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Abstract

This thesis investigates the possibility of canceling chirp in an actively mode-
locked semiconductor laser using a DFB structure. The chirp is caused by the
nonlinearity of the diode, namely, the line-width enhancement factor, a. The
mode-locking equations are formed, and the postulated solution is a gaussian
pulse shape. The diode is modeled primarily using the rate equations for
carrier and photon densities, and the DFB is modeled by transfer matrix
theory. Using these models, a program was written to simulate a one-way
ring structure. A mathematical analysis of the carrier density, given current
and pulse shape, enabled predictions on gain. From these results, the mode-
locking equations could be solved, thus defining the pulse uniquely and
determining the amount of dispersion necessary for no chirp. Once
dispersion was known, the DFB structure could be designed. First, numerical
simulations were run with no dispersion and a=O and also a=5. These
simulations demonstrated that the program works, and that a does produce a
significant amount of chirp. Following these results, simulations were run
with the DFB designed for three different amounts of dispersion:
Dfb=1.2662x10 2 5s 2 , 2.5332x10-2 6 s2, and 7.1061x10-2 7s 2 . At Dfb=1.2662x10-2 5s2,
where no chirp was calculated, there was very little -chirp, but double pulsing
was a major problem. At Dfb=2.5332x10-26s2, there was less double pulsing,
and the chirp seemed acceptably low. At Dfb=7.1061x10-2 7s2, there was quite a
bit of chirp, however the pulse was clean. It is suggested that the best among
the three is Dfb=2.5332x10-26s2 with K=250cm- 1 and a=5.

Thesis Supervisor: Professor H. A. Haus
Title: Institute Professor
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Chapter 1

Introduction

Semiconductor lasers were first realized in 1962. Their small size,
around 300gm, high power, and ease of mass production have made them
popular for such uses as CD players and pointers. However, in the case of

communication applications, especially in producing ultrashort pulses,
semiconductor lasers have undesirable nonlinear characteristics due to
changes in the carrier population and frequency dependent gain. These
factors cause pulse distortion, cross talk and limit the speed of propagation. [1]

When using semiconductor lasers for mode-locking purposes, the cavity
must be designed for their nonlinearities.

One undesirable effect of the nonlinearities in diode lasers is a chirped

pulse. In this thesis, the use of a distributed feedback structure (DFB) to

suppress the chirp of mode-locked pulses will be demonstrated through
computer simulation. DFB structures are often usetas filters since they have

a stop band, however in this case the pass band is being used to manipulate

the pulse through dispersion. When mode-locking semiconductor lasers, a

certain amount of dispersion in the resonating cavity will prevent the
presence of chirp in the steady state pulse. Often, optical fiber is used as the

cavity, and the length of the fiber determines the amount of dispersion
within the cavity. Some examples show lengths of up to 50 meters. A DFB

can do the same thing in one centimeter on a semiconductor chip. There are

many advantages to this over using fiber. First, the DFB structure can be

fabricated with the diode laser, and second, less energy is lost than would be

from focusing the field into the fiber.
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The major concern in designing the DFB is the linewidth
enhancement factor, or the ca parameter, of the diode laser which causes the
index of the material to change with gain, hence chirping. Chapters 2 and 3,
which cover mode-locking and semiconductor diode lasers, respectively,
provide the background knowledge to determine how much dispersion is
needed to create a stable non-chirped pulse.

Chapter 4 explains the theory on DFB structures, and from this
information in addition to the previous chapters, the DFB can be designed. It
will also discuss a special use of DFB's to minimize the amount of reflections.

Computer simulation will be implemented in order to test the above
theories and demonstrate graphically a mode-locked pulse resulting from this
design. Chapter 5 describes how each part of the diode and DFB is simulated
and implemented.

Chapter 6 contains a mathematical analysis of a diode laser, namely the
carrier density, to determine the amount of dispersion necessary. These
results will determine the values of the parameters of the DFB structure.

Chapter 7 details the results of these simulations.
Finally, Chapter 8 includes a summary of the results will be given and

any explanations or further insights. Possible improvements and future
developments will be described as well.
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Chapter 2

Mode-locking

2.1 Introduction
Mode-locking is the method used to generate short pulses on the order

of picoseconds or even femtoseconds in length. As the name implies, the

phases of cavity modes are locked with respect to each other so that the sum

of the modes renders a pulse usually of gaussian or sech shape. These pulses

are used for communication, spectroscopy, etc. There are many approaches

and tricks employed to create a mode-locking situation depending on what

kind of laser is used and the set-up designed around it. Normally, the goal is

to produce a pulse as short as possible with no chirp.

As mentioned above, a mode-locking cavity only supports the resonant

frequencies, or modes of the cavity. The frequencies that exist within the

cavity are dependent on the length of the cavity. In this case, length is not

just the physical length but also depends on the refractive index of the
materials within the cavity and is so called the optical length. The higher the

index the slower the field propagates through the medium, thus the optical

length is larger. The propagation constant of a wave for a linear medium is

found from:

P=o0n/c (2.1)

The following equation is equivalent to traveling with the wave:

wt-z=O (2.2)

where z is distance. From (2.2), a cavity of length L has an effective length of

nL. For a frequency to exist within the cavity, the optical length must be a

multiple of half wavelengths in the medium.

10



A =nL (2.3)
2

So the modes in the cavity have frequencies of:
c mc c

fm = _ = c and Af =- (2.4)
A 2nL 2nL

where m is the mode number. Because the cavity is composed of different

media, the refractive index will not be constant throughout the cavity. Thus

it is easier to express the mode spacing, Axo, as 2/TR where TR is the
roundtrip time of the cavity.

Ideally, there should be an impulse in the frequency spectrum for each

mode at the appropriate frequency, however, realistically, the mode always

has some width meaning that there is some energy in the frequencies close to

the modal frequencies (Figure 2.1). This is due to noise.

mC(

f
Figure 2.1. Resonant frequencies of the mode-locking cavity. Each mode has
some width due to nonlinearities and phase shifts within the cavity.

Future figures of frequency spectrums may not show the individual
modes but only an envelope. In a mode-locking situation, these modes sum

up to form a pulse in the time domain, the shape of which is dependent on

the effect of all the components within the cavity on each mode.

2.2 Elements of Active Mode-Locking
This section will explain all the parts of the master equation for active

mode-locking. There are two approaches to analyzing and finding a solution

for a mode-locking equation, frequency and time. Mode-locking has both
frequency and time dependent parts, but it is generally easier to understand in
the time domain. It is also easier to find a solution in the time domain

because the equation corresponds to the one-dimensional Schroedinger
equation of a particle in a potential well [2]. Thus the known solutions to this
equation can also be used for mode-locking.

11
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The effect of each element within the cavity is slight. If exponential,

the exponent with a small argument can be expanded and approximated in
time as:

x2 X 3

ex = 1 + x + 2 + M+...= 1 + x (2.5)
2! 3!

Following is a descriptive list each element required for mode-locking already

in the form of "x".

2.2.1 Gain Medium
The main active mode-locking element is the gain. In semiconductor

diodes, the gain is determined mostly by the injection current. More current

means higher gain. Other lasers obtain energy from pump lasers--the more

intensity the pump laser provides the higher the gain of the mode-locked

laser. In either case, modulating the power source will cause modulation of

the gain at the same frequency. For diode lasers, the relation between current

and gain is linear but delayed, thus the peak of the current and the peak of the

gain (or rather carrier density) do not coincide. The current should be
modulated around some threshold value above which there is net gain and

below which there is absorption (Figure 2.2). The modulation frequency, 0 m,

of the current should correspond to the roundtrip time of the cavity, ie

should be equal to the mode spacing 27t/TR, in order to drive the adjacent

modes.
The gain, however, is also frequency dependent, and can be modeled

with a lorenzian shape:

g(o)= go (2.6)

where go is the small signal gain at the center frequency and cog is the

linewidth of the gain. The center frequency of the field within a mode-

locking cavity is the resonant frequency closest to the center frequency of the

gain medium. The above equation can be approximated as:

g(eo) = go(1- co-O ) (2.7)

and in the time domain this becomes:

d 2 (2.8)
(t)=go 1 dt2 (28)

12
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t

Figure 2.2. Modulation of the gain and constant loss.

The effect of the gain is expressed as:

G(t) = go(M(t) + 2 d-J (2.9)

where M(t) is the modulation of the gain.
Another gain related element necessary for mode-locking is saturation

of the gain. The presence of photons depletes the carrier density, thus
increasing intensity decreases the gain. In the initial transient state, the
intensity of the pulse increases until enough saturation occurs to achieve
steady-state. The relaxation time of the gain medium should be short enough
for it to recover within the roundtrip time. The effect of saturation is
expressed as:

-S(t) (2.10)
Semiconductor lasers are unique in that they have a nonlinearity due

to the linewidth enhancement factor, a (also to be further explained in
chapter 2). It is a gain dependent factor in which the index changes with gain.

ja(G(t) - S(t)) (2.11)
This element creates difficulties in mode-locking because it induces chirping
and instability. When designing the mode-locking cavity, it is important to
consider this factor and to counter it with another element such as dispersion.

Another frequency dependent factor is dispersion. The gain medium
may have a negligible amount of dispersion compared to the amount
experienced within the rest of the cavity, but it is mentioned here since it is
included in future calculation and because it does exist. The effect of
dispersion, which will be explained in greater detail in Chapter 2, is given by:

-jDd(o.)2 2 (2.12)-jDd(o - o)22 jD dt 2 (2.12)

13
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where Dd is half the second-derivative of the propagation constant times the
length of the diode.

2.2.2 Linear Loss
Somewhere in the cavity the optical field will experience a linear loss,

-L. The cause of this would be the output coupler, and also loss occurs when
the field travels from one medium to another. Possibly, the medium itself
will have some amount of loss.

2.2.3 Linear Phase Shift
In the steady state, the pulse after one round trip should be the same as

it was before. However, there will be a difference in phase since propagation
through a medium adds a phase shift. This is acceptable as long as the
difference remains constant between consecutive pulses. The phase shift, j,
has no shaping effect on the pulse, and only occurs as a result of satisfying the
requirements for steady-state.

2.2.4 Dispersion
Dispersion in the diode was already mentioned, but there is also a

significant amount of dispersion in the rest of the cavity. Actually, in this
case there has to be to compensate for the nonlinearity in the diode. The
object of this thesis is to design a DFB structure with the right amount of
dispersion to prevent pulse-spreading and chirping caused by the diode. The
DFB dispersion is expressed as:

d2

-jD(o- o) 2jDj dt2 _ (2.13)

where Dfb is half the second deriviative of the DFB propagation constant time
the length of the DFB.

2.2.5 Time Shift
As the pulse travels through the diode, it experiences a pushing effect

causing delay or advancement depending on where the peak of the pulse is
with respect to the peak of the gain. So, if the peak of the pulse comes after
the peak of gain, the pulse will be "pushed" ahead in time because the front
part of the pulse experiences more gain than the later part. This effect is
represented by:

14



ST d (2.14)
dt

That concludes the elements of mode-locking. The next step is to formulate
a master equation which will define the pulse.

