistence. Local

positive feedbacks can help to trigger and sustain meteorologic drought by contribut-

ing to the establishment of persistent large-scale circulation anomalies, and they can

delay recovery from hydrologic drought even when meteorologic drought has ended.

Because these potential feedback mechanisms are dependent on the moisture and

temperature state of the soil and the atmosphere, a relevant issue concerns whether

or not the return to normal conditions is more efficient when in a positive anomaly as

opposed to when in a negative anomaly. Droughts are observed to last longer than wet

spells over much of the conterminous United States (Diaz 1983). In practical terms,

are there feedback mechanisms that delay recovery from droughts and reinforce dry

conditions?

4.2 Analytic Approach

This Chapter examines the presence or absence of asymmetries in the recovery time

from warm-dry and cool-moist conditions in the physically-based stochastic model of

water-energy coupling in land-atmosphere interaction developed in Chapters 2 and 3.

In this Chapter, the stochastic model of Chapter 3 is used to explore the effects of

water-energy linkages and land-atmosphere interaction on the dynamics of recovery

from soil moisture anomalies, focusing on the state-space first-passage times asso-

ciated with the system of stochastic differential equations (3.5). The development

of feedback mechanisms based on land-atmosphere interaction is presented, and the

differences in recovery to normal from dry and moist soil moisture conditions are esti-
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mated. The key focus is soil moisture in this application because: 1) the interest is on

the role of hydrologic drought in forming local reinforcing mechanisms, and 2) when

dealing with multi-dimensional state-space, the analysis of the diagnostics is simpler

when the problem is reduced to at most two dimensions. Thus the three other model

variables form conditioning states in terms of probability. Any marginal probability

distribution must therefore be integrated in all its conditioning states by weighting

with the joint probability distribution.

4.3 State-Space First-Passage Times

4.3.1 Definitions

The land-atmosphere interaction model represents the random trajectories of soil

moisture s (t), soil temperature Tg (t), mixed-layer specific humidity qm (t) and po-
tential temperature Om (t) such that their covariances are derived from the linkages in

coupled water and energy balances in the soil and the atmosphere. Beginning from

an initial state x (t = 0) = xo, the first-passage time Txo-.8 to excursion over a state-
space boundary B is a random variable whose probability distribution fT (Tx0oB) is

conditional on the initial states. The distribution is also dependent on the internal

structure and the physical processes represented in the model. Feedback mechanisms

and physical interactions affect the first-passage time distributions.
In the four-variable system of the model, fT (Tos; x) is a function of xo =

[soq,,oT9o,, ]T. Each initial state x exhibits a different distribution of T,s ,

characterized by moments T, n = 1, oo. For the stochastic differential equation

(3.5), the nth moment of first-passage time T satisfies the Fokker-Planck Equation in

the form,

- nT_l(x) = Gi(x)iTn(x)+ 2 (ggT)ij aiajT(x) (4.1)
i 3

subject to the boundary conditions T, = 0 on the passage boundary, and either
reflecting, absorbing, or natural domain boundaries (see Gardiner 1985). Entekhabi

et al. (1992) analytically solve the first three moments of passage times for a univariate

soil moisture system; they then estimate the pdf fT(T) by fitting the moments to
an assigned probability density function. In principle, equation (4.1) can be solved

for the four-state system, if not analytically, at least numerically by a relaxation

method, for example. Such solution represents a significant computational effort.

Furthermore, because the solution to Tn_1 becomes the right-hand side to the partial
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differential equation for T,, errors would propagate through this cascade of partial

differential equations. The result would be very approximate probability density

function of first-passage times over B, for every point in the domain. For the current

application, a reasonably accurate probability density function of first-passage time

for each of a few selected initial states is of more interest. In this study, the complete

probability density functions fT(T; x) are computed by constructing the histograms

of the numerical integration of the system.

In this application we narrow our focus on anomalies at the surface and mostly an-

alyze the soil moisture and soil temperature variables (s (t) and Tg (t)); the remaining

atmospheric variables thus form conditioning probabilities, and the joint probabil-

ity density function of the model states are used to find the (marginal) probabilistic

behavior of the main diagnostics. The excursions are defined in terms of beginning

from an anomalous soil moisture state and the first-passage is defined in terms of soil

moisture recovery to normal conditions.

Given that the soil moisture state is so, how long will it take to reach another

state, s ? The passage boundary B selected for this study is the median soil moisture,

that is, 50 such that 50 percent of the stationary probability mass lies above, and

50 percent below, s50. The median is selected rather than the mean or expected

value, because the median is a more meaningful measure of "normal" for a skewed

distribution. In general, it cannot be assumed that a natural physical variable is

gaussian, and in fact the stochastic model solution probability density functions are

skewed (Chapter 3).

The quantities of interest are the first-passage time from a soil moisture anomaly

in the dry sector (s < s50) across the average (median) value into the wet sector

(s > s50), and vice versa. In the four-dimensional state space, the boundary s = sl

has three dimensions; this study is not concerned with the temperatures and air

humidity when soil moisture crosses this boundary. The initial-condition anomalies

selected are s05 and s95, defined by:

P [s < so5] = 0.05

P [s < s95] = 0.95 (4.2)

That is, in the ergodic sense, the soil moisture state is drier than s05 five percent

of the time, and moister than s95 five percent of the time. These two anomalies are

equidistant from the median 50 in a probabilistic sense.

In the 4-variable model, So is associated with a distribution of the other three
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states (qm, Tg, Gm). The distribution of the other three variables, conditional on a

given so, is given the notation,

p (qo, Tgo, .o Iso ) . (4.3)

4.3.2 Passage-time solution technique

With (s,,q, T,,o, ,o), n = 05(95) as the initial condition, the equations are inte-

grated in time until the value of s is greater (less) than the crossing value 50; the

time to crossing T,,,,o is recorded; the system is restarted at the same physical initial

condition repeatedly to construct a probability density function of T corresponding

to that initial condition,

fT [T., 8 0so; qmo, T9o, mo] . (4.4)

The procedure is repeated, varying q,,, T,9, and 0,. The overall probability density

function of first passage time from s to S50 is a probability-weighted average of the

individual probability density functions, using (4.3) and (4.4):

fT [Ta -5o] =/|= J fT [T.-a 50; qo,, To, Om] p (qo, To, O s, ) dq.o dTod, o .
(4.5)

The resulting probability density function is summed to give the cumulative density

function of first-passage time from s, to S50, FT (T,,-+o).

4.4 Control Solution

The Control solution refers to the stochastic solution to the model as presented in

Chapter 3. The marginal probability density function of s in the Control solution is

shown in Figure 4-2. The percentiles s05, s50 and S95 are indicated with dashed lines.

In addition, the stationary expectation (mean) of s is indicated with a dotted line.

As indicated by the skewness coefficient of -0.28, the mean lies below the mode; the

dry tail is slightly longer than the moist tail.

In the Control solution, there is little difference between the cumulative density

functions of first-passage time from the moist and the dry anomaly to what is con-

sidered to be the normal soil moisture condition (Figure 4-3). The median passage

time is about 7.5 days. Fast recovery is fairly likely; for example, there is a 10 per-

cent probability that soil moisture will go from 05 to above-average, or from 95 to

below-average, in under 2.5 days. There is only a 5 percent probability of the mois-
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Figure 4-2: The probability density function for soil moisture in the Control numerical
solution. The percentiles s05, s5o and 95 are indicated by dashed lines and the mean
by a dotted line.

ture remaining in either the dry or the moist sector longer than 25 days, given the

corresponding initial 5-percent anomaly.

Because the s distribution is skewed, the anomalies s05 and s95 are not equidis-

tant (equal volumetric moisture deficit) from s50. The first-passage time analysis is

repeated, this time with the soil-moisture midpoint, s,,, = (s05 + s95)/2 as the passage

boundary. The advlraiage of using this (mid-point) definition of the normal state in-

stead of the statistical median is that from either anomaly state (s05 or s95), it takes

the exchange of the same volume of water to recover to normal conditions.

The cdfs for passage times from the s anomalies to Sm appear in Figure 4-4. The

first-passage times past this definition of normal conditions are again comparable in

distribution. The recovery from dry anomaly is slightly faster. The median recovery

time is about 8 days from the moist anomaly and 7 days from the dry anomaly.

The general time scale of about ten days in Figures 4-3 and 4-4 corresponds to

local physical processes and land-atmosphere interaction at the regional scale. In

essence, this time scale represents the response of the local feedback and recovery

mechanisms. Any further interaction with the larger-scale atmospheric general circu-

lation can modify the time scale of recovery from anomalies.

There are two key components of the model that directly affect the first-passage

times in Figures 4-3 and 4-4. The depth of the hydrologically active soil layer strongly

influences the absolute magnitude of these passage times. The volume of water re-

quired will contribute to the determination of the recovery time given the average net

exchange at the land surface. In this case, the hydrologically active depth is taken to

be 20 cm, corresponding to the penetration depth of storm and interstorm moisture

waves.

The other key factor that determines the first-passage times and the relative sym-
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metry of recovery from moist and dry anomalies is the shape of the evaporation

efficiency function f (s). Chapter 3 identifies the central role played by this factor

in determining the covariability statistics of the land-atmosphere interaction model.

The Control solution uses a simple P (s) = sc which for the value of c = 1 used yields

a linear functional dependence on soil moisture, monotonically increasing from zero
at s = 0 to unity at soil saturation.

The actual evaporation process is considerably more complex. One of the complex-

ities is due to the fact that the regional evaporation switches between atmosphere-

controlled (energy-limited) to soil-controlled regimes. When the soil is adequately

wet, available energy limits evaporation. In this case the actual evaporation equals

the potential value. When the soil exfiltration rate limits moisture flow below the

potential evaporation possible given the amount of available energy, then the evap-

oration falls in the soil-controlled regime and (s) represents a strong penalty. To

explore this important complexity (and nonlinearity) in land-atmosphere interaction,
a second set of simulations are performed with a two-regime formulation for (s).

Comparisons of the first-passage times from these simulations are then compared with

the Control solutions to isolate the influence of evaporation efficiency formulation on

the problem.

4.5 Two-Regime-fl Solution

In the Control solution, evaporation is never under atmospheric control (i.e., never

equal to the potential rate), because , is equal to unity only when the soil is saturated.
While the monotonically-increasing 3 succeeds in linking the heat and moisture bal-

ances, it does not succeed in mimicking the physical reality of the switch between

soil-controlled and atmosphere-controlled evaporation. Evaporation is under atmo-

spheric control when the soil moisture is capable of exfiltrating water at least equal to

the atmospheric evaporative demand; in this case, evaporation is at its potential rate.
Under soil control, evaporation is limited because the rate of exfiltration from the soil
is constrained by the reduced conductivity of the unsaturated soil. To investigate the

system behavior when two distinct evaporative regimes exist, a Two-regime-: func-

tion was constructed as shown in Figure 4-5. The purpose of this analysis is to test

the recovery of the regional soil moisture and energy states when there is a significant

difference in the slope of the evaporation efficiency fl(s) at anomalous states. The

slope of the evaporation efficiency on soil saturation is a strong determinant of the
degree of coupling between the water and energy balances at the land surface. Design
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Two-regime-B solution (the per-
lines) and the constructed two-

of the functional form of /3 here is thus strictly aimed at illustrating a physical pro-

cess. Application of this land-atmosphere interaction model to a particular location

requires a /3 formulation (and other model parameters) that takes into detailed ac-

count the regional soil type, vegetation characteristics, large-scale forcing, and other

important factors.
The stationary distribution of soil moisture for the stochastic solution of the new

system is shown in Figure 4-5, with the percentiles indicated. The dry-anomaly

soil moisture state (so5) lies in the soil-controlled evaporation regime and the moist

anomaly (s95) in the atmospheric-controlled regime.

The cumulative density functions of Tn,,-5o for the Two-regime-/B system are plot-

ted in Figure 4-6. For this case the definition of the normal soil moisture condition is

fortuitously identical for s50 and s.; this facilitates comparisons. There are significant

differences in the two first-passage time distributions and, in addition, there is strong

asymmetry in the recovery from the dry and moist anomalies. Whereas the Control

solution with the simple /3 (s) showed no major difference in the recovery times from

the dry and moist anomalies, when the evaporation efficiency representation includes

the switch from atmosphere control to soil control, the first-passage distributions are
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Figure 4-6: The cumulative density function of first-passage time from 95 and s05
over he median soil moisture in the Two-regi me- solution.

markedly different. The median first-passage time in recovering from a moist anomaly
to normal conditions is about 10 days. Recovery to similar normal conditions from a

(probabilistically and volumetrically) dry initial state takes about 14 days. Recovery

times of as long as several tens of days are possible for this system, especially from

the dry anomaly.
The slope of the evaporation efficiency function on soil moisture is a key determi-

nant of the strength of the coupling of the water and energy balance at the surface.

Chapter 3 demonstrates the influence of this function on the covariance between

the soil moisture and soil temperature states, and that the sensitivity of the land-
atmosphere interaction to hydrologic variables is modulated by the dependence of the

evaporation efficiency on soil moisture.

As mentioned in the introduction, the water balance equation alone produces a
negative feedback for anomalies of soil moisture. Moist soil moisture anomalies are

rapidly depleted by increased evaporation and reduced infiltration. On the other

hand, dry conditions are restored to normal by reduced evaporation and increased

infiltration. When the energy balance is coupled to the water balance, the possibility
of positive feedbacks develops. In dry-warm anomalies, the potential evaporation in-
creases sharply, which induces even greater drying. Similarly in cool-moist conditions
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the potential evaporation is lower and the moist anomaly may persist. The strength

of the water and energy balance coupling is through the evaporation efficiency func-

tion p (s). Thus the influence of the positive feedback that reinforces anomalies of

a sign and forces them to persist (increased first-passage times) is dependent on the

form of the function , (s).

In the Two-regime-13 solution, the degree of sensitivity of the energy balance to

soil moisture availability and hydrologic processes is markedly different for the dry

anomaly than for the moist anomaly. Figure 4-5 shows that in the moist anomaly

the evaporation rate is energy-limited and thus atmosphere-controlled. The energy

balance sensitivity to soil moisture availability is minimal, and the water and energy

balances are only weakly coupled. Thus the positive feedback influences of the energy

balance on a soil moisture anomaly are not present.

The opposite is true for the dry anomaly. The strong dependence of the evap-

oration efficiency on soil moisture in this soil-controlled evaporation regime region

means that the water and energy balances are closely coupled and that the positive

feedback mechanism associated with the soil temperature is active for soil moisture.

The presence of the strong coupling of the water balance to the energy balance in

the dry anomaly state, and the lack of it in the moist anomaly state, yields different

degrees of the positive feedback influence on soil moisture anomalies at each sign

anomaly. Because the dry anomaly is affected by this factor that leads to persistence

and intensification, the first-passage times are considerably longer for recovery from

dry conditions as opposed to moist conditions. Asymmetry in recovery times is the

result of this unequal coupling of the water and energy balances at dry and moist

anomaly conditions.

4.6 Evolution of Anomalous States

Recovery or any movement in the state-space occurs due to the local deterministic

drift G (xt), which ultimately drives the system towards an equilibrium state x*, and

due to the stochastic fluctuations in the random forcing variable, which affects the

states in proportion to the diffusion function g (xt). The two functions derive their

functional form and dependencies from the radiative and turbulent fluxes that link

the coupled water and energy balance in the soil and the atmospheric mixed-layer.

