
DAMAGE ANALYSIS OF INTERNAL FAULTS
IN FLUX CONCENTRATING PERMANENT MAGNET MOTORS

by
Francis R. Colberg

B.S. Elec. Eng., University of Puerto Rico, (1977)

Submitted to the Department of
OCEAN ENGINEERING
and to the Department of

ELECTRICAL ENGINEERING AND COMPUTER SCIENCE
in Partial Fulfillment of the Requirements for the Degrees of

NAVAL ENGINEER

and

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING
AND COMPUTER SCIENCE

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1994

OFrancis R. Colberg
The author hereby grants to M.I.T. and to the U.S. Government permission to reproduce and to distribute

.ni tf thi~ thesis document in whole or in nart

Signature of author:_ _

Depart4ent of Ocean Engineering, May 1994

Certified b.

James L. Kirtley, Jr.
Associate Professor of Electrical Engineering

Thesis Supervisor

Certified by:

A. Douglas Carmichael
Professor of Power Engineering

Thesis Reader

Accepted by:
"'J J ~A. Douglas Carmichael

Departmental Graduate Committee
. n I1 nI. Ah A Department of Ocean Engineering

Accepted by:
F. R. Morgenthaler A- Dakw-

Professor of Electrical Engineering
Graduate Officer

, . - -. ; ,;e n Department of Electrical Engineering and Computer Science
1fiAgSACHS~T~$ INSTITU1

OF Tr4MAnt y

uIBRARES
rasrlmr Fnn

DAMAGE ANALYSIS OF INTERNAL FAULTS IN
FLUX CONCENTRATING PERMANENT MAGNET MOTORS

by

Francis R. Colberg

Submitted to the Department of Ocean Engineering and the Department of
Electrical Engineering and Computer Science on May 6, 1994 in partial fulfillment
of the requirements for the Degrees of Naval Engineer and Master of Science in

Electrical Engineering and Computer Science

Abstract

It is the purpose of the proposed research to develop a digital computer simulation
model to study the effects of an internal fault in a large permanent magnet ac synchronous
motor. Permanent magnet motors are being considered as an alternative for ships with
electric propulsion systems. In an electric propulsion system a large motor will be directly
connected to a propulsion shaft. A windmilling shaft will continue to turn the rotor of the
propulsion motor after the motor has been disconnected from its electrical power supply
source.

Following an internal electrical fault in a propulsion motor, it is expected that the
motor will be disconnected from its electrical supply source. With the ship operating at or
near rated speed following a casualty to the propulsion plant, the ship will coast down to a
stop or until the crew takes action to stop the ship. A windmilling permanent magnet
motor will generate a large enough internal voltage to continue to support large fault
currents.

This research will focus on the fault transient and the motor behavior during the
time that the propulsion shaft is windmilling. Shorting the motor terminals will be

considered as a means of reducing the power input into the fault.

Thesis supervisor: Dr. James L. Kirtley, Jr.
Title: Associate Professor of Electrical Engineering

2

Acknowledgments

I wish to thank my advisor, Professor James L. Kirtley for his support and
guidance, without whom I would not have been able to complete this work. I would also
like to thank CAPT Al Brown and LCDR Jeff Reed for their intellectual support and
Professor A. Douglas Carmichael, my thesis reader.

I would like also to thank my parents and my wife's parents for their support and
encouragement. Finally, I want to thank my wife, Maribeth for her support and assistance
throughout my graduate work.

I wish to dedicate this thesis to my children, Barbara and Steffen for understanding
and putting up with me during the past three years.

3

Table of Contents

A bstract ... 2

Acknowledgments..3

Table of Contents ... 4

Chapter 1. Introduction ... 6
1.1 Ship Propulsion System s .. 8
1.2 Perm anent M agnet M otors ... 9
1.3 Ship Model ... 11
1.4 Faults in Permanent Magnet Ship Propulsion Motors 12
1.5 Research Approach ... 13

Chapter 2. Conceptual Design ... 15
2.1 A ir gap size .. 19

2.2 Magnet dimensions .. 19
2.3 Determination of terminal current and machine rating 21
2.4 Machine Reactances ... 22
2.5 Internal Voltage ... 23

2.6 Stator sizing...25
2.7 Stator leakage reactance ... 26
2.8 Losses and machine efficiency 27
2.9 Back iron sizing ... 28
2.10 Weight Calculations ... 29

Chapter 3. Dynamic Models ... 30
3.1 Two axis transformation 30

3.2 Per Unit Scaling ... 32
3.3 Permanent Magnet Motor Model ... 33

3 .4 N etw o rk m o d el .. 3 9
3.5 Fault M odel ... 39

3.6 Motor Load Model .. 41

Chapter 4. Simulation Model ... 44
4.1 Discussion of the simulation program.. 44
4.2 Fault simulation .. 47
4.3 Simulations ... 50
4.4 Fault Param eters 51

4

Chapter 5. Conclusions and Results .. 53
5.1 Simulation Results .. 53

5.1.1 Simulation with motor terminals open .. 53

5.1.2 Simulation with shorting of the motor terminals .. 59
5.3 Suggestions for Future Research ... 65

5.4 Conclusions .. 65

References..67

Appendix A. Motor Design Spreadsheet 69

Appendix B. Node and Network Pre-Processor 71

Appendix C. Load Flow Program .. 76
Appendix C-1. Load flow calculation program .. 78

Appendix C-2. Node Voltage Calculation .. 82
Appendix C-3. Line Admittance Calculation .. 84

Appendix D. Line Simulation Input File .. 85

Appendix E. Synchronous Machine / Network Simulator 92
Appendix E- 1. Motor Object .. 109
Appendix E-2. Network Program .. 124

5

Chapter 1. Introduction

The use of electric ship propulsion offers significant advantages in ship design,

construction and operation. Placing electric propulsion motors as far back in the ship as

possible serves to reduce long shaft lengths. Propulsion shafts often go through many

compartments, creating design complications with shaft line component alignment and

compartment arrangement. In addition, electric propulsion can reduce the number and

type of prime movers in the ship. Propulsion power and shipboard electrical power can be

derived from common prime movers.

In electric propulsion ships, prime movers can be located anywhere in the ship.

This flexibility can improve survivability and make maintenance and shipboard

arrangements easier [1].

Using electric drive can provide the ship with greater operational flexibility.

Electric drive ships can operate the prime movers at their optimal speed and most efficient

speed. By operating the prime movers at their most efficient speed, the ship's fuel

consumption can be lowered. This could decrease the frequency of refueling and increase

the endurance of the ship.

Electric power propulsion has been used in ships, commercial and military, for

over 50 years. However, some drawbacks have been higher costs and greater weight than

mechanical drive systems. Advanced systems using permanent magnets have the potential

of being lighter than similar conventional systems.

6

The US Navy is developing modem electric drive propulsion systems for its ships.

In some of the conceptual designs for these electric propulsion systems, the use of

permanent magnet propulsion motors and ship service generators has been considered.

An issue that needs to be investigated is the behavior of such machines during and

following an electrical fault inside the motor or generator, where the machine supply

breakers might not be able to prevent damage. Of concern are internal arcing faults that

can result in very large currents and high localized temperatures [2]. These large currents

and high temperatures can cause extensive damage to insulation and conductors and more

importantly to the permanent magnet themselves.

The arcing process itself can cause significant damage to the machine. Arcs can

compromise the electrical, as well as, the mechanical integrity of the machine. Localized

damage caused by the electric arc, such as pits or hardened spots, can serve as crack

initiators from which cracks that can be induced by machine vibrations can initiate and

propagate [3].

After a permanent magnet generator or motor is disconnected from the rest of the

system it will continue to generate an internal voltage, Eaf, until the field comes to a stop.

In wound field machines the field circuit breaker can be tripped simultaneously with the

main circuit breakers thus essentially eliminating the field. Figure 1 shows a simple

schematic of an ac synchronous machine.

7

Xs

lIi

Figure 1-1 Simplified Motor
Model

The internal voltage generated in the machine is proportional to the rotational

speed of the field. In big machines, such as those used for propulsion or power

generation, these internal voltages can be very large. The generated internal voltage can

be large enough to continue the arcing process and cause further damage while the

machine is coasting down.

The purpose of this research is to develop some tools that can be used to

investigate what happens to a large permanent magnet motor following an internal fault

while the motor coasts down.

1.1 Ship Propulsion Systems

Current naval propulsion systems consist of multiple diesel engines or gas turbines

coupled to one or more propulsion shafts through a set of reduction gears and clutches.

Using two engines per shaft provides redundancy and continuity of propulsion. In the

case of damage or maintenance to one engine while the ship is underway, propulsion can

still be maintained on that shaft.

8

I

Although mechanical systems are very simple and reliable, they have some major

disadvantages. Mechanical drive systems require separate prime movers for electrical

power generation. Alignment between the shaft and the prime mover requires that prime

movers be located as low in the ship as possible. This requirement results in large

amounts of"lost volume" inside the ship and the superstructure for intake and exhaust

trunks. Some of this volume can be recovered in ships with electric drive.

Relatively light prime movers, such as gas turbines, can be located higher in the

ship as electric drive does not require alignment between the propulsion motor and the

prime mover. Conceivably, prime movers could be located in the superstructure.

Locating the prime movers higher in the ship can minimize the arrangeable volume lost to

long exhaust and intake trunks. Other advantages and drawbacks of these systems are

discussed in [4].

Another possibility that electric propulsion offers is the capability to move the

propulsion motors outside the hull of the ship.

1.2 Permanent Magnet Motors

The machine used in this research is a permanent magnet ac synchronous motor.

This is essentially an ac synchronous motor in which the field windings have been replaced

by permanent magnets. The analysis used for this machine is that used for wound field ac

synchronous machines assuming that the machine is excited by a field current of constant

value.

Permanent magnet machines have a number of advantages over wound field

machines. One of their most significant advantages is the elimination of the field windings

9

and the power losses generated in these windings. In addition, since no electrical

connections are required to supply the field, this eliminates the need for slip rings and

brushes. Therefore, eliminating the field windings can also result in smaller machines than

wound field machines. This is especially important in marine applications that are volume

limited where space is critical.

Some of the limitations of permanent magnet machines come from the permanent

magnets themselves. Excessive currents in the motor windings or excessive heat could

result in demagnetization of the magnets. Other limitations and advantages of permanent

magnet machines are discussed in detail in [5] and [6].

The control aspects and the electrical power requirements of permanent magnet ac

machines are not addressed in this research. Such aspects of permanent magnet and other

electrical machines are addressed in references such as [7] and [8].

For the purposes of this research the permanent magnet motor will be assumed to

have been operating in steady state at the time the fault is initiated. After the fault is

initiated the motor will be disconnected from the rest of the network and allowed to coast

down. This research will only address large, low speed motors such as those that would

be used for ship propulsion. In this configuration the propulsion shaft will be directly

connected to the rotor of the machine.

The permanent magnet motor used in this research is a notional machine. A

notional machine was used as this type of propulsion machinery is not yet in use in naval

ships. Design and sizing calculations of this machine are discussed in chapter two.

10

One of the advantages of electric drive propulsion is the ability to directly drive a

propulsion shaft without the need for reduction gears. It is desirable that ship propulsion

motors operate at low speeds, so these machines will have a large number of poles. As

the number of poles increases the physical size of the machine will increase. During the

notional design phase an effort was made to keep the size and weight of the motor

comparable with current propulsion machinery. For this research a flux concentrating

permanent magnet machine was selected. The geometry of this machine is shown and

discussed in more detail in chapter two.

1.3 Ship Model

Following the fault to the motor, after the main supply breakers to the motor are

open, the ship is assumed to coast down to some fraction of its initial speed. During this

coast down period and during the initial phases of the casualty it will be assumed that no

action is taken by the ship's crew to slow down or stop the shaft. The basis for this

assumption is that during the initial phase of the casualty, the first indication available to

the operators will be the tripping of the main supply breakers. Once the main supply

breakers trip, there will exist an inherent time delay before action is taken to stop the

affected shaft and take corrective actions. This delay is due to the time that it will take for

ship's personnel to evaluate, recognize and act to combat the casualty.

Automatic protection systems, that operate when the breakers trip, could be used

to minimize the time delay in stopping the shaft. A problem with these systems is that they

could initiate protective action during spurious breaker trips. During these trips protection

is not necessary and could be detrimental to the operation of the ship.

11

The mechanical energy supplied to the motor while the ship is coasting down is

proportional to the speed of the shaft squared. It can be shown that for a given propeller

the rotational speed of a windmilling shaft is proportional to the speed of the ship. As the

ship coasts down the mechanical energy supplied to the motor will decrease as the ship

slows down.

1.4 Faults in Permanent Magnet Ship Propulsion Motors

The focus of this research is investigating the performance of large permanent

magnet motors such as those that would be used for ship propulsion. It can be expected

that part of the electrical protection of these large motors will be main supply breakers.

These breakers will disconnect the motor from its electrical power supply upon detection

of a fault in the motor.

Internal faults are of special interest due to the large amounts of energy that can be

supplied to these motors by a free spinning shaft after the electrical supply breakers are

tripped. Since the field of the machine is supplied by the permanent magnets, the motor

with the free spinning shaft will behave like a generator supplying power to the fault.

Referring to figure 1-1, the excitation voltage, Eaf, is proportional to the flux produced by

the field, 4f, and the frequency of the field excitation, o [5]

Ef = Kcof (1-1)

In permanent magnet machines a constant field flux, 4f, is supplied by the

permanent magnets. Therefore to stop this generator action, the shaft must be stopped.

Stopping the shaft could be accomplished by using a mechanical shaft brake, changing the

12

pitch of the propeller in ships with controllable pitch propellers or stopping or slowing

down the ship. Ships with more than one propulsion shaft can use the unaffected shaft to

slow down or stop the ship.

Other ways to slow down or stop permanent magnet machines are discussed in [9].

These methods are for unfaulted machines whose shafts are not being driven by an

external source such as a ship's windmilling propeller. The windmilling propeller and shaft

will rotate at a speed that is proportional to the ship's speed.

1.5 Research Approach

This research studied the dynamic behavior of permanent magnet ac synchronous

motors following an internal fault. The motor studied was assumed to be directly

connected to a ship's propulsion shaft. Following the fault, the motor was disconnected

from its electrical supply source and allowed to windmill as the ship coasted down to a

fraction of its initial speed.

Different from wound field machines, permanent magnet machines have a constant

field flux supplied by the magnets. As the shaft windmills this constant field flux will

generate an internal voltage in the machine. A sufficiently large internal voltage can

continue to support an internal fault in the machine as the shaft windmills.

To accomplish the goals of this research the following tasks were identified and

performed:

1. A notional permanent magnet motor having the performance requirements of a

ship's propulsion motor was derived. To do this task, a motor design spreadsheet was

13

developed. By specifying the principal motor requirements the motor parameters were

estimated.

2. A dynamic model of the permanent magnet motor, which incorporated the

parameters of the notional design was derived.

3. Models for the internal fault and of the ship were derived.

4. The models of the motor, fault and ship were incorporated into a dynamic

simulation program.

5. The simulation was run and the results evaluated.

14

Chapter 2. Conceptual Design

This chapter describes the procedure used to design the notional permanent

magnet motor used in this research. The motor designed incorporates desired attributes of

a motor for naval propulsion. The procedure described in this chapter is implemented into

an Excel [10] spreadsheet, Appendix A. For the motor design, a set of requirements was

established and some initial assumptions were made as to the geometry and operating

parameters of this motor. The initial assumptions and performance requirements are

summarized in Table 1.

Table 1. Motor Specifications

Number of Phases 3

Frequency (Hz) 60

Rotor speed (rpm) 200

Rated power (Hp) 40000

Operating voltage (V) 1000

Power factor 0.8

Winding factor, kw 0.9

L/D 0.22

Tooth fraction, p 0.5

A line frequency of 60 Hz was selected for the motor design since this is the

frequency commonly used in U. S. Navy ships electric service applications.

15

The type of machine that was used in this research is a flux concentrating

permanent magnet machine. In this type of machine the magnets are oriented so that their

magnetization is azimuthal as shown in figure 2-1.

tat

Magnet

Figure 2-1. Motor cross section

Using the geometry described in figure 2-1 and the requirements specified in table

1, some of the initial sizing considerations were started. For the required rotor speed, n,

and electrical frequency, f, the number of pole pairs, p, in the machine was determined

using p = 60f/n. A rotor speed of 200 rpm was selected for this design because this speed

is consistent with rated shaft speeds for naval ships.

Since this machine will be used for ship propulsion, one of its desired attributes is

that it is comparable is size and weight to conventional propulsion machinery. By

calculating the radius and the length of the machine, an initial determination of the

16

feasibility of the motor can be obtained. Weight calculations are performed once all the

machine components are sized.

Once the rated speed of the rotor was established, the radius of the rotor, R, was

determined from the mechanical power output required and the average gap shear

stress, (z). To calculate the radius of the rotor the following two equations were used

Power = (Torque)o m (2-1)

Torque = ()(2xRL)R (2-2)

The aspect ratio indicated in table 1 was calculated using the following relation

suggested by Levi in [10]

2
L 2-
L xUp 3 (2-3)
D 2

The aspect ratio estimated using equation (2-3) minimizes the winding resistance for a

given electromotive force.

Using the aspect ratio, L/D, calculated from (2-3) and combining equations (2-1)

and (2-2), the radius of the rotor is

Power
R = (2-4)

47o m (':)(L/D) (2-4)

Once the machine radius was calculated, the active length of the machine was determined

as L = 2R(L/D).

A value for the average gap shear was estimated in order to calculate the size of

1
the machine. The average gap shear stress can be estimated by (T) -s BIK , where B1

is the peak value of the fundamental magnetic flux density and K is the root mean square

17

(rms) value of the effective armature reaction current density [6]. Gap shear has units of

pressure, pascals, (Pa).

For this machine design the value selected for the average gap shear was based on

machine sizing considerations and cooling requirements. By maximizing the gap shear, the

machine radius can be reduced, equation (2-4); however, high values of shear will require

additional cooling requirements.

The value of shear stress selected is that of an air-cooled machine. This type of

machine was selected in an effort to maintain simplicity. For this type of machine, and for

the specified rating, a shear value of approximately 50,000 Pa was obtained [6].

Figure 2-2 shows the variation of rotor radius as a function of gap shear. From

equation (2-4) it can be noted that R oc A-. Higher shear values will result in smaller

machines. However, these smaller machines will require additional cooling provisions,

adding to the complexity and most likely to the overall size of the machine.

Figure 2-2. Radius reduction as a function of gap shear

18

Fractional reduction in Rotor Size as
a Function of average gap shear

1

. X 0.8 _ _ -
of 4 ------------- ------------- --------- ---

g go 0.4

O
O m 0 m C 0r 0 I 0 ' 0 'mA e g g a t (iD 00

Average gap shear (Pa x 1000)

Considering the above reasons an average gap shear of 50,000 Pa was selected and

used for the motor design. This shear value is at the high end for typical slow speed air-

cooled machines [6]. For the specified shear and aspect ratio the rotor diameter was

calculated to be approximately 4.2 m and the length of the machine, L, approximately one

meter.