2.3 Master Equation and Solution
The previous section described every single effect experienced by the

pulse in one round trip. The total effect can be expressed in a single equation:
d d2 d2

aexp(ST + jT) = aexp((G(t) - S(t))(1 + ja) - L +jDd + jD dt2 (2.15)

where a is the pulse envelope. Both sides of (2.15) represent the pulse after
one round trip. (2.15) can be simplified using (2.5):

d d 2 d 2

AT d + jT = (G(t) - S(t))(I + ja) - L +jDd + jD dt2 (2.16)
dt dt2

The ansatz for this equation is a gaussian shaped pulse:

a =IAIexp 2 ( + Jic) exp(-iAt) (2.17)

where I A I is the amplitude, determines the pulse width, 3c is the chirp
parameter, and Aco is the frequency shift. Applying this solution to (2.16) and
separating it into parts by powers of t should render six real equations. For a
given cavity, the unknowns of the master equations are the pulse parameters
of eq (2.17) as well as W and T. Thus with six unknowns and six equations,
the pulse can be defined uniquely.

In chapter 6, the six equations will be worked out explicitly once an
analytical model of the gain has been written.

2.4 Ring Structure
This thesis will simulate a ring structure. In this model, Figure 2.3, the

field travels only in one direction and passes through each medium once in
one round trip. To insure that the field propagates only in one direction, an
isolator is modelled just before the diode. This isolator passes any field
travelling in the clockwise direction and absorbs any field propagating in the
opposite direction. Of course, this is pretty idealistic, but any loss from the
isolator can be included in the linear loss term above. However, isolators
today are pretty good in absorbing the counter propagating fields so this
model is not far from reality.

15
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Figure 2.3. Ring model of mode-locked cavity.

This does not mean there will be no counter-propagating waves. The
field will be partially reflected by the DFB structure causing backward
propagating waves to travel through the diode even with the matching
structure to be described in Chapter 4. If the amplitude of these waves is
significant, they will deplete the gain medium. This effect must also be
included when simulating the diode.

The ring model overall is much easier to simulate than a cavity
structure in which the field is reflected back and forth and experiences each
effect twice as much but at different times. Also, when fields travel in both
directions in the diode, standing waves form, causing spatial hole burning,
and some parts of the diode are completely depleted of carriers. This
phenomenon is rather difficult to simulate and is a under great deal of study--
i.e. too much to think about here.

16



Chapter 3

Semiconductor Lasers

3.1 Introduction
Semiconductor lasers are made by laying a p-type semiconductor

material on an n-type material. At the boundary of the two layers, the p-n
junction, electrons diffuse a short distance into the p side from the n side, and
holes diffuse into the n side from the p side. The diffusion process reaches a
steady state when the resulting charged donors on either side form a field
resisting further change in hole/electron populations. Applying a positive
voltage across the p-n junction, or forward biasing the diode, will weaken this
field allowing more electrons and holes to diffuse into the area around the p-
n junction. This area, where both electrons and holes exist near the junction,
is called the active region and is the most interesting part of the diode since it
is where the optical field travels and experiences gain and loss.

Recombination of the electron and holes in the active region results in
an emission of radiative or nonradiative energy. Radiative energy is in the
form of photons whose frequency must satisfy the condition: hv=Eg, where Eg

-1 - ---- -I -I
electroues i

K . 21
*-.-- p-type

l active region
4 - n-type

Figure 3.1. Diagram of a semiconductor diode.
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electrons electrons

I ~ TAEg

holes holes

(a) (b)
Figure 3.2. Picture of (a) spontaneous emission and (b) stimulated emission.

is the gap energy emitted. The upper energy state of a free electron is called
the conduction band while the lower state of a recombined electron/hole pair
is the valence band. Eg is the difference in energy between these two states. A
recombined electron/hole pair can also absorb this amount of energy and free
the electron.

As stated before, forward biasing the diode increases the number of
electrons and holes diffusing into the active region. There is a threshold
value for the voltage beyond which there is population inversion. The result
is the rate of recombination is higher than the reverse process which means
that there is more emission than absorption. Thus the optical field
experiences gain.

Photon emission from recombination is either spontaneous or
stimulated. A spontaneous emission occurs when an electron randomly
decays from the conduction band to the valence band, releasing energy.
Stimulated emission occurs when another photon induces the electron to
decay and release another photon. The photon radiated by the stimulated
emission will match the first photon in frequency and direction. Thus the
light emitted by the laser will be mostly coherent.

The active region is so designed that its refractive index is slightly
higher than that of the surrounding p- or n-type material. Thus, the active
region of the diode laser acts like a waveguide, one with gain and absorbtion,
and the light is contained. The mechanism of containment begins with the
difference in index. Because the index of the active region is higher, total
internal reflection occurs if the field hits the boundary with an angle of
incidence greater than the critical angle given by Snell's Law. The critical

18



nl

Figure 3.3. Total internal reflection occurs when nl>n2 and i>0c.

angle, 0c, of
angle, is > 1.

the incident wave, i, is such that sinOt, the tranmitted field
(nl is the index of the active region; n2 is the index outside.)

-sin Oi = 2 sin 0, Oc = sin n2
C C 1th (.1

The energy of any field traveling almost parallel to the edge
region will be totally reflected.

of the active

Table 3.1 Typical parameter values for a 1.3 gm diode laser from [3]
Parameter Svmbol Value

Cavity length
Active-region width
Active-layer thickness
Confinement factor
Effective mode index

Group refractive inex
Line-width enhancement factor
Facet loss
Internal loss
Gain constant
Carrier density at transparency
Nonradiative recombination rate
Radiative recombination coeff
Auger recombination coeff
Threshold carrier population
Threshold current
Carrier lifetime at threshold
Photon lifetime

L

w

d
r

Cg

a
am

aint
go

Nt
Anr

B

C

Nth
Ith
Te

V

250gm

2gm
0.2gm
0.3

3.4

4

5

45 cm- 1

40 cm-l

2.5x10-16 cm2

1x10 18 cm-3

lx10 8 s-1

1x10-10 cm 3 /s

3x10-2 9 cm 6 /s

2.14x108

15.8 mA

2.2 ns
1.6 ps
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Table 3.1 lists the important parameters of a semiconductor diode and

their characteristic values. These are the actual values used for simulations

on the computer.

3.2 Gain
As stated earlier, the field experiences gain when an electron decays

from an upper state to a lower state, imparting another photon to the field. If

the density of electrons in the conduction band is high and the density of

holes in the valence band is also high, then the field will see a net gain since

the probablility of a stimulated emission is higher than that of a stimulated

absorption. Conversely, if the density of the valence band is higher, the field

will be absorbed. So far, only two states have been mentioned to simplify

explanations. However, each state is actually comprised of many energy
levels with a minimum energy gap separating the two states. An electron in

one of the upper levels can settle into any of the lower levels, thus varying

the amount of energy released. Therefore, the photons emitted are of

different frequencies (E=hv), so the diode can support a limited frequency

bandwidth.
It is possible to calculate the probability of the state of each electron and

thus estimate the electron density in all the energy levels. The equations

involved are too complicated and beyond this thesis to discuss here, however,

given the total carrier density, temperature, and diode specifications the gain

can be predicted for a range of frequencies.

Figure 3.4 shows a typical gain curve for a semiconductor diode versus

a range of energy above the band gap energy. Obviously, frequencies with

energy below the band gap energy will experience no gain or absorption

because there is no electron transition with that amount of energy. Also,

because the probability that an electron will inhabit a very high energy level is

very low unless the total carrier density is large, absorption is more likely

than gain at higher frequencies. This leaves a band of frequencies for which

the optical field will experience gain. The bandwidth is normally on the

order of terrahertz and the diode is usually designed so that the band centers

around 1.3 or 1.5gm which is where optical fibers have low loss and low

dispersion. The simulations in this thesis are for a 1.3pgm diode laser.

The main value needed to simulate the diode is the differential gain.

As can be seen from the figure, the gain varies with carrier density. dg/dN
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Figure 3.4. Gain of the diode over frequency for different
The gain increases with increasing carrier density. [1]

can be approximated and used to create simple equations to
of the diode.

carrier densities.

estimate the gain

3.3 Rate Equations
The carrier and photon density within the active region of the diode

can be modeled by two simple first order rate equations as given in [1].
dN I N

= I N vg(N - N,)P (3.2)
dt qV 

dP = + rgov(N- N)P + p (3.3)
dt - p Ir

where N is the carrier density, P is the photon density, I is the current, q is
electron charge, V is the volume of the active region, e is the carrier life time,
go is the differential gain (dgo/dN), vg is the group velocity, Nt is the carrier
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density at transparency, r is the confinement factor, sp is the spontaneous
emission factor, and p is the photon lifetime. The factor rp includes internal
absorption, mode absorption and scattering loss.

If the carrier density is not above the density at transparency, then there
is absorption instead of gain. The carrier density threshold at which the
signal starts to experience total gain, not including spontaneous emissions, is
found at steady state from [3]:

1 1- = rgovg(N- N) => Nh = + N. (3.4)p prgoV.
The current necessary to achieve the carrier density threshold is estimated by
setting dN/dt and dP/dt to zero, solving for P in (3.3) and substituting into
(3.2). Ith is normally defined in the limiting case of 3sp=O [3].

Ith =- Nh (3.5)
Ie

When the current is below threshold, the photon density is very small. Thus,
the carrier density can be estimated from (3.2):

N = (3.6)
qV

These equations are the most important to modeling the gain medium
for computer simulation as will be shown in later chapters. Not only do the
above equations serve to estimate the gain but also to estimate the carrier
density for nonlinear effects, namely involving changes in the refractive
index.

3.4 Refractive Index
In a dielectric medium, the presence of an electric field induces dipole

action within the material causing a polarization density dependent on the
strength of the electric field. Thus, the total electric displacement, D, is given
by

D=eoE+P (3.7)

where P is the polarization density, E is the electric field and eo is the dielectric
constant of free space. The polarization density is given by

P=oXeE (3.8)

where Xe is the electric susceptibility tensor. Thus the total dielectric constant
of the medium is

E=so(1+Xe)=n2 o (3.9)

The dielectric constant is also expressed through the refractive index, n.
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= n2Eo = - = l + 
go (3.10)

For isotropic mediums, Xe is a scalar, but for semiconductor material like
InGaAsP, the susceptibility tensor is frequency dependent and complex. The
next two sections will discuss how each of these traits plays a role in the
propagation of electric fields.

3.4.1 Propagation and Dispersion
The propagation constant of a medium partially describes what

happens to a field as it moves through the medium and serves as a relation
between time and space

a(z,t) = F-'(a(z = 0, o)e -j(t'O) (3.11)

where a(z,t) is the field envelope in time. For a normal waveguide structure

f(wo) and c (3.12)

where c is the speed of light in free space. The above propagation constant
can be expanded into a Taylor series around the carrier frequency (Oo) in order
to more easily appreciate its effect on the field:

l(to):/ = (o)+ (o_ 0) + ( _ )2 + (Co 1 w/ 0 )3

d co 2 d- " 3 T-T ) (3.13)
The first term is merely a phase shift seen at all frequencies, and Oo/P(oCo) is
the phase velocity. The second term is the travel term since l/D/aCoO is vg,
the group velocity. This term describes the speed at which the field's
envelope travels. For a nondispersive medium where n is constant, the
phase and group velocities are equal, and the rest of the terms are zero.
However, semiconductor material has a refractive index dependent on
frequency

df n(o,) + ,, dn(w)
do c c do (3.14)

The third term of the series is first order dispersion present in semiconductor
material. The presence of this term means that some frequencies travel faster
than others. As a result, the signal experiences chirping as it travels through
the medium where

(3.15)

do co a>2 (3.15)
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is the chirp parameter. For "normal" dispersion, 2P/aCo2>0, thus the group

velocity of higher frequencies is smaller than that of lower frequencies. In a
traveling pulse, the lower frequencies will end up at the front of the pulse
ahead of the higher frequencies. The opposite is true for "anomalous"
dispersion where a2p/a(02<0.

