
An Emulation-Based Methodology for
Integrating Design, Testing and Diagnosis of

Application-Specific Integrated Circuits
by

Guru Sivaraman

Submitted to the

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

in partial fulfillment of the requirements for the degrees of

BACHELOR OF SCIENCE

and

MASTER OF SCIENCE

in Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

April 22, 1994

© Guru Sivaraman, 1994. All Rights Reserved.

The author hereby grants to MIT permissions to reproduce
and distribute coDies of/his thesis in whole or in part.

A u th o r ...
ADpartment of Electrical Engineering and Computer Science

/? - ------- ~-'~ ------ April 22, 1994

Certified by ' - ;__ ,- -....-. -.......-

Professor Gerald J. Sussman

Department lectrical Engineering and Computer Science
Thesis Supervisor

Certified by
Dr. Burnell G. West

(7~ ~) ~ Schlumberger Limited
n- 0(' n ompanv Supervisor

Accented hv
V V. W, .W .;

F.R. Morgenthaler
ittee on Graduate Students
ing and Computer Science

· '-V l..t. V] -- -- . - - -- - -

An Emulation-Based Methodology for
Integrating Design, Testing and Diagnosis of

Application-Specific Integrated Circuits

by

Guru Sivaraman

Submitted to the Department of Electrical Engineering
and Computer Science on April 22, 1994, in partial
fulfillment of the requirements for the degrees of

Bachelor of Science and Master of Science in Computer Science

Abstract

The current Application-Specific Integrated Circuit (ASIC) development cycle lacks com-
pleteness and efficiency because it isolates the tasks of design, test and debug, and because
of the constraints imposed by the performance bottleneck of software simulation. A new
emulation-based methodology is proposed which integrates design and test, making
design more efficient and making test generation and fault grading more rigorous. It also
introduces design understanding into the production test domain, presenting, for the first
time, the opportunity for production line diagnosis. The goals of this thesis were to evalu-
ate the feasibility of the proposed methodology and to identify the issues which need to be
resolved before it can fully be implemented.

A sample device was chosen as a test case for the model. Each stage of the proposed pro-
cess was implemented using this device. Due to the prohibitive cost of using a proper
commercial emulation system, the evaluation was performed using a simulation model
which we believe captures the nature of emulation sufficiently to provide detailed and
valuable analysis. As a result of the evaluation process, performance estimates were made
for the proposed technique which suggested a dramatic advantage over current techniques.
However, several key concerns were raised about the general applicability of the proposed
model to ASIC design tasks. The conclusion of our evaluation was that elements of the
proposed methodology offer substantial promise for improving the rigour and efficiency
of current design processes. Understanding the limits of their applicability is required to
implement them effectively. If the problematic issues we have raised are properly
addressed, and this perspective is maintained, then these techniques can be used to sub-
stantially enhance the design cycle.

Thesis Supervisor: Professor Gerald J. Sussman
Title: Matsushita Professor of Electrical Engineering

Thesis Supervisor: Dr. Burnell G. West
Title: Technologist, Schlumberger Limited

Acknowledgements

This research project gave me the opportunity to explore an idea which was originally
conceived by Burnie West at Schlumberger Limited. His guidance and support have been
invaluable to me in the course of my research. I have learned a great deal from Burnie,
both as a mentor and as a friend. He has infused me with a sense of the boundless possibil-
ities of research. This project could not have been completed without him.

I have had the privilege and pleasure to work with Gerry Sussman in the Artificial Intelli-
gence Laboratory. Gerry has broadened and refined my perspective on research within the
academic environment. He has helped me appreciate the classical ideal of the unselfish,
modest scholar who advances knowledge patiently and with honesty. For this I am deeply
grateful.

I would like to thank Mark Shirley, at Xerox PARC, for his advice at several stages in my
research. I am particularly grateful to two of my colleagues at Schlumberger: to Didier
Wimmers, for his tremendous assistance throughout the project; and to Givargis Danialy,
for his tireless energy and enthusiasm.

My deepest gratitude is to my family - Amma, Appa, Lalitha and Lars - to whom this
work is dedicated. Their boundless, unqualified love has been a constant source of inspira-
tion and sustenance to me; their sacrifice and support has made all of my achievements
possible.

I hear my father; I need never fear.
I hear my mother; I shall never be lonely, or want for love.

When I am hungry it is the) who provide for me; when I am in dismay it is they who fill me with comfort.
When I am astonished or bewildered, it is they who make the weak ground firm beneath my1 soul: it is in

them that I put my trust.
When I am sick it is they who sendfor the doctor; when I am well and happey it is in their eyes that I know

best that I am loved; and it is toward the shining of their smiles that I lift up my heart and in their laughter
that I know my best delight.

I hear my father and my mother and the), are my giants, my king and my queen, beside whom there are no
others so wise or worthy or honourable or brave or beautiful in this world.

I need never fear: nor ever shall I lack for loving-kindness.

James Agee (1956)

Table of Contents

I Introduction8
1.1 Abstract .. 8
1.2 Background ..9
1.3 IADE 10
1.4 The Thesis Project ...16
1.5 Outline of the Thesis .. 17

2 The ASIC Development Cycle .. 18
2.1 Introduction .. 18
2.2 A Syntax for Describing ASIC Development .. 18
2.3 The Current Method 20
2.4 The Proposed M ethod ..25
2.5 Implementing the Proposed M odel .. 39

3 Design and Verification 42
3.1 Introduction 42
3.2 The Sample Circuit ..42
3.3 The Environment M odel .. 46
3.4 Results50

4 Test Generation and Fault Grading 54
4.1 Introduction .. 54
4.2 Test Generation .. 55
4.3 Fault Grading .. 58
4.4 The Fault Model 58
4.5 M odeling a Faulted Signal 59
4.6 Control Apparatus 61
4.7 Initialization .. 63
4.8 Reporting 64
4.9 M odeling Issues ...66
4.10 Performance 67
4.11 Results ..69

5 Production Line Testing 72
5.1 Introduction .. 72
5.2 The S9000 Test Program Architecture ..72
5.3 Issues in Conversion ..73
5.4 Testing the Sample Circuit .. 74
5.5 Results .. 77

6 Production Line Diagnosis 80
6.1 Introduction80
6.2 Diagnosis Strategies 81
6.3 Structural Diagnosis 81
6.4 Behavioural Diagnosis 85
6.5 Analysis of Faulty Parts ... 86
6.6 Diagnosis Results 90
6.7 Conclusions ..100

7 Conclusion 102
7.1 Project Results .. 102
7.2 M ethodology Issues ... 102
7.3 Em ulation Issues .. 103
7.4 Conclusions 104

References 106
Appendix A ... 108
Appendix B 126
Appendix C 144
A ppendix D 168
A ppendix E .. 182
A ppendix F .. 202
Appendix G 220

List of Figures

Current ASIC Development Model ... 11
IADE Development Model 13
A Syntax for Describing ASIC Development .. 19
New Elements in the Proposed Method 26
Device-System Interaction in Current Methods .. 27
Device-System Interaction in IADE 28
IADE Model for Design Verification 29
IADE Model for Fault Grading 32
IADE Model for Production Line Testing 35
IADE Model for Production Line Diagnosis .. 38
Schematic of Formatter System ... 51
Schematic of Environment Model 52
The Environment-Formatter System ... 53
Model for a Faultable Gate 60
Timing Generator Module 75
Formatter Characterization Module .. 76

Figure 1.1:
Figure 1.2:
Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 2.6:
Figure 2.7:
Figure 2.8:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 4.1:
Figure 5.1:
Figure 5.2:

List of Tables

Table 4.1: Fault Select Coding .. 61
Table 4.2: Sample Entries from Fault Dictionary .. 65
Table 4.3: Performance Measurements for Fault Grading Process68
Table 4.4: Fault Grading Results .. 70
Table 5.1: Production Test Results for Formatter Characterization Modules78
Table 6.1: Failing Test Vectors for Chip 13 ... 90
Table 6.2: Failing Event Region for Chip 13 .. 91
Table 6.3: Failing Event Group for Chip 13, New Test Set ..92
Table 6.4: Failing Test Vectors for Chip 16 ... 93
Table 6.5: Failing Event Region for Chip 16 ... 93
Table 6.6: Failing Event Group for Chip 16, New Test Set ..94
Table 6.7: Failing Test Vectors for Chip 15 .. 95
Table 6.8: Failing Event Group for Chip 15 ... 96
Table 6.9: Failing Test Vectors for Chip 19 ... 98
Table 6.10: Failing Event Group for Chip 19 ... 99

Chapter 1

Introduction

1.1 Abstract

The current Application-Specific Integrated Circuit (IC) development cycle lacks com-

pleteness and efficiency because it isolates the tasks of design, test and debug, and because

of the constraints imposed by the performance bottleneck of software simulation. A new

emulation-based methodology is proposed which integrates design and test, making

design more efficient and making test generation and fault grading more rigorous. It also

introduces design understanding into the production test domain, presenting, for the first

time, the opportunity for production line diagnosis. The goals of this thesis were to evalu-

ate the feasibility of the proposed methodology and to identify the issues which need to be

resolved before it can fully be implemented.

