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Abstract
This thesis presents the first independent assessment of two physical mapping projects:
the CEPH-Genethon fingerprint mapping effort and the CEPH-Genethon ALU-PCR
mapping effort.

The fingerprint data are found to contain numerous errors. Three novel statistics
are developed to use these data to determine overlapping pairs of CEPH-Genethon
YACs. The best of these statistics is of comparable power to the more sophisticated
CEPH-Genethon LOS measures. One novel statistic has proved useful in resolving
ambiguous YAC-STS addresses, with concomitant savings in laboratory time and
resources.

The ALU-PCR data and their accompanying map construction strategy generate
a map with numerous errors. In particular, this strategy treats one-third of the ALU-
PCR probes as "wild-card" probes, valid on any chromosome. The CEPH-Genethon
strategy applies a single-copy probe mapping algorithm to multiple-copy probes. The
resulting map is riddled with spurious connections. An improved map construction
strategy is developed using insights from graph theory.
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Chapter 1

Introduction

Physical maps of the human genome order landmarks and DNA fragments along the

human chromosomes. Such maps are invaluable tools in the battle against human

genetic diseases. Different strategies exist for developing such maps. This thesis

examines two strategies: overlap detection via restriction enzyme fingerprints and

overlap detection via hybridization probes.

Chapter two reviews the literature on fingerprint mapping. Chapter three ad-

dresses the mathematics of fingerprint-based tests for determining pairwise clone

overlap. Chapter four applies these tests to real and simulated data and investigates

their implications for contig construction.

The last chapter examines probe mapping methods. Chapter five reviews the

CEPH-Genethon ALU-PCR mapping project. The chapter highlights problems in

the CEPH-Genethon map and proposes some partial remedies.

This thesis focuses on overlap detection, mapping algorithms, and data assess-

ment. Except where relevant to the mathematics, detailed explanations of underly-

ing biological mechanisms are generally avoided. Some biological terms are defined

briefly in Appendix A. Daggerst accompany their first occurrence in the text. The

reader may consult the excellent overview of the Human Genome Project [16] or a

recent, comprehensive masters thesis [19] for more details.
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Chapter 2

Fingerprint Mapping Literature

Review

This chapter reviews recent mapping projects, strategies, analysis methods, and al-

gorithms involving restriction enzymet fingerprint patterns.

Before 1986, restriction fragment mapping projects had covered small regions, 50-

100 kilobasest in size. The methods of these projects were not suitable for larger

regions.

In 1986, two mapping projects simultaneously attempted a radical new strategy:

fingerprinting librariest of randomly created clonest. This method allowed the map-

ping of much larger regions, and proved successful for the 15 megabaset genomet of

the yeast Saccharomyces and the 80 mb genome of the nematode worm Caenorhabdi-

tis elegans. In 1987, a similar approach mapped the 4.7 mb genome of the bacterium

Escherichia Coli. The first mathematical analysis of fingerprint mapping appeared in

1988. In 1990, the strategy was applied to Human Chromosomet 16, 90 mb in length.

The most ambitious use of the method occurred in 1992: a massive fingerprinting

effort on a random clone library in an attempt to map the entire Human Genome,

3300 mb in length.

Differing in their digestion methods, analysis techniques, and size, these projects

enjoyed varying levels of success. Following a section on Bayesian assessment of over-

lap data, subsequent sections of this chapter examine the salient features contributing
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to the success or failure of these projects.

2.1 Bayes Law and Overlap Detection

One may use Bayes Law to write the probability that two clones overlap conditional

on observing some data, D, and the prior probability of overlap, poL. To be precise,

overlap is a continuous characteristic. Defining a minimal overlap threshold converts

this continuous quantity into a binary result. The following basic results consider

overlap as a binary characteristic. Continuous overlap models are introduced in Sec-

tion 2.6.2.

P( OVERLAPID) = P(DI OVERLAPOL (2.1)
P(D)

This may be written in terms of a likelihood function, L(D).

L(D) = P(DI NO OVERLAP) (2.2
P(DI OVERLAP)

P( OVERLAPID) ( 1 + POL L(D)) (2.3)

Equation 2.1 or Equation 2.3 represent the correct way to compute a posterior

overlap probability from an observation and a prior.

2.2 The Yeast Genome

2.2.1 Experimental Method

In 1986, Olson et al. [43] created a library of 5000 A clones, each containing an insert

of yeast DNA. The average insert size was 15 kb, providing 5-fold coverage of the

15 mb yeast genome. Chimerismt, deletionst, or other cloning difficulties were not

reported, reflecting the relative stability of the A vector.

The 5000 clones were double-digestedt with two restriction enzymes, EcoRI and

HindIII. As no distinction was made between the two types of restriction sites, the
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generic term "RH" was used to refer to the double digest cleavage sites. EcoRI

and HindIII are both 6-cutters. Using the random-base DNA modelt, which crudely

models the four bases of DNA as equally probable, a given 6-cutter recognition sitet

occurs every 4-6 bases on average. The double digest cuts this distance by half. Thus,

one expects each 15 kb A clone to contain 7.3 RH sites, producing 8.3 RH fragments.

The observed mean was 8.36 fragments.

Gel photographs were projected onto the surface of a digitizing tablet and man-

ually traced. The raw images were converted to fragment sizes in basepairs by

polynomial interpolation against control bands of known size.

2.2.2 Pairwise Overlap Detection

Pairwise comparisons were made between pairs of fragment size lists. The two lists

corresponded to the fragments of two clones, or of one clone and a partially built

composite map. In the second case, the list corresponding to the partial map was

designated the 'reference list", and the list corresponding to the clone was designated

the "comparison list." If both lists were single clones, the assignment of "reference"

and "comparison" was arbitrary.

The yeast team did not adopt the Bayesian approach described in Section 2.1.

Instead, apparent overlap between the pairs of lists was determined using a combina-

tion of statistical heuristics. First, each list was scanned independently for intra-list

fragment identities. Adjacent bands falling within a thin "identity window" were

merged into one. For a list corresponding to a clone, this operation removed doubly

traced bands (data entry errors). For a list corresponding to a map, this operation

produced a consensus fragment size from its multiple measurements. Next, similar

bands between the two lists were paired if they fell within an "error window." Bands

were not multiply paired. The width of this error window was expanded linearly

with the size of the reference list fragment. This corresponds to a model of fragment

measurement error with a standard deviation proportional to fragment length. The

proportionality constant was not reported in [43].

The following notation is introduced to summarize the yeast project's clone overlap
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rule. This notation is maintained throughout the thesis. Let xa,, xa2,..., an denote

the sizes of the a fragments in the reference list and xb1, xb2 , ... , xbn denote the sizes

of the b fragments in the comparison list. Let mal, ma 2 ,..., man indicate paired

fragments in the reference list: mai = 1 if the reference fragment i matches some

fragment from the comparison list, and mai = 0 otherwise. Indicator variables for

the comparison list, mb,,mb 2 ,... , mb,, are defined analogously. Let s = Emai =

E mbi denote the number of matched fragments. Let dl, d2, . , ds denote the percent

discrepancies of matched fragments, with mean d = di/s.

The yeast project overlap rule had four components:

Enough matches: s > kl

Not too many mismatches: max(an - s, b - s) < k2

Mutual Overlap Statistic: s2/nanb > k3

Adjusted Fit: E(di - d)2/s < k4.

Olson et al. considered an overlap significant when it satisfied these conditions with

kl = 4 matches, k2 = co mismatches, k3 = 0.60, and k4 = 1%.

2.2.3 Contig Assembly

Connected components in the clone-clone overlap graph provided preliminary, un-

ordered contigst. 85% of the clones fell into 680 contigs. The average contig size

was 6.2 clones. Simulations indicated that an expected 10 false linkages would be

generated by this overlap procedure, implying that an expected 10 of the 680 contigs

linked unrelated sets of clones.

Topological constraints imposed by restriction fragment mapping were used to

refine the preliminary contigs. Restriction mapst of the contigs were constructed with

a greedy algorithm. An initial "seed clone" was selected. The best matching clone

in the remainder of the contig was aligned against it, matching RH sites. Additional

parsimonious clones were added to the alignment. Clones that did not fit the RH map
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were removed from the contig. According to the yeast mapping team, this method

removed all incorrect linkages in the preliminary contigs.

Restriction-mapped contigs were oriented and aligned using end clone fragments.

The overlap conditions were relaxed so multiple weak relations between end clones

could connect contigs.

2.2.4 Comment

The yeast project did not employ the correct Bayesian approach of Section 2.1 and

did not justify their ad-hoc overlap test. However, this test was only used to gener-

ate preliminary contigs. Creating restriction maps ordered and verified each contig,

improving map quality significantly.

According to the yeast mapping team. the final map covered 95% of the genome.

Figure B-1 displays a portion of the yeast map.

2.3 The Worm Genome

2.3.1 Experimental Method

In 1986, Coulson et al. [17] amalgamated a heterogeneous library of cosmid and A

clones from various Caenorhabditis elegans research labs. The library contained about

8000 clones. The average insert size was 34 kb. This provided 3-fold coverage of the

worm's 80 mb genome. (Additional cosmids, As, and eventually YACSt were later

added to the library, bring the total number of clones to over 17000 and the coverage

to 18.[53]) It is interesting to note that this article, unlike the article announcing the

yeast map [43], did not highlight these essential statistics. The relevant information

is buried in the text and in figure captions. A mathematical analysis of fingerprint

mapping had yet to be published[34]; thus, the analytical relationship between map

quality and genome coverage, genome size, library size, and overlap detection sensi-

tivity was unavailable.

The library was double digested with HindIII, a 6-cutter. The cut ends were
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tagged and digested again with Sau3Al, a 4-cuttert. The lengths of tagged fragments

were measured using electrophoresist. Thus, most measured fragments corresponded

to intervals of DNA flanked by a HindIII site on one side and a Sau3A site on

the other. To be precise, a fragment could have been flanked by two HindIII sites.

However, under the random-base DNA model, HindIII-HindIII intervals which lacked

a Sau3A site were rare. Using standard results on competing poisson processes[21],

the probability that a gap begun at a HindIII site terminated with a HindIII site was

4-+4-4, or less than 0.06. The chance the gap terminated with a Sau3Al site was

over 0.94.

Thus, the number of fragments from a clone (roughly) equals twice the number

HindIII sites on the clone. The expected number of fragments is

34 kb x 1 HindIII site 2 frags
46 bp 1 site'

or 16.6 fragment per clone. Coulson et al. reported an average of 23 fragments per

clone. This statistically significant discrepancy is consistent with larger inserts (47

kb) or a greater frequency of HindIII sites (1.5 times greater than the random-base

rate of 4-6).

After electrophoresis, gel bands were entered manually using a digitizing tablet

or semi-manually by digitization with human confirmation. Bands were standardized

against control bands of known size, but these measurements were left in mm and

not converted to basepairs. Coulson et al. felt

... no useful information is served by [converting from gel measure-

ments to bp estimates] because, in our strategy, the lengths of the frag-

ments convey no information about the length of the clone. Furthermore,

since the gels are denaturing there is no precise correlation between molec-

ular size and position (although a given fragment will always run at the

same position.)[53]

Neither chimerism nor deletions were reported in the clone library.
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2.3.2 Pairwise Overlap Detection

The worm project did not adopt the Bayesian methodology of Section 2.1. Instead,

they based their overlap calculation on P(DI NO OVERLAP), which they termed

PROBCOINC, for "probability of coincidence." [53]

As equations 2.2 and 2.3 indicate, the absolute size of P(DI NO OVERLAP) is

irrelevant. What matters is L(D), the relative likelihood of P(DI NO OVERLAP)

to P(DI OVERLAP). L(D) < 1 implies overlap is more likely than nonoverlap, and

L(D) > 1 implies nonoverlap is more likely than overlap. Further, the significance of

a "large" or "small" L(D) value depends on the prior, PoL.

Nonetheless, Coulson et al. used PROBCOINC to determine pairwise clone over-

laps. The notation of Section 2.2.2 is maintained. Without loss of generality, let

an > b,, so "reference list" refers to the clone with more bands and "comparison list"

to the clone with fewer. Let LGEL denote the length of the sequencing gel, in mm.

Let the LTOL denote the tolerance of the sequencing gel: band ai can be matched to

band bj if [Xai - Xb I < 2LTOL. This corresponds to fragment measurement error that

does not vary across the gel.

Let p denote chance a band from the comparison list matched a band from the

reference list.

p = =P( 1) = - I LGL (2.4)

Using the binomial probability mass function,

B(k, n, p) = ()pk(l - p)-, (2.5)

Coulson et al. defined PROBCOINC to be probability of observing s or more

matches:
bn

PROBCOINC = E B(k, bn,p). (2.6)
k=s

Note that this model assumes that bands are independently and identically distributed

uniformly across the gels. Also, Equation 2.4 allows the double matching of bands,

even though the matching algorithm was not permitted to do so.
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2.3.3 Contig Assembly

The worm mapping team used a semi-manual method for contig assembly. Consid-

ering pairs of clones with sufficiently small PROBCOINC to be linked, connected

components in the clone-clone overlap graph provided preliminary unordered contigs.

Humans, assisted by a variety of subroutines which considered local structures in the

clone-clone overlap graph, ordered and aligned these preliminary contigs. The sub-

routines assembled contigs in a greedy manner, starting with the most probable clone

pair overlaps. Unlike the yeast mapping project, which used restriction mapping to

exploit the higher discriminating power of many-to-many clone relations, the worm

mapping project relied solely upon binary PROBCOINC relations.

2.3.4 Comment

Like the yeast mapping project, the worm project did not employ the correct Bayesian

approach of Section 2.1. Unlike the yeast project, the worm project did use a formal

model of overlap. By considering only pairwise relations and ignoring band patterns,

however, the worm project lost much of the resolution they might have obtained from

restriction mapping.

According to Coulson et al., the final map covered 60% of the nematode's genome

with 860 contigs, ranging in size from 35 to 350 kb. Figure B-2 displays a portion of

the finished map.

2.4 The Escherichia Coli Genome

2.4.1 Experimental Method

In 1987, Kohara et al. [30] created a library of 3400 A clones, each containing an

insert of E. Coli DNA. The average insert size was 15 kb. This library provided 11-

fold coverage of the bacterium's 4.7 mb circular, single-chromosomet genome. 1025

clones would later form the backbone of the map. This mapping set provided 3-fold

genomic coverage.
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The 3400 clones were partially digested with eight separate single digestions with

eight different restriction enzymes: BamHI, HindIII, EcoRI, EcoRV, BgII, KpnI, PstI,

and PvuII. These enzymes are all 6-cutters, and the random-base DNA model predicts

an average of 3.6 sites for each in a 15 kb clone. A partial digest fragment can begin

at any site, including the ends, and end at any site, including the ends. Rounding

3.6 up to 4, each partial digest produces about ( 2+) = 15 different fragment lengths

under the random-base model.1

Gel images were entered manually using a digitizing tablet. Chimerism was not

mentioned, but deletions were indicated in some clones.

2.4.2 Pairwise Overlap Detection

Like the yeast and worm projects. the E. Coli team did not adopt the Bayesian

methodology of Section 2.1. Like the yeast project, the E. Coli project did not

calculate explicit overlap probabilities within its overlap test.

To determine overlap, the E. Coli team used only the relative order of the eight

varieties of restriction sites. Fragment sizes were not involved in this calculation.

Instead, the eight partial digests were run side-by-side on the same gel, and their

relative order was determined in a manner analogous to the Sanger or the Maxam-

Gilbert method for DNA sequencing[6].

As the E. Coli genome is 4.7 mb, the random-base model predicts an average of

1150 sites for each enzyme, or 9200 restriction sites in total. Thus, the order of these

eight restriction sites on the E. Coli chromosome may be considered a 9200 symbol

sequence written in an alphabet of eight symbols.

Assuming the eight varieties of restriction cleavage sites occur at random through-

'This is a back-of-the-envelope calculation, for E(f (x)) / f(E(x)). However, the correct value is
quite close. As the chance of a restriction site beginning at any given base is low, the number of 6-
cutter restriction sites on a 15 kb fragment under the random-base DNA assumption is well-modeled
by a poisson random variable with mean 3.6. Numerical evaluation of this expectation,

E((x+2)) = (i 2 e2 363
i=O

yields 14.7.
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out the genome, the probability of observing a particular restriction site k-mer in a

given location is 8 -k . For example, the chance that the order of the first six restriction

sites on the genome is EcoRI, EcoRI, BgII, HindIII, BamHI, PvuII is 8-6 = 4 x 10- 6 .

The expected number of occurrences of this restriction site 6-mer across the genome is

8- 6 x 9200 = 0.035. The number of occurrences of this (or any) restriction site 6-mer

across the genome is well modeled by a poisson random variable of mean 0.035. Thus,

the probabilities of 0, 1, and 2 occurrences of this 6-mer are 0.966, 0.034, and 0.0006,

respectively. Conditional on one or more occurrences, the probability of exactly one

occurrence is 0.982. The conditional probability of exactly two occurrences is 0.017.