By mapping the values of the drift and diffusion functions at different portions of

the state-space, we find the deterministic and noise-induced factors that underlie the

first-passage times behavior at the dry and moist anomaly initial states.
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Because the solar energy forcing at the top of the atmosphere is invariant in

these applications (neither seasonal nor diurnal cycle is included), the independent

variable time does not appear explicitly in the drift and diffusion functions. The

deterministic contribution to time evolution G(x) and the modulation of the noise

g(x) are functions of the system state alone and can be plotted in state-space as

phase plane portraits.

In this application we again focus on the two soil state variables: soil moisture and

soil temperature. This allows visual inspection of the two-dimensional state-space.

Again the conditioning on the two remaining (atmospheric) state variables is removed

by integrating over the joint probability distribution.

4.6.1 Drift

The coupled evolution of the soil moisture and soil temperature states are plotted in

(s, Tg) space. Figure 4-7 is the (s, Tg) phase-plane portrait for the Contrcl solution,

and Figure 4-8 for the Two-regime-(3 solution. In these figures, the horizontal (s)

component of each vector is the deterministic drift of soil moisture (water balance

equation), given that the system is at that (s, Tg) point; the vertical component is the

deterministic drift of soil temperature (energy balance equation) at that point. This

vector represents the instantaneous direction and magnitude of the system trajectory

in the (s, Tg) plane. As a four-equation system, the model trajectory actually lies

in the 4-dimensional hyperplane. These figures constitute weighted-average phase-

plane portraits of the drift part of the system; the other two (atmospheric) variables

are accounted for in these figures by integrating over the joint probability density

function. Thus, the vector components G1 and G3 as plotted for each (s, Tg) are the

expected value of each component over all possible q and Om, conditional on s and

Tg, according to the stationary joint probability density of the system.

In Figures 4-7 and 4-8, the G1 component gives the effect of the mean (without

noise) wind-speed forcing, solar radiation, and the system state on soil moisture

evolution whereas the G3 component of the vector gives the effect of system state

and mean forcing on soil temperature. [For visual and interpretive reasons, vectors

are not plotted for (s, Tg) pairs having stationary probability less than a negigible

value.] Also indicated are the equilibrium values s* and 7g, corresponding to the

solution that the system would reach in the absence of noise, such that G(x*) = 0.

The equilibrium solution x* is at the intersection of the dotted lines in Figures 4-7

and 4-8.
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the deterministic contribution to (s, Tg) evolution in the
vector components G1 and G3 are averaged over the other

The point (s*, 7) is a stable improper node. All system trajectories lead to the
node, indicating that it is stable. This stability results from self-restoring (negative
feedback) mechanisms in all the state variables. [Hasselmann (1976) showed that
without such stabilizing (negative) feedbacks in the drift term, the system's variance
would grow without bound, analogous with "the continuous, unbounded dispersion
of particles in Brownian motion."]

The trajectories in Figure 4-7 are tangent to a line of negative slope Tg vs. s,

making (s*, 7g) an improper node. Indeed, evolution toward this tangent line is
stronger than along the line toward the node, as evident by the relative length of
the vectors. Of particular interest are the vectors in the warm dry quadrant having

a leftward (negative ds or drying) component. If the soil moisture is considered as
a self-restoring state, then G1 should be positive (increasing s) whenever s lies be-
low its equilibrium value. However, when the temperature is high, the evaporative
demand may overwhelm the self-restoring mechanisms and cause a dry anomaly to
dry further before being moistened again. This is a positive feedback in soil moisture
anomalies, brought about by the link to soil temperature through potential evap-
oration. A parallel positive s feedback occurs in the cool-moist sector of Figures
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Figure 4-8: Vector plot of the deterministic contribution to (s, T/) evolution in the
Two-regime-l3 solution. The drift vector components G1 and G3 are averaged over
the other two state variables.

4-7 and 4-8 as well, but as the size of the arrows indicates, it is not as strong as

in the warm-dry sector. The positive feedback influence on soil moisture is due to

the soil-temperature dependence of saturation specific humidity in surface evapo-

ration; therefore, the positive feedback is stronger at the dry anomaly (versus the

wet) because dry anomalies tend to be accompanied by above-average temperatures,

which affect the saturated specific humidity, a key component in forming the positive

feedback. The thermodynamic Clausius Clapeyron relationship for the temperature

dependence of saturation specific humidity has exponentially-increasing slopes with

temperature. Although these anomaly-enhancing components are quite small, their

very presence demonstrates the competing demands that the water and energy bud-

gets place upon evaporation: evaporation cools and dries, but the system is most

often in a state that needs to either cool and moisten, or warm and dry. -lz In the

Two-regime-/3 solution (Figure 4-8), the mean (s, Tg) evolution tends toward a curve,

rather than a line, through the equilibrum solution. As in the Control solution, for

a given s < s*, when Tg lies above this curve, a slight positive feedback in s exists,

drying an already dry anomaly. Likewise, when Tg lies below this curve for a moist

anomaly s > s*, a slight positive moistening effect exists.
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Because the (G1, G3 ) vectors are plotted only for (s, Tg) pairs of non-negligible

stationary probability, the shape that they define reflects the degree of correlation

between s and Tg. The most striking difference between the Control and Two-regime-

,3 figures is the two-lobed structure of the (s, Tg) joint probability in the latter case.

The two variables are more strongly negatively correlated when evaporation is under

soil control (s < 0.65), and only slightly negatively correlated when the soil does not

control evaporation. The Control solution also shows negative correlation between the

two variables, but in that case the magnitude of the correlation is consistent across

the different sectors of state space, due to the linear form of /3(s).

Can the deterministic drift alone explain the probability distributions of first-

passage time? The Control system is next integrated in time, without noise, from

the anomalous initial states. For the initial state s = s,, the other three variables

must also be specified. The solid-line trajectory in Figure 4-9a starts from s05 and the

expected values of qm, Tg, and m, conditional on s = s05. The dot-dash line starts

from Sg9 and the corresponding conditional expectations of the other three states. In

this state-space depiction of system evolution, a time scale is indicated by three open

circles at 2-day intervals along the beginning of each trajectory. The asterisk indicates

25 days. An additional trajectory (Figure 4-9b) starts from s05 and a higher Tg, 5

degrees greater than the conditional expected value of Tg; the remaining two variables

are set at their expected values conditional on s05 and the higher Tg. Presumably,

a higher initial Tg should enhance the positive feedback; this positive feedback is

evident in the transient greater excursion of the trajectory away from s equilibrium.

Figure 4-9 shows that - even with an extreme initial value of Tg in the dry case

- the deterministic return to equilibrium takes about the same time from each sign

anomaly in the Control case. Interestingly, the equilibrium s* lies slightly closer to

ss95, indicating that recovery from the dry anomaly is actually faster than from the
moist one, covering a slightly greater As in the same amount of time. In Figure

4-9c, the time-series plot of the deterministic trajectory of (Tg - 0m) is an interesting

diagnostic; it shows that from any of the three initial anomalous states, the two

temperatures quickly adjust (primarily by sensible heat exchange) to the equilibrium

value of (Tg - 0m) and then evolve to their equilibrium values in parallel. This

creates the (s, Tg) asymptote visible in Figure 4-7. Once on that asymptote, both s

and Tg restore toward equilibrium exponentially. The recovery from anomalies is thus

strongly influenced by an initial (and rapid) restoration of an equilibrium temperature

gradient (Tg - a,) and then a relatively slower approach to x*. The fact that a non-
vanishing gradient exists between the soil and atmosphere temperatures is due to the
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librium in the Control model. At the bottom is a time-series of the difference between
soil and mixed-layer temperature corresponding to each trajectory in the state-space
plot.
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Figure 4-10: Deterministic (no noise) state-space trajectories from s05 and 95 to equi-
librium in the Two-regime-fB model. At the bottom is a time-series of the difference
between soil and mixed-layer temperature corresponding to each trajectory in the
state-space plot.

competing effects of solar radiation forcing a positive difference with the soil heating

to be warmer than the atmosphere. Sensible and latent heat flux as well as net

thermal radiative exchange then work to dissipate this gradient. Because all four state

variables are linked, an equilibrium temperature gradient (Tg - Om) develops which,

in the long-term, balances radiative exchange at top of the atmospheric boundary.

Heat advection (latent and sensible), as well as entrainment, also contributes to this

balance, yet in terms of magnitude the vertical radiative exchanges dominate in the

energy balance.

The Two-regime-]3 deterministic recoveries from selected anomalies are shown in

Figures 4-10a and 4-10b. The initial states for each anomaly were constructed as

for the Control solution, and time is again indicated in the state-space plot with

open circles every two days for the first 6 days, and an asterisk at 25 days. Again,
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the time series of (Tg - Om) (Figure 4-10c) shows that, from any of the three initial

points, the system quickly ( 1 day) equilibrates first to an equilibrium temperature

gradient and maintains that difference as the two temperatures return in parallel to
their equilibrium values.

Due to deterministic drift alone, the recovery from a moist and a dry anomaly to

equilibrium is symmetric in the Control solution, and asymmetric in the Two-regime-

,B case. In the latter case, it appears that the system recovers more quickly from the

moist anomaly because of the shape of the (s, Tg) distribution; although the s distance

to s* is about the same for both the dry and warm anomaly, the system actually

has farther to travel from the dry side, because temperature is more disequilibrated

than on the moist side. The need to recover from a greater Tg anomaly (Figure

4-10b) delays the recovery from a dry s anomaly because the increased evaporative

demand creates a positive soil-moisture feedback. Reciprocally, soil moisture control

of evaporation slows Tg recovery in this sector, so the temperature and moisture states

are mutually inhibiting one another's recovery toward equilibrium. In the Control

case, this inhibition exists nearly equally on both sides.

The positive feedback mechanism in the dry soil moisture anomaly is evident

in Figures 4-9b and 4-10b. The water balance forms (in a strict sense) a negative

feedback for soil moisture anomalies because the dependence of the hydrologic fluxes

on soil moisture is such that a negative soil moisture anomaly necessarily moves (in

its deterministic drift component) towards the equilibrium, and a positive anomaly

is reduced by the hydrologic fluxes. When the energy balance is coupled to the water

balance, a positive feedback is possible such that an anomaly of one sign is shifted

further away from the equilibrium, at least locally. Figures 4-9b and 4-10b show

that when viewed in the coupled s - T9 space, the negative soil moisture anomaly

becomes more (negative) anomalous during its trajectory towards equilibrium. The

strength of this effect has been shown to be related to the degree of water and energy

balance coupling through the evaporation efficiency function 6. Because this function

dramatically changes its shape at the switch between soil-control and atmosphere-

control evaporation regime, asymmetric recovery times from anomalies are possible

(Figure 4-6).

So far the focus has been on the deterministic evolution of the system. The

same turbulent and radiative fluxes that link the four state variables and produce the

deterministic drift function G (xt), define the diffusion function g (xt) which measures

the strength and direction of the responses of the state variables to the noise. In

this case noise enters the system through wind speed, affecting both advection and
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turbulent fluxes.

4.6.2 Diffusion

The deterministic solution trajectories described above assume an initial condition xo;

because the equilibrium is stable, a non-equilibrium initial condition can only arise

due to noise. The complete stationary probability density function of each system is

determined by the solution to the full Ito equation (3.5) and depends on both drift

and diffusion through the Fokker-Planck equation,

'af'=°= - (Gif8) + 2 E ,a (gg,f) (4.6)

where f, = f(s, Tg, q, am) represents the stationary multivariate probability density

function for the system. The components of the g(x) function establish a hetero-

geneous, non-isotropic diffusion that the stationary probability must balance. The

covariance structure is thus the result of both the drift and the diffusion functions.
The classic deterministic approach used in Section 4.6.1 is to give a non-equilibrium

initial condition and allow the system to restore to equilibrium. In reality, the state

is being continuously buffeted by noise as it tries to move along its recovery path. In

a system with state-dependent noise, this buffeting is not totally random; it depends

on the physical linkages in the model.

Vector plots of (gl, g93), the ds and dTg components of the diffusion term, show the

state-dependence of the system's susceptibility to random perturbations (Figures 4-11

and 4-12). In these figures, the two components of the g function are indicated by

a 2-headed arrow emanating from each (s, Tg) point having non-negligible stationary

probability. The gaussian-distributed incremental noise dwt may take either a positive

or a negative sign with equal probability, hence the two-headed arrows. The arrow

has a horizontal component proportional to the expected value of gl, and a vertical

component proportional to the expected value of g93, where, as before, the expectations

are conditional on that (s, Tg). The gl component corresponds to the effect of noise on

soil moisture evolution whereas the g3 component is the magnitude of the modulation

of noise for the third state variable, soil temperature.

The relative magnitude of the vectors shows that for a given s, the state is increas-

ingly susceptible to noise as Tg increases. The direction of the vectors indicates that

as Tg increases, the noise affects s less and Tg more. (The same pattern is observed in

the diffusion vector plot, both for the Control and the Two-regime-f solution.) This
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Figure 4-11: Vector plot of the noise contribution to (s, Tg) evolution in the Control
solution. The diffusion vector components g9 and g3 are averaged over the other two
state variables.

behavior is again due to the rapid restoration of the surface-air temperature gradient
through sensible heat flux. This same behavior is evident in the deterministic compo-

nent of the system (Figures 4-9c and 4-10c). The sensible heat flux mechanism goes
towards structuring this apparent dependence of the drift and diffusion function on

the state of the system. Recovery from anomalies in state variables is thus intricately

linked to the location of the anomaly in state-space, i.e., type of anomaly, dry or

moist, warm or cool, in the atmosphere or in the soil.
Now, consider the system state as a particle moving in state-space. If the particle

finds itself in a hot dry state, the drift term (Figures 4-7 and 4-8) is likely to cause
further drying to cool by latent heat exchange. At the same time, random noise
(Figures 4-11 and 4-12) may perturb it to an even hotter state - but not moister,
due to the lack of a 91 component in this range. A physical implication is that when

ground temperature is high, even a large perturbation will not serve to moisten the
system. (Conversely, at this high ground temperature, noise does not cause further
drying either; however, the deterministic drift term may cause drying.)

Finally we examine an important diagnostic related to the finding that the system
in an anomalous state tends to first (and rapidly) adjust the temperature gradient
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Figure 4-12: Vector plot of the noise contribution to (s, Tg) evolution in the Two-
regime-/3 solution. The diffusion vector components gl aid g3 are averaged over the
other two state variables.

(Tg - Om) to near the equilibrium value and then follow trajectories along this line

to the full restoration of equilibrium x* at a relatively (and increasingly) slower rate.

Figure 4-13 is a plot of the drift components G3 and G4 that are the deterministic

restoring forcings of the soil temperature T and atmosphere potential temperature

Om. The vectors indicate that wherever the anomaly is situated, the primary tendency

is to rapidly move towards the equilibrium temperature gradient (indicated on Figure

4-13 by the dashed line). The tendency is stronger, the larger the disequilibrium. This

is also the case in the Two-regime-f3 deterministic trajectories; however, once on the

constant (Tg - Om) curve in that solution, the system has farther to travel to reach

equilibrium, owing to the greater (s, Tg) correlation.

An interesting result in Figure 4-13 is that once on the equilibrium temperature

gradient (dashed line) there is very small deterministic drift towards the equilibrium

point x*. Full recovery to the equilibrium point has to be achieved through the

remaining dependencies in the land-atmosphere system.
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Figure 4-13: Vector plot of the deterministic contribution to (Tg, Om) evolution in the
Control solution. The drift vector components G3 and G4 are averaged over the other
two state variables.