A sample device was chosen as a test case for the model. Each stage of the proposed

process was implemented using this device. Due to the prohibitive cost of using a proper

commercial emulation system, the evaluation was performed using a simulation model

which we believe captures the nature of emulation sufficiently to provide detailed and

valuable analysis. As a result of the evaluation process, performance estimates were made

for the proposed technique which suggested a dramatic advantage over current techniques.

However, several key concerns were raised about the general applicability of the proposed

model to IC design tasks. The conclusion of our evaluation was that elements of the pro-

posed methodology offer substantial promise for improving the rigour and efficiency of

current design processes. Understanding the limits of their applicability is required to

implement them effectively. If the issues we have raised are properly addressed, and this

8

perspective is maintained, then these techniques can be used to substantially enhance the

design cycle.

1.2 Background

ASIC (Application Specific IC) development has undergone tremendous changes in the

past 30 years. The process of designing, testing and diagnosing ASICs has benefitted

immensely from the emergence of computer-aided design, automatic test generation, and

circuit simulation technologies. As the computational power available to developers sky-

rockets, and as the price of that power plummets, ASIC development is gradually evolving

from a manual, time-intensive process to one that is increasingly automated and intelli-

gent.

However, the most modern development cycles are still inefficient and wasteful of

resources. There is still too much dependence upon manual design and verification.

Devices are still released into the marketplace before they have thoroughly been validated.

The development cycle (design, test and debug) is not integrated, with the result that

designers do not take advantage of the opportunities that exist for saving time and effort

by automating.

What is most strange is that there are clearly more powerful and effective methodolo-

gies for developing ASICs than those currently in use. Why is it that chip designers and

manufacturers do not take advantage of these alternatives? The reason these approaches

are not in use is that they are constrained by the technology bottleneck of software simula-

tion. Although they offer more rigour and efficiency, the computational power required to

implement them is not readily available.

9

1.3 LADE

IADE (Integrated ASIC Development using Emulation) is a proposed methodology for

ASIC design, testing and diagnosis, that provides the conceptual completeness, rigour and

efficiency that is lacking in current approaches, and promises far better performance than

current techniques. It circumvents the computation bottleneck by employing logic emula-

tion, a novel technology that promises both the power and the performance required to

implement it.

IADE integrates design, test pattern generation, fault coverage analysis and produc-

tion-line diagnosis to make the product development cycle both more rigorous and more

efficient. Based upon the new technology of programmable hardware emulation, this

methodology overcomes the present bottleneck of software simulation in the design and

testing cycles. By doing so, it gives designers the flexibility to design for testability. the

power to perform thorough and meaningful test generation and fault coverage analysis,

and the opportunity to diagnose device failure at the structural testing phase.

1.3.1 IADE vs. the Current Paradigm

IADE combines the process of integrated design validation with production-line test diag-

nosis to provide a coherent top-down methodology for ASIC development. The structure

and rigour it introduces to system design enhance the efficiency, thoroughness and flexi-

bility of the entire design process. It should be noted that the effectiveness of this new

methodology is made possible for the most part by the tremendous performance capabili-

ties of hardware emulation.

The way in which IADE changes the process of design. test and debug in ASIC devel-

opment can be best summarized by following the entire flow of a particular design. Fig-

ures 1.1 and 1.2 illustrate the development models for current processes and for the

proposed IADE methodology.

10

Z)
w

*PA

Q)
w)

I

w
4)

O
*i

QE
O

A
C..

Figure 1.1: Current ASIC Development Model

11

j j I

A typical current process is illustrated in Figure 1.1 After design of the device is

achieved and committed to production, test generation produces a test set that will validate

the device during manufacturing. This test set is typically generated automatically using

structure from design files. Fault grading is used to determine the coverage of the test set.

This is currently done using simulation. As devices become increasingly complex, test

generation and fault coverage analysis using simulation succumb to time pressure, with

the result that designs are often released into production with test sets for which the actual

fault coverage has not been determined.

When the design has been committed to production and the test set has been com-

pleted, the process of production testing begins. The tester environment has three main

conceptual elements: the test pattern store and control section, the test head electronics

which controls the actual patterns applied to each pin of the device, and the Device Under

Test. The test program which is stored in the control module consists of two parts: the

stimulus values to be applied to the DUT, and the output values expected in return.

This program is loaded and configured in the control module, patterns are applied via

the test head to the DUT, and the result is that the device either passes or fails. The tester

has no inherent knowledge or the DUT's design or intended functionality. The bulk of its

complexity goes to managing and storing the test set, and to controlling precise timing of

events to the test head.

Figure 1.2 illustrates the proposed IADE mechanism for ASIC design, test and debug.

Each phase of development uses a system in which two models of the device are exercised

in parallel. In the first phase of development, the design process results in a behaviour

model for the device. In the course of designing the device and specifying its interfaces,

the engineer develops a rigorous description of the device's intended range of use.

12

0rAOM
* -

00tX
U

Figure 1.2: IADE Development Model

13

to

I

.w

4)
19

*;I

19

E

E

W

A AXc,00 .

44

!-

m-

._

l

This can be used to create an environment-level stimulus set that reflects the full range

of the device's intended behaviour. The next step is to create the interface between this

high-level behaviour description and the device's specific inputs and outputs. This results

in the environment model for the device.

The device model is instantiated twice in the design verification system. Device A is a

"clean" model, and Device B is a model which can selectively be injected with faults. Ini-

tially both models are fault-free. The environment model and the two device models are

implemented in gate-array emulation.

Test generation from this point is automatic. There is no need to use software to ana-

lyze the design files and produce a test set; instead, by specifying the complete functional

behaviour of the device in the stimulus set for the environment, the engineer has com-

pleted the task at a higher (and more abstract) level. The environment will take the stimu-

lus description and generate automatically the specific test patterns which that entails. Test

generation, therefore, is complete and automatic. Fault grading is also automatic. The

stimulus set is applied in parallel to the good and faultable models.

The outputs are compared. When the stimulus set is inadequate to discover injected

faults, then the model can be revisited to identify redundancy or poor design. In this way,

design is integrated with test generation before committing to silicon. Emulation also

allows this process of test generation and fault grading to proceed at hardware speeds, and

therefore makes it possible to perform complete validation before committing to produc-

tion.

When the design has been optimized and finalized, production testing takes place. In

this phase, the "good" model for Device A is discarded, and replaced by the production

DUT. The DUT (Device A) and the faultable model (Device B) are then exercised in par-

allel. The patterns produced by the environment model, which is implemented in emula-

14

tion, are fed directly to the test head electronics and then to the DUT. As a result, the

physical tester itself does not require the complex memory management and pattern con-

trol subsystem which stores and applies the statically created device-level test set used in

current models.

Instead, the equivalent of this test set is generated automatically by the environment

model. All that needs to be stored now is the environment stimulus set, which is consider-

ably smaller and more abstract. As a result, the tester environment is smaller and more

efficient. It relies upon the emulation subsystem to generate and feed it the patterns it

needs to apply to the pins of the DUT. Moreover, the emulated "faultable" model of the

device can now be exercised in parallel with the actual DUT to diagnose cluster failures in

production. By comparing the outputs from the DUT (Device A) with those from the

selectively "faultable" emulation model (Device B), it is possible to diagnose and localize

faults which result in device failure. IADE therefore changes the nature of the design and

test flow by introducing emulation and environment modeling into the process to provide

for dynamic, on-the-fly test generation, and to make unnecessary the sophisticated test

control mechanisms which make up the bulk of the complexity of modem testers. It also

provides on-the-fly and complete fault coverage analysis, and allows for production line

diagnosis of failures.