2.1 Air gap size

Mechanical considerations and performance requirements drive the length of the

air gap, g. The minimum physical length, in meters, of the air gap can be estimated from

the following relation [11]

g 3.35 x 1 - 3 (D (2-5)

Using the calculated radius of the rotor, equation (2-4), and L/D, (2-3) a minimum

gap length of 5 mm is obtained. This gap length was used for this research.

2.2 Magnet dimensions

Considering the geometry shown in figure 2-1, and assuming that the magnets

occupy one half of the circumference of the rotor, the width of a magnet is given by

Wm= =-Rand from figure 2-1 wm = 2R sin 0 . Combining these two equations and
p 2

solving for the magnet angle, 0t

0 t = 2 sin - ' 2 (2-6)
2p

Then the pole face angle, On, is given by

19

Om = t (2-7)
P

The remaining dimension of the magnets yet to be determined is the height, hm.

This dimension is determined by considerations other than just geometry, such as the

magnetic flux density at the air gap. In order to calculate the magnet height, the gap flux

density needs to be determined.

In flux concentrating machines, the flux density in the gap is greater than the flux

density in the magnets. To calculate the fields in this machine a simple reluctance model

presented in [12] was used. For the given geometry, the flux path in the rotor involves a

magnet and one half of each of two adjacent pole pieces. For one pole piece the

permeance of the air gap is given by

g gap = .oL ROm (2-8)
g

and the permeance of a magnet is

dm = oL hm (2-9)
Wm

The magnetic flux density in the magnets, Bin, is calculated using a simplified

magnetic circuit. This circuit consists of the magnet's own permeance in series with one

half of the permeance of each of two pole pieces. So that the flux density of the magnets

is given by

Bm= Bo •gap (2-10)
Pgap + g m

and the flux density in the gap can be calculated

20

2 h_Bgap =B 2hm (2-11)
R m

Solving equation (2-11) for the magnet height, the following relation is obtained

B R
h m = -- Om (2-12)

B m 2

For a given radius and magnet angle, the ratio of gap flux to magnet flux will

determine the magnet height. The gap flux density that can be achieved in the machine

will be limited by stator teeth and back iron saturation. This limit will be checked later in

the design. Once a magnet height is selected, the magnet spacing needs to be checked.

For the given geometry the closest point between two magnets occurs at the interior

corners. Using simple geometry the distance between two adjacent corners can be shown

to be [12]

7C
s= 2(R-hm)sin--wm cos- (2-13)

2p 2p

After checking that the magnet dimensions are compatible with the rotor size and

the gap flux density has been selected, the surface current density, K, necessary for

operation of the machine at rated power can be calculated, K
BI

2.3 Determination of terminal current and machine rating

For a machine with a small gap, it can be assumed that the magnetic flux is not a

function of radial position. The space fundamental of this flux is then of the form

4 p(-B, = - sin p B (2-14)
7- 2 gap

21

With this value of flux, the internal voltage can be estimated using

E af2RLN,k.o B (2-15)af / 2(2-15)

The terminal current into the machine, It, is given by

It - Nslotswslotshslot J (2-16)
6N

where Nslo swso = 2xRXp and K = Jah5, 0tks. Once the internal voltage and the terminal

current are known, the rating of the machine IP + jQ = 3VtIt can be determined if the ratio

of terminal voltage to internal voltage, v = Vt /Eaf , is known. A method to calculate v

will be proposed later in the chapter; however, this method requires that the machine

reactances be known.

2.4 Machine Reactances

The permanent magnets are in the main flux path of the armature. The presence of

the magnets will make the machine salient since the direct and quadrature axes will be

affected differently. Derivation of the direct and quadrature axes' reactances is shown in

several places; however, for consistency the notation used in [12] will be maintained. The

direct and quadrature reactances, Xd and Xq, are given by

3 4 oSN2k2RL p O.
Xd = 2 coy sinR (2-17)

2 x p g 2

2 P2g 22it p2

22

These formulas have a new unknown, the number of turns per phase in the stator,

Ns. The value of Ns will be calculated once v and the rating of the machine are known.

2.5 Internal Voltage

To calculate the ratio of terminal voltage to internal voltage the phasor diagram

shown in figure 2-3 is used. A two-axis representation of the machine is shown in figure

2-3. The mathematical transformation used to derive the two-axis model is discussed in

chapter three.

Figure 2-3. Phasor diagram for Negatively Salient
Motor

From figure 2-3 the following set of phasor relations are derived

E = Vt2 +(ItXq) -2VtIX sin

Id = It sin(y +6)

= tan- IXq cos
V + IXq COS v

(2-19)

(2-20)

(2-21)

23

d-axis

jXdld

Iq

q-axis

Vt

Eaf = E -(Xq -Xd)Id (2-22)

To solve this set of equations an iterative method is suggested in [12]. The end

result of the proposed method is a value for the ratio of terminal to internal voltage, v. To

implement the method, the set of equations (2-19) through (2-22) and the machine

reactances, equations (2-17) and (2-18) are normalized with respect to the internal

voltage, equation (2-13). After normalizing, per unit scaling, and some simplification the

reactances are given by

ii 0 R K pOM
Xad = PI2B ysin m (2-23)

pg B1 2

x- pg

The set of phasor relations after normalizing and assuming operation at rated

current (it = 1.0 p.u.) and power factor is given by

e'= v+ Xq -2 aqv sin xv (2-25)

XaqV COS X/6 = tan- qvcos (2-26)
v + XaqV sin W

id = sin(W + 6) (2-27)

eaf = e* -(Xaq - Xad)id (2-28)

Using the normalized reactances and the set of equations (2-25) through (2-28) the

suggested method of [12] seeks a set of values that will solve the above set of equations in

which the fixed point is eaf = 1.0. The iterative method is started by selecting an arbitrary

value for v and solving equations (2-25) through (2-28) sequentially. For subsequent

24

iterations a new value of vnew = Vold/ af is used and the iterative process is continued

until eaf converges to 1.0. Once convergence is obtained the final value of v is used to

determine the machine rating

3VtIt = i -R 2 LX KB1 v (2-29)

If a value of terminal voltage is selected, table 1, then the machine terminal current

can be calculated, equation (2-15).

2.6 Stator sizing

Once the terminal current is known the number of stator turns per phase is

calculated, equation (2-16). The slot width and height, the number of slots and the size of

the back iron need to be calculated to complete the initial sizing of the machine. If a tooth

fraction of Xp = 0.5 is used and assuming that R >>g, then the slot width is calculated as

2mtR
w =6k (2-30)

6Nk5

and the number of slots in the stator is given by

Ns,1o = 6NsksX p (2-31)

The slot height, hs, is determined principally by the insulation required by the

armature windings. Commonly these requirements are such that the copper area in the

slot is between 40% to 60% of the area slot [6]. For this design the slot copper fraction,

kcu, selected was 0.5. With these assumptions the slot height is calculated by

h t = K (2-32)
Jakskcu

25

Limits on the current density, Ja, are established by the maximum temperature rise,

0, in degrees Kelvin, above ambient temperature (40 C), allowed in the copper. The

allowable temperature rise is based on the class of insulation used in the machine. For an

air-cooled machine, the maximum current density based on thermal considerations can be

estimated by

Ja <h ' (2-33)
K

where YCu is the conductivity of copper and h is the overall heat transfer coefficient.

Equation (2-33) represents the energy balance between the heat generated in the copper

and the heat removed by the cooling medium, air [11]. In equation (2-33) an overall heat

watts
transfer coefficient, h = 30 w was used. This coefficient was derived for an air-

0K x meter'

cooled machine and is based on empirical calculations discussed in [11].

Equations (2-1) through (2-32) are used in Appendix A to do the initial machine

sizing. Based on the dimensions calculated by these equations and the established machine

geometry, the weight of the machine was estimated. In addition, once the dimensions and

geometry of the machine have been estimated, other machine parameters such as the

machine efficiency and stator leakage reactance can be estimated.

2.7 Stator leakage reactance

The stator leakage reactance was calculated using the methods of reference [11].

Leakage reactance consists of (1) slot, (2) tooth top, (3) end winding, and (4) harmonic

reactances. Tooth top leakage reactance is proportional to the gap length. In

26

synchronous machines with permanent magnet field the gap length is small and tooth top

leakage reactance can be neglected [11].

For an initial estimate, the leakage reactance was assumed to consist of slot and

harmonic leakage reactances. The slot leakage and harmonic reactances were calculated

using the procedure outlined in [11]. The calculated reactance was increased by 10% to

account for the effects of end winding reactance in the total leakage reactance.

The leakage reactance was assumed to be the same for the direct and quadrature

axes. This assumption is commonly made in the literature [11].

2.8 Losses and machine efficiency

The power dissipated in the machine determines its efficiency. This dissipated

power will determine the cooling and ventilation requirements for the machine to ensure

that allowable temperature limits are not exceeded. The losses considered in Appendix A

comprise: no-load losses in the iron, friction and windage losses, copper losses and load

losses.

The rotating magnetic field will result in heat losses in the iron due to eddy

currents and hysteresis. These type of losses occur primarily in the stator teeth, the

surface of the rotor poles and the structural parts of the machine exposed to alternating

magnetic fields. These losses are proportional to the square of the peak value of B.

Hysteresis losses are proportional to the frequency and eddy current losses are

proportional to the square of the frequency. Core losses are estimated in Appendix A

using the relations discussed in [11].

27

Mechanical losses in the machine are the result of friction in the bearings and

windage between the rotor and the stator. These losses were estimated using the relation

presented in [11].

The copper losses were calculated by estimating the resistance of the armature

windings and using the rated terminal current. To calculate the armature resistance, the

mean length of conductor per phase in the armature was estimated as suggested in [11].

For a three phase machine the armature copper losses are 3RaI2, where Ra is the armature

winding resistance and I is the line current.

Load losses are caused by the flux produced by the armature currents. These

losses include eddy current losses in the support structures, pole surfaces and damper

windings. The load losses were estimated as 1% of the armature copper losses [10].

The machine efficiency was estimated in Appendix A using

losses
Efficiency = 1- losses

input

where the losses are the sum of the individual losses described in the preceding

paragraphs. The calculated machine efficiency was 98%, close to the efficiency predicted

by [6].

2.9 Back iron sizing

The thickness of the back iron, hc, must be sufficient to carry the machine flux.

Assuming a sinusoidal air gap flux density, Bgap, the back iron thickness is determined

using

28

B. dS =O (2-34)

If the air gap flux is assumed to be constant, using the specified machine geometry

and if R>>g, equation (2-34) can be simplified to

hc=(Bgap R (2-35)

where Bs represents the flux density in the back iron.

The minimum back iron thickness is then calculated by using a back iron flux

density close to saturation. A value of Bs = 1.2 T, rms, was used for the machine design.

2.10 Weight Calculations

A machine weight was estimated by calculating a rotor weight and a stator weight

for the given machine geometry. The material composition of the different components

was assumed to be that of use in standard motor construction. The machine weight

calculated does not include weight of foundations, the weight of a cooling system or the

weight of an enclosure for the motor.

The weight of the motor is expressed in long tons' (Iton) for easier comparison

with current or conceptual drives for naval ships.

29

'One long ton = 1016 kilograms

Chapter 3. Dynamic Models

To perform the fault simulations a model of the permanent magnet motor and of the

electrical fault were derived. These two models were incorporated into a dynamic simulation

model developed by Professor James L. Kirtley, MIT. This chapter describes the various

models used in the simulation. Models for a permanent magnet ac synchronous motor, arc

fault and interconnections between the motor and the power system are presented.

3.1 Two axis transformation

The permanent magnet motor model used in this research is based on the derivations

presented in [11] through [14]. It assumes linear magnetics and sinusoidal stator winding

distributions. Inductance and resistance values for the motor were calculated using the

methods discussed in chapter two and Appendix A.

Using the symmetry of cylindrical rotation, a coordinate transformation that accounts

for the relative motion between the stator and the rotor is introduced. This transformation

maps the stator winding variables to a reference frame that rotates with the rotor. In this

reference frame, mutual inductances are independent of rotor position. Such transformation is

commonly known as the Park's transformation. A version of this transformation used in [5] is

given by

30

cosO

-sinO

1

cos 2

-sin(O--)1

1

cos(0+ -)

-sin(+ 3s
1

,/5

(3-1)

where 0 is some arbitrary angle. For a reference frame rotating with the rotor 0 = ot where co

is the speed of the rotor. This transformation is orthogonal and power invariant,

regardless of the choice of angle. The inverse transformation is given by

cosO

cos9y -X

3

Cos 0 +-)i
3

-sinO

3/n

-sin(_ 2X

- sin(+-3)

If the Park's transformation is applied to an arbitrary vector, F, representing a set of

stator variables, such as currents or voltages, the stator variables are mapped to a fixed rotor

reference frame. In this stationary reference frame the machine reactances are constant,

independent of rotor position.

Fdqo = TFabc

Fab. =T-'Fdqo
(3-3)

The d and q subscripts are used to represent the direct and quadrature axes,

respectively. The direct axis is aligned with the polar axis and the quadrature axis is aligned

with the interpolar space. Zero-sequence variables are represented by the subscript 0 in

31

T- =

1

1

-

-.2

(3-2)

equations (3-3). The zero-sequence components represent components of armature currents

that do not produce a net air gap flux [4].

3.2 Per Unit Scaling

The models used in the simulation have been scaled to a per unit (p.u.) system. Scaling

to a per unit system produces variables whose magnitudes are close to one. The base values

selected for this scaling can be arbitrary. However, for this analysis it is convenient to use the

motor's rated power and voltage as the base values for the per unit scaling. Expressing the

motor variables in a per unit system allows the comparison of this motor against other motors

regardless of their ratings.

For this motor the base quantities are defined by

PB= VBIB2

Z B =VB (3-4)

B

XB =VB

To convert the motor parameters to the per unit system, the ordinary variables were

divided by the corresponding base quantities. A new quantity will be introduced into the model

to change torque to the per unit system. This new constant is defined as the inertia constant,

H; it represents the rotor's kinetic energy at rated speed divided by the motor rated power.

The inertia constant, H, has units of seconds and is expressed as

1

H = 2 (3-5)
PB

32

In equation (3-5), J is the moment of inertia of the shat and am. is the shaft's rotational

speed. In general the moment of inertia of a circular shaft can be calculated as J = r 2pdV,
V

where p is the shaft's material density [3]. It can be shown that for a circular shaft this is

equivalent to J = Wk 2 , where W is the mass of the shaft and k is its radius of gyration. For a

solid circular shaft of radius, R, the radius of gyration is given by k = R/V . A value for H

was calculated for this motor using the mass and rotor radius calculated in Appendix A.

Since the rotor is directly connected to the propulsion shaft, the length of the shaft and

the propeller needs to be included in the moment of inertia calculation. The weight of the

propeller and of the propulsion shafts can be estimated from propeller and shaft weights from

U.S. Navy ships or commercial ships.

3.3 Permanent Magnet Motor Model

The permanent magnet machine model is defined by a set of six coupled electro-

mechanical equations. The electrical equations in this set are statements of Kirchoff and

Faraday's laws, which describe the voltage-current relations in the machine. The mechanical

equations are statements of Newton's Second Law of Motion. Coupling between the

mechanical and electrical systems is through the dependence of electrical torque on flux

linkages and through the dependence of flux linkages on torque angle, 5.

The machine parameters used for the simulations are calculated in Appendix A using

the methodology discussed in chapter two. A two-axis (d-q axis) representation of the

synchronous machine is used.

33

In the d-q reference frame, the direct axis of the motor is represented by the following

circuit based on the model presented in references [5] and [12].

Ra cXaL

Ifm

Figure 3-1. Direct axis circuit representation

where the constant current source represents the field generated by the permanent magnets.

Similarly the quadrature axis of the motor can be represented by the following circuit.

Ra Xal

X

Xkq

Rkq

Figure 3-2. Quadrature axis circuit representation

The following notation has been introduced in the above two models:

Xad and Xaq represent the magnetizing reactances,

Xa represents the armature leakage reactance, which is assumed to be equal

for the d and q axes,

Ra is the armature resistance,

34

\1

\

Xkd and Xkq are the damper winding reactances, and

Rkd and Rkq are the damper winding resistances.

Using the models shown in figures 3-2 and 3-3, the three phase ac synchronous machine is

represented by the following set of equations

Vd = d + RaI d- q

dt
V =dX RI + d
dt

Vkd = d + RkdIkd (3-6)
dt

dhkq
Vkq= dt +RkqIkq

T. - 3(%dIq- qId)()°
2 c0

For permanent magnet excitation, the field is represented by the constant current source, In.

The flux equations for the machine are

Xd = LdId +LadIkd +LadIfm

Xkd =Ladd + Lkd kd + Ladlfm

Xq = LqIq +LaqIkq

Xkq = LaqIq + Lkqlkq

(3-7)

where the inductances, Ld and Lq, are defined by

Ld = Lal + Lad

Lq = La +Laq

The simulation code was written to be used with any ac synchronous machine,

regardless of its rating. For this reason it is intended to be used with machines scaled in the per

35

unit system. To use the dynamic simulation code, the above set of equations were scaled in the

per unit system. Dividing by the appropriate base quantities, the sets of equations (3-5) and (3-

6) are represented in the per unit system by

1 r 'dl
vd I tXd Xad Xad (3-8)

W kd Xad Xkd Xad

Wtq LX q Xaq iq (39)I~k~ 1 -- Ix~ Xkq i~kq (3-9)
1 d x d co

d = - + rai - Wq
o dt

1 dq . o
Vq = _ + raq + W[d

coo dt c o

0 dkd + rkdkd (3-10)
wo) dt

0 = d + rkqikq
o, dt

Te = (Wdiq - Vqid)

The damper windings' voltages, vkd and Vkq, were set to zero since these windings are

normally shorted. Using a Thevenin equivalent circuit of the d-axis model, figure 3-1, the

constant current source can be represented as a voltage source, Eaf = X ad fin in series with the

magnetizing impedance, Xad.

36

Ra Xal Xad

Figure 3-3. Thevenin equivalent of d-axis model

With the model presented in figure 3-3, equation (3-7) can be rewritten as follows

iNdl _Xd Xadi d eaf (3-11)
[Vkd Xad Xkd ikd eaf/

By solving the above equations for the currents, the d-q model of the motor can then

be incorporated into a simulation code that connects the motor to an external network.

Solving equations (3-9) through (3-11) for the currents, id and iq, and after some simplifications

the following sixth order state-space representation of the motor was obtained

d d + v 4 Vd (3-12)
dt Tad Tad

dWq Wq e" Wd + oVq (3-13)
dt Taq Taq

de_ e" (X -X) e+ + (3-14)

- --- i (3-15)
dt Tq'" T"q' q

db
-dt = o - (3-16)
dt

37

L Eaf

d0 c2 o (Tm -Te) (3-17)

In equations (3-12) through (3-17) the following quantities are defined:

X ad
eq = d = Voltage behind subtransient reactance,

X kd

Xaq
ed =q = Voltage behind subtransient reactance,

x4

T o = Xkd =- D-axis open circuit subtransient time constant,
) orka

. o rkd

xd
Tad - d = Direct axis armature time constant,

Cora

X"
Taq = q - Quadrature axis time constant,

Oo r

X'X d ad = D-axis subtransient reactance,
Xkd

x2

xi? =x 4 _ aq = Q-axis subtransient reactance,
Xkq

The stator currents, in the motor reference frame, have been defined by

i dd = (3-18)tP
Xd

iq Wq d (3-19)
xq

38

Equations (3-12) and (3-13) are the stator equations, which have time constants of the

order of l/co = 0.0026 seconds. If the transients of interest are in the order of 0.1 to several

seconds then two stator equations, equations (3-12) and (3-13), will become algebraic

equations provided that the following conditions hold

1 1 d

Tad 'Taq dt

Furthermore if co w0o, then equations (3-12) and (3-13) simplify to

Jd Vd (3-12a)

/q = vq (3-13a)

With these two algebraic equations the machine model has been reduced to a fourth order

model, equations (3-14) through (3-17).

