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Abstract

Closed loop control of an unmanned underwater vehicle (UUV) in the dynamically
difficult environment of shallow water requires explicit consideration of the highly
coupled nature of the governing non-linear equations of motion. This coupling between
an UUV's six degrees of freedom (6 DOF) is particularly important when attempting
complex maneuvers such as coordinated turns (e.g. simultaneous dive and heading
change) or vehicle hovering in such an environment. Given the parameter and modelling
uncertainties endemic to these equations of motion, then a robust 6 DOF sliding controller
employing six-element vector sliding surfaces provides a framework in which satisfactory
UUV control can be achieved in shallow water.

The vehicle equations of motion are developed and cast in a form that is amenable
to non-linear sliding control design. A complete 6 DOF sliding controller with vector
sliding surfaces is then formulated via a Lyapunov-like analysis. The sliding controller
is then modified via a weighted least-squares approach to work with a particular UUV
which has only 4 DOF control authority available. The modified controller is shown to
work well for a variety of commanded UUV maneuvers in the presence of significant
environmental disturbances and vehicle hydrodynamic parameter uncertainties via
numerical simulation. Use of the signals generated by the controller are shown to be of
utility in vehicle buoyancy control.

Thesis Supervisor: Dr. Dana R. Yoerger, Associate Scientist
Woods Hole Oceanographic Institution
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Chapter 1

Introduction

1.1 Background and Objectives

Unmanned Underwater Vehicles (UUV's) have become increasingly popular tools

for use in a number of ocean research and industrial applications. As the missions for

these UUV's expand in scope, their capabilities must also increase - not only in terms of

improved vehicle control and manueverablity but also with regards to satisfactory

performance in challenging environments.

For instance, consider the vehicle of figure 1.1 which is currently under

development at the Naval Undersea Warfare Center (NUWC) in Newport, Rhode Island.

This 301 inch long, 21 inch in diameter torpedo shaped vehicle - known as the 21UUV

- is being designed so as to have the capability to perform sophisicated maneuvers in the

dynamically-challenging regime of shallow water.

Needless to say, the controller which enables this UUV to attain such capability

must be fairly sophisticated itself. Not only must the control algorithm be robust to the

uncertain and changing values of the hydrodynamic coefficients which define the vehicle

12
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20.94 in

Figure 1.1 21UUV

non-linear equations of motion, it must be able to account for the dynamic coupling that

will occur between the vehicle's various degrees of freedom as complex maneuvers are

undertaken and/or the wave disturbances are significant - as they would be in shallow-

water.

Typically, the coupling in these non-linear equations of motion are subjected to

various simplifying assumptions so that particular vehicle design objectives can be

satisfied (e.g. decoupled speed control, inner pitch/outer depth loop control, etc.). Such

simplifying assumptions also allow the use of sliding controllers of first-order (i.e. scalar

sliding surfaces) - a non-linear robust control methodology which has proven well-suited

to control in the ocean environment.

As alluded to, however, more demanding underwater vehicle maneuvers such as

hovering require careful consideration of the coupling inherent to the equations of motion.

Likewise, the operation of such a vehicle in the dynamically difficult regime of shallow

water necessitates a thorough accounting of this coupling if high performance is to be

13
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acheived. As will be demonstrated, a complete 6 DOF sliding controller (i.e. a 6 element

vector sliding surface) provides an effective framework for handling these situations.

This study focused on the development of a six degree of freedom (6 DOF) robust

sliding controller to be used on a variety of UUV designs in dynamically difficult regimes

like shallow water as well as for complicated maneuvering such as hovering. As few

practical UUV's have the 6 or more controllable degrees of freedom a method is presented

which modifies the 6 DOF control signal so that a 4 DOF control authority-available

vehicle such as the 21UUV can reap the benefits of a complete, coupled non-linear

controller.

A side benefit of the 6 DOF sliding controller is that it produces a signal which

is ideal for use in buoyancy control systems. In addition, mention is made as to how

disturbance adaptation/control might be formulated with the 6 DOF controller.

1.2 Thesis Outline

Chapter 2 details the development of the general non-linear and coupled 6 DOF

UUV equations of motion. These equations are formulated with respect to two reference

frames - vehicle-fixed and earth (inertial)-fixed - and in such a format that readily lends

itself to non-linear controller design techniques as outlined in chapter 3. Key matrix

relationships that characterize resultant UUV equations of motion are described, as these

form the basis of the robust non-linear sliding controller. The sources and values of the

various body and hydrodynamic coefficients for the 21UUV of figure 1.1 which will be

used in the numerical simulations of Chapters 3, 4 and 5 are also summarized.
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Chapter 3 presents the formulation of the complete 6 DOF robust sliding controller

which is shown to be stable - assuming full 6 DOF control authority - from any vehicle

configuration except at ± 90 degrees of pitch.

As full 6 DOF control authority is usually not available, an attempt is made in

Chapter 4 to develop a method to modify this sliding controller so that lesser degree of

freedom vehicles (in terms of available control authority) would perform satisfactorily.

As is demonstrated with the 4 DOF 21UUV, this method - weighted least squares - is

based heavily on the non-minimum phase relationship between pitch/depth and

yaw/trackline. Extensive simulations are presented to evaluate the effectiveness and

validity of this method.

Chapter 5 briefly delves into two areas related to the controller development of

the previous chapters - vehicle buoyancy control and wave disturbance rejection/control.

The earth-referenced vehicle control signal generated by the sliding controller of Chapter

3 is shown by computer simulations on the 21UUV to be of great utility as an input to

a variable buoyancy control system. Vehicle response in a wave field is simulated.

Chapter 6 summarizes the results of this thesis and suggests directions for further

investigation.

15



Chapter 2

6 DOF Rigid Body Equations of Motion

2.1 General Discussion

In this chapter the 6 DOF rigid body underwater vehicle equations of motion are

developed with the primary emphasis being the identification of a particularly compact

and convenient way to express them for exploitation by nonlinear sliding controller design

techniques as outlined in chapter 3.

Section 2.2 introduces the standard notation and conventions utilized in underwater

vehicle design. The two reference frames commonly used to describe the motion of and

forces/moments on the vehicle - body-fixed and earth-fixed (inertial) - are introduced as

well. It is of considerable importance to both the development of the equations of motion

and to the subsequent 6 DOF sliding controller formulation that the two reference frames

and the relationship between them are thoroughly understood. As might be expected from

physical intuition, the vehicle linear and angular velocities and corresponding

accelerations along with the vehicle external forces and moments are best described in the

body-fixed frame; whereas, the vehicle's linear and angular positions are best described

16



in an inertial reference frame in which commanded trajectories are typically expressed.

For small angle, non-coupled vehicle maneuvers the distinction between the reference

frames is slight and can be safely ignored. However, for more vigorous, coupled

maneuvers (e.g. a coupled dive/trackline commanded trajectory or hovering) and/or for

operation in the more dynamically-challenging environment of shallow water, this

distinction must be preserved.

With this last point in mind, the full 6 DOF underwater vehicle equations of

motion are derived in the body-fixed reference frame in section 2.3. The resultant

equations are parameterized in a specific matrix form which turns out to be particularly

amenable to sliding controller design. The full 6 DOF earth-fixed and body-fixed

nonlinear UUV equations of motion are summarized in (2.26)-(2.28).

The final section of this chapter summarizes the values of the hydrodynamic

coefficients used in these equations of motion and how they were determined.

2.2 Standard Notation and Reference Frames

For (rigid body) underwater vehicles which operate in a three dimensional space,

it is necessary to describe the position/orientation and motion/rotation of the vehicle by

six independent coordinates - hence, the term six degree of freedom (6 DOF). Typically

these coordinates are chosen to correspond to the position and orientation and their time

derivatives with respect to some set or sets of mutually orthogonal coordinate axes (e.g.

x-, y-, z-axes) fixed to some arbitrary origin which defines a reference frame. Likewise,

the forces/moments acting on or produced by the vehicle can be referenced to a set of

17



coordinate axes. Standard (SNAME [1950]) notation is used in this study to describe the

aforementioned 6 DOF quantities and is summarized in Table 2.1.