There are some drawbacks to using IADE. First, emulation models of devices can be

run at hardware speeds, but in most cases they cannot yet be run at the speeds of the

devices under test. Moreover, unlike simulation, emulation does not provide accurate tim-

ing information or information about indeterminate states. Consequently the use of IADE

is strictly for functional verification. A timing analyzer would have to be incorporated into

the system to complete timing verification. However, it seems that using emulation in

combination with simulation in this manner would greatly improve the simplicity and effi-

15

ciency of design and test. Emulation technology is also rapidly progressing to the point

where running speeds of 100 MHz and greater are conceivable in the near future.

1.4 The Thesis Project

This paper describes a thesis research project whose goals were to evaluate the feasibility

of the IADE methodology, and to assess the issues which need to be resolved before it can

be implemented fully in the design environment. This was achieved by implementing the

proposed techniques using a test device being developed at Schlumberger for use in their

commercial automatic test equipment (ATE).

The prohibitive cost of commercial emulation systems forced us to conduct our analy-

sis entirely in simulation. This raises the question: how effective could our study be with-

out actually using an emulation system? Consider that there are two aspects to the

evaluation: we wanted to estimate quantitative performance characteristics of the pro-

posed model; we also wanted to develop a qualitative understanding of its weaknesses or

limitations. Performance comparisons can be made without actually implementing the

model in emulation: given cycle length measurements for the simulation model, we can

estimate the real time performance of the equivalent emulation model by using a projected

emulation clockspeed. For qualitative analysis, we believe that designing the system rigor-

ously for emulation would capture emulation issues sufficiently to provide substantial

material for analysis, regardless of whether that system was subsequently implemented

using simulation or emulation. We are aware that the proposed model needs to be imple-

mented properly in emulation in order to understand all of the issues involved. Neverthe-

less, we are confident that our initial simulation-based analysis clarifies several key issues,

refines our understanding of the concept and identifies directions for future research, at a

16

low cost comparatively. It has, we believe, provided the groundwork for more resource-

intensive analysis in future.

1.5 Outline of the Thesis

This paper has three main sections. The first section analyzes the drawbacks of current

development cycles. and the means by which IADE attempts to address them. This over-

view is provided in Chapter 2. The second section describes our test implementation of the

methodology, for each phase of the design process. Chapter 3 discusses the specification

and design phase. Chapter 4 describes our implementation of fault grading. Chapter 5

describes the process by which we conducted functional verification of physical devices in

the production test environment. In Chapter 6, we explore and assess various approaches

for diagnosing failing physical parts in production testing. Finally, in Chapter 7, we sum-

marize our results and identify areas for further research.

17

Chapter 2

The ASIC Development Cycle

2.1 Introduction

The process of developing ASICs consists of five main phases. The first stage is specifica-

tion and design of the device. This includes behaviour description, gate-level implementa-

tion and design verification. The second stage is development of a production-line test set

for the device. Once a production set is created, it needs to be fault-graded. This involves

establishing requirements for the fault-coverage of the test set, and analyzing the test set to

verify that it meets those requirements. The fourth stage of development is production-line

testing of manufactured parts using this test set. The final phase is production-line diagno-

sis of cluster failures, which may occur because of process variance or narrow margins in

the design. Diagnosing cluster failures feeds back to design of next-generation devices.

This chapter begins by defining a syntax for describing ASIC development. It then

compares the phases of development in a typical current method with those in the pro-

posed method. It describes the drawbacks of currently used methodologies, and the means

by which IADE addresses those flaws. It then presents the details of the proposal, and the

conceptual basis for its design. Finally, it describes the process by which we will evaluate

the proposed methodology.

2.2 A Syntax for Describing ASIC Development

Understanding the goals of the proposed ASIC development methodology first requires

developing a syntax with which to describe unambiguously the different steps which take

place in the development cycle. Using this syntax we can then examine current techniques

18

Figure 2.1: A Syntax for Describing ASIC Development

and their limitations, and understand how those limitations are addressed by the proposed

method. We begin by defining a set of terms which will form the building blocks of our

syntax, shown in Figure 2.1.

The first group of terms distinguishes between different device models, each of which

is written using a Hardware Definition Language (HDL) such as Verilog: the behavioural

HDL model (DB); the gate-level HDL model (DG); and the gate-level HDL model into

which a particular fault n has been injected (DGn). The second group of terms distin-

guishes between different test sets: the test set designed to exercise functionality (FD); and

the test set designed to exercise all paths in the device structure (FS). When a test set x is

19

DB - Device - Behaviour Model

DG - Device - Gate-Level Model

DGn - Device Gate-Level Model Injected with Fault n

FD - Functional Test Set (Device Level Stimulus)

SD - Structural Test Set (Device Level Stimulus)

f(x) - System f applied with test set x

f(X) = g(X) Af(X) = g(x) at each time-step in which f(x) and g(x) are strobed

P - Fabrication Process

W - Wafer

P(DG) = W - Process P is applied to gate-level model DG to produce wafer W

DUT - Device Under Test

CR - Fault Coverage Required

CM - Fault Coverage Measured

applied to a devicef, its outputs are denoted byf(x). We say that two devicesf and g are

equivalent (denoted by -) across a test set x if, for all time steps in which they are strobed,

f(x) equals g(x). The next set of expressions describes the process by which a production

wafer is created from a gate-level device model. Finally, CR and CM are used to describe

the required and measured fault coverage values for a particular test set.

We will use these terms to develop expressions which describe each step in the ASIC

development process, both for current methods and for the proposed method. This will

provide a clear basis for comparison between the two processes.

2.3 The Current Method

The following sections describe each of the phases of ASIC development within a typical

current methodology. What constitutes a typical current methodology? It is important to

understand that there is no "set" methodology for developing ASICs. In different design

environments, engineers combine available resources with extant process understanding

and experience to create design flows which are unique to those environments. Despite

this diversity of techniques, we can group design flows into two broad categories: those

which are most primitive, relying mainly on manual analysis, and those which make

extensive use of fairly sophisticated simulation and modeling tools. We will concentrate

our comparison on the latter.

2.3.1 Design and Verification

The first step in designing a device is to develop its behaviour specification. In con-

temporary environments, this is usually done by developing a functional behaviour model

of the device, DB, using HDL tools. This model defines the input/output behaviour of the

device (its functionality) without constraining it to any particular gate-level implementa-

20

tion. Once the behaviour model is specified, design engineers produce a gate-level imple-

mentation DG, either by hand or by using synthesis tools.

The next step in a typical process is to develop a functional test set for the device, FD.

This test set is then used to verify that the gate-level model of the device exhibits its

required functionality. FD is applied in simulation to both DB and DG , and their outputs

are compared. DG passes this test if:

DG (FD) DB (FD) (2.1)

Once DG is verified, the designer's task is considered done. The design is then passed

to the test engineering and manufacturing environments.

2.3.2 Test Set Generation

Test engineers begin their task with the assumption that the gate-level design DG is

correct and does not need modification. Their first task is to develop a production test set

for the device. This set is frequently different from the functional test set FD used to verify

the gate-level model. Usually, it follows the structure of the gate-level model and is

designed to exercise all of the paths in DG. This test set is denoted by SD . Although auto-

matic test generation software is occasionally used for test development, this task is more

commonly done laboriously by hand. The test set that results is expected to exercise the

design properly and completely.

2.3.3 Fault Grading

The fault coverage of a test set is measured relative to a particular device and a partic-

ular fault model. A fault model is simply a set of faults which could exist within the phys-

ical device. For example, the single-stuck-at input fault model considers all situations in

which (exactly) one input to (exactly) one node of the device is stuck to zero or stuck to

one. Choosing a fault model produces a set of N possible faults to consider in testing the

21

device. Consider the case of a device with P nodes, each of which has, on average, Q input

signals. In this case, a single-stuck-at input fault model produces N possible faults, where

N = 2(P.Q) (2.2)

For each situation n of the N total possible situations, the test set is applied to the

device to determine whether or not it can detect the fault. Fault coverage is given as the

proportion of all N possible faults for which the test set SD can detect the difference

between the device injected with the fault (DGn) and the clean device (DG):

(Enl (DG (SD) G (SD) (2.3

Fault coverage is measured using software simulation tools. This process can often

takes upwards of several weeks. Because of the performance limitations of software simu-

lation, the designer is frequently forced to fabricate the circuit before fault-grading is com-

pleted. This has two consequences:

First, there is no opportunity for fault-grading results to feed back into design on the

same iteration, as the circuit has already been committed to fabrication. The design is

revisited only if there is a major functional failure on the wafer produced by the first fabri-

cation:

W(SD) Z DB (SD) = DG - DG' (2.4)

Second, the fault grading results themselves diminish in significance. If the chip is fab-

ricated successfully, fault coverage measurements are sometimes considered useless when

they finally arrive, and therefore discarded. Occasionally, if the design is fabricated suc-

cessfully, but the fault coverage is insufficient, the test set is extended until the desired

coverage is achieved:

CM CR = SD SD ' (2.5)

22

If the first wafer produces errors, and the design is modified, the initial fault grading

model is clearly invalid, and needs to be re-started using the new design.