3.4 Network model

The external network model used in the simulation code is based on the model derived

in [15]. This model uses the machine currents to interface with the network. The definition of

the network is accomplished by defining the nodes and branches of the network. This model is

discussed in chapter four.

3.5 Fault Model

The fault model used for this research is an ac arc fault whose properties and

characteristics are described in detail in [2]. Reference [2] describes the electric arc as a self-

sustained electrical discharge having a low voltage drop and capable of supporting large

39

currents. At atmospheric pressure the temperature of the arc will reach temperatures as high as

6,000K.

According to [2], for large currents the arc voltage, ea, is given by

ea = cIi+ 2 +C3i2 (3-20)
i

where the constants cl through c3 are determined by the electrode materials. The voltage-

ampere characteristic of ac arcs will show hysteresis effects with distinct ignition and extinction

voltages [2].

The arc is modeled as a constant voltage drop; for calculation simplifications the values

of ignition and extinction voltages will be neglected. For the materials considered such as

copper and iron the arc voltage drop is approximately 60 volts [2]. The voltage-current

relation of the fault can then be approximated by a characteristic such as that shown in

figure 3-4.

ea

V

I

Figure 3-4. Fault voltage-current characteristic

40

For the purposes of this research the impedance of the fault is assumed to be much

smaller than the synchronous impedance of the motor. This is simulated by using fault

impedance values ten times lower than the synchronous impedance values for the motor.

The power dissipated by the fault is estimated by multiplying the fault current by the

fault voltage.

3.6 Motor Load Model

The mechanical load placed on the motor by the ship is represented by a mechanical

torque on the shaft. The power delivered by a propulsion shaft for a ship moving at high speed

is proportional to the speed of the ship cubed, P oc v3 [16]. This assumption is not valid for

ships such as destroyers that can reach speeds near or above hull speed2. At speeds close to

the hull speed, the power required may vary with speed raised to a power approaching 6 or 7

[16].

Once a propeller has been selected and matched to the hull, it can be shown the

rotational speed of the shaft is proportional to the speed of the ship. Using this relation, and

since P = To) m then the torque on the shaft can be assumed to be proportional to the square

of the shaft speed. This torque is assumed to be of the form

T, =act } (3-21)

2 Hull speed or critical speed length ratio is the speed at which wave making resistance starts

accumulating most rapidly. Hull speed is calculated as Vhu nl (knots) = 1.34J-, where L, is the ship's

length in feet.

41

The constant is calculated with the motor operating at full load using the rated shaft

speed and torque calculated in Appendix A. It is further assumed that this constant is

independent of shaft speed.

A windmilling shaft is not delivering any thrust or torque; however, it will rotate at a

speed determined by the characteristics of the propeller and the speed of the ship. Once the

propeller is selected, for a fixed pitch propeller, the speed of rotation of the shaft, while

windmilling, will be proportional to the speed of the ship. So as the ship slows down the

windmilling shaft will slow down proportionately. To incorporate this model into the dynamic

simulation model it is necessary to determine how the ship's speed changes as a function of

time while the ship is coasting down.

For a ship moving on a constant course at some initial speed, v , the total kinetic

energy of the ship, U, is of the form U = I Mv2. The symbol M accounts for the mass of the
2

ship and the "added" mass in the direction of motion. While a ship coasts down from some

given speed the rate at which the ship loses energy to the water is equal to the effective

horsepower, EHP, of the ship

dU
= -EHP (3-22)

dt

In general EHP is proportional to speed elevated to some power, EHP = kv0 , where k is

some constant. During a short time interval, At = to - t , equation (3-22) can be written after

some manipulations as

1M(v - v2) = -(to - t)(kv") (3-23)
2

42

If the ship is assumed to be moving at an initial speed, vo, at time, to = 0, then from (3-23)

2 2 2kvn
vo-v = kV t (3-24)=M

For speeds close to the initial ship speed, v v , equation (3-24) can be rewritten as

2kv
2v t (3-25)

M

Using equation (3-25) the following relation between ship's speed and time is obtained

1
v oc - (3-26)

Since the rotational speed of a windmilling shaft is proportional to the speed of the

ship, using equation (3-26) the rotational speed of the shaft, Com, will exhibit the same time

dependence as the ship's speed.

If the ship is operating below hull speed, which is the case for most full form ships, then

1
at its rated speed it can be assumed that EHP oc v3 . For n=3, then v oc . After the

casualty takes place and the motor main supply breakers are opened, the shaft will continue to

rotate at a speed proportional to the speed of the ship. It can be assumed that the increase in

ship's resistance added by the windmilling shaft is negligible compared to the hull resistance

[17].

Considering the discussion above, while the ship is coasting down, the rotational speed

1
of the shaft was assumed to be of the form co m oC t . The final shaft speed will be

proportional to the final ship speed.

43

Chapter 4. Simulation Model

With the system model complete, as discussed in chapter three, the dynamic

response of the permanent magnet motor and the internal fault was investigated. The

purpose of conducting these studies was to determine the effect of the internal fault after

the motor is disconnected from the system. The possible damage done by the fault will

occur in a very short time so that the time delay of the relay and protection system might

not be significant.

A possible way to reduce the effects of the fault is to short circuit the motor

terminals after the motor is disconnected from its power supply. By shorting the motor

terminals it might be possible to reduce the power input into the fault, thus serving to

minimize the effects of the fault.

4.1 Discussion of the simulation program

The simulation code was written in C++. Using this language allowed the use of

object-oriented programming (OOP). This type of programming consists of building

programs as a collection of abstract data type instances. Operations performed on the

object types are the abstract operations that solve the problem. These objects serve as

modules that can be reused for solving another problem in the same domain [17]. In the

simulation code generators, motors, nodes and lines are built into objects. These objects

are invoked throughout the code as needed to solve the simulation problem.

44

The dynamic simulation program, Appendices B through E, requires the user to

provide four input files. The first two files are used to define the node types and the

interconnection lines between nodes and their reactances. In addition, they define the

nodes to which the generators or motors are connected and the names of the output files

that will contain the node voltages and line currents.

Two other input files are needed for the simulation. One file defines the electrical

parameters of the machine. The other file defines the timing and sequence of events for

the simulation. The machine's electrical parameters used in the simulation were those

calculated using Appendix A.

The simulation code consists of four executable programs that can be run

individually or using a shell program that executes all four programs in their appropriate

sequence. The first program executed is a pre-processor program. It formats the node

and line input data into a format that can be used by the rest of the code. The next

program in the simulation estimates the power flow in the network. It assigns initial

values to node voltages and line currents. Using the power flow equations, the voltages

and current flows of the connected system are calculated.

The third executable program uses the node voltage, line current and power flow

data to build the line data required by the simulation program. The simulation program

will generate three output files that contain the state variables, the node voltages and the

line currents. To perform the simulation the four programs need to be run in sequence

since the output files of one program serve as input files for the next program.

45

The dynamic simulation program, developed by Professor James L. Kirtley, MIT,

was originally written to simulate the dynamic response of wound field ac synchronous

generators. The generators are defined as objects in the code so that multiple generators,

all possibly different can be connected to the network. For this research it was necessary

to generate a similar object for the permanent magnet motor. To properly interface the

motor object with the other programs it was necessary to maintain the same notation as

that used for the generator objects.

The simulation programs were modified to incorporate the permanent magnet

motor. To incorporate the motor into the simulation program the following major

modifications were made to the simulation code:

1. The state equations for the machine were modified to incorporate the

permanent magnet motor model discussed in chapter three. The reference frame of the

model was changed to the motor reference frame.

2. The programs were modified to delete the voltage regulator associated with

each generator.

3. The ship model discussed in chapter three was incorporated into the program.

This model is used to drive the windmilling shaft after the motor is disconnected from its

power supply.

4. The program was modified to allow connecting a motor to the network.

5. The fault model was incorporated into the motor simulation code. The fault is

introduced at a predetermined time after the simulation starts.

6. The simulation code was modified to output fault current as a function of time.

46

4.2 Fault simulation

The permanent magnet motor model and the parameters derived in chapters two

and three were incorporated into the dynamic simulation model, Appendix E. The

simplified system shown in figure 4-1 was used for the simulations. For this simulation it

was assumed that a single permanent magnet motor was connected to an infinite bus. The

idea of an infinite bus is not applicable to ships' power plants because loads such as

propulsion motors can have ratings comparable to that of the generators.

The infinite bus assumption was made to establish the initial state of the system.

For the simulation, the motor is operating at rated power and rated speed. At the time of

the fault the affected motor was disconnected from the rest of the system so that there was

no interaction between the motor and the rest of the system. Since interaction effects will

not be addressed, the concept of an infinite bus was considered suitable for establishing

the initial state of the system. This bus represented the ship's generators whose output can

be adjusted to provide a specific voltage and power flow.

Using the model shown in figure 4-1, the motor was disconnected from the system

some time after the initiation of the fault. In a real system this would have been

accomplished with circuit breakers together with some sort of sensing system. For this

simulation a fixed time of 100 milliseconds, after the initiation of the fault, was chosen for

the breakers to trip and disconnect the motor from its power supply. This time was used

for all simulation studies.

47

Once the motor was disconnected from its power supply, it was allowed to

windmill as the shaft coasted down. The speed of the windmilling shaft was taken to be a

function of the speed of the ship, as previously discussed in chapter three.

The fault current and power dissipated at the fault were calculated. The

simulations were terminated after one second. This time was selected for the simulations

since as will be shown most of the power dissipated at the fault will occur within this time.

This is consistent with the results obtained in reference [19]. In addition, this short time is

consistent with the assumptions made in chapter three for the ship model.

Re Xe Xa Ra

Infinite Bus

Figure 4-1. System model

The internal fault in the motor was simulated by assuming that the fault occurred

somewhere in the windings between two points which have generated internal voltages

and leakage inductances. A similar model was used to simulate internal faults in [19].

The motor and power supply interconnection model is shown in figure 4-2. This

model consists of an internal voltage source and in series with a reactance.

48

va

vb

VC

ic

Figure 4-2. Motor and Network Interconnection Model

A derivation for this model and its representative equations are discussed in [15].

For this model it is assumed that subtransient saliency can be neglected, x = xq'. The

internal voltages, ea", eb ", ec", represent voltages induced by rotor fluxes and xg

represents the impedance in the neutral of the machine and of mutual coupling between the

phases. The internal voltages are calculated as follows

o . 1 de" 1 dede = -- (e'sinO-e cosO)+ cosO +-sinO d

o co O dt co dt

f?) 27c 21r 1 27r der' 27 deeb =--(e" sin(-)--e" cos(O-))+-cos(O- -) + -s) ds(O --)
co, 3 3 o, 3 dt c- 3 dt
co 27t 27c 1 27c de' de= - - (e sin(+) - ecos(+)) + cos(+) +- sin(0 +) dd

C co -3 - 3 dt oo 3 dt

where, 0 is the shaft angle and e"d and e"q are the subtransient voltages defined in chapter

three. A detailed derivation of this model is explained in [12] and [15].

This machine model was used in the synchronous machine simulation program.

The internal fault was assumed to occur between two phase points whose voltages are

proportional to the internal phase voltage. Because the fault occurred between two

49

ea"
ral

phases, the voltage across the fault is proportional to the difference between the internal

voltages of the two points.

The internal voltages in the machine are generated across the entire winding.

Since the fault can occur anywhere in the windings there are many possible connections

that can be established. For this analysis the fault was assumed to occur in the middle of

the winding. The impedance seen by the fault will be proportional to the impedance of the

motor winding.

The power dissipated in the fault was calculated assuming that the voltage drop

across the fault was constant as discussed in chapter three.

This type of fault and simulations for a large turbogenerator are discussed in [19].

Fault currents as large as 14 per unit and peak phase currents of approximately 7 per unit

were obtained in [19] for an internal phase to phase fault. These large currents can be

expected to cause severe stator damage.

For an asymmetrical fault, large negative phase sequence currents are expected to

flow in the stator windings and consequently in the rotor damper bars. These large

currents in the damper bars could impose high thermal stresses in the damper bars.

4.3 Simulations

The following cases were run for this research and the results obtained are

presented and discussed in chapter five. All the simulations were started with the motor

operating at rated speed and power. A phase to phase fault was introduced, in all cases,

300 milliseconds after the simulation was initiated. The motor was disconnected from its

power supply 0.1 seconds after the initiation of the fault.

50

For the first simulation the motor terminals remained open after the motor was

disconnected from its power supply. Once the motor was disconnected it was allowed to

windmill as the ship coasted down, as described in chapter three.

In the next set of simulations the motor terminals were shorted as soon as the

motor was disconnected from its power supply. The motor was allowed to coast down

with the terminals shorted for the remaining time of the simulation.

The same two cases discussed above were run for 25% and 75% of the winding

extents.

4.4 Fault Parameters

Consistent with the fault model described in chapter three the voltage across the

fault, ea, was maintained constant at a value of 0.05 per unit. This value is based on the

arc voltage values for copper electrodes given in [2] and the base voltage of Appendix A.

The fault currents calculated in the model are consistent with internal fault currents as

discussed in [19].

The fault current is calculated using the model presented in [2]. For a constant

fault voltage the relation between fault current and voltage is given by

Ld +Ri+ea =v (4-1)
dt

where v is the applied voltage. Equation (4-1) represents a series R-L circuit with an

applied voltage, v, and a constant voltage drop, ea, that represents the burning voltage of

the arc. For these simulations the applied voltage is proportional to the difference

between two winding voltages.

51

If the resistance, R, is neglected compared to the inductive reactance of the circuit,

and assuming ea is constant, then equation (4-1) is solved for the fault current, is,,, [2]

Vm ea 'i sc cos(t +) + (-- ot)
oL co 2

where, = cos- ' tea.
2V.

The instantaneous power, Psc, dissipated by the fault was calculated using the

product of fault current times fault voltage, or psc = eai .

52

Chapter 5. Conclusions and Results

5.1 Simulation Results

The following sections describe the simulations that were run for this research.

For the first set of simulations the motor was disconnected from its power supply 100

milliseconds after the fault was initiated. The terminals of the motor remained open

circuited as the motor windmilled. Three cases were simulated with the fault occurring in

different locations of the winding.

The same cases discussed above were run with the terminals of the motor shorted

at the time the motor supply breakers opened. It was assumed that the motor terminals

were shorted at the same instant that the motor was disconnected from its power supply.

5.1.1 Simulations with motor terminals open

For these simulations the motor terminals remained open after the supply breakers

to the motor were opened. The internal fault occurred 300 milliseconds after the

simulation started. The motor was disconnected from its power supply 100 milliseconds

later and allowed to windmill. Results from this simulation are shown in figures 5-1

through 5-8. These figures correspond to a fault occurring in the middle of the windings.

The arc current reached peak levels of approximately 5 per unit, figure 5-1, while

the motor was connected to the power supply. After the motor was disconnected the fault

current decreased to peak values of nearly 2 per unit. As the motor slows down the

53

internal voltage generated inside the motor will decrease, equation (1-1). A decreasing

internal voltage results in decreasing fault currents, equation (4-1).

The arc voltage is shown in figure 5-2. This voltage corresponds to a constant arc

burning voltage. Using the method described in chapter four the instantaneous power

dissipated at the fault was calculated, figure 5-3. For this fault the average power

dissipated during the transient was determined to be approximately 0.06 per unit.

5

.)
.--

0

-5
0 0.2 0.4 0,6 0.8

Timesec

1

Figure 5-1. Arc current as a function of time

0.1

0
co
,---.

0

-0.1
0 0.2 0.4 0.6

Time,sec

0.8 1

Figure 5-2. Arc voltage as a function of time

54

0!I 'i'~ I rllI

- -

iL..

0.2 0.4 0.6 0.8

Time,sec

Figure 5-3. Power dissipated in arc

0.2 0.3 0.4 0.5 0.6

Time,sec

Figure 5-4. Voltage behind subtransient reactance

2

1

0

0.1 0.2 0.3 0.4 0.5 0.6

Time,sec

Figure 5-5. Voltage behind subtransient reactance

Figures 5-6 through 5-8 show in more detail the characteristics of the arc voltage,

current and instantaneous power dissipated at the fault.

55

0,5

:i

p-

o.)

Cz.

n
0 1

2

1

0arl
W

-_I
0.1

0. 1

;z

9-$a

W

-1

__

MITT 111111111 PI~rllrFRII~IY IIMII%1W

'IL-) "" --

I
-·

1U. I

-na

0.3 0.35 0.4 0,45 0.5

Time,sec

Figure 5-6. Arc voltage

C

:L
(3

- O
-c;

0.3 0.35 0.4 0.45 0.5

Time,sec

Figure 5-7. Arc current

0.3

30.2

X l i ' ! i : ;' i ' E i :

0.3 0.35 0,4 0.45 0.5

Time,sec

Figure 5-8. Arc power

The arc current, voltage and power, shown in figures 5-9 through 5-11, are for a

location in the machine where the peak voltage is one fourth, 25% winding location, of the

56

7~~ _ ---a;-
. . z . .

- �I i t:ii j·i
: . I ri ii�i

ii ;I i I
i i I i ; i i : i i

I i

� i i i ' I I i I i i ;: - · I I i
I

U
Ii Ii i

1 4;
ii '' i

'' i;L'

internal voltage. The average power dissipated in this case over the duration of the

transient, 700 milliseconds, was 0.035 per unit with a maximum current peak of 3 per unit.

0.35 0.4 0.45

Time,sec

Figure 5-9. Arc current

0.35 0.4 0.45

Time,sec

Figure 5-10. Arc power

0.35 0.4 0.45

Time,sec

Figure 5-11. Arc voltage

0.5

0.5

0.5

57

5

0a.-i,

a-

0.3

n
U,.

0.2

0.1
a.

n

0.3

0.1

0

-0.1
0.3

-S

Figures 5-12 through 5-14 correspond to a fault at a location where the maximum

voltage is three fourths, 75% winding location, of the generated internal voltage. For this

case the average power dissipated at the arc was 0.09 per unit with a maximum peak

current of 6.2 per unit.

0.1

0to
co

-0.1
O0

, -.

.3 0.35 0.4 0.45

Time,sec

Figure 5-12. Arc voltage

0.5

0.35 0.4 0.45 0.5

Time,sec

Figure 5-13. Arc power

0.55 0.6

58

I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I

II i!

.

, 0.2

0 0,1

n

0,3

0.35 0.4 0.45 0.5

Time, sec

Figure 5-14. Arc current

0.55 0.6

5.1.2 Simulations with shorting of the motor terminals

The purpose of these simulations was to determine if shorting the motor terminals,

after the motor has been electrically disconnected, has any effect on the power dissipation

in the fault. Figures 5-15 through 5-22 show the arc currents, voltages and power

dissipated at the fault. The terminals of the motor were shorted immediately after the

motor supply breakers were opened.