Forces and Linear and Positions and
Moments Angular Vel. Euler Angles

1 surge X u x

2 sway Y v y

3 heave Z w z

4 roll K P

5 pitch M q 0

6 yaw N r
Table 2.1 - Standard Underwater Vehicle Notation

Note that by convention for underwater vehicles, the positive x direction is taken

as forward, the positive y direction is taken as to the right, the positive z direction is

taken as down, and the right-hand rule applies for angles. It is convenient to group the

linear and angular velocities as a vector quantity v, where:

v = [u v wp q r]T (2.1)

the positions and Euler angles as a vector quantity r, where:

il = [x y z O *1 T (2.2)

and the forces and moments as a vector quantity r, where:

X = [X YZKMN] T (2.3)

As previously indicated, it is not necessary to choose the same reference frame for

the three quantities of (2.1)-(2.3). In fact, it is customary and makes physical sense to

18



refer v and to the vehicle-fixed (body) reference frame and to refer rl to an inertial

reference frame. Note that choosing these particular frames of reference directly

influences the form of the 6 DOF equations of motion that are to be developed. The

body-fixed reference frame is chosen to coincide with the vehicle's principle axes of

inertia. The earth is chosen as the inertial reference frame since underwater vehicles

travel at low enough speeds so that the acceleration of points on the surface of the earth

can be neglected.

As it will be necessary to convert from one reference frame to the other, a

relationship between v and ri for the particular positive axis directions that have been

defined can be shown to be (see Fossen [1994]):

i = J(r) v (2.4)

where:

J( ) = I (2.5)

and (s=sin, c=cos, t=tan):

cA cO -s*c4+csOs4

Jl(r 2) = scO cjc4+s6sOsq

-sO ces4

(2.6)

and:
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1 ste cute

J2(T 2) = c0 -s (2.7)

O s/cO c/cO

Specifically, (2.5) represents a series of three rotations - about the yaw angle then the

pitch angle then the roll angle - to get from the vehicle-fixed reference frame to the earth-

fixed reference frame.

Note that (2.7) is undefined for pitch angles of ± 90 degrees. To overcome this

problem, one can use a quatemion representation to describe the coordinate axis rotations

implied by (2.5) - see Fossen [1994] - or one could define a second body-fixed reference

frame (different from the first) and switch to its use when approaching the singular

orientations of the first reference frame. Fortunately, vehicle metacentric restoring forces

and typical commanded vehicle trajectories preclude operation near these singularities so

(2.4)-(2.7) are considered adequate for the purposes of this study.

2.3 Equations of Motion

Derivation of the underwater vehicle equations of motion has been extensively

studied over the years and can be accomplished by a number of techniques (e.g. Newton-

Euler, Kirchoff, Lagrangian). This paper will briefly present the results of a Newton-

Euler formulation so that the final form of the equations of motion and that some

assumptions utilized in the sliding controller design are made clear. The interested reader

is encouraged to consult a suitable hydrodynamic treatise (e.g. Fossen [1994]) for a more

complete treatment of this subject.
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It is extremely desirable to derive these equations of motion in a body-fixed

reference frame so that the hydrodynamic and kinematic forces and moments remain

constant despite changes in the vehicle's orientation with respect to the earth-fixed

reference frame. From Newton's Second Law:

mv =f (2.8)

where:

m = vehicle mass
= acceleration vector (2.9)

f = force vector

it is apparent that the decision to formulate the equations of motion in the body-fixed

reference frame trades off complexity in the acceleration terms for relative simplicity in

the force terms. With this in mind, conservation of linear momentum for a rigid body

yields (Euler's First Axiom of Newton's Second Law):

m(i + X x v + X x rG + x ( xri)) = f (2.10)

where:

m = vehicle mass
o = angular velocity vector
/o = angular accleration vector
vO = vehicle body referenced vel. (2.11)
vo = vehicle body referenced acc.
rG = vector origin o - center gravity G

f = external force vector

In a similar manner, conservation of angular momentum yields:

21



IO + co X(I 0 ) + mrG X (O + X x v) = Mo (2.12)

where:

Io = body inertia tensor (2.13)
m. = applied moment vector

Combining (2.10) and (2.12) results in (after some judicious rearrangement of terms):

MRBi + CB(V)V = TB (2.14)

where, assuming the x-, y- and z- body axes correspond to the longitudinal, lateral and

normal symmetry axes of the vehicle (so all cross-inertia terms are zero - usually an

excellent supposition and especially so for the 21UUV of figure 1.1) and assuming the

lateral center of gravity corresponds to the lateral axis origin (G equals zero - again, an

excellent assumption):

m 0 0 0 mzg 0

O m 0 -mzg 0 mxg

0 0 m 0 -mx O0

0 -mzg 0 Ix 0 0

mzg O -mxg 0 0I O

0 mx 0 0 0 IZ

(2.15)

and:

22
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O O O mzGr -m(xrq -w) -m(xGr +v)

O 0 0 -MW m(zGr +xGp) mu

O O 0 -m(zGp-v) -m(zGq+u) mxGo

C,(v) =
-nzGr mw m(zG p - v) 0 ,r -Iq

m(xGq-w) -m(zGr+xGp) m(zoq + u) -Izr 0 It

m(xor +v) -mu -mxGp -IP 0

(2.16)

and:

= [X Y Z K M NT (2.17)

Note, that the rigid-body inertia matrix M. is symmetric, positive-definite (i.e.

MR=(MRB)T > 0) and time-invariant, whereas the rigid-body Coriolis and centripetal

matrix CR(v) is skew-symmetric (i.e. CR(v)=-(CR(v)) V v E 916). Both facts will be

useful in the 6 DOF sliding controller design.

The generalized vector of external forces and moments RB can be expressed as the

sum of radiation induced forces TR (e.g. added mass, potential damping and restoring

forces), viscous damping forces y,, environmental forces (such as waves and current) and

propulsion forces T. Ignoring the latter forces (for now) and adopting the treatment of tR

and xv suggested by Fossen [1991] yields:

R -MA C(v)v - DpCA(V)V - g(al)

added potential restoring (2.18)

mass damping forces

and:

= -Dv(v)v (2.19)

Assuming the vehicle has bottom/top and port/starboard symmetry (which the
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21UUV of figure 1.1 has), the added inertia matrix MA and the hydrodynamic Coriolis

and centripetal matrix CA(v) can be written as (see Faltinsen [1990]):

0

YV

00
0 O 

Z... 0 Zn 0

0 0 0 KP

0 0 M 0

No

0

Mq

o o o Nr

0 0 0 0 C 5 CA5

o o o C24 c26

0 0 0 CA4

o -C2 4 -C34

CA -c

C26
_CA 0

0

-C45
-CA

-CA

CA35A 0

45 46
CA CA

o cA

_C56 CA 0

CA = Z-Z-Zq

CA4 = Zw+Z 4q

CA = -YVv- Yr

CA = - Yv -N,r
56

CA

16
CA

26
CA

35
CA

46
CA

= Yv + Yr

= -X u

= XaU

= Zqw+Mqq

The hydrodynamic coefficients in (2.20) and (2.22) follow the standard notation of

SNAME [1950]. Refer to Appendix I for further details.
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CA(v) =
(2.21)

- 16
-CA

where:
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Note that for a submerged rigid-body vehicle moving in still water under the

assumption of an ideal fluid, MA is always positive definite (same condition as MR); a

condition which is also almost invariably met for submerged vehicles in real fluids (see

Wendel [1956] or Newman [1977], for example). Similar properties hold for CA(v) - i.e.

for nearly all real fluid conditions CA(v) is skew-symmetric (like C,(v)) - see Sagatun

and Fossen [1991].

The potential damping term D/(v) is usually quite small for underwater vehicles-

especially for operations away from the surface wave zone. Consequently, these effects

are ignored for this analysis. Even if this term was numerically significant, it is

dissipative by definition which implies that Dp(v) is positive definite (i.e. vTDp(v)v > 0

V v 0) - an important fact in the development of the 6 DOF sliding controller.

By the same dissipative nature of the linear skin friction and quadratic vortex-

shedding drag forces which constitute the viscous damping matrix D,(v), it also is always

positive definite. The following form for this matrix is chosen to be:

-Xuu,,,ul XvS wqq 0 O

'0 Y 0 0 O Yr

0 0 Zw 0 Zq 0

0 0 0 K 0 0

0 0 M K OMq 

0 N, 0 O O Nr

(2.23)

The terms on the diagonal of (2.23) represent the drag generated along the ith

DOF for motion in the ith DOF; the off-diagonal X coefficients - Xvr and Xwq - represent

the loss in forward speed generated in a turn and in a depth change, respectively; and the
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remaining off-diagonal terms capture the coplanar drag generated in turns and/or depth

changes. Coplanar refers to coupled DOF's like pitch-depth which naturally occur

together in typical vehicle maneuvers.

Other terms could be inserted into (2.23) such as Kwr (a non-coplanar coefficient)

- however, (2.23) characterizes the vast majority of the dissipative forces encountered

during typical maneuvers for vehicles such as the 21UUV of figure 1.1 (see Humphreys

[1989]). Those terms that are ignored do not affect the positive definite quality of the

matrix since damping forces by definition are dissipative.