In short, any given restriction site 6-mer probably does not occur on the genome

(probability 0.966). If a given 6-mer does occur, it probably occurs just once (prob-

ability 0.982). Following this logic, the E. Coli mapping project employed a simple

test for overlapping clones: two clones overlap if they share six or more consecutive

cleavage sites.

2.4.3 Contig Assembly

The E. Coli mapping project used the methods of multi-alignment shotgun sequence

assembly ([6], [37], [44]) to order cleavage sites and clones. Once the correct order of

sites had been determined, multiple observations of the same band were averaged to

estimate inter-restriction site distances on the map.

2.4.4 Comment

The E. Coli mapping project, like the yeast and worm projects, did not employ

the Bayesian approach of Section 2.1. The E. Coli multiple-alignment approach to

contig construction imposed topological constraints and yielded good contigs. As this

approach considers the relationships between multiple clones at once, this strategy

more closely resembles the restriction mapping refinement stage in the yeast project

than the simple pairwise relations used in the worm project.

According to Kohara et al., the final map covered 96% of the bacterium's genome
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with 70 contigs, ranging in size from 20 to 180 kb. Figure B-3 displays a portion on

the finished map.

2.5 The Human chromosome 16

2.5.1 Experimental Method

In 1990, Stallings et al. ([52] [54], [5], [58]) created a library of 26000 cosmid clones.

Each contained an insert of human chromosome 16 DNA. The average insert size

was 40 kb. The library was probedt with a (GT)n t probe, yielding 3145 (GT)n

positive clones. Assuming 40kb clones2 , these provided 1.5-fold coverage of the 85

mb chromosome.

The 3145 clones were digested three times: two single digests with the six-cutterst

EcoRI and HindIII, and one double EcoRI-HindIII digest. These digests were run

out on gels and digitally scanned. Bands were detected by machine and converted to

basepairs. The gels were also blotted onto membranes and probed with (GT)n and

CotI repetitive sequencer probes. Thus, the following data were known for each band

in each digestion of each clone: its length, its (GT)n hybridizationt status (0 or 1),

and its CotI hybridization status (0 or 1).

2.5.2 Pairwise Overlap Detection

The chromosome 16 project did employ the Bayesian approach of Section 2.1 to

evaluate pairwise clone overlap probabilities. Instead of directly using the data, D,

from a pair of clones, Stallings et al. substituted a statistic, S = f(D). This statistic

was applied to the three digests separately. Subscripts "E," "H," and "EH" refer to

the EcoRI, HindIII, and EcoRI-HindIII digestions, respectively.

2 Assuming (GT)n probes are rare and independent of clone-end digestion sites, clones containing
probes will tend to be larger than average clones. Basic random incidence results[21] indicate the

expected length of the 3145 clones was E(L)+ aE) = 40 + 0, but the value of was not reported

in [52].
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S = {SE, SH, SEH} = {f(DE), f(DH), f(DEH)}.

A strategic choice of the statistic f would summarize the complexities of a pair of

digestions with a single number, and do so with little loss of information regarding

overlap or non-overlap of the pair. For this statistic, Stallings et al. selected a digest

likelihood ratio.

S = f(D) _ P(DI OVERLAP, simplifying model)
P(Di NO OVERLAP, simplifying model)

Equations 2.7 and 2.2 appear similar, but they are not. The digest likelihood ratio

of Equation 2.7 is based upon a simplifying model of the digestions. The resulting

,S then plays the role of D in Equation 2.2. The final clone likelihood ratio, L

from Equation 2.2, depends on the distribution of S for overlapping clones and the

distribution of S for non-overlapping clones.

Stallings et al. adopted a complex statistic for f. This statistic involved a na x nb

matrix, C. An element of this matrix, denoted cij, represented the ratio of the

probability xa, and Xb, were two measurements of the same fragment to the probability

that x,i and Xb were measurements of two different fragments. Thus C contained

likelihood ratios for fragments. The "simplifying model" corresponds to the Lander-

Waterman model, described in Section 2.8.

(xai +bj ) (sai +b. )2

HGT . HCOT r e 2 2e (ai+bj (cj =+ (2.8)

This fragment likelihood ratio involved two parts. The first part, the HGT and

HCOT terms, reflected fragment likelihood ratio obtained by considering only the

hybridization status of the two fragments. The remaining terms provided the fragment

likelihood ratio obtained by considering the fragment lengths, where i, denoted the

average length between restriction sites and and denoted the standard deviation of
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the length measurement reproducibility.

These fragment likelihood ratios were then combined, accounting for all ways to

match the na fragments in one clone against the nb fragments in the other:

k= E iV,!N2! E 1 (9=1)k=1 ' ii2,- .ik=I JJ2....Jk-- = 1
no two indices equal no two indices equal

The complexity of Equation 2.9 is equivalent to the computation of a permanent

(a determinant with all subtractions replaced by additions[58]). This computation

requires exponential time[55]. The chromosome 16 project computed this statistic for

each digest for each pair of clones, a total 3 x (12) 2 15 x 106 times. Parallel com-

putation, efficient algorithms, and approximations [58] reduced the all-pairs running

time to several hours.

Due to the complexity of this statistic, no algebraic probability density function for

random vector {SE, SH, SEH} exists. Stallings et al. determined the density function

of {SE, SH, SEH} given overlapping clones and given non-overlapping clones through

massive simulations of model genomes.

2.5.3 Contig Assembly

Contigs construction occurred in the clone-clone overlap graph, where nodes repre-

sented clones and arcs represented overlap probabilities above a certain threshold of

certainty. Chimerism was not addressed explicitly, though choosing a sufficiently high

certainty threshold would remove overlaps between chimeric clone halves.

Without chimerism. Stallings et al. could order clones within contigs. They used

interval graph techniques to coalesce contigs by lowering the overlap probability

threshold. However, due to the limitations of contig assembly using pairwise over-

lap relations and '... the presence of repeated DNA sequences, [map construction]

requires human intervention in various stages of constructing an ordered clone map

from experimental data."[58]
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2.5.4 Comment

After marveling at the complexity of Equations 2.8 and 2.9, one wonders if the finger-

print data quality warranted such intricate analysis. Lacking an algebraic probability

density function, the behavior of {SE, SH,SEH} may only be understood through

simulation. Sensitivity analysis is thus hindered. It is possible this statistic is driven

essentially by the number of matching fragments in the two clones. Such simplifica-

tions would have been difficult to detect and confirm using simulation.

Stallings et al. report constructing 460 contigs from their 3145 cosmid clones,

covering 54% of chromosome 16. The average contig size was 106 kb. Given the

1.5-fold coverage of the clone library, these are impressive accomplishments. The

success of the project hinged upon probing the restriction fragments; this reduced the

minimum detectable overlap considerably. (The effect of this reduction is addressed

in Section 2.8.) Figure B-4 presents a portion of the finished map.

2.5.5 Other Applications of Chromosome 16 Fingerprints

Fickett and Cinkosky [22] used the Stallings et al. clone-clone overlap probabilities

as data for a genetic algorithmt (GA) to determine good ordered contigs. They crit-

icized the sequential greedy method used by the yeast and worm projects (Sections

2.2.3 and 2.3.3) the GA outperformed greedy methods on chromosome 16 data. They

used three objective functions to evaluate clone permutations. Efficient horizons in

this three-dimensional objective space imposed partial orders on proposed solutions.

One objective involved the product of successive overlap probabilities; the second

involved the estimated degree of overlap; the third involved the lengths of the clones

and the chromosome. Fickett and Cinkosky's GA produced better contigs than those

produced by the clone-clone overlap graph theoretic approach used initially. In one in-

stance, the GA broke a contig generated by the earlier algorithm, and this correctness

of this break was confirmed by FISHt mapping individual clones.

Soderlund et al. ([51],[50]) worked with the chromosome 16 restriction fragment

directly, constructing restriction maps to order contigs. Again, better results were
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reported than those obtained by the overlap graph approach. To build restriction

maps, Soderlund et al. used a "noisy consecutive ones"3 and heuristic search tech-

niques. They coded their algorithms into an interactive graphical software package

named GRAM for computer-assisted restriction mapping. Restriction maps were the

focus of these efforts, not not for improving the chromosome 16 clone map.

2.6 The Human Genome

In 1992, Bellanne-Chantelot et al. ([9], [8], [32], [33]) attempted a daring experiment.

CEPH-Genethoni attempted to map the entire 3300 mb human genome using random

clone fingerprinting. Previously, the largest region upon which the method had been

used was chromosome 16, at 85mb. Two innovations allowed the CEPH-Genethon

team to scale up the method forty-fold: YACS offered significantly larger inserts than

cosmids, and automated gel reading equipment speeded data entry.

2.6.1 Experimental Method

The CEPH-Genethon team created a library of 22000 YACS containing human DNA.

The average insert size was 810 kb, providing 5-fold coverage of the genome. The

YACS underwent three single 6-cutter digestions with the restriction enzymes EcoRI,

PvuII, and PstI. After electrophoresis, the gels were blotted and hybridized for the

Kpn repetitive sequence. Kpn-containing fragments were detected with chemilumi-

nescence, scanned, digitized, and standardized against control bands of known size.

(The library has since increased to 33000 YACS, of which 25000 have mean insert size

of 1 mb. Another repetitive sequence probe has been added, THE. These additional

data and their value are discussed in Chapter 3.)

3 A binary matrix has the consecutive ones property if its rows may be permuted so that ones
occur consecutively in all columns. The noisy consecutive ones problem seeks to minimize a function
of the number of ones that must be changed to zeroes and the number of zeroes that must be changed
to one to produce a matrix with the consecutive ones property.
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2.6.2 Pairwise Overlap Detection

The CEPH-Genethon team did adopt the Bayesian framework of Section 2.1. Let la

denote the length of the first clone and lb the length of the second. Let 0 denote the

length of their common region of overlap. OVERLAP from Equation 2.1 corresponds

to 0 > 0, and NO OVERLAP to 0 = 0. The prior on overlap, POL, is supplemented

by a prior probability density function on 0, r(0). As all degrees of overlap are a

priori equally likely, the non-informative or flat prior was used for Ir(0).

) 1 -POL 0=0

IPOL < < min(l,lb)min(a,lb)m

Instead of updating a prior for OVERLAP as in Equation 2.1, the CEPH-Genethon

team updated a prior for NO OVERLAP. The mathematics are completely analogous,

although the CEPH-Genethon likelihood ratio, LOS(D), is the reciprocal of L(D).

P(O = OID) = + 1 - r(0)) LOS(D) (2.10)

LOS(D) -= f>O() P(DO)dO (2.11)
P(DIO = 0)

Similar to the approach of the chromosome 16 project, the CEPH-Genethon team

constructed a matrix of matches between all pairs of fragments whose relative dif-

ference was below 3 standard deviations. Let Q(k) denote the set of all matchings

between the bands of clone pair that match exactly k bands, leaving na - k bands

unmatched on the first clone and nb - k bands unmatched on the second. (This is

analogous to the rightmost two sums in Equation 2.9.) Let w denote a particular

matching of bands between the clone pair.

min(na ,nb)

P(DIO) = E E P(wl0) P(DIw) (2.12)
k=O wEQ(k)

Exact formulae for P(wjO) and P(DIw) were not reported in the literature, though

their general form was sketched in [33]. Given a matching, P(Dlw) modeled the mea-
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surement error of common bands with a Gaussian distribution. The model assumed

the standard deviation. oa, grew linearly with the true fragment size, x.

(xz, _x)2 (Xbj _x)2 1

e L (x
2

fxai lxbj (Xai Xbjx) = 2w(ax)2

Poisson assumptions for restriction sites, probes, and clone ends were used to derive

P(Dw).

The same probes marked bands in the three digests, so the digests were not

independent. For computational tractability, the CEPH-Genethon team treated them

as independent.

2.6.3 Contig Assembly

Contigs construction occurred in the clone-clone overlap graph, where nodes repre-

sented clones and arcs represented overlap probabilities above a certain threshold of

certainty. Fine ordering of contigs was not attempted. A handful of CEPH-Genethon

contigs were positioned on metaphaset chromosome spreads using FISH.

2.6.4 Early Data Problems

Even in the early stages of the mapping effort, minor difficulties with the CEPH-

Genethon fingerprint data were apparent. These problems included numerous chimeric

clones in the YAC library (estimated at 40%), artifactual bands (at least one false

positive band was found in 10% of the gels), and missing bands (the false negative

rate for bands varied between 10% and 70% rate, dependent on optical density).[33]

Further, the reported band measurement error, a, was suspiciously low: 0.3% for 1

kb fragments to 1.7% kb for 20 kb fragments. A 1 kb fragment, however, cannot be

measured within 3 bp resolution on an agarose gel; this far exceeds the resolution of

the media.[23]

Additionally, only 6 of the 10 contigs hybridized to a single location on the

metaphase chromosomes during FISH verification, using pooled inter-ALU PCRt
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probes from the contig clones. The remaining four hybridized to two locations, indi-

cating chimeric clones had falsely linked noncontiguous regions of the genome.

For one such contig mapping to chromosome 1q244 and 10pll, its 10 constituent

clones were screened individually against metaphase chromosomes using FISH. Three

clones mapped to q24. Four mapped to 10pll. One mapped to lq24 and 10pll.

One mapped to lq24, Xpll, and 7q36, and the last mapped to 10pll and Xpll.

2.6.5 Comment

The exact statistics underlying the CEPH-Genethon LOS measure were not pub-

lished in the literature, and the CEPH-Genethon procedure for construction was

rudimentary. 5 These difficulties seem insignificant when compared to issues of data

quality. Section 2.6.4 mentioned problems reported by Chantelot et al. in [8]. These

and others are examined in depth in Chapter 3.

According to the CEPH-Genethon interpretation of their data, their physical mapt

covered between 85% and 95% of the human genome with over a thousand contigs.

According to CEPH-Genethon, these contigs ranged from 2 to 10 mb in size. CEPH-

Genethon did not publish their map.

2.7 The Five Projects Compared

Figure B-5 summarizes salient features of the yeast, worm, bacterium, chromosome

16, and human genome projects.

2.8 The Lander-Waterman Model

Following the yeast, worm, and bacterium projects in the mid 1980s, Lander and

Waterman derived simple formulas describing how the clone library and the finger-

4 Cytogenict locations are denoted by chromosome, short (p) or long (q) arm, and band number
from the centromere. "lq24" refers to the 24th band of the long arm of chromosome 1.

5It is possible that [8] was intended as an initial report, with additional data and more sophisti-
cated analyses to follow later. However, no subsequent articles appeared in the literature.
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printing scheme affect the progress of a physical mapping process.[34]

To analyze physical mapping with fingerprints, Lander and Waterman adopted a

simplifying model. It considers an idealized fingerprinting method that can detect

overlapping clones when they share at least a fraction 0 of their length. It assumes

clones are uniformly distributed across the genome. The basic model also assumes 0

is constant across all clones and all clones are of constant length L.

The model uses the following variables:

G haploidt genome length in bp,

L clone length in bp.

N number of clones fingerprinted,

a = NIG probability per base of starting a new clone,

T minimum detectable overlap length in bp,

c = LN/G redundancy of library coverage,

0 = T/L , and = 1 -0.

Connected components in the clone-clone overlap graph are called apparent islandst.

Islands with two or more clones are contigs.

Moving along the genome base by base, a clone begins with probability a. If no

other clone begins in the next L - T bases, this clone will be the last in its island.

The probability this base starts a clone that ends an island is thus c(1 - a)L- T. This

can be written as a(1 - N/G)(G/N)c , which well-approximated by ae- co for small

NiV/G. As there are the same number of clones that end islands as there are islands,

it follows the expected islands is Gae -U = Ne- ([34], Proposition 1.1.)

A similar argument shows the number of clones in an island is geometric with

mean ecU. The probability an island contains exactly j clones is (1 -e-c)i-le - c .

Thus, the expected number of islands containing j clones is N(1- e-)j-le -c (Prop.

1.2) and expected number of contigs is Ne -c" - Ne -2 c (Prop. 1.2.1.) Lander and

Waterman also derived the expected number of clones in island, ea (Prop. 1.3),
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and the expected length of an island, L[((eC" - 1)/c) + (1 - a)] (Prop. 1.4.) By

setting 0 = 0, any common DNA suffices for clone-clone overlap, and these results

apply to undetected overlap (Prop. 1.5.) With minor modifications, the model can

accommodate L and 0 varying across clones (Prop. 2.)

This model allowed biologists to predict the quality of the physical map a set

of experiments could be expected to generate-before conducting any experiments.

Given the cost and magnitude of mapping projects, the importance of this model for

strategic planning is large. Planning and progress assessment are the conventional,

forward uses of this model.

Lander and Waterman note that the decreasing 0 from 0.50 to 0.25 greatly speeds

the progress of a mapping project, while decreasing 0 from 0.25 to the theoretical

limit of 0 provides relatively less improvement. They suggest 0 values between 0.15

and 0.20 as sensible goals.

How efficient were these five projects in detecting overlap? The Lander-Waterman

model has a less conventional, backward use: it allows one to calculate an implied 0

from reported coverage and contig measures. These different performance measures

are functions of 0. Solving for 0 is straight-forward.