4.7 Conclusions and Discussion

The asymmetry of first-passage times from dry and moist anomalies across the normal

state of soil moisture is found to hold for the Two-regime-fB solution, in which evap-

oration switches between soil and atmosphere control. This difference arises from a

stronger correlation between soil moisture and soil temperature in the soil-controlled

regime. The correlation, in turn, is created by the form of evaporation efficiency /

through both the drift and diffusion terms.

Positive soil moisture feedbacks (anomaly-enhancing mechanisms) exist in both

solutions, due to the role of evaporation in balancing both the hydrologic and the

heat balance, and due to the fact that evaporation is a product, E = Epfi, where

B3 increases with s, and Ep with Tg. Enhanced evaporation constitutes a means to

restore from a wet or a hot anomaly, but it exacerbates a dry or a cool anomaly.

Anomalies tend to be wet and cool, or hot and dry; therefore the restoration and

anomaly-enhancement effects tend to be in competition.

It is only in the Two-regime-f3 solution, however, that these feedbacks are seen

to operate asymmetrically for moisture anomalies of different sign. If indeed natural
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drought and pluvial phenomena show temporal asymmetries in their recovery time,

we may postulate that soil control of evaporation in the dry state, and lack of it in

the moist state, helps to account for some of the difference. We may thus expect

the patterns of recovery from droughts and wet periods to be most affected by land-

atmosphere interaction if the climate of the region straddles the boundary between
soil-controlled and energy-limited evaporation regimes. Strong seasonality may also

enhance this behavior.

Both land-atmosphere interaction and the functional form of B(s) are critical in

establishing the correlation between soil temperature and soil moisture. Without

the coupling of ground and mixed-layer temperatures, the soil energy budget can be

balanced largely by sensible heat flux and is not at the mercy of soil-controlled evap-

oration. This is evident in both the deterministic trajectories from the dry anomaly
in the Control case and in the auto-correlation analysis in Chapter 3.

Water-energy coupling at the land surface results in the presence of positive soil

moisture anomaly feedbacks that are not evident if the water balance is considered

alone. The next step in this analytical work is to decompose the model's drift and

diffusion functions to isolate positive and negative feedback mechanisms, and to iden-

tify and quantify the physical processes controlling restoring and coupling terms in

the multivariate system.
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Chapter 5

Analysis of Feedback Mechanisms

5.1 Introduction

The heat and moisture budgets at the land surface are linked by evaporation, which

is an expenditure of both energy and water mass. As a result of this and other

equally important linkages in land-atmosphere interaction, the soil heat and moisture

states tend to be negatively correlated, either warm-dry or cool-moist. When the

evaporation rate responds to an anomalous state, the water and energy budgets are

in competition. In a warm-dry anomaly, the elevated temperature creates a demand

for increased evaporation to cool the surface; at the same time, the low moisture state

requires restricted evaporation to allow re-moistening.

Chapter 4 demonstrated the presence of these feedbacks by analyzing system tran-

sitions in soil-moisture/soil-temperature state-space, for a simplified mathematical

model of land-atmosphere interaction. Feedback mechanisms that are not apparent if

soil moisture is considered alone become apparent when the surface water and energy

budgets in both land and atmosphere are allowed to affect one another. In this Chap-

ter, the model equations are decomposed to isolate the physical processes responsible

for these feedbacks, as well as to determine the sign and magnitude of their competing

contributions.

The mathematical model provides a unique opportunity to quantify positive and
negative feedbacks in the coupled water and energy budgets at the land surface.

The covariabilities among the model states are due to internal constraints; they arise

through the equations describing the states' physical linkages and are not prescribed at

the outset as in, for example, a statistical model. The deterministic drift and diffusion

equations are analytically tractable, owing to the model's low dimensionality.
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The major challenge in investigations of land-atmosphere interaction is to deci-

pher the major influences and feedbacks when the many state variables and physical

processes in water and energy balance are all interconnected in complicated ways. If

we sketch a diagram of even the simplest representation of the land-atmosphere sys-

tem and draw arrows between the states and processes that affect one another (Figure

1-1), it is still extremely difficult to predict the net effect of a change in one state or

system parameter. For example, precipitation recycling creates a positive feedback in

regional soil moisture, but moisture-controlled infiltration capacity and evaporation

efficiency contribute restoring forces - negative feedbacks. When the soil dries and

heats, the coupled moisture/temperature state can create a positive moisture feed-

back -- further drying. Which processes dominate? Under what conditions? And

why? The simplified analytic model allows us to dissect and - more importantly -

quantify the "arrows" in conceptual diagrams such as Figure 1-1.

5.2 Stochastic Model

For convenience, the stochastic land-atmosphere interaction model, as developed in

Chapters 2 and 3 is briefly reviewed here. The model is composed of a one-dimensional

(in the vertical) four-state balance for the soil and turbulently-mixed atmospheric

boundary layer reservoirs of heat and moisture; the radiative and turbulent heat

fluxes that couple these states are explicitly represented. The major simplifying

assumptions in the model are: 1) adiabatic mixing in the boundary layer, and 2)

parameterization of warm dry air entrainment in lieu of variations in boundary layer

height. The source of noise is considered to be in the advection of air-mass; the

regional wind-speed is taken to be composed of a mean component with additions of

uncorrelated white-noise as perturbations around this mean value. The time evolution

of the system is described by the multivariate Ito stochastic differential equation,

dxt = G(xt)dt + g(xt)dwt , (5.1)

where dwt represents the differential of the Wiener process (white noise), and the

time-varying state vector is defined as

xt = [ qm Tg Om]T (5.2)
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of State Variables, Control Solution

Equilibrium Stochastic
Index Solution Solution

j Variable | * o
1 s[ ] 0.613 0.611 0.043

2 qm [g kg-1] 4.27 4.25 0.39

3 Tg [deg C] 20.7 20.6 2.1

4 Om [deg C] 15.3 15.5 1.4

5 Tg - m [deg C] 5.4 5.3 1.7

where s represents relative soil saturation (soil moisture, dimensionless), qm specific

humidity in the mixed layer [g H20 (kg air)-'], Tg soil temperature [C], and m
potential temperature in the mixed layer [C]. In equation (5.1), G(xt) is the drift
function; its four components G1(xt), G 2(xt), G3(xt), G4 (xt) describe the time evolu-

tion of, respectively, s, qm, Tg, Om in the absence of noise. The deterministic function

g(xt) = [g91 (xt), g2(xt), g3(xt), g4(xt)1' multiplying the noise is the diffusion function,
through which the state of the system at the time of the event modulates the influ-
ence of the random fluctuation. The notations Gi(xt) and gi(xt) are used here to

emphasize that each component is a function of all four model states. The full model

equations are given in Appendix C and a list of notation is provided in Appendix A.

The 4-equation system is integrated in time using an Euler-type discretization

(Pardoux and Talay 1984) of equation (5.1); solution statistics are computed from

the resulting stochastic time-series. The presentations in Chapter 3 describe the

properties of the stochastic solution upon which the analysis in this paper is based,

in particular the marginal probability distributions and covariability structure of the

model states. The basic statistics for the model states in this Control stochastic solu-
tion are given in Table 5.1, together with the equilibrium solution. Comparison of the

model equilibrium state x* resulting from G(x*) = 0 and the stochastic expectation

x is illuminating in that it illustrates whether the covariability of heat and moisture

in the land and atmosphere contribute to the definition of regional climate. In this

case, it is apparent that the equilibrium climate is a strong attractor for the system;

noise produces fluctuations around this state.
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5.3 Definitions and Method

5.3.1 The drift function: Tendency to equilibrate

If the noise term is removed from the right-hand side of equation (5.1), the system

is reduced to a set of four coupled ordinary differential equations, describing coupled

water and energy balance in the land-atmosphere system:

= G(x) . (5.3)
dt

Chapter 2 explored the equilibrium behavior [G(x*) = 0] of this deterministic form of

the model and its sensitivity to several important parameters. The model is an open

system, for both energy and water mass; the equilibrium solution reflects the existence

of temperature and moisture states that balance the specified external insolation

and water mass convergence. At this 4-variable equilibrium state, the model's air

and soil stores are coupled in terms of both the water and energy states such that

the net incoming solar radiation is exactly balanced by longwave back-radiation and

latent heat advection; moisture convergence is exactly balanced by runoff; and the

net exchange between air and soil is zero for both water mass and energy. This does

not imply that the fluxes themselves are zero - they are not - but that they are in

balance. From any physically realistic initial state, in the absence of noise, the G(x)

function will drive the system to x*.

Because x* is a stable equilibrium of the system , it is a natural choice to analyze

the deterministic behavior of x(t) in relation to x*. The G(x) function is expanded

in truncated Taylor series around x*, for i = 1, 4:

Gi(x)Gi (x)+ (S -S*)+ (m-)+ + (Om - m )
Gi s X* Oqm Xg X*lm o

(5.4)

When the differentiation in (5.4) is performed, a number of common terms appear

with opposite sign in the Tg and Om derivatives, due to the presence of the temperature

gradient Tg - Om in the turbulent flux terms. Clearly, an equilibrium temperature

difference exists; it is given the notation A*, where A = Tg- Om. Thus, (5.4) may

be rewritten to include the dependence of each drift component on the system's

departure from its equilibrium temperature gradient, as well as on the departure

97



from its equilibrium state in absolute terms:

G,(x) OG s OG, OG, , Gi(x) a aS * - O*)+ m (qm-qm)+ [OT' T--g) +
O X*

am(0i - *m) + (A* ) - A*) (5.5)

In equation (5.5), Gi(x*), which is by definition equal to zero, has been omitted.

To non-dimensionalize the various state disequilibria for ease of comparison in the

analysis that follows, each difference xj - is divided by the stationary standard

deviation of the respective state; the notation xzj is introduced to signify the non-

dimensional disequilibrium in variable j,

:3j - :3 (5.6)

In the analysis, the non-dimensional disequilibria are referred to as Ss, 6Tg, and so

forth. With this notation, equation (5.5) can be compactly written as

5

Gi(x) I Aijxj = Ail6s + Ai26qm + Ai36Tg + Ai4 60m + Ais56A . (5.7)
j=1

The coefficients Aij are the derivatives (linear coefficients) of the drift function for

the ith state variable with respect to the jth variable.

5.3.2 Definition of restoring and coupling terms

According to (5.7), each Gi is approximated by a weighted sum of the various disequi-

libria, where each weight Aj is determined by the various physical processes through

which a disequilibrium in variable j affects the evolution of variable i.

Let us first examine the terms where i = j, that is, the effect of a variable's

disequilibrium upon its own evolution. For a self-restoring process, Aii must be neg-

ative, consistent with the definition of a negative feedback as one that counteracts

an anomaly. The terms Aii indicate each variable's tendency to restore itself toward

its own equilibrium, and therefore will be called restoring terms. If Aii is positive,

then disequilibrium in the state variable is enhanced due to some positive feedback

influences in the water and energy balance.

The terms Aij,i j, express the effect of disequilibrium in variable j on the

evolution of variable i. If Aij is positive, then an above-equilibrium 6xj will contribute
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to an increase in variable i, regardless of whether Sxi is positive or negative. The

terms Aij, i # j are coupling terms; they signify the dependence of variables upon

each other's disequilibria.

Rewriting (5.7) in complete matrix form shows that the restoring terms (un-

derlined) are the diagonal terms of the matrix that transforms the vector of non-

dimensional disequilibria to the approximate drift functions:

G1 All A 12 A13 A1 4 A1 5

G2 A2 1 A2 3 A2 4 A2 5

G3 A31 A32 A33 A34 A3 5

G4 A4 1 A 42 A 43 A4 4 A 4 5

6s

qm

6Tg

bom

a.

(5.8)

Once we derive the expressions for Aij in the analytic model of land-atmosphere

interaction and coupled water and energy balance, we may then evaluate their sign and

magnitude to identify and quantify the feedback processes contributing to climatic
and hydrologic variability (see Figure 1-1).

5.3.3 The diffusion function: Susceptibility to noise

The diffusion function components, which multiply the noise in (5.1), are also ex-

panded in Taylor series about the same x* as in equation (5.4), with the result,

gi(x) -- gi(x*) + Ail58 + Ai26qm + i36Tg + 1Ai460m + Ai56A . (5.9)

In (5.9), gi(x*) must be included because it is not necessarily equal to zero. In fact, it

is necessary that at least one gi be non-zero at x* for a stochastic solution to exist. If

all the diffusion functions were zero at the deterministic equilibrium, then noise could

not perturb the system from that equilibrium, and once in the equilibrium state,

the system would no longer evolve either randomly or deterministically. Each Aij

in equation (5.9) represents the susceptibility of variable i to random perturbations

due to the effect of a disequilibrium in variable j. Again, it is emphasized that the

expressions for Aij and Aij are derived from an analytic model of land-atmosphere

interaction, which represents the coupled water and energy balance between the soil

and the near-surface atmosphere.
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5.4 Decomposition of the Terms

The drift and diffusion functions G(.) and g(.) in the evolution of land and atmo-
spheric moisture and temperature states are defined through the coupled water and

energy balance for the soil and the well-mixed atmospheric boundary layer. The ex-

changes of mass and energy link the four state variables in two-way land-atmosphere

interaction (The full equations are given in Appendix C). The restoring and feed-

back factors quantified by the linear coefficients Aij and Aij are thus physically based

through these balance equations. In this Section, the component parts of the weight-

ing terms are decomposed and their physical meaning discussed. Differences in sign

are noted in this Section, but numerical values are not assigned until the following

Section.

5.4.1 Soil moisture drift

The restoring term All represents the effect of soil moisture itself on the physical

processes that re-equilibrate it fom a disequilibrated state. Here a runoff ratio, i,

has been defined, such that F equals the ratio of runoff to precipitation, and (1 - A,)
equals the ratio of infiltration to precipitation. The evaporation efficiency / represents

the soil control on evaporation; it is the ratio of the allowed evaporative flux to the

energy-limited potential value. From equation (C.7) and the definition of All,

dG1n]L1 = =8AL1AS

(a) + (1-b) , ,) d - ) 
p ds

(b) + (1 - b) (C1U + C2WB) p [q* (Tg, ps) - qm] d
(b) + (1 - b) Pw ds [(1 - ) )/] asPw ds

(C1U + C2WB) p [q* (Tg, p.) - qm] d3 (5.10)
(c) das (5.10)

Pw ds

The subterms (a) and (b) represent the infiltration of precipitation water. In both,

the factors (1 - b) and the vapor gradient are always positive at the equilibrium

point. Subterm (a) is the infiltration of that precipitation water derived from moist

advection. Subterm (b) is the infiltration of precipitation water derived from local

evaporation. Because the infiltration fraction of precipitation (1 - A') is generally

decreasing with increasing soil saturation, the infiltration process due to large-scale

advective forcing is a negative feedback mechanism for soil moisture anomalies [sub-

100



term (a) is always a negative contribution to All]. The infiltration of locally derived

(recycled) precipitation, nonetheless, may be either a positive or negative feedback,

depending on the surface hydrologic partitioning. The runoff ratio p and evaporation

efficiency f3 are both increasing functions of soil saturation; the term [(1 - W) ]

may take either sign depending on the partitioning of hydrologic fluxes at the sur-

face. The locally-recycled precipitation water may thus constitute a positive feedback

on soil moisture anomalies. The final subterm (c) represents the evaporative loss of

soil moisture in the land water balance equation. Its contribution to soil moisture

anomalies and All necessarily constitutes a negative feedback and a restoring force.