A pulse traveling in dispersive medium will eventually experience
spreading and distortion. One can reverse these effects by propagating the

pulse through a medium of opposite dispersion of length such that the chirp

parameter cancels that of the first medium. Another trick is to prechirp the

pulse before traveling through the medium, however, this requires prior
knowledge of the length of the medium.

The fourth term is third order dispersion; the fifth term is fourth order,

and so on. The propagation constant is normally assumed to vary slowly

enough with frequency that any term after the second derivative is too small

to be of significance.

Therefore, in order to simulate the propagation of a field through the

diode, the first and second derivatives only of the propagation constant must

be known for the carrier frequency of the diode. The first derivative is often

expressed simply as:
dJ 1 ng

dw vg c (3.16)

where vg is the group velocity and ng is the group index found from (3.14)

ng = n(o) + o d 317)
(3.17)

The group refractive index can be measured experimentally by estimating the
roundtrip time within the diode cavity, or it can be estimated through
detailed calculations not explained here. Values given for the group index for

diode laser with a center wavelength of 1.3gm range between 3 and 4.

The dispersion factor is often given in terms of wavelength instead of

frequency because it is easier to measure with respect to wavelength. The

conversion is simple since
2irc dAX 2 rc

o do a)2 (3.18)

The dispersion factor is found be taking the derivative of the group velocity
with respect to wavelength
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d 1 1 dng(;t)

Ad vg c dA (3.19)

dn() dng = -il d2n(A)
where ng(A) = n(A) - A n(J) thus = d

This last term on the right side of (3.19) is found by measuring the differences

in roundtrip times for different wavelengths [1]:
dtr 2l dgn

dA c (3.20)

Once the value for dng/dX is known, it can be converted in terms of frequency

to find d[/dco:
d92/ 1 dn_ 1 dn d _ 2r dng

d- icdo c d l do co2 dl (3.21)
and finally

d2 - 2 a, A2 )) . (3.22)
Values given for dng/ddX were around -.6gm-l for a 1.3gm laser, thus the

dispersion factor used in simulations was "=8.96x10-25.

3.4.2 Line-width Enhancement Factor
The susceptibility tensor of semiconductor diode lasers is also complex.

The imaginary part of the index is also expressed as gain. As gain changes

with the varying amount of carrier density shown earlier in this chapter, so
too does the imaginary part of the index. In addition, there is a corresponding

change in the real part of the refractive index. This variance of index was

initially studied by C. H. Henry [4]. It is a nonlinearity of the diode which

causes broadening of the pulse and bandwidth and instabilities in mode-
locking [5].

The refractive index has a base value from which it varies expressed

thus:
n = nb + An'- jn" (3.23)

The propagation constant also changes with index:

P = (p/ + Af - japf") = (n + An' - jn") (3.24)
C

0) 
where fo nb = AfA' - jA" = (An' - jn")

C .C

Gain and the imaginary part of the refractive index are related by:
e gz = e - 2 A z (3.25)
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where the gain is assumed to be applied to intensity. Thus, change in the
imaginary part is:

An" =g C
2w o (3.26)

The real and imaginary parts of the dielectric constant can be related by
Kramer Kronigs relation. However, this is a rather complicated relation and

expresses a dependence on frequency. A much simpler relation is given by
the linewidth enhancement factor which is the ratio of the change in the real
part to the change in the imaginary part [4]:

An'

An" (3.27)

It is an approximation which will make mode-locking equations far easier to
handle--well worth any loss of accuracy.

Finally, the change in the real part of the refractive index can be
expressed in terms of the change in gain:

An'=_ag C
2 o (3.28)

Values for a are usually between 4 and 6 [4]. So the effect on the signal can be
expressed as:

0_jn' . g(t)
ae =ae 2 =a(l+ja g(t) (3.29)

2

Note that this effect is time dependent, and it will be a consideration when
simulating the diode. It will be stated in Chapter 5 how this problem was
dealt with.
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Chapter 4

Distributed Feedback Structures

4.1 Introduction
Most waveguide couplers can only couple waves moving in the same

direction since it is necessary that the propagation constants of the two waves
are similar for coupling to occur. Distributed feedback structures, however,
can couple waves moving in opposite directions. DFB structures are
waveguides with periodic perturbations which cause reflections that couple
with the opposite wave.

In an unperturbed waveguide, there is no coupling and the
propagation of the forward, a, and backward, b, waves are described simply by:

da = -jila (4.1)
dz
db

= jfib (4.2)
dz

In a DFB structure, the waves are modulated by the periodic perturbations,
thus the field acquires sidebands called space harmonics. If these side bands
have propagation constants similar to the oppositely traveling field in the
waveguide, then coupling will occur between the sideband and the oppositely
traveling wave.

If the DFB is long enough, there is total reflection of a band of
frequencies. The center of this bandwidth is the frequency at which when
modulated by the perturbations, the reflected sidebands have the opposite
propagation constant. Thus the DFB structure can be used to filter out these
frequencies. However, this is not the purpose the DFB will serve for this
project, and it is better in this case to avoid the stop band.
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Figure 4.1. A normal waveguide and a DFB structure with sinusoidal
perturbations with period A.

The DFB shall be used for its dispersion to compensate for the
dispersion and nonlinearities in the diode. The propagation constant and
thus the dispersion parameter are determined by the coupling coefficient and
the periodicity of the perturbations. Since the easiest structure to analyze has
sinusoidal perturbation, following is a derivation of the coupling equations
and dispersion parameters for such a structure.

4.2 DFB Equations
With sinusoidal perturbations, both backward and forward waves are

spatially modulated by cos(2r/A)z, where A is the periodicity of the
perturbation. Using the forward wave as an example, the side bands would
be:

acos(2r / A) = 2A[exp(-j(p -2-)z) + exp(-j(3 + -)z)]
2 A A (4.3)

If 3-n/A is close to -, the propagation constant of the backward wave, then
this sideband will couple with the backward wave as long as

I-/- ( A (4.4)

at which point the sideband is no longer coherent with the backward wave
and no coupling occurs. It is assumed that the propagation constant of the
other sideband (+2x/A) differs too greatly for coupling to occur. Thus
propagation of both forward and backward waves can be described by
including the coupling of these sidebands:

da = - ja + Cab,be j( ( 
dz (4.5)
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d = jb + Kbae j(2 i/A)z
dz (4.6)

where K is the coupling coefficient determined by the strength of the grating.

Note that if K=0, the above equation would again describe propagation
through a normal waveguide. (4.5-6) can be simplified by removing the fast

spatial dependences by substituting the following for a and b:

a = A(z)e- i ( ,A)z , b = B(z)e(n A)z (4.7)

The resulting propagation equations from (4.5-7) are:

dA = -j( - )A + KabB
dz A (4.8)

dB =j(f-_)B+ cbA
dz A (4.9)

It is apparent from (4.8-9) that the aforementioned frequency at which total

reflection can occur is 3=r/A (Note [-27r/A=-[3). (4.8-9) are normally expressed

as:
dA =-jSA + jKB
dz
dB =-jA + jSB
dz

where is the detuning parameter

8=B-- 

(4.10)

(4.11)

A (4.12)

By expanding b around the frequency (ob for which P(omb)=lr/A, the detuning

parameter is found to be:

p( ) + d (- oo )V 6 = -
do Ve fA 12\

where vg is the group velocity, do/d3. The propagation constant is

from the eigenvalues of the coupling equations

y = + K2- 62

and the eigenfunctions are:

A = A+e + Ae - r = A+ejB + Ae - ifiZ

B = B+er + Be - r = B+ejpz + Be- jfi

Thus the propagation constants are:
] 0c2 _2

found

(4.14)

(4.15)

(4.16)

p = _ .- - K- (4.17)
If 82 is less than K2, then K is imaginary, implying reflection. As the frequency

approaches the Bragg frequency, cOb, 8 becomes smaller, and more of the field

is reflected. This part of the spectrum is the stop band of the DFB.
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Only two of the constants in eq. (4.15-16) are independent since using eq
(4.10-11) B+ and B_ can be expressed in terms of A+ and A-:

B= _A A (4.18)
K K

4.3 Dispersion
The DFB will be used to compensate for the chirp in the pulse due to

nonlinearities in the diode. In order to satisfy the mode-locking equations,

the DFB will be designed to have a certain amount of dispersion for a given
length. The dispersion parameter, the second derivative of the propagation
constant, is given by:

K2

pee= g]2 2

Vg 2 2 _ K 2 (4.19)

It is desirable that the DFB is parabolic over the bandwidth of the pulse so that

third order dispersion is negligible and the propagation constant is second
order only in frequency. Third order dispersion is given by:

3K 2

V9g3 4362 _ K2 (4.20)

Third and higher order parameters can be ignored if the following inequality

holds over the bandwidth of the pulse
2r _"' 2 << 1

3" TVg (32 - 2
) (4.21)

where is the pulsewidth at half maximum. The above ratio decreases with
increasing pulse width. Increasing K will also indirectly decrease the ratio
because to obtain a certain dispersion with a higher coupling coefficient 
must also be increased. However, increasing c or X is undesirable. The object
is to produce as short a pulse as possible, and it is difficult to fabricate a DFB
with a very high coupling coefficient. Figures 4.2 and 4.3 graph second- and
third-order dispersion versus . Figure 4.4 graphs the ratio of eq (4.21) for
different pulsewidths.

Note that 8 can be a positive or negative quantity depending on which
side of the stop band is being used. One should also realize that the
propagation constant can be positive or negative and so can the group
velocity and dispersion parameter. Since the mnodel is only concerned with
forward waves, a positive group velocity is needed for whatever dispersion is
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necessary. Figure 4.5 graphs the propagation constant versus and Table 4.1
below lists the sign of , 3, '=l/Vg, and " for each quadrant. Once the
theoretical analysis is completed, the dispersion needed will be known, and
Table 4.1 will be useful in figuring out the right parameters to use.

Second-Order Dispersion for k=160 to 400

Ideltal (cm-1)

Figure 4.2. Second-order dispersion versus 11 for K=160 to 400cm-1.

m

lo

Ideltal (cm-1)
)00

Figure 4.3. Third-order dispersion versus 181 for c=160 to 400cm-1.
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Ratio of Third- to Second-Order Dispersion for 5,10, and 15ps pulses

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Ideltal (cm-1)

Figure 4.4.

pulses.
Ratio of third- to second-order dispersion for 5, 10, and 15ps

Propagation Constant for k=300cm-1

co

-9nnn I I I
-2000 -1500 -1000 -500 0 500 1000 1500 2000

delta (cm-1)

Figure 4.5. Plot of both positive and negative propagation constants, A, versus
6. The area in the middle is the stop band where 3 is imaginary.
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Table 4.1. Signs of propagation parameters in the four quadrants as referred

to in Figure 4.5.
I II III 1 V

6 - + +

P + +-' + +

p" -. + +

4.4 Matching Structure
In this ring model, the wave should propagate in only one direction.

There will be reflections from the DFB traveling in the opposite direction and

because this model has an isolator on one side of the diode, the energy in
these waves will be lost. Furthermore, the reflected waves that travel
through the diode will deplete the carrier density of the diode and decrease
the gain. Therefore, it would be helpful to add a structure on each end of the

DFB structure to match the grating to the diode- and thus decrease the
reflection coefficient seen by the wave when first entering the DFB structure.