The restoring force vector g(r) consists of the gravitational forces acting at the

center of gravity (xG=[XG,y,z]T ) and the buoyant forces acting at the center of buoyancy

(xB[xB, yB, zB]T) and has the form (assuming both YG and YB zero):

g(i) =

(W-B)sO

-(W-B)cs4
-(W-B)cec4

(zGW-zBB)ceOs

(zGW-zBB)sO + (GW-xBB)cOc4

-(XGW-xBB)ceOs

(2.24)

Defining:

M = M +MA ; C(v) = C(v)B + CA(v) ; D(v) = Dp(v) +Dv(v) (2.25)

Then the combination of equation (2.14) and (2.25) yields the body-fixed 6 DOF

representation of the non-linear equations of motion for underwater vehicles:
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Mi + C(v)v + D(v)v + g(r) = (2.26)

To obtain the earth-fixed 6 DOF representation of the non-linear equations of motion for

underwater vehicles, the transformation of (2.4) must be applied to (2.26) yielding:

M(n)Ai + C,(v,iq)i + D,(v,i1)i + g,(q) = r, (2.27)

where:

M,(q) = J-r(q)MJ- (q)

C,(v, n) =J- (q)[C(V) -MJ-X(q)J(q)]J (n)
Da(v, n) =J-T(q)D(v) J -'(q) (2.28)

g(qN) = J-T(q)g (q)
IC (n) = J -T(1) (n)

(2.26)-(2.28) are used extensively in the implementation of the 6 DOF sliding controller.

2.3.1 Notes on the Matrices in the Equations of Motion

Note that M and D(v) are positive definite since they are the sum of positive

definite matrices and that C(v) is skew-symmetric since it the sum of two skew-symmetric

matrices. From (2.28), it is straightforward to demonstrate that for nonsingular J(q),

Mn(i) and D,(v,rq) are also positive definite, though Cn(v,r1 ) is not skew-symmetric in

general (see Fossen [1994]).

Another useful matrix relationship in the development of the 6 DOF sliding

controller is:

Ml - 2C(v) (2.29)
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Assuming that M is equal to zero - i.e. the added mass terms in M are independent of

wave frequency and thus vehicle speed - then it is apparent that (2.29) is a skew-

symmetric matrix'. Applying the transformations of (2.28) to (2.29) reveals that:

1 - 2C,(v, ) (2.30)

is also skew-symmetric. This last term, which is analogous to the matrix:

H(q) - 2C(q,) (2.31)

in robotic manipulator control (see Slotine and Li [1991]) - which can be proved to be

skew-symmetric and represents in matrix form conservation of energy in the manipulator'

- plays an important role in the 6 DOF sliding controller formulation.

2.4 Hydrodynamic Coefficients

Appendix I contains a summary of the body hydrodynamic coefficients identified

in the equations of this chapter for the 21UUV of figure 1.1. The coefficients are the

result of a combination of: 1) slender-body (strip) theory calculations; 2) aerodynamic

lift and drag calculations; 3) comparison with a similar UUV upon which extensive

computer modeling was performed (see Humpheys [1989]); and 4) tow-tank experiments

made on a scale-model of the 21UUV (see Willy [1994] for a more complete accounting

'Actually the added mass terms in M vary, albeit slightly, with varying sea conditions.
This relationship is not known in general for each sea condition in 96 .

2H1 (q) is the manipulator inertia matrix, C(q,4) is the centripetal and Coriolis matrix
and q is the vector of joint angles. The fact that (2.31) is skew-symmetric lends some
credence to the assumption that (2.29) and (2.30) are skew-symmetric.
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of these body and hydrodynamic coefficients).

As is well known, many of these coefficients vary significantly with Reynolds

number and thus with vehicle speed. In addition, imperfect knowledge of the exact effect

various vehicle components such as fins and propulsor shrouds have on these coefficients

over the range of vehicle speeds is had. Thus, a great deal of uncertainty exists in the

stated values of body and hydrodynamic coefficients - a large reason why robust control

techniques such as sliding control are popular with underwater vehicles. As indicated in

Appendix I, 5% uncertainty in the body coefficients and a 20% uncertainty in the

hydrodynamic coefficients were assumed. These uncertainties were used to differentiate

the "true" vehicle model from the "estimated" vehicle model for simulation purposes in

addition to their use in the actual design of the sliding controller.
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Chapter 3

6 DOF Sliding Controller

3.1 General Discussion

The use of nonlinear sliding control design to maintain stability and to ensure

consistent performance despite the significant parameter and modeling uncertainties that

characterize UUV design has been effectively employed for a number of years (e.g.

Yoerger et al [1986], Dougherty and Woolweaver [1990], Hills and Yoerger [1994]). As

demonstrated in the previous chapter, these vehicle equations of motion are highly

coupled and nonlinear and consequently are often subjected to various simplifying

assumptions to meet various design objectives (e.g. decoupled speed control, inner

pitch/outer depth loop control, etc.). Such assumptions reduce the number of control

inputs that have to be considered for the simplified problem at hand to one, allowing

scalar sliding surface controller theory to be used. This theory is briefly summarized in

section 3.2 to highlight some of the more important points of sliding control.

More demanding underwater vehicle maneuvers such as hovering or operation in

the dynamically difficult regime of shallow water, however, require careful consideration
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of the coupling between the various control inputs inherent in the equations of motion.

Scalar sliding control becomes less satisfactory for such complex demands on the vehicle

and, instead, a complete 6 DOF sliding controller (i.e. a 6 element vector sliding surface)

should be considered which can handle the coupling between the various controls. Such

a controller is developed in section 3.3 and Appendix II.

The resultant 6 DOF controller is then tested by computer simulation as

summarized in section 3.4 with the very restrictive assumption that the 6 DOF

commanded control vector produced by the sliding controller can be generated by the

vehicle. This assumption is relaxed in chapter 4.

3.2 Scalar Sliding Control

Consider a single-input dynamic system of the form:

X(n) = fx) + b(x)u (3.1)

where scalar x is the output, x is the state vector, and scalar u is the input. Defining the

tracking error vector to some desired trajectory vector xd as:

x = x - Xd (3.2)

and defining a time-varying surface S(t) in the state space by the scalar equation s(x;t)=O

where:

d -1
s(;t) d + X)n-12 X > (3.3)

dt

then (assuming the initial tracking error is zero) the n-th order tracking problem of (3.1)

31



and (3.2) is equivalent to remaining on the surface S(t) for all t > 0 - i.e. have effectively

reduced the n-th order tracking problem to a first-order stabilization problem in the scalar

s. By choosing the input u so that outside S(t):

lds2 r - Is ; >0 (3.4)
2 dt

it can easily be demonstrated (see Slotine and Li [1991], for example) that the surface S(t)

will be reached in a finite time less than s I (t=O) I /r; whereupon the tracking error will

decrease exponentially to zero. (3.4) is referred to as the sliding condition and it is

possible to choose the control input u such that (3.4) is met even in the presence of

parameter uncertainties or unstructured uncertainties in the dynamics. This is why sliding

control is so useful for UUV controller design; not only can it handle non-linearities, but

a degree of robustness can be factored into the controller.

3.3 Vector Sliding Control

To capture the full power of sliding control theory for an UUV intended to operate

in shallow water or designed to perform complex maneuvers such as hovering, it is

necessary to expand scalar sliding control to vector sliding control. Fortunately, as has

been alluded to, the particular structure of (2.26) and (2.27) make the development of the

6 DOF sliding controller a relatively straightforward task. The derivation that follows is

analogous to the multi-input, multi-output (MIMO) robust robot trajectory controller

outlined in Slotine and Li [1991] and is similar to the adaptive MIMO sliding controller

discussed in Fossen [1994].
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In the 6 DOF sliding controller, the tracking dynamic variable s of the SISO

sliding controller is replaced by a 6-element vector s which is defined as:

s = +Ai = i- ij, (3.5)

where:

A = n -d ; /1, Ald A (3.6)

and where:

A = control bandwidth matrix(A=AT > 0)

Tld = desired earth-fixed trajectory (3.7)
Tlr = reference earth-fixed trajectory

The control bandwidth matrix is discussed in section 3.4. The reference (or virtual)

trajectory is merely a notational manipulation which transforms the energy-related

properties of the vehicle (in terms of r) into trajectory control properties (in terms of s).