Drier soils reduce evaporation efficiency and thus tend to remoisten if precipitation

occurs. Moist soils are subject to enhanced evaporation when the energy is available,

thus also tend to restore soil moisture anomalies.

The term A12 quantifies the coupling of soil moisture drift to specific humidity

disequilibrium:

0G 1
A12 - qmaq

= [1 - ( - b)(1 -2WB) la (5.11)
Pw

This term is necessarily positive. A moist disequilibrium in air humidity decreases the

humidity gradient in the surface sublayer and thus suppresses net evaporation. (In this

expression, net evaporation equals total evaporation minus recycled precipitation.)

Conversely, a dry air humidity disequilibrium enhances net evaporation. Depending

on the correlation of soil moisture and air specific humidity, this physical interaction

may constitute either positive or negative feedback.

The coupling of soil moisture drift to disequilibrium in soil temperature is given

by A13 :

A13 = ( TG

= -[1-(1-b)(1 - W)]- q (cU + C2wB) /3 T (5.12)

As discussed above, the term A13 does not include all the constituents of aG1/0Ts;

the items that arise in common with (-OGi/MOm) are indicated by f and appear in

A15, multiplying the temperature difference, A. A very important property to note is

that this term is necessarily negative; [1- (1-b)(1 - p)] is always greater than zero. A

positive disequilibrium in T. (usually occurring when the soil is dry) raises potential

101



evaporation through the strong temperature dependence of ground--surface saturation
specific humidity [q*/Tg appears in (5.12)], thus exerting a drying influence in the

soil moisture drift. This is the source of the strong positive feedback on soil moisture

evolution, and it is brought about by the coupling of water and energy balances.

A disequilibrium in absolute air-slab potential temperature drives soil moisture

drift through the term A14:

A14 (OGi, + ) 0

= [ -1 1R)] 02= l'h Bm1ie (5.13)
Pw Om Om

This term arises from the presence of Om in the denominator of the buoyancy velocity

scale, WB. In wB, the expression g(Tg - Om)/Om represents the buoyancy acceleration

that a parcel of air at the surface would experience if lifted adiabatically into the mixed

layer. The square root of this acceleration multiplying a distance (here, the mixed-

layer thickness h) gives a velocity scale for the buoyant thermals, which is related to

the surface turbulent fluxes. For a given temperature gradient (T - ), buoyant

acceleration decreases as the coupled absolute temperatures increase. Therefore, in

equation (5.13), an increase in absolute m - independent of a change in A -

suppresses evaporation and provides a moistening influence, a negative feedback if

the soil is dry.

The effect of land-atmosphere thermal coupling on soil moisture evolution is given

by A 15 :

A15 = Y'A

= -[1- (1- )(1 - b)] [q* (Tgp) - qm] C2Fi (m 0o 'A
(5.14)

This necessarily negative term arises from the presence of A = Tg- m in the nu-

merator of the buoyancy veclocity scale. For a given m, as the temperature gradient

increases, thermal buoyancy and consequently evaporation are enhanced. This also

constitutes a contribution to positive feedback influences on the evolution of dry soil

moisture anomalies.
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5.4.2 Soil temperature drift

The contribution of disequilibrium in each variable j to the state-dependent deter-
ministic evolution of soil temperature is estimated by the weighting terms A3j in the

approximation to G3.

The effect of soil moisture disequilibrium is through A31,

aG3A31 = aG3

(a) -dRS1 as
ds CZ

(b) - A ( 1U + C2WB) p[q* (Tg,ps) - qm] d 1(5.15)

Here, subterm (a) is the effect of soil-moisture controlled albedo [a(s)] on dTg. Moist

soil (high 6s) means a less reflective surface; a decreases with increasing s (dax/ds is

negative) and the contribution of this term is that moister soil has a warming influ-

ence. Although albedo may depend only weakly on soil moisture, this term may be

large, due to the dominance of solar radiation in the energy balance. Subterm (b) re-

flects soil moisture control of evaporation; evaporation efficiency [(s)] increases with

moister soil (dB/ds is positive). Thus, moister soil contributes a cooling influence.

Disequilibrium in air-slab specific humidity qm drives soil temperature evolution

through A3 2 :

A32 -OG3

qm=

(a) (1- a)RSe,a- CZaq
Oqm C.Zt

(b) + (1 a RL

a 1
(c) - RLad-cox-C aq

(d) + (Jm Z.Xc ) C Ztjq 

(e) + Ca Z-

(f) + AP (ClU, + C2 wB) PC q (5.16)

In subterm (a), Y, signifies the effect of clouds in blocking solar radiation. Yc/Oqm

is negative (more water vapor, more cloud, less solar radiation), therefore a positive
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air humidity disequilibrium has a cooling effect on soil temperature if this factor
were considered alone. Subterm (b) is the enhancement of above-slab downwelling
longwave due to both vapor and cloud; RLd increases with increased humidity - a
warming effect; however, this effect is largely cancelled by re-absorption of RLad in
the mixed layer itself due to enhanced emissivity/absorptivity (c). Subterms (d) and

(e) reflect the effect of qm on the downward longwave radiation from the mixed-layer

through the clear-sky radiation and the cloud correction (Xc). An anomalously moist

air slab has a warming influence on the soil by suppressing the latent heat flux from

the soil slab (f).

The soil temperature state influences its own deterministic drift through the restor-
ing term A33:

A33 - ( E0g )

(a) - 4aT 3 T

(b) -9A (C1U + C2w) CZaT (5.17)

These terms are both necessarily negative, as expected for a self-restoring state: the
fourth-power longwave back-radiation (a), and the dependence of potential evapora-

tion on temperature-dependent saturation specific humidity (q*/oTg > 0) (b). The
important roles of soil temperature in the turbulent sensible and latent heat flux oc-

cur due to the gradient between Tg and m, not due to absolute Tg; therefore these
terms (indicated by E) appear in A35 below.

Absolute mixed-layer potential temperature affects Tg through A34:

A( OG3

0 1
(a) (1 - a)RSe mYc - as

(b) + ( RLdcX + RLadca X 1 a
M 0Gm 0m C 8 zt

(c) + (a RLMX, + RLdom xc) c a

(d) + APC2p [q* (Tg, p) - qm] Om 1 1Z

(e) + C2 pCpa (Tg - Oa) 1 1 a (5.18)
2 Gm GmCZt
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A positive potential temperature disequilibrium contributes a warming influence on
the soil temperature through all the mechanisms that depend on absolute Om. Warmer

air has decreased relative humidity and is more transparent to solar radiation (warmer
air, lower relative humidity, less cloud, more sunshine) (a). Both the overlying atmo-
sphere and slab downwelling longwave fluxes respond to the 0 4 dependence and to the
LW cloud correction (b and c). The high Om in the buoyancy velocity denominator
suppresses the turbulent fluxes, contributing an additional warming influence (d).

The weighting term A35 gives the effect on soil temperature drift of a disequilibrium
in land-atmosphere thermal coupling:

A35 = EA =

(a) - pC,, (ClU, + C2wB) Z aa

(b)- pCpaC2 (Tg- ) -O (Tom) 1/ 1

(C) - APC2 [q g, p) - qm] ZZt (519)

A large temperature gradient in the surface sublayer (high 6A) enhances the turbulent
fluxes in two ways: the gradient dependence in sensible heat (a) and the transfer
coefficient in both the latent and sensible heat fluxes, through the buoyancy velocity
(b and c). The result is that a high disequilibrium in A leads to cooling of the soil
layer, and a low, to warming. This contribution, due to two-way land-atmosphere
interaction, is thus necessarily a negative feedback factor for the evolution of soil
temperature.

5.4.3 Soil moisture diffusion term

Similar analysis of the diffusion function g(x) reveals the effect of coupled noise
and state-variable disequilibrium on the evolution of anomalies. Because noise is
introduced through the wind-speed, which affects advection and turbulent fluxes,
this analysis quantifies the relative susceptibility of soil moisture and temperature
anomalies to fluctuations in wind speed. Of course, these factors are mediated by
disequilibria in the soil and air temperature and moisture states, and the fluxes of
water and energy that link them. The diffusion functions' sensitivity to the state
disequilibria are decomposed in the same manner as the drift functions.

First, the effect of soil moisture on its own susceptibility to random perturbations
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A11 is made up of three contributions:

A11 = =
as

(a) + (1 - b)Miu d (1 )
Pw ds

Pw ds

(c) - [q* (Tg, p) - q Cloau d a (5.20)
Pw ds

The infiltrated fraction of precipitation (1 - -) generally decreases with increasing

soil saturation, the s-dependent infiltration of anomalous advection, subterm (a), is

a negative factor multiplying the random noise. As discussed in connection with

equation (5.10), subterm (b) may take either sign, depending upon the partitioning

of fluxes at the surface. The modulation of evaporative loss due to noise, subterm (c),
is negative - that is, an above-average wind speed would tend to dry the soil, and

this drying effect increases with increased saturation, through 3 being an increasing

function of s.

The magnitude of noise-induced soil moisture perturbations is affected by a dis-

equilibrium in air specific humidity qm through the humidity gradient in potential

evaporation,

A12 = r a q

- [1 - (1 - b)(1 )]P Clau aq (5.21)
Pw

and by a soil-temperature disequilibrium through the temperature-dependence of sat-
uration specific humidity,

g

= -[1 - (1 - b)(1 - )- P Clau (5.22)

The diffusion functions do not include buoyancy velocity WB, which has no noise com-

ponent in this model. Because wB is the only way that air-slab potential temperature

affects the evolution of soil moisture, s diffusion is not affected by disequilibrium in
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0m and A:

A14 = 0 (5.23)

A15 = 0 (5.24)

5.4.4 Soil temperature diffusion term

The soil-moisture dependence of evaporation efficiency and soil heat capacity affect

the susceptibility of the temperature state to noise:

193

OsA31 =
d 1

(a) - AGCaup[q* (T,,ps) -qm] 'p -o as (5.25)

d 1
(b) - Claup [Cpa (Tg - Om) + A/ [q* (Tg, Ps) - qml d-C, - 6c

ds ¢ Zt

Because dp3/ds and dC8/ds are both positive, terms (a) and (b) are both negative.

The mixed layer specific humidity moderates the effect of noise on soil temperature

through the vapor gradient,

0g3A32 = 0g3q
dqm

= Cup -a (5.26)

The absolute temperature state affects its own sensitivity to noise through saturation
specific humidity in potential evaporation:

A33 = (a-e ) aT

Ocq* 1
= Clap--- 1 aT (5.27), CAt

Again, because buoyancy velocity does not appear in the diffusion terms, Tg diffusion
is insensitive to absolute mixed-layer potential temperature:

34 m ) a
= 0 (5.28)

However, diffusion of Tg is dependent on the temperature gradient, A, through the
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sensible heat flux:

A35 = ,aA

= -CpaCCu C-z (5.29)

5.5 Evaluation of the Term-wise Decomposition
in the Stochastic Solution

In this Section, the component sub-terms described in Section 5.4 for the drift

and diffusion of soil moisture and temperature states are evaluated. The results are

presented in Tables 5.2 and 5.3 for the deterministic drift, and in Tables 5.4 and 5.5

for the diffusion functions. [In accordance with equation (5.4), all functions included

in the derivatives are evaluated at the control equilibrium solution, x*.] This analysis

quantifies the relative strength of the co-existing positive and negative feedbacks in

the evolution of moisture and temperature anomalies.

5.5.1 Drift

In the deterministic drift tables, a positive entry in the column labeled "scaled value"

means that a positive disequilibrium in variable j contributes to an increase in variable

i through the itemized physical mechanism. A negative value indicates that variable

i will decrease due to a positive disequilibrium in variable j. These also correspond

to positive and negative feedback influences on the evolution of the anomalies.

For soil moisture drift (Table 5.2), only the precipitation recycling mechanism

could oppose the self-restoring soil moisture effect [see the discussion of Equation

(5.10)]. In this case, the positive recycling feedback is insufficient to outweigh the

strong negative (restoring) feedback mechanisms of s-dependent infiltration and evap-

oration efficiency. Thus, all the terms in the water balance (All constituents) are neg-

ative feedback factors. The other four states influence soil moisture deterministically

through one physical process each; the temperature dependence of surface saturation

specific humidity dominates (A13 = -0.48 mm day -1 ) The soil moisture evolution's

dependence on temperature disequilibrium (A1 3 ) is important because it contributes

to a strong positive feedback and possible intensification of moisture anomalies. From

Equation (5.12), it is evident that a key factor is the slope of the saturation specific hu-

midity on temperature (the thermodynamic Clausius-Clapeyron relationship). Since
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Table 5.2: Decomposition of Terms in G1 (Soil Moisture Drift), Control Solution

Scaled Value
Term Multiplies Sub-term [mm day- 1]

All As Infiltration (advected precipitation) -0.25

Recycled precipitation (incl. evaporation -0.03
efficiency and infiltration)
Evaporation efficiency (total evaporation loss) -0.36

Sum -0.64

A12 Sqm Vapor gradient in potential evaporation 0.08
A13 JTg Saturation specific humidity -0.48

A14 6pm Buoyancy velocity in potential evaporation 0.00

A15 6A Buoyancy velocity in potential evaporation -0.22

this relationship is itself related to temperature (slope is approximately exponentially

increasing), the strength of the positive feedback depends on the sign and magnitude

of the temperature anomaly. Dry anomalies tend to be warm (greater partitioning

toward sensible heat flux and higher bowen ratio), therefore this positive feedback is

stronger when the soil is in a dry anomaly (drought) than in a wet anomaly (pluvial).

There is thus the possibility of asymmetric intensification of anomalies and greater

persistence when the soil is anomalously dry. This possibility becomes evident in the

analyses of the next Section and is also reflected in the first-passage times computed

in Chapter 4.

Disequilibrium in the temperature gradient near the surface is also an influential

factor in restoring or enhancing soil moisture anomalies (A15 = -0.22 mm day-').

The situation is more complicated for soil temperature drift (Table 5.3), where

each state contributes through at least two physical mechanisms. Among the two

influences of soil moisture (albedo and evaporation efficiency), soil control of evap-

oration efficiency dominates; nonetheless, they are opposite-sign feedbacks on soil

temperature. For atmospheric humidity, the relatively large shortwave cloud contri-

bution is essentially cancelled by several terms taking the opposite sign: downwelling

longwave radiation and vapor deficit. Vapor-enhanced downwelling longwave radition

from above is counteracted by vapor-enhanced re-absorption in the mixed layer; in

fact, because of the greater vapor concentration at lower levels, the latter overrides

the former.
The soil temperature state is strongly self-restoring, interestingly more so through
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Table 5.3: Decomposition of Terms in G3 (Soil Temperature Drift), Control Solution

Scaled Value
Term Multiplies Sub-term [deg day- 1]

A31 as Albedo 0.11

Evaporation efficiency -0.99

Sum -0.88
A3 2 6qm Shortwave cloud correction -1.02

Above-slab downwelling longwave (clear-sky 0.15
and cloud)
Column absorption of same -0.21

Downwelling longwave from slab (clear-sky) 0.34

Downwelling longwave from slab (cloud 0.17
correction)
Vapor deficit in potential evaporation 0.50

Sum -0.08

A3 3 6Tg Upwelling longwave from soil -1.19

Saturation specific humidity in potential -2.62
evaporation

Sum -3.81
A34 60m SW cloud correction 0.44

Above-slab downwelling LW (clear-sky and 0.09
cloud)
Downwelling LW from slab (clear-sky and 0.35
cloud)

Buoyancy velocity in H 0.00

Buoyancy velocity in Ep 0.02
Sum 0.90

A3 5 6A Gradient in sensible heat flux -1.52

Buoyancy velocity in H -0.35

Buoyancy velocity in Ep -1.05

Sum -2.91
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the temperature dependence of saturation specific humidity, which plays a major role

in potential evaporation, than through thermal radiation. The restoring contribu-

tion of the ground longwave flux is about half that of aq*/8T,. Because Oq*/OTg is

temperature dependent (Clausius Clapeyron relation), this factor will have different

strengths depending on the sign and magnitude of the temperature anomaly.