The reflection coefficient is r=A/B can be expressed as a function of

position, z, in terms of the reflection coefficient at z=0, ro=r(z=0), using the

coupling equations (4.10-11):

-jsinf z + F cospz + j sinfiz

cosfiz - js jF0 sin + j sinz
IC IC (4.22)

where [i is the propagation constant of the DFB as in eq (4.17).
Figure 4.6 shows the entire structure where-the middle grating is for

chirp compensation and the grating and gaps on either side is for matching

purposes. The initial assumption in the analysis of this structure is that the

reflection coefficient at z=0 is zero. As shown by Haus [6], the reflection

coefficient as a function of distance can be described by the Smith chart, Figure
4.7.

r=

e L ~ z=0

Figure 4.6. Matching structure.
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P/Kl

it of middle grating

Figure 4.7. Smith chart model following F of the matched DFB structure.

Beginning at z=0, the reflection coefficient is zero, represented by the
origin of the chart (a). Traveling away from z=0 in the negative direction, the

reflection coefficient follows a circle as shown in the figure until the end of
the first section of grating(b). In the gap between the first and middle gratings,
the reflection coefficient follows a circle concentric to the origin since the gap
simply provides a phase shift dependent on its length. The length of the first
grating and the gap should be such that the reflection coefficient at the end of
the gap matches that of the middle grating when driven by its eigensolutions.

This reflection coefficient from (4.10-11) is simply:

r=6-
K (4.23)

When driven by the eigensolution, the reflection coefficient of the middle
grating remains constant throughout the grating(c).

Another gap of the same length after the middle grating shifts the
coefficient again onto the circle of the first grating (d). Through the last

section of grating the reflection coefficient follows that circle back to the origin
as depicted in the figure (e). Thus, both ends of the structure have a reflection
coefficient of zero.

The length of the two end gratings and the gaps are determined by the
magnitude of the reflection coefficient of the middle grating, In order for
matching to occur, the magnitude of r at the end of the first grating (and at
the beginning of the second grating) must be the same as the middle grating:

r=-P
K (4.24)

Eq (4.12) can be simplified by setting rF=0, and the length of the end gratings
can be found by setting eq (4.12) equal to eq (4.24):
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= sin- C 

k2 (4.25)

The length of the gap is determined by the phse shift required to transform r

to the that of the middle grating:

( = r -tan-' J tan Pt2 f j(4.26)
and the length is:

coon (4.27)

co. and 60 above refer to the values of to and 6 at which a perfect match is

obtained.
The matching structure should be designed for the center frequency of

the signal, i.e. the carrier frequency of the diode. The bandwidth of this

structure will be analyzed once the parameters are set. Hopefully, F will be

less than .1 over the bandwidth of the pulse (but don't hold your breath).

4.5 Coupling Coefficient
The magnitude of the coupling between the forward and backward

wave is expressed by the coupling coefficient, K. Power conservation dictates

that:
Kab = K, = jK (4.28)

The evaluation of Kc for a particular DFB structure is given by Haus [7].
.W2- iUOk cos2kd

'ab =-J k, (e - e)h
4 k,d + sin 2kd+- cos kd

2 Cx (4.29)

K is shown to depend on the difference in dielectric constants between the

inside (ei) and the outside (e) of the waveguide, and also on the amplitude of

the perturbations (h).
It can be seen from (4.29) that K increases with increasing perturbation

amplitude and increasing difference in dielectric constants.
Unfortunately, it becomes increasingly difficult to fabricate a DFB with

large perturbation amplitudes and dielectric differences, i.e. a high coupling

coefficient. The highest coupling coefficient recorded to date is K=300cm-1,

although generally K tends to be less than 200cm 1.
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Earlier a tradeoff was mentioned between pulsewidth and Kc in order to
be able to neglect third-order dispersion. It would be nice if both could
remain small, but rather than make the pulse too wide, K will be increased
beyond realistic bounds. However, very high coupling coefficients are
possible with photonic band gaps.
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Chapter 5

Simulation Models

5.1 Introduction
A printout of the program can be found in the appendix and has been

commented for easy reading. It was written in fortran simply because the
author of this thesis was most familiar with it. Most simulations were run
on the RLE VM systems.

Following is a description of the algorithms used in simulating the
entire cavity. The program was developed in separate parts, the diode and the
DFB structure, and later combined to form the entire ring.

5.2 Simulating the Semiconductor Laser
The primary tools used for simulation of the semiconductor laser

diode were the rate equations given in section 3.3. (3.2) is used to determine
the carrier density, and (3.3) is used to calculated the gain experienced by the
field. The units of all the terms have not yet been discussed. P represents
photons per volume (eV/m3), and field strength squared, or intensity, is
eV/s=Watts. The intensity, I a 12, and photon density are related by:

lal = vgAffP (5.1)

where Aeff is the effective transverse area of the active region. In order to
apply the rate equations, the present carrier and photon densities and current
value must be known. The photon density, P, on the right side of the rate
equations, is approximated as the incoming photons. The carrier density is
given an initial value determined by the dc current, and is recalculated for
every point in time using P and I, which is separately calculated for that time.
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The differential change in N is added to the current value to find N for the
next point:

N2 = I V- (go(N - N,)la /Ae 'At+ N (5.2)

where At is the time difference between points. In an effort to reduce error,

the fourth-order Runge-Kutta method [8] was used to calculate the differential

change in N.
The change in photon density is proportional to the difference between

the intensity of the field going into the diode and the intensity of the field

coming out, where intensity is the square of the field strength. Eq. (5.2) shows

that increasing intensity increases the photon density in the diode and thus
the intensity of the field exiting the diode. This is because more photons

entering the diode cause more stimulated emission and therefore more
photons to leave the diode. Finally the relation between the field strength

and the differential change in photon density is:

V dP = a 12 - ai12
dt a (5.3)

where a is the field coming out of the diode, ai is the field going in, and V is

the volume of the diode. The intensity leaving the diode is:

la 12 = (-xp + govgr(N - N,)P)Aeff + a, 12 (5.4)

= -gTp + g0 (N - N,)e + l]ai2(5.5)

If (5.5) were to be expressed in exponential terms, it would be:

laol2 = a 12 exp( Vgp + ge(N - N,) (5.6)

This shows that the simulation fits in very well with the mode-locking
theory.

The above equations only work if the changes are very small, meaning

that the diode is very short, especially because the shape of the pulse could

change within the diode. The entire diode is too long, so it is divided up into

sections. The carrier density is calculated separately for each section although

they all start with the same initial value.
So far, only the change in amplitude has been determined, but due to

propagation through the diode and its nonlinear effects, the phase is greatly

changed as well. Assuming that each section is short enough, propagation
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Figure 5.1. Model of diode used for simulations. The diode is divided into
sections, each with an independent carrier density, and has field arrays in
between.

and nonlinearity is applied separately from the gain, thus at this point the
signal has the same phase as it did going into the diode. This intermediate
pulse (old phase, new amplitude) is transformed, propagated and transformed
again. After propagation, the time dependent nonlinearity is applied, so it is
important that the carrier density throughout the pulse is recorded.

The most difficult part of simulating the diode was to find a way to

propagate both forward and backward waves through the diode. The solution
was to take the forward and backward fields through each section of diode
impulse by impulse. This means that the time it takes to travel through each
section has to be the same as the time difference between impulses. Between
each section, there is an array to which the output of the previous section is
added. There are separate arrays for the forward and backward waves (Figure
5.1). The intensities of the forward and backward fields are added when
calculating the differential change in carrier density, but separate when
determining the gain for the two fields. This is correct because the stimulated
emissions are emitted in the same direction as the original photon and there
is no coupling. Propagation and gain are almost linear functions for a short
diode which allows the effects to be additive, but the nonlinearity factor is

not. The nonlinearity is applied separately to each impulse before it enters
the next section, where the nonlinearity corresponds to the previous section.
Thus the error in simulating the diode is minimized.

The DFB structure is actually not expected to produce significant
reflections using the matching structure. However, if the bandwidth of the
pulse exceeds that of the matching structure or if the ring model is changed to
a cavity model, then this program is prepared propagate both directions.

The final effect of the diode is the bandlimiting factor. To include this,
the pulse was filtered outside of the diode. The filter is lorenzian, and the
bandwidth is on the order of terrahertz.
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I z=-L

Figure 5.2. Modeling the DFB as a two-port system.

I z=O

5.3 Modeling the DFB
For simulation purposes, the DFB is modeled as a two-port system. [9]

Each port has a forward and backward wave defined at reference planes placed

at the ends of the DFB structure. (Figure 5.2) A transfer matrix would describe

the relation between the two ports. Along with two boundary conditions, all

four waves will be defined uniquely.

The linear differential equations of the DFB coupling the forward and

backward waves can be written in matrix form:

-X(z) = HX(z)
dz (5.7)

H is a square matrix describing the spatial differential changes in the forward

and backward waves including their interdependence. X(z) is a column of all

the wave amplitudes at the position z. For the DFB structure, (5.7) becomes:
d A(z) [-jr jlrA(z)l
dz B(z)] L-jK jJSLB(z)j (5.8)

Going back to linear algebra, the solution to (5.7) is:
X(z) = VE(z)a (5.9)

where the columns of V are made up of the eigenvectors of H and E(z) is a

square matrix where the diagonals are exp(ynz), y being the eigenvalues of H. a

is an arbitrary vector. The eigenvalues are found by satisfying the equation:

IH- Il = (5.10)

A 2x2 matrix will have two eigenvalues and eigenvectors. The eigenvectors

are found from:

[H-Iy,]V = 0 (5.11)

To model the two-port system we need to find a relation between the wave

amplitudes at different positions. At the reference planes on the ends of the

DFB at z=0 and z=-L, we know:
X(-L) = VE(-L)a and X(O)= VE(O)a (5.12)
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Solving for a and substituting gives an equation relating the set of wave
amplitudes at two postions.

X(-L) = VE(-L)E(O) - ' V-'X(O) (5.13)

Thus the transfer matrix between the two ports is:
T(-L,O) = VE(-L)E(O) -' V-' (5.14)

Conversely,
X(O) = VE(O)E(-L)-' V-'X(-L) = T(O,-L)X(-L) (5.15)

For the DFB structure, the eigenvalues and eigenvectors are:

111,2 =+4KC~ 82 , V,2 = Ij A] (5.16)

Finally, the transfer matrix for a DFB structure of length L is:

cosh yL + j- sinh yL -J - sinh yL
X(-L)= X() (5.17)

j - sinh yL cosh yL - j- sinh yL
r K

Now, given the forward and backward wave at one port, it is easy to calculate

the forward and backward wave at the other port.

Unfortunately, in this simulation the two known waves are the inputs
to the DFB structure, meaning the forward wave of the front port and the
backward wave of the end port. Thus a scattering matrix would be more
appropriate than a transfer matrix, however the elements of the transfer
matrix are easily manipulated to form a scattering matrix:

T 2,

[T 2 T22 ] T,,
T,, (5.18)

Because there is also an isolator at the end of the DFB in this model, the input

from the end port is assumed to be zero. The input at the front port is the

output of the diode. From these boundary conditions, the reflected and
output waves from the DFB are calculated.

For simulating the matching structure, we resort back to the transfer
matrix. Each section of grating is represented by its own transfer matrix
determined by its length. The gaps also have a transfer matrix:

G(e) = [e, 1 (5.19)
e-e ,
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These matrices are multiplied together to form one transfer matrix describing
T, = T(-1,O)G(Ig)T(-L, 0)G(g )T(-1, 0) (5.20)

the entire matching structure. This final transfer matrix is transformed into a

scattering matrix to be used in the simulations.