Defining the Lyapunov function:

V(t) = 1/2 TM s > (3.8)

Differentiating (3.8) and substituting the derivative of (3.5) yields:

V(t)= = s T(Mii Mii) + 1/2s T s (3.9)

Noting that the system dynamics (2.27) can be rewritten by means of (3.5) as:

Mh =e( - (C, + D,)(s + gr (3.10)

Then (3.9) can be recast as:
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K(t) = T(xn -Mi - [Cn +D]r -go) -s TDns (3.11)

Where the fact that the quantity:

Mq -2C,, is skew symmetric V l (3.12)

is used to eliminate the expression:

s T(Mq - 2C,)s (3.13)

See Fossen [1994] and Slotine and Li [1991] - the latter in the context of robot

manipulators - for explanation/"proof'; this term expresses the matrix form of the

conservation of energy in the system. The skew-symmetry of (3.12) has been discussed

previously in Chapter 2.

Then, choosing the control law as:

Ad = ,! -k(q)sgn(s) (3.14)

With:

's! = MllM r + (dCl +Dl)r+, g (3.15)

Where k(r)sgn(s) is defined as the vector of components ki(r)sgn(s,) and where the

estimated (hat) system matrices are linearly related to the actual plant matrices by error

(tilde) matrices, for example:

(3.16)
Mt = Mrn - M, (3.16)

Thus (3.14) is the control input which would make (3.11) equal to zero if the vehicle

dynamics were exactly known. Then the Lyapunov function time derivative becomes
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with the use of (3.14):

6

Vt)=s + T [M,,+aij+ g ki() s I_ s (3.17)

Choosing ki(r) such that:

ki(n) [M1 ,r (Cr +D ( )i + q I + ll ; E E O (3.18)

Ensures:

6

V(t) (- I - s TDs ) S 0 (3.19)
i=1

Thus this 6 DOF sliding controller is asymptotically stable from anywhere in the state

space (except for at pitch angles of ± 90 degrees) as demonstrated in Appendix II. Note

the dissipative nature of the drag matrix actually causes the system to reach the desired

trajectory faster than if it did not exist.

As formulated above, the 6 DOF sliding controller is a switching or chattering

controller; resulting in very high control action and probable excitation of unmodelled

vehicle dynamics. As indicated in Slotine and Lee [1991], this potential problem can be

avoided by the modification of the control law (3.14) to include a smoothing term near

the switching surface characterized by a boundary layer thickness i. The control law

becomes:

sin = i - k(l)sat( .) (3.20)

The inclusion of this boundary layer effectively trades-off some tracking precision for

some robustness to unmodelled dynamics. By making the boundary layer time-varying:
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- S.
a: = gn-ki(T)sat(~) (3.21)

where:

ki(n) = ki(rl) - (3.22)

and:

V = ki(ld) - i (3.23)

some of the tracking precision can be regained. See Slotine and Li [1991] for a more

complete discussion on smoothing out the control discontinuity of (3.14). All simulations

in this study utilize the smooth (sat) vector sliding controller with the values for the

boundary layer thickness i's chosen as .1 for all DOF's (this value seemed to yield good

control signals in terms of smoothness).

3.4 Simulations

In order to implement the 6 DOF sliding controller that was designed in the

previous section, it must be noted that the controller was developed in the earth-fixed

frame of reference. In one sense, this is desirable as the desired trajectories (e.g.

executing a trackline change) are usually earth-fixed in nature. However, the state

measurements are made and the commanded control actions are carried out in the vehicle

reference frame. Thus, the controller implementation logic should go something like: get
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the vehicle-fixed velocities/accelerations in all 6 DOFf; compute the body-referenced

matrices of (2.26); convert the body-reference matrices to earth-referenced matrices by

use of (2.28); get desired earth-referenced control vector from the sliding controller; then

compute the desired vehicle-referenced control vector using (2.28). In this section, the

assumption is made that the desired vehicle-referenced control vector is instantly produced

in all 6 DOF's by the vehicle control system - more realistic scenarios are examined in

the next chapter.

A comment on the bandwidth matrix A. As discussed in Slotine and Li [1991],

the particular elements in the matrix should be chosen as high as possible (to achieve

performance improvement) without exciting any unmodelled dynamics such as resonant

modes or to interfere with any unmodelled time-delays (e.g. actuator response). With this

latter point in mind, A was set equal to the diagonal matrix with [.1 .2 .2 1 .75 .75 ]T on

the main diagonal. These values are representative of the possible rate-of-response in the

various DOF's.

A functional, 6 DOF sliding controller based on the preceding discussion was

implemented using MATLAB using the 21UUV body and hydrodynamic coefficients of

Appendix I. Figure 3.1 depicts the desired and actual depth and trackline responses in

a coordinated 5 meter rise / 5 meter shift in trackline occurring over a 40 second period

of time with the vehicle attempting to maintain a constant speed of 5 knots. A slight

(+10 N more buoyancy) mismatch in weight/buoyancy was assumed, as were slightly non-

'The 21UUV of figure 1.1 actually has excellent state measurement capabilities
(including accelerations). No state observers are necessary.
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zero values for XG and z.
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Commanded Rise & Heading Change w/ "Perfect" 6DOF Control

Time (Sec)

Commanded Rise & Heading Change w/ "Perfect" 6DOF Control

Time (Sec)
0

Figure 3.1 - Comparison of Actual vs. Desired Vehicle Response During a Coordinated Maneuver
Assuming Full 6 DOF Control Authority Available. The vehicle follows the commanded trajectories (dotted
lines - 5 m rise coupled with a 5 m trackline change) extremely well as is expected assuming the availability
of full 6 DOF control authority as might be the case for a vehicle designed to hover. The error between
the actual and desired response is due to the assumed errors in the body and hydrodynamic coefficients.
Also this simulation assumed a positive 10 N buoyancy.
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Chapter 4

4 DOF Implementation of the 6 DOF
Sliding Controller

4.1 General Discussion

The 6 DOF control authority assumed to exist in the simulation of figure 3.1 rarely

exists in practical UUV's - except for a very few specialized vehicles which are

specifically designed for demanding maneuvers such as hovering. Rather, the typical

UUV will have a limited number of controllable DOF's such as the four available to the

21UUV of figure 1.1 - sternplanes, rudder, ailerons and propulsor (thrust). This chapter

will present the development of a working 4 DOF implementation of the 6 DOF sliding

controller for the 21UUV which will be shown to be effective for a broad range of useful

commanded maneuvers. This 4 DOF implementation relies on the well-known non-

minimum phase relationship between the pitch/depth and yaw/trackline DOF's and is

similar in concept to the inner/outer loop pitch(yaw)/depth(heading) controllers currently

used in scalar sliding or PID controllers for UUV's that are assumed to be decoupled in

the pitch-yaw planes. An argument - not proof - will be presented as to why this
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controller implementation works; an argument supported by a number of computer

simulations. This argument also suggests directions in which further study might be

pursued to improve this 4 DOF controller implementation and how to develop other

controllers based on UUV's with different combinations of available control

surfaces/thrusters than the 21UUV of figure 1.1.

4.2 6 DOF Commanded to 4 DOF Available Control

The fundamental problem is the conversion the commanded 'X vector - the body-

referenced force/moment vector converted from the earth-referenced z, output of the 6

DOF sliding controller (3.28) - to proper control signals for the UUV thrusters/control

surfaces.

For example, the 21 UUV of figure 1.1 has four controllable DOF - two sternplanes

(65) - which directly influence the pitch/depth DOF's; two rudders (65) - which directly

influence the yaw/trackline DOF's; a thruster (propulsor) (T) - which directly controls the

forward speed and thus the longitudinal motion; and ailerons (ja) - which directly control

the roll angle. The aileron's action is accomplished by appropriate opposing settings on

the two sternplanes and/or rudders. There is also some coupling between the various

controls - e.g. the rudders affect roll to a degree.

Note that the sternplanes and rudders must each control two degrees of freedom

in the 21UUV configuration. In scalar sliding control design (e.g. Fossen [1994], Hills

and Yoerger [1994]), this is typically managed by using inner pitch/outer depth loops

(similarly, inner yaw/outer trackline loops) in which the desired pitch angle at each time
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step is generated by the depth trajectory error at that time step. To maintain the

matrix/vector format of 6 DOF sliding controller, the vector sliding control design

considered in this study employs a least-squares methodology to overcome this problem

as detailed in the following sub-sections.