The decrease in cloudiness due to increased air potential temperature creates an

effect on soil temperature drift that equals the effect of net downwelling longwave

(b) + (c). The contribution of absolute mixed-layer potential temperature through

the buoyancy velocity is small.

A temperature gradient greater than the equilibrium value has a strong cooling

influence, -1.87 ° day-' through the sensible heat flux [(a)+(b)] and -1.05 ° day-'
through latent heat flux (c). The presence of A in buoyancy velocity contributes

-1.4 ° day-' [(b)+(c)], about half of the total A contribution, demonstrating the
importance of free convection to turbulent transfer.

5.5.2 Diffusion

In interpreting the numerical results for the diffusion terms (Tables 5.4 and 5.5), it is

important to keep in mind that the noise (zero-mean gaussian perturbations around

the mean wind speed) can be either positive or negative with equal probability. This

wind anomaly multiplies either a positive or negative disequilibrium in each state,

through the approximate gi functions. It is useful, for purpose of discussion, to

consider a positive wind anomaly encountering a positive state disequilibrium.

For the soil moisture diffusion (Table 5.4), gl(x*) is positive, indicating that above-

average wind-speed acting on the equilibrium soil moisture state has a moistening in-

fluence, that is, the anomalous import of advected moisture outweighs the anomalous

evaporation at that point in state-space. If an anomalously strong wind encounters

a high moisture state (positive s), both the elevated runoff ratio and evaporation

efficiency cause less noise-induced soil-moisture moistening to occur than in the equili-

bruim state. If the strong wind encounters high soil temperature, then its moistening
effect is also decreased due to elevated potential evaporation through q*(Tg). The
effect of anomalously moist air is of the opposite sign: suppressed evaporation would

allow the wind anomaly to produce a slightly greater soil moistening than at equilib-

rium (Table 5.4).

For soil temperature diffusion (Table 5.5), g3 (x*) is negative, meaning that at

equilibrium, an anomalously strong wind cools the soil. If the soil is moist, then
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Table 5.4: Decomposition of Terms in gl (Soil Moisture Diffusion), Control Solution

Scaled Value

Term Multiplies Sub-term [mm day- 1]

g1~(x*) 0.52

A11 Ss Infiltration (advected precipitation) -0.09

Recycled precipitation (incl. evaporation -0.01
efficiency and infiltration)
Evaporation efficiency (total evaporation loss) -0.07

Sum -0.17

A12 6qm Vapor gradient in potential evap. 0.02

A1 3 aTg Saturation specific humidity -0.11

A14 60m (does not appear) 0.00

A15 6A (does not appear) 0.00

this cooling is enhanced through evaporation efficiency but suppressed by greater

soil heat capacity. If the anomalously high wind encounters warm soil and/or a

strong temperature gradient, noise-induced cooling is enhanced with respect to the

equilibrium state's response. As in the soil moisture case, a disequilibrium in air

humidity has a slight counteracting effect by suppressing the noise-induced component

of evaporation.

5.6 Analysis of Moisture Anomalies in the
Control Stochastic Solution

The analyses in Sections 5.4 and 5.5 focused on the identification and quantifica-

tion of the interactions and feedbacks inherent in coupled water and energy balance

in two-way land-atmosphere interaction. The influence of the physical linkages in soil

and atmosphere heat and moisture states on the evolution of the state variables have

been represented by linear coefficients (Aij and Aij) that multiply anomalous depar-

tures of the state variables from their equilibrium. In this sense, the sign of the these

coefficients signifies the character of the feedback (negative or positive) and their

magnitude represent the strength of the component. They force either restoration or

reinforcement of disequilibrium.
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Table 5.5: Decomposition of Terms in g3 (Soil Temperature Diffusion), Control Solu-
tion

Scaled Value

Term Multiplies Sub-term [deg day-']

g3(*) -3.81
A31 as Evaporation efficiency -0.20

Soil heat capacity 0.08

Sum -0.12

A3 2 5qm Vapor deficit in potential evaporation 0.10
A33 Tg Saturation specific humidity in potential -0.53

evaporation

A34 6m (does not appear) 0.00

A35 6A Gradient in sensible heat flux -0.31

In this Section, the analysis is extended to the investigation of these same feed-

backs and interactions not only near the equilibrium point, but also at locations in

state variable phase-space representing anomalies in climatic conditions. Examples

of such anomalies are hydrologic droughts and wet periods. How effective are these

same feedbacks and interactions when the general conditions are characterized by a

hydrologic dry anomaly? Or wet anomalies?

Because the focus here is on the land surface, we shall continue to define the

anomaly states in terms of hydrologic dry and pluvial periods. As in Chapter 4, a

hydrologic drought condition (Dry Anomaly) is defined as when the soil moisture

state (s) is at or below the fifth percentile on its probability distribution. The Moist

Anomaly is defined as when the soil moisture is at or above the ninety-fifth percentile.

The probability distribution is defined by the integration of equation (5.1). There is

significant covariance between the model states that come about due to the routing

of external white-noise forcing through the physical linkages in the balance model

(Chapter 3). Thus the conditions of the three remaining state variables must be

weighted according to the joint probability distribution for the system when consid-

ering any measure (such as Aij and Aij) evaluated at the Dry or Moist soil moisture

anomaly states.
In this Section, the normalized tendencies to restore or reinforce anomalies in soil

moisture and temperature are evaluated for both Dry and Moist anomalies. For the

sake of limiting the length of presentation, only the overall contributions from ijs
and Ajs (and not the component-by-component contributions as in Section 5.5) are
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Table 5.6: Terms in G1 (Soil Moisture Drift), Control Solution

Dry Anomaly Moist Anomaly

j Variable E[j] AljE[3,] AE[] AlE[6j]
I ] [mm day-1] [ ] [mm day-l]

1 s -1.15 0.74 1.05 -0.67

2 qm 1.21 0.12 -0.96 -0.10

3 Tg 1.09 -0.58 -1.02 0.54

4 Om 1.25 0.00 -1.11 0.00

5 A 0.34 -0.07 -0.37 0.08

Linearized G1 0.21 -0.15

E[Nonlinear G] 0.19 -0.16

presented.

The approximate G1, G3, gl91, and g9 functions according to equations (5.5) and

(5.9) are tabulated in Tables 5.6 through 5.9, respectively. Table 5.6, which presents

the analysis of the soil moisture drift function, G1, will be discussed in detail; the

format of the other tables is identical. The expected value of each disequilibrium

6j = E[xj - x] at an anomalous state is computed from the stationary conditional
probability density functions and non-dimensionalized by the respective stationary

standard deviation (these are often termed Z-scores in statistical analysis). The

product AijE[Jj] is given for each of the four state disequilibria and A. As a product

of terms, a large entry can result from either a large Aj or a large 6j, or both.

The terms are summed to give the result in the line "Linearized G1." To judge

the adequacy of the truncated Taylor series approximation, the actual conditional

expectation of G1 given the anomalies, listed as "E[Nonlinear G1]," gives the value

computed from the nonlinear stochastic solution.

The Dry anomaly represents a soil moisture disequilibrium of -1.15a, (Table 5.6).

High soil temperature is associated with dry soil, thus the expected Tg disequilibrium

is 1.09 OT. The restoring term multiplying 6s is large and negative; the product of a

negative restoring All and negative s gives a positive (moistening) contribution to

the deterministic evolution of s (G1). Thus the soil water balance which constitutes

AllE[61] is a self-restorive system, with negative feedbacks built into it. However, the

coupling term A 3s multiplying E[STg] is also large and negative; when multiplying

the positive (warm) 6Tg, it gives a negative (drying) contribution to G. The coupled
energy balance for the land surface contributes to the terms in A13E[63 ], and it serves
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Table 5.7: Terms in G3 (Soil Temperature Drift), Control Solution

Dry Anomaly Moist Anomaly

j Variable E[6j] A3jE[6j] E[6j] A3jE[6j]

[ ] [o day-'] [ [o day-l]
1 s -1.15 1.02 1.05 -0.93
2 qm 1.21 -0.09 -0.96 0.07

3 Tg 1.09 -4.15 -1.02 3.90

4 Om 1.25 1.12 -1.11 -1.00

5 A 0.34 -0.75 -0.37 0.81

Linearized G3 -2.85 2.87

E[Nonlinear G3] -2.64 2.32

as a positive feedback on soil moisture anomalies. Table 5.6 shows that in this case
- the evolution of soil moisture anomalies - the soil water balance cnstitutes

a negative feedback, but the coupled energy balance provides for an almost equal

strength positive feedback, which serves to enhance and intensify the dry anomaly. At

the positive soil moisture anomaly state (Moist anomaly in Table 5.6), the roles of the
water and energy balance in constituting feedbacks also work in opposite directions.

For the Dry Anomaly in Table 5.6, a moist (positive) specific humidity anomaly

(62) multiplies a positive A12, a moistening effect due to the decreased vapor gradi-
ent in potential evaporation. A positive temperature gradient disequilibrium, E[65],

multiplying a negative A15 contributes further drying, due to the enhanced turbulent

fluxes. As a result of these competing influences - mostly that of soil temperature

- the soil moisture's self-restoring tendency 0.74 mm day-' is reduced to less than

one-third of its strength. The exact reverse occurs for the moist anomaly, where a

cool disequilibrium in Tg reduces the evaporative demand, contributing to moistening

and opposing the restoring term's drying effect.

For the soil temperature drift (G3 ) from anomalously dry and moist states (Table

5.7), we see the contribution of a strong Tg restoring term, A33 being counteracted
by both the s and 0 m contributions. In the warm-dry case, reduced soil moisture

inhibits cooling by suppressing evaporation. It thus contributes a positive feedback

on the soil temperature anomaly evolution. Increased mixed-layer air temperature

(0m disequilibrium of 1.25ae) in the dry-soil case also suppresses cooling by reducing
the sensible heat flux in addition to warming the soil by longwave radiation.

The diffusion functions (gi) multiply the random noise in (5.1) and thus allow the
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Table 5.8: Terms in gl (Soil Moisture Diffusion), Control Solution

Dry Anomaly Moist Anomaly

j Variable E[6j] AiE[6j] E[6j] AiE[6j]

[ ] [mm day - 1] [ ] [mm day-']

1 s -1.15 0.20 1.05 -0.18

2 qm 1.21 0.03 -0.96 -0.02

3 Tg 1.09 -0.12 -1.02 0.11

4 Om 1.25 0.00 -1.11 0.00

5 A 0.34 0.00 -0.37 0.00

g1(x*) 0.52 0.52

Linearized g 0.63 0.43

E[Nonlinear g] 0.61 0.41

system state at te time of the perturbation to control the effect of the perturbation
on each state. The perturbations are zero-mean and can be either positive or negative

with equal probability. The fact that gl is positive means that a positive perturbation

(above-average wind-speed) contributes a moistening effect to whatever deterministic

drift is happening at the time, as set by the average wind speed and system state,

and a negative perturbation (below-average wind-speed) contributes a drying effect

to the instantaneous deterministic drift.

The weighting terms, the non-dimensional disequilibria, and their products cor-

responding to the soil moisture diffusion function (gl) are tabulated and summed in

Table 5.8. The nonzero additional term gl(x*) must be included in estimating gl(x).

The soil moisture state is, on average, more susceptible to random perturbations

at the Dry anomaly than at the Moist anomaly. As in the soil moisture drift, the

moisture anomaly 6s and the soil temperature anomaly 6Tg are in competition to

determine g9, in both the dry and wet cases; they constitute opposite-sign feedbacks.

The soil temperature state is also more sensitive to diffusion when the system

is anomalously dry than when it is anomalously moist (Table 5.9). The sign of g3

is negative, indicating that an above-average wind-speed adds a cooling influence

in addition to the deterministic drift at the time, and a below-average wind-speed

a warming influence. Once again, the influences of the temperature and moisture

disequilibria are of opposite sign. However, in the case of g3 (ground temperature

response to random fluctuations), the magnitude of the soil-moisture contribution

A316s is about 25 percent of the soil temperature contribution A33 6T5 , whereas for gl
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(Soil Temperature Diffusion), Control Solution

Dry Anomaly Moist Anomaly

j Variable E[6j] A3jE[6j] E[6j] A3jE[j]

[ ] [o day-l] [ [o day-l]

1 s -1.15 0.14 1.05 -0.13

2 qm 1.21 0.12 -0.96 -0.10

3 Tg 1.09 -0.58 -1.02 0.54

4 Om 1.25 0 -1.11 0

5 A 0.34 -0.10 -0.37 0.11

93(X*) -3.81 -3.81
Linearized g3 -4.23 -3.38

E[Nonlinear g3] -4.33 -3.48

(soil moisture response to random fluctuations, Table 5.8) the magnitude of the soil

temperature contribution is almost two-thirds that of the soil moisture contribution.

This mearns that the temperature state does more to moderate the system's moisture
susceptibility to noise than vice versa.

The drift and diffusion functions are linearized around x* in this analysis; thus the

weighting terms Ai and Aij take the same sign and value for soil moisture anomalies

of either sign. Therefore, any asymmetries between the Dry and Moist anomalies, in

terms of how the states contribute to negative or positive feedback, must be due to

the magnitude of the states' disequilibrium.

First, examining the various contributions to soil moisture drift (G1, Table 5.6),

because the Dry anomaly is slightly more disequilibrated than the moist anomaly, the

magnitude of the self-restoring negative feedback is larger on the dry side. However,

the ground temperature is also more disequilibrated for the Dry anomaly than for the

Moist one, contributing a stronger positive feedback on the Dry side. In this particu-

lar case, the stochastic Control solution, the net result is a slightly stronger restoring

force for the Dry anomaly. For soil temperature drift (G3, Table 5.7), the various

products AijE[6j] sum to give nearly equal contributions to G3 at the two anomalies,

although considered separately, each variable (except A) contributes a stronger posi-

tive or negative feedback on the Dry side, due to the variables' greater disequilibrium

when the soil moisture is anomalously dry. As a result, for the Control solution, the

deterministic (no-noise) trajectories from these anomalies to x* are nearly symmetric

(Figure 4-9)
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In this particular application, the deterministic positive and negative feedback
effects of the system states upon each other balance in such a way that there is not a
strong asymmetry between the system's (s, Tg) recovery behavior from dry-warm and
moist-cool anomalies. However, from Tables 5.6 and 5.7, one can see how asymmetric

behavior might arise, depending upon the correlation structure of the states.

All else being equal, a much larger temperature disequilibrium (Tg) corresponding

to the Dry anomaly would strengthen the positive feedback, A13E[63], perhaps even

causing further drying before recovery to normal. This behavior was observed in

the Two-regime-3 case in Chapter 4. In that solution, due to the stronger negative
correlation between soil moisture and temperature in the soil-controlled evaporation
regime, temperature is greatly more disequilibrated at the Dry anomaly than at the
Moist anomaly. As a result, when deterministically recovering from the warm-dry
anomaly, the system cools and dries first before recovering to equilibrium soil moisture

(Figure 4-10).