5.4 Combination Design
The DFB structure takes input from one side and produces output on

both sides since part of the field is reflected and most travels through. There

is no input from the other side because an isolator is modeled on the other

side of the diode. The output of the final section of the diode is the input ot

the DFB. Once again this is done impulse by impulse. The reflection from

the DFB is added to the backward field array for the last section of diode, and

what goes through is added to the forward field array of the first section of the

diode. The DFB is also a linear structure, thus it is perfectly legal to add the

results of each impulse.
Before the field enters the diode through the first section, the loss is

applied to the field. The loss is constant over time and frequency and is

calculated to be a fraction of the gain since there cannot be more loss than

gain.
In order to start the mode-locking process, a gaussian pulse is fed into

the first forward array. It was attempted to synchronize the peak of the pulse

and the peak of the carrier density in the hope that the laser would reach

steady state faster. However, it is not necessary because the pulse will move,

shrink, and shift in frequency as all the effects within the cavity dictate. It

only needs some introduction of photons and enough time to reach steady

state. Time was actually a problem--the program takes a very long time to

run because of all the arrays. To run tests, the diode was shortened, and gain

was doubled to compensate.
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Chapter 6

Mathematical Analysis

6.1 Introduction
Before running simulations, it is helpful to perform a mathematical

analysis of the carrier density in order to predict the results. Once a formula
for the carrier density, and therefore the gain, has been established, we can
return to the mode-locking equations from chapter 2. Finally, the unknowns
that determine the pulse can be defined. More importantly, the amount of
dispersion necessary to produce a pulse without chirp can be calculated. This
result will determine the parameters of the DFB structure.

Following is first the analysis of the carrier density originating from the
rate equations and finishing with gain. Next is an analysis of the mode-
locking equations, and solutions for each of the parameters of the pulse are
given. In the end, the DFB structure will be designed, and the effect of its
dispersion will be described.

6.2 Carrier Density
The rate equation (3.2) describes the carrier density for all time given

the current and optical intensity. To simplify the analysis, the equation is
separated into two parts: one to express the carrier density as a result of the
current, and the second to express the saturation effect from the presence of
photons. So,

dN, -N + I and dn -n----d+- and - - gv(N - N,)P (6.lab)
dt , qV dt = (
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and the total carrier density is the sum of the solutions to these two
equations: N=Ni+n.

Looking at (6.1a) first, the current applied to the diode should be a dc

current equivalent to the threshold current given in section 3.2 or below plus
a modulated current with the modulation frequency determined by the
roundtrip time (m).

I = Id + I,,a Cos(Wt + ) (6.2)

The purpose of the phase shift is so that the peak of the carrier density can be
set at the origin. Combining (6.2) and (6.1a) gives:

dN. -N, -Nd= _ +-+ N, cos(cot + )) (6.3)
dt z', T~

where Nd = Idc and N, = I,
qV qV

The solution to (6.3) is:

Ni = Nd + Ne 2 (cos + om sin cos t) (6.4)1+, e, e

Because in these simulations, com>>l/Te, 0=/2 and (6.4) can be approximated
as:

N, = N+ N cos((,)t)
CO. (6.5)

Approximating the saturation effect is a bit more complicated mostly
because the time dependence of the photon density is gaussian. Only a second
order solution is wanted, therefore the carrier density in the gain term of
(6.lb) is set at the peak carrier density found from (6.5). The photon density is
proportional to the amplitude of the pulse from the solutions to the mode-

locking equations, (2.17).

P= ApI2expt2) where A A (6.6)

so that

dn -n G(Nm - N,)IAP exp(2 (6.7)
dt r

here G=govg. Instead of finding a general solution, which is actually
impossible, n is expanded into a Taylor series around t=O, and the coefficients
up to second order are found:

dn 1 d 2n 2
n =n dt +dt 2 (6.8)

dt -2 t (6.8)
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The most difficult part is finding no:

- 2 t=OGno=eX -G(N -i-Ntp2 exp) r2 dt
=-G(N.,,. - N,)IAP12 r,7r2exp( /X2 - (g-

-G(N - N,) IApI T7' (6.9)

Now, it is easier to find the other two coefficients:
dn =-n _ G(Na -N)IAP 12 (6.10)
dt ,o Te

d 2n n G (Nmx -N,)IAp (6.11)

dt 2
t=O Ire2 Ie 

Finally the total carrier density is:

f = Nd + -- cos(cN) + n + - _ G(N.a + n+ ( G -N,)IAP 2
o. 0 (N e -2 , 2

(6.12)

Now that the carrier density has been estimated, the mode-locking equations
can be completed.

6.3 Mode-Locking
In section 2.3, the master equation was formulated, but it was in a

rather general form. Using the solutions for the carrier density, some of the
variables in (2.16) can be further defined. The first to be considered is the gain
and saturation terms, G(t) and S(t).

To find gain in the diode, the solutions to the carrier density above are
substituted into to the photon rate equation (3.3). Because the dc current is set
at threshold, the dc carrier density, Nd, exceeds the transparency threshold
just enough to cancel the effects of photon decay. So, the total effect of the
diode on the amplitude of the pulse is found to be:

G(t) - S(t) = id (govgr(N + N co(( t) + n - N,) - = 1 go( cos(.ot)+ n)
2vg wo m 2 0), (6.13)

The rate equation was applied to photon density or intensity which is
proportional to the square of the actual amplitude of the signal. Because the
gain is modelled as an exponential effect, taking the square root to apply the
gain to the signal means taking half the argument, thus the one-half term at
the beginning of the left side of (6.13). The other terms at the beginning can
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be traced from Chapter 5 in the conversion from the signal to intensity

(section 5.2).

Separately, the gain and saturation terms are:

G(t) = !edgoFI N.cos(mt)
2F dg (OCm (6.14)

1 1 ( dn ld 2 nt2S(t)=--eAgIn =-Ig 2n -
2st)=- 2 dgo no + dt t+ 2 t2 (615)

In order to simplify further equations, saturation is expressed as:
S(t) = S, + S2t + S 3t2

Note that S1,2,3 are dependent on the amplitude and width of the pulse.
Since the focus is on a single pulse centered at the origin, (6.14) can be
approximated as [10]:

G(t) = dgor- N(1- Wm2t 2) =G(1 - (m 2t 2 )
2 0)m (6.16)

here G is the product of the first terms at the beginning of the middle of (6.16)
and shall remain so for the rest of the thesis.

One discrepancy between the simulations and the model of Chapter 2 is
the bandlimiting of the gain medium. The simulations filter the pulse
outside the diode, so instead of go/0g2 is just 1/tg 2.

The rewritten version of the master equation using all of the new
found terms is:

d 2 d2 1 d2

[G(1 - 0o2 t2 )-(S + S2t + S3t2 )](l + j)- L + Dd + jD, + 2 d 2

= j + AT d (6.17)
dt

Once again, the shape of the pulse is proposed to be:

a = Aexp (--2 (1 + j3))exp(-jAot) (6.18a)

and from this:
da [-(I + jfi)t (6.18b)
dt = r2

d2a 1 jjf j2Acot 2Acot (1- P 2)t 2 j2t 2] (6.18C)
dt2 A + + 4 + 4 a (618c)

Substituting (6.18b,c) into (6.17) and separating the imaginary and real terms
and the constant, linear, and quadratic (in time) terms, gives six equations.
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The six unknowns are I A I, 3 (chirp parameter), Ac (frequency shift), v

(phase shift), and T (time shift from the origin).

The six equations are:

Constant Terms

Real:

Imaginary:

G-S, -L+

aG - aS - (Dd

D +D fi + - A- w = O
d 2 b 2 2 2 }

Ir T ~~~g

+ D) + (r I -

Linear Terms
2Aco 1 2oc~ _ 

S 2 2 (D+Di) -2 -6T
-s l? 2 d J 2 ,22

g

Imaginary:
1 2A( o

,+ 2- = _3T
C2 Ij.22

g

Quadratic Terms

Real:

Imraginary:

-GO)2-s -- ( + D2) + ) m ' 3d +JO+ ( 2 =°
2(1/3 S,+ P) ~ 1 23-aGw-S3 i+ (D +D,)+ 'r 0

_

Eq. (6.19a-f) can be manipulated to find solutions for the parameters of the

pulse shape. Most important is to find I3, the chirp parameter, and which

defines the pulse width. Combining (6.19e) and (6.19f) will give the solutions

to p and X providing that S3 is neglected. After some preliminary estimates, it

was decided that S3 is insignificant compared to Gcom2. is determined by:

( 2 -(Dd + D))2 + + 2a(Dd + D)

and once 3 is known X can be found from:
1 /32

,2 ,,2 2(D d + D),b )4 = Wgg

+ 2)+(Dd + D)_ 2 =0

Weg

G O,n

The objective is to find a value for Dfb such that [3 is zero, ie no chirp. If is
zero, then (6.20) demands that:
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= V- TAo

(6.19a)

(6.19b)

-aS 2 - 2 (Dd + DJ)

(6.19c)

(6.19d)

(6.19e)

(6.19f)

(6.20)

(6.21)



DJ = D (6.22)

Knowing Dfb, the DFB structure can be designed. Before getting into the DFB,

however, the rest of the pulse parameters must be solved for. The frequency

shift, Ao, is the one of the roots of this equation from combining (6.19a,c,d):

where S112 have the amplitude dependence, I A 12, divided out. AwO must be

negative in order for the squared amplitude of the signal to be positive:

2 (1-p 2)CO 1
-A'= "g A (6.24)(.g2 §2'r a) T g- a)

ST can be found from eq (6.19c), and v is also solved through (6.19b). Finally,

given the specifications of the diode and cavity and the running conditions,

the pulse can be fully determined.

6.4 Design of the DFB
Now that the amount of dispersion needed from the DFB structure is

known, the DFB can be designed. From Chapter 4:

ai = 2 Df= , -(6.25)V2 -,= c 2 dffi
Vg IV CIO 

Apparently, the dispersion parameter must be positive, thus in order to have

positive dispersion and positive group velocity, the DFB propagation constant

must be in quadrant IV in Figure 4.5, meaning that the propagation constant

is negative and 6 is also negative, so the Bragg frequency is larger than the

center frequency. Unfortunately, the dispersion of the DFB is not constant

over the band width of the pulse, but in an effort to minimize the error, the

dispersion will be set for the center frequency of the pulse, coo, which

corresponds to So:

0 =too- , = I2 (6.26)

The two parameters that define the DFB structure are cob and K. The method

used to find values for these parameters was to choose the coupling
coefficient and calculate the Bragg frequency from (6.26):
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o b = ) - vg (6.27)
As mentioned earlier, the coupling coefficient should be chosen so that third-
order dispersion is negligible which occurs with increasing K. Also, a bigger
coupling coefficient means 6o is larger, i.e. the Bragg frequency is farther away
from the center frequency. This is a good thing not only because third-order
dispersion is larger close to ob, but also because the spectrum of the pulse
should not include the stop band of the DFB structure centered around Cob.

The Bragg frequency also determines the periodicty of the structure,
A=:rvg/COb.

The length of the DFB structure was set at cm for no particular reason,
although it had to be long enough for the roundtrip time to be much longer
than the pulse width and so that dispersion would be reasonable.

This concludes designing the DFB structure. In order to see the effect of
adjustments in the coupling coefficient and calculate the parameters of the
pulse shape, a spreadsheet was used (see Appendix). The spreadsheet also
lists the values used for the diode and DFB specifications. A lot of these
values are from Table 3.1.
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Chapter 7

Results of Simulations

7.1 Introduction
Yeah! My program works! As stated before, the simulations of the

diode and the DFB structure were developed separately. Figure 7.1 shows
what the output of the gain section looks like after one pass of a forward
moving pulse and no backward wave. For different currents, the pulses
experience different amounts of gain, or absorption if the current is below the
threshold value. Figure 7.2 shows the output of the DFB structure given the
same input as the diode. The reflected field from the DFB is so small
compared to the field that travels through, that perhaps it could be ignored as
its effect on the diode carrier density is minimal. In the theory of Chapter 6,
the saturation from the reflected wave was not considered, and it seems from
the figure that this was not a bad approximation.