4.2.1 Unweighted Least Squares

The control inputs for the 21 UUV can be grouped as a vector Ubody which is related

to Xr by:

= Bubody = B[T 8 s 8r a]T (4.1)

As stated, the problem is that the B matrix relating the commanded force/moment

vector to the available force moment vector is 6x4; that is, (4.1) is an underdetermined

system of equations for which, in general, no exact solution exists. However, the error

e between and Bubody where:

e = T - BUbody (4.2)

can be minimized by minimizing the length of I I e 12 = - BUbody)T(r - Bubody); the

least squares solution. From standard matrix theory (e.g. Strang [1986]), the unweighted

least squares solution to (4.1) is:

Ubody = (B TB)-'B Tr (4.3)
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4.2.2 Weighted Least Squares

Unfortunately, straightforward application of (4.3) leads to unstable control action

for any 21UUV typical maneuver. This can be seen from the coefficients that govern the

pitch/depth and yaw/heading. For instance, consider the hydrodynamic coefficients

relating rudder angle to yaw and heading - N, and Y,. From Appendix I, the

coefficients are opposite in sign, meaning that for a course change in which both a yaw

angle and heading trajectory in the same directions would be commanded, (4.3) would

be trying to the impossible feat of moving the rudder in opposite directions at the same

time! The same analysis holds for the pitch/depth coupled maneuvers (taking into

account that +z is defined in the down direction).

This is a well-known problem of not only torpedo-shape underwater vehicles such

as the 21UUV, but also of aircraft (see Slotine and Li [1991], for example). The solution

to maneuvering vehicles that possess such characteristics is to first operate the control

surface to get the desired angle-of-attack, then to reverse the direction of the control

surface so that the translational portion of the maneuver (depth or trackline) is satisfied.

Such behavior is termed non-minimum phase, and an appropriate way must be found to

incorporate such behavior into the mathematics of (4.3).

One way to accomplish this would be to command proper desired trajectories to

follow so that the correct non-minimum phase response would be enacted by the vehicle.

Unfortunately, this is an open-loop solution and is of doubtful utility when parameter and

modelling uncertainties are introduced, not to mention any disturbances the vehicle would

experience in shallow-water.

43



A better solution is to modify (4.3) so that it captures the non-minimum phase

characteristics of the 21UUV - that is, the vehicle angle orientation is achieved first

(faster time constant), then the slower lateral or vertical translation takes place. Looking

at the A matrix of the 6 DOF sliding controller (3.18), we see this has been partially

accomplished by the performance weightings on the DOF's; the .75 value for pitch and

yaw allows faster vehicle orientation response that the .2 value for depth and heading.

Then, weighting the error e by a matrix W such that:

We =

3x

0

0

0

0

0
O

where the weights X and the desired

into the correct non-minimum phase

argued in the following sub-section.'

least squares (e.g. Strang [1986]):

0 0 O O 0

0X 0 0 0(4.4)Z e (4.4)

O AXK 0 0

00 X 0

0 0 0 0 IN

trajectories are properly chosen forces the vehicle

behavior to achieve commanded trajectories as is

Defining C=WTW, then (4.3) becomes in weighted

Ubody = (B TCB)-lB TCx (4.5)

After some trial and error as documented in the following simulations of the

'Considering the significant coupling between pitch and depth DOF's for example it
might be prudent to actually consider a non-diagonal form for W- this was not examined
in this study.
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following section, a "good" W was determined to be:

1 0000 0

0 1 000 0

0010 0 0

0001 0 0

0 0 0 0 .06 0

0000 0 .06

(4.6)

4.2.3 Justification for the Weighted Least Squares Method

For simplicity and clarity, only a 21 UUV dive is considered; by vehicle symmetry

similar arguments apply to vehicle climbs and trackline changes.

A key assumption in this methodology is that the desired vehicle pitch angle,

angular rate and acceleration are always chosen to be zero - only the z-axis has non-zero

desired rd, rid and ld during the dive (along with x-axis non-zero rld and id). Then, from

(3.6), initial non-zero reference trajectories rl, and rl, in the x- and z-axes are generated,

which in turn from the sliding control law (3.14) generates earth-reference commands z,n

in these two DOF's.2

The non-zero reference trajectories also generate an initial non-zero -z, in the pitch

DOF due to coupling coefficients between the pitch and x/z DOF's that exist in the

matrices of (3.14). This commanded moment can be viewed as a feed-forward term that

2Note that the distinction clear between the body- and earth-referenced frames is not
rigorously maintained in this particular analysis. Considering the J matrix would only
obscure the relevant ideas; anyway J is very close to being the identity matrix throughout
the analysis.
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is balancing/negating the moment that is generated when diving. A study of these

coupling coefficients reveals that this commanded moment requires the stemnplanes to

move in the opposite direction that the commanded force for the dive requires.3

Thus to satisfy this non-minimum phase characteristic between pitch and dive, the

pitch demand must be satisfied first as previously discussed. This is accomplished by

underweighting pitch relative to depth in the weighting matrix W. To understand how

this works, consider only the depth and pitch axes for a moment which results in the

unweighted least squares solution of (4.3) to look like:

85 = (forw. vel.)- 2 [ -dir + pitchdir] (4.7)

and the weighted least squares solution of (4.5) to look like:

6 = (forw. vel.)- 2 [ -dir + pitchdi (4.8)
Z6~ (pitchweight)xM.,

See Appendix I for the values of the sternplane hydrodynamic coefficients. Comparing

(4.7) and (4.8), it is apparent that increasing the underweighting the pitch weight forces

the stemplanes to respond more quickly to the pitch command resulting from the control

law of (3.14) and delays the implementation of the dive command. When optimally

chosen, the pitch weighting results in the vehicle achieving the optimal pitch angle as it

3This assertion, though true for the particular magnitudes and signs of the relevant
hydrodynamic coefficients listed in Appendix I, needs to be more fully analyzed for the
all the possible variations in these magnitudes and signs to ensure that the weighting
value in the W matrix remains optimal and, more importantly, keeps the controller stable.
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executes the dive.

4.3 Simulations

Extensive numerical simulations are presented in this section to illustrate 21UUV

response for a variety of commanded maneuvers and to further clarify the implications

of the weighted least squares methodology utilized to obtain 6 DOF satisfactory vehicle

control from 4 DOF control authority.

4.3.1 Determination of Optimal Xis

The control hydrodynamic coefficients used for the B matrix of (4.1) are listed in

Appendix I. The angle squared terms could not be directly included into this matrix else

(4.5) could not be solved via normal matrix means. Fortunately, these terms are rather

small for typical maneuvers and speeds and can safely be ignored.4

As is demonstrated from the figures there is an optimal weighting for the best

depth-pitch response - z.06. As the next two sub-sections show, it appears this value

is good over a range of speeds and dive rates.

4For the simulations that follow, the angle squared terms are included in the 21UUV's
"real" dynamics for simulation purposes. As is evident from the simulation plots, vehicle
response does not appear adversely affected.
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Sternplane Response - Pitch Weight=.06
.i ,-

10 20
Time (Sec)

Sternplane Response - Pitch Weight=.1

a)(D

c"
C<

a
C) -
CD

30 0
Time (Sec)