The differences in susceptibility to noise between the Dry and Moist anomalies
in the Control solution (Tables 5.8 and 5.9) apparently do not contribute differences
in the time to recover to normal soil moisture, as explored in Chapter 4. This is
due to the fact that the noise is modeled as white; at any point in time and state-
space, the noise can take either sign with equal probability. Thus, for a given point
in state-space, a cooling-moistening perturbation (positive noise) is as likely as a
warming-drying one (negative noise). Any persistence in the noise could introduce
noticeably different behavior; for example, if a warming-drying perturbation is more
likely to be followed by continued perturbations of the same sign, the consequences
would be greater in the warm-dry sector, where the system is more susceptible to
noise. In addition, the stronger the (s, Tg) correlation, the stronger the competition
between these two states to determine the sign and magnitude of the response to
random fluctuations.

5.7 Conclusions and Discussion

A basic linearization technique has been combined with a model of two-way land-
atmosphere interaction incorporating coupled water and energy balance, to analyze
how and why feedback mechanisms arise in the coupled moisture and temperature
states at the land surface and in the lower atmosphere. The findings include the
observation that anomalous moisture and temperature states affect each other so as
to create mutual positive feedbacks. The contribution of this analysis is to quantify
the pathways of those feedbacks. The stochastic solution gives a physically consistent
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probability density function, incorporating realistic covariances among the states by

means of drift and diffusion functions that describe, respectively, the system's simul-

taneous state-dependent tendency to equilibrate and state-dependent susceptibility to
random perturbations. The resulting correlations are then taken into account when

anomalous moisture states are selected for truncated Taylor Series analysis.

Decomposition of the drift and diffusion functions into the dependence of each of

their component physical processes upon each of the model states shows that:

* Soil-moisture control of infiltration and of evaporation efficiency are self-restoring

forces of comparable strength for the soil moisture state.

* The temperature dependence of surface saturation specific humidity is a major
factor in enhancing, or delaying recovery from, soil moisture anomalies.

* The individually strong effects of atmospheric humidity on ground temperature

take opposite signs and cancel one another.

, Soil-moisture control of evaporatin efficiency is he major mechanism by which

the moisture state enhances, or slows recovery from, temperature anomalies.

* The temperature dependence of surface saturation specific humidity is a ma-
jor self-restoring factor for the temperature state and it exceeds the thermal
radiation factor.

* The buoyancy velocity is a significant recovery factor for temperature anomalies

because it affects both the soil temperature and its coupling to air temperature.
Soil temperature is positively correlated with temperature gradient anomalies;

when the soil is anomalously warm, a strong gradient that enhances cooling also

tends to be present.

* Both soil temperature and soil moisture tend to be more susceptible to ran-

dom perturbations when the soil is dry than when it is moist. This is due, as

in the deterministic drift, largely to temperature-dependent saturation specific

humidity and to soil-moisture control of evaporation efficiency and infiltration.

The fundamental result of this model study is that the soil moisture and soil

temperature states are negatively correlated (cool-moist or warm-dry), and that these

states communicate their covariability partially through local-scale interaction with
the near-surface atmosphere. Because of the negative correlation between the states,
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the physical mechanisms that serve as restoring forces for each state individually (soil-

moisture control of evaporation and temperature-dependence of saturation specific

humidity) act as anomaly-enhancing positive feedback mechanisms for the other state.
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Chapter 6

Discussion

6.1 Major Findings

The results of each phase of this work (model development, stochastic extension,

recovery from anomalies, and analysis of feedbacks) are summarized in Chapters 2,

3, 4, ad 5, respectively. The following is a summary of the principal results.

* The 4-state stochastic model results in a physically consistent covariability

response for the moisture and energy states in the land-atmosphere system due

to the state-dependent turbulent and radiative fluxes.

* Two-way land-atmosphere coupling is critical in establishing the memory and

covariability of the soil moisture and temperature states.

* Water-energy coupling at the land surface results in the presence of positive

soil moisture feedbacks (anomaly-enhancing mechanisms) that are not evident

if the water balance is considered alone. These positive feedbacks exist due to

the role of evaporation in balancing both the hydrologic and the energy bal-

ance, and because evaporation is a product, E = Ep,3, where p increases with

s, and Ep with Tg. Because of the negative correlation between these two states,

the physical mechanisms that serve as restoring forces for each state individu-

ally (soil-moisture control of evaporation and temperature-dependence of sur-

face saturation specific humidity) act as anomaly-enhancing positive feedback

mechanisms for the other state.

* Longer recovery times to normal soil moisture are more probable from a dry

anomaly than from a moist anomaly when evaporation efficiency is formulated
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such that evaporation switches between soil and atmosphere control. This asym-

metry arises from a stronger correlation between soil moisture and soil temper-

ature in the soil-controlled regime.

* Quantitative decomposition of the drift and diffusion functions into the depen-

dence of each of their component physical processes upon each of the model

states shows that:

- the temperature dependence of surface saturation specific humidity is a ma-

jor factor in enhancing, or delaying recovery from, soil moisture anomalies;

- reciprocally, soil-moisture control of evaporation efficiency is the major

mechanism by which the moisture state enhances, or slows recovery from,

temperature anomalies;

- the temperature dependence of saturation specific humidity is a major
self-restoring factor for the temperature state, and it exceeds the thermal

radiation factor; and

- the buoyancy velocity (representing free convection) is a significant re-

covery factor for temperature anomalies because it affects both the soil

temperature and its coupling to air temperature.

* Both soil temperature and soil moisture tend to be more susceptible to random

perturbations from the mean wind speed when the soil is dry than when it is

moist.

* Disequilibria and anomalies first quickly restore to an equilibrium land-atmo-

sphere temperature gradient through sensible heat flux, then approach the over-

all equilibrium state through the interaction of the remaining coupling mecha-

nisms.

6.2 Future Research Directions

This thesis demonstrates the versatility and utility of the simplified model for analyz-

ing and understanding land-atmosphere interaction. The current form of the model

contains a number of assumptions that could be relaxed to make the results even

more physically realistic. Among these are:
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* Land-surface evaporation control. Many of the findings in Chapters 3, 4

and 5 result from the formulation of actual evaporation as a product of po-

tential evaporation Ep(Tg, qm, Om) and evaporation efficiency (s). Chapter 4

shows that the functional form of (s) strongly controls the stationary proba-

bility distribution of the states and results in noticeable asymmetries between

the persistence behavior of dry and moist anomalies. In contrast to "" formu-

lations of actual evaporation, "a"-type formulations calculate an actual vapor

pressure at the soil surface, usually relating surface specific humidity to soil

moisture; with an explicit moisture gradient in the surface sublayer, the concept

of potential evaporation does not need to be invoked. (Mahfouf and Noilhan,

1991, discuss the different approaches.) Obviously, the model solution would

be different with an "a" formulation of evaporation rather than the present

"/i" formulation. However, the use of a "' formulation shows promise for

bulk characterization of large regions, possibly avoiding the problem of spatial

heterogeneity posed by the "a" methods.

* Time-invariant boundary-layer height. In accordance with the discussion
in Section 2.2.5, the air-slab heat and moisture capacities and longwave radi-

ation fluxes would become much more variable. In response to such a change,

reduction in soil-air thermal coupling might be observed: as the mixed-layer

grows in response to surface sensible heat flux, it increases its heat capacity and

may experience less change in its potential temperature in response to anoma-

lous surface heating. On the other hand, boundary-layer growth implies the

entrainment of potentially warmer air from the overlying atmosphere, an effect

which may counteract that of the changing heat store; since the entrainment of

warm air from above is already parameterized in the current model, this effect

of variable h would probably be small.

* Incessant precipitation. The range of variation in soil moisture is small.

This is believed to result from the fact that precipitation is continuous in the

model, and therefore that dry-down periods - and true drought conditions -
are not present in the solutions.

* Single soil layer. A second (deep) soil moisture reservoir would add more

memory to the soil water balance. If a thin surface layer were included, functions

(such as albedo) that depend on surface - rather than soil-layer - moisture

conditions would be more realistically evaluated.
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* Gaussian noise. Due to the assumption that the random forcing has a gaussian
marginal distribution, the variance parameter a, may only be increased to the
level (with respect to the mean U) such that negative wind-speeds (a physical

impossibility) are probabilistically very infrequent. This constrains the ability

to investigate the effects of increased variance in the noise on the states' joint

and marginal distributions.

In fact, the constraint of gaussianity on the noise is the reason for incessant pre-

cipitation in this model. Theory exists for shot noise (i.e., Poisson processes) in

systems of stochastic equations similar to the Ito equation [equation (3.5)]; such

a formulation for precipitation could be used to make the model's hydrologic

forcing more realistic by allowing dry-down periods.

* White noise. Colored (temporally-correlated) noise is fairly easily incorpo-

rated into the model by adding an additional state equation for the physical

forcing terni (Palleschi and de Rosa 1992), in this case, wind speed. As dis-

cussed in Section 5.6, it is expected that such persistence in the forcing would

enhance differences between the system's recovery from warm and dry anoma-

lies.

* Univariate noise. The model construct allows any number of forcing noise

terms, that is a vector dwt in equation (3.5). Instead of introducing random

perturbations through the wind speed alone, as in this application, randomness

could be formulated as entering through the incoming specific humidity (qin) or

sensible heat advection (i,) or both. It would be possible, using three terms

for dwt, to force the system with gaussian moisture advection and sensible heat

advection having a specified covariance structure.

In the other direction, continued insight might be derived from further simplifica-

tions of the model to make it yet more tractable. Gardiner (1985) notes the difficulty

of analytically solving the multivariate Fokker-Planck equation [equations (4.1) and

(4.6)] for systems that do not satisfy detailed balance (essentially a reversibility of

probability flow). This 4-state model does not satisfy that condition; indeed, it may

be impossible to represent land-atmosphere interaction in such a way. Nonetheless,

an analytic solution to a simplified version of the model might be possible; because of

the critical role of two-way land-atmosphere interaction in communicating variability

between soil moisture and soil temperature, at least three states are necessary.
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The results in Chapter 4 suggest an intriguing application of this model to large-

scale land-surface observations. The bivariate probability histograms of s and Tg

in the model solutions [Control and Two-Regime 0] tend to follow the shapes of

their respective , functions (Figures 4-7 and 4-8). To the extent that this model is

representative of water and energy fluxes in land-atmosphere interaction, this result

indicates that it may be possible to estimate evaporation efficiency functions for large

land regions on the basis of joint probability histograms of remotely-sensed large-scale

soil moisture and temperature. As time-series of such large-footprint observations are

developed, they may be used to validate the temporal correlation structure among the

soil moisture, soil temperature, air humidity, and air temperature for land regions.

6.3 Discussion

The further development and extensions of this and similar simple models, in conjunc-

tion with observational studies and numerical atmospheric modeling, form a hierarchy

of tools at various levels of detail. Such multi-level analysis of the land-atmosphere

system is needed, because the complex interconnectedness of processes and their ac-

tion at a multitude of scales require diverse perspectives and vantage points.

The analyses derived based on such class of simplified analytic models may be used

to focus on specific processes that are established to be relevant and influential. The

gain in understanding may then be used to design guided experiments for numerical

atmospheric models (mesoscale or global primitive equation models). These numerical

models contain the major large-scale feedbacks in more detail and they are spatially-

distributed.

An approach in the reverse direction is also recommended. Numerical (atmo-

spheric) models may be used to identify key interactions that are considered to essen-

tially capture the role of land processes on climate variability. The analytical model

and its stochastic extension may then be used to explore the long-term statistical

behavior of the system. Whereas numerical atmospheric models are computationally

burdensome and limited by sampling shortcomings, the analytic-stochastic approach

yields robust statistical and probabilistic measures of variability.

The final and most important use of both these modeling approaches is to guide

field observations of the processes. Sampling strategies may be optimized once the

character and space-time scales of feedback interactions and their constituitive com-

ponents are identified. In turn, observations are used to build and verify modeling

components and process representations. Limited sources of observations on land-
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atmosphere interaction currently exist; integrated and simultaneous measurements of
heat and moisture content of the soil and atmosphere, and surface fluxes, are avail-

able for short periods over small areas (e.g. intensive field campaigns associated with
the FIFE, HAPEX, and other hydrologic and micrometeorologic experiments). These
field observations may be used to verify the model's process representations such as
land-surface control of evaporation, inversion-base heat and moisture entrainment,

and advective fluxes. However, the time scale of the stochastic model is not compat-
ible with the relatively short duration of these field experiments; months, or even a
few years, of observations are not sufficient to characterize the statistics of moisture
and temperature states. An integrated approach using observed data and a hierarchy

of modelling approaches is needed.
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Appendix A

List of Symbols

Definition

empirical coefficient in longwave emissivity
formulation

empirical coefficient in expression for sensible heat
entrainment at slab top

scaled amount of (mainly water vapor) mass in air
column between ph and Ps

surface Bowen ratio H/AE

partitioning parameter - fraction of incoming wa-
ter vapor that moistens the air slab; the remainder
precipitates

empirical constants in RS

empirical constants in turbulent transfer coefficient

transfer coefficient for surface turbulent fluxes

dry-air specific heat at constant pressure

soil layer bulk heat capacity

exponent in evaporation efficiency

ratio of mean to instantaneous earth-sun distance

differential of the Wiener process (white noise)

evaporation from the soil into the air slab

evaporative fraction

potential evaporation

Units

[Cm-1/ 7]

[]

[cm]

[]I

[]

[]
[]
[m -1]

[J kg-' deg-l]

[J m-3 deg-1]

[]
[]

[kg s- 1 m- 2]

[]
[kg s- 1 m- 2]
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A

Atop

a

Bo

b

B 1, B2

C1, C2

CHE

Cpa

Csoil

dm/d

dwt

E

EF
Ep



stationary probability density function

deterministic drift function

diffusion function

heat flux into soil layer

acceleration of gravity

turbulent flux of sensible heat from soil to air slab

half-day hour angle

lateral advection of sensible heat into the region

lateral advection of sensible heat out of the region

turbulent entrainment of sensible heat at air-slab
top

height of mixed-layer

empirical longwave correction for cloudiness

length scale of region

mixed-layer air mass per unit width

empirical exponent in longwave emissivity
formulation

fraction of sky covered by cloud

ratio of actual to total possible hours of sunshine

soil porosity

precipitation

atmospheric pressure

atmospheric pressure at air slab top

atmospheric pressure at surface (defined as 1000
mb)

reference pressure in Om

water vapor laterally advected into the region

water vapor laterally advected out of the region

saturation specific humidity

effective specific humidity of incoming air

model mixed-layer specific humidity

[]

[W m-2]

[m s- 2 ]

[W m - 2]

[rad]

[W m-2]

[W m-2]

[W m- 2]

[m]

[]
[m]

[kg m']

[]

[]
[]
[]
[mm day-']

[mb]

[mb]

[mb]

[mb]

[mm day-']

[mm day-l]

[(g H20) (kg air)- 1]

[(g H20) (kg air)-']

[(g H20) (kg air)- 1]
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f'

G

g

G

9

H

Ho

in

Hout

Htop

h

K

L

M

m

Nc

Ns

n

P
p

Ph

Ps

Pref

Qin

Qout

q*

qin

qm



R surface and subsurface runoff

Rd gas constant for dry air

RHsurf relative humidity of near-surface air

RLad downwelling thermal (longwave) radiation flux
density at top of mixed layer

RLg, upwelling thermal (longwave) radiation flux den-
sity from the soil surface

RLsd downwelling thermal (longwave) radiation flux
density from the mixed layer

RLsdc clear-sky downwelling thermal (longwave) radia-
tion flux density from the mixed layer