Figures 5-15 through 5-17 correspond to fault locations near the middle of the

winding.

0 0.2

Figure 5-15. Arc

0.4 0.6 0.8

Time,sec

current as a function of time

59

10

0
w

o.9a. F:
;c,

10
0.3

5

:
4-

. IW_t..

0

-5
1

0.1

no

,---4

c~.

0 0.2 0.4 0.6 0.8 1

Time,sec

Figure 5-16. Arc voltage as a function of time

Ac

o

0 0.2 0.4 0.6 0.8 1

Time,sec

Figure 5-17. Power dissipated at fault

Shorting the terminals of the motor reduced the average power dissipated in the

arc to 0.051 per unit with a peak current of 4.9 per unit. This represents an approximate

20% reduction in the power dissipated in the arc.

Figure 5-18 through 5-20 correspond to a 25% winding location. For a fault at

this location the average power dissipated was 0.0295 per unit with a peak current of 3

per unit.

60

CliEEE~bl UJ H

n,3

V

0.35 0.4 0.45

Time,sec

Figure 5-18. Arc current

0.35 0.4 0.45

Time,sec

Figure 5-19. Arc voltage

0.35 0.4 0.45

Time,sec

Figure 5-20. Arc power

61

5

-.2

09 0

-F;

0.3 0.5

0.1

0

.3
a
I-Si

0
dr

-0.1
0.3 0.5

0.2

CD

o

0.1

0
0.3 0.5

.in ii ,·
I, i i

I I1 i ii
i

i ii � ' ; I : i- i' 1 ii 'i i I · 1 r i
b' i; 'i

;i i i i

i iii i; - ','

i;
i' � ii ni� ii i �i ii ' R niiii �i i I) 1

"ii; i
; i i II iI I; i : ri i I r i ii; i I r IIri t;I i I

II r. ,· I; ,t i: ii ii
I- .· i: · , I B " ' ii

ii i ;; i- ii ,,

-s�
i
Ii

i i
I ;

ii Li i, i,

For a 75% winding location the simulation results are shown in figures 5-21

through 5-23. In this case the average power dissipated was 0.08 per unit with a peak

current of 6.2 per unit

0.35 0.4 0.45

Time,sec

0.5 0.55 0.6

Figure 5-21. Arc current

0.35 0.4 0.45 0.5

Time,sec

Figure 5-22. Arc power

0.55 0.6

62

10

0

a

-.CD:zQ,

-10in

0.3

nA A

t 0.2
o

0.3

U. I

o
00

-n 1

0.3 0.35 0.4 0.45 0.5 0.55 0.6

Time,sec

Figure 5-23. Arc Voltage

The simulations where the motor terminals were shorted showed a decrease in the

average power dissipated at the fault. For all three cases, an approximate 20% reduction

in dissipated power was observed.

5.2 Limitations of the simulation models

The models used in this research did not address interactions between other

generators and loads during the time of the fault. In naval propulsion plants, the size of

the generators can be of the same magnitude as some of the electrical loads. The effects

of an internal fault on the rest of the electrical system should be considered. Such studies

could be accomplished by incorporating the models developed in this research into

simulation programs such as those in [4].

The only case considered in this research was that of a motor operating at rated

speed and power. This case was considered since it had the capability of generating the

largest fault currents. This model does not take into account how the magnitude of fault

currents affects breaker tripping speeds. The effects of internal faults for motors operating

at speeds lower than rated speed should be investigated.

63

A 4

The fault model does not consider reignition voltage of the arc. When the arc is

extinguished deionization will reduce the conductivity of the column. As the voltage

reverses, the conductivity that existed just before the instant the arc current goes to zero

must be reestablished. If the deionization has been rapid, the required voltage to

reestablish the arc will be consequently higher than the arc burning voltage. Reignition

voltages can be of the order of 0.2 to 0.8 per unit, Appendix A [2]. Introducing the

reignition voltage will result in a more realistic model and possibly in lower energy

dissipation in the arc as the arc will not bum as frequently as in the current model.

The model used does not account for the inertia of the propeller and the shaft.

This added inertia will cause the windmilling shaft to coast down at a lower rate. In this

case high internal voltages will be sustained for a longer time, thus sustaining the electrical

arc longer.

5.3 Suggestions for Future Research

The flexibility added by object-oriented programming makes it easier to add

components to the model such as induction motors and other ship's electrical loads. This

could lead to a simulation of the entire ship's electrical distribution system.

For electric drive ships, the propulsion motors can be modeled and incorporated

into the simulation model.

The fault model could be improved to include the effects of arc reignition voltages.

The arc reignition voltage is several times greater than the burning voltage of the arc.

Inclusion of these voltages into the model will provide a more realistic model of the arc

and a better estimate of the power dissipated in the arc.

64

The damage caused by an arc will occur in a very short period of time. The use of

sensors inside the motor that can detect the formation of a plasma column should be

considered. This system would disconnect the motor immediately upon the formation of

the arc.

5.4 Conclusions

This research has shown that internal faults such as electrical arcs can generate

large currents and dissipate large amounts of power inside a motor. Because the field flux

is constant in permanent magnet machines, this type of machine will continue to generate

an internal voltage while it is windmilling. This internal voltage can continue to support

the fault process and could cause further damage to the machine after it is disconnected

from its electrical power source.

For a large machine such as the one used for this research, average powers of

approximately two to three megawatts were dissipated at the arc. Such large power

dissipation in a localized spot can be expected to cause extensive damage to the motor.

Shorting the windings of the motor was shown to reduce the amount of power

dissipation at the arc. However, after the windings are shorted a significant amount of

power will continue to be dissipated at the arc. To stop the process the machine needs to

be slowed down to where the internal voltage generated can no longer support the arcing

process. Preferably the machine should be stopped.

Permanent magnet motors are being considered for ship propulsion in electric drive

ships. This research has shown that an internal fault can cause significant damage to a

65

windmilling permanent magnet motor. Further investigation in the area of protection

systems for propulsion permanent magnet motor should be considered.

66

References

1. Harrington, R. (ed.), Marine Engineering, SNAME, New York, NY, 1971.

2. Cobine, J.D., Gaseous Conductors, McGraw-Hill, New York, NY, 1941.

3. Crandall, S.H., Dahl, N.C., and Lardner, T.J., An Introduction to the
Mechanics ofSolids, Mc-Graw Hill, New York, NY, 1978.

4. McCoy, T.J., Dynamic Simulation of Shipboard Electric Power Systems, SM
Thesis, Massachusetts Institute of Technology, May 1993.

5. Fitzgerald, A.E., et. al., Electric Machinery, Fifth Edition, McGraw-Hill, New
York, NY, 1990.

6. Fink, D.G., and Beaty, H.W., StandardHandbook forElectrical Engineers,
Thirteenth Edition, McGraw-Hill, New York, NY, 1993.

7. Bose, B.K., PowerElectronics andACDrives, Englewood Cliffs, NJ, 1986.

8. Leonhard, W., Control ofElectrical Drives, Springer-Verlag, Berlin,
Germany, 1985.

9. Honsinger, V.B., "Permanent Magnet Machines: Asynchronous Operation", IEEE
Transactions on Power Apparatus and Systems, Vol PAS-99, Na 4, pp. 1503-
1509, July/August 1980.

10. Microsoft Excel User's Guide, Microsoft Corporation, Redmond, WA, 1992.

11. Levi, E., Polyphase Motors, John Wiley & Sons, New York, NY, 1984.

12. Kirtley, J.L., Preliminary Sizing Calculations of Flux Concentrating
Permanent Magnet Synchronous Machines, Massachusetts Institute of
Technology, Laboratory for Electromagnetic and Electronic Systems, April 1993.

13. Honsinger, V.B., "Performance of Polyphase Permanent Magnet Machines", IEEE
Transactions on Power Apparatus and Systems, Vol PAS-99, Na 4, pp. 1510-
1518, July/August 1980.

14. Honsinger, V.B., "The Fields and Parameters of Interior Type AC Permanent
Magnet Machines," IEEE Transactions on Power Apparatus and Systems, Vol
PAS-101, Na 4, pp. 867-875, April 1982

67

15. Kirtley, J.L., "Synchronous Machine Dynamic Models," LEES Technical Repor4

TR-87-008, Massachusetts Institute of Technology, Laboratory for
Electromagnetic and Electronic Systems, 1987.

16. Gillmer, T.C., and Johnson, B., Introduction to Naval Architecture, Naval
Institute Press, MD, 1982.

17. Lewis, E.V., (ed.), Principles ofNavalArchitecture, Volume II, SNAME, Jersey

City, NJ, 1988.

18. Dewhurst, S.C., and Stark, K.T., Programming in C++, Prentice Hall,
Englewood Cliffs, NJ, 1989.

19. Kulig, T.S., Buckley, G.W., Lambrecht, D., and Liese, M., "A New
Approach to Determine Transient Generator Winding and Damper Currents in
Case of Internal and External Faults and Abnormal Operation," IEEE Transactions

on Energy Conversion, Vol 5, Na 1, March 1990.

20. Advanced Continuous Simulation Language User Guide/Reference
Manual, Mitchell and Gauthier, Assoc., Inc., Concord, MA, 1975.

68

Appendix A. Motor Design Spreadsheet

Input Parameters

No. of phases
L/D

Pout
Rotor speed, rpm

Frequency, Hz

Air gap size, m
Terminal Voltage, V

Power factor
ks

Ja, Amps/mA2

Shear, psi
Bm, T rms
Bg, T rms

Byoke, T rms
Bt, T rms

Magnet Fraction
Space Factor

q, slots/pole-phase
Conductors/slot

3

0.229
40,000

200
60

0.005
1000

0.8
0.9

4.00E+06
7.5

0.4

0.6
1.2

1.08

0.5
0.5

1

1

Magnet Size Calculations
'r P 37.074

0 , 0.087
w In 18.531

0 ,r 0.087

h,, 13.903
Y 0.071

s 0.16

Constants, units as specified

Conductivity of Copper, S/m
Density of copper. Kg/lmA3
Density of Steel, Kg/m^3
Permeability of free space, H/m
Density of Aluminum, Kg/mA3

o) 377

p 18
Torque 1.42E+06

K 9.57E+04
R 2.12

B1 0.54

u/ 0.64

I 15060.0587

13V I 45.18
Stator Parameters

kp 0.5
Slot height 5.32

N 15.71
Slot width 6.18

Nslots 108.00

Tooth width 6.18
Back iron 5.91

Eff cond length 1.44

Reactances, per unitized to Eaf
cm

radians
cm

radians
cm

cm

ad

aq

Zbase

Ra

ra
H

0.3953

2.3128

0.0335
0.0005

0.0145

0.1227

Stator Mass

5.70E+07
8.95E+03
7.80E+03

1.26E-06

2.70E+03

Teeth
Back iron

Copper
Stator Mass

Stator Weight

2723.35

6227.63

2293.83

11244.81

11

69

r/s

pole pairs
Nt-m
A/m
m
T

radians
Amps
MVA

cm
turns/phase

cm

cm

cm

m

p.u.
p.u.

ohms
ohms/phase

p.u.

sec

Kg

Kg
Kg
Kg
iton

Appendix A. Motor Design Spreadsheet

Calculation of v (v= terminal voltage/Eaf)

v e* 6 id eaf vnew
2.137 1.721 0.301 0.379 0.994 2.143
2.143 1.727 0.300 0.378 1.003 2.140
2.140 1.724 0.301 0.378 0.999 2.142
2.142 1.726 0.300 0.378 1.001 2.141

Inductance, mH Reactance, ohms Reactance, pu

Magnetizing 0.649 0.245 3.69
Slot leakage 0.01 0.004 0.05

Harmonic Leakage 0.016 0.006 0.09
Leakage 0.03 0.010 0.15

Laao 0.433 0.163 2.46
Xad 0.012 0.366

X dq 0.072 2.140

Synchronous 0.675 0.254 7.594
Xd 0.022 0.511
Xq 2.357 2.285

Losses

Mwatts p.u.
Copper Losses 0.33 0.01

Mechanical Losses 0.000 0.000
Tooth Losses 0.00 0.0001

Core losses 0.011 0.0002

No-load losses 0.01 0.0003
Load losses 0.003 0.0001
Total losses 0.36 0.01

ql 98.85%

Rotor Mass

Magnets 7028.819 Kg
Poles 6573.10 Kg

Flux Barriers 10994.95 Kg
Inner Structure 3784.432 Kg
Rotor Weight 27.938 lton

70

Appendix B. Node and Network Pre-Processor

This program is used to format the two input files, *.in, that contain the node and
line information for the simulation program. It is the first program that needs to be
executed. The output of this program are two files, *.lfi which are used by the load flow

calculation program, Appendix C.

The original pre-processor program in this appendix was written by Professor
James L. Kirtley. The code was modified by F.R.Colberg allow connection of a
synchronous motor to a network.

#include <stream.h>
#include <stdlib.h>

main(int argc, char *argv[])

void concat(char*, char*, char*);

char nodeinname[14];
char line_inname[14];
char node_out_name[14];
char line_out_name[14];

concat(argv[l], ".in", node_in_name);
concat(argv[2], ".in", line_in_name);
concat(argv[1], ".lfi", node_out_name);
concat(argv[2], ".lfi", line_out_name);

filebuf f, fl, f2, f3;
if (fO.open(node in name, input) == 0) I Bus data here
{cout << "Can't Open " << node_in_name << "!\n";
exit(O);

}

if (fl .open(line in name, input) == 0) / Line data here
{cout << "Can't Open " << line_in_name << "!\n";
exit(O);

}

f2.open(node_out_name, output); I For processed node info
f3.open(line_out_name, output); // Put processed line info

istream nodein (&fO);
istream linein (&fl);
ostream nodeout (&f2);
ostream lineout (&f3);

71

int nlines, nnodes;
nodein >> nnodes;
linein >> nlines;

int nl [nlines], n2[nlines], line_count=0, node_count=O;
double r[nlines], xl[nlines], xO[nlines];
char s[nlines];

for (int i=O; i<nlines; i++)

linein >> nl[i];
linein >> n2[i];
linein >> r[i];
linein >> x I [i];
linein >> xO[i];
linein >> s[i];
if (s[i] == 'c') line_count++;

I Get Basic Line Info

I This many to output file

char c;
char t[nnodes];
char gname[nnodes] [10];
int node[nnodes];
double dat 1 [nnodes];
double dat2[nnodes];
int gen_count = 0;

for (int j=O j<nnodes; j++)

{

nodein >> c;
tbj] = c;

switch(c)

case 'n':

node_count++;
break;
case 'i':

node_count++;
nodein >> dat ll];
nodein >> dat2[j];
break;

case 'd':
break;

case 'v':

/ Network Node

// Voltage Source Node

/1 used for datum Node
// not in node count
1 generator node

72

case 'p':

node_count++;
datl[j] = dat2j] =0;
break;

case 'g': I generator or motor data
nodein >> gname[j];
nodein >> node[j];
nodein >> datl[j];
nodein >> dat2[j];
gen_count++;
break;

default: / unrecognizable code
cout << "INPUT FILE ERROR: UN RECOGNIZED NODE CODE! ";
cout << t[j] << "\n";
exit(O);

}

}

fO. close();

fl. close();

// First output file is line data for load flow

lineout << line_count << "\n"; / Top Key to line file

for (i=O; i<line_count; i++)
if (s[i] =='c') lineout << nl[i] << " " << n2[i] << " "

<< r[i] << " " << xl[i] << \n";

/ Second output file is node data for load flow
// First, must fix up generator buses for actual load

for (j=O; j<nnodes; j++)

if(tj] == 'g') // Generator
switch(t[nodelj]]) // Check target node

{

case 'v': 1 Allowed cases
dat I[node[j]] += datllj]; / set voltage
if (dat2[nodej]] 0)

dat2[node[j]] = dat2[j];
break;

case 'p':
dat 1 [node[j]] += dat 1 [j]; P and Q add
dat2[node[j]] += dat2[j];
break;

73

default:
case 'n':

break;
cout << "INPUT FILE ERROR: MACHINE ASSIGNED TO WRONG

NODE!\n";
exit(O);

}

}

/ Now we can actually write the output file

nodeout << node_count << "\n";
for (j=0; j<nnodes; j++)

s
switch (t[j])

{

case 'n':
nodeout
break;

case 'i':

nodeout
nodeout
nodeout
break;

case 'v':
nodeout
nodeout
nodeout
nodeout
break;

case 'p':
nodeout
nodeout
nodeout
break;

default:
break;

}

}

f2.close();
f3.close();

}

<<".8.6 1 0

<< 110 "
<< datl[j] <<
<< dat2j] <<

<< datl[j];
<< 0 "i;
<< dat2[j];
<< " 0 v\n";

<< datl[j] <<
<< dat2j];
<<" 1 0 p\n";

1 Network node: special p,q
i\n"; I p=.8,q=.6, v=l, d=0

// Voltage source

I !.

i\n";
I voltage

I phase angle

I Generator, fixed voltage
I total power at note

I this number will be ignored
/ fixed voltage at node
I ignored and key

/ Generator, fixed p, qI; / P
IIQ
I/Vto start loadflow and key

// Only 'g' or 'd' are left

void concat (char *stringl, char*string2, char*string)

{

74

for (int j=O; j<strlen(string 1); j++)
stringj] = string1lj];

for (int i=O; i<strlen(string2); i++)
string[i+j] = string2[i];

}

75

Appendix C. Load Flow Program

The files *.lfi generated by the pre-processor program are used by this program to
calculate node voltages, line currents and power flow. This program generates two output
file *.lfo. These output files contain the load flow information for the connected system.
The actual load flow calculations are performed by the program loadflow.h, Appendix C- I

This program was written by Professor James L. Kirtley. The program was
modified by F.R.Colberg to perform load flow calculations for nodes and lines with
motors connected to them.

#include <stream.h>
#include "loadflow.h"

main(int argc, char *argv[]

void concat(char*, char*, char*);

char node_in_name[14];
char line inname[14];

char node_out_name[14];
char line_out_name[14];

concat(argv[l], ".lfi", node_in_name);
concat(argv[2], ".lfi", line_in name);
concat(argv[1], ".lfo", node_out_name);
concat(argv[2], ".lfo", line_out_name);

filebuf f0, fl, f2, f3;

if (fO.open(node inname, input) == 0) / Bus data
{cout << "Can't Open " << nodein_name << "!\n";
exit(0);

if (fl .open(line inname, input) == 0) / Line data
{ cout << "Can't Open " << line_in_name << "\n";
exit(O);

}

f2.open(node_out_name, output); 1/ Processed node information
f3.open(line_out_name, output); 11 Processed line information

istream nodein (&fO);
istream linein (&fl);

76

ostream nodeout (&f2);
ostream lineout (&f3);

const double crit=le-7;

cnet n (fl, fO);

f0.close();
fl.close();

double e= l;
for (int k=O; k<10000; k++)

if((e = n.improve_voltages()) < crit) break;
cout << "That Took" << k <<" Iterations\n";

n.report_node_voltages(f2);
n.report_line_currents(f3);

f2.close();
f3.close();

void concat (char*stringl, char*string2, char*string)

{

for (int j=O; j<strlen(string 1); j++)
string[j] = stringlj];

for (int i=O; i<strlen(string2); i++)
string[i+j] = string2[i];

77

Appendix C-1. Load flow calculation program

This program solves the load flow problem for the system defined by the files *.in.
This code is part of Appendix C. The original program written by Professor James L.
Kirtley was modified by F.R. Colberg to add destructor functions and to delete reference
to voltage regulator files.