The values used for the simulations can be found in the Excel spread-
sheets in the appendix. There is a chart for every simulation which not only
has the diode and DFB specifications, but also the calculated parameters of the
predicted steady-state pulse.

Initially, it was thought that bandlimiting the diode would not be
necessary and that the DFB structure would have a stronger bandlimiting
effect anyway. Figure 7.3 shows the result of omitting this factor from the
diode. This only happened after several hundred roundtrips before which
the results showed normal mode-locking. Apparently, the lack of
bandlimiting in the diode causes instabilities which eventually take effect.
Presumably, the pulse becomes shorter as the bandwidth was allowed to
spread. Once the bandlimiting was applied, the program could run just as
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Figure 7.1. Output of the diode. The dashed line is the original pulse, and the

solid line is the output with current above threshold.
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Figure 7.2. Output of the DFB structure: solid line is the input pulse, dashed
line is the field that traveled through, and dotted is the reflected field.
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Figure 7.3. Output of simulation with a non-bandlimited diode.
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Figure 7.4. Output of simulation with bandlimiting.
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long and still produce mode-locked pulses of reasonable width, meaning
around 10ps, as Figure 7.4 shows. This figure is the result of a simulation in
which the only change from that of Figure 7.3 was the application of
bandlimiting. The significance of these results is that had the instability not
been so obvious it would have been easy to assume that the results without
bandlimiting had been correct. Namely, if the simulation produced very
short pulses, they would have been happily accepted although it is obvious
now that the diode bandlimiting has a strong affect on pulse shaping and to
omit it gives erroneous results.

7.2 Testing and Control Simulations
For purposes of comparison, a simulation was run with DFB off, c=O,

and alpha off, ax=O. Figure 7.5 shows the pulse series produced by this
simulation, and it is obvious that a steady-state has been reached. The
pulsewidth is 7ps. Figure 7.7 and 7.8 display a single pulse and its phase. The
phase is linear during the time of the pulse, meaning that the pulse has no
chirp as would be expected with no dispersion and no nonlinearities.
Another interesting point about the phase is that there is a phase shift
between pulses (not shown in graphs). What happens to the phase between
pulses is unaccountable because the intensity should be zero. The frequency
spectrum (Figure 7.6) has a bandwidth of .0592THz and is still centered at the
carrier frequency of the diode. The peak of the pulse occurs simultaneously
with the peak of the carrier density.

To insure that the DFB is working and show what its effect is, a
simulation was run with the DFB on and alpha off. The coupling coefficient
was set 1000cm-1 which is much too high and dispersion was negative, but
the object was just to demonstrate the effect of the DFB. The results show
most notably some double pulsing developing (Figure 7.9). The reasons for
this will be suggested later. What is important to see is the phase of one
roundtrip section of time. The curvature of the phase is a sign of chirp and is
a result of the dispersion from the DFB structure (Figure 7.11).

To demonstrate the nonlinearity of the diode, a simulation was done
with the DFB off and alpha on, a=5. Figure 7.12 shows a series of pulses and
where they occur in relation to the carrier density. Again, it is obvious that
steady-state has been established. the peak of the pulse and the peak of the
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Figure 7.5. Pulse series produced in simulation with both DFB and alpha off.
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Figure 7.9. Series of pulses from simulation with alpha off and DFB on.
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Figure 7.11. Phase corresponding to Figure 7.10.
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carrier density seem to coincide, and indeed the T predicted is very small.

The pulse width is 5.2ps and the bandwidth is .0987THz. A slight frequency

shift can be seen in Figure 7.13, but is not as large as expected. The most
informative feature of these pulses is the phase. The phase during the time

of the pulse is almost gaussian looking and certainly seems to have quadratic

time dependence--a sure sign of chirping due to the nonlinearities of the
diode (Figure 7.15).

These three tests demonstrate that the program is working properly
and gives something to compare the experimental simulations with.
Following, are the results of simulations run with the DFB designed for three

different amounts of dispersion.

7.3 Results
According to the equations of Chapter 6, the best result was expected for

Dfb=1.2662x10-2 5s2 for a=5. Figure 7.16 shows a series of pulses produced by

this simulation and the relative carrier density. Unfortunately, there is
double pulsing. The main pulse is shifted by 25ps off the peak of the carrier

density which may be the cause for the double pulsing as will be explained

later. The amplitude of the pulse is far below expectations (see appendix),

however, due to the presence of the second pulse. The pulse width of the

larger pulse is 20.6ps, and the bandwidth is about .00986THz which is very

small but typical of the longer pulse. Looking at Figure 7.19, the phase during

the pulse is very linear, thus even though it looks horrible at least the chirp

was canceled. The phase has a negative slope indicating a frequency shift as is

seen from the spectrum of the pulse.

Several different simulations were run to prevent the double pulsing
but everything that was done seemed to make it worse. Increasing K had little

or no effect, and increasing the modulation current only made it worse. By

accident, simulations were run with less dispersion and gave surprisingly
good results.

The next simulation had five times less the dispersion of the above

simulation, Dfb=2.53x1l-26 s2 . The series of pulses in Figure 7.20 shows that

steady-state has not yet been reached since the larger pulse is growing and the

small pulse is shrinking, but at least it promises to look better than the
previous simulation. The peak of the larger pulse is not shifted as far from

the peak of carrier density and the peak of the small pulse seems to coincide

57



5
time (s) x 1010

Figure 7.16. Series of pulses from simulation with Dfb=1.2662x10-25 and a=5.
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Figure 7.18. Single pulse from simulation with Dfb=1.2662x10-25 and a=5.
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with the lowest point in carrier density. In Figure 7.23, the phase of the pulse
is almost linear during most of the pulse, and during the smaller pulse, the
phase is linear although it is difficult to tell with such a steep slope. The
phase is slightly positively inclined signifying a small positive phase shift
which can be noticed in the frequency spectrum (Figure 7.21). The pulse
width is 12.6ps although it would probably a little bit smaller once it reaches
steady-state. The spectrum of an entire roundtrip of time is rather messy
because the spectrums of the two pulses combine in this way, but if the small
pulse is manually removed, the spectrum is clean looking. The bandwidth of
this spectrum is .0795THz.

The best looking pulses came from a simulation with even less
dispersion, Dfb=7.106x10-27s 2 (Figure 7.24). However, the larger pulse is
shrinking slowly, and the peak of the pulse is shifted far after the peak of the
carrier density. The phase of a single pulse is not as linear as the above
simulations although it has bit less chirp than without any dispersion if
compared to Figure 7.14. The smaller pulse also seems to have only a small
amount of chirp. The one very nice thing about these results is that the
intensity of the pulse is almost as high as it should be and still has very little
chirp. There is a significant amount of frequency shift as can be seen in the
phase plot and the spectrum plot (Figure 7.25 and 27). The pulsewidth is 7.4ps
and the bandwidth is .0789THz.

Portions of this work were performed at the Cornell Theory Center,
supported in part by the National Science Foundation, by the IBM
Corporation, by the New York State Science and Technology Foundation, and
by the Corporate Research Institute.
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Figure 7.20. Series of pulses from simulation with Dfb=2.5332x10-26 and a=5.
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Figure 7.21. Frequency spectrum of a single pulse from the above series.
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Figure 7.22. Single pulse from simulation with Dfb=2.5332x1026 and a=5.
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Figure 7.23. Phase corresponding to Figure 7.22.
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Chapter 8

Conclusion

8.1 Summary of Results
Just to summarize some of the previous findings, Table 8.1 reviews all

of the pulsewidths and bandwidths of the pulses.

Table 8.1. Summary

Dfb a
O 0

0 5

1.2662e-25 5

2.5332e-26 5

7.1061e-27 5

of values found in simulations.
At(ps) Av(THz)

7 .0592

5.2 .0987

20.6 .00987

12.6 .0796

7.4 .0789

8.2 Analysis of Results
There must be a reason for the double pulsing. From the Excel

calculations, it was noticed that for increasing dispersion was also increasing
§T. If the pulse shifts too far on the late side of the gain curve then it is
possible for a pulse to grow on the early side. Once this happens, the growing
pulse saturates the medium for the later pulse, and all of the theory falls
apart. If the modulation current is increased, the double pulsing becomes
worse because there is more energy for the second pulse to grow on. Maybe
there is some way to cancel the time shift as well, and then the double pulsing
would be prevented. However, looking at the plot of the series of pulses for
the least amount of dispersion, the pulse is shifted far off the peak of the
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carrier density and yet has a very small second pulse. Perhaps if the program
were to run longer it would become significantly large. In any case, the pulse
definitely takes longer to mode-lock with the DFB structure than without it.
If one had to choose among the three simulations, the middle dispersion,
Dfb=2.5332x10-2 6 seems the most promising. The chirp of the second
simulation is much less than that of the third, and the pulse is not too bad
and seems to be getting better.

On the other hand, it has been demonstrated that the DFB structure can
be used for its dispersion to cancel the chirp due to nonlinearities in the
diode. The first simulation has a very straight phase proving the lack of chirp
even though double pulsing was significant.

Another plus is that the coupling coefficient can be a reasonable value
for the amount of dispersion needed to compensate chirp. This was a large
concern initially that happily turned out not to be any problem.

Another positive issue is that a program was written that could
simulate a diode and DFB structure very well. Both can handle forward and
backward waves. It is also possible to study spatial hole burning with this
program since it divides the diode up into small slices and calculates the
carrier density for each one independently.

8.3 Possible Improvements
The first most obvious task is to find a way to prevent the double

pulsing. Perhaps modulating the current in a different way would do it, but
then all of the theoretical analysis would have to be rewritten. Once this
problem is understood, the model can be changed. The program is capable of
handling forward and backward waves, so it would be interesting to remove
the modelled isolator on one side of the diode and have a colliding pulse
mode-locking ring, or a straight cavity. Ultimately, it would be possible to
model a passive mode-locking system which was the original intent of this
thesis. The work done for this thesis proves that it is possible to compensate
for nonlinearities in the diode using a DFB structure, but much more
research needs to be done to find all the ways to exploit this and to figure out
how to design the best system. But before any of this, would somebody please
figure out a way to make my program run faster!

8.4 The End
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Appendix A

Calculating Parameters of the Pulse and DFB

Following are the spreadsheets from Excel, used to find values for the
pulse parameters given mode-locking conditions. The equations used for
these spreadsheets are all explained in Chapter 6. The above half defines the
diode and DFB specifications, current, and calculates the gain and saturation
terms. The bottom half calculates the unknowns from the master equation
and some parameters of the DFB.

The first spread sheet is for Dfb=1.2662x10-2 5s 2; the second is for
Dfb=2.5332x10-2 6 s2 ; and the third is for Dfb=7.1061x10-2 7s2 .