Figure 4.1 - Comparison of Sternplane Response in a Commanded Dive for Pitch Weights of k=.06 and
X=.1. Overweighting the pitch error weight relative to the depth error weight (X=.1/1 vice .06/1) overly
restricts the range of allowed initial sternplane motion and results in the sternplanes being applied for too
long at excessive angles during the remainder of the commanded maneuver with deleterious effects on
vehicle dive response as shown in successive figures. Note the non-minimum phase action of the
sternplanes - initially moving in one direction to get the requisite pitch angle for the commanded dive, then
moving in the opposite direction to allow the vehicle to change depth.
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Depth Response - Pitch Weight=.06
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Figure 4.2 - Comparison of Depth and Depth Rate Responses in a Commanded Dive for Pitch Weights
of ,=.06 and =. . Excessively high pitch weighting (X=.1 vice .06) results in the vehicle hunting about
the commanded depth and depth rate trajectories (indicated by dotted lines). The vehicle's sternplanes do
not initially achieve sufficient angles to get vehicle pitch to its optimal angle. The sliding controller - which
is governed by the equations of motion and the commanded trajectories - then acts, in a simplified sense,
as a lightly damped system as the sternplane angle and direction is dominated first by moment control, then
depth control, etc. as it attempts to follow the depth change trajectory.
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Figure 4.3 - Comparison of Pitch and Pitch Ratle Responses in a Commanded Dive for Pitch Weights
of X=.06 and X=. I1. Limiting the allowed initial sternplane motion (X=.l vice .06) results in the overall
pitch response to be excessive. See figure 4.2.
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Forward Speed - Pitch Weight=.06 Forward Speed - Pitch Weight=.1
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Figure 4.4 - Comparison of Forward Speed and Thrust Responses in a Commanded Dive for Pitch
Weights of X=.06 and X=.1. Similar responses for both pitch error weightings. Note that the initial
overestimation of needed thrust is endemic to all the simulations of this study as a result of the particular
assumed errors between the "true" and estimated values for the hydrodynamic coefficients.
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Sternplane Response - Pitch Weight=.06
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Figure 4.5 - Comparison of Sternplane Response in a Commanded Dive for Pitch Weights of =.06 and
X=.04. Underweighting the pitch error weight relative to the depth error weight (=.04/1 vice .06/1) causes
the initial sternplane motion to be overly excessive and results in the requisite pitch angle for optimal dive
performance not being achieved as seen in the following figures.
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Depth Response - Pitch Weight=.06
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Figure 4.6 - Comparison of Depth and Depth Rate Responses in a Commanded Divefor Pitch Weights
of X=.06 and X=.04. As evidenced in the next figure, the underweighting of the pitch weighting (X=.04
vice .06) results in the vehicle not achieving the optimal pitch angle to best effect the commanded depth
and depth rate trajectories (indicated by dotted lines).
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Pitch Angle Response - Pitch Weight=.06 Pitch Angle Response - Pitch Weight=.04
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Figure 4.7 - Comparison of Pitch and Pitch Rate Responses in a Commanded Dive for Pitch Weights
of X=.06 and X=.04. Underweighing the pitch error weighing (=.04 vice .06) actually results in the
stemplanes cycling so quickly that the optimal pitch angle for the commanded dive is never quite achieved
causing the depth response to be not as good for the .=.06 weighting. This, in analogy with linear systems,
is exhibiting characteristics of being slightly overdamped. So little moment is generated by the sliding
controller after the initial sternplane transient that the optimal pitch angle is not obtained.
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Figure 4.8 - Comparison of Forward Speed and
Weights of X=.06 and X=.04. Similar responses for
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Thrust Responses in a Commanded Dive for Pitch
both pitch error weightings. See figure 4.4.
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4.3.2 Effect of Vehicle Speed on Optimal Xi's

The shape of vehicle depth response appears to be little influenced by the speed

of the commanded trajectory for a given X weighting.
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Sternplane Response - Speed=5 KT
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Figure 4.9 - Comparison of Sternplane Response in a Commanded Dive at 5 and 8 Knots Nominal Speed
for a Pitch Weighting of X=.06. The increased speed increases the authority of all control surface and
consequently less sternplane response is required at 8 vs. 5 knots nominal speed.
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Figure 4.10 - Comparison of Depth and Depth Rate Responses in a Commanded Dive at 5 and 8 Knots
Nominal Speedfor a Pitch Weighting of X=. 06. Note the extremely similar response for the two speeds,
an indication that the pitch weighting value is relatively independent of vehicle speed. Rather, the x value
is better viewed as reflecting the dynamic coupling between the pitch and depth DOF's.
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Pitch Angle Response - Speed=5 KT
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Figure 4.11 - Comparison of Pitch and Pitch Rate Responses in a Commanded Dive at 5 and 8 Knots
Nominal Speedfor a Pitch Weighting of =.06. Similarly shaped responses; naturally at 8 knots less pitch
angle is needed to generate the commanded depth change.
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Figure 4.12 - Comparison of Forward Speed and Thrust Responses in a Commanded Dive at 5 and 8
Knots Nominal Speedfor a Pitch Weighting of X=.06. Similarly shaped responses, though the 8 knot
response approaches the commanded speed faster due to the increased forward drag (from X,I,
hydrodynamic coefficient).
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4.3.3 Effect of Trajectory Severity on Optimal ki's

The shape of vehicle depth response appears to be little influenced by the severity

of the commanded trajectory for a given X weighting - further evidence that the optimal

X is a direct consequence of the underlying dynamics relating pitch and depth.
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Figure 4.13 - Comparison of Sternplane Response in Commanded Dives of 2.5 and 5 Meters at 5 Knots
Nominal Speedfor a Pitch Weighting of ,=. 06. Similarly shaped responses; naturally, approximately twice
the sternplane angle is required to effect twice the depth change in equal amounts of time.
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Figure 4.14 - Comparison of Depth and Depth Rate Responses in Commanded Dives of2.5 and 5 Meters
at 5 Knots Nominal Speedfor a Pitch Weighting of X=. 06. Note the extremely similarly shaped responses
for the two commanded depth changes, another indication that the pitch weighting value purely reflects the
dynamic coupling between the pitch and depth DOF's.
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Figure 4.15 - Comparison of Pitch and Pitch Rate Responses in Commanded Dives of 2.5 and 5 Meters
at 5 Knots Nominal Speedfor a Pitch Weighting of X=.06. Similarly shaped responses - see figure 4.14.
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Forward Speed - 2.5 m Dive
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Figure 4.16 - Comparison of Forward Speed and Thrust Responses in Commanded Dives of 2.5 and 5
Meters at 5 Knots Nominal Speedfor a Pitch Weighting of 3=.06. Similarly shaped responses, as expected
from the previous results.
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4.3.4 Vehicle Roll Capability

As evidenced in the following plots, the ailerons do not provide enough control

authority to control roll during a commanded roll maneuver. Fortunately, this is not a

particularly desirable trajectory - it is much more important that the vehicle not roll

during turns and/or depth changes. This lack of control authority made the weighting of

this the roll DOF rather moot - XK was set at 1.
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Desired and Actual Roll Angle
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Figure 4.17 - Roll and Aileron Responses for a Commanded Counter-Clockwise Roll of lO Degrees. The
vehicle has great difficulty executing this commanded maneuver due primarily to the low control authority
in this degree of freedom (due to the small value of Kp) - note the saturated control surface - but also to the
restoring force incurred by the assumed ZG-ZB separation of .005 m and the simulated 10 N positive
buoyancy. Fortunately, it is difficult to conceive when a vehicle like the 21UUV would require such a

maneuver; it is much more important that the vehicle avoid rolling in the presence of disturbances or during
more typical maneuvers such as trackline changes. Also note the non-minimum phase response of the
ailerons in the initial stages of the commanded roll.
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Excursion from Nominal (= 0 m) Depth
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Figure 4.18 - Depth and Pitch Angle Responsesfor a Commanded Counter-Clockwise Roll of IO Degrees.
Mostly a result of the 10 N positive buoyancy; but there is slight coupling from the roll DOF.
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Excursion from Nominal (= 0 m) Trackline
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Excursion from Nominal Yaw (= 0 deg) Angle
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Figure 4.19 - Trackline and Yaw Angle Responses for a Commanded Counter-Clockwise Roll of 10
Degrees. Note the slight coupling from the roll DOF.
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Sternplane Response
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Figure 4.20 - Sternplane and Rudder Responses for a Commanded Counter-Clockwise Roll of 10
Degrees. The stemplane response is mainly a result of the positive buoyancy, but both control surfaces
contribute a bit to the control of the roll angle.
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4.3.5 Vehicle Coordinated Maneuvering Response

To test the vector sliding controller out in the 4 DOF available control mode,

simulations were performed with coordinated trajectories (e.g. dive and trackline change

simaltaneously). As is seen in the plots, response is excellent indicating that the