A much more subtle limitation of this method of test validation is that there is no

opportunity for test generation or fault grading to critically question the efficiency or opti-

mality of the gate-level design of the device. The designer is, at once, attempting both to

test the gate-level design DG, and to validate the test set SD. Since the test set is based

upon the structure of the gate-level model, the presumption is that a priori the design

meets its functional requirements optimally and that it remains only to exercise every path

in the circuit. In this approach, the automatic pattern generation tools are not concerned

with the functionality of the device, but merely with its structure. As a result, the key ques-

tion, whether the device does what it should, is discarded prematurely when the design

phase ends. It is possible only to verify that the circuit matches the structure defined for it.

Because of its circular nature, this process becomes iterative: the initial design is fabri-

cated and exercised by the initial test set; this run may identify errors in the design or dem-

onstrate incompleteness in the test set. If this occurs, the design and test set are corrected

and updated, and the design is re-fabricated. The cycle is repeated until no further errors

are detected. Ultimately, personal inspection of the circuit and the test set by design engi-

neers is required for final approval of the design.

2.3.4 Production Line Testing and Diagnosis

Once the design has been committed to final production, and the production test set SD

has been finalized, the next step is to convert the test set into a production test program

which can run on commercial Automatic Test Equipment (ATE). The test program con-

tains two elements: the actual stimulus applied to the device as input, and expected output

data which would be generated from a clean device. Once this set of test vectors is deter-

mined, it is programmed on the assembly-line ATE machine by production test engineers.

23

The production test engineer is unaware of, and indeed, unconcerned with the details of

the design and test generation phases. In fact, in many cases, designs are committed to

production for which full verification and fault-grading have not been completed, due to

the time constraints of product schedules.

The ATE machine tests each DUT on the production line as follows:

DUT(SD) = {PASS,FAIL} (2.6)

Two main problems can occur in production of a device:

First, devices are sometimes passed by the test program which subsequently fail in the

field: these are known as test escapes. The main reason for this problem is that the test set

was not properly validated to achieve a level of fault coverage sufficient to handle most

field situations. In this case, current methods require the test set to be extended specifically

to identify each source of field failure.

Second, the situation frequently occurs in ASIC development and production that a

well-designed, well-validated device exhibits an alarming or unacceptable number of clus-

ters of failures in assembly line structural testing. There are a few possible reasons for this

phenomenon. One reason may be that in the course of the product's lifetime, process vari-

ance becomes significant enough to cause chronic failures. Another common reason is that

the mask is defective. Often, devices that have adequate thresholds have their specifica-

tions tweaked in such a way as to reduce thresholds and render their designs marginal. For

example, a good design at 33 MHz might become shaky and unreliable at 66 MHz. In sit-

uations of unacceptable yield, current techniques provide no means by which to diagnose

DUT failures on the assembly line.

This proceeds from the basic design of ATE equipment: The first responsibility of the

ATE architect is to design equipment which exercises the device with the multi-million

24

test vector set supplied by the customer in as little time as possible, with as much flexibil-

ity as possible to examine test result data. The customer (IC designer) configures the

equipment with their production test set, and this chip tester is used on the production floor

to test each device that is manufactured. There is no design understanding inherent in the

current ATE architectures. They are simply large control and memory structures focussed

upon timing accuracy and data measurement and analysis capability.

In spite of this, the design of the tester is surprisingly complex, for two reasons. First,

since many modern devices are both large and fast, applying test patterns to hundreds of

pins at speeds faster than the devices themselves (many devices today run at speeds

upward of 100MHz) is a challenging task. Second, a fair portion of the tester's complexity

is devoted simply to storing and controlling the flow of millions of test vectors. Conse-

quently, testers are large, expensive, and difficult to maintain.

2.4 The Proposed Method

The method proposed in this research project begins by introducing the following new ele-

ments to the syntax described in Figure 2.1. These are illustrated in Figure 2.2. These

additions arise from the observation that describing the average device in terms of its

input/output behaviour is a very ineffective way to represent its functionality. At the

device boundary, behaviour can be described only in terms of transitions in input and out-

put signals. This type of low-level state table does little to convey the general functionality

of the device. Consider the example of a 32-bit counter. The state table required to

describe the behaviour of this device would be enormous in size. Yet, understanding the

functionality of the circuit can be understood much better by abstracting away from its I/O

boundary and understanding its role within a larger system.

25

Figure 2.2: New Elements in the Proposed Method

2.4.1 The Environment Abstraction

The proposed method introduces the concept of modeling both a device and an

abstraction of its environment. The environment model is any model which abstracts from

the device boundary to some higher-level description of the device's functionality. The

purpose of this abstraction is to clarify the intended functionality of the device and to sim-

plify the task of determining its required functionality. The environment model of the

device is itself a device, which can be implemented behaviourally (EB) or structurally

(EG). The environment abstraction should be specified in such a way that the environment

level stimulus FE is simple to define and clearly reflects the functional behaviour of the

device. The extent to which the environment abstracts from the device is arbitrary. At one

extreme, the environment can be an empty box, providing no abstraction. In this case, the

environment level stimulus FE and device level stimulus FD are identical. At the other

extreme, the environment models the entire system in which the device operates. In this

case, the entire system must be implemented in the environment, and the environment

level stimulus FE could be as simple as a "Start" button. Typically, the environment

abstraction will lie somewhere between these two extremes, the goal being to make the

abstraction powerful enough to actually simplify functional specification without making

it so powerful that the task of implementing the abstraction becomes equivalent to

26

EB - Environment - Behaviour Model

EG - Environment - Gate-Level Model

FE - Functional Test Set (Environment Level Stimulus)

Figure 2.3: Device-System Interaction in Current Methods

developing all of the devices with which the original design interacts. Those details which

are unimportant to the functionality of the device should be omitted from the model of its

environment.

Once the environment abstraction is determined, it should follow that:

E (FE) = FD (2.7)

Thus, if the environment abstraction is correct, it should translate the high level stimu-

lus set FE into the device level stimulus FD. Furthermore, if expression 2.7 is true, then it

also holds true that:

D (E(FE)) =D(FD) (2.8)

Traditional techniques reflect a model in which the device D is exercised and analyzed

directly across the device input/output interface (Fig. 2.3). The proposed method describes

a model in which the device D is exercised and analyzed through the environment model

E (Fig. 2.4). The environment abstraction is a crucial element of the proposed methodol-

ogy. It provides the means for detaching test validation from the gate-level implementa-

tion of the device, thereby allowing fault grading to feed back effectively into design. This

process is described in the following sections.

27

ED

A.,

Figure 2.4: Device-System Interaction in IADE

2.4.2 Design and Verification

The IADE model for design and design verification begins with the specification of the

device and the environment abstraction. This produces the HDL models DB and EB. At

this point, it should be fairly straightforward to determine the basic functional test set for

the device, defined at the environment level as FE.

Once these elements have been defined, the first step is to verify the correctness of the

environment model. The environment model makes the correct abstraction from high level

stimuli to device level stimuli if:

EB (FE) = FD (2.9)

where FD now represents the device-level functional test set.

The next task is to develop a gate-level model DG for the design. The gate-level imple-

mentation can be performed either manually or by using synthesis tools. This model can

then be verified in simulation by using the model illustrated in Figure 2.5. The test control

apparatus applies the test set FE to the environment model EB which produces the device-

level test set FD. FD is applied in parallel to the gate-level and behavioural models of the

28

E (FE) = FD

.i.

Figure 2.5: IADE Model for Design Verification

29

device, DG and DB. The outputs of these devices are then compared at intervals which are

clocked by the test control module. The gate-level model of the device is correct if:

DG (EB (FE)) = DB (EB (FE)) (2.10)

This process is performed in simulation because it involves behavioural models of the

device and the environment. If this has been confirmed, we know that the gate-level

implementation we are testing at least satisfies its requirements.