The variables in the spreadsheet look a little different than in the rest
of the paper. Just in case there is confusion:

Pc=Bc

:=tau
IAI2=IA I ̂ 2

Aco=delw

8T=delT

l=psi
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Diode Specifications I Carrier Desit I DFB specs
go 5.00E-201 Ndc 1.5556E+241 length (m) 0.01
te 2.20E-091 Nac 1.4031E+231 length (cm) 1
tp 1.60E-121 Nmax 1.6959E+241 vg m/s 75000000
vg 7.50E+071 :G 0.078921651 vg cm/s 7500000000
gamma 0.31 k cm-1 250
wg 6.28318E+121 Saturation Terms
Nt 1.00E+241 rGm 1.0902E+17
alpha 5 S1i 2.1342E-191 Dfb for no chirp! 1.2662E-25
wo 1.44996E+15 :S2 4.8831E-081 I B" s2/cm 2.5324E-25
beta" 8.96574E-251 :S3 -11.0978861 !B"' s3/cm -6.2591E-38

Current Values: iloss 0.021 !delo -1656.08629
Id 0.003393939i I Iwb 1.4624E+15
lac 0.03151 tau 3.4803E-121 !

width 8.1954E-121 'ratio -0.1894946
Diode Dimensions ! -0.06316487
length 7.50E-05 Dd 3.3622E-29 _
aeff 4E-131 
V 3.00E-171

Constants
q } 1.60E-19 

rndtrip time 1.34333E-101 |
wm 467730521091

Getting all the unknowns

Dt= 1.26652E-251 1.27E-251
Dt 1.27E-251 /Dfb 1.27E-25

I -B' 2.5324E-25
Finding B IFinding delw 
a -2.29589E-401 a 2.533E-261 I
b 1.31718E-241 b -3.656E-151 delo -1656.08629
c 2.29589E-401 c -0.0568303611

i___ ! wb for wc 1.461E+15
B OI delw -1.4274E+121
tau^4 1.46708E-461 IAIA2 2.4453E+161 !wb for wo 1.4624E+15
tau 3.48027E-12 delT -3.4711E-13 I
width 8.19542E-12 psi 10.59547185 iwc 1.4485E+15
B- 5.73712E+151 I

-4.82882E-151 1 Iratio -0.1894946
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Diode Specifications ;Carrier Density DFB specs
go 5.00E-201 Ndc 1.5556E+24! length (m) 0.01

te 2.20E-091 Nac I 1.4031E+23: length (cm) 1
tp 1.60E-121 .Nmax ' 1.6959E+24 vg m/s 75000000
vg 7.50E+071 G 0.07892165: vg cm/s 7500000000
gamma 0.31 k cm-1 250
wg 6.28318E+121 Saturation Terms
Nt 1.00E+241 Gmn 1.0902E+17
alpha 5 iS1 2.1342E-19! Dfb for no chirpt 1.2662E-25
wo 1.44996E+151 :S2 I 4.8831E-081 B" s2/cm 2.5324E-25
beta" 8.96574E-25 iS3 -11.0978861 B"' s3/cm -6.2591 E-38

Current Values: !loss ! 0.021 delo -1656.08629
Id 0.0033939391 ' *wb 1.4624E+15
lac 0.03151 tau 3.4803E-12:

!width 8.1954E-12 ratio -0.1894946
Diode Dimensions ; | -0.06316487
length 7.50E-05 Dd 3.3622E-291
aeff 4E-13 j
V 3.00E-17 !

Constantsq i~ 1.60E-19
rndtrip time 1.34333E-10 
wm 467730521091

Getting all the unknowns ---

Dt= 1.26652E-251 2.53E-261
Dt 2.53E-261 Dfb 2.53E-26

, ~ -B' 5.0593E-26

Finding B 'Finding delw
a 1.01321 E-25 a 2.533E-261
b 3.03964E-251 b -6.4242E-15: delo -2811.54366
c -1.01321E-251 c -0.05627176i 

wb for wc 1.4697E+15
B 0.3027756381 delw -1.3691 E+121
tau^4 4.44196E-471 'AI^2 4.1211E+161 wb for wo 1.4711E+15
tau 2.58163E-121 delT -7.6945E-141
width 6.07927E-12T psi 0.403546151 wc 1.4486E+15

B- -3.3027756381
-4.84543E-461 ratio -0.14821453
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Diode Specifications i Carrier Density i DFB specs
go 5.00E-201 !Ndc 1.5556E+241 !length (m) 0.01
te 2.20E-091 Nac 1.4031E+231 liength (cm) 1
tp 1.60E-12! INmax 1.6959E+24] Ivg m/s 75000000
vg 7.50E+071 iG 0.078921651 vg cm/s 7500000000
gamma 0.31 ;k cm-1 400
wg 6.28318E+12! Saturation Terms J
Nt 1.00E+241 Grn 1.0902E+171 !
alpha 5 iS1i 2.1342E-191 Dfb for no chirpi 1.2662E-25
wo 1.44996E+151 'S2 4.8831E-081 IB" s2/cm 2.5324E-25
beta" 8.96574E-251 S3 -11.0978861 !B"' s3/cm -4.5946E-38

Current Values! loss 0.02 Idelo -2274.97322
Id 0.0033939391 I wb 1.467E+15
lac 0.03151 tau 3.4803E-121 I

width 8.1954E-121 ratio -0.13910098
Diode Dimensions -0.04636699
length 7.50E-051 Dd 3.3622E-29t
aeff - 4E-131
V 3.00E-171

Constants 
q I 1.60E-191 

rndtrip time 1.34333E-101
wm 467730521091 1

Getting all the unknowns

Dt= 1.26652E-251 1.27E-251
Dt 7.11E-271 7.1061E-271 'Dfb 7.07E-27

B' 1.4145E-26
Finding Finding delw
a 1.19546E-251 ,a i 2.533E-26
b 1.21722E-25i b -4.9133E-151 delo -5872.30334
c -1.19546E-251 'c -0.055650541 J

iwb for wc 1.4926E+15

B 0.6130323431 delw -1.3884E+121 I
tau^4 4.11126E-471 !IAIA2 3.1964E+161 wb forwo 1.494E+15
tau 2.53218E-121 [delT -5.2844E-141
width 5.96282E-121 psi 0.41664055 iwc 1.4486E+15
B- -1.6312353051 !

-1.09398E-461 , ratio -0.07211061
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Appendix B

The Program

Mode-Locked Semiconductor Diode Simulator--Ring Model with DFB
structure
c Description:

c This program simulates a semiconductor diode in a mode-locked

c state of a ring model. The ring consists of the diode and a DFB

c structure which the program also simulates. The DFB structure may or

c may not have matched ends.

c Given parameters include diode specifications, DFB parameters,

c current values (dc and ac).

c Input is given within the program by "feed" array that has

c initial input pulse.

c Output is two arrays of a number of pulses (depending on modulation

c frequency). First array is last 400ps going into diode, and second

c array is last 400ps coming out of diode.(Or switched)

program nwring3

integer lim,tot,half,off,j,fld,orig,time,numslabs,numflds

integer limtime,quad,flag

real*8 fftscale,len,taup,taus,g,aeff,Nt,q,V,width,delt,tu,vg

real*8 N(35),ma,sj l,sj,Icj,Icj 1,Ic,kl ,k2,k3,k4,nma,phase,li

real*8 neff,pi,betaO,betal ,beta2,w,wo,c,carr(6200)

real*8 mb,sb,sa,nmb,runtime,alpha,delg,Non,loss

real*8 aux 1 (20000),aux2(20000),feed(4096)

complex* 16 i,Prop(0:2047),at(35)

complex* 16 a( 1 :35,0:2047),in(6200),out(6200),Nonx(35)

complex* 16 b(1:35,0:2047),bt(35)

complex* 16 reflect(0:2047),transfer(0:2047),x(O:2047)
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data i /(O.dO,-1.dO)/, pi /3.1415927d0/

call xuflow(O)

lim=2047

tot=lim+ 1

fftscale= 1.dO/tot

c: Length of diode and diode sections

len=7.5000002d-6* 17.dO

li=7.5d-6

numslabs=int(len/li)

numflds=numslabs+ 1

orig=5

print*,numslabs

c Call to DFB

flag=O

call dfbjay(orig,transfer,reflect,flag)

c Diode Specifications

taup=1.6d- 12

taus=2.2d-9

g=2.5d-20* 1l.dO

gamma=.3dO

aeff=2.d-6*.2d-6

Nt=l.d24

q=1.6d-19

V=len*aeff

loss=dexp(-0.004d0)

c Initial pulse and time parameters

width=15.d- 12
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tu=width*width/4.dO/dlog(2.dO)

delt= 1 .d- 13

half=(lim- 1)/2

quad=(lim+ 1)/4

neff=4.dO

c=3.d8

vg=c/neff

c Runtime

runtime=2048.d- 13 *20.dO

limtime=int(runtime/delt)

c Frequency and Diode Propagation parameters

wo=2*pi*c/1.3d-6

delw=2*pi/tot/delt

betaO=O

betal=l/vg
c beta2=0.6d6*pi/wo/wo

beta2=0

alpha=5

c Propagation array

do lOj=O,lim

if (j.le.(lim+1)/2) then

w=j*delw

else

w=(j-lim- 1)*delw

end if

Prop(j)=cdexp(-i*(betaO+w*betal+w*w*beta2)*li)

10 continue

call propag(Prop,orig,x)

c Initializing Arrays
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do 20 fld= 1,numflds

do 30 j=0,lim

a(fld,j)=0

b(fld,j)=0

30 continue

20 continue

c Initial Pulse

do 40 j=0,2*tot

feed(j)=0

c feed(j)=dexp(-(delt*(j-tot)*delt

c & *(j-tot))/tu)* 1.d-3

40 continue

c Initial Carrier Density

do 50 fld= ,numslabs

c N(fld)=15.20d-3*taus/q/V

N(fld)=Ic(O,len)/q/V

50 continue

print*,N( 1 )

c @@@@@ Beginning of time step @ @@@@@@@@@@@@

do 60 time= l,limtime

if (time.le.6200) then

in(time)=a( 1,orig)

else

do 52 j=1,6199

in(j)=in(j+ 1)

:52 continue

in(6200)=a( 1,orig)

end if

Icj=Ic(time- 1,len)
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Icj 1 =Ic(time,len)

c %%%%%% Beginning of Slab step through %%%%%%%%%%

do 70 fld=l,numslabs

ma=a(fld,orig)*dconjg(a(fld,orig))

sa=ma/(vg*aeff)

mb=b(fld+ 1 ,orig)*dconjg(b(fld+ 1,orig))

sb=mb/(vg*aeff)

sj 1=sa+sb

sj=(a(fld,orig- 1 )*dconjg(a(fld,orig- 1))

& +b(fld+ 1,orig- 1)*dconjg(b(fld+l ,orig- 1)))/(vg*aeff)

c

kl=delt*(Icj/qNV-g*vg*(N(fld)-Nt)*sj-N(fld)/taus)

k2=delt*((Icj+Icj 1)/2/qN/V-g*vg*(N(fld)+kl/2-Nt)*(sj+sj 1)/2

& -(N(fld)+k 1/2)/taus)

k3=delt*((Icj+Icj 1)/2/qN-g*vg*(N(fld)+k2/2-Nt)*(sj+sj 1)/2

& -(N(fld)+k2/2)/taus)

k4=delt*(Icj l/q/V-g*vg*(N(fld)+k3-Nt)*sj 1-(N(fld)+k3)/taus)

N(fld)=N(fld)+k 1/6+k2/3+k3/3+k4/6

delg=g*gamma*vg*(N(fld)-Nt)

C

nma=(-sa/taup+g*vg*gamma*(N(fld)-Nt)*sa)*li*aeff+ma

nmb=(-sb/taup+g*vg*gamma*(N(fld)-Nt)*sb)*1i*aeff+mb

c

at(fld)=dsqrt(nma)*cdexp(i*phase(a(fld,orig)))

bt(fld)=dsqrt(nmb)*cdexp(i*phase(b(fld+ 1 ,orig)))

c

c do 100 j=O,lim
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c as(fld,j)=at*x(j)

c bs(fld,j)=bt*x(j)

c 100 continue

c **************** Nonlinear Effect *******************

Non=alpha*delg*0.SdO

Nonx(fld)=dcos(li*Non)+i*dsin(li*Non)