#include "cline.h"
#include "cnode.h"
#include <stream.h>
#include <libc.h>
#include <stdlib.h>
#include "Complex.h"
#define Complex complex

class cnet {
int nlines; / number of lines
int nnodes; HI number of nodes in network
dine *lptr; / pointer to lines
cnode *nptr; H pointer to nodes (buses)
int *node_incidence;
Complex *node_admittance;

public:
cnet (filebuf fO, filebuf fl) I Build network from files *.lfi

{

int nl, n2;
char t;
double r, x;
double p, q, v, d;

istream from (&fO);
from >> nlines;
lptr = new cline[nlines];
for (int i=O; i<nlines; i++)

{

from >> nl;
from >> n2;
from >> r;
from >> x;
lptr[i]. set_cline(n1,

'I

H This file contains line information

H Build the lines defined in input file

//1 Entry node
// Exit node
I Line resistance

/ Line reactance
n2, r, x);

for (i=O; i<nlines; i++)

78

lptr[i].rept(i);
istream fn (&fl); // This file contains the node information
fn >> nnodes;
nptr = new cnode[nnodes]; I Build the nodes
for (int j=O; j<nnodes; j++)

fn >> p; / Initial node real power
fn >> q; I Initial node reactive power
fn >> v; // Initial node voltage magnitude
fn >> d; / Initial node angle
fn >> t; I Node type
nptr[j].set_cnode(p, q, v, d, t);

}

for (j=O; j<nnodes; j++)
nptr[j].rept(j);

node_incidence = new int[nnodes*nlines];

for (j=O; j<nnodes; j++)
for (i=O; i<nlines; i++)

node_incidence[i+j*nlines] = 0;

for (i=O; i<nlines; i++) I Build node-incidence matrix

node_incidence[lptr[i].report_node_a(*nlines+i] = 1;
node_incidence[lptr[i].report_node_b()* nlines+i] = -1;

}

I Build the node-admittance matrix

node_admittance = new Complex[nnodes*nnodes];

for (j=0; j<nnodes; j++) / Allocate space for admittance matrix

for (i=O; i<nnodes; i++)
node_admittance[j*nnodes+i] = (0,0);

Complex *tmat = new Complex[nnodes*nlines];

for (i=O; i<nlines; i++)
for (j=O; j<nnodes; j++)

tmat[i*nnodes+j] = lptr[i].admit()*node_incidence[j *nlines+i];

for (j=O; j<nnodes; j++)
for (i=O; i<nnodes; i++)

79

for (int k = 0; k<nlines; k++)

node_admittance[j*nnodes+i] +=
node_incidencej *nlines+k] *tmat[k*nnodes+i];

delete [nnodes*nlines]tmat;

} End of network construction step cnet()

Complex node_current(int i)

Complex I;
I = (0,0);
for (int j = 0; j<nnodes; j++) {

I += nptrlj].node_voltage() *
return(I);

}

void report_nodepower()
{

Complex I, P;
for (int j = 0; j<nnodes; j++)

{

}

/ Current at node i

nodeadmittance[i*nnodes+j]; }

I = (0,0);
for (int i=O; i<nnodes; i++)
I += nptr[i].node voltage() * node_admittance[j*nnodes+i];
P = nptrj].node_voltage() * conj(I);
cout << "Node " << j << " P + j Q = " << P << "\n";

}

double improve_voltages() / One step in voltage improvement

Complex C, Y;
double e = 0; / error accumulator
for (int i=O; i<nnodes; i++)

C = node_current(i);
Y = node_admittance[i+nnodes*i];
e += nptr[i].improve_voltage(C, Y)/nnodes;

}
return(e);

}

void report_node_voltages(filebuf f2)

{

Complex V, I, P;

//Output node voltages

80

ostream to(&f2);

for (int i=O; i<nnodes; i++)

{

V = nptr[i].nodevoltage();
I nodecurrent(i);
P V * conj(I);
to << abs(V) <<" "<< arg(V) << " "

<< real(P) <<" "<< imag(P) << "\n";

}

void report_line_currents(filebuf f3) //Output line currents

Complex c, vl, v2, I;
int nl, n2;
ostream to(&f3);
for (int i=0; i<nlines; i++)

c = lptr[i].admit();
nl = lptr[i].report_node_a();
n2 = lptr[i].report_node_b();
vl = nptr[nl].node_voltage();
v2 = nptr[n2].node_voltage();
I =c * (vl - v2);
to << abs(I) <<" "<< arg(I) << "\n";

}

-cnet(); //Destructor function
}; //End of definition of class cnet

cnet::-cnet() {

delete [nlines]lptr;
delete [nnodes]nptr;
delete [nnodes*nnodes]node_admittance;
delete [nnodes*nlines]node_incidence;

i

81

Appendix C-2. Node Voltage Calculation

This file calculates node voltages for the load flow program. It is part of Appendix
C and needs to be compiled as part of it. This file was written by Professor James L.
Kirtley.

#include "Complex.h"
#include <stream.h>
#include <stdlib.h>
#define complex Complex

class cnode {
double p, q, v, d;
char t;

public:
void set_cnode (double

p = pwr;
q = qwr;
v=vt;
d = delt;
t = type;

I

Complex node_voltage(

return(polar(v, d));

}

i Real, reactive power, voltage, angle
// Node type

pwr, double qwr, double vt, double delt, char type)

/ Report voltage at node i

double improve_voltage(Complex I, Complex Y) // One step in a Gauss-Seidel
{ // I is current from network

Complex cv, vo;
double qt, e, a=1.6;
switch(t)

{

case 'i':

e = 0;
i Infinite bus

break;
case 'p': i Defined p-q node

vo = polar(v, d);
cv = -Complex(p,-q)/(conj(vo)*Y)+ L/Y;
vo += a*cv;
v = abs(vo);
d = arg(vo);

// Voltage correction

82

e = abs(Complex(p,q)-vo*conj(I));
break;

case 'v':

vo = polar(v,d);
qt = imag(vo*conj(I));

/ Defined p and vl

// Calculated value of q
cv = Complex(p,-qt)/(conj(vo)*Y)- I/Y;
vo += a*cv;
vo *= v/abs(vo);
d = arg(vo);

I First-order correction to vo

e = abs(p - real(vo*conj(I)));
cout << "vo = " << vo << " I = " << I << " e = " << e << "\n";
break;

default:
cout << "Incorrect Node Type Used in Input \n";

exit(O);

}

return(e);

}

void rept(int i)

cout << " Node " << i << " Type " << t << " P= " << p <<" Q= "
<< q << V= " << v << " Delt= " << d << "\n";

Complex report_targetpower()

return(Complex(p,q));

/1 End of definition of class node

83

Appendix C-3. Line Admittance Calculation

This file calculates the line admittances. It is part of Appendix C the load flow

program. This file was written by Professor James L. Kirtley.

#include "Complex.h"
typedef class complex Complex;

class cline {
int na, nb;
double r,x;

public:
void setcline

{

na = nodea;
nb = nodeb;
r = res;
x = react;

}

Complex admit()

{

(int nodea, int nodeb, double res, double react)

// Report line admittance

"<< i << "from" << na << "to"
z= " << r << " +j" << x << l\n";

Complex z, y;
z = Complex(r, x);
y= l.O/z;
return(y);

}

int report_node_aO
{

return(na);
}

int report_node_b()

{

return(nb);

I
void rept(int i)

I
cout << "Line

<< nb << "

}

1/ End of definition of class cline

84

Appendix D. Line Simulation Input File

This program uses the power flow information calculated in Appendix C to build
the lines for the simulation program. This program will generate an output file *.net
which contains the line information for the simulation program.

Original program written by Professor James L. Kirtley. The code was modified
by F.R. Colberg to delete reference to voltage regulators and to allow connection of a
motor to the network.

#include <stream.h>
#include <stdlib.h>
#include <math.h>
#include "Complex.h"
#define Complex complex

main(int argc, char *argv[])

{

const double al = 2.0943951; / 2 pi/3

void concat(char*, char*, char*);
char node in name[14];
char line_inname[14];
char node_Vname[14];
char line_I_name[14];
char line_out_name[14];
char node_output_file_name[14];
char line_output_file_name[14];
char mot_output _file _name[14];

concat(argv[1],

concat(argv[2],
concat(argv[1],

concat(argv[2],
concat(argv[2],
concat(argv[1],

".in", node in name);
".in", line in_name);
".lfo", node_V_name);

".lfo", line_I_name);
".net", line_out_name);
".gp", mot_output_file_name);

filebuf fO, fl, f2, f3, f4, fg;

if (fO.open(nodeinname, input) == 0)
{cout << "Can't Open " << node in name <<
exit(O);

}

85

/ Bus data
" !\n";

if (fl.open(line in name, input) == 0) / Line data
{cout << "Can't Open " << line_in_name << "!\n";
exit(0);

if (f2.open(node_ Vname, input) == 0) // Bus data
{cout << "Can't Open " << node_V_name << "!\n";
exit(O);

}

if (f3 .open(lineIname, input) == 0)
{ cout << "Can't Open " << line_I_name
exit(O);

f4.open(line_out_name, output);
fg.open(motoutput_file_name, output);

/ Line data
<< "!Processed li\n"e information

// Processed line information

istream nodein (&fO);
istream linein (&fl);
istream nvin (&f2);
istream liin (&f3);
ostream lineout (&f4);
ostream motout (&fg);

int nlines;
linein >> nlines;

int nl [nlines], n2[nlines];
double r[nlines], xl[nlines], x0[nlines];
char s[nlines];
int lcode[nlines];

for (int i=0; i<nlines; i++)

linein >> nl[i];
linein >> n2[i];
linein >> r[i];
linein >> xl [i];
linein >> x0[i];
linein >> s[i];

}

// Get Basic Line Info

linein >> line_output_file_name;

86

int nnodes;
nodein >> nnodes;

char c;
char t[nnodes];
char mname[nnodes][10];
int node[nnodes];
double dat 1 [nnodes];
double dat2[nnodes];
int gen count= 0;
double nvm[nnodes], nva[nnodes], p[nnodes], q[nnodes];

cout << "Reading Network Data\n";

for (int j=O; j<nnodes; j++)

{

nodein >> c;
tj] = c;
cout << "j = " <<j << " c = " << c << "\n";
switch(c)

{

case 'n':
nvin >> nvmlj]; / Network Node
nvin >> nva[j];
nvin >> p[j];
nvin >> q[j];
cout << j << " n nvm =" << nvmj] << " nva =" << nvalj]

<< p =" << p[j] <<" q " << q[j] << "\n";
break;

case 'i': /1 Voltage Source Node
nodein >> datl[j];
nodein >> dat2[j];
nvin >> nvmlj];
nvin >> nva[j];
nvin >> p[j];
nvin >> q];
cout << j << " i nvm =" << nvm[j] << " nva = " << nvaj]
<<" p =" pj << <<q <<j] << \n";

break;
case 'd': 1 used for datum Node

break; 1 not in node count
case 'v': I generator node

dat 1l[j] = dat2[j] =0;
nvin >> nvmlj];
nvin >> nva[j];

87

nvin >> p[j];
nvin >> q[j];
cout << j << " v nvm =" << nvmj] << " nva =" << nvaj]

<<"p=" << p] <<"q =" << q[j] << \n";
break;

case 'p':

dat li] = dat2[j] =0;
nvin >> nvm[j];
nvin >> nvalj];
nvin >> p[j];
nvin >> q[j];
cout <<j << " p nvm =" <nvmj] <<" nva =" << nva[j]

<< " p =" << p[] << q =" << q[j] << "\n";
break;

case 'g': // motor data
nodein >> mname[j];
nodein >> node[j];
nodein >> dat l [j];
nodein >> dat2[j];
gen_count++;
break;

default: 11 unrecognizable code
cout << "INPUT FILE ERROR: UNRECOGNIZED NODE CODE! ";
cout << t[j] << "\n";
exit(O),
break;

}

cout << "Node Data\n";
for (j=O; j<nnodes; j++)

cout << "Node "<<j<<"\tv= "<<nvmUj]<<"\ta= "<<nva[j]<<"\n";

int ntlines = nlines + gencount; // total number of lines

for (i=O; i<nlines; i++)
linein >> lcode[i];

lineout << ntlines << "\n"; / start output

double ia, ib, ic;
int sa, sb, sc;
double lim, lia;

for (i=0; i<nlines; i++) / ordinary lines first

88

if (s[i] == 'o')

{

ia = ib =ic = 0;
sa = sb = sc = 0;

e
else

{

liin >> lim;
liin >> lia;
ia = lim * cos
ib = lim * cos
ic = lim * cos
sa = sb = sc =

// open line

(lia);

(lia- al);
(lia + al);
1;

I
lineout << nl[i] <<" " << n2[i] << " "

<< r[i] << " " << xl[i] << ""<< xO[i] << " "
<< sa <<" " << sb <<" " << sc << " "
<< ia <<" " << ib <<" " << ic << " "
<< "\n";

fO.close();
fl .close();
f2.close();
f3.close();

//Build the machine connection stubs

double gxl, gxO, ra, tdopp, tqopp,
double xd, xq, xdpp, xqpp, ta, h, omz, qfract;
double P, Q;

complex I, V;

filebuf f5;
i=0;
int k;

for (j=0; j<nnodes; j++)

{
if(f5.open (mname[j], input) == 0)

cout << "Missing Machine File "<< mname[j] << "\n";

89

exit(O);

istream gin (&f5);

gin >> xd;
gin >> xq;
gin >> xdpp;
gin >> xqpp;
gin >> gxO;
gin >> tdopp;
gin >> tqopp;
gin >> ta;
gin >> h;
gin >> omz;

f5 close();

gxl = 0.5 * (xdpp + xqpp);
ra = gxl / (omz * ta);

I positive sequence reactance
/ line resistance

I Have to get current for the machine

switch(t[node[j]])

case 'p':

P = datl[j];
Q = dat2[j],
break;

case 'v':

P = datl[j];
qfract = 1;

for (k=O; k<nnodes; k++)
{

if ((k<j) && (t[k]=='g') && (node[k] == nodelj]))
{

qfract = dat2[j];
break;

}
else if ((k>j) && (t[k] == 'g') && (node[k] == nodebj]))

qfract - dat2[k];
}

Q = qfract*q[node[j]];
break;

default:

90

cout << " Apparent Generator At Non-Generator Node!\n";
exit(O);

}

I = conj(complex(P,Q)/polar(nvm[node[j]], nva[nodej]]));

cout << "Generator Stub: P = "<< P << " Q = " << Q << "\n"
cout << "Node " << j << " To "<< node[j] << "I =" << I << "\n";
cout << "Node v = " < nvm[node[j]] << " Angle =" << nva[node[j]]

<< "\n"
motout << nvm[node[j]] <<" "<< nva[node[j]] <<""

<< P << << Q <<" << gxl <<" "<< ra << \n";

lim = abs(I);
lia = arg(I);
cout << "I =" << lim << "\tAngle = "<< lia << "\tra ="

<< ra << "\tgxl =" << gxl << "\n";

ia = lim * cos (lia);
ib = lim * cos (lia - al);
ic = lim * cos (lia + al);
sa = sb = sc = 1;
lineout << j << " " << nodelj] << " "

<< ra << " " << gxl <<" " << gxO << " "
<< sa << " " << sb <<" "<< sc << " "

<< ia <<" "<< ib <<" "<< ic << " "
<< "\n";

}

lineout << line_output_file_name << "\n";
for (i=O; i<nlines; i++)

lineout << lcode[i] << "\n";
for (i=O; i<gen_count, i++)

lineout << "7\n";
f4. close();
fg. close();

void concat (char *stringl, char*string2, char*string)

I

for (int j=O; j<strlen(string1); j++)
stringj] = stringl[j];

for (int i=O; i<strlen(string2); i++)
string[i+j] = string2[i];

I

91

Appendix E. Synchronous Machine / Network Simulator

This program is the actual simulation program. It uses the output files generated
by Appendices B through D and the file called base to run the simulation. The output
from the simulation goes to the output files designated in the *.in and base files.

Program written by Professor James L.Kirtley, modified by F.R.Colberg to
incorporate the permanent magnet motor model into the simulation.