If x denotes the number of islands,

= 1 + ln(x/Nc)
c

If x denotes the number of isolated clones,

0 1 + ln(x/N)9=1+
2c

If x denotes the mean island size,

ln(x)
2c
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If x denotes the number of contigs, then 0 solves

x = Neh-( 1- u) c Ne- 2 (1- ) c

This formula can have multiple roots in the unit interval; selecting the root closest to

the value of 0 produced by the other performance measures removes this ambiguity.

Figures B-5 and B-6 present 0 values implied by these four performance measures

for the five projects. The bacterium project achieved the lowest 0, approximately

0.2. The worm project achieved a 0 of about 0.5; chromosome 16 was slightly higher.

The chromosome 16 project produced far more contigs than expected, given the

project's reported contig size and number of number of islands. Cloning biases or

probe clustering might explain this anomaly. The yeast project achieved a 0 between

0.6 and 0.7, an impressive feat considering its early date. The CEPH-Genethon

project, however, performed poorly, with a 0 value above 0.95.

The efficiency of the E. Coli project and the inefficiency of the CEPH-Genethon

projects at detecting overlap reflect their respective strategies for overlap detection.

The bacterium project demonstrated the power of shotgun-sequencing analysis tech-

niques following partial digestions with multiple restriction enzymest.

It is tempting to consider the map CEPH-Genethon might have obtained with

such a strategy and a 0 , 0.2. The E. Coli strategy, however, would not scale up to

YAC-sized inserts. Assume 200 clearly resolved bands represents an upper bound on

the resolution of current gels. This limits the number of restriction sites per clone to
19+2

about 19: a partial digestion of 19 sites produces about ( 2 ) = 210 fragments. Under

the random-base model, restriction enzymes with 13 bp recognition sites are required

to obtain so few restriction sites per megabase clone (109/412.82 - 19). Restriction

enzymes with such long recognition sites are rare, and it is likely that random-base

model would not be a realistic representation of their occurrence along genome.

To map the human genome, CEPH-Genethon needed clones with large inserts.

As the inserts were large and the resolution of gels was limited, CEPH-Genethon

needed probes to select only certain bands from complete digestionst. Because of
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these constraints, CEPH-Genethon could not have used the E. Coli approach.

The following chapter examines the quality of the CEPH-Genethon data.
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Chapter 3

CEPH-Genethon Fingerprints

This chapter reviews the CEPH-Genethon fingerprint data in preparation for sub-

sequent evaluation of pairwise overlap tests. The original Kpn-probed data doubled

with the addition of a second probe, THE, in 1991. Additional clones were added

to the megabase library, bringing the total to 33000 YACs. The fingerprint dataset

has since stabilized; no additional experiments are planned. More recently, a dataset

with YAC sizes was also released.[48]

3.1 Real Data and Simulation

Simulation provides a powerful technique to investigate the performance of a finger-

print mapping effort. Simulation can encompass any level of detail, providing greater

realism than simplified analytic models (cf. [34]). Simulation is also useful when

evaluating or tuning pairwise clone overlap tests, for the "right" answer is known.

A fingerprint simulator for pairwise clone overlap test evaluation would include

the following: a model of clone lengths and chimeric clones; a model of clone overlap;

a model of restriction site spacing; a model of probe spacing (equivalently, the number

of bands per clone); a model of band measurement error; and models of false positive

and false negative bands.

For example, Datta assumed constant length non-chimeric clones, overlap lengths

uniformly distributed across clone lengths, the number of bands and the size of bands
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drawn from empirical distributions matching the real data, Gaussian band measure-

ment error, and Bernoulli-generated false negatives [19].

Simulation has a disadvantage: a simulator can be inaccurate. Datta found pair-

wise overlap statistics that performed admirably on simulated clone pairs performed

less impressively on real data [19]. Clearly, his simulation differed from the real data

in some unknown but substantive way. Datta's assumptions of non-chimeric and

constant length clones are likely candidates, as is his assumption that THE and Kpn

probes follow independent poisson processes. In reality. 40% of the clones are chimeric

([8]); clone lengths vary (Section 3.5); the two types of probes are correlated (Section

3.6); the genome consists of "probe-rich" and "probe-poor" regions ([28]); cluster or

spread processes ([36]) might better describe probe locations.

This thesis eschews simulation to avoid such difficulties. The interested reader

should consult Datta for a comprehensive simulation study paralleling this thesis

[19].

3.2 Data Format

Figure B-7 presents a sample of the original CEPH-Genethon data format. Each

clone has a seven line block of data. Line one identifies the YAC. Lines three, five

and seven indicate the results of the EcoRI, PstI, and PvuII digestions, respectively.

For each digestion, an integer indicates the size of a band in base pairs and is followed

by a decimal number indicating the optical intensity of the band'. Electrophoresis

sorted the bands by size.

The newer dataset differs from the earlier one in two ways. First, the three

digestions appear twice, once for each probe. Second, optical density data are not

included. Figure B-8 presents a sample of these data.

1The raw gel images were scanned, digitized, and standardized to generate these sizes. The
processed band sizes and their intensities were the only data made publicly available.
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3.3 Optical Densities

Figure B-9 provides a histogram of band intensity from the earlier data. The mean

intensity is 0.30; the median is 0.196; the distribution has a heavy right tail. CEPH-

Genethon reported that band reproducibility varied with optical intensity, with a 50%

reproducibility rate for bands with optical density below 0.05.[33] 14% of observed

bands had densities below this threshold.

There are two possible interpretations of these low reproducibility bands. The

first interpretation declares these bands to be weak readings of true bands: false

negatives. From the .50% reproducibility rate, roughly each detected weak band has

a corresponding undetected band. Assuming every weak band has an undetected

pair. this suggests a false negative rate of about 14% 12%. The second

interpretation declares these bands to be spurious readings of nonexistent bands:

false positives. In this case, at least 14% of the bands are false.

Such error estimates are informative, for optical intensity data were dropped from

the newer release.2 No threshold was imposed; even bands measured at optical inten-

sity "0" in the earlier data appear in the newer dataset. Without intensity data, all

bands in the newer data release appear equal, hiding a possible 12-14% false negative

or false positive rate.

3.4 Band Sizes

3.4.1 Problems

Under the random-base DNA model, occurrences of a 6-cutter recognition site are

well-modeled by a Bernoulli process. The distances between successive recognition

sites follow a geometric distribution with mean 46. The placement of probes3 may

2Optical intensity measurements for Kpn bands are available from the earlier dataset. Intensities

for THE bands are not available. CEPH-Genethon ignored intensity data altogether in their analysis;
this thesis does likewise.

3 For all fingerprint chapters in this thesis, "probes" refers to the repetitivet elements Kpn and
THE.
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If EcoRI PstI PvuII
THE 6755 5549 6760
Kpn 7094 7691 7919

Table 3.1: Mean Band Size

be modeled with another independent Bernoulli process with a much slower rate.

(The probes were purposely sparse compared to 6-cutter restriction sites, for CEPH-

Genethon used rare probes to obtain a resolvable number of bands after digestion.)

With these two modeling assumptions, probes may be considered "random-incidence

arrivals" [21] into inter-restriction site gaps. The size of probe-containing inter-

restriction gaps follows a second order Pascal distribution with mean 2 x 46 = 8192.

This discrete distribution is well-approximated by its continuous counterpart, the

second order Erlang.

Table 3.4.1 indicates mean band size for all three digests and both probes. That all

these means fall below the random-base model prediction of 8192 is not noteworthy;

DNA sequence is not Markovian. The order of these means is interesting, however.

For THE, PstI had the smallest mean gap, followed by EcoRI and PvuII in an effective

tie. For Kpn, the order of increasing means was EcoRI, PstI, PvuII. These rankings

are not in agreement, indicating some unknown correlation between probe sites and

restriction enzyme recognition sites.

Figures B-10 and B-11 present histograms and QQ-plots of band length for all six

probe-digest combinations based on a random sample of 5000 bands. The QQ-plots

compare the empirical distributions to second order Erlangs with matched mean.

The roughly linear QQ-plots indicate the two distributions are similar. However,

both informal inspection of the histograms and formal testing using the X2 statistic

[191 indicate these distributions are not Erlang.

The coarse binning of these histogram hides data anomalies[47]. Figure B-12

presents a detailed histogram of band sizes.4 The x axis of the histogram corresponds

4The six probe-digest combinations are aggregated into one. The six probe-digest pairs show an
identical error structure singularly and in combination.
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to band size in increments of one basepair, the given data resolution. The y axis

corresponds to the number of occurrences of that band size in a random sample of

23% of the data. The figure is a line plot, with straight lines connecting adjacent

nonzero counts.

One sees the quasi-Erlang structure of the length distribution as the thick black

band that rises until x ~ 8000 and then slowly falls. The thickness of the band

corresponds to the range of the counts, an indication of variance. The bottom of the

thick black band remains essentially above the x axis until x _ 9000.5

This expected quasi-Erlang structure is punctuated by a series of unexpected large

spikes. Small intervals with few observations flank each spike. These nearly empty-

gaps are indicated by black lines reaching down to the x axis for the smaller bands.

and by empty triangles beneath the larger bands. This gap-spike-gap phenomenon

occurs in the same locations across all probe-digest combinations. A systematic error

in the gel digitizing hardware or software is the likely explanation. The height of

the spikes roughly accounts for the gaps of "missing" probability. Inter-spike spacing

seems to increase exponentially with band size, suggesting an error mechanism that

occurred at constant intervals along the gel. One might postulate an irregularity in a

gear mechanism that drove the digitizing head across the gel films; perhaps a slight

velocity hiccup on each revolution collapsed a rectangular region of the image onto a

narrow bar.

Other minor anomalies afflict the length data. The dataset contains a handful of

extremely long bands. The longest is 283548 bp. The genome is unlikely to contain

such a large gap between 6-cutter restriction sites. The YACs average 0.8 mb in

length and contain on average less than 16 probes; extrapolating this rate for the

whole genome produces an overestimate of 3300 x 16/0.8 = 66000 probes and thus

66000 probe-containing inter-restriction site gaps. Employing a second order Erlang

5If xi denotes the number occurrences of a band of size i in a sample of N bands, the joint
distribution of {Xl, x2,... , X50000} is multinomial with parameters from the second order Pascal:
pi = (i - 1)(4-6)2(1 _4-6) i- 2 . The marginal distribution of xi is binomial. A 95% confidence
interval for xi is Npi - 2/Npi(1 - Pi). For N z 250000, the bottom of this confidence interval hits
zero near i 9000.
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with mean 6725 for the band size distribution 6, the probability that the genome

contains a gap of size 283548 or larger is approximately

66000 6725-2xe-/ 6 25dx,
83548

which is less than 10-11. Therefore, from mathematical considerations alone, the

283548 band is highly likely to be spurious, as are another six bands longer than

250000. The optimist finds a handful of errors among 1452000 band observations

encouraging. The pessimist wonders why such blatant errors were not detected and

fixed, and if these errors suggest the presence of additional, undetected problems.

3.4.2 Impact

The band length distribution suffers two main problems: dramatic probability spikes

and a handful of observations on the distant right tail. The remainder of the data

appear reasonable.

If one assumes the probability spikes collapsed a wider observation region onto a

narrow one, this anomaly only serves to reduce the resolving power of the gel over a

small set of disjoint regions. As the observations that fell into these regions comprise

less than 1% of the total observations, this anomaly should have little effect. If one

instead assumes the spikes represent induced false positives at specific spots, this

anomaly causes pairs of clones to have an extra few matching bands. As the various

pairwise overlap tests are tuned to obtain selected false positive and false negative

rates (Chapter 4), this should have little effect. Likewise, the excessively large bands

quite rare. As no such band occurs in two clones, such bands are never matched in a

pairwise clone overlap test, and thus have little effect.

The impact of these anomalies upon the pairwise overlap tests is expected to be

slight. Nonetheless, such problems do erode one's confidence in the quality of these

data.

66725 is the mean band size across all six probe-digest combinations.
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3.5 YAC Length

Recent CEPH-Genethon data releases have included data on YAC lengths. Figure

B-13 presents a histogram of lengths for the fingerprinted YACS7. The histogram

indicates YAC length is highly variable. The mean YAC length is 910 kb, slightly

longer than the earlier estimate of 810 kb by Chantelot et al.[8] A uniform distribution

between 100 kb and 1750 kb provides a very crude approximation of this distribution.

3.6 Number of Bands

Figure B-14 presents histograms of the observed number of bands per YAC.

The number of bands per YAC is not poisson. This is expected, as the clones are

of variable length8 . The observed probability spikes at zero bands suggest a switching

process: with probability p, the YAC has no bands, and with probability 1 - p, the

YAC has a poisson number of bands with a mean proportional to its length. YACS

with no bands may have come from regions of the genome lacking THE and Kpn

repetitive elements or they may represent complete hybridization failure.

Figure B-15 displays the correlation between the numbers of various bands using

a scatter-plot matrix. The 3x3 upper left submatrix gives plots of Kpn bands for the

three digests. The points are roughly linear and indicate a high positive correlation.

This is expected, as each probe should produce one band in each of the three digests.

A similar pattern holds for the THE plots in the lower right 3x3 submatrix.

The lower left 3x3 submatrix plots the three digests for Kpn bands against the

three digests for THE bands. The points form a diffuse cloud, but a linear correla-

7YACS from plates 628-989 were fingerprinted. Some of these are megabase YACS; the CEPH-
Genethon megabase library consists of plates 713-996 and plates 2000+.

8 If clone lengths were uniformly distributed between 100 kb and 1750 kb and probes followed a
poisson process with rate A probes per kb, the probability mass function for the k, the number of
bands on an arbitrary YAC, would take the following form:

1 Xf=.75 (Al))e-~,lPK(k) =75 01=175 (Al)ke Aldl.

Except for the spikes at zero bands observed in the real data, this probability mass function with
=5 pobes d lo probes 0.910 = 5 prbe 0.910 be h a similar shape to the distributions of Figure B-14.0.910 m 0.910 mb
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EcoRI Kpn PstI Kpn PvuII Kpn EcoRI THE PstI THE PvuII THE
EcoRI Kpn 1
PstI Kpn 0.93 1

PvuII Kpn 0.94 0.93 1 .

EcoRI THE 0.62 0.62 0.62 1
PstI THE 0.62 0.63 0.62 0.94 1

PvuII THE 0.63 0.62 0.63 0.94 0.95 1

Table 3.2: Correlation Coefficients, Number of Bands

tion is still seen. Table 3.6 provides all pairs of correlation coefficients between these

counts. The THE-Kpn correlation coefficients exceed 0.6, indicating these two repet-

itive elements frequently occur together on the genome. This has two implications.

The first is that doubling the data by adding the THE probe did not produce as much

additional coverage as might have been obtained with an independent or, better yet,

negatively correlated probe. The second implication is that the regions of the genome

covered by Kpn-base contigs in 1992 should have stronger overlap results from the

additional THE probes in 1993.

3.7 Band Measurement Uncertainty

As mentioned in Section 2.6.4, CEPH-Genethon reported a dubiously low standard

deviation for band measurement error: 0.3% for 1 kb fragments to 1.7% kb for 20 kb

fragments.

To estimate this rate de novo from the data, a small number of plates in the

YAC library with highly similar fingerprints in adjacent wells were identified.9 Plate

contamination is the most likely explanation of this phenomenon. This provides

repeated measurements of (what is highly likely to be) the same band. The standard

deviation, a, was observed to vary slowly with band length, x. Point estimates of

v(x) were computed for x = 1, 2,... kb using overlapping 2 kb windows. A quadratic

9 The measure was the 2- test described in Section 4.1 with a threshold of 0.95 on YACS with
40 or more bands.
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curve was fit to these estimates using least squares regression (R2 > 0.95):

o(x) = 41.9 - 0.0005x + 2.7 x 10-7x2. (3.1)

The details of this estimation are provided by Datta[19]. This thesis employs Equation

3.1 to model band measurement error.

The following chapter considers four pairwise overlap tests.
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Chapter 4

Pairwise Fingerprint Tests

rThis chapter compares the performance of five pairwise clone overlap tests using the

CEPH-Genethon fingerprint data. It presents the underlying models motivating the

tests and describes their possible uses. The five tests are named Trinomial, Match,

Entropy, KPN, and THE. The first three were developed at MIT for this thesis; the last

two were developed at CEPH-Genethon for their human genome mapping effort [8].

Formally, each test is an indicator function H with parameter that decides if

the fingerprint data from two clones, d and d2, are sufficiently similar to indicate

overlap:

H/: (d,) ,{0 I}

Test performance is measured using false positive and false negative error rates.

fp(H (dl,d 2)) = P(H)Z = 1 clone 1 and clone 2 do not overlap) (4.1)

fn(Hx(dl,d2)) = P(H)x = 01 clone 1 and clone 2 do overlap) (4.2)

The parameter vector, X, represents all the constants involved in the test, including

the test's threshold value upon which the overlap decision is based. Note the false

positive and false negative rates depend on X. Varying the test's decision threshold

changes these error rates.