controller is easily able to handle complicated and coupled maneuvers.
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Figure 4.21 - Depth and Depth Rate for a Coordinated Dive and Trackline Maneuver with a 10 N
Positive Buoyancy. The 4 DOF implementation of the 6 DOF controller provides excellent control in this
coupled maneuver.
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Commanded Dive and Trackline Change
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Figure 4.22 - Trackline and Heading Rate for a Coordinated Dive and Trackline Maneuver with a 10
N Positive Buoyancy. The 4 DOF implementation of the 6 DOF controller provides excellent control in this
coupled manuever.
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Commanded Dive and Trackline Change
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Figure 4.23 - Sternplane and Rudder Responses for a Coordinated Dive and Trackline Maneuver with
a 10 N Positive Buoyancy. As expected from the symmetry about the y- and z-axes, control surface actions
are similar (though in different directions due to the chosen coordinated maneuver). Note the non-minimum
phase actions of the control surfaces - first get the requisite pitch and yaw angles, respectively, then allow
for the depth and trackline changes.
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Commanded Dive and Trackline Change
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Figure 4.24- Pitch and Pitch Rate for a Coordinated Dive and Trackline Maneuver with a 10 N Positive
Buoyancy. Corresponds to depth and depth rate responses.
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Commanded Dive and Trackline Change
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Figure 4.25- Yaw and Yaw Rate for a Coordinated Dive and Trackline Maneuver with a 10 N Positive
Buoyancy. Corresponds to trackline and heading rate responses.
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Commanded Dive and Trackline Change
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Figure 4.26- Forward Speed and Thrust for a Coordinated Dive and Trackline Maneuver with a 10 N
Positive Buoyancy. Response as expected.
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Commanded Dive and Trackline Change
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Figure 4.27- Roll and Aileron Angles for a Coordinated Dive and Trackline Maneuver with a 10 N
Positive Buoyancy. As alluded to in figure 4.17, it is important that the 4 DOF implementation of the 6
DOF sliding controller be able to control roll response in normal commanded maneuvers (and in
disturbances). Unfortunately, the low value of the hydrodynamic coefficient Kp causes this DOF to respond
like a very underdamped spring-mass system, resulting in saturated aileron response. The saving grace is
the restoring force generated by the ZG-ZB separation - thus the roll DOF can be thought as "stabilizable"
if not actually "controllable". If this situation is deemed unacceptable corrective action - e.g. larger ailerons
- is required.
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Commanded Rise and Trackline Change
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Figure 4.28 - Depth and Depth Rate for a Coordinated Rise and Trackline Maneuver with a 10 N
Positive Buoyancy. The 4 DOF implementation of the 6DOF controller provides excellent control in this
coupled manuever. Note the controller provides similar control for this combination of vehicle positional
changes as for the previous commanded positional changes (see figures 4.21-4.27) and for another set of
positional changes depicted in figures 5.4-5.10 (ignoring the imposed disturbance). Thus the controller is
shown to be equally effective no matter what the combination of coordinated maneuvers in the depth and
trackline planes.
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Commanded Rise and Trackline Change
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Figure 4.29 - Trackline and Heading Rate for a Coordinated Rise and Trackline Maneuver with a 10 N
Positive Buoyancy. The 4 DOF implementation of the 6 DOF controller provides excellent control in this
coupled maneuver.
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Commanded Rise and Trackline Change
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Figure 4.30 - Sternplane and Rudder Responses for a Coordinated Rise and Trackline Maneuver with
a 10 N Positive Buoyancy. As expected from the symmetry about the y- and z-axes, control surface actions
are similar. Note the non-minimum phase actions of the control surfaces - first get the requisite pitch and
yaw angles, respectively, then allow for the depth and trackline changes.
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Commanded Rise and Trackline Change
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Figure 4.31 - Pitch and Pitch Ratefor a Coordinated Rise and Trackline Maneuver with a 10 N Positive
Buoyancy. Corresponds to depth and depth rate responses.
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Commanded Rise and Trackline Change
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Figure 4.32- Yaw and Yaw Rate for a Coordinated Rise and Trackline Maneuver with a 10 N Positive
Buoyancy. Corresponds to trackline and heading rate responses.
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Commanded Rise and Trackline Change
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Figure 4.33- Forward Speed and Thrust for a Coordinated Rise and Trackline Maneuver with a 10 N
Positive Buoyancy. Response as expected.
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Commanded Rise and Trackline Change
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Figure 4.34- Roll and Aileron Angles for a Coordinated Rise and Trackline Maneuver with a 10 N
Positive Buoyancy. See figure 4.17.
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Chapter 5

Related Topics to the 6 DOF Sliding
Controller

In this chapter, two specific areas of UUV control that are facilitated by the

framework of the 6 DOF sliding controller developed in Chapter 3 - variable buoyancy

control and wave disturbance rejection - are briefly discussed accompanied by appropriate

simulations. Directions further research in these areas might take is also discussed..

5.1 Variable Buoyancy

As the 6 DOF sliding controller operates, a vector consisting of the earth-

referenced control forces/moments needed to achieve trajectory following is generated (u

- see (3.15)). This signal is precisely what is needed for the input to a variable buoyancy

controller which is trying to maintain the UUV in a neutrally buoyant condition!

Consider, for instance, the scenario depicted in figures 5.1-5.3 in which the

21UUV of figure 1.1 with the 4 DOF version of the 6 DOF sliding controller is

commanded to travel a straight line at 5 knots. The vehicle is simulated to have 20 N

positive buoyancy for the first portion of the "maneuver" which is then decreased to 10
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N positive buoyancy (e.g. the vehicle encounters a region of less dense water). As the

vehicle orients itself to the weight/buoyancy mismatch, the Z portion of -, approaches

the negative value of this mismatch. This signal, perhaps passed though a low-pass filter

to eliminate wave and other disturbances, is easily processed to control the requisite

changing of the weight of the vehicle to restore neutral buoyancy.

Note how the 6 DOF sliding controller directly provides the signals needed for the

task of buoyancy control. There is no need to correct for vehicle orientation with respect

to the earth (it is already done), nor is their a need to resolve the vehicle control actions

into the various DOF's as is necessary if trying to compute the weight/buoyancy

mismatch from a measurement of the stemplane angle alone.

As mentioned, further work is needed get a viable buoyancy control system based

on the 6 DOF sliding controller, mostly in the area of signal processing - e.g. filtering

disturbances out of -c, getting a good pitch commanded moment signal free of the 4 DOF

feedthrough from the depth DOF etc.
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Earth-Referenced Z Force at 5 knots Nominal Speed

20 30
Time (Sec)

40 50

Earth-Referenced M Moment at 5 knots Nominal Speed

E

0Eo

10 20 30 40 50
Time (Sec)

Figure 5.1 - 6 DOF Sliding Controller Generated Earth-Referenced Z Force and M Moment During a
Step Change in Vehicle Buoyancy. The vehicle is travelling at 5 knots. Vehicle buoyancy initially assumed
to be a positive 20 N and changed to (+) 10 N at 30 seconds (e.g. vehicle entered region of warmer water);
XG assumed .01 m forward of xB during the entire maneuver. These controller outputs are not colored by
vehicle orientation - though for this particular scenario little error would be introduced by considering body-
referenced forces and moments - and can be processed to provide control signals for a variable buoyancy
system. The commanded moment is much larger than one would expect for the actual derivations from
perfect trim - the depth buoyancy mismatch is feeding its way through the 4 DOF controller to this DOF.
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Sternplane Response at 5 knots Nominal Speed

0 10 20 30 40 50 60
Time (Sec)

Figure 5.2 - Sternplane Response During a Step Change in Vehicle Buoyancy. Actually, the stemplane
angle can be processed to provide control signals for a variable buoyancy system. However, vehicle
orientation would have to be taken into account (though not a concern for this particular scenario) and the
sternplane angle would somehow have to be split into a moment and force component. Why not just use
the earth-referenced forces and moments already generated by the 6 DOF sliding controller?
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Excursion from Nominal (= 0 m) Depth at 5 knots Nominal Speed

Time (Sec)

Excursion from Nominal Pitch (= 0 deg) Angle at 5 knots Nominal Speed

0 10 20 30 40 50
Time (Sec)

60

Figure 5.3 - Excursions from Nominal Depth and Pitch Angle During a Step Change in Vehicle
Buoyancy. As expected the 4 DOF implementation of the 6 DOF sliding controller commanded control
vector works well for this benign maneuver.
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5.1.2 Disturbance Response

A large motivating factor in the design of the 6 DOF sliding controller is to permit

satisfactory vehicle operation in the dynamically-challenging regime of shallow water.

As discussed, the direct accounting of the non-linearities and coupling inherent in the 6

DOF equations of motion by the controller that was designed in Chapter 3 allows the

vehicle to withstand larger and more dynamically complicated disturbances than for

simpler controller designs which largely ignore the coupling between the DOF's.

This is apparent in the simulation results depicted in figures 5.4-5.10 in which a

coordinated trackline and depth change is performed in the presence of significant wave

disturbances (assumed pitch/depth disturbance of 0.1 meters amplitude coupled with a

yaw/heading disturbance of .05 meters amplitude at .2 Hz). The vehicle remains stable

as it performs the maneuver though it does oscillate about its nominal orientation.