#include <stream.h>
#include <stdlib.h>
#include "Complex.h"
#include "motl .h"
typedef class complex Complex;

main(int argc, char *argv[])

{

double dt, omz;
int np, no;
const double al = 2.0943951; //2 pi/3

void concat(char*, char*, char*);
char node_inname[14];
char nodeV name[14];
char linein[14];
char mot inname[14];

concat(argv[1], ".in", nodein_name);
concat(argv[1], ".lfo", node_V_name);
concat(argv[l], ".gp", mot_in_name);
concat(argv[2], ".net", linein);

filebuf fO, fl, f2, f3, fp;

if (fO.open(node in name, input) == 0)
{cout << "Can't Open " << argv[1] << "!\n";
exit(O);

if (fl.open(nodeV name, input) == 0) / Bus data here
{cout << "Can't Open " << node_V_name << "!\n";
exit(0);

}

92

if (f2.open(line_in, input) == 0)
{cout << "Can't Open " << linein
exit(O),

}

if (f3.open(argv[3], input) == 0)
{cout << "Can't Open " << argv[3]
exit(0);

}

/ Line data
<< "!\n";

/I Base data
<< "!\n";

if (fp.open(mot_in_name, input) == 0)
{ cout << "Can't Open " << motinname
exit(0);

// Machine data
<< " \n";

istream nodein (&fO);
istream nvin (&fl);
istream linein (&f2);
istream basein (&f3);
istream motin (&fp);

cout << "\n Getting Simulation Data From" << argv[3] << "\n";

basein >> omz;
basein >> dt;
basein >> np;
basein >> no;

int nevents;
basein >> nevents;
double event_time[nevents];
int event_line[nevents];
char event_type[nevents];

cout << " omz = " << omz <<" dt =" << dt << " no = " << no
<< " np = " << n \n"

cout << " There are " << nevents << "Events:\n";

for (int ne=0; ne<nevents; ne++)

basein >> event_time[ne];
basein >> event_line[ne];
basein >> event type[ne];

93

for (ne=O; ne<nevents; ne++)
cout << " At time =" << event time[ne] << " Line ="

<< event_line[ne] << " Type " << eventtype[ne] << "\n";

f3 .close();

int nlines;
linein >> nlines;

int nl, n2, sa, sb, sc;

double r, xl, xO, ia, ib, ic;

line *lptr;

lptr = new line[nlines];

cout << "\n Getting Line Data From " << line_in << "\n";
cout << " There are " << nlines << " Lines\n";

for (int i=O; i<nlines; i++) // Here we set up the lines

{

linein >> n 1;
linein >> n2;
linein >> r;
linein >> xl;
linein >> xO;

linein >> sa;
linein >> sb,
linein >> sc;
linein >> ia,
linein >> ib,
linein >> ic;
cout << "Line" << i << "Between Nodes" << nl <<" and " << n2 << "\n";
cout << "xl= " << xl << " xO=" << xO <<" r= " << r << "\n";
lptr[i].setline(nl, n2, xl, xO, r, omz, sa, sb, sc, ia, ib, ic);
lptr[i].setup();

char line_out_name[14];
int line_out_key[nlines];

linein >> line_out_name;
for (i=O; i<nlines; i++)

linein >> line_out_key[i];

94

f2.close();

filebuf fl;

fl.open(line_out_name, output);
ostream lineout (&fl);

cout << "Line Output Data Will Go To " << line_out_name << "\n";
cout << "Line Output Keys Are: ";
for (i=O; i<nlines; i++)

cout << line_out_key[i] <<" ";
cout << \n";

cout << " Brief Line Summary\n";
for (i=O; i<nlines; i++)

cout << " From " << lptr[i].report_node_a() << " To"
<< lptr[i].report_node_b() << " pointer " << &lptr[i] << "n";

cout << "\n Getting Node Input Data From " << node in name << "\n";
cout << " Getting Load Flow Data From " << node_V_name << "\n";

int nnodes;
nodein >> nnodes;

cout << " There are " << nnodes << "Nodes\n";

char c;
char t[nnodes],
char mname[nnodes][10];
int node[nnodes];
double datl [nnodes];
double dat2[nnodes];
int gen_count = 0;
int net_node_count = 0;
int vnode count = 0;

double nvm[nnodes], nva[nnodes], p[nnodes], q[nnodes];
int ptr[nnodes];

for (int j=O; j<nnodes; j++)

nodein >> c;
cout << " Node " << j << " c = " << c << "\n"
switch(c)

95

{

case 'n'
nvin >> nvm[j]; // Network Node
nvin >> nvaj];
nvin >> pj];

nvin >> q[j];
cout << "Network (type n) Node\n";
cout << j << " n nvm =" << nvmj] << " nva =" << nvaj]
<< p =" << pi] <<" q =" <<q] << i\n;

t[j] 'n';

ptrlj] = net node_count;
netnodecount++;
break;

case 'i': / Voltage Source Node
nodein >> datl[j];
nodein >> dat2[j];
nvin >> nvmlj];
nvin >> nvaj];
nvin >> pbi];
nvin >> qj];
cout << "Voltage Source (type i) Node\n";
cout << j << " i nvm =" << nvmlj] << " nva = " << nva[j]

<< p = << p[j] << , q =" << q[j] << "\n";
tuj] = ';

ptrbj] = vnode_count;
vnode_count++;
break;

case 'd': // Datum Node
t[j] = 'v';

ptr[j] = vnode_count;
v node count++;
datl[j] = dat2j] = nvmj] = nvalj] 0;
cout << "Datum (type d) Node\n";
break; // Voltage node

case 'v': // Generator node
dat l j] = dat2[j] =0;
nvin >> nvmlj];
nvin >> nvalj];
nvin >> p[j];
nvin >> q[j];
cout << "Generator (type v) Node\n";
cout <<j << " v nvm =" << nvm[j] << " nva =" << nvaj]

<< " p =" << p[j] <<" q =" << qj] << \n";
t [j] = n';
ptrUj] = net nodecount;

96

net_node_count++;
break;

case 'p':

dat lj] = dat2[j] =0;
break;
nvin >> nvmbj];
nvin >> nva[j];
nvin >> pj];
nvin >> q[j];
cout << "Generator (type p) Node\n";
cout <<j << " p nvm =" << nvm[j] << "nva =" << nva[j]

<<" p =" << p[] << " q ="<< q[] << "\n";
t[j] ='n

ptrlj] = net_node_count;
net_node_count++;
break;

case 'g': / Motor data
nodein >> mnamelj];
nodein >> nodelj];
nodein >> dat 1 [j];
nodein >> dat2j];

tlj] = 'g';
ptr[j] = gen_count;
cout << "Motor\n";
cout << "Mot File " << mnameij] << "\n";
gen_count++;
break;

default: // Unrecognizable code
cout << "INPUT FILE ERROR: UN-RECOGNIZED NODE CODE! ";
cout << t[j] << "\n";
exit(0);
break;

char node_out_file_name[14];
int node_out_key[nnodes];

nodein >> node_out_file_name;

for (j=0; j<nnodes; j++)
nodein >> node_out_key[j];

f0.close();
fl .close();

97

J
,^

cout << " Node Voltage Data Will Go To File " << node_out_file_name << "\n";
cout << " Node Keys Are: ";
for (j=0; j<nnodes; j++)

cout << node_out_key[j] << " "
cout << "\n";

filebuf fn;
fn. open(node_out_file_name, output);
ostream nodeout (&fn);

cout << "Network Data Read \n";

motor* motr;
bus* nptr,
vbus* vptr;

// Pointer to motors
// Pointer to network buses
/ Pointer to voltage buses

motr = new motor[gen count];
nptr = new bus[net node_count];
vptr = new vbus[v node_count];

cout << "Space Allocated for Motors and Buses \n";

/ Setup the various nodes

filebuf fg;
int jg=0;
int jn=0;
int jv=0;

line* * linebuf;
int local_line_count, local_line_no;

cout << "Ready to setup nodes\n";

for (j=0; j<nnodes; j++)

cout << "Node " << j << " Code=
switch(t[j])

{

" << ti] << "\n";

case 'g':
if (fg.open(mnamej], input) == 0)

cout << "Can't Open " << mnamej] << "! \n";

98

exit(O);

}

motr[jg]. genset(fg);

motr[jg]. set_node(j);

jg++;
fg.close();
break;

case 'v': / Voltage source nodes
cout << "Node " << j << " Voltage Source V ="
<< datl[] << " Angle = " << dat2[j] << "\n";

vptr[jv]. setvbus(dat 1 [j], dat2[j]);
jv++;
break;

case 'n': I Network nodes
cout << "--Node " << j << "\n";

locallinecount=O;
// Count connected lines

for (i=O; i<nlines; i++)
if ((lptr[i].report_node_a(== j) II

(lptr[i].report_node_b(== j))

local_line_count++;
cout << " Line " << i << "\n";

}

linebuf = new line *[localline_count];
local_line_no=O;

for (i=O; i<nlines; i++) / Copy the pointers
if ((lptr[i].report_node_a() == j)

(lptr[i].report_nodeb() == j))
linebufilocal_line no++] = &lptr[i];

nptr[jn].setbus(j, local_line_count, linebuf);

cout << "Node " << j << " Network Node, " << local_line_count
<< " Lines Connected \n";

for (i=O; i<local_line_count; i++)
cout << " From " << linebufli]->report_node_a()

99

<< " To " << linebufli]->report_node_b(
<< " pointer= " << linebufli] << "\n";

jn++;

delete linebuf;
break;

default:
break;

}

1/ Next, set the bus pointers for each of the lines

bbus* busa;
bbus* busb;
int nn;

cout << " Summary of Bus Pointers\n";
for (j=O; j<nnodes; j++)

switch(t[j])

{

case 'g':

cout << " Node " <<
<< " pointer = " <<

break;
case 'v':

j << " Type g " << " ptr = "
&motr[ptr[j]] << "\n";

<< ptrlj]

cout << " Node " << j << " Type v " << " ptr = " << ptrj]
<< " pointer = " << &vptr[ptr[j]] << "\n";

break;
case 'n':

cout << " Node " << j << " Type n " << " ptr =" << ptrj]
<< " pointer = " << &nptr[ptrj]] << "\n";

break;
default:

break;

for (i=O; i<nlines; i++)

I

nn = lptr[i].report_node_a();
switch(t[nn])

case 'g':

busa = &motr[ptr[nn]];
motr[ptr[nn]]. set_line(&lptr[i]);

100

break;
case 'v':

busa = &vptr[ptr[nn]];
break;

case 'n':
busa = &nptr[ptr[nn]];
break;

}

nn = lptr[i].report_node_b();
switch(t[nn])

{

case 'g':

busb = &motr[ptr[nn]];
break;

case 'v':

busb = &vptr[ptr[nn]];
break;

case 'n':

busb = &nptr[ptr[nn]];
break;

}

lptr[i]. set_buspointers(busa, busb);

}

// Set the initial state values for the machine(s)

double VM, VA, P, Q, X, R;
double tm[gen _count], eaflgen_count];

for (j=O; j<gen count; j++)

motin >> VM;
motin >> VA,
motin >> P;
motin >> Q;
motin >> X;
motin >> R;
cout << "\n Setting Motor" << j << " Initial Conditions\n";
cout << " vm= " << VM << " va= " << VA << " P= " << P

<< " Q= " << Q << " X= " << X << " R=" << R << "\n";
motrlj].setinitial(VM, VA, P, Q, X, R, 1);
eaflj] motr[j].get_eaf();
tm[j] - mot:rUj].get_tm(;

101

cout << "Eaf= " << eaflj] << " Torque =" << tmj] << "\n",

//Report the initial conditions

cout << "\n Final Setup Report:\n";
cout << " Motor:\n";

for (j=0; j<gen count; j++)

{

motrlj].report();
cout << "\n";

I
cout << "Network Nodes:\n";
for (j=0; j<net node_count; j++) nptr[j].report();
cout << "\n Voltage Source Nodes:\n";
for (j=0; j<v node_count; j++) vptr[j].report();
cout << "\n Lines \n";
for (i=0; i<nlines; i++) ptr[i].report();
cout << \n";

II Start the actual time-step simulation

int n, m, eptr=0, flag=l, ip=0;
double time=0;
double te[gen_count], vbus[gen_count];

1/ Output first data point (the initial conditions)

for (j=0; j<gencount; j++)
motr[j]. file_output(time);

lineout << time << " "
for (i=0; i<nlines; i++)

if (line_out_key[i] & 4)
if (lineoutkey[i] & 2)
if (line_out_key[i] & 1)

I

lineout << "\n";

nodeout << time << " "

for (j=0; j<nnodes; j++)
switch(t[j])

// Machine output

/1 Output to line file

lineout
lineout
lineout

<< lptr[i].i_a(
<< lptr[i].i_b()
<< lptr[i].i_c(

<< f

<K"
<<"
< It

102

{

case 'g':

if (node_out_keyj] & 4) nodeout << mo
<< ..

if (node_out_keyj] & 2) nodeout << mo

if (node_out_keyj] & 1) nodeout << mo

break;
case 'n':

if (node_out_key[j] & 4) nodeout << npt

if (node_out_key[j] & 2) nodeout << npt

if (node out_key[j] & 1) nodeout << npt
<

break;
case 'v':

if (node_out_key[j] & 4) nodeout << vpt

if (node_out_key[j] & 2) nodeout << vpl

if (node_out_key[j] & 1) nodeout << vpl

break;
default:

break;

nodeout << "\n";

double err, tol:=le-8;

for (n=0; n<no; n++) // Outer loop: prinl

C

for (m=0; rn<np; m++)

{

time = dt * (n * np + m); // Time coul

if (time>=0.4) {

for (j=O;j<gen_count;j++) {
tmji]= motr[j].t_sc(*sqrt(0.4/time);

}

tr[ptrlj]]. avoltage(

tr[ptrj]]. b_voltage()

tr[ptr[j]]. c_voltage(

r[ptrj]]. avoltage()

Ir[ptrlj]] .b_voltage()

:r[ptr[j]]. c_voltage(

:r[ptrj]]. a_voltageO

;r[ptr[ptrj]]. b_voltage(

tr[ptrlj]]. c_voltage()

t loop

nter

}

103

if (time>= eventtime[eptr]) II// Event monitor
{

switch(eventtype[eptr])
I
case 'o':

cout << "Opening Line " << event_line[eptr] <<" at time"
<< time << "\n";

lptr[event_line[eptr]] .open_a();
lptr[event_line[eptr]] .open_b();
lptr[event_line[eptr]] .open_c(;
break;

case 'a':

cout << "Closing Phase A of Line" << event_line [eptr]
<< " at time " << time << "\n";

lptr[event_line[eptr]] .close_a();
lptr[event_line[eptr]].setup();
flag= l;
break;

case 'b':

cout << "Closing Phase B of Line " << event_line [eptr]
<< " at time " << time << "\n";

lptr[event_line[eptr]] .close_b();
lptr[event_line[eptr]] .setup();
flag= 1;
break;

case 'c':
cout << "Closing Phase C of Line " << event_line [eptr]
<< " at time " << time << "\n";

lptr[event_line[eptr]] .close_c();
lptr[event_line[eptr]]. setup();
flag=l;
break;

case 't':

cout << "Closing All 3 Phases of Line" << eventline [eptr]
< " at time " << time << "\n";

lptr[eventline[eptr]] .close_a();
lptr[event_line[eptr]]. closeb();
lptr[event_line[eptr]].close_cO;
lptr[event_line[eptr]]. setup();
flag=1;
break;

}

eptr++;

}

104

for (i=0; i<nlines; i++)
if (ip = lptr[i]. current_monitor())

lptr[i].re_setup(ip);
flag= 1;

if (flag)

{

for (j=0); j<net_node_count; j++)
nptr[j]. setup();

flag:= 0;

if (time>= 0.4) { // Motor windmilling
omz = 377*sqrt(0.4/time);

1 Runge-Kutta step 1

for (j=0; j<gen_count; j++)
motrEj].rkl(eaflj], tmlj], dt, time);

for (j=0; j<v_node_count; j++)
vptr[j].set_v(omz * time);

err= 1;
do

{ err = 0,
for (j=0; j<net_node_count; j++)

err t-= nptr[j].estimate_voltage(dt);

} while (err > tol);

for (i=0; i<nlines; i++)
lptr[i].rk 1 (dt);

// Runge-Kutta step 2

time = dt * (n *np + m + 0.5); //Time

for (j=0; j<gen_count; j++)
motr[j].rk2(eatflj], tmlj], dt, time);

for (j=0; j<v_node_count; j++)
vptr[j].set v(omz * time);

err= 1;

105

do
{err -: 0;
for (j=0; j<net_node_count; j++)

err += nptr[j].estimate_voltage(dt);
} while (err > tol);

for (i=0; i<nlines; i++)
lptr[i].rk2(dt);

// Runge-Kutta step 3

for (j=0; j<gen_count; j++)
motr[j].rk3(eafbj], tmlj], dt, time);

err= 1.,

do
{ err =:: 0;

for (j:=; j<net_node_count; j++)
err --t= nptrl]. estimate_voltage(dt);

} while (err > tol);

for (i=0; i<nlines; i++)
lptr[i] rk3(dt);

// Runge-Kutta step 4

time = dt * (n * np + m + 1.0); time

for (j=0; j<gen_count; j++)
motrlj].rk4(eaflj], tm[j], dt, time);

for (j=0; j<v_nodecount; j++)
vptrj].set_v(omz * time);

err= 1;
do

{ err = 0;
for (j-=0; j<net_node_count; j++)

err --= nptrlj]. estimate voltage(dt);
} while (err > tol);

for (i=0., i<:nlines; i++)
lptr[i]. rk4(dt);

// Wrapup the Runge-Kutta routine:

for (j=0; j<gen_count; j++)
motr[j .rk(time);

for (i=0.; i<nlines; i++)

106

lptr[i] .rk(

// Now update the exciter and avr:

for (j=0; j<gen_count; j++)

{

vbus[j] = motr[j].vsenseO;
telj] = -motrlj].t_e(;

}

} 1//This is the end of the internal loop
for (j=0; j<gen_count; j++) / Motor output here

motrfj l. file_output(time);

lineout << time << " "
for (i=0; i< nlines; i++) / Output to line file

if (line_out_key[i] & 4) lineout << lptr[i].i_a() << " "
if (line_outkey[i] & 2) lineout << lptr[i].i_b() << " "
if (line_out_key[i] & 1) lineout << lptr[i].i_c() << ""

}

lineout << "\n";

nodeout < « time <<" "

for (j=0; j<nnodes; j++)
switch(tj])

case 'g:
if (node_out_key[j] & 4) nodeout << motr[ptrlj]].a

<:< It

if (node_outkey[j] & 2) nodeout << motr[ptrj]].b

if (node_out key[j] & 1) nodeout << motr[ptrlj]].c

break;
case 'n'

if (node_out_key[j] & 4) nodeout << nptr[ptrlj]].a
<< t

if (node_out_key[j] & 2) nodeout << nptr[ptrj]].b_
<< " "'

if (node_out_key[j] & 1) nodeout << nptr[ptr[j]].c_
<< 1,.

break:;
case 'v':

if (node out_keyj] & 4) nodeout << vptr[ptrj]].a

107

voltage()

_voltage()

voltage()

voltage()

voltage()

voltage()

voltage()

I

I

I

if (node_out_keyj] & 2) nodeout << vptr[ptrj]].bvoltage()

if (node_out key[j] & 1) nodeout << vptr[ptr[j]].cvoltage(
<< ,.

break;
default:

break;

nodeout << "\n";

} // End of the outer, or print loop.

delete [nlines]lptr,
delete [gen_count]motr;
delete [net_node_count]nptr;
delete [v_node count]vptr;
delete busa;
delete busb;

fn.close()
fl.close();

'void concat (char *stringl, char *string2, char *string)

for (int j=O; j<strlen(stringl); j++)
string[j] - string [j];

for (int i=O; i<strlen(string2); i++)
string[i+j] = string2[i];

108

Appendix E-1. Motor Object

The following program models the permanent magnet motor. It defines the class
motor that is executed as part of the simulation program. This file was written by F.R.
Colberg based on the original file written for generators by Professor James L. Kirtley.