Once the gate-level device model has been developed and verified, the environment

model must also be implemented at gate level. When gate-level models are achieved for

both the device and its environment, functional verification need no longer be constrained

to run in simulation. The proposed fault grading and production test environments use

these gate-level models to take advantage of hardware emulation, which requires gate-

level design models. It should be noted, however, that implementing a gate-level environ-

ment model EG is not as complex as implementing the gate-level device model DG,

although initially this appears to be the case. Why is this? The reason is that DG is the final

product of the entire development process, and consequently, needs to be implemented as

cleanly and efficiently as possible. In fact, optimizing DG is the goal of the entire design

process. Since EG is simply a tool to facilitate verification and production testing, it is not

necessary to exhaust every effort to make it smaller or faster. Even if it is not optimal, it

can still serve its purpose within the system. Indeed, the goal in implementing EG should

be to produce a functioning gate-level model with the minimum amount of effort. This

should not be too difficult to achieve using, for example, basic synthesis tools. EG is func-

tionally correct if:

EG (FE) = EB (FE) (2.11)

which can be verified using simulation.

30

2.4.3 Fault Grading

The next phase in the proposed method is fault grading. Unlike in typical current pro-

cesses, fault grading is performed before the gate-level design is committed to fabrication.

As a result, the opportunity exists to modify the design as a result of fault grading mea-

surements, an opportunity which is missed by most current development cycles.

The proposed model for fault grading is illustrated in Figure 2.6. In this model, the

behaviour model of the environment EB is discarded and replaced with the gate-level

environment model EG. Similarly, the behaviour model of the device DB is discarded and

replaced with a second gate-level model of the device. One of these device models func-

tions as a "good" model, denoted by DG, which corresponds to the correct gate-level

design. The other device model is used as a "faultable" model, denoted by DGn . This

means it can selectively be injected with faults which correspond to the fault model being

used for fault grading, as described in Section 2.3.3. This "faultable" device model can be

controlled by means of a fault selector mechanism.

Fault grading of the test set is performed by applying FE to the environment model,

and applying its output FD in parallel to both "good" and "faultable" device models. When

the comparator mechanism detects a difference in the outputs of these models, then the

test set has successfully detected the fault n with which the "faultable" model was

injected. The fault selector sequentially injects DGn with each possible fault in the fault

model. Each time a different fault is injected, the test set is run again and the outputs of the

two models are compared. In this way, we can establish the fault coverage of the test set

as:

(nl (DG)) G (E (FE)) D)
CM- (2.12)M In

31

0 0~~~~~~~~~c

Figure 2.6: IADE Model for Fault Grading

32

C)~
O

*laz
EH

E;'

Because we have replaced all behaviour models in the system with gate-level models,

the entire process can now be implemented using hardware logic emulation.

As a result, fault grading can now run at hardware speeds. This is the crucial difference

between the proposed process and current techniques: even the most basic current emula-

tion systems run at speeds of 5 to 7 MHz, while current fault grading simulation tools run

at speeds of cycles per second. The performance improvement is several orders of magni-

tude. In the computer industry, it is often said that if a performance improvement in a par-

ticular area is substantial enough, it will cause a paradigm shift in that area by enabling

new architectures and methodologies to develop, and by shifting the focus of future devel-

opment to the new bottlenecks which emerge. This is the case with the change from simu-

lation technology to emulation technology.

Fault grading using simulation can take upwards of several weeks to perform, depend-

ing upon the size of the device and the breadth of the fault model. The performance gain of

5 to 6 orders of magnitude that is enabled by emulation means this task can now be com-

pleted in minutes or hours. As a result, fault grading can be completed, and in fact re-iter-

ated several times, before the production schedule requires the design to be committed to

fabrication. How can fault grading feed back effectively into design? To understand the

potential of this process, we will consider the following situation in fault grading:

When faults are injected into the "faultable" model which are detected by none of the

test patterns in the existing set, the designer is faced with three possibilities: a) the current

set of test patterns is inadequate for the full verification of the device; b) the fault lies out-

side of target fault coverage requirements, and therefore need not be detected to satisfy

current coverage requirements; c) the fault is not detected by any pattern in the current test

set, but it does not affect the functionality of the device within its environment.

33

The first possibility demonstrates the process by which IADE enables incremental test

set generation for complete verification of a device. The second possibility demonstrates

the effectiveness of IADE in providing fast, thorough, fault-grading of a set of test pat-

terns. The third possibility demonstrates the power of IADE as a tool for iterative design

optimization. In the third case, the emergence of an undetected fault which does not affect

the high-level, environment functionality of a device suggests the possible redundancy of

that part of the circuit into which the fault was injected. The designer is not bound to the

specific implementation of the circuit because test generation is done at a higher, environ-

ment level. This abstraction barrier isolates test generation from the specific circuit imple-

mentation of the target device. Test generation instead incorporates knowledge of the

device's required functionality to constantly revisit every part of the circuit. As a result,

fault grading now forces the designer to justify all elements of the design in terms of the

device's required functionality. This process of challenging and rationalizing the design

forms a feedback path which allows test generation and fault grading to make circuits

more efficient and more testable. This is the advantage of integrating design and test in the

IADE methodology

2.4.4 Production Line Testing

The production testing model in the IADE methodology differs significantly from the

current paradigm. Instead of using test programs which embody stimulus input values and

expected output values, the proposed model generates both input values and expected out-

put values on-the-fly, in the same manner as fault grading. This model is illustrated in Fig-

ure 2.7.

As in the fault grading model, two devices are exercised in parallel by the environment

using the final test set. One of the devices is an emulated gate-level model DG, and the

second device is now the physical Device Under Test (DUT), which resides on the

34

Figure 2.7: IADE Model for Production Line Testing

35

physical test head and is exercised by the outputs of the environment model. As before,

the environment is implemented in emulation.

The component tester is given a much smaller role than it has currently: it now

receives the outputs of the environment model as they are generated on-the-fly and applies

them to the DUT. Because of the nature of emulation, it makes no difference to the emu-

lated environment model whether it is interacting with an emulated model or an actual

device.

The emulated environment applies the test set to the two models in parallel. When the

outputs of the DUT and the gate-level emulation match for all of the tests, the DUT has

passed:

DUT (EG (FE)) = DG (EG (FE)) (2.13)

If they do not match, the DUT fails.

The advantage in this technique is that knowledge of the device's design is introduced

into the production testing environment. As a result, the tester need not have any of the

bulky memory-management apparatus that is has in current technologies. Now the tester

mainly consists of the electronics necessary to apply drive and strobe events as they are

produced by the environment. The abstraction introduced by the environment model

makes the test set that is actually used much smaller than it is in today's process. Storing

this test set is a much smaller and simpler task. Converting this test set into the millions of

device test vectors that it represents is the task of the environment.

Although current emulation technology does not always permit the DUT and gate-

level emulation model be exercised simultaneously at device speeds, it is advancing fast

enough that within a short time it will be possible for the entire system to run at device

speeds, in the range of 100 MHz and beyond.

36

The advantage of IADE is not only in the relative simplicity it brings to the tester

domain, through the use of abstraction. It also introduces the potential for intelligent test-

ing, by incorporating design understanding into the tester environment.

2.4.5 Production Line Diagnosis

The proposed model for production line diagnosis is illustrated in Figure 2.8. This

model is essentially identical to the model for production testing, with the addition of a

diagnostic fault control system which can inject faults selectively into the emulated gate-

level device model, now labelled DGn.

During normal production testing, DGn, which is exercised by the environment is ini-

tially free of faults. The DUT and this clean "faultable" model are then exercised in paral-

lel by environmental stimulus. If the comparison signal shows the device outputs of the

DUT and the device outputs of the "faultable" model to be identical, then the DUT passes

verification. If the comparison signal shows the outputs to be different, then the failing

output signature and the test vector at which the outputs differ indicate the area of failure.

At this stage, faults can be sequentially injected into the "faultable" model, and the test

set applied to both models for each fault n. This process can be used to systematically

characterize and localize the fault in the DUT. If the output patterns for the "faultable"

model match those for the DUT, that is, when:

DUT (EG (FE))= D (EG (FE)) (2.14)

then the fault which exists in the DUT corresponds to the fault which has been injected

in the "faultable" model. The process of injecting faults into the "faultable" model in an

intelligent and insightful manner is a crucial area of research in this project. The "intelli-

gence" and usefulness of the test equipment ultimately reflect the effectiveness of its algo-

rithms for identifying routes of inquiry and diagnosis.