70 continue

c %%%%%%% End of Slab step through %%%%%%%%%%

c Propagation through diode:

do 110 fld= 1,numslabs

do 120 j=0,lim

a(fld+1 ,j)=a(fld+ 1 ,j)+at(fld)*x(j)

b(fld,j)=b(fld,j)+bt(fld)*x(j)

120 continue

110 continue

c Advancing each array

do 130 fld=l,numflds

do 140 j=0,lim

a(fld,j)=a(fld,j+l)

b(fld,j)=b(fld,j+l)

140 continue

a(fld,lim)=0

b(fld,lim)=0

130 continue

c Completing Nonlinearity

do 142 fld=l,numslabs
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a(fld+ 1,orig)=a(fld+ l,orig)*Nonx(fld)

b(fld,orig)=b(fld,orig)*Nonx(fld)

142 continue

c feed in initial pulse from array "feed"

if (time.le.4096) a( l,lim)=feed(time)

c $$$$$$$$ Output $$$$$$$$$$$$$$$

if (time.le.6200) then

out(time)=a(numflds,orig)

carr(time)=N(numslabs)

else

do 58 j=1,6199

out(j)=out(j+l)

carr(j)=carr(j+ 1)

58 continue

carr(6200)=N(numslabs)

out(6200)=a(numflds,orig)

end if

c &&&&&&& DFB effect &&&&&&&&&&&&&&&&&

do 145 j=0,lim

b(numflds,j)=b(numflds,j)+reflect(j)*a(numflds,orig)

a( 1 ,j)=a( 1 ,j)+transfer(j)*a(numflds,orig)*loss

145 continue

c&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

60 continue

c@@@@@@@ Endof time step @@@@@@@@@@@@

open(unit=7,file=' forward3')

do 200 j=2048,6144

if (mod(j, I0).eq.0) write(7,'(lx,4e 12.5)') j*delt,
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& cdabs(out(j)),cdabs(in(j)),carr(j)

:200 continue

c do 65 j=1,512

c & cdabs(in(j)),cdabs(out(j))

c65 continue

end

c ************* CURRENT ************************

function Ic(time,len)

integer time,off,half

real*8 tau,delt,It,len,Ic,sub,tr,wm,Iac,taus

taus=2.2d-9

tr=101.65d-12

wm=2.dO*3.1415927dO/tr

half=4096

off=250

delt= .d- 13

It=7.9d-3

tau=3185.d-14

c Iac=85.d-3

Iac=O

Ic=Iac*dcos(wm*(time-half+off)*delt)+It

if (time.eq.O) Ic=It*taus+Iac/wm*dcos(wm*delt*(-half+off))

c Ic=( 100.dO*dexp(-(delt*(time-half+off)*delt*(time-half+off))
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c & /(2*tau*tau))* 1.d-3+It)*len/250.d-6

end

c ****************** PHASE **************************

function phase(arg)

real*8 rp,ip

complex* 16 arg

rp=dreal(arg)

ip=dimag(arg)

if ((rp.eq.O).and.(ip.eq.O)) then

phase=O.dO

else

phase=datan2(ip,rp)

end if

end

c %%%%%%%% Propagation Routine %%%%%%%%%%%

subroutine propag(Prop,orig,a)

integer j,orig,lim,tot

real*8 aux 1 (20000),aux2(20000),fftscale

complex* 16 Prop(0:2047),a(0:2047),af(0:2047)

lim=2047

tot=lim+l

fftscale= .dO/tot

do 10 j=O,lim
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a(j)=O

10 continue

a(orig)= 1

call dcft(l,a(O), l,tot,af(O), l,tot,tot, 1,- 1, .dO,

& aux 1,20000,aux2,20000)

call dcft(0,a(O), 1,tot,af(O), l,tot,tot, 1,- 1,1. dO,

& aux 1,20000,aux2,20000)

do 98 j=O,lim

af(j)=af(j)*Prop(j)

98 continue

call dcft(l,af(O), l,tot,a(O), l,tot,tot, l, l,fftscale,

t& aux 1,20000,aux2,20000)

call dcft(0,af(O), l,tot,a(O), l,tot,tot, 1, l,fftscale,

& aux 1,20000,aux2,20000)

end

c $$$$$$$$$$$ DFB SECTION $$$$$$$$$$$$$$$$$$$$

subroutine dfbjay(orig,ao,bz,flag)

integer j,lim,tot,half,flag,orig

real*8 fftscale,delt,pi,delw,wo,c,neff,vg,delo,wb

real*8 w,aux. 1 (20000),aux2(20000),L,arg,wg,wx,width,band

real*8 betao,lo,phi,period,p,dfbloss,k

complex* 16 i,az(0:2047),azf(0:2047),bo(0:2047),bof(0:2047)

complex* 16 beta,s(2,2),ao(0:2047),aof(0:2047),bz(0:2047),cdcosh
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complex* 16 bzf(O:2047),del,ques(0:2047),ansin,ancos,cdsinh

complex* 16 axsin,axcos,sx(2,2),sg(2,2),s 1 (2,2),s2(2,2),id(2,2)

data i /(O.dO,- .dO)/, pi /3.1415927/

call xuflow(O)

c flag=O

id(1,1)=1

id(1,2)=O

id(2,1)=O

id(2,2)= 1

lim=2047

tot=lim+ 1

fftscale= 1 .dO/tot

width= 15.d- 12

wg=pi*2.OdO/width

wx=wg* 14

c wx=2*pi* 10^12

print*,wx

delt= l.d- 13

delw=2.dO*pi/delt/tot

half=(lim- 1)/2

wo=2*pi*3.d8/1.3d-6

c=3.d8

c Impulse Initialization

do 10 j=O,lim

az(j)=O

if (j.eq.orig) az(j)=l

bo(j)=O
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10 continue

c DFB parameters

neff=3.dO

vg=c/neff

c k=20000.dO

k=O

L=.01

delo= 110000.dO

wb=wo-delo*c/neff

betao=sqrt(delo*delo-k*k)

c lo=(1/betao)*(dasin(betao*(delo-betao)/(k*k*sqrt(1-(delo-betao)

c & *(delo-betao)/(k*k)))))

phi=pi/2-datan(delo* dtan(betao*lo)/betao)

period=pi*vg/wb

p=phi*3.d 10/2.dO/wo

dfbloss=l.dO

call dcft(l,az(O), l ,tot,azf(O), l,tot,tot, 1,-1, l.dO,aux 1,20000,

& aux2,20000)

call dcft(O,az(0), 1l,tot,azf(0), 1l,tot,tot, 1,- 1, l.dO,aux 1,20000,

& aux2,20000)

call dcft(l,bo(O),l ,tot,bof(O), l,tot,tot, 1,- 1, .dO,aux 1,20000,

& aux2,20000)

call dcft(0,bo(0), l,tot,bof(O),l ,tot,tot, 1,- 1, l.dO,aux 1,20000,

& aux2,20000)

do 100j=0,lim

if (j.le.(lim+1)/2) then

w=j*delw
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else

w=(j-lim- 1 )*delw

end if

del=(w+wo-wb)/vg

arg=k*k-del*del

c

band=dexp(-w*w/wx/wx)

azf(j)=azf(j)*band

if (arg.lt.O.dO) then

beta=i*dsqrt(- 1 .dO*arg)

else

beta=dsqrt(arg)

end if

c

ansin=cdsinh(L*beta)

ancos=cdcosh(L*beta)

c print*,' ansin',j,ansin

c print*,'ancos',j,ancos

s( 1,1 )=ancos+i*del/beta*ansin

s(1,2)=i*k/beta*ansin

s(2, 1)=-i*k/beta*ansin

s(2,2)=ancos-i*del/beta*ansin

c If using matching structure

if (flag.eq. 1) then

axsin=cdsinh(lo*beta)

axcos=cdcosh(lo*beta)

sx( 1,1 )=axcos+i*del/beta* axsin

sx(1,2)=i*k/beta*axsin
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sx(2, l)=-i*k/beta*axsin

sx(2,2)=axcos-i*delI/beta*axsin

sg( 1,l )=cdexp(i*w*p/c)

sg(1,2)=0

sg(2,1)=0

sg(2,2)=cdexp(-i*w*p/c)

&

call mulmat(sg,sx,s 1,1)

call mulmat(s,s 1,s2,1)

call mulmat(sg,s2,s 1, 1)

call mulmat(sx,s 1,s, 1)

end if

aof(j)=azf(j)/s( 1,1)-s(1,2)/s( 1, 1)*bof(j)

bzf(j)=azf(j )*s(2,1 )/s( 1,1 )+(s(2,2)-s( 1,2)*s(2,1 )/s( 1,))

*bof(j)

band=dexp(-w*w/wx^2)

aof(j)=aof(j)*band

100 continue

call dcft( 1 ,aof(O), 1 ,tot,ao(O), 1 ,tot,tot, 1,1 ,fftscale,aux 1,

& 20000,aux2,20000)

call dcft(O,aof(O), l,tot,ao(O), l,tot,tot, 1, ,fftscale,aux 1,

& 20000,aux2,20000)

call dcft(l,bzf(O), l ,tot,bz(O), 1 ,tot,tot, 1, l,fftscale,aux 1,

&. 20000,aux2,20000)
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call dcft(O,bzf(O), l,tot,bz(O), l,tot,tot, 1, l,fftscale,aux 1,

& 20000,aux2,20000)

c open(unit= 13,file='dfbjpul l',status=' old')

c do 150 j=O,lim

c write(13,'( lx,4e 14.5)') delt*(j-half),cdabs(az(j)),

c & cdabs(ao(j)), cdabs(bz(j))

cSO150 continue

end

c ************** cdcosh ***********************

function cdcosh(arg)

complex* 16 arg, cdcosh

if (dreal(arg).gt.83) then

cdcosh=l.d36

else

cdcosh=(cdexp(arg)+cdexp(- 1 .dO*arg))/2

end if

end

c ******************** CDSINH *************************

function cdsinh(arg)

complex* 16 arg, cdsinh,i

data i /(O.dO,-1.dO)/

if (dimag(arg).eq.0.dO) then

if (dreal(arg).gt.83) then
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cdsinh=l.d36

else

cdsinh=(cdexp(arg)-cdexp(- 1 .dO*arg))/2

end if

else

cdsinh=i*dsin(cdabs(arg))

end if

end

c $$$$$$$$$$$$$ subroutine mulmat $$$$$$$$$$$$$$$$$$SS

subroutine mulmat(trixl,trix2,matrix,n)

c Multiplies two matrices: n=l answer in matrix

c Also raises trix 1 to the nth power: trix2 is the identity matrix

integer n,j

complex* 16 trix 1 (2,2),trix2(2,2),matrix(2,2)

do 100j=l,n

matrix( 1,1 )=trix 1 ( 1,1 )*trix2( 1,1 )+trix 1 ( 1,2)*trix2(2,1)

matrix(2,1 )=trixl 1(2,1 )*trix2( 1,1 )+trix 1(2,2)*trix2(2,1)

matrix(1,2)=trixl(1,1 )*trix2( 1,2)+trixl( 1,2)*trix2(2,2)

matrix(2,2)=trix 1(2,1)*trix2( 1,2)+trixl 1(2,2)*trix2(2,2)

c print*,'matrix in mulmat:',matrix

if (n.gt.l) then
trix2(1,1)=matrix(1 ,1)

trix2( 1,2)=matrix( 1,2)

trix2(2,1 )=matrix(2, 1 )

trix2(2,2)=matrix(2,2)

endif
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100 continue

return

end
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