It is possible to reduce this oscillation by means of adaptive sliding control

techniques (see Slotine and Li [1991] for instance). As mentioned in chapter 2, the

force/moment vector X can be viewed as consisting of a propulsion/control part and an

environmental part. By assigning the proper structure to the environmental part - e.g.

sinusoid at a known frequency but unknown amplitude - one can estimate the effect the

wave field has on each DOF via an adaptive sliding controller which is fundamentally

similar to sliding controller design. This is the topic of the sister study to this thesis -

Willy [1994]. We envision his single DOF adaptive sliding controllers being run in

parallel with the 6 DOF vehicle controller of this paper and providing the estimates of the

disturbances to the vehicle controller. This should significantly improve UUV
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performance in waves and warrants further analysis.
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Commanded Dive and Trackline Change w/ Disturbance

10 20 30 40 50
Time (Sec)

Commanded Dive and Trackline Change w/ Disturbance'

0 10 20 30 40 50
Time (Sec)

Figure 5.4 - Depth and Depth Rate for a Coordinated Dive and Trackline Maneuver with a 10 N Positive
Buoyancy in the Presence of Simulated Wave Disturbances. The 4 DOF implementation of the 6 DOF
controller provides excellent control in this coupled maneuver despite the significant imposed disturbance.
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Commanded Dive and Trackline Change w/ Disturbance

10 20 30 40 50
Time (Sec)

Commanded Dive and Trackline Change wl Disturbance

Time (Sec)

Figure 5.5 - Trackline and Heading Rate for a Coordinated Dive and Trackline Maneuver with a 10 N
Positive Buoyancy in the Presence of Simulated Wave Disturbances. The 4 DOF implementation of the 6
DOF controller provides excellent control in this coupled maneuver despite the significant imposed
disturbance.
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Commanded Dive and Trackline Change w/ Disturbance

10 20 30 40 50
Time (Sec)

Commanded Dive and Trackline Change w/ Disturbance

60

6010 20 30 40 50
Time (Sec)

Figure 5.6 - Sternplane and Rudder Responses for a Coordinated Dive and Trackline Maneuver with a
10 N Positive Buoyancy in the Presence of Simulated Wave Disturbances. The imposed disturbance causes
intermittent saturation of the stemplanes - the y-axis is not subjected to as high a disturbance magnitude,
thus the rudders do not saturate - yet the vehicle controller is still able to maintain excellent trajectory
following for this coupled maneuver as shown in figures 5.4 and 5.5.
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Commanded Dive and Trackline Change w/ Disturbance

10 20 30 40 50
Time (Sec)

Commanded Dive and Trackline Change w/ Disturbance

10 20 30 40 50
Time (Sec)

Figure 5.7- Pitch and Pitch Rate for a Coordinated Dive and Trackline Maneuver with a 10 N Positive
Buoyancy in the Presence of Simulated Wave Disturbances. Again, despite the significant effect the
disturbance has on the dynamics as shown here, the vehicle controller remains stable.
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Commanded Dive and Trackline Change w/ Disturbance

10 20 30 40 50
Time (Sec)

Commanded Dive and Trackline Change w/ Disturbance

10 20 30 40 50
Time (Sec)

Figure 5.8- Yaw and Yaw Rate for a Coordinated Dive and Trackline Maneuver with a O1 N Positive
Buoyancy in the Presence of Simulated Wave Disturbances. See figure 5.7.
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Commanded Dive and Trackline Change w/ Disturbance

I I I I I

20 30
Time (Sec)

40 50

Commanded Dive and Trackline Change w/ Disturbance

10 20 30 40 50
Time (Sec)

Figure 5.9- Forward Speed and Thrust for a Coordinated Dive and Trackline Maneuver with a O1 N
Positive Buoyancy in the Presence of Simulated Wave Disturbances. The thrust response may not be
realistically achievable. A better model of the propulsor is needed.
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Commanded Dive and Trackline Change w/ Disturbance

10 20 30 40 50
Time (Sec)

Commanded Dive and Trackline Change w/ Disturbance

10 20 30 40 50
Time (Sec)

60

60

Figure 5.10- Roll and Aileron Angles for a Coordinated Dive and Trackline Maneuver with a 10 N

Positive Buoyancy in the Presence of Simulated Wave Disturbances. Despite the near-constant aileron
saturation, the roll response stays within reasonable bounds. Of course, this is primarily due to the
sinusoidal nature of the disturbance and resultant sinusoidal yaw and pitch motion rather than by any control
authority exerted by the ailerons (refer to figures 4.17 and 4.27). Matters could be worse for a constant
disturbance affecting the roll DOF but it is difficult to imagine a natural phenomenon providing such a
disturbance. For instance, a cross-current - though constant - can not really "catch" the control surfaces
enough to cause the vehicle to start rolling as the force imposed on the upper control surfaces is
counterbalanced by the force imposed on the lower ones.
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Chapter 6

Conclusion

A full accounting of the conclusions drawn from this research and suggested

directions for continued investigation can be found in the preceding chapters. Section 6.1

provides an overview of the work summarizing the important results. Section 6.2

similarly summarizes the main areas where work remains to be done.

6.1 Summary and Conclusions

This study focused on the development of a six degree of freedom (6 DOF) robust

sliding controller to be used on a variety of UUV designs in dynamically difficult regimes

like shallow water as well as for complicated maneuvering such as hovering. As

indicated, such operating conditions require full consideration of the non-linearities and

coupling inherent in the UUV's equations of motion in addition to the parameter and

structural uncertainties posed by these equations.

The hydrodynamic theory necessary for the development of this 6 DOF sliding

controller was laid out in Chapter 2. Indeed, the main thrust of the development was the

identification of a particularly useful structuring of the UUV equations of motion so that
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the non-linear control techniques used in Chapter 3 would result in an elegant and

powerful controller. An important relationship between the vehicle- and earth-reference

frames was established.

Chapter 3 formulated the robust sliding controller which was shown to be stable

- assuming full 6 DOF control authority - from any vehicle configuration except at ± 90

degrees of pitch.

As full 6 DOF control authority is usually not available, an attempt was made to

develop a method to modify this sliding controller so that lesser degree of freedom

vehicles (in terms of available control authority) would perform satisfactorily. As

demonstrated with the 4 DOF 21UUV, this method - weighted least squares - is based

heavily on the non-minimum phase relationship between pitch/depth and yaw/trackline.

Finally, in Chapter 5, two related control issues - buoyancy control and wave

disturbance control/adaptation were briefly discussed and their connection with robust 6

DOF sliding control explored.

All developments i this study were extensively simulated, indicating that many

of the ideas presented in this thesis have some practical use.

6.2 Directions for Further Research

Although a considerable amount of design effort has been expended in the

development of the robust 6 DOF sliding controller, significant work remains to be done

before it can be practically used on the 21UUV or similar vehicles. The body and

hydrodynamic coefficients need to be as accurately computed as possible with good

101



estimates of the bounds on their ranges. A dynamic model of the propulsor needs to be

formulated and incorporated into the controller; dynamic models of the control surfaces

can also be incorporated (or the A matrix values in the sliding controller can be tuned

down where appropriate).

If the UUV to be controlled is similar to the 21UUV in terms of control authority

available (i.e. 4 DOF) then it is important to verify that the weightings in the weighted

least squares methodology. If the controller is to be used for a vehicle designed to hover,

then the D matrix in the equations of motion should be extended to include those

hydrodynamic terms that become important in this operating regime.

The variable buoyancy control ideas of Chapter 5 are easily implemented. Also,

the disturbance rejection/adaptation ideas in this chapter need to be incorporated with the

results of an adaptive controller developed in the sister study to this thesis - Willy [1994].
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Appendix I

21UUV Body and Hydrodynamic Coefficients

Body Coefficients - Assumed 5% uncertainty

= 15882 N
- varies
= 55.03 kg-m2

- 7100 kg-m2

- 1619 kg

XG

YG

ZG

XB=YB=ZB

= 2x10'6 m

- O m
= .005 m
= O m

Hydrodynamic Coefficients - Assumed 20% uncertainty

xuIUI
Xu

Xwq = Xvr
Yv=z,
Yr Zq
Y,=MZ
Y;=-z

Mq--Nr

Mq=N,

= -33.69 kg/m
= -41.5 kg
= -1818 kg

= -200 kg/m
= 770 kg

= -1619 kg

= -121.5 kg-m
= 849 kg
= -3066 kg-m
- -121.5 kg-m
= -7255 kg-m2

Xtsas-X6rar
X8a8a

Xr8rXqas

Y'S-Zss

K8a

Mrsa

Nqa

Nw 8a

= -6.89 kg/m
= -12.9 kg/m
= 5.25 kg/m
= -162 kg

= 11.5 kg/m
- -355 kg
= .556 kg/m
= -17.2 kg

= .556 kg/m
= 14.7 kg

= .080 kg/m

Notes: Notation of SNAME [1950] is used; for example,
term X Iuu u in the matrix D(v) of (2.23).

Xulul is the coefficient for the

All control surfaces are assumed to have ±20 degree range of motion.

The propulsor is not dynamically modelled as its design (for the 21UUV) is
largely unknown. Assumed a "perfect" thruster - delivers with no time delays -
what is commanded.
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