37

0
u
r

Figure 2.8: IADE Model for Production Line Diagnosis

38

2.5 Implementing the Proposed Model

Having established the main elements of the proposed design cycle, we faced the chal-

lenge of exploring this model effectively given the limited time and resources which con-

strained our study. We decided that the most straightforward analysis would consist of

implementing the model using an existing device as its basis. The device we chose to

examine is a custom IC used internally in one of Schlumberger's Automatic Test Equip-

ment (ATE) products. This IC underwent real design, test generation and fault grading,

during the period in which we conducted our study. As a result, we were able to follow the

development of the actual device in a current design cycle, while simultaneously modeling

it in our proposed methodology. We could therefore compare the effectiveness of the two

approaches on the same device. As well, we could take advantage of development tasks

which had already been completed for the device, such as gate level implementation.

Finally, this approach allowed us to test our proposal on actual production parts, and to

explore diagnosis on failing parts.

Implementing our proposal required several steps. We were initially given behaviour

and gate-level models of the device. We then needed to develop an environment model for

the device. Since we could not exercise our system using emulation, it was sufficient to

develop a behavioural model for the environment. We then constructed, in simulation, the

system illustrated in Figure 2.6. To implement this system, we needed to create a mecha-

nism by which to inject faults into specific signals in the "faultable" device. We also

needed to develop the apparatus for comparing the two device models, and a system for

logging the results of fault grading. We then would have to develop a functional test suite

for the device, and a test control module that could run the entire test set on the system

repeatedly. This would allow us to perform fault grading using the proposed system. Once

fault grading was performed, we needed to be able to test production parts using our test

39

set. This required interfacing our system to the current ITS9000 Component Test environ-

ment in use at Schlumberger, which is the only available system for testing physical parts.

Having established this, we would then be able to identify good and bad production parts.

FInally, we planned to explore diagnosis algorithms on the S9000 tester, using as exam-

ples a production batch of parts given to us by the manufacturer of the actual device.

Each of these tasks is examined in detail in the next few chapters. We describe our

implementation, the results we obtained, and any problems or issues which arose in the

course of our study.

40

41

Chapter 3

Design and Verification

3.1 Introduction

The first step in exploring IADE was to build the device-environment model that would

form the emulation module of the system. The behaviour models for the target device, a

pair of chips called Drive Control and Response Control, had already been written in Ver-

ilog HDL. We needed to establish what we considered to be the appropriate environment

abstraction to reflect the functional requirements of this device.

Choosing the appropriate environment model for a device first requires a proper

understanding of the device itself: what is its task, and in what range of situations it is

expected to perform that task. Clarifying the role of the device in the overall system allows

the designer to make this crucial decision: What is the level of abstraction which provides

the greatest degree of simplification and relevance while maintaining the flexibility to

exercise the device in all circumstances for which it was intended?

3.2 The Sample Circuit

The target device for this environment is the formatter subsystem of the Timing Generator

Module on the ITS 9000 Test System. To understand the role of this subsystem it is neces-

sary to understand how the 9000 Test System works. This system is explained in greater

detail by West and Napier [13].

The S9000 is based upon a system in which each pin of the device it is testing (DUT)

is connected to a drive apparatus and a strobe apparatus. The drive apparatus allows volt-

ages to be applied to the pin, and the strobe apparatus allows measurements of pin volt-

ages to be taken. The process of testing a DUT consists of developing a pattern of drive

42

and strobe events to apply to each pin of the DUT. When timed precisely and applied

simultaneously these patterns (a different pattern for each pin) provide a means of observ-

ing the functional and timing characteristics of the DUT.

There is a central control system that manages the execution of the overall test pro-

gram. Each pin of the DUT is controlled independently by its own memory and timing

modules, to allow for simultaneous execution of different patterns. This per-pin memory

and timing system is housed in the Timing Generator Module.

The Timing Generator Module (TGM) serves the purpose of accessing pattern

sequences from memory and applying them to one pin of the DUT on the test head. More

specifically, the TGM for each pin, acting in response to stimulus from the central control

system, retrieves a pattern from a local cache and converts that into a digital waveform

with precise timing to the resolution of 12.5 ps. The waveform that it produces consists of

drive and strobe events to apply to the DUT pin it controls. This waveform is sent to a pin

electronics module on the test head which converts the events from digital to analog and

applies them to the DUT pin.

The TGM is a multi-chip module containing three chips: the Event Logic IC (ELIC),

and the two chips which together form our target device, the Response Control IC (RIC)

and the Drive Control IC (DIC). RIC and DIC form a subsystem of the TGM. They are

controlled by and interface with the ELIC. They also interface with the pin electronics

module on the test head.

The operation of the TGM can be defined in two phases. In broad terms, its specifica-

tions are as follows: for each event sequence, it receives clocking information, an index

into its internal memory, and some other related data. It retrieves the pattern addressed by

this index, which consists of drive and strobe events each to occur at a specific time, to the

resolution of 12.5 ps. Operating on a master clock of 3.2 ns, it resolves these global times

43

by holding the event to the nearest 3.2 ns step, and then sends the remaining vernier time

(within 3.2 ns in 12.5 ps steps), along with the event type information (drives and strobes

of different types can be applied) to either DIC or RIC.

DIC handles drive events and outputs to two drivers on the test head. RIC handles

strobe events and receives input from two comparators on the test head. Both chips receive

the timing vernier and type information, delay the appropriate number of 12.5 ps steps,

and apply the drive or strobe event to their outputs (DIC) or inputs (RIC).

RIC and DIC form a compact subsystem which is responsible for executing drive and

strobe events within the current 3.2 ns clock cycle to the nearest 12.5 ps step. Together

with the ELIC they apply event streams with precise timing to the test head which are the

basis of device testing.

The first part of the interface between the ELIC and the formatters is this event stream

mechanism, which consists of 4 data busses each for RIC and DIC, on which vernier times

and event types are transmitted in pairs of data words.

The second part of the interface between the ELIC and the formatters is the mecha-

nism by which internal registers in the formatters are initialized. These registers serve a

number of different functions, from calibrating the analog delay lines inside RIC and DIC,

to specifying one of several modes in which the TGM is designed to operate. This inter-

face consists of function bus, data bus and clock lines.

In making the abstraction from a device to its environment, the system designer faces a

difficult and seemingly arbitrary choice. In the case of the formatters, the interface

between the device and the environment consists simply of those buses and clock lines

required for event stream and register setup operations. How far the environment itself

should extend, what should be its interface with the system, is a matter of choice. The goal

in this case is to make the boundary between the system and the device-environment pair

44

abstract enough that it is not necessary to specify what data is on each event stream bus

and register bus on each clock cycle. At the same time, making the interface more and

more abstract means incorporating more and more of the system into the environment

model. This increases its complexity and unwieldiness. The balance we aimed for was to

create an environment that is just powerful enough that its stimulus reflects the correct

abstract representation of the behaviour of the formatters, and no more.

In the case of the formatter subsystem, the environment could be specified to perform

the role of the ELIC chip for example. This would provide one level of abstraction, mak-

ing the stimulus to the device-environment model the same as the stimulus to the overall

TGM. In fact, the environment for the formatters could be made even more powerful than

the TGM, and could contain the TGM within it. In effect, the line between the system and

the environment could be placed anywhere from the formatter inputs to the final "start"

button that sets the 9000 tester running. It could be correspondingly as simple as a wire

connection, or as complex as a full component tester (minus the TGM).

The challenge is to draw that line in such as way that describing the stimulus set that

drives the device-environment model is easy and obvious. The conceptual value of the

environment model in IADE is that it should perform test generation automatically with

the aid of an input stimulus set that is presumed to test the device thoroughly. If the envi-

ronment and its interface are designed well, creating that complete stimulus set should be

very straightforward and it should be easy to verify the completeness of that stimulus set.

At the same time, this should be done with the minimum of environment complexity. It is

not necessary to build an environment model that is as complex as the tester itself for the

sake of making the stimulus set as simple as possible.