#include <stream. h>
#include <math.h>
#include <libc.h>
#include "line.h"
#include <stdlib.h>

class motor: public bbus{
double xd, xq, xdpp, xqpp,
tdopp, tqopp,
xz, ta,
h, omz, thz,
eqpp, edpp, om, delt,
kqppl, kdppl, kdeltl,
kqpp2, kdpp2, kdelt2,
kqpp3, kdpp3, kdelt3,
kqpp4, kdpp4, kdelt4,
ea, eb, ec,
ddl, dd2, dd3, dd4,
dql, dq2, dq3, dq4,
tmr, eafr,tm,
iaz, ibz, icz,
tel, te2, te3, te4, te;
int node;
line* lptr;
char ofname[10];
filebuf fl;

public:
void genset(filebuf fO)

istream from (&fO);
from >>
from >>
from >>
from >>
from >>
from >>
from >>

/ Reactances
I Time Constants

/ Armature quantities
// Miscellaneous quantities

I State Variables
koml, /I R-K derivatives
kom2, I R-K derivatives
kom3, I R-K derivatives
kom4, I R-K derivatives

/ Output Voltages
I intermediate derivatives

I required torque and eaf
I initial currents

// electrical torque
I node number of internal bus

I line connecting machine to net
I file name for output

I Motor reads input from file

xd;
xq;
xdpp;
xqpp;
xz;
tdopp;
tqopp;

109

from >> ta,
from >> h;
from >> omz;
from >> ofname;
fl.open(ofname, output);

}

void set_line (line* lineptr)

{

lptr = lineptr;

void set_node (int node_number)

node node number;

void file_output(double time)

ostream to (&fl);
to << time <<" "<< eqpp <<" << edpp << " "

<<" "<< delt <<" "<< om << "\n",

void report()

cout << "Motor\n"
<< " xd :=" << xd
<< "q :=" << xq
<<" xdpp = " << xdpp
<< "xqpp = " << xqpp << "\n"
<< " tdopp = " << tdopp
<< "tqopp = << tqopp
<< " h= " << h
<< "\n"
< " eqpp =" << eqpp
<<" edpp = " << edpp
<<" om= " << om
< " delt =" << delt << "\n"
<<" node =" << node
< " conn to bus " << lptr->report_node_b(<< "\n";

void set_initial (double vl, double thl, double pl, double ql,
double xl, double rl, int long_out = 0)

110

II set initial conditions from
II external bus. xl and rl are
// branch inductance (including
// subtransient reactance)

{

double psi = atan2 (ql, pl); // power factor angle at ext bus
double il = sqrt(pl*pl+ql*ql)/vl; load current
double xt = xq +- xl - xdpp; I total inductance to ext bus
double vr = vl - rl * il * cos (psi) + xt * il * sin (psi);
double vi = xt: * il * cos (psi) + rl * il * sin (psi);
double vs = sqrt (vr*vr + vi*vi);
double ths = thl - atan2 (vi, vr);
double th, ca, cb, cc, sa, sb, sc;
double s = 2.0)943951; / 2 pi/3

thz = thl - 1.5707963;
delt = ths - thl;

double id = il * sin (delt + psi); II direct and quadrature axis currents
double iq = il * cos (delt + psi);
eafr = vs + id * (xd - xq);
om = omz;

eqpp = eafr + (xd - xdpp) * id;
edpp = -(xq - xqpp) * iq;

tmr = (eqpp*iq + edpp*id + (xdpp - xqpp) * id * iq);

iaz = il * cos (thl + psi);
ibz = il * cos (thl + psi - 2.0943951);
icz = il * cos (thl + psi + 2.0943951);

th = thz + delt;
ca = cos (th); cb := cos (th - s); cc = cos (th + s);
sa = sin (th); sb = sin (th - s); sc = sin (th + s);

ea = - (om/omz)*(eqpp*sa-edpp*ca);
eb = - (om/omz)*(eqpp*sb-edpp*cb);
ec = - (om/omz)*(eqpp*sc-edpp*cc);

set va(ea); set_vb(eb); set_vc(ec);

if (long_out)

cout << form("mot::setinitial(Node = %d\n", node);

111

cout << form("vl = %g thl = %g pl = %g ql = %g\n", vl, thl, pl, ql);
cout << form("xl = %g rl = %g psi = %g il = %g\n", xl, rl, psi, il)
cout << form("xt = %g vr = %g vi = %g vs = %g\n", xt, vr, vi, vs);
cout << form("ths = %g thz = %g delt = %g id = %g\n",ths,thz,delt, id);
cout << form("iq = %g eafr = %g tmr = %g om = %g\n", iq,eafr, tmr, om);
cout << form("eqpp = %g edpp = %g\n\n", eqpp, edpp);

}

double get_tm() { return (tmr); }
double get_eaf() {return (eafr);}
double get_ia() {return (iaz);}
double get_ib() {return (ibz); }
double get_ic({return (icz); }
double get_eqpp() {return (eqpp); }
double get edpp() {return (edpp); }
double t_e() {return (te);}
double t_el() {return (tel);}
double t_e2() { return (te2); }
double t_e3() {return (te3);}
double t_e4() return (te4); }

double t_sc() {
tm = get_tm(O;
return(tm);
}

//Calculates input torque to the
//motor with the shaft free wheeling

double eaf sc() {
double eaf = get eaf();
return (eaf);

}

void disp_params()
<<

{ cout << " xd = " << xd
"xq = " << xq
"i\n"

<<" xdpp = " << xdpp
<< xqpp = " << xqpp << "\n"
<< "tdopp = " << tdopp
<< " tqopp = " << tqopp << "\n"
<< "h = " << h
<<" omz = " << omz << " thz =" << thz <<"\n";}

void disp_state() cout << "eqpp = " << eqpp
<< "\tedpp " << edpp << "\n"
< " om = " om om << "\tdelta = " << delt << "\n"; }

112

double e_a() { return(ea); }
double e_b() {return(eb);}
double e_c({return(ec);}
double omega() { return(om); }
double delta(') {return(delt); }

void rkl (double eaf, double tm,
double dt, double t, int long_out = 0)

double ia, ib, ic;

double th, id, iq, deqpp, dedpp, ddelt, dom,
ca, cb, cc, sa, sb, sc;

double s = 2.0943951; 1 2 pi / 3

// First, Park's Transform Currents

ia = -lptr->i_ap();
ib = -ptr->i_l:-p();
ic = -lptr->i_cp();

if (long_out)
{

cout << form("rkl :\n");
cout << form("node %d\n",node);
cout << form("ia = %g ib = %g ic = %g\n", ia, ib, ic);
cout << form("eaf = %g tm = %g dt = %g t = %g\n", eaf,tm,dt,t);

th = thz + omz * t + delt;
ca = cos (th); cb = cos (th - s); cc = cos (th + s);
sa = sin (th); sb = sin (th - s); sc = sin (th + s);

id = .6666666667 * (ia * ca + ib * cb + ic * cc);
iq = .666666667 * (-ia * sa - ib * sb - ic * sc);

if (long_out)
{

cout << form("th = %g ca = %g sa = %g\n", th, ca, sa);
cout << form("id = %g iq = %g\n", id, iq);

}

/i Now do the time step

deqpp = - eqpp/tdopp + eaf/tdopp + (xd - xdpp) * id / tdopp;

113

dedpp = - edpp/tqopp - (xq - xqpp) * iq / tqopp;
ddelt = om - omz;
if (t>=0.4) {
tel = 0.0;

}

else
{tel = eqpp*iq - edpp*id +(xdpp - xqpp) * id * iq;}
dom = (omz/(2.0*h)) * (tel + tm);

if (long_out)

cout << form("deqpp = %g dedpp = %g\n", deqpp, dedpp);
cout << form("ddelt = %g dom = %g\n", ddelt, dom);

// Now the R-K coefficients are:

kqppl = dt * deqpp;
kdppl = dt * dedpp;
kdeltl = dt * ddelt;
koml = dt * dornm;

// save for final step

dql = deqpp;
ddl = dedpp;

if (long_out)

cout << form("kqpp = %g kdpp = %g\n", kqppl, kdppl);
cout << form("kdelt = %g kom = %g\n", kdeltl, koml);

I

ea = - (om/omz)*((eqpp+. 5 *kqpp 1)*sa-(edpp+. 5 *kdpp 1)*ca)
+ (1.0/omz)* (deqpp* ca+dedpp* sa);

eb = - (om/omz)*((eqpp+. 5*kqpp 1)*sb-(edpp+. 5*kdpp 1)*cb)
+ (1.0/omz;)*(deqpp*cb+dedpp*sb);

ec = - (om/omz)*((eqpp+. 5*kqpp 1)*sc-(edpp+. 5*kdpp 1)*cc)
+ (1.0/omz)*(deqpp*cc+dedpp*sc),

setva(ea);
setvb(eb),
setvc(ec);
if (t<0.3) t

set_varc(0.5 *((ea-eb))); }

114

if' (long_out)

cout << form("ea = %g eb = %g ec = %g\n\n", ea, eb, ec);

}

void rk2 (double eaf, double tm,
double dt, double t, int long_out = 0)

double th, id, iq, deqpp, dedpp, ddelt, dom,
ca, cb, cc, sa, sb, sc;

double s = 2.0943951; II 2 pi / 3

double eqppt, edppt, deltt, omt; temporaries for states
double ia, ib, ic;

// assign state temporaries:

eqppt = eqpp + 5 * kqppl;
edppt = edpp + 5 * kdppl;
omt = om + .5 * koml;
deltt = delt + .5 * kdeltl;

// First, Park's Transform Currents

ia = -lptr->i_ap();
ib = -lptr->i_bp();
ic = -lptr->i_cp();

if (long_out)

cout << form("rk2:\n");
cout << form("node %d\n", node);
cout << form("ia = %g ib = %g ic = %g\n", ia, ib, ic);
cout << form("eaf= %g tm = %g dt = %g t = %g\n", eaf,tm,dt,t);

}

th = thz + omz * t + delt;
ca = cos (th); cb = cos (th - s); cc = cos (th + s);
sa = sin (th); sb = sin (th - s); sc = sin (th + s);

id= .6666666667 * (ia * ca + ib * cb + ic * cc);
iq := .66666667 * (-ia * sa - ib * sb - ic * sc);

115

if (long_out)

{

cout << form("th = %g ca = %g sa = %g\n", th, ca, sa);
cout << form("id = %g iq = %g\n", id,iq);

}

/7 Now do the time step

deqpp = - eqppt/tdopp + eaf/tdopp + (xd - xdpp) * id / tdopp;
dedpp = - edppt/tqopp - (xq - xqpp) * iq / tqopp;
ddelt = omt - omz;
if (t>=0.4) {
te2=0.0; }

else
{te2 = eqppt*iq + edppt*id +(xdpp - xqpp) * id * iq;}
dom = (omz/(2.0*h)) * (te2 + tm);

if (long_out)
f

cout << form("deqpp = %g dedpp = %g\n", deqpp, dedpp);
cout << form("ddelt = %g dom = %g\n", ddelt,dom);

}

// Now the R-K coefficients are:

kqpp2 = dt * deqpp;
kdpp2 = dt * dedpp;
kdelt2 = dt * ddelt;
kom2 = dt * dom;

// save for final step

dq2 = deqpp;
dd2 = dedpp;

if (long_out)
I

cout << form("kqpp = %g kdpp = %g\n", kqppl, kdppl);
cout << form("kdelt = %g kom = %g\n", kdeltl, koml);

}

ea = - (om/omz)*((eqpp+. 5 *kqpp2)* sa-(edpp+. 5 *kdpp2)*ca)
+ (1.O/omz)*(deqpp*ca+dedpp*sa);

eb = - (om/omz)*((eqpp+.5 *kqpp2)* sb-(edpp+. 5 *kdpp2)*cb)
+ (1.O/omz)*(deqpp*cb+dedpp*sb);

116

ec = - (om/omz) * ((eqpp+. 5*kqpp2)*sc-(edpp+. 5*kdpp2)*cc)
+ (1.0/omz)*(deqpp*cc+dedpp* sc);

set_va(ea);
set_vb(eb);
set vc(ec);

if(t<0.3) {

set_varc(O. 5 *((ea-eb));}

if (long_out)

cout << form("ea = %g eb = %g ec = %g\n\n", ea, eb, ec);

}

void rk3 (double eaf, double tm,
double dt, double t, int long_out = 0)

double th, id, iq, deqpp, dedpp, ddelt, dom,
ca, cb, cc, sa, sb, sc;

double s = 2.0943951; // 2 pi / 3
double eqppt, edppt, deltt, omt; / temporaries for states
double ia, ib, ic;

1 assign state temporaries:

eqppt = eqpp + .5 * kqpp2;
edppt = edpp + .5 * kdpp2;
omt = om + .5 * kom2;
deltt = delt + .5 * kdelt2;

// First, Park's Transform Currents

ia = -lptr->i_ap();
ib = -lptr->i_bp();
ic = -lptr->icp();

if (long_out)
{

cout << form("rk3 :\n");
cout << form("node %d\n", node);
cout << form("ia = %g ib = %g ic = %g\n", ia, ib, ic);
cout << form("eaf= %g tm = %g dt = %g t = %g\n", eaf,tm,dt,t);

117

}

th = thz + ornz * t + delt;
ca = cos (th), cb = cos (th - s); cc = cos (th + s);
sa = sin (th); sb := sin (th - s); sc = sin (th + s);

id = .6666666667 * (ia * ca + ib * cb + ic * cc);
iq = .6666666667 * (-ia * sa - ib * sb - ic * sc);

if (long_out)

cout << form("th = %g ca = %g sa = %g\n", th, ca, sa);
cout << form("id = %g iq = %g\n", id,iq);

// Now do the time step

deqpp = - eqppt/tdopp + eaf/tdopp + (xd - xdpp) * id / tdopp;
dedpp = - edppt/tqopp - (xq - xqpp) * iq / tqopp;
ddelt = omt - omz;
if(t>=0.4) {

te2=0.0; }

else
{te3 = eqppt*iq + edppt*id +(xdpp - xqpp) * id * iq;}

dom = (omz/(2.0*h)) * (te3 + tm);

/I save for final step

dq3 = deqpp;
dd3 = dedpp;

if (long_out)

cout << form("deqpp = %g dedpp = %g\n", deqpp, dedpp);
cout << form("ddelt = %g dom = %g\n", ddelt,dom);

}

// Now the R.-K coefficients are:

kqpp3 = dt * d.eqpp;
kdpp3 = dt * dedpp;
kdelt3 = dt * ddelt;
kom3 = dt * dom,

if (long_out)

118

cout << form("kqpp = %g kdpp = %g\n", kqppl, kdppl);
cout << form("kdelt = %g kom= %g\n", kdeltl, koml);

}

/1 And now for the voltages:

ea = - (om/omz)*((eqpp+kqpp3)*sa-(edpp+kdpp3)*ca)
+ (1 .0/omz)*(deqpp*ca+dedpp*sa);

eb =- (om/omz)*((eqpp+kqpp3)*sb-(edpp+kdpp3)*cb)
+ (1 .0/omz)*(deqpp*cb+dedpp*sb);

ec = - (om/omz)*((eqpp+kqpp3)*sc-(edpp+kdpp3)*cc)
+ (1 .0/omz)*(deqpp*cc+dedpp*sc);

setva(ea);
set vb(eb);
setvc(ec);

if(t<0.3)
set_varc(O. 5 *((ea-eb))); }

if (long_out)

cout << form("ea = %g eb = %g ec = %g\n\n", ea, eb, ec);

}

void rk4 (double eaf, double tm,
double dt, double t, int long_out = 0)

double th, id, iq, deqpp, dedpp, ddelt, dom,
ca, cb, cc, sa, sb, sc;

double s = 2.0943951; /12 pi / 3
double eqppt, edppt, deltt, omt; I temporaries for states
double ia, ib, ic;

// assign state! temporaries:

eqppt = eqpp + kqpp3;
edppt = edpp -i- kdpp3;
omt = om + kom3;
deltt = delt + kdelt3;

119

// First, Park's 'Transform Currents

ia = -lptr->i_ap();
ib = -lptr->i_bp();
ic = -lptr->i_cp();

if (long_out)

cout << form("rk4:\n");
cout << form("node %d\n", node);
cout << form("ia = %g ib = %g ic = %g\n", ia, ib, ic);
cout << form("eaf= %g tm = %g dt = %g t = %g\n", eaf,tm,dt,t);

th = thz + omz * t + delt;
ca = cos (th); cb = cos (th - s); cc = cos (th + s);
sa = sin (th); sb == sin (th - s); sc = sin (th + s);

id = .6666666667 * (ia * ca + ib * cb + ic * cc);
iq = .6666666667 * (-ia * sa - ib * sb - ic * sc);

if (long_out)
{ cout << form("th = %g ca = %g sa = %g\n", th, ca, sa);

cout << form("id = %g iq = %g\n", id,iq);

}

/1 Now do the time step

deqpp = - eqppt/tdopp + eaf/tdopp + (xd - xdpp) * id / tdopp;
dedpp - edppt/tqopp - (xq - xqpp) * iq / tqopp;
ddelt = omt - omz;
if(t>=0.4) {

te2=0.0; }

else
{te4 = eqppt*iq -- edppt*id +(xdpp - xqpp) * id * iq;}
dom = (omz/(2.0*h)) * (te4 + tm);

if (long_out)
{

cout << form("deqpp = %g dedpp = %g\n", deqpp, dedpp);
cout << form("ddelt = %g dom = %g\n", ddelt,dom);

I

// The R-K coefficients are:

120

kqpp4 =dt * deqpp;
kdpp4 = dt * dedpp;
kdelt4 = dt * ddelt;
kom4 = dt * dom;

if (long_out)

{

cout << form("kqpp = %g kdpp = %g\n", kqppl, kdppl);
cout << form("kdelt = %g kom = %g\n", kdeltl, koml);

// save for final step

dq4 = deqpp;
dd4 = dedpp;

ea - - (om/ornz)*(eqpp*sa-edpp*ca)+(l 1.O/omz)*(deqpp*ca+dedpp*sa);
eb = - (om/omz)*(eqpp*sb-edpp*cb)+(1.0/omz)*(deqpp*cb+dedpp*sb);
ec - (om/omz)*(eqpp*sc-edpp*cc)+(1.O/omz)*(deqpp*cc+dedpp*sc);

set_va(ea);
setvb(eb);
set_vc(ec);

if (t<0.3) {
set_varc(O.5 *((ea-eb))); }

if (long_out)

cout << form("ea = %g eb = %g ec = %g\n\n", ea, eb, ec);

// End the Runge-Kutta routine

void rk(double t, int long_out = 0)

double th, ca, cb, cc, sa, sb, sc;
double ia, ib, ic, id, iq;
double s = 2.0943951; //2 pi / 3

ia = -lptr->i_ap();

ib -lptr->ibp();
ic = -lptr->i_cp();

121

th = thz + omz * t + delt;
ca = cos (th); cb = cos (th - s); cc = cos (th + s);

sa = sin (th); sb = sin (th - s); sc = sin (th + s);

id = .6666666667 * (ia * ca + ib * cb + ic * cc);
iq = .6666666667 * (-ia * sa - ib * sb - ic * sc);

eqpp += (kqppl + 2*kqpp2 + 2*kqpp3 + kqpp4)/6.0;
edpp += (kdppl + 2*kdpp2 + 2*kdpp3 + kdpp4)/6.0;
delt += (kdeltl t- 2*kdelt2 + 2*kdelt3 + kdelt4)/6.0;
om += (koml + 2*kom2 + 2*kom3 + kom4)/6.0;

double deqpp = (dql + 2*dq2 + 2*dq3 + dq4)/6;

double dedpp = (ddl + 2*dd2 + 2*dd3 + dd4)/6;

ea = - (om/omz)*(eqpp*sa-edpp*ca)+(1. O/omz)*(deqpp*ca+dedpp*sa);

eb = - (om/omz)*(eqpp*sb-edpp*cb)+(1.0/omz)*(deqpp*cb+dedpp*sb);
ec = - (om/omz)*(eqpp*sc-edpp*cc)+(1.O/omz)*(deqpp*cc+dedpp*sc);

setva(ea);
set_vb(eb);
set_vc(ec);

if(t<0.3) {

set_varc(O.5 *((ea-eb))); }

te = (tel + 2.0 * te2 + 2.0 * te3 + te4)/6.0;

if (long_out)
{

cout << form("rk:\n");
cout << form("eqpp = %g edpp = %g\n", eqpp, edpp);

cout << form("delt = %g om = %g \n\n", delt, om);

filebuf fr;
char int_volt[15] ="int.dat";
double i_sc, e_sc, p_sc;
fr.open(int_volt, append);
ostream voltout(&fr);
voltout<<t<<" "

if ((t>0.3)&&((0.5*(ea-eb)>0.05)11(0.5*(ea-eb)<-0.05))) {
i_sc = -0.5*(ea-eb)/xdpp*cos(om*t + acos(0.07854/(varc)))

+ 0.05/xdpp(1.57079-om*t);} //Calculation of short circuit current

122

else {

i_sc = 0.0;}
if (i_sc>0.0)

{e_sc=0.05;}
else
if (i_sc< 0.0)

{e_sc=-0.05;}
else

{e_sc= 0.0}

p_sc=e_sc*isc;

VOltOut<<e sC;<< " "<<i SC<<" ";

voltout<<p_sc<" ";

voltout<<"\n"';

}

};

//End of class motor

123

Appendix E-2. Network Program

This program calculates currents and voltages of network buses during the
simulation. It is executed with the network simulation program, Appendix E.