Each test assumes a different model of the fingerprint data. Stronger assumptions
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lead to simpler models and, perhaps, to weaker tests. The tests may be ranked by

complexity. The simplest is Trinomial; next follows Match and Entropy; KPN and

THE are the most involved.

Sections 4.1 through 4.4 describe these five tests. Section 4.5 explains the method

used to evaluate them and Section 4.6 presents results. Section 4.7 concludes the

chapter discussing how the tests might be used.

4.1 The Trinomial Test

Trinomial employs the simplest model of the fingerprint data. The test uses a

maximum likelihood estimator [35] for , the fraction of overlap between the two

clones, and declares overlap if 0 is large enough.

Assumptions of Trinomial model

1. All clones are the same length. Distance is rescaled so this length is 1.

2. Band placement follows a homogeneous poisson process.

3. Every band may be assigned one of three designations:

(a) belonging only to clone 1,

(b) belonging only to clone 2,

(c) or belonging to both clone 1 and clone 2.

No errors are made in these assignments.

4. There are no false positive bands: every band is real.

5. There are no false negative bands: no bands are lost.

6. The six probe-clone digests are independent.
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7. Clones are not chimeric.1

8. All band lengths are equally likely across the gel.

Let 0 E [0, 1] denote the length of the region shared by clone 1 and clone 2. For

each of the i = 1 ... 6 digests2 , let Xi denote bands unique to clone 1, Y. denote bands

unique to clone 2, and Si denote bands shared by both clones. Let Ni = Xi + Si + Y

denote the total number of bands in each digest.

From assumption 3. the two clones overlap if any Si > 0. In reality. however, the

Si will involve errors, so 3i: Si > 0 is not a useful test statistic. Instead, Trinomial

considers the maximum likelihood estimator of 0. If OMRILE is large enough, Trinomial

declares overlap.

Given 0, the probability of observing the matched and unmatched bands follows

a trinomial distribution.

P(X1, S~,Yr~ )=l n f OI9\X? __ Si I___
P 2-9) (2-9) (2=}- (4.3)

/=1 Xi!$i!Yi[ 2- 2 -

This is written as a likelihood function of 0, L9,g,:V(9),

( )Si I8 ( i +E Yi)Lg.j-.;(O) = k (4.4)

differentiated,

aLf,1(O) =

-k. oZxi+oyi-2Esi+20Esi (,)si ( X1 )(Zli+ZYil
O(O-1)(0-2) 2- 2-)

'None of these five tests explicitly model chimeric clones, for chimerism only serves to make
the overlap region smaller. Chimeras pose more difficulty for contig assembly algorithms than for
pairwise overlap algorithms.

2As Trinomial, Match, and Entropy all assume the six probe-digest combinations are indepen-
dent, "probe-digest combination" is shorted to "digest" with no lack of accuracy.
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and solved for zero, yielding

OMLE = + 2 (4.5)

The second derivative is negative, 'Lj(20mLE) < 0, indicating OMLE maximizes Equa-

tion 4.4.

Equation 4.5 has an intuitive explanation. Suppose one wished to estimate but

could only observe E Xi and E Si. In this case, the best estimate for 0 would be

01 = E si/(E si + E tx). Alternatively, if one wished to estimate 0 but could only

observe T E} and E Si the best estimate for 0 would be 02 = s i/( si + E yi).

These estimates, weighted according to proportion of the data they represent, also

produce MLE.

01 xi - Si +i A y $ i+E s 2 Esi
E \Zxi + q i 2 Tsi $E xi + + 2 -x + yi + 2 i

The implementation of Trinomial is particularly simple. For each of the six

digests, Equation 3.1 is used to match bands within 3 standard deviations of their

midpoint. Matching is done in a greedy, nearest neighbor fashion. The bands are

ordered so this greedy approach yields the most matchings possible. This computes

Xs. si, and y for each lane. Equation 4.5 then produces MLE. If this is large enough,

OMLE > CRIT, Trinomial declares the clones overlapping.

The performance of this test on real data for various settings of OCRIT are discussed

in Section 4.6.

4.2 The Match Test

Trinomial does not acknowledge that the length of clones differs widely and that

errors are made in band matching. The second test, Match, adds these features. Like

Trinomial, Match is based on a maximum likelihood estimator of the length of the

overlap region common to both clones.
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Assumptions of Match model

1. The length of the two clones, L1 and L 2, are known.

2. Band placement follows a homogeneous poisson process.

3. Every band may be assigned one of three designations:

(a) belonging only to clone 1,

(b) belonging only to clone 2,

(c) or belonging to both clone 1 and clone 2.

4. False positive matching errors (two bands are matched which are not the same)

and false negative matching errors (two bands that are the same are not matched)

occur as described below.

5. There are no false positive bands: every band is real.

6. There are no false negative bands: no bands are lost.

7. The six probe-clone digests are independent.

8. Clones are not chimeric.

9. All band lengths are equally likely across the gel.

Let 0 E [0, min(Li, L2)] denote the length of the region shared by the two clones.

For each of the i = 1... 6 digests, let Xi denote bands truly unique to clone 1, Yi

denote bands truly unique to clone 2. and S denote bands truly shared by both

clones. From assumption 2, these follow poisson distributions with rate A probes per

kb.

Px,(xi) = (A(L1 - 0))ie- (L1- 0 )Pxi (i> .rxi!

(A(L2 - ))Yie-A(L2- 0 )
Pv (yi) .yI

(AO)'e - AO
Ps,(si) -

Sz!
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Match assumes that missed matches follow a Bernoulli process[21] with probability

PLOSE. Let Ri denote the number of matched band pairs that were declared non-

matching, due to a false negative mismatch error.

PR, IS, (ri Isi) = ()PLOSEri (1 -- LOSE )

Several values were tried for the rate of this Bernoulli loss process; PLOSE = 0.10

produced the best empirical results.

To model false matches, Match adopts the same methodology as the worm project's

PROBCOINC, as described in Section 2.3.2. Note Equation 2.5 and Equation 4.6

below assume all band lengths are equally likely. This assumption was empirically

justified for the worm project (see Section 2.3.1). Match simply assumes this is true.3

Let Qi denote the number of incorrect matches.

PQIX,Y (qili, yi =

(min(xiYi))(l (1 - )(max(i,Yi)))qi(l -(1 -( -gain)(max(xiYi))))(min(xi,yi)-qi)

(4.6)

The model implied by Equation 4.6 was justified by empirical data and linear

regression. The approximate expected value of Qi,

E(Qi) = min(xi, yi)( - (1 - Pgain )(max(x i' y i ))) (4.7)

- Pgain(max(xi, yi))(min(xi, yi)) (4.8)

= Xi' Yi'Pgain, (4.9)

indicates that q should vary linearly in the product xiyi. To validate Equation 4.9,

500 random pairs of clones were generated. The number of matching bands in each

pair was determined using the methods described in Trinomial. 4 These (xi, yi, qi)

data were well-fit with a linear model with zero intercept, with an R2 exceeding

3Assumption 9.
4As discussed in Section 4.5.1, almost none of these pairs should consist of clones that actually

overlap on the genome. As a result, almost all of the matches are false, providing data to estimate
Pgain .
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0.95. Figure B-16 plots real against fitted qi data, demonstrating the quality of this

model. Two methods were used to estimate gain: the slope of the regression line,

and numerical maximum likelihood estimation on the joint density of all the (xi, yi, qi)

tuples via Equation 4.6. Both produced similar results: Pgain 0.0065.

Let Ai denote the number of bands that appear to be unique to clone 1, Bi denote

the number of bands that appear to belong to both clones, and Ci denote the number

of bands that appear to be unique to clone 2.

Ai = Xi - Qi + Ri

Bi = Si +Qi - Ri

Ci = ] - Qi Ri

(4.10)

(4.11)

(4.12)

Clearly, Ai, Bi, Ci,

Analogously to

given 0 is

6

Po(A, B, S) = fP0~,/ gII
i=1

Equations

functions,

Vi, , Si, Qi, and Ri must remain nonnegative.

Equation 4.3, the probability of observing the data (a, b, c for a

E
xi,Yi ,si,qi,ri >0

such that

:ci--qi +ri =ai
si +qi -ri =bi
Yi -qi +ri=ci

4.10 through 4.12 allow this sum to be written efficiently via auxiliary

hj(qi, ri, ai, bi, Ci, ).

hl(qi, ri, ai, bi, ci, O) = P(qilxi = ai qi-ri, i = ci + q- ri)

h2 (qi, ri, a, b, c, ) = P(rls = b -q + ri)

h3(qi, ri, a, bi, ci, ) = Po(xi = ai + qi - ri)

h4(qi, ri, ai, bi, ci, ) = Po(yi = ci + qi - ri)

h5(qi, ri, ai, bi, ci, ) = Po(si = bi - qi + ri)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)
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With these auxiliary functions, Equation 4.13 may be written as a likelihood function

for .
6 5

LaEg(0) = i E E I hj(q, ri, aj, bi, ci, 0) (4.19)
i=1 qi ri j=l

Like Trinomial, Equation 3.1 is used to match bands within 3 standard deviations

of their midpoint for each digest in a greedy nearest neighbor fashion. This yields

x;, si, and y for each lane. Unlike the MILE used in Trinomial, there is no simple

analytical formula for the value of 0 that maximizes Equation 4.19. Nonetheless, an

approximate 0,MLE can be found numerically. Match substitutes [nn(L'L2) 1 different

values for 0, spaced uniformly across the interval [0, min(Li, L2)], into Equation 4.19.

Match then takes the 0 producing the highest likelihood as MLE. Evaluating the

likelihood at a handful of points is a crude optimization technique. Nonetheless,

as doubling the density of search points did not increase the efficiency of Match, it

appears sufficient.

The performance of Match on real data for various settings of OCRIT are discussed

in Section 4.6.

4.3 The Entropy Test

As discussed in Section 3.4.1, CEPH-Genethon fingerprint bands are not uniformly

distributed across the gels. Rather, the distribution is bell-shaped with a long right

tail. Trinomial and Match give equal credit to all matchings. By chance alone, the

clustering of band lengths near the mean will produce spurious matches. Entropy

remedies this deficiency by using the empirical distributions from Figures B-10 and

B-11 to model band length.

Unlike the MLE-based Trinomial and Match, Entropy is based on the theory of

statistical entropy [57]. Consider a random variable that has the true distribution

Pil.H (V5IHo) under the null hypothesis, Ho. Let p*(4,) denote an empirical distribution

of observations of 4'. The entropy of these observations is defined as the expected
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value of the natural log of their probabilities.

KC = E(- lo g[p( )]) = log[p*()]pH o)d (4.20)

If C is small. the empirical observations p*(b) are consistent with Ho, and the data

do not contradict the null hypothesis. If K is too large, the null hypothesis must be

rejected.

Entropy takes this approach. Indicator random variables denoting the state of

each band (matched or not matched) play the role of 4' in Equation 4.20. The null

hypothesis is

Ho: Clones 1 and 2 do not overlap.

Intuitively, Entropy assigns a score for matching bands. Rarer bands receive a higher

score. If the total score is too high, indicating too much matching, Entropy rejects

the null hypothesis and declares the clones to overlap.

Assumptions of Entropy model

1. Band placement follows a homogeneous poisson process.

2. Every band may be assigned one of three designations:

(a) belonging only to clone 1,

(b) belonging only to clone 2,

(c) or belonging to both clone 1 and clone 2.

No errors are made in these assignments.

3. There are no false positive bands: every band is real.

4. There are no false negative bands: no bands are lost.

5. The six probe-clone digests are independent.

6. Clones are not chimeric.
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7. Band lengths follow the empirical distributions of Figures B-10 and B-11.

The notation from Section 2.2.2 is again used. For each of the six digests, let

"reference clone" denote the clone with more bands, and "comparison clone" denote

the clone with fewer bands. Considering each digest in turn, let xa1,x 2,...zan

denote the sizes of the a bands in the reference clone and xbj, b,.. ., zbn denote the

sizes of the b bands in the comparison clone. Let mbl, mb2,..., mbn indicate paired

bands in the comparison clone: mbi = 1 if comparison band i matches some band in

the reference clone.

Under the null hypothesis, the distribution of each match-indicating Bernoulli

random variable is known. Consider an arbitrary mi, corresponding to a band of size

xli. Let Pone denote the chance a single band from the reference clone happens to be

close enough to match this band. Equation 3.1 defines o(x), the band measurement

error. For each digestion, band length is assumed to follow a second order Erlang

distribution with mean T. As determined by empirical experimentation, Entropy

worked best with a four standard deviation window for matching.

Pone = f Xb'2 ) (2/x)2 e- (2/ xdx
Xbi -2o(-bi )

Let pany denote the chance any band in the reference clone lands close enough to band

xb to match it.

Pany = 1 - (1 -one)an

The mass function for the indicator random variable, mi, follows immediately,

1 -Pany mi = ,

and the function K(mi) provides the entropy of the mi.

(m) -log(pany), mi = 1

-log(1 - Pany), mi = 0
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The mean and variance of k(mi) are straightforward.

E (C (mi)) = (- log(pany))pany + (- lOg(1 - Pany))(l - Pany)

92(C(m)) =

((-log(pany))2 pany + (-log(1 - pany))2(1 - Pany))

-((- log(pan))pny + (- log(1 - pany))(l - Pny))2

Entropy sums the entropies of each indicator random variable. Though the mi are not

iid5, they do possess finite moments, and the Central Limit Theorem indicates their

sum converges in distribution to a Gaussian. For a test statistic, Entropy normalizes

their sum. The sums in Equation 4.21 are taken over all digests and all bands.

_ ZC(m-) - Z E[k:n(m )]C = :()- [ )] , Z(0, 1). (4.21)

Entropy uses the same approach as Trinomial and Match to match bands. Entropy

then computes K with Equation 4.21. If C is sufficiently large, K > CCRIT, Entropy

rejects the null hypothesis and declares the clones to overlap.

The performance of Entropy on real data for various settings of CCRIT are dis-

cussed in Section 4.6.

4.4 The KPN and THE Tests

The last two statistics, KPN and THE, are somewhat "black boxes." CEPH-Genethon

has only sketched their form in the literature. Section 2.6.2 presents this material.

Lacking the tests, THE and THE are evaluated through their performance on two sam-

ples of clone pairs obtained from CEPH-Genethon[31]. The first sample consists of

4500 random pairs of clones. The second sample consists of 3000 STS-linked pairs of

clones6.

The THE and KPN statistics could be combined to produce hybrid tests:

5Indeed, assigning different scores for matching different sized bands is the core idea of Entropy.
6 Test evaluation is discussed in Section 4.5.
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1. An overlap is significant if THE > T1 and KPN > T2.

2. An overlap is significant if THE > T1 or KPN > T2.

If the tests were independent, the false positive false negative rates for these hybrid

tests could be determined directly from the error rates of the two individual tests.

fp(THE > T1 and KPN > T2 ) = fp(THE > T1 ) fp(KPN > T 2 )

fn(THE > T and KPN > T2) = 1 - ( - fn(THE > T))(1 - f(KPN > T2))

fp(THE > T1 or KPN > T2) = 1 -(1 - f(THE > T))(1 - fp(KPN > T2 ))

fn(THE > T or KPN > T2) = f(THE > T1) f(KPN > T2)

As one would expect given the correlation of the Kpn and THE probes, THE and KPN

are linearly dependent, having a correlation of 0.65. Figure B-17 plots KPN against

THE scores.

This thesis does not consider the hybrid tests. The individual performance of KPN

and THE on real data for various settings of T1 and T2 are discussed in Section 4.6.

4.5 Evaluating the Tests

A test bed of clones was assembled to evaluate the pairwise fingerprint overlap tests.

Two sets of clone pairs were obtained from CEPH-Genethon with THE and KPN scores

attached. One set consisted of random pairs of clones, the other of STS singly-linked

pairs. These sets were supplemented with additional random and STS singly-linked

pairs. Both MIT and CEPH-Genethon unambiguoust STS content data were used

for these single linkages. Deficient clone pairs-pairs with a clone lacking length

or fingerprint data-were deleted. The final test bed consists of 16109 clone pairs.

Each clone pair is either random, R, or singly-linked, S. Each clone pair has CEPH-

Genethon test results, T, or does not, N. Table 4.5 indicates the breakdown of clone

pairs across these types. R outnumber S pairs, for the generation of S pairs is limited

by availability of unambiguous STS data. The surfeit of R pairs is helpful, however,

53



Table 4.1: Breakdown of Test bed clone pairs

for this thesis emphasizes the false positive error rate fp(HZ), which is determined by

test performance on R pairs.

4.5.1 Chance Matches

With over 11000 R pairs, there is the concern that some of these pairs, simply by

chance, might actually overlap on the genome. Such "R" pairs would be S pairs in

disguise, and increase the false positive rates of all the tests.

The following simple model indicates this concern is unfounded. Possibly one,

and at most two, of the 11000 R pairs should actually overlap. Let L denote the

clone length, here assumed to be constant. Let Pchim denote the probability a clone

is chimeric, modeled by two disjoint L/2 intervals. Let G denote the length of the

genome and 0 denote the length of the minimum common region needed to detect

overlap. Assume the clones are uniformly distributed across the genome.