45

3.3 The Environment Model

3.3.1 The Environment-System Interface

For the formatter subsystem of the TGM, we identified what we considered to be a

useful interface with the system, one that we felt produced the clearest possible expression

of the requirements of the device. In this context, we decided that the environment model

need not even be as complicated as the ELIC chip. Instead, it sufficed to produce an envi-

ronment model with four basic interfaces: register definition, pattern event streams, mux

event streams, and dut event streams.

These four interfaces satisfy all of the situations in which the formatters will be used in

the S9000 tester: they correspond to register set-up, normal device testing (pattern event

streams), device testing under a special mode in which two TGMs are attached to one pin

for increased speed (mux event streams), and the returning comparator data from the test

head (dut event streams).

The four interfaces are managed in the following way: Each consists of a group of

memory files with start and end address markers. There is a control mechanism by which

the user can specify which combination of the four interfaces they wish to activate. The

user fills the memory files with the events they wish to apply to the test head. Figure 3.1

shows the schematic description of the Formatter Subsystem. Figure 3.2 shows the sche-

matic description of the environment model for the Formatter subsystem. The full system

is illustrated in Figure 3.3.

3.3.2 Register Setup

In the case of register setup, there are three memory files. They correspond to the

addresses of the registers to be accessed, the function to perform on the registers (read or

write), and the data to be placed in the registers on a write.

46

These three files are accessed in parallel by one start and end address pair. The files

themselves may be very large, and may contain many groups of registers for different

setup modes. By manipulating the start and end address, the user decides which group to

exercise for a given run.

3.3.3 Pattern Event Streams

The interface for pattern event streams consists of two memory files, containing time

and type information for all the events in the stream. The time file contains event times

referenced to a global starting point, with an lsb resolution of 12.5 ps. The type file con-

tains drive/strobe information. Together these files are accessed with a start and end

address pair.

When the model is run, the output at the driver and strober terminals will be the

sequence of events specified in that section of the memory files between the start and end

address, each event occurring at the time specified in the time file, and of the type speci-

fied in the type file.

3.3.4 Mux Event Streams

Mux events are generated when the formatters are used in a particular mode of opera-

tion. The TGMs are organized in pairs, so that in one mode, known as pin-mux mode, two

TGMs are used to feed one pin on the test head, applying events at double the normal rate.

In this mode, the first TGM sends its events not to the test head but to the second TGM,

which sends both its own events and the muxed events from its partner to the test head for

its pin. The TGM is designed, therefore, to receive both its own pattern event stream and

the event stream of its muxed partner.

In order to exercise the formatters properly, the environment model needs to have an

interface to this mux event stream. The mux event stream is specified in much the same

way as the pattern event stream. The interface consists of a time and type file, with their

47

start and end addresses. When operating in pin-mux mode, the drivers and strobers of the

fomatter subsystem should show the combination of pattern events and mux events

defined in these two interfaces.

There is one distinction between the pattern events and the mux events. In the real sys-

tem, mux events that are input to one TGM are the outputs of another TGM, and conse-

quently must have the same timing resolution of 12.5 ps. However, in order to give this

device-environment model greater flexibility even than there is on the actual system, we

decided to give the mux events a resolution of 1 ps. This relaxation does not break or

threaten the validity of the model, because the timing of the mux events are controlled by

a different TGM entirely than the one that is being considered in the model. The format-

ters and environment that receive the mux events have no knowledge of or control over

the timing resolution of the mux events. They are simply received and transmitted to the

testhead. Therefore, relaxing the timing restrictions in this way is an appropriate modifica-

tion to make, because it increases the flexibility of the model without violating the specifi-

cation of the fomatter subsystem itself.

3.3.5 DUT Event Streams

In order for the fomatters (and the TGM) to make use of the drive and strobe events, it

is necessary to have events occur on the DUT pin itself. The signals which occur on the

DUT pin are passed back to the RIC chip by means of comparator values, achi (above

comparator high) and bclo (below comparator low). These values give the test program

the feedback it needs to validate the DUT.

In order to properly exercise the formatters, therefore, it is necessary to provide this

interface to the environment. The dut interface is similar to those for pattern and mux

events, with the exception that instead of event types (such as drive and strobe), it speci-

fies the values of achi and bclo for specific times in the run. Like mux event times, these

48

times have a resolution of 1 ps. The time and value information are specified in two sepa-

rate files, both of which are accessed by a start and end address pair.

3.3.6 Test Program Flow

Together, the four interfaces, consisting of data files and access addresses, define a

user-controlled program of events to apply to the formatter-environment model. The flow

of execution can be controlled by means of a test fixture model written in Verilog HDL

which determines how these environment inputs change with time. This test fixture is

really part of the environment model, since it is required to manage test sequences which

are too complex to be described with a single start-end block in memory.

One final layer of abstraction exists for the event stream interfaces. We wrote a con-

version program that takes in event streams in a higher-level syntax and converts them

into the individual event time and type files required by the environment model. This

served only to simplify further the task of listing event sequences. Instead of manually cre-

ating binary entries with time and type values for each of the event streams, we could now

specify a list of events such as "D 1 @3.2ns", and have them converted and filed automati-

cally. One could easily envision building more sophisticated, graphical user interfaces to

the environment.

Once the environment interface is specified and the environment model itself built, the

power of the abstraction becomes apparent. In order to exercise the formatters, it now

becomes a matter of writing the files containing register setups and patterns of events to

apply to the test head, and simply identifying those block of events in the environment test

fixture. In contrast, if the abstraction had not been made, it would have been necessary to

specify, cycle by cycle, the values to place on the data busses and wires that form the

inputs to the formatters. In our case, this work is done automatically by the environment.

49

3.4 Results

The importance of our environment abstraction was not immediately apparent to us during

our implementation of the proposed model. As we proceeded further in the process,

through test generation and fault grading, it became clear to us how substantially choices

we had made in developing the environment model affected our entire development pro-

cess. Several times during our study we were given pause to reflect upon the difficult bal-

ance between simplicity of the interface and flexibility of the overall system

We learned several lessons in implementing our environment model. First, we realized

that specifying the various interfaces as a series of memory files made the task of test gen-

eration more unwieldy than we had anticipated. Exercising a large test set, such as the

functional test set used for production, proved to be quite complex. We had envisioned a

test program consisting of blocks of events for each of the four interfaces, indexed by start

and end addresses. As it turned out, this is not the way in which typical device behaviour

takes place. Instead, there are alternating streams of events from one or more of the four

interfaces; the four interfaces are never exercised simultaneously. Moreover, there are fre-

quently several sets of events for each interface, which are exercised during different parts

of the test program. Fitting behaviour of this nature to our environment interface required

a fairly detailed and unique test control fixture for each test set. This made modifying the

test set more time-consuming than we expected.

In contrast, our decision to specify events using descriptors such as "D1@3.2ns"

proved to be extremely efficient. Making this abstraction saved us an enormous amount of

effort, particularly since the functional test set frequently contained repeated cycles of

events. Overall, we were astonished by the extent to which the environment model simpli-

fied the task of functional test generation. Without this abstraction, we could clearly not

have developed a production test set for the device as cleanly or efficiently.

50

v) : :0J~I~Oz
C/ F. 2

~ ~-r U 6
Tz Co C) C)

0 0 f f

ZZ Z

3=42E -EZ- E E: v):v
www

< Ct C C
l rA A A

T

T I I

wI I"II,9 Uv
XE

""

U

v ,

E

O

A

I I

~4 Z ~M-~ UUUU
U <=<=

Figure 3.1: Schematic of Formatter System

51

Q
0

U0 ·-
U 9i

Wr

.- 4

w- -- - - __·I I l - -- - r

-
* * | - I- i...a

-- - l I"--q I'" I

l I"--qH I- 1.......-..-a

- - - -- [.- -- - w l | |II
- - - m W m .- -

- - - - m W M * - - .~~~-

I I

I

I II I
FFFF~o
1vi li ; vl

UUUU

_ T I

I I

II

I I I

z
sW w

u3Z w x~~~~~l __l Z u u
mw O mw~~~~~~~~~~~~w~ :)~FgrZZ 32 Sv

-

Figure 3.2: Schematic of Environment Model

52

I~~~~~~~
rI©I~ ', i

B U U~~~~~

z
E-

0-- - - -- - - - -

N
IC

N

z
Zi

N' ",2

zz
w

I

il N 1t'

z z

Figure 3.3: The Environment-Formatter System

53

V)

Ed

-

XE

4o

0
E-

z
wz0

>

WU

H

EH
cn
COOl

II

, 0

II

---J 0r)

I I

w

O
I

c3

I I I

EH

x

w0
H

ErA

I

Chapter 4

Test Generation and Fault Grading

4.1 Introduction

The process of test generation for a device has two goals: first, to write a test set that iden-

tifies as many failing devices as possible, as accurately as possible; and second, to mea-

sure the quality of that test. Test quality is gauged by a process known as fault grading,

which measures the percentage of possible faults detected by the test set, for a given fault

model. Fault grading is important because it reflects the balance in testing between effort

and its marginal return. It is generally the case in production testing that a small test suite

will detect a large percentage of possible faults. Adding the tests required to detect the last

few faults can sometimes double or triple the size of this small test suite. As a conse-

quence, developers target a particular percentage of faults they consider acceptable for the

production test set to detect. They then build the test set for the device incrementally, add-

ing tests as required it achieves that level of coverage.