RLsu upwelling thermal (longwave) radiation flux den-
sity from the mixed layer

RLsuc clear-sky upwelling thermal (longwave) radiation
flux density from the mixed layer

RS solar (shortwave) radiation flux density at soil
surface

RSe solar (shortwave) radiation flux density at top of
atmosphere

r exponent in runoff parameterization

s model relative soil saturation (soil moisture)

sos5, S50, S95stationary 5th, 50 th (median) and 95th percentiles
of soil moisture

T temperature

Tg model soil layer temperature

Th temperature at height h (top of mixed layer)

TxO-+ first-passage time from x over state-space bound-
ary B

Uz mixed layer wind speed

U mean mixed-layer wind speed

vmin, Vorg volume fractions of mineral and organic matter in
the soil

WiB buoyancy velocity scale

X, Correction for cloud in longwave radiation

[mm day-']

[J kg-l deg- ' ]

[]
1W m -2]

[W m- 2]

[W m- 2]

[W m -2]

[W m -2]

[W m- 2]

[W m-2]

[W m- 2]

[]
[]
[]

[deg]

[deg]

deg

[time]

[m S-]

[m s-1]

[1

[m s - 1]

[]
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model climatic equilibrium solution

(x) model equlibrium solution with diurnal solar
forcing

x* model equilibrium solution with daily-averaged so-
lar forcing

Y. correction for cloud in shortwave radiation

Zh hydrologically active soil depth

Zt thermally active soil depth

z height variable

a soil-surface albedo

P evaporation efficiency

A surface sublayer temperature gradient Tg - Om

AO jump in potential temperature at top of mixed
layer

AOv difference in virtual potential temperature between
near-surface and mixed-layer

5 solar inclination angle

Ax non-dimensional disequilibrium in variable x

et, et effective emissivities of the mixed layer for up-
welling and downwelling longwave radiation

Ceffective effective emissivity of the atmosphere above the
mixed layer

ecol bulk longwave emissivity/absorptivity of the
mixed layer

e coefficient in runoff parameterization

o potential temperature

Om model air-slab potential temperature

SO solar zenith angle

Ov virtual potential temperature

IWh turbulent sensible heat flux at top of mixed layer
(correlation between potential temperature and
vertical air motion)
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[]
[m]

[m]

[ml

[]
[]
[deg C]

[deg]

[deg]

[rad]

[]

[]

[]

[]
[deg]

[deg]

[rad]

[deg]

[deg m s- ' ]



linear coefficient for effect of state variable j on
variable i in drift

linear coefficient for effect of state variable j on
variable i in diffusion

latent heat of vaporization of water

latitude

air density

density of liquid water

Stefan-Boltzmann constant

stationary standard deviation of variable x

standard deviation of mixed-layer wind speed

runoff ratio (runoff/precipitation)

[J kg-1]

[rad]

[kg m - 3 ]

[kg m- 3]

[W m - 2 deg-4 ]

[m s]

[]
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Appendix B

Longwave Radiation

B.1 Contribution of the Mixed Layer

We apply a broad-band, plane-parallel slab emissivity formulation to estimate the

clear-sky longwave radiation from the mixed layer, following Brutsaert (1975 ), as

adjusted to incorporate our assumption of constant potential temperature and specific

humidity in the mixed layer. For a mixed layer extending to height h, we wish tu find

RLu and RLd (see Fig. 2-1). Consider first the upward flux,

ra(h) cc(1.66a, T)
RLsu = rB(T) da (B.1)

where B(T) = aT 4 /7r, and c¢ is the column emissivity; in (B.1), a is the scaled amount

of (mainly water vapor) mass in the air column measured downward from h. The

water vapor mass is scaled for the pressure effect following

da = p,, (P ) dz (B.2)

(Brutsaert 1975), where P, is the water vapor density, and p and Ps are the pressures

at z and at the surface, respectively. Assuming a hydrostatic atmosphere and trans-
forming to pressure as the vertical coordinate, dp = -pg dz, where p is the density of

air at level z, and g is the acceleration of gravity, measuring a downward from z = h

(i.e., from p = ph) to p(z), and invoking the model assumption that qm = P,/P is

constant in the slab,

2qp rIP _ p ] (B.3)
a(p,P) = § g (B.3)

3 A A ps
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The bracketed term lies in the range [0,1] since Ph < p < Ps. From Brutsaert (1975),
the emissivity is

e,(a) = c¢(1.66a) = Aam . (B.4)

Brutsaert suggests A = 0.75 and m = 1/7, for a in cm. Substituting (B.4) into (B.3),

aI=N1=mA (2 qmpsi-1= Amam= mA - g
a 3 g

[(p) 3/2 In-I (B.5)

Equation (B.1) is reassembled with the terms appropriate to the constant-Om mixed

layer:

RLu =64 mA Ps)m f R 1 3 I2 3/21 r-i 1/2"if P _ Ph 3_P
i PS Ps 32 p. )

kP)
Ap

The integral in (B.6) may be simplified using the change of variable, y =

Thus,

RLU = O9O4 mA 2 q

dp

Pa

(B.6)

(Ps )

(B.7)

Similarly, for the downward flux at z = 0, a is measured upward from z = 0 (i.e.,

from p = p,) to p(z),
2 QmPs

a(p,,p)= 2 
3 g

[1- (P )3/2]

A,'

(B.8)

Again, the bracketed term lies in the range [0,11 because p < p. For the downward

flux, (B.1) becomes

RLsd = o'mmA ( grf y3 pl (1-y)m-ldy.

Equations (B.7) and (B.9) have the form

RLsu

RLsd

= OR4met

= ,4Ome

where t and d are effective upward and downward clear-sky emissivities for the

mixed-layer air slab, given by

= qmm mA 3Psg) Y
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(B.10)

(B.11)

Yl~'P [Y - Yh] dy

(1 - y) n'd
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Figure B-l: The term that multiplies qm in the upward and downward longwave bulk
emissivities of the air slab.

and et = qm mA ,3g / 9P& (y - yhlmJdy (B.12)

The integrals in (B.12) are smooth functions of one variable, Yh, 0 < Yh < 1, which

are evaluated once by numerical integration for each application (Figure B-l).

B.2 Contribution of the Overlying Atmosphere

The downwelling longwave flux density from the overlying atmosphere at height h is

given by

RLd = L rB(T) .66 T) da , (B.13)8a'
measuring a upward from z = h. Brutsaert (1975) solved (B.13) at z = 0; we apply

the same solution at z = h to obtain RLad in terms of the model states. We assume

the following profiles for water vapor density, temperature, and pressure above the

mixed layer:

Eoehp(z) = h exp [-kv(z - h)] (B.14)
RdTh

(B.15)T(z) = Th exp [ (Z - h)](B.
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P(z) = phex [-T(z- h)] (B.16)

where (y/To) - 1 is a scale height for temperature, (k,)-l for vapor density, and

(g/RdTo)-' for pressure, Th is the actual temperature at the top of the slab (Eq.
2.12), and To is a reference surface temperature. Integration of (B.13) using the

assumed profiles results in

RLd = aTmA (k RdTh B (k ) (B.17)

where kl = (4y/To+k 2) and k2 = (kW+g/2RdTo), and B( ) is the beta function [e.g.
Abramowitz and Stegun 1970]. With substitution of the values given in Brutsaert
(k, = 0.44 km - l, /To = 0.0226km-1, and g/2RdTo = 0.065km-1),

RLad = [1.24 h ) aTh4. (B.18)

With the slab model's matching conditions for the temperature, Th = Om(i/ps)R /Cp,

and for the vapor pressure, eh -- qmp/~to [mb], the resulting expression for the clear-

sky downwelling longwave flux density from the overlying atmosphere is

qmPh RC 
RLd, = 1.24os OI 0 Pm -() P1 , (B.19)

0.6220m(-/ps)/p oRd/P m (Ps ]

from which we define

fftive = 1.24 [0.622 Om(ph/ps)R/C . (B.20)

B.3 Column Emissivity of the Air Slab

Both RLad and RLg, are attenuated by absorption in the mixed layer. Integration

of (B.3) from Ph to p or (B.8) from Ps to Ph give the same result for the slab column

absorption path length, a,

a = qm [ - (p)3/2 . (B.21)

The column absorptivity is then computed using (B.4).
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Appendix C

Model Summary

C.1 Basic Model Equations

The model represents the area-averaged surface hydrothermodynamic balance for an

inner-continental region. The soil layer and the near-surface atmosphere are treated as

reservoirs with storage capacities for heat and water, with the transfers between them

regulated by four states: depth-averaged relative soil saturation (or soil moisture, s),

soil temperature (Tg), air specific humidity (qm), and air potential temperature (m).

The horizontal extent of the region is conceptually equivalent to the length scale

over which generally homogeneous heat and moisture conditions are present, or over

which advective and radiative effects can equilibrate. In mid-continental regions

without marked orography, such an area may cover up to 104 to 105 km2 .

The soil layer is assigned an active depth and a porosity. The atmospheric reser-

voir is treated as a developed, vertically-mixed turbulent boundary layer with height

h, on the order of 1 km. In this idealized mixed layer, specific humidity and potential

temperature, defined as 0 = T (pref/p)(Rd/CP) are invariant with height. (Here, T is the

thermodynamic temperature, p the pressure, Pref a reference pressure, and Rd and

Cpa the dry-air gas constant and specific heat under constant pressure.) Potential

temperature is, by definition, conserved under adiabatic pressure change; it is there-

fore the appropriate conserved temperature quantity in a well-mixed, unsaturated
layer. Specific humidity [g H20 per kg air] is also conserved under adiabatic mixing.

The model assumes a gradient in both humidity and potential temperature in the

surface sublayer. The mixed-layer height (h) is invariant in the model; the layer-top

entrainment of warm dry air (Htop and Qtop) is parameterized in lieu of time-varying

h. Precipitation is derived from the fluxes of moisture into the atmospheric control
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volume - lateral advection (Qin) and surface evaporation (E) - according to a par-

titioning parameter, b, such that P = (1- b)(Qin + E). This approach is conceptually
based on the Kuo (1965) moist convection scheme and its application in this model

is developed in Chapter 2.

The model's four states evolve in time according to the following system of coupled
ordinary differential equations:

S pnZh {(1- ) (1- b) MqinUz + [(1 - R) (1- b) - 1] Ep}

d m @,_^)x9 {b [MqinU, + PEp] - MqmUz}
dt Tg = cCiZt [RS(1 -a) + RLad (1 - col) + RLd - RL - H -AEp]

m ~ cp(pm- ph)/ [(RLad + RLgu) col- RLu - RLsd + (1 + Atop)H

+ MCpaOinU - MCpaOmUz]
(C.1)

In equation (C.1), Qin,out and Hin,out represent the large-scale advection of mois-
ture and sensible heat into and out of the region. The functional forms of the terms in

equation (C.1) are given in Table C.1, and the model variables are listed in Appendix

A.

C.2 System of Stochastic Differential Equations
The model is forced by solar radiation at the top of the atmosphere and by near-

surface wind-speed, which advects moisture from the neighboring regions and de-

termines the magnitude of the transfer coefficient for the surface turbulent fluxes.
Wind-speed is taken to be composed of a mean component plus (zero-mean, serially-

independent, normally-distributed) perturbations with variance a 2,

Uz = U + audwt E[dwt] = 0 and E [dwtdw] = 6(t - v) (C.2)

where E[.] is the expectation operator and 6(-) is the Dirac delta function. Here noise
dwt is the increment of a Wiener process. Because of the differential formulation of
this stochastic equation, its integration in time (using techniques reported in Pardoux

and Talay 1984) is independent of the numerical time step.

The functions that are affected by (C.2) are the regional moisture advection terms

Qi, and Qout as well as the turbulent heat fluxes AE and H. The moisture and heat
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Table C.1: Functional Forms of Terms in the Land-Atmosphere Model

(1) After Stull (1994) (2) After Brutsaert (1975)
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advection terms are given by:

Qin qin

Qout =(P - Ph)/g Qm (U dW,) (C.3)

Hin ' L 0in J

Hout Om

where p, and ph are the air pressure at the land surface and at the top of the mixed

layer (invariant in this model), L is the length scale of the region, and g is the

acceleration of gravity. The surface turbulent fluxes are given (after Stull 1994 ) as

H = [C1 (U + audwt) + C2WB] (Tg- Om) (C.4)

AE = ] [C1 (U + oudwt) + C2WB] (q*(Tg) - qm) (C.5)

where WB is a buoyancy velocity scale and C1,2 are empirical constants. The variables

in (C.2-C.5) are defined in Appendix A.

Ir this application, only vapor convergence (Qin and Qut) is allowed to maintain

a regional hydrologic cycle. Sensible heat convergence due to lateral temperature

gradients (Hin and Hout) is small, relative to the large radiative exchanges between

the soil, boundary-layer air and the atmospheric profile. This parameterized heat

advection is also not necessary - in contrast with the moisture convergence, which is

needed to maintain a hydrologic cycle - for the basic tests in these first applications

of the model.

After substitution of (C.3-C.5) in (C.1) together with this definition, the time

evolution of the system is described by a continuous stochastic differential equation

that may be compactly written as,

dxt = G(xt)dt + g(xt)dwt, (C.6)

where the time-varying state vector xt = [s qm Tg gm] has been defined.

In (C.6), the deterministic function G(xt) represents the drift in the state vari-

ables, due to the radiative and turbulent fluxes as well as the steady component of

moisture advection in incremental time dt. The four components of the drift function

are as follows:

nZ= h {(1 -) (1 -b)MqiU+
NnZh
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[(1 -) (1-b) -1] (CU + C2WB) pq* (,p[qp) - m]} (C.7)

G2 = (P Ph)/ {b [MqinU + (C1U + C2WB) [* (, p) - qm]]

-MqmU} (C.8)
1

G = Coz {RS(1 - )
+ RLad (1 - col) + RLd - RLg - Ca (C1U, + C2WB) (Tg - m)

-A (ClU + C2WB) p[q* (T,, P) - qm]} (C.9)

G4 = C(p -- )/ {(RLad + RLg) co - RL,. - RLd
Cpa(ps - Rh)/9

+ (1 + Atop)PpCa (C1 U, + C2WB) (Tg - Om)

+MCpaOinU- MCpaOmU} (C.10)

The fluctuating part of wind-speed affects the system in proportion to the de-
terministic function g(xt). Because the wind speed is a physical parameter of the

system, the influence of the random fluctuations on the system is modulated by the

state of the system at the time of the event [see (C.2-C.5) The functional dependence

of this diffusion term on the state (xt) indicates complexity in land-atmosphere in-

teraction and the presence of multiplicative stochastic forcing. The four components

of the diffusion function are as follows:

1
91 = Z {(1 - )(1-b)Mqin

pwnZh
+ [(1 - ) (1 -b) - 1]Clp[q* (Tg, ) - qm]} u (C.11)
1

92 = P - / {b[Mqin + Clp [q* (Tg,ps) - qm]] - Mqmau} u (C.12)

1
93 = {PCpaC1 (Tg - Om) - AIClp[q* (Tg, ps) - m]} au (C.13)CoilZt

1
4 = C,(p - Ph)/g {(1 + Atop)pCpaCi (Tg - Om) + MCpain - MCpaOm} au (C.14)

Although the system is forced by serially independent white-noise, the output

of the model is serially-dependent with some statistical memory, due to the storage

and interactions in the system. The random fluctuations in wind speed that drive

the system are routed and distributed among components of the system through the
state-dependent fluxes of energy and water mass. Any resulting temporal covariability

among the model states results from the physical linkages that are implicit in the

model, not from pre-assigning a correlation structure to the variables.