The probability of the two clones in a R pair overlapping by chance decomposes
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into three cases.

P(clones match by chance) =

P(clones match by chancelneither clone chimeric)P(neither clone chimeric)+

P(clones match by chancelone clone chimeric)P(one clone chimeric)+

P(clones match by chancelboth clones chimeric)P(both clones chimeric)

(4.22)

The probabilities of the conditioning events are straight-forward.

P(neither clone chimeric) = (1 - Pchim) 2 (4.23)

P(one clone chimeric) = 2 (Pchim)(l - Pchim) (4.24)

P(both clones chimeric) = (Pchim)2 (4.25)

Consider two non-chimeric clones, representing the intervals [xl, xl + L] and [ 2, x 2 +

L] on the genome. If x- (L - ) < X2 < x, or if x1 < x2 < x + (L-

0), the two clones overlap. Given the assumption of uniformly distributed clones,

P(clones match by chancelneither clone chimeric) follows. Similar geometric argu-

ments produce the other two conditional probabilities.

P(clones match by chancelneither clone chimeric) = 1 - 2L(4. 2 (4.26)

P(clones match by chancelone clone chimeric) = 1- I 2LG (4.27)

P(clones match by chancelboth clones chimeric) = (1 - ) (4.28)

Figure B-18 presents Equation 4.22 as a function of 0 for parameter values represen-

tative of the human genome and the CEPH-Genethon clone library7. The Lander-

Waterman calculations of Section 2.8 indicate the minimal detectable overlap for

the CEPH-Genethon data using the CEPH-Genethon test exceeds 90% of the clone

7L = 0.9 mb, Pchim = 0.4, G = 3300, and 0 E [0...0.9] mb.
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length. For L = 0.9 mb, 0 = 0.8 mb, and Figure B-18 indicates less than one match-

by-chance is expected in 10000 R pairs.

As a result, the R pairs provide a sample of non-overlapping clones. The S pairs

provide a sample of overlapping pairs. As discussed in Section 2.5.1, random incidence

arguments indicate that STS-containing overlaps are larger than average.8

4.5.2 Using the Test Bed

The Trinomial, Match, and Entropy statistics were computed for each of the 16109

clone pairs. This computation took about 100 minutes on a Sparc Sun workstation;

the MLE search in Match consumed most of this time. For each test, the pairs were

sorted by the test value. (For KPN and THE, N pairs were omitted.) By scanning the

pairs in sorted order and counting R and S pairs, empirical estimates of fp(HX) and

f(H;.) were obtained for each threshold value for each test. Figures B-19, B-20, B-21,

B-22, and B-23 display false negative rates (indicated with a "+" symbol) and false

positive rates (indicated with a "o" symbol) for each test as a function of threshold.

Figures B-24, B-25, B-26, B-27, and B-28 plot the false positive against the false

negative rate for each test for each threshold, presenting the efficiency of each test.

Discontinuities in Figure B-20 reflect the grid search MLE maximization in Match.

4.6 Test Results

Figure B-29 presents the five efficiency plots overlaid for comparison. Entropy is

the most powerful test over a broad regime of false positive rates, for it achieves the

lowest false negative rate. THE is the next most powerful test, followed by Trinomial.

One interesting observation is that different tests perform better in different regimes.

Match, for example, outperforms Trinomial for false positive rates exceeding 1/2.

Figure B-30 presents an enlarged view of Figure B-29. For small false positive rates,

THE is most efficient, followed by KPN. Table 4.6 presents the tests' false negative rates

8 For the case of non-chimeric overlapping clones, the overlap region is uniform on [0, L] and has
mean length L/2. Conditioning on a STS in the overlap region increases the mean length to 2L/3.
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III f=1 I fi,= 1I f = 1 f= 1 I f = i I
THE 0.39 0.42 0.48 0.51 0.64
KPN 0.49 0.53 0.67 0.63 0.70

Entropy 0.39 0.43 0.53 0.57 0.80
Trinomial 0.59 0.60 0.70 0.75 0.88

Match 0.84 0.92 0.98 0.99 1.00

Table 4.2: False Negative Rates

as function of false positive rate.

4.7 Uses of Pairwise Overlap Tests

The utility of a statistical test must be evaluated in context. To conclude these

chapters on CEPH-Genethon fingerprint data and pairwise fingerprint overlap tests,

possible uses of these data and tests are discussed. This section draws upon MIT

experiments and analysis not treated in this thesis. The interested reader should also

consult Data ([19]), who considers the following material in much greater depth.

Ordered Contigs

The CEPH-Genethon fingerprint data are not strong enough to order clones within

unordered contigs. Two experiments support this claim. First, both manual and

automated restriction mapping efforts using the CEPH-Genethon data failed, even

when the clone ordering was known from reliable STS data. Second, Entropy was

unable to order a 50 clone contig from the MIT chromosome 22 mapping effort.

Entropy fractured the contig into many small pieces with spurious links between

them. 9

The problem, of course, could be Entropy, not the CEPH-Genethon data. More

likely, the blame rests on the poor quality of fingerprint data set. These data were

unable to support genomic mapping in 1991. These data, even when employed by the

9Entropy's overlap threshold was set to produce fp 0.001, fn, , 0.4.
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more sophisticated CEPH-Genethon tests, performed poorly on the pairwise overlap

problem, as shown in Table 4.6. It is impossible to give formal proof that these data

could not support mapping, but the failure of reasonable approaches indicate that

this is most likely the case.

Unordered Contigs

The CEPH-Genethon library consists of 33000 clones, or 5.5 x 108 clone pairs. With

five-fold genomic coverage, each clone overlaps about ten others, ignoring the dif-

ficulties created by chimeras. Suppose Entropy was able to detect small overlaps

(though from all appearances, it cannot), even at the fp = 1/5000 threshold. Of the

330000 pairs of overlapping clones, Entropy would detect 40%, or 130000. Of the

((23300)_ 10 x 33000) pairs of non-overlapping clones, Entropy would incorrectly de-

tect 1/5000, or 110000. With the same magnitude of true and false detects, overlaps

declared by Entropy are about as likely false as true.

For this reason, Entropy does not appear capable of producing valid unordered

contigs by comparing all pairs of clones in the library. The CEPH-Genethon test also

failed at this task in 1992. Again, poor quality data is the likely culprit.

Single Linkage

The CEPH-Genethon data can assist with the single linkaget problem. Given two

STSs with only one clone in common, it is not clear whether the STSs are close on

the genome or whether the linking clone is chimeric. Let A denote the set of clones

hit by STS 1 and B denote the set of clones hit by STS 2. Single linkage implies

IA n Bj = 1. As J]A and BI are usually small (on average, each STS hits fewer than

8 clones), there are only a small number of pairs (i,j): i E A, j E B. A pairwise

fingerprint overlap test could examine all such pairs. If enough pairs appeared to

overlap, the two STSs are likely to be close on the genome.
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Disambiguating STS Addresses

STS content is determined using pools of clones. and experimental error generates

incomplete or ambiguoust addresses. Entropy has been used successfully to resolve

some of these cases by finding overlap between definite and ambiguous clones. In

the laboratory, this technique has resolved roughly half of ambiguous addresses. The

error rate of these resolved addresses is less than 5%, the unpooled YAC-STS false

negative rate. [28]

4.8 Conclusion

The CEPH-Genethon fingerprint data are useful for small tasks. The CEPH-Genethon

fingerprint data are of insufficient quality to support genomic mapping, the very pur-

pose for which they were generated. More sophisticated statistics such as KPN and

THE outperform simpler statistics for the pairwise overlap problem, especially when a

low false positive rate is required. Of the simpler tests, Entropy performs surprisingly

well. The overall lackluster performance of these tests is most likely due to poor data

quality.
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Chapter 5

Mapping with ALU-PCR Probes

This chapter examines the CEPH-Genethon ALU-PCRt mapping effort. Unlike

the fingerprint-based mapping strategies described in previous chapters, the CEPH-

Genethon ALU-PCR approach uses probes to identify overlapping clones. Section

5.1 reviews the probe-based mapping literature. Section 5.2 introduces the CEPH-

Genethon ALU-PCR mapping project. Section 5.3 highlights problems with the re-

sulting map and Section 5.4 attempts to remedy them.

5.1 Probe Mapping Literature Review

Some mapping efforts employ "single-copy" probes, probes occurring only once on

the genome. Others use "multiple-copy" probes, probes with several copies scattered

across the genome. The distinction is important for mapping algorithms.

5.1.1 Mapping with Single-Copy Probes

With perfect data, non-chimeric clones, and single-copy probes, the problem of probe-

ordering reduces to the consecutive ones matrix problem. This problem may be solved

in linear time using P-Q trees [12]. Unfortunately, this approach does not generalize

to imperfect data or chimeric clones [26]. From the perspective of worst-case compu-
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tational complexity, realistic probe-based mapping problems are NP-complete [25].1

Nonetheless, given data of sufficient quantity and quality, heuristics perform well on

real instances of these problems.[2]

Early projects ordered probes without formal optimization methods, relying in-

stead on expert judgment to produce reasonable-looking orders ([24], [49]). To order

probes across the human Y chromosome, Foote et al. solved a "noisy" consecutive

ones problem by eye. They manipulated their STS-YACt incidence matrix manually

with a microcomputer spreadsheet program to generate their map. [23].

Mott et al. adopted a TSP-based optimization probe-ordering strategy for the S.

Pombe project [38]. Let Ci denote the set of clones hit by STS i. Mott et al. defined the

distance between STSs i and j as the fraction of clones hit by only one of the two STSs:

d(i, j) = ({Ci U Cj i- Ci n Cj)Ici U Cjl.2 If the STSs in the permutation are labeled

(S, 2 ,1... Sn) the objective function takes the form C = EI-l d(i, i + 1). Using

two-opt and simulated annealing [29], the S. Pombe team sought the permutation

with the shortest TSP path. This TSP-style objective function for probe ordering

has been strongly criticized by other researchers ([2], [22]).

The CEPH-Genethon Chromosome 21 project ([13], [14]) also used simulated

annealing to order STS probes. Two-opt, three-opt, single probe shift, and sin-

gle probe swap operators defined the neighborhood of a permutation. Simulated

annealing was used to minimize the total sum of the gaps across the clones.[46]

Given a permutation with STSs labeled (s1, s2, ... , s), let fi denote the first STS

in clone i: fi = min(j : sj hits clone i). Let i denote the last STS in clone i:

i := max(j : sj hits clone i). Let ni denote the number of STSs hitting clone i. The

cost of a permutation is the sum of its gaps: C = Ei(lI - i- ni + 1). This objective

function treats gaps as false negatives. It improperly models deletions, where one

event removes a series of adjacent STSs.

Karp et al. offer a more sophisticated approach to single-copy probe ordering via

an approximate likelihood function. A permutation is penalized for false positives,

1From the same complexity results, fingerprint mapping is also hard in the worst case.
2 Simple algebra shows this function is a metric: d(i, j) > 0; d(i, j) = d(j, i); and d(i, j) + d(j, k) >

d(i, k).
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false negatives, deletions, and chimeras. Simulated annealing with a modified two-

opt operator is used to find likely permutations.[3] Karp et al. also investigated a

simpler algorithm relying on a Hamming-distance TSP to minimize gaps. Surpris-

ingly, its performance rivaled that of the likelihood approach in ordering simulated

data. This unexpected phenomenon lead Karp et al. to conjecture that instances

of the probe-ordering problem fall into one of two regimes. Instances in the first

regime are characterized by sufficient information. For these, almost any reasonable

algorithmic strategy will succeed in ordering probes. Instances in the second regime

are characterized by insufficient information, corresponding to noisy or scarce probe-

clone incidence data. No algorithm, no matter how sophisticated, can produce good

probe orderings from insufficient information. If Karp's conjecture is true, the crux

of probe-ordering is not algorithms, but data. [2]

The MIT-Whitehead Genome Center has used a greedy algorithm to assemble

doubly-linked contigs on human chromosome 22, then ordered these contigs with

an approximate likelihood function and tabu search[45]. Most recently, the advan-

tages of using radiation hybrid mappingt for ordering single-copy probes are under

investigation[l8].

Arratia et al. extended the Lander and Waterman fingerprint analysis [34] to ad-

dress single-copy probe mapping[4]. With clone starts and probes following indepen-

dent poisson processes, their resulting model bears some resemblance to an M/G/oo

queuing system [36].

5.1.2 Mapping with Multiple-Copy Probes

With single copy probes, each probe marks a single spot on the genome. Multiple

copy probes do not enjoy this property.

One approach for using multiple-copy probes is to condense them into single-

copy probes. The E. Coli project (Section 2.4) used multiple-copy restriction sites

as probes, but combined them in blocks of six consecutive sites to form single-copy

entities. Similarly, most fingerprinting approaches consider all of a YAC's fingerprint
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bands together in an attempt to create a single-copy marker.3

In other situations, multiple-copy probes cannot be condensed into single-copy

probes and require algorithms that explicitly address their multiplicities. Karp [2] and

Newberg ([41]. [40]) have developed a suite of such algorithms employing likelihood-

based approaches. They model the multiple occurrences of each probe with a poisson

process and assume non-chimeric clones. They employ dynamic programming to

calculate the likelihood of a probe ordering in reasonable time, and they use heuristic

search to find likely orderings.

The multiple-copy and single-copy probe-ordering problems are NP-complete. If

one takes Karp's multiple-copy and single-copy algorithms as representative heuris-

tics, both the multiple-copy and the single-copy probe-ordering problems appear of

comparable complexity in practice. Neither problem is inherently more difficult than

the other; however, they do require different algorithmic approaches. Using a single-

copy algorithm to order multiple-copy probes would yield a dense tangle of spurious

connections. This appears to have occurred in the CEPH-Genethon ALU-PCR map-

ping project.

5.2 The CEPH-Genethon ALU-PCR Map

The CEPH-Genethon ALU-PCR map is an integrated physical map of human genome

combining four different types of data. The Weissenbach genetic mapt [56] provides

the physical map's backbone. STSt content data [15] bind genetically mapped STSs

to clones. Fingerprints [8] and ALU-PCR probes ([14], [15]) establish overlap between

clones. FISH data attach the genetic map to existing cytogenic maps.

These data, along with a "proposed data analysis strategy" for their use, comprise

the CEPH-Genethon map [15]. The quality of this map rests on the quality of these

data and the quality of this proposed strategy. Section 5.2.1 reviews the CEPH-

Genethon 30 March 1994 data release, and Section 5.2.2 reviews the proposal for

3In contrast, Rigault discusses local mapping using individual bands as single-copy probes within
a small region.[46]
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their use.

5.2.1 The CEPH-Genethon Datasets

Clones

The ALU-PCR map utilizes the CEPH-Genethon megabase YAC library, first devel-

oped for the CEPH-Genethon fingerprint mapping effort (Chapters 2, 3, and 4). The

library contains 33,000 clones averaging 0.91 mb in size. Over 40% of these clones

are likely to be chimeric ([8], [47]); over 10% have probably deleted some portion of

their DNA insert[23].

STSs

2100 markers were selected from Weissenbach's set of genetically mapped micro-

satellite markers to provide wide coverage of the genome. These markers were con-

verted to STSs and screened against the YAC library using pooled testing.

FISH Data

500 YACS containing genetically mapped STSs were positioned on metaphase chro-

mosomes using FISH, providing links between the genetic map and cytogenic maps

of the human genome. The spacing between these links averaged 7.4 cM. Difficulties

arising from chimerism were not discussed. It is unclear whether only clones with a

single FISH localization were selected or whether only the strongest FISH localization

was accepted.

Fingerprints

To a limited degree, the CEPH-Genethon THE and KPN scores discussed in Chapter

4 were used to determine clone-clone overlap. No attempt was made to remove the

spikes in the fragment length distribution (Section 3.4.1). Overlaps corresponding to

contaminated plates were discarded. [47]

64



.ALU-PCR

The ALU-PCR data are the heart of the CEPH-Genethon project, for these data

convert the genetic map into a physical map. This dataset consists of 6,900 ALU-

PCR YAC-probes screened against a 25,000 YAC subset of the library.

ALU-PCR uses ALU-flanked primers to initiate the polymerase chain reactiont.

A megabase YAC contains numerous ALUs. On average, 10 ALU pairs are close

enough to sustain a PCRt reaction across the gap between them [28]. A YAC with

k such pairs produces k reaction products. These k products could be separated by

gel electrophoresis into k distinct ALU-PCR probes. CEPH-Genethon avoided this

labor-intensive separation, choosing instead to maintain all k products in one mixed

probe. Theoretically, this complex probe mixture could detect a copy of any one of

the k DNA products it contains. In reality, ALU-PCR reaction products compete for

amplification. Slower products may be lost due to rate kinematics. CEPH-Genethon

used YAC pooling to screen each ALU-PCR probe against the library. Due to ho-

mologous regions of the genome, reaction products can occur in multiple spots across

the genome. ALU-PCR probes derived from chimeric YACs also may detect multiple

regions of the genome.