This program was written by Professor James L. Kirtley.

#include <stream.h>
#include <math.h>

class line;

class bbus

double va, vb, vc;

// Base class for polyphase buses

// All buses have voltages in common

public:
double a_voltage() { return(va);}
double b_voltage() { return(vb);}
double c_voltage() { return(vc); }
void set_va(double v) {va = v; }
void set_vb(double v) {vb = v;}
void set_vc(double v) {vc = v; }
void set_varc(double v) {return(va-vb);}

};

class bus : public bbus { I network bus for time-step simulations
line** lptr; i bus is connected to a bunch of lines
int nodeno; I we gotta know which node we are
int nlines; // and this is the number of lines
double ia, ib, ic; i unbalanced bus currents
double gaai, gabi, gaci; i inverse admittances
double gbai, gbbi, gbci;
double gcai, gcbi, gcci;
double gaat, gabt, gact;
double gbat, gbbt, gbct;
double gcat, gcbt, gcct;

public:
void setbus(int node_number, int line_count, line* linebufi]);
void setup (); I this step sets up node admittances
double estimate_voltage(double dt); to get voltage of an isolated node
void report();

124

}; end of declaration of class bus

class vbus : public bbus { // voltage-source bus
double vamp, vphase;

public:
void setvbus(double v, double p)

{

vamp = v;
vphase = p;

}

void report();
void set_v(double omt)

double s=2.0943951;
set_va(vamp * cos (omt + vphase));
set_vb(vamp * cos (omt + vphase - s));
set_vc(vamp * cos (omt + vphase + s));

}

}; end of declaration of vbus

class line {
double xs, xm, iao, ibo, ico, ia, ib, ic,

omz, kla, k2a, k3a, k4a, klb, k2b, k3b, k4b,
klc, k2c, k3c, k4c, iap, ibp, icp;

int nodea, nodeb, sa, sb, sc;
bbus* busa;
bbus* busb;

public:
double gaa, gab, gac, gba, gbb, gbc, gca, gcb, gcc, r;
void setline (int na, int nb, double x, double xz, double ra,

double omza, int saa, int sba, int sca,
double iaa, double iba, double ica);

void set_buspointers(bbus* bus_a, bbus* bus_b);
void init_currents (double iaa, double iba, double ica);
void setup (; / Conductance Parameters
void open_a();
void open_b();
void open_c();
void close_a();
void close_b();
void close_c();
void report();
void report(char *label);

125

int current_monitor (); / Checks for zero crossings
void re_setup (int ip); / re-build line model
void rkl (double dt);
void rk2 (double dt);
void rk3 (double dt);
void rk4 (double dt);
void rk (); Finishes the Runge-Kutta;

double i_a () { return (ia);}
double i_b () { return (ib);}
double i_c () { return (ic); }

double ias(int nn);
double ibs(int nn);
double ics(int nn);

1 current with proper sign convention

double i_ap()
double i_bp()
double i_cp()

(return(iap);} //
(return(ibp); }

{return(icp); }

Partial deltas for runge-kutta step

double g_aa()
double g_ab()
double g_ac()
double g_ba()
double g_bb()
double g_bc()
double g_ca()
double g_cb()
double g_cc(

{return
{return
{return
{return
{return
{return
{return
{ return
{return

int report_node_a();
int report_node_b();

double vaother end
double vbother end
double vcother end

(int thisnode);
(int thisnode);
(int thisnode);

int report_other_node (int thisnode);

int abs(int x) { if(x<O) return(-x); else return(x); }

}; 1 end of definition of class line

void bus: :setbus(int node_number, int line_count, line* linebuffl])

126

(gaa);}
(gab); }

(gac);}
(gba); }
(gbb);}
(gbc);
(gca);}
(gcb);}
(gcc); I

nodeno = node_number;
nlines = line_count;
lptr = new line*[line_count];
for (int j=O; j<nlines; j++)

lptrjlj] linebuflj];

ia=ib=ic=0;

void bus::setup () //this step sets up node admittances

{

gaat=0.; gabt=0; gact=0;
gbat=0; gbbt=0; gbct=0;
gcat=O:, gcbt=0; gcct=0;

for (int i=O; i<nlines; i++)

gaat += lptr[i]->gaa;
gabt += lptr[i]->gab;
gact += lptr[i]->gac;
gbat += lptr[i]->gba;
gbbt += lptr[i]->gbb;
gbct += lptr[i]->gbc;
gcat += lptr[i]->gca;
gcbt += lptr[i]->gcb;
gcct += lptr[i]->gcc;

// invert that: since it is a 3x3, we do directly

double det = gaat*gbbt*gcct + gabt*gbct*gcat + gact*gbat*gcbt
- gaat*gcbt*gbct - gbat*gabt*gcct - gcat*gbbt*gact;

gaai (gbbt*gcct - gcbt*gbct)/det;
gabi = (gcat*gbct - gbat*gcct)/det;
gaci = (gbat*gcbt - gcat*gbbt)/det;
gbai = (gcbt*gact - gabt*gcct)/det;
gbbi = (gaat*gcct - gcat*gact)/det;
gbci = (gcat*gabt - gaat*gcbt)/det;
gcai = (gabt*gbct - gbbt*gact)/det;
gcbi = (gbat*gact - gaat*gbct)/det;
gcci = (gaat*gbbt - gbat*gabt)/det;

cout << "bus::setup() Here is Total Admittance G_t\n";
cout << gaat <<" "<< gabt <<" "<< gact << "\n";

127

cout << gabt <<" << gbbt << " " << gbct << "\n";
cout << gcat <<" "<< gcbt << " "<< gcct << "\n";

cout << "And inverse G_O:\n";
cout << gaai <<" "<< gabi <<" "<< gaci << "\n";
cout << gbai <<" "<< gbbi <<" "<< gbci << "\n";
cout << gcai <<" "<< gcbi << ""<< gcci << "\n";

double bus: estimate_voltage(double dt) / voltage of an isolated node
{

double gva;
double gvb;
double gvc;
int i;

double ia, ib, ic;
double iau, ibu, icu; / estimated unbalance currents
double ova, ovb, ovc;
double va, vb, vc; I line active voltage
double vca, vcb, vcc; / correction voltages
double err:,

iau=ibu=icu=gva=gvb=gvc=O;

ova= a_voltage();
ovb = b_voltage();
ovc = c_voltage();

ll cout << "bus: :estimate_voltage("<< nodeno<< ")\n";

for (i=O; i<nlines; i++)

ia= lptr[i]->ias(nodeno);
ib = lptr[i]->ibs(nodeno);
ic = lptr[i]->ics(nodeno);

va = lptr[i]->vaotherdend(nodeno) + lptr[i]->r * ia;
vab = lptr[i]->vb_otherend(nodeno) + lptr[i]->r * ib;
vc = lptr[i]->vc_other_end(nodeno) + lptr[i]->r * ic;

// cout << "Node " << lptr[i]->report_other node(nodeno)
11 << " V =" << lptr[i]->va_otherend(nodeno) << " "
/ / << ptr[i]->vb_other_end(nodeno) << " "
/ << lptr[i]->vc_other_end(nodeno) << "\n";

gva += lptr[i]->gaa * va

128

+ lptr[i]->gab * vb
+ lptr[i]->gac * vc;

gvb += lptr[i]->gba * va
+ lptr[i]->gbb * vb
+ ptr[i]->gbc * vc;

gvc += lptr[i]->gca * va
+ lptr[i]->gcb * vb
+ lptr[i]->gcc * vc;

iau +:= ia;

ibu += ib;

icu +::= ic;

}

double vca.c, vcbc, vccc;
double vaf., vbf, vcf;

vca = gaai*gva + gabi*gvb + gaci*gvc;
vcb = gbai gva + gbbi*gvb + gbci*gvc;
vcc = gcai*gva + gcbi*gvb + gcci*gvc;

vcac = - (.5/dt)*(gaai*iau + gabi*ibu + gaci*icu);
vcbc = - (.5/dt)*(gbai*iau + gbbi*ibu + gbci*icu);
vccc:= - (.5/dt)*(gcai*iau + gcbi*ibu + gcci*icu);

vaf= vca + vcac;
vbf = vcb +- vcbc;
vcf = vcc + vccc;

err = (vaf-ova')*(vaf-ova)+(vbf-ovb)*(vbf-ovb)+(vcf-ovc)*(vcf-ovc)

set_va(vaf);
setvb(vbf).,
set_vc(vcf),

// cout << "Currents " << iau << " " << ibu <<" " << icu << "\n";
// cout << "Voltages " << vca << " " << vcb <<" " << vcc << "\n";
// cout << "I Corr V " << vcac << " " << vcbc << " " << vccc << "\n";
// cout << "Error= " << err << "\n";

return(err);

}

void bus::report()

129

cout << "Bus " << nodeno << " Has "<< nlines << " Lines\n";
for (int j=O; j<nlines; j++)

cout << "Line " << j <<
" Between Nodes " << lptr[j]->report_node_a() << " And " <<
lptrj]->report_node_b() << " Line Pointer " << &lptrlj] << "\n";

}

void vbus: :report()

cout << "Voltage Bus V=" << vamp << " Phase= " << vphase << "\n";

}

void line: :setline (int na, int nb, double x, double xz, double ra,
double omza=377,
int saa = 1, int sba = 1, int sca = 1,
double iaa = 0, double iba = 0, double ica = 0)

nodea = na,
nodeb = nb;
xs = (2.0 * x + xz)/3.0;
xm = (xz - x)/3.0;
omz = omza;
r = ra;
sa = saa;
sb = sba;
sc = sca;
iao = ia = iaa;
ibo = ib = iba;
ico = ic = ica;
cout << "Line: :setline xs = " << xs << "

<< "\n Sw = " << sa << sb << sc <<
<<" << ic << "\n\n";

xm= " << xm <<" r = " << r
1"i=" << ia <<" << ib

void line::set_bus pointers(bbus* bus_a, bbus* bus_b)

{

cout << "line::set_buspointers " << bus_a <<" " << busb << "\n";
busa = bus_a;
busb = bus_b;

void line: :init_currents (double iaa, double iba, double ica)

{

iao = ia = iaa;

130

ibo = ib = iba;

ico = ic = ica;
cout << "Line Init Currents " << ia <<" "<< ib <<" "<< ic << "\n";

}

void line::setup () II Conductance Parameters

f
double d, gs, gm;

// int abs(int);
if (abs(sa) -- abs(sb) + abs(sc) == 3) all in

{

d =xs * xs - 2.0 * xm * xm + xs * xm;
gs = ornz * (xs + xm) /d;
gm= - omz * xm / d;
gaa = gbb = gcc = gs;
gab = gba = gac = gca = gcb = gbc = gm;

}

else if (abs (sa) + abs (sb) + abs (sc) == 2)//I one line out

{

d =xs * xs - xm * xm;
gs = omnz * xs / d;
gm = -omz * xm / d;
if (sa =:= 0) I line A out

{

gaa = gab = gac = gba = gca = 0;
gbb gcc = gs;
gbc = gcb = gm;

else if (sb == 0) //line B out

gbb = gab = gba = gbc = gcb = 0;
gaa -= gcc = gs;
gac -= gca = gm;

else if (sc == 0)

gcc = gca = gac = gbc = gcb = 0;
gaa = gbb = gs;

gab = gba = gm;

else { cout << "Blew One Line Out Case!\\n"; }

}

else if((abs(sa) + abs(sb) + abs(sc)) == 1)

131

if(abs(sa) == 1)

gaa = omz/xs;
gab = gba = gbb = gac = gca = gcb = gbc = gcc = 0;

}

else if (abs(sb) == 1)

gbb = omz/xs;
gaa = gab = gba = gbc = gcb = gca = gac = gcc = 0;

else if(abs(sc)== 1)

{

gcc = omz/xs;
gaa = gab = gba = gbb = gac = gca = gbc = gcb = 0;

}

else

{

cout << "Blew One Line IN case! \n";

}

else if((abs(sa) + abs(sb) + abs(sc)) == 0)
{

gaa = gab = gba = gca = gac = gbb = gbc = gcb = gcc = 0;

}

else { cout << "Bad Combination of Switch States!\n";}

cout << "Line::Setup() G = " << gaa <<" "<< gab <<" "<< gac
<< "\n " << gba << " " << gbb <<" " << gbc
<< "\n " << gca << " " << gcb <<" "<< gcc << "\n\n";

}

void line:: open_a() {sa = -1;}
void line: :open b() {sb = -1;}
void line::open_c() {sc = -1;}

void line: :close_a() {sa = 1;)
void line: :close b() {sb = 1;}
void line:: closec() {sc = 1;}

int line::current_monitor () 1/ Checks for zero crossings

int ip = 0;
if ((sa == -1) && (iao !=0) && (iao * ia <0)) ip += 1;
if ((sb == -1) && (ibo !=0) && (ibo * ib <0)) ip += 2;

132

if((sc == -1) && (ico !=0) && (ico * ic <0)) ip += 4;

//re-set old currents

iao = ia;
ibo = ib;
ico = ic;

return (ip);

v

void line: :re-setup (int ip)

{

if (ip & 1) {
if(ip & 2) {
if(ip & 4) {
setup();

sa = 0; ia = 0;
sb = 0; ib =
sc = 0; ic = 0;

II re-build line model

} // Phase A opening
} 1/ Phase B opening

;} / Phase C opening

void line::rkl (double dt)

{

double va, vb, vc;
va = busa->a_voltage()
vb = busa->b_voltage()
vc = busa->c_voltage()

- busb->a_voltage();
- busb->b_voltage();
- busb->c_voltage();

kla = gaa * (va - r * ia) * dt
+ gab * (vb - r * ib) * dt
+ gac * (vc - r * ic) * dt;

klb = gba * (va - r * ia) * dt
+ gbb * (vb - r * ib) * dt
+ gbc * (vc - r * ic) * dt;

klc = gca * (va - r * ia) * dt
+ gcb * (vb - r * ib) * dt
+ gcc * (vc - r * ic) * dt;

iap = ia + .5*kla; //usable for next rk step, both internal and
ibp = ib + .5*klb; //outside, reported by i_xp()
icp = ic + .5*klc;

void line: :rk2 (double dt)

{

133

double va, vb, vc;
va = busa->a_voltage(- busb->a_voltageO;
vb = busa->bvoltage() - busb->b_voltage();
vc = busa->c_voltage() - busb->c_voltage();

k2a = gaa * (va - r * iap) * dt
+ gab * (vb - r * ibp) * dt
+ gac * (vc - r * icp) * dt;

k2b = gba * (va - r * iap) * dt
+ gbb * (vb - r * ibp)* dt
+ gbc * (vc - r * icp) * dt;

k2c = gca * (va - r * iap) * dt
+ gcb * (vb - r * ibp) * dt
+ gcc * (vc - r * icp) * dt;

iap = ia + .5*k2a; //usable for next rk step, both internal and
ibp = ib + .5*k2b; //outside, reported by ixp()
icp = ic + .5*k2c;

I

void line: :rk3 (double dt)

{

double va, vb, vc;
va = busa->a_voltage() - busb->avoltage();
vb = busa->b_voltage() - busb->b_voltage();
vc = busa->c_voltage(- busb->c_voltage();

k3a = gaa * (va - r * iap) * dt
+ gab * (vb - r * ibp) * dt
+ gac * (vc - r * icp) * dt;

k3b = gba * (va - r * iap) * dt
+ gbb * (vb - r * ibp) * dt
+ gbc * (vc - r * icp) * dt;

k3c = gca * (va - r * iap) * dt
+ gcb * (vb - r * ibp) * dt
+ gcc * (vc - r * icp) * dt;

iap = ia + k3a; //usable for next rk step, both internal and
ibp = ib + k3b; //outside, reported by i_xp()
icp = ic + k3c;

134

void line: :rk4 (double dt)

{

double va, vb, vc,
va = busa->avoltage()
vb = busa->b_voltage(
vc = busa->cvoltage(

k4a = gaa
+gab *
+ gac *

k4b = gba
+ gbb *

+ gbc *

- busb->a_voltage();
- busb->b_voltage();
- busb->c_voltage();

* (va - r * iap) * dt
(vb - r * ibp) * dt
(vc - r * icp) * dt;

* (va -
(vb - r
(vc - r

k4c = gca * (va -
+ gcb * (vb - r
+ gcc * (vc - r

r * iap) * dt
* ibp) * dt
* icp) * dt;

r * iap) * dt
* ibp) * dt
* icp) * dt;

void line: :rk () // Finishes the Runge-Kutta

{

ia += (kla + 2.0 * k2a + 2.0 * k3a + k4a)/ 6.0;
ib += (klb + 2.0 * k2b + 2.0 * k3b + k4b)/ 6.0;
ic += (klc + 2.0 * k2c + 2.0 * k3c + k4c)/ 6.0;
}

void line: :report()

{

cout << "Line From" << nodea << " To "<< nodeb <<
" r= 1 << r< "xs =" << xs << " xm = "<< xm << "\n";

cout << "Bus Pointers are " << busa <<" "<< busb << "\n";

}

void line :report(char* label)

{

cout << "line: :report " << label << "\n";
cout << "Line From " << nodea << " To" << nodeb <<

"r= << r << xs =" << xs << " xm = " << xm << "\n";
cout << "Bus Pointers are " << busa <<" "<< busb << \n";

J

int line: :report node_a({return(nodea); }
int line: report node_b() { return(nodeb); }

135

double line: :va_other_end (int thisnode)

/I cout << "line: :va_other_end ("<< thisnode << ")\n";
// cout << "nodea = " << nodea << " nodeb = " << nodeb << "\n"
I/ cout << "busa pointer = " << busa << " busb pointer" << busb << "\n";
/I cout << "busa v =" << busa->avoltage(<<
/1 " busb v " << busb->a_voltage(<< "\n";

if (thisnode == nodea)
return(busb->avoltage());

else return(busa->avoltage());

double line: :vb other end (int thisnode)

if (thisnode == nodea)
return(busb-->b_voltage());

else return(busa->b-voltage());

double line::vc_other_end (int thisnode)

if (thisnode == nodea)
return(busb--cvoltage());

else return(busa->cvoltage());

}

int line: report_other node (int thisnode)

I

if (thisnode =-= nodea)
return(nodeb);

else return(nodea),

double line: :ias(int thisnode)

i
if (thisnode == nodea)

return(ia);
else return(-.ia);

double line: :ibs(int thisnode)

if (thisnode == nodea)
return(ib);

136

else return(-ib);

double line: :ics(int thisnode)

{

if (thisnode ==: nodea)
return(ic);

else return(-ic),

}

137