140



Bibliography

Abramowitz, M. and Stegun, I., editors (1970). Handbook of Mathematical Functions.
Dover. 1046 pp.

Angell, J. (1990). Variation in United States cloudiness and sunshine duration be-
tween 1950 and the drought year of 1988. Journal of Climate, 3:296-308.

Arakawa, A. and Chen, J.-M. (1986). Closure assumptions in the cumulus parame-
terization problem. In WMO/IUGG Numerical Weather Prediction Symposium,
Tokyo, pages 107-131.

Betts, A. K., Ball, J. H., Beljaars, A., Miller, M., and Viterbo, P. (1994). Coupling
between land-surface, boundary-layer paramneterizations and rainfall on local
and regional scales: Lessons from the wet summer of 1993. In Armerican Meteo-
rological Society Fifth Symposium on Global Change Studies, Jan. 23-28, 1994,
Nashville Tennessee, pages 174-181.

Binkowski, F. (1983). A simple model for the diurnal variation of the mixing depth
and transport flow. Boundary-Layer Meteorology, 27:217-236.

Bouchet, R. (1963). Evaporation relle et potentielle, signification climatique. In
General Assembly Berkeley, Intern. Assoc. Sci. Hydrol., Publ. No. 62, pages
134-142, Gentbrugge, Belgium.

Brubaker, K., Entekhabi, D., and Eagleson, P. (1993). Estimation of continental
precipitation recycling. Journal of Climate, 6:1077-1089.

Brubaker, K. L. and Entekhabi, D. (1994). An analytic approach to land-atmosphere
interaction: 1. Model construct and equilibrium results. Water Resources Re-
search. In press.

Brutsaert, W. (1975). On a derivable formula for long-wave radiation from clear skies.
Water Resources Research, 11:742-744.

Brutsaert, W. (1982). Evaporation into the Atmosphere. D. Reidel. 299 pp.

Brutsaert, W. and Stricker, H. (1979). An advection-aridity approach to estimate
actual regional evapotranspiration. Water Resources Research, 15:443-450.

141



Camillo, P., Gurney, R., and Schmugge, T. (1983). A soil and atmospheric boundary
layer model for evapotranspiration and soil moisture studies. Water Resources
Research, 19:371-380.

Chang, J.-T. and Wetzel, P. J. (1991). Effects of spatial variations of soil moisture
and vegetation on the evolution of a prestorm environment: A numerical case
study. Monthly Weather Review, 119:1368-1390.

Charney, J. (1975). Dynamics of deserts and droughts in the Sahel. Quarterly Journal
of the Royal Meteorological Society, 101:193-202.

Charney, J., Quirk, W. J., Chow, S.-H., and Kornfield, J. (1977). A comparative
study of the effects of albedo change on drought in semi-arid regions. Journal of
the Atmospheric Sciences, 34:1366-1385.

Culf, A. (1992). An application of simple models to Sahelian convective boundary-
layer growth. Boundary Layer Meteorology, 58:1-18.

deBruin, H. (1975). A model for the Priestley-Taylor parameter a. Journal of Climate
and Applied Meteorology, 22:572-578.

Delworth, T. and Manabe, S. (1988). The influence of potential evaporation on the
variabilities of simulated soil wetness and climate. Journal of Climate, 1:523-547.

Delworth, T. and Manabe, S. (1989). The influence of soil wetness on near-surface
atmospheric variability. Journal of Climate, 2:1447-1462.

Diaz, H. (1983). Drought in the United States: Some aspects of major dry and wet
periods in the contiguous United States, 1895-1981. Journal of Climate and
Applied Meteorology, 22:3-16.

Doran, J., Barnes, F., Coulter, R., Crawford, T., Baldocchi, D., Balick, L., Cook, D.,
Cooper, D., Dobosy, R., Dugas, W., Fritschen, L., Hart, R., Hipps, L., Hubbe, J.,
Gao, W., Hicks, R., Kirkham, R., Kunkel, K., Martin, T., Meyers, T., Porch, W.,
Shannon, J., Shaw, W., Swiatek, E., and Whiteman, C. (1992). The Boardman
regional flux experiment. Bulletin American Meteorological Society, 73:1785-
1795.

Driedonks, A. (1981). Sensitivity analysis of the equations for a convective mixed
layer. Boundary Layer Meteorology, 22:475-480.

Driedonks, A. (1982). Models and observations of the growth of the atmospheric
boundary layer. Boundary Layer Meteorology, 23:283-306.

Sen, Z. (1990). Critical drought analysis by second-order Markov chain. Journal of
Hydrology, 120:183-202.

Eagleson, P. (1978). Climate, soil and vegetation: 6. Dynamics of the annual water
balance. Water Resources Research, 14:749 - 764.

142



Eagleson, P. S. (1970). Dynamic Hydrology. McGraw-Hill. 462 pages.

Ek, M. and Cuenca, R. H. (1994). Variation in soil parameters: Implications for mod-
eling surface fluxes and atmospheric boundary-layer development. Boundary-
Layer Meteorology, 70:369-384.

Entekhabi, D. (1994). A simple model of the hydrologic cycle and climate: 1. Model
construct and sensitivity to the land surface boundary. Advances in Water Re-
sources, 17:79-91.

Entekhabi, D. and Brubaker, K. L. (1994). An analytic approach to land-atmosphere
interaction: 2. Stochastic extension. Water Resources Research. In press.

Entekhabi, D., Rodriguez-Iturbe, I., and Bras, R. (1992). Variability in large-scale
water balance with land surface-atmosphere interaction. Journal of Climate,
5:798-813.

Fast, J. D. and McCorcle, M. D. (1991). The effect of heterogeneous soil moisture on
a summer baroclinic circulation in the central united states. Monthly Weather
Review, 119:2140-2167.

Gardiner, C. (1985). Handbook of stochastic methods for physics, chemistry, and the
natural sciences. Springer-Verlag, 2 edition. 442 pp.

Hasselmann, K. (1976). Stochastic climate models: Part I: Theory. Tellus, 28:473-
485.

Huang, J. and van den Dool, H. M. (1993). Monthly precipitation-temperature re-
lations and temperature prediction over the United States. Journal of Climate,
6:1111-1132.

Idso, S., Jackson, R., Reginato, R., Kimball, B., and Nakayama, F. (1975). The
dependence of bare-soil albedo on soil water content. Journal of Applied Meteo-
rology, 14:109-113.

Kemp, P., Cornelius, J., and Reynolds, J. (1994). Temporal discontinuities in precip-
itation in the central North American prairie. International Journal of Clima-
tology, 14:539-557.

Kuo, H. (1965). On formation and intensification of tropical cyclones through latent
heat release by cumulus convection. Journal of the Atmospheric Sciences, 22:40-
63.

Lanicci, J. M., Carlson, T. N., and Warner, T. T. (1987). Sensitivity of the Great
Plains severe-storm environment to soil-moisture distribution. Monthly Weather
Review, 115:2660-2673.

Lettau, H. (1951). Theory of surface-temperature and heat-transfer oscillations near
a level ground surface. Transactions, AGU, 32:189-200.

143



Liou, K.-N. (1980). An Introduction to Atmospheric Radiation. Academic Press. 392

PP.

Mahfouf, J. and Noilhan, J. (1991). Comparative study of various formulations of
evaporation from bare soil using in situ data. Journal of Applied Meteorology,
30:1354-1365.

McNab, A. (1989). Climate and drought. EOS, 70:873ff.

McNab, A. L. and Karl, T. R. (1989). Climate and droughts. In National Water
Summary 1988-89 - Floods and Droughts: Hydrology, U.S. Geological Survey
Water-Supply Paper 2375, pages 89-98.

McNaughton, K. (1976). Evaporation and advection I: Evaporation from extensive
homogeneous surfaces. Quarterly Journal of the Royal Meteorological Society,
102:181-191.

Meehl, G. A. (1994). Influence of the land surface in the Asian summer monsoon:
external conditions versus internal feedbacks. Journal of Climate, 7:1033-1049.

Mil'shtein, G. (1974). Approximate integration of stochastic differential equations.
SIAM Theory of Probability and Its Applications, 19:557-562.

Morton, F. (1976). Clirmatologicai estimates of evapotranspiration. J. Hydraulic Div.,

Proc. ASCE, 102:275-291.

Moye, L., Kapadia, A., Cech, I., and Hardy, R. (1988). The theory of runs with
applications to drought prediction. Journal of Hydrology, 103:127-137.

Namias, J. (1983). Some causes of United States drought. Journal of Climate and
Applied Meteorology, 22:30-39.

Namias, J. (1988). The 1988 summer drought over the Great Plains: A classic example
of air-sea-land interaction. Transactions of the American Geophysical Union,
69:1067.

National Research Council (1991). Four-Dimensional Model Assimilation of Data: A

Strategy for the Earth Systems Sciences. National Academy Press. 78 pp.

Nicholson, S. (1988). Land surface atmosphere interaction: Physical processes and
surface changes and their impact. Progress in Physical Geography, 12:36-65.

Nicholson, S. E. (1986). African drought: An example of the influence of land-surface
properties on climate? In Proceedings, ISLSCP Conference, Rome, Italy, 2-6
December 1985, ESA SP-248, pages 405-410.

Nicholson, S. E. (1989). African drought: Characteristics, causal theories and global
teleconnections. In Berger, A., Dickinson, R., and Kidson, J., editors, Under-

standing Climate Change: International Union of Geodesy and Geophysics Re-
port., pages 79-100. American Geophysical Union, Washington, D.C.

144



Noilhan, J. and Planton, S. (1989). A simple parameterization of land surface pro-
cesses for meteorological models. Monthly Weather Review, 117:536-549.

Novak, M. (1991). Application of a mixed-layer model to bare soil surfaces. Boundary-
Layer Meteorology, 56:141-161.

Novak, M. and Black, T. (1985). Theoretical determination of the surface energy
balance and thermal regimes of bare soils. Boundary Layer Meteorology, 33:313-
333.

Oglesby, R. and Erickson, D. (1989). Soil moisture and the persistence of North
American drought. Journal of Climate, 2:1362-1380.

Otterman, J. (1990). A simple two-system-parameter model for surface-effected warm-
ing of the planetary boundary layer. Boundary Layer Meteorology, 51:213-227.

Palleschi, V. and de Rosa, M. (1992). Numerical solution of the Fokker-Planck
equation: II. Multidimensional case. Physics Letters A, 163:381-391.

Pardoux, E. and Talay, D. (1984). Discretization and simulation of stochastic differ-
ential equations. Acta Applicandae Mathematicae, 3:23-47.

Philip, J. (1987). A physical bound on the Bower ratio. Journal of Climate and
Applied Meteorology, 26:1043-1045.

Raddatz, R. (1993). Prairie agroclimate boundary-layer model: A simulation of the
atmosphere/crop-soil interface. Atmosphere-Ocean, 31:339-419.

Rind, D. (1982). The influence of ground moisture conditions in North America
on summer climate as modeled in the GISS GCM. Monthly Weather Review,
110:1487-1494.

Rodriguez-Iturbe, I., Entekhabi, D., and Bras, R. (1991a). Nonlinear dynamics of
soil moisture at climate scales: 2. Chaotic analysis. Water Resources Research,
27:1907-1915.

Rodriguez-Iturbe, I., Entekhabi, D., and Bras, R. (1991b). Nonlinear dynamics of
soil moisture at climate scales: 1. Stochastic analysis. Water Resources Research,
27:1899-1906.

Rowntree, P. and Bolton, J. (1983). Simulation of the atmospheric response to soil
moisture anomalies over Europe. Quarterly Journal of the Royal Meterological
Society, 109:501-526.

Sasamori, T. (1970). A numerical study of atmospheric and soil boundary layers.
Journal of the Atmospheric Sciences, 27:1122-1137.

Segal, M. and Arritt, R. (1992). Non-classical mesoscale circulations caused by surface
sensible heat flux gradients. Bulletin of the American Meteorological Society,
73:1593-1604.

145



Serafini, Y. (1990). The time scale of land surface hydrology in response to initial soil
moisture anomalies: a case study. Tellus, 42A:390-400.

Shukla, J. and Mintz, Y. (1982). Influence of land-surface evapotranspiration on the
earth's climate. Science, 215:1498-1500.

Siebert, J., Sievers, U., and Zdunkowski, W. (1992). A one-dimensional simulation of
the interaction between land surface processes and the atmosphere. Boundary-
Layer Meteorology, 59:1-34.

Smith, E., Hsu, A., Crosson, W., Field, R., Fritschen, L., Gurney, R., Kanemasu,
E., Kustas, W., Nie, D., Shuttleworth, W., Stewart, J., Verma, S., Weaver,
H., and Wesely, M. (1992). Area-averaged surface fluxes and their space-time
variability over the FIFE experimental domain. Journal of Geophysical Research
D, 97:18599 - 18622.

Steyn, D. (1990). An advective mixed-layer model for heat and moisture incorporating
an analytic expression for moisture entrainment. Boundary-Layer Meteorology,
53:21-31.

Stull, R. (1994). A convective transport theory for surface fluxes. Journal of the
Atmospheric Sciences, 51:3-22.

Sun, W.-Y. and Ogura, Y. (1983). Boundary-layer forcing as a possible trigger to a
squall-line formation. Journal of Climate and Applied Meteorology, 36:235-254.

Tennekes, H. (1973). A model for the dynamics of the inversion above a convective
boundary layer. Journal of the Atmospheric Sciences, 30:558-567.

Tennekes, H. and Driedonks, A. (1981). Basic entrainment equations for the atmo-
spheric boundary layer. Boundary-Layer Meteorology, 20:515-531.

Tennessee Valley Authority (1972). Heat and mass transfer between a water surface
and the atmosphere. Technical report, Tennessee Valley Authority, Norris Tenn.
(Laboratory report no. 14; Water resources research report no. 0-6803).

van den Dool, H. (1984). Long-lived air temperature anomalies in the midlatitudes
forced by the surface. Monthly Weather Review, 112:555-562.

Verma, S., Kim, J., and Clement, R. (1992). Momentum, water vapor, and carbon
dioxide exchange at a centrally located prairie site during FIFE. Journal of
Geophysical Research, D17:18,629 - 18,639.

Walker, J. and Rowntree, P. (1977). The effect of soil moisture on circulation and
rainfall in a tropical model. Quarterly Journal of the Royal Meterological Society,
103:29-46.

Wang, J.-F., Bras, R. L., and Entekhabi, D. (1994). Structure in fluctuations of large-
scale soil moisture climate due to external random forcing and internal feedbacks.
manuscript, 32 pages.

146



Yeh, T.-C., Wetherald, R., and Manabe, S. (1984). The effect of soil moisture on the
short-term climate and hydrology change - a numerical experiment. Monthly
Weather Review, 112:474-490.

Zdunkowski, W. G., Paegle, J., and Reilly, J. P. (1975). The effect of soil moisture
upon the atmospheric and soil temperature near the air-soil interface. Arch.
Met. Geoph. Biokl., Ser. A, 24:245-268.

Zhao, W. and Khalil, M. (1993). The relationship between precipitation and temper-
ature over the contiguous United States. Journal of Climate, pages 1232-1236.

147