A simplified example presents some of the difficulties that can arise in the pooled

ALU-PCR probe screenings. Figure B-31 illustrates this hypothetical case. This toy

library consists of four YACs: A, B, C, and D. YAC A overlaps YAC B. YACs C

and D overlap no other YACs. There are five ALU-PCR reaction products, denoted

P1 , P2, P3, P4, and P5. YAC A contains {P1,P2}, YAC B contains {P2,P 3,P4 }, and

YAC C contains P5 . Due to genomic homologies, YAC D also contains a copy of

reaction product P4, even though D does not overlap A or B.

YAC B is used to generate an ALU-PCR YAC probe, Probe(B). Due to kinematic

competition among the reaction products in PCR amplification, Probe(B) contains

only reaction product P4. This probe is then screened against the library using a

2 x 2 pooling scheme. 4 As shown in Figure B-31, the pools are numbered 1, 2, 3,

4 Screening four YACs with 2 x 2 pooling requires four tests, so this pooling saves no work.
This example requires pooling, however, to demonstrate difficulties in the ALU-PCR screening
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and 4 and contain YACS {A,C}, {B,D}, {A,B}, and {C,D}, respectively. Pool

1 contains reaction products {P1 ,P2 , P5 } and is not detected by Probe(B). Pool 2

contains {P2, P3 , P4} and is detected by Probe(B). Pool 3 contains {P, P2, P3, P4}

but is not detected by Probe(B) due to competition among the reaction products,

or a false negative result. Pool 4 contains {P4 , }P5 and is detected by Probe(B).

From the positive hits in pools 2 and 4, it is deduced that Probe(B) hits YAC D.

Accordingly, it is assumed that YAC B and YAC D probably overlap, and that YAC

B probably does not overlap YAC A or YAC C.

This example illustrates a YAC probe that does not detect its origin clone (YAC

B), that does not detect a clone it should (YAC A), and that does detect a clone it

should not (YAC D). The example is somewhat contrived due to its small size. In

the CEPH-Genethon ALU-PCR experiments, the pools were large (possibly 30 YACs

per pool) and the YACS averaged 10 reaction products. With hundreds of reaction

products in each pool, scenarios similar to this example were plausible.[28]

In the CEPH-Genethon ALU-PCR data, 40% of the YAC probes did not detect

their origin clones. Competition among the ALU-PCR reactions was the likely cause.

The percentage of false negative and false positive probe-clone hits cannot be obtained

directly from the data; Section 5.3 approaches these rates indirectly.

Chromosomal Assignments

An ALU-PCR YAC probe derived from a chimeric YAC [7] or containing repetitivet

DNA may hybridize to many locations on the genome. Recognizing that the ALU-

PCR probes would not all be single-copy, CEPH-Genethon screened each probe

against a panel of monochromosomal hybrids ([39], [20]) to detect multiple-copy

probes. As shown in Table 5.1, the results of these screenings indicate that at least

17% of the probes are multi-copy.

A simple model gives some insight into this process. Assume each probe occurs

on X + 1 chromosomes, where X is a Poisson random variable with mean A. Assume

that if a probe is not on a chromosome, it is never detected on that chromosome, and

experiments.
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Number of Predicted by
Chromosomal Fraction Simple Model,
Assignments of Probes p = 0.50, A = 0.7

1 47 % 48 %
2 13 % 14 %
3 3 % 2 %

4+ 1 % 0%
0 (assignment failed) 36 % 35 %

Table 5.1: Chromosomal Assignments of CEPH-Genethon ALU-PCR Probes

probe is on a chromosome, it is detected with probability p, iid.5 As shown in the last

column of Table 5.1, this model matches the observed data well for p = 0.50, A = 0.7.

Under these assumptions, half of the probes (1 - e-0 7 = 0.5) are multiple-copy.

5.2.2 The CEPH-Genethon Strategy

The following definitions are useful for describing the CEPH-Genethon ALU-PCR

map construction strategy.

Definition 1 An ALU-PCR probe is valid on a path on chromosome k if

(a) the probe was uniquely assigned to chromosome k,

(b) the probe was assigned to chromosome k and other chromosomes, or

(c) the probe failed chromosomal assignment.

Definition 2 On chromosome k, two YACs overlap if

(a) they share an STS,

(b) at least of the YACs is an ALU-PCR probe valid for chromosome k that

detects the other, or

(c) fingerprint data indicate overlap.

5 This simple model is imperfect. The poisson model does not properly model repetitive DNA,
and iid deletions do not properly model weak probes.
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Definition 3 A YAC is anchored to a genetic locus if it is hit by an STS at the locus.

Definition 4 A tiling path is a minimal path of overlapping YACs between two STSs.

Definition 5 The length or level of a path is the number of YACs on the path. 6

Definition 6 Two genetic loci are connected at level m if there exists a tiling path

of length m or shorter between them.

Definition 7 A region of a chromosome is covered at level m if the region is flanked

by a pair of loci which are connected at level m.

Cohen et al. proposed the following strategy to use the CEPH-Genethon ALU-

PCR data to create a physical map of the human genome[15].

Rule 1 Accept the genetic map as correct.

Rule 2 Use genetically mapped STSs to anchor genetic loci to YACs.

Rule 3 Use anchored YACs and tiling paths to connect STSs within 10 cM on the

same chromosome.

Rule 4 Provide a computer program, QUICKMAP[48], to provide all tiling paths of

a given length between any two loci within 10 cM on the same chromosome.

Rule 5 Report coverage by chromosome and path level, as well as total genomic

genetic coverage by path level.

A graph theoretic approach is helpful for understanding the CEPH-Genethon map.

Consider a family of undirected graphs Gk = (Nk, Ak), one for each chromosome k. A

YAC is valid for chromosome k if the YAC is an ALU-PCR probe valid for chromosome

k or if the YAC is not an ALU-PCR probe. For each chromosome k, the nodes of

Gk are all STSs and all YACs valid for chromosome k. The arcs of Gk correspond to

positive hybridizations: an arc (i,j) links STS i to YAC j if STS i hits YAC j, and

an arc (1, m) links YAC I to YAC m if Probe(l) hits YAC m.

60Only YACs are counted; for example, LOCUS 1 -. STS 1 - YAC 1 - YAC 2 -. YAC 3
STS 2 LOCUS 2 is a level 3 path.
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5.2.3 Reported Results

Tlo evaluate the CEPH-Genethon map for this thesis, the CEPH-Genethon rules were

applied to the CEPH-Genethon data to replicate the CEPH-Genethon map construc-

tion process. Valid tiling paths were constructed between all pairs of STSs using

breadth-first search in the Gk graphs[l]. The coverage of each chromosome and of

the entire genome were computed using the CEPH-Genethon definitions. Fingerprint

overlaps were excluded to focus exclusively on ALU-PCR connections. Using these

rules and these data, it was found that paths of level 1, 3, 5, and 7 provided genomic

coverages of 31%, 49%. 65%, and 79%, respectively.

Cohen et al. [15] reported genomic coverages of 11%, 30%, 70%. and 87% for

paths of lengths of length 1, 3, 5, and 7. As Cohen's article utilized fewer probes and

fewer STSs, lower coverage was expected. Lower coverage was observed for level 1

and level 3 paths. However, the coverages for level 5 and level 7 paths reported by

Cohen exceed the level 5 and level 7 coverages calculated for this thesis by 5%. This

anomaly might have resulted from omitting fingerprint overlaps from the map for

this thesis. An alternative explanation is that CEPH-Genethon relied upon expert

intervention to obtain higher genomic coverage in their map.

5.3 ALU-PCR Map Evaluation

This thesis duplicated the CEPH-Genethon ALU-PCR map creation process so that

the quality of the resulting map could be investigated. Much of the resulting map

appears of low quality. Section 5.3.1 presents obvious problems with the map con-

struction strategy. Section 5.3.2 presents obvious problems with the map.

5.3.1 Problems with the CEPH-Genethon Strategy

Problem: Definition 1

The CEPH-Genethon logic behind Definition 1 is that probes which meet this criterion

for chromosome k "did not contradict genetic position of the two neighboring STSs."
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[15] Definition 1 is astoundingly liberal. As noted in Table 5.1, over one third of the

probes lack chromosomal assignment. Definition 1 allows these probes to function as

wild-card probes, valid on any chromosome. Probes with multiple assignments may

be used on all chromosomes to which they were assigned. This definition indicates

CEPH-Genethon's awareness that many ALU-PCR probes were multi-copy.

Problem: Definition 2b

If the ALU-PCR probes were single-copy, Definition 2b would make sense: a single

shared probe would be sufficient to establish overlap between two YACs. The ALU-

PCR probes, however, are not single-copy. Definition 2b applies a strategy valid for

single-copy probes to multiple-copy probes; in doing so it errs gravely. As conjec-

tured in Section 5.1.2 and demonstrated in Section 5.3.2, a dense tangle of spurious

connections is the result.

Problem: Definition 4

Definition 4 is not incorrect per se: it simply inductively applies the notion of over-

lapping clones from Definition 2 to form paths. However, as Definition 2b creates

spurious single links, Definition 4 explodes these links outward into spurious trees.

Problem: Definition 6

Definition 6 provides a very liberal definition of connected loci. Consider three ad-

jacent ordered genetic loci, A, B, and C, with corresponding STSs a, a2, bl, cl, c2,

C3 , and C4.7 Suppose a path, 7, exists between STSs al and cl, but no paths exist

between any of the other 13 inter-loci STS pairs.8 Path P is problematic for two rea-

sons. First, P is not supported by additional paths between A and C. Second, as no

path links al to b1 or b1 to cl, P passes from A to C without visiting B. Nonetheless,

following Definition 6, path P is sufficient to cover the A <- C genetic interval.

7A set of STSs defines a single locus if each STS in the set genetically maps to the same location.
8 {albl, alc 2, aic 3, alc 4, a2bl, a2c1, a2c 2, a2c 3, a2c 4, blcl, blc2, blc3 , blc4} = 13 STS pairs.
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Problem: Definition 7

As Definition 6 allows covering paths to skip STSs, Definition 7 allows covering paths

to skip intervals. Consider four adjacent ordered genetic loci: A, B, C, and D.

Covering the interval A + D is sufficient to cover the intervals A - B, B -+ C, and

(C - D, regardless of their own independent coverage status. 9

Problem: Rule 3

CEPH-Genethon provides the following rationale for Rule 3: "...by neighboring

STSs, we refer to all markers located within a specific interval. Here at level 1,

this interval is 10 cM. °0 This allows us to circumvent possible local inversions in the

genetic map." [15] However, a 10 cM region on the Weissenbach map is considerable,

representing more than local inversions of a few markers. This wide window, com-

bined with Definitions 6 and 7, permits the coverage of large genomic regions without

acknowledging skipped intervals beneath.

5.3.2 Problems with the CEPH-Genethon Map

Problem: Chromosomal Assignments

Because of Definition 1, the chromosomal assignments of the ALU-PCR probes play

an important role in creating paths. Table 5.1 presented a summary of these assign-

ments. The probe assignments may be used to provide chromosomal assignments for

YACs, giving each YAC the assignments of the probes hitting it. Similarly, these

derived chromosomal assignments for YACs may be used to provide chromosomal

assignments for STSs, giving each STS the chromosomal assignments of the YACs it

hits. In principle, each STS should possess only one chromosomal assignment. Ta-

ble 5.2 presents the results of cascading chromosomal assignments up from probes

through clones to STS. The last row, "ANY," denotes the full set of chromosomes.

9Assume A and D are within 10 cM, so Rule 3 is satisfied.
"Despite this sentence's insinuation to the contrary, if one accepts the computer program

QUICKMAP as the definitive specification of the CEPH-Genethon ALU-PCR mapping algorithm,
10 cM is maintained as the default maximum genetic gap for paths of all lengths.
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Number of Observed Implied Implied True
Chromosomal Fraction Fraction Fraction Fraction
Assignments of Probes of YACS of STSs of STSs

1 47 % 15 % 5 % 100 %
2 13 % 11 % 2 %
3 1 3 % 9% % _1%

AN Y 36 % 52 % 1 87 %o

Table 5.2: Implied Chromosomal Assignments

Such assignments are the result of "wild-card" probes, probes lacking chromosomal

assignment. Table 5.2 indicates the Gk graphs are locally highly connected: 52%

of all YACs and 82% of all STSs are one probe away from every chromosome. The

genome is large. STSs and YACs are extremely small. STSs and YACs should not

be able to reach anywhere on the genome with a path of one probe.

Problem: Bad Paths

Applying the CEPH-Genethon path construction rules to the CEPH-Genethon ALU-

PCR data produces numerous bad paths. The spurious local connections in the Gk

graphs explode outwards upon application of Definition 4, becoming tangled forests

of spurious trees. Figure B-32 illustrates this for one probe, 706d7. Probe 706d7

can reach fourteen chromosomes in paths of 3 YACs or less. Note that every path

conforms to the CEPH-Genethon rules. Figure B-33 presents a histogram of the

number of chromosomes each ALU-PCR probe can reach with valid paths of three

IYACs or less. For example, probe 706d7 is one of the probes represented by the

histogram bar at 11. Figure B-33 indicates that probe 706d7 is not exceptional in

its ability to reach many chromosomes in three YACs; many probes are within three

'A(Cs of many chromosomes.

If many probes are close to many chromosomes, it is likely many probes are

near many other probes. To investigate this, all same-chromosome STS pairs were

grouped by inter-STS genetic distance. The cumulative fractions of connected pairs

as a function of path length for each group were calculated. These are presented in
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Figure B-34. This potent diagram raises four issues.

First, note the lowest curve corresponds to STS pairs greater than 50 cM apart.

A generally accepted rough equivalence is one centiMorgan equals one megabase.[44]

Though recombinational hot-spots or unusually long YACs may change this ratio

slightly, this equivalence corresponds to a ratio of one YAC for each centiMorgan."

A path spanning 50 c using only ten YACs is almost certainly spurious. As shown

in Figure B-34, such paths abound in the Gk. Indeed, almost 80% of the 46000 STS

pairs greater than 50 cM apart are bridged by paths of 10 or fewer YACs.

Second, for longer paths, the number of paths appears independent of genetic

distance. The curves corresponding to STS pairs within 5-10 cM, 10-20 cM, and

20-50 cM fall nearly on top of the 50+ cM curve. If all paths were valid, one would

anticipate that short paths would connect a greater fraction of shorter genetic gaps

than longer genetic gaps. This is not case for paths above 5 cM, indicating they are

largely spurious. The anticipated pattern is observed for shorter gaps, suggesting

than the set of paths linking STSs within 5 cM contains a significant fraction of valid

paths.

Third, if the lowest curve of Figure B-34 corresponds to spurious paths, and if the

spurious path process is independent of inter-STS distance, then this curve provides

an estimate of the spurious path rate. In turn, this rate may be used to calculate the

expected number of incorrect paths for each length and distance. By subtracting the

expected number of incorrect paths from the observed number of paths, Figure B-34

may be adjusted to present the expected cumulative fraction of valid paths. 12 Figure

B-:35 plots the results of these calculations. Again, very few paths connecting STSs

more than 5 cM apart are valid. Further, for STSs within 5 cM, most true paths

involve four or fewer YACs. Accepting longer paths, even between close STSs, does

not bring in many more valid paths.

1lThis conversion is conservative for two reasons. First, YACs average less than 1 mb in length.
Second, adjacent YACs on paths must overlap, making the genetic distance they cover smaller than
the sum of their lengths.

12 If the expected number of incorrect paths exceeded the number of paths observed, all of the
observed paths were designated incorrect: E(nvalid) max(0, ntotal - E(ni,,alid)). From this
definition, the 50+ cM curve in Figure B-35 is identically zero.
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Fourth, Figure B-34 indicates the number of spurious paths (most paths linking

STSs more than 5 c apart) explodes rapidly after length three or four. This rapid

phase-transition from low to high connectivity is one characteristic of random graphs

[11]. The Gk are highly structured, not random, graphs. Nonetheless, the Gk do

possess spurious ALU-PCR connections. The superposition of these bad arcs onto

the "true" Gk might yield graphs that behave like their random cousins.

Problem: Random Graph Behavior

A recent award-winning play, "Six Degrees of Separation," was named for the idea

that any two people know one another through a chain of six or fewer acquaintances.

Random graphs are known to have an analogous property: relatively short paths

connect most pairs of nodes.[10] Figures B-34 and B-35 indicate the Gk may have

this property as well.

To investigate the difference between the behavior of the Gk and the behavior of

random graphs, another set of graphs, the Gk, was assembled in the following way.

The CEPH-Genethon STS content data, the CEPH-Genethon genetic map, and the

CEPH-Genethon chromosomal assignments of ALU-PCR probes were left unchanged.

The ALU-PCR data, however, were replaced with random data, preserving the correct

number of hits per ALU-PCR probe. For example, in the true data, ALU-PCR probe

100g7 was assigned to chromosomes 9, 15, 21, and 22, and hit fourteen YACs: 734b10,

745g7, 770d6, 784e9, 800a4, 801a4, 829d2, 829d8, 830e12, 878c5, 899g9, 902g8,

921d9, and 928e3. In the scrambled data, ALU-PCR probe 100g7 remained assigned

to chromosomes 9, 15, 21, and 22, and still hit fourteen YACs. Now, however, the

fourteen YACs represent fourteen random draws from all the clones in the library.l3

These fourteen random YACs were 969e12, 639e8, 882e2, 983f11, 968d9, 899d10,

919c7, 907b4, 865d9, 689h5, 756c6, 684h9, 779g4, and 926e2.

Figure B-36 replicates Figure B-34 for the Gk, plotting the fraction of connected

STS pairs as a function of distance and path length. Figure B-36 is strikingly similar

13The YACs were independently drawn from the library of 25000 YACs, with replacement, using
a random number generator.
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to Figure B-34. The primary difference between the two plots is that the Gk contain

more short paths between near STSs than the Gk. Aside from paths between STSs

within 5 cM involving fewer than four YACs, with respect to connections between

STS pairs, the Gk behave like the Gk. In short, for most paths, the CEPH-Genethon

ALU-PCR map behaves like a random graph. This provides further evidence that

most of the paths longer than 5 cM and involving more than four YACs are invalid.

Figure B-37 presents genomic coverage using the CEPH-Genethonmap construc-

tion rules for Gk and Gk. The first 30% of this coverage is known to be correct, for

paths of length one correspond to STS content alone. Coverage in the Gk increases

slowly for paths of length two and three. then rapidly increases at path length four.

By length eight, the scrambled data cover as much of the genome as the real data.

In contrast, the coverage in real Gk increases more substantially for paths of lengths

two and three. This differential corresponds to the valid, short paths present in the

real data but missing in the scrambled data. Subsequent increases correspond to bad

paths present in both the real and the scrambled data.

Summary

The CEPH-Genethon map construction rules applied to the CEPH-Genethon ALU-

PCR data produce a map of poor quality. Definitions 1 and 2b treat multiple-copy

ALU-PCR probes as single-copy entities, creating many false connections. Definition

4 blows up these spurious paths into spurious trees. Rule 3 and Definitions 6 and

7 allow paths to skip intermediate markers and intervals. Most valid paths involve

fewer than four YACs and span less than 5 cM. With respect to connectivity and

coverage, the CEPH-Genethon map resembles a random graph.

5.4 ALU-PCR Map Remedies

The CEPH-Genethon ALU-PCR data are an invaluable resource for the human

genome research community. Nonetheless, the strategy that accompanies these data

leaves much to be desired.
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CEPH-Genethon realized the shortcomings of this early map. They have opted

to use it only as scaffolding for further STS screenings. 14 With a two- or three-fold

increase in the number of STSs, most intervals on the map would be covered by a

level one path. This would yield a pure STS-content map, a physical map that did

not rely on questionable ALU-PCR connections.

If used in a more prudent fashion, the ALU-PCR data can still prove useful to the

community before additional STSs are added. This section explores three conservative

strategies for using these data. The first alternative, Within5cM, modifies only Rule

3. The second alternative, NoWildcardProbes, modifies only Definition 1. The third,

Win5/NoWild, modifies both Rule 3 and Definition 1.

5.4.1 Alternative Strategy: Within5cM

Rule 3 uses a 10 cM window to define close genetic loci. As shown in Figure B-34,

this window is too liberal. The Within5cM strategy adopts all of the CEPH-Genethon

rules but modifies Rule 3.

Rule 3' Use anchored YACs and tiling paths to connect genetic loci within 5 cM on

the same chromosome.

Table 5.3 presents the genomic coverage that results from the Within5cM strat-

egy and the coverage that results from the original WithinlOcM strategy. Figure

B-38 plots these two measures and their difference. For paths of length one and

two, WithinScM enjoys almost the same coverage as WithinlOcM. For paths of length

three and longer, this difference increases, indicating that for longer paths the more

restrictive Within5cM strategy reduces genomic coverage considerably.

Using the same scrambled data as before, the Gk graphs were analyzed under

the Within5cM strategy. Figure B-39, analogous to Figure B-37 for the original

WithinlOcM strategy, plots real and scrambled coverage against path length for the

14 They are not anxious to perform this work themselves, however, and have asked the international
community-in particular, the MIT Genome Center-for assistance.[47]
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Original Strategy: Alternative Strategy:
Path Length WithinlOcM Within5cM

1 31% 29%
2 39% 36%

3 49% 42%

4 57% 46%

6 65% 49%

7 74% 54%

8 80% 62%

Table 5.3: Genomic Coverage

map generated with Within5cM. If the Within5cM strategy served to eliminates spu-

rious linking paths completely, the curve corresponding to scrambled coverage would

be essentially flat. As shown in Figure B-39, the observed curve is not flat. As

Within5cM permits spurious paths in the scrambled graphs, it most likely permits

spurious connections in the real graphs as well. This suggests the Gk will also contain

spurious paths at longer lengths under the Within5cM strategy. Coverage in these

scrambled graphs, however, increases more slowly with path length than in the orig-

inal WithinlOcM Gk graphs. This suggests that Within5cM removed some, but not

all, of the problems in the CEPH-Genethon map.

Adopting the Within5cM strategy and using only paths of three YACs or shorter

produces a total genomic coverage of 42%. This is less than half the of the 87%

coverage reported by Cohen et al. [15]

5.4.2 Alternative Strategy: NoWildcardProbes

Table 5.1 indicates that 36% of the ALU-PCR probes failed chromosomal assignment.

Under Definition c, such probes may be used to form paths on any chromosome.

To investigate the effect of these wild-card probes, the NoWildcardProbes strategy

prohibits their use entirely. All of the other CEPH-Genethon path construction rules

were adopted without change. In particular, the WithinlOcM strategy was used.

Definition 1" An ALU-PCR probe is valid on a path on chromosome k if
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Original Strategy: Alternative Strategy:
Path Length UseWildcardProbes NoWildcardProbes

1 31% 27%

2 39% 34%

3 49% 41%

4 57% 44%

6 65% 48%

7 74% 50%

8 80% 56%

Table 5.4: Genomic Coverage

(a) the probe was uniquely assigned to chromosome k, or

(b) the probe was assigned to chromosome k and other chromosomes.

(c') Probes failing chromosomal assignment are not valid for any chromosome.

Note the NoWildcardProbesstrategy discards 36% of the ALU-PCR data. Ta-

ble 5.4 compares the genomic coverage that resulted from the NoWildcardProbes

strategy with the coverage from the original strategy, UseWildcardProbes. Fig-

ure B-40 plots these same coverage statistics. As expected, the more restrictive

NoWildcardProbes strategy produces lower genomic coverage. However, the dif-

ference between UseWildcardProbes and NoWildcardProbes remains small until

paths of length two or three are reached. This again supports the earlier con-

clusion that longer paths are of suspect quality. It also supports the notion that

NoWildcardProbes was able to remove some bad paths without removing good ones

(the shorter ones).

Figure B-41 plots the cumulative fraction of connected STS pairs as a func-

tion of path length for each distance group for the NoWildcardProbes strategy.

This figure is quite different than Figure B-34, the analogous plot for the original

UseWildcardProbes approach. The highest curve in Figure B-41 corresponds to

intra-locus STS pairs. For the NoWildcardProbes strategy, the curve rises quickly

from 38% at level one to 53% at level four. It then rises slowly to 60% at level ten

and levels out. This indicates that the NoWildcardProbes strategy has curtailed the
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rapid explosion of intra-loci connections between level six and level nine that occurred

with the UseWildcardProbes strategy.

Figure B-43 plots the genomic coverage obtained using the NoWildcardProbes

strategy on the scrambled Gk data and the original Gk real data. Under the original

UseWildcardProbes strategy, the scrambled data enjoyed the same coverage as the

real data by level seven, as shown in Figure B-37. In contrast, under NoWildcardProbes,

the coverage of the scrambled data remains below the coverage of the real data.1 5 The

lower curve in Figure B-43 corresponds to coverage in the Gk, or spurious coverage.

This curve increases with path length, though it increases slowly. This indicates the

NoWildcardProbes strategy was unable to curtail all invalid paths.

An effective strategy would allow the coverage to increase with path length in the

real data without a corresponding increase in the scrambled data. Such a situation

would provide some confidence that the new paths gained with increasing path length

were valid.

5.4.3 Alternative Strategy: Win5/NoWild

The third alternative strategy, Win5/NoWild, combines the both of previous ap-

proaches to achieve this goal.

Definition 1"' An ALU-PCR probe is valid on a path on chromosome k if

(a) the probe was uniquely assigned to chromosome k, or

(b) the probe was assigned to chromosome k and other chromosomes.

(c"') Probes failing chromosomal assignment are not valid for any chromosome.

Rule 3"' Use anchored YACs and tiling paths to connect genetic loci within 5 cM

on the same chromosome.

15Precisely, the scrambled data yield lower coverage than the real data for paths of length eight
or less. It is possible these two curves meet at some length greater than eight.
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Figure B-44 presents coverage for this strategy. The lower curves corresponds to

the scrambled data. This curve remains effectively flat, rising only 5% from 29%

at level one to 35% by level eight. The upper curve corresponds to paths in the

real data. This curve rises more quickly, reaching 42% coverage by level eight. The

difference in coverage reflects the valid paths that exist in the Gk that do not exist

in the scrambled Gk.

Analogous to Figures B-34 and B-35, Figure B-42 adjusts Figure B-41 by sub-

tracting off the expected number of false paths for the NoWildcardProbes strategy.

The lowest curve, pairs 50+ cM apart, is zero by definition. Assuming most short

paths between STSs 20-50 cM pairs apart were also spurious, Figure B-42 indicates

that the Gk remain relatively free of spurious paths until level seven. For the sets of

STSs 0 cM, 0-2 cM, and 2-5 cM apart, the number of short connecting paths grows

until level four. After level four, the upper three curves in Figure B-42 level off.

Using the Win5/NoWild strategy, the Gk remain relatively free of likely-to-be-

spurious paths until level seven. The number of likely-to-be-correct short connecting

paths increases until level four, then levels off. This is an ideal situation: using

Win5/NoWild and paths no longer than four appears to have provided most of the

correct connections while avoiding most of the incorrect ones. This combined strat-

egy covered 38% of the genome reliably, considerably lower than CEPH-Genethon's

original reported 87% coverage.

The Within5cM strategy and level one paths covered 29% of the genome. Level one

paths correspond to STS-content mapping. After imposing the stringent Win5/NoWild

filter on the CEPH-Genethon ALU-PCR map to avoid unreliable paths. only 38% of

the genome is covered. The costly ALU-PCR data provide only an additional 9% of

reliable coverage. This analysis suggests that screening additional STSs instead of

ALU-PCR probes might have provided CEPH-Genethon with superior coverage at a

lower cost.
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5.5 Conclusion

This chapter has examined one recent probe-based mapping effort, the CEPH-Genethon

ALU-PCR project. This project used ALU-PCR probes to establish overlap between

YACs in the CEPH-Genethon megabase library. The project used these overlapping

YACs to bridge the intervals between genetically mapped STSs.

The ALU-PCR probes were not single-copy, as shown by the chromosomal assign-

ment data. Nonetheless, CEPH-Genethon adopted a map construction strategy that

assumed single-copy probes. As a result. the CEPH-Genethon map contained many

spurious connections and paths. Both close and distant loci were similarly connected

by short paths. In terms of coverage and connectivity, the ALU-PCR graph had

similar behavior to a random graph.

The strategy Win5/NoWild prohibits the use of wild-card probes and only allows

paths between loci within 5 cM. This approach appears to yield reliable paths up to

length four. When applied to the CEPH-Genethon data, this approach produced a

map covering 38% of the human genome. Most of this coverage was the result of

level one paths, where the ALU-PCR data played no role. In contrast, the original

strategy proposed by CEPH-Genethon extensively used ALU-PCR wild-card probes

to cover 87% of the genome unreliably.
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Chapter 6

Conclusion

This thesis has examined two methods for constructing genomic physical maps: fin-

gerprint mapping and hybridization probe mapping.

Fingerprinting methods enjoyed considerable success on projects of moderate size.

The E. Coli mapping effort is one such example. The method appears less suitable for

larger genomes. CEPH-Genethon undertook an ambitious set of experiments to map

the entire human genome with fingerprints. This fingerprinting effort cannot be called

a success. The project did not achieve its goal: it did not map the human genome. In

addition, these costly fingerprint data were library-specific. Unlike STS-content map-

ping, which is based permanent sequence-based landmarks, the fingerprint pattern

data apply only to the CEPH-Genethon megabase YACs. This library is chimeric

and unstable. Better cloning systems, such as BACs, are preferable for sequencing,

the next stage of the genome project. For the these reasons, it is likely the CEPH-

Genethon megabase YAC library will be discarded within the next five years. At

this point, the CEPH-Genethon fingerprint data will have no value. Even today, the

data appear riddled with errors. It is probable additional data errors remain unde-

tected. Nonetheless, the CEPH-Genethon THE and KPN overlap statistics performed

admirably for detecting pairwise overlap among the CEPH-Genethon YACs, given

the poor finerprint data quality.

This thesis represents the first independent use of the CEPH-Genethon fingerprint

data and the first independent assessment of the THE and KPN statistics. Three new
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statistics were proposed and implemented. The best of these, the Entropy statistic,

was slighlty less powerful than THE. However, even the simplest statistic, Trinomial,

performed within an order of magnitude of the elaborate CEPH-Genethon tests. This

suggests the limiting feature for detecting YAC overlap using the CEPH-Genethon

fingerprints is not algorithms, but data quality.

The Entropy statistic has proved useful in STS-YAC address disambiguation.

This use of the statistic has cut the number of disambiguation re-tests at the MIT-

Whitehead Genome in half, saving time and resources.

The last chapter of this thesis presented a first independent assessment of the

much-heralded CEPH-Genethon ALU-PCR map. This analysis indicates that the

CEPH-Genethon strategy for map construction is far too liberal. When applied to

the CEPH-Genethon ALU-PCR data, almost all of the the linking paths that result

are spurious.

This thesis provided a more conservative strategy, Win5/NoWild, for the CEPH-

Genethon data. This approach produced paths that appear mostly valid. On the

other hand, using the data in this manner drops genomic coverage from the 87%

reported by CEPH-Genethon to only 38%. The first 29% of this coverage was obtained

solely through STS-content and did not involve ALU-PCR overlaps at all.

Generating the fingerprint and ALU-PCR data must have been a costly and la-

borious process for CEPH-Genethon. This thesis suggests neither dataset justified

these expenditures. While a thesis composed of negative assessments of another's

data is mildly disheartening, it this process of independent verification that ensures

the honesty and integrity of scientific endeavors.
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Appendix A

Glossary

t A

ALU A repetitive sequence of DNA ubiquitous on the human genome.

ALU PCR A polymerase chain reaction using ALU-flanked primers.

ambiguous STS hit Due to pooled testing, one or more hybridizations may indicate

a set of clones, of which one or more contains the STS. The STS is said to "hit

ambiguously" each candidate clone in the set.

tB

basepair A single nucleotide. The quantum unit of distance in physical mapping.

Abbreviated "bp".

t C

CEPH The Centre d'Etude du Polymorphisme Humain. A research institution in

Paris.

chimera A clone with multiple DNA inserts spliced together.

chromosome A complete DNA molecule, confined to the cellular nucleus, containing

coding and non-coding regions.
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clone A replicating entity containing inserted DNA of interest.

complete restriction digest A restriction digest in which the DNA strand is cut

at every recognition site.

clone library A collection of clones.

contig Two or more overlapping clones that cover a contiguous region of the genome.

May refer to an ordered or unordered collection of clones, depending on context.

cytogenic location A location on a metaphase chromosome, typically denoted by

a band position and an arm designation (p or q).

t D

deletion The process of a YAC losing some or all of its insert. Certain regions of the

genome are thought to be more likely to be deleted when cloned into YACS.

diploid chromosome set Both members of each set of chromosome pairs. The

normal human diploid chromosome set contains 46 chromosomes (44 autosomes

and two sex chromosomes).

double linkage Two clones are "doubly linked" if they share two STSs. Double

linkage is one technique to avoid false links between STSs caused by chimeric

clones.

double restriction digest A restriction digest using two restriction enzymes at

once.

tE

electrophoresis See "gel electrophoresis."

enzyme A biological catalyst, often a protein.
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t F

FISH Fluorescent In-Situ Hybridization. A technique to visualize a probe hybridiz-

ing to a metaphase chromosome. Allows probe mapping at the cytogenic band

level of resolution.

four-cutter A restriction enzyme with a 4 bp recognition site.

t G

gel electrophoresis A technique to size tagged fragments of DNA using an electric

field (fixed or variable) and a gel medium. The electric force pulls fragments

though the medium, where a fragment's velocity is a decreasing function of its

length. After a fixed time, one uses the tag (often radioactivity or chemilumi-

nescence) to determine the position of each fragment within the gel; these final

positions indicate fragment size.

genetic algorithm A randomized heuristic optimization technique for combinato-

rial problems. Introduced by Holland in [27].

genetic map A map in which markers are linearly positioned along a chromosome

by natural crossover events in meiosis.

genome The complete DNA of an organism.

(GT)n probe A probe that detects the repetitive sequence "GTGT ... GT".

t H

haploid chromosome set One (randomly selected) member of each set of chromo-

some pairs. The normal human haploid chromosome set contains 23 chromo-

somes (22 autosomes and a sex chromosome).

hybridize The process hydrogen bonding of two single-stranded segments of DNA,

or of one single-stranded segment of DNA and one segment of RNA with comple-
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mentary sequences. A mechanism for discriminating, among many fragments,

those containing a segment of interest.

tI
inter-ALU PCR A polymerase chain reaction using ALU-flanked primers.

island Singleton clones and contigs covering the genome. Introduced in [34].

t K

kilobase 103 basepairs. Abbreviated "kb".

t M

megabase 106 basepairs. Abbreviated "mb".

metaphase chromosome A stage of cellular replication in which the chromosomes

condense into characteristic "X" arrangements, visible with light microscopy.

multiple restriction digest A restriction digest using several restriction enzymes

at once.

t N

nucleotide A single base. The quantum unit of distance in physical mapping.

to
oceans Genomic regions covered by no clones. Introduced in [34].

tP
PCR Polymerase Chain Reaction. An efficient mechanism for rapid amplification of

DNA between two primer sequences.

physical map A linear positioning of markers along a chromosome in terms of phys-

ical distances (for example, kilobases).
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probe An assayable marker on the genome.

t R

radiation hybrid mapping A physical mapping method analogous to genetic map-

ping in which random breaks in chromosomes subjected to radiation play the

role of crossovers in meiosis.

random-base DNA model A crude model of DNA sequence, in which the four

bases each occur with probability , independent and identically distributed, at

every site along the genome.

recognition site The particular sequence at which a given restriction enzyme cuts.

repetitive sequence A DNA sequence that repeats many times across a genome.

ALU is one such example on the human genome.

restriction digest The resulting inter-recognition site fragments obtained by cut-

ting a strand of DNA with a restriction enzyme.

restriction enzyme An enzyme that cuts DNA at a specific recognition site.

restriction map The spacing of restriction sites along a region of DNA.

I S

single linkage Two clones are "singly linked" if they have both have definite STS

hit in common.

six-cutter A restriction enzyme with a 6 bp recognition site.

STS Sequence Tagged Site. Typically, short sequences of DNA (100-500 bp) as-

sayable by flanking PCR primers. Usually selected to be single copy. Proposed

in [42].

single restriction digest A restriction digest using a single restriction enzyme.
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t 

unambiguous STS hit One or more hybridizations that indicate an unique clone

positive for the STS. (cf. "ambiguous STS hit")

t Y

YAC Yeast Artificial Chromosome, a type of clone. YACS permit large inserts (500

kb - 2000 kb) but are often chimeric and delete.
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Figures
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Figure B-:3: Bacterium .Map Sample (Kohara et al. 1987)
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Figure B-4: Chromosome 16 Map Sample (Stallings et al. 1990)
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Clone 889_a_1 :

enzyme EcoRI : Bands 4

9217 0.887 8453 0.818 7385 0.372 3491 0.151

enzyme PstI : Bands 4

12565 0.443 7653 0.289 6653 0.108 5847 0.112

enzyme PvuII : Bands 5

11503 0.334 7039 0.422 5770 0.526 3947 0.114 3160 0.114

Clone 889_a_2 :

enzyme EcoRI : Bands 1

17680 0.505

enzyme PstI : Bands 1

5687 0.394

enzyme PvuII : Bands 1

2622 0.917

Figure B-7: Original CEPH Data Format
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Clone 889_a_1

probe Kpn

enzyme EcoRI : Bands 4

9217 8453 7385 3491

enzyme PstI : Bands 4

12565 7653 6653 5847

enzyme PvuII : Bands 5

11503 7039 5770 3947 3160

probe THE :

enzyme EcoRI : Bands 10

16291 11769 10372 8892 69:

enzyme PstI : Bands 7

19295 12661 11117 2548 19'

enzyme PvuII : Bands 8

25076 17009 10738 8031 51!

Clone 889_a_2 :

probe Kpn :

enzyme EcoRI : Bands 1

17680

enzyme PstI : Bands 1

5687

enzyme PvuII : Bands 1

2622

probe THE :

enzyme EcoRI : Bands 0

enzyme PstI : Bands 0

enzyme PvuII : Bands 0

35 5901 5651 2554 2240 2070

92 1890 1591

59 4194 3626 2346

Figure B-8: Current CEPH Data Format
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Figure B-9: Optical Intensities of CEPH Fingerprint Bands
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Figure B-l': Fine Histogram of CEPH Fingerprint Band Size
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Figure B-13: YAC Lengths
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Trinomial Test. False Positive and False Neqative Rates
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Figure B-19: False Negative and False Positive Rates. Trinomia Test
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Figure B-20: False Negative and False Positive Rates, Match Test
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Figure B-21: False Negative and False Positive Rates. Entropy Test
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Figure B-22: False Negative and False Positive Rates, KPN Test
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Figure B-24: Efficiency, Trinomial Test
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Figure B-26: Efficiency, Entropy Test
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Test Etficrenc:es Comoared
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Figure B-29: Test Efficiencies Compared
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Figure B-30: Test Efficiencies Compared, Small False Positive Rate
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YAC B
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Figure B-:31: ALU Probe Screening Example
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Chromosomes Reacable in short paths rom pro 
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Figure B-:3:3: Chromosomes Reachled With Short Paths from P:obes
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Genomic Coverage
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Apparent Connected Pairs
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Figure B-42: Fraction of Truly Connected STS Pairs Using NoWildcardProbes

114



Genomic Coverage

60°,

50% ' 

40%; -

:VJL[

30%. >d3^"
10 M

Scranm.lea
cata. Jc3

20%. '.IL

o0%

O=-

! 2 3 4 _ .

Path Length

Figure B-43: Genomic Coverage Using NoWiildcardProbes. Real and Scrambled Data

Genomic Coverage

45%

40% _ -
35%

30,% ,__----__"

25°,'o25%

20?'

5 cm, NO WILD

5 cM, scrambled, NO WILD
10%

5%

1 2 3 4 5 6 7 8

Path Length

Figure B-44: Genonmic Coverage Using NoWildcardProbes and Within5cM, Real and
Scrambled Data

115



Bibliography

[1] Ravindra Ahuja, Thomas Magnanti, and James Orlin. Network Flows: Theory,

Algorithms, and Applications. Prentice Hall, Inc., NJ, 1993.

[2] Farid Alizadeh, Richard Karp, Lee Newberg, and Deborah Weisser. Physi-

cal mapping of chromosomes: a combinatorial problem in molecular biology.

Technical report, Computer Science Division, University of California, Berkeley,

September 1992.

[3] Farid Alizadeh, Richard Karp, Deborah Weisser, and Geoffrey Zweig. Physi-

cal mapping of chromosomes using unique probes. Technical report, Computer

Science Division, University of California, Berkeley, 1994.

[4] Richard Arratia, Eric Lander, Simon Tavare, and Michael Waterman. Genomic

mapping by anchoring random clones: a mathematical analysis. Genomics,

11:807-827, 1991.

[5] David Balding and David Torney. Statistical analysis of DNA fingerprint data for

ordered clone physical mapping of human chromosomes. Bulletin of ./Mathematical

Biology, 53:853-879, 1991.

[6] David Baltimore et al. DNA sequencing. Los Alamos Science, 20:151-159, 1992.

[7] Sandro Banfi, Susan Ledbetter, A. Chinault, and Huda Zoghbi. An easy and

rapid method for the detection of chimeric yeast artificial chromosomes. Nucleic

Acids Research, 20(7):1814, 1992.

116



[8] Christine Bellane-Chantelot, Bruno LaCroix, Pierre Ougen, et al. Mapping

the whole human genome by fingerprinting yeast artificial chromosomes. Cell,

70:1059-1068, 1992.

[9] C. Bellanne-Chantelot, E. Barillot. B. Lacroix, D. Le Paslier, and D. Cohen.

A test case for physical mapping of the human genome by repetitive sequence

fingerprints: construction of a physical map of 420 kb yac subcloned into cosmids.

Nucleic Acids Research, 19(3):505-510, 1991.

[10] Bla Bollobas. Random Graphs. Academic Press, Harcourt Brace Jovanovich,

New York. 1985.

[11] Bla Bollobas and Andrew Thomason. Random graphs of small order. In

M. Karofiski and A. Rucifiski, editors, Random Graphs 1983, pages 47-97. North-

Holland Mathematical Studies, 1985. 118.

[12] Kellogg Booth and George Lueker. Testing for the consequtive ones property,

interval graphs, and graph planarity using PQ tree algorithms. Journal of Com-

puter and System Sciences, 13:335-379, 1976.

[13] Ilya Chumakov et al. Continuum of overlapping clones spanning the entire human

chromosome 21q. Nature, 359:380-387, October 1992.

[14] Ilya Chumakov et al. Isolation of chromosome 21-specific yeast articficial chro-

mosomes from a total human genome library. Nature Genetics, 1:222-225, June

1992.

[15] D. Cohen, I. Chumakov, and J. Weissenbach. A first-generatiopn physical map

of the human genome. Nature, 366:698-671, December 16 1993.

[161 Necia Grant Cooper. The human genome project. Los Alamos Science, 20:1-337,

1992.

[17] Alan Coulson, John Sulston, Sydney Brenner, and Jonathan Karn. Toward a

physical map of the genome of the nematode Caenorhabditis Elegans. Proceedings

of the National Academy of Sciences USA, 83:7821-7825, October 1986.

117



[18] David Cox, Margit Burmesiter, E. Roydon Price, Suwon Kim, and Richard Mey-

ers. Radiation hybrid mapping: A somatic cell genetic method for constructing

high resolution maps of mammalian chromosomes. Science, 250:245-250, Octo-

ber 1990.

[19] Sougata Datta. Ceph fingerprints and their analysis. Master's thesis, Mas-

sachusetts Institute of Technology, Cambridge. Massachusetts, 1994. Operations

Research Center.

[20] P. J. DeJong et al. Human chromosome-specific partial digest libraries in A and

cosmid vectors. In Human Gene Mapping 10, volume 51, page 985, New Haven

conference, 1989. Cytogenics and Cell Genetics.

[21] Alvin W. Drake. Fundamentals of Applied Probability Theory, chapter 4, pages

123-153. McGraw-Hill Publishing Company, 1967.

[22] James Fickett and Michael Cinkosky. A genetic algorithm for assembling chromo-

some physical maps. In H. Lim, J. Fickett, C. Cantor, and R. Robbins, editors,

The Second International Conference of Bioinformatics, Supercomputing, and

Complex Genomic Analysis, pages 273-285, New Jersey, 1992. World Scientific.

[23] Simon Foote. Personal Communication, January 1994.

[24] Simon Foote, Douglas Vollrath, Adrienne Hilton, and David Page. The human Y

chromosome: overlapping DNA clones spanning the euchromatic region. Science,

258:60-66, October 2 1992.

[25] M. Golumbic, H. Kaplan, and R. Shamir. On the complexity of dna physical

mapping. Technical Report 271, The Moise and Frida Eskenasy Institute of

Computer Sciences, Tel Aviv University, Israel, January 1993.

[26] David Greenberg and Sorin Istrail. Algorithmic analysis of physical mapping

in the presence of chimeric clones: Progress report. Technical report, Sandia

National Laboratory, Algorithms and Discrete Mathematics, May 22 1993.

118



[27] John Holland. Adaptation in Natural and Artificial Systems. University of Michi-

gan Press, Ann Arbor, Michigan, 1975.

[28] Tom Hudson. Personal Communication, 1994.

L29] S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by simulated annealing.

Science, 220(4598):671-680, May 13 1983.

[30] Yuji Kohara, Kiyotaka Akiyama, and Katsumi Isono. The physical map of the

whole E. Coli chromosome: Application of a new strategy for rapid analysis and

sort of a large genomic library. Cell, 50:495-508, July 31 1987.

[31] Bruno LaCroix. Personal Communication, 1994.

[32] Bruno Lacroix and Jean-Jacques Codani. Computational aspects of human

genome physical mapping. Technical Report 1560, INRIA, France, 1991.

[33] Bruno Lacroix and Jean-Jacques Codani. Physical mapping of the human

genome: computational aspects. Technical report, CEPHB-Genethon, INRIA,

Paris, France, 1992.

[34] Eric S. Lander and Michael S. Waterman. Genomic mapping by fingerprinting

random clones: A mathematical analysis. Genomics, 2:231-239, 1988.

[35] Richard Larsen and Morris Marx. An Introduction to Mathematical Statistics

and Its Application, chapter 5, pages 259-287. Prentice-Hall, Englewood Cliffs,

New Jersey, 2 edition, 1986.

[36] Richard Larson and Amadeo Odoni. Urban Operations Research, chapter 3, pages

77-162. Prentice-Hall, Englewood Cliffs, New Jersey, 1981.

[371] Eugene Meyers. Advances in sequence assembly. Technical report, Department

of Computer Science, University of Arizona, Tucson, Arizona, 1992.

[38] Richard Mott and Andrei Grigoriev. Programs for analysing hybridization data.

Technical report, Genome Analysis Laboratory, Imperial Cancer Research Fund,

October 26 1992.

119



[39] R. A. Mulivor et al. Characterization of DNA from single human chromosome

hybrids. In American Journal of human genetics, Supplement, volume 49, page

370, 1991.

[40] Lee Newberg. Finding a most likely clone ordering from oligonucleotide hy-

bridization data. Technical report, Biological Sciences Division, University of

Chicago, Chicago, Illinois, December 1993.

[41] Lee Newberg. Finding, evaluating, and counting contig maps. PhD thesis, Uni-

versity of California at Berkeley, Department of Computer Science, 1993.

[42] Maynard Olson, Leroy Hood, Charles Cantor, and David Botstein. A common

language for physical mapping of the human genome. Science, 245:1434-1440,

September 29 1989.

[43] Maynard V. Olson et al. Random-clone strategy for genomic restriction mapping

in yeast. Proceedings of the National Academy of Sciences USA, 83:7826-7830,

October 1986.

[44] DOE Human Genome Program. Primer on molecular genetics. Office of Health

and Environmental Research, Office of Energy Research, U. S. Department of

Energy, April 1992.

[45] Mary Pat Reeve, Mark Daly, Alan Kaufman, Stephen Lincoln, Simon Foote,

James Orlin, Eric Lander, and Nat Goodman. A contig assembly algorithm for

mapping the human genome. Slide Presentation, August 1993.

[46] Philippe Rigault. Clone ordering by simulated annealing: application to STS

content map of chromosome 21. Technical report, Genethon, Paris, France,

1992.

[47] Philippe Rigault. personal communication, April 1994. Cold Springs Conference

on Genome Mapping.

[487 Philippe Rigault. QUICKMAP program and QUICKMAP data release. anony-

mous FTP from CEPH-genethon-map.genethon.fr, March 1994.

120



[49] Leslie Roberts. Two chromosomes down, 22 to go. Science, 258:28-30, October

2 1992. Research News.

[50] C. Soderlund and C. Burks. GRAM and GENEFRAGII: Solving and testing the

single digest partially-ordered restriction map problem. To appear in CABIOS.

[51] C. Soderlund, D. Torney, and C. Burks. Calculating shared fragments for the

single digest problem. In Proceedings of the 26th Hawaii International Conference

on Systems Science, volume 1, pages 620-629. IEEE Computer Society Press,

1993.

[52] Raymond Stallings, David Torney, Carl Hildebrand, Jonathan Longmire, Larry

Deaven, James Hett, Norman Doggett, and Robert Moyzis. Physical mapping

of human chromosomes by repetitive sequence fingerprinting. Proceedings of the

National Academy of Sciences US,4, 87:6218-6222, 1990.

[53] John Sulston, Frank Mallet, Rodger Staden, Richard Durbin, Terry Hornsell,

and Alan Coulson. Software for genome mapping by fingerprinting techniques.

CABIOS, 4(1):125-132, 1988.

[54] David Torney, Clive Whittaker, Steven White, and Karen Schenk. Computa-

tional methods for physical mapping of chromosomes. In Proceedings of the con-

ference on electrophoresis, supercomputing, and the human genome, Tallahassee,

Florida, April 10-13 1990. Florida State University.

[55] E. G. Valiant. Complexity of computing the permanent. Theoretical Computer

Science, 8:189-201, 1979.

[56] Jean Weissenbach, Gabor Gyapay, Colette Dib, Alain Vignal, Jean Morissette,

Phillipe Millasseau, Guy Vaysseix, and Mark Lathrop. A second-generation link-

age map of the human genome. Nature, 359:794-801, October 29 1992.

[57] Mike West and Jeff Harrison. Bayesian Forecasting and Dynamic Models, chap-

ter 12, pages 466-472. Springer Series in Statistics. Springer-Verlag, 1989.

121



[58] Clive C. Whittaker, Mark Mundt, Vance Faber, David Balding, Randall

Dougherty, Raymond Stallings, Steven White, and David Torney. Computations

for mapping genomes with clones. International Journal of Genome Research,

1(3):195-226, 1993.

122