The goal in the proposed development process was to approach test generation from a

different perspective - one that is based upon functionality rather than structure. Develop-

ing an environment model for the device was conceived to facilitate this task by allowing

the device to be manipulated with a high-level, functionally defined interface. Fault grad-

ing would be performed using the single-stuck-at input fault model. A good analysis of

this fault model and of modeling in general is provided by Abramovici [1].

Exploring the proposed model without purchasing a commercial emulation system

required compromising some of our objectives. We decided that it would nevertheless be

valuable to develop the entire model for fault-grading in simulation, building each compo-

nent at gate-level so that it could be implemented in emulation without conversion. Run-

54

ning this system in simulation would at least give us some insight into issues raised by the

proposed model. Performance could be estimated broadly by comparing the clockspeeds

of the two systems.

Implementing the production testing and diagnosis phases without the use of emula-

tion required mapping the proposed model to the current test equipment we had available

to us. The system we used was the Schlumberger S9000 FX chip tester. The architecture of

this tester is such that programs applied to the device under test contain both applied

inputs and expected outputs for each pin. By contrast, the proposed model does not con-

tain expected data for the device under test, and applies test vectors at a higher level. Our

solution was as follows:

We executed our device-environment system in simulation, and recorded the resulting

device-level input/output behaviour as the applied/expected data in an S9000 test pro-

gram. We believe this is equivalent to executing the system fully in real time. This method

allowed us to use our environment model and environment-level test set to exercise real

production parts and perform real diagnosis.

4.2 Test Generation

Implementing the proposed model for the sample circuit (the Formatter subsystem)

required developing a functionally-based test set to apply to the system at environment

level, both for fault grading and for production testing. Deriving a functional test set for

the device requires intimate knowledge of the behaviour specification for the device, as

well as an understanding of the system in which that device resides. Despite the benefit of

the environment model abstraction, functional test generation is not a simple task.

Fortunately, the design group which developed the sample circuit had already devel-

oped a functional test set for the device, albeit designed to operate at the device level itself

55

rather than the environment level. This test set was designed for the regular production

testing of the device, which was already entering first fabrication when we began to evalu-

ate the proposed model for fault grading. We decided, in the interest of efficiency, to use

this test set as a model for our test set.

Deriving our environment level test set involved analyzing the vectors in this existing

test set, choosing those which were functionally based, converting them to environment

level stimuli, and discarding any vectors which depended upon structural understanding of

the design. This process occasionally identified weaknesses in our choice of environment

abstraction - the situation sometimes occurred that we could not manipulate our environ-

ment as flexibly as the device itself had been manipulated at the lower level by the produc-

tion test set. In most cases, however, this was because the test engineer had exercised the

device in a non-standard way to take advantage of opportunities for optimization.

Although these special cases improved the performance of the test set, they violated the

bounds of normal device behaviour in order to do so. We implemented these special vec-

tors within the bounds of normal device operation (which was enforced in some cases, by

our environment interface), and consequently achieved the same final results, albeit some-

what less efficiently.

4.2.1 Issues in Test Generation

The test generation process raised several issues which need to be addressed in imple-

menting the proposed model. First, does functional verification suffice for production test-

ing of a device? For the purposes of this evaluation, we restricted our testing of the device

to functionality and ignored timing verification. Because emulation systems cannot pro-

vide proper modeling of timing constraints in circuits, we envisioned using simulation to

address timing issues. Our aim was to off-load as much testing as possible to the emula-

tion environment, retaining simulation only in those situations for which it was indispens-

56

able. Ackerman et al. [2] describe a techniques in which emulation and simulation are

combined in production testing to maximize efficiency. Although this technique seems

feasible, we did not implement a system which combined both technologies to provide

complete device verification. Therefore this area needs further exploration before the pro-

posed model can fully be implemented.

A difficulty we encountered in implementing the proposed model was in bundling up

the input/output device data as an S9000 test program. We performed the tasks in the fol-

lowing sequence: first, we developed the test set; next, we performed fault-grading in sim-

ulation; and finally, we converted the test set to an S9000 program and performed

production testing and diagnosis. We later discovered that we should have finished the

S9000 conversion before performing fault-grading. The reason is that we were forced to

make changes to our production test set in order for it to work properly on the actual tester.

These changes reflected two problems: First, we performed tests in simulation which

could not be executed in the physical tester, due to its own technological constraints. For

example, we were able to apply complex timing sequences to the part which ran fine in

simulation, and which theoretically could be applied to the device in normal use, but

which could not be exercised by the test equipment. The second problem was that the

strobing apparatus we developed for simulation fault-grading consisted of simple compar-

ison of signals at a set strobing period in each clock cycle. In reality, however, the strobing

mechanisms required to exercise production parts are far more complex. Specifying all of

those mechanisms properly so that the production test worked required changing some

vectors. The final production test set, which correctly passed a working device, was differ-

ent enough from the test set used for fault-grading, that it became necessary to redo fault-

grading. It is unclear whether this type of problem will necessitate verifying the produc-

57

tion test before doing fault-grading in the proposed model. Because we have not actually

implemented the proposed test architecture, this problem remains unaddressed.

4.3 Fault Grading

The task of fault-grading our test set in the proposed system consists of several steps. We

began by constructing the system illustrated in Figure2.6, in which the environment model

is applied in parallel to two instances of the device model, one of which we designed as

"faultable".

Once we had chosen our fault model to be the single-stuck-at input model, we needed

a mechanism for injecting these faults into the gate-level model of the device. Our next

task was to implement the system in which two device models were executed in parallel.

We also needed to develop the strobing apparatus for the system, and the means to sum-

marize fault-grading results. We chose to develop a fault dictionary for future use in diag-

nosis; we had to develop a mechanism to create this as well. Finally, we faced issues of re-

starting and initialization in testing, as well as overall performance of our system, which

became significant, given our need to run it in simulation.

4.4 The Fault Model

We chose the single-stuck-at fault model primarily for its simplicity and ease of imple-

mentation. The principle in this model is that a single signal may be shorted or grounded at

any point within a production circuit, causing functional failure. There is a crucial distinc-

tion to be made between failure in input signals to gates, and failure in output signals from

gates. We initially built a model in which the output of each gate might be stuck at one or

stuck at zero. Since our target device contained approximately 500 gates, this produced a

fault set of approximately 1000 different potential causes of failure. We began fault grad-

58

ing, and found the results to be very good. Our test set seemed to have no difficulty in

identifying gate-output faults. Clearly, however, this fault model is very simplistic. Fault-

ing the output of a single gate may result in input faults to any number of gates, depending

upon fan-out. Consequently, gate-output faults are more likely to cause large functionality

problems in the circuit, and correspondingly easier to detect in testing. After having run

the gate-output fault simulation for some time, we decided that this fault model was too

narrow to be of any use in fault diagnosis. We decided instead to change our fault model to

consider input signals to gates, rather than output signals from gates. This required consid-

erable changes to our system for injecting faults and re-applying the test set to the device.

Nevertheless, it provides a more realistic (although still very narrow) fault model for pro-

duction testing.

4.5 Modeling a Faulted Signal

The gate-level model we used for our sample device was built and simulated using the

Verilog Hardware Definition Language (VHDL), and used as its basis a standard library of

gate models written in Verilog. We decided that the cleanest method for injecting a fault

into a particular signal in the circuit was to consider the circuit as a network of gates. Any

interconnect in the system could then be manipulated as an input line to a particular gate.

We modified the model of each gate to permit any one of its inputs to be stuck at one or

stuck at zero. Figure 4.1 shows the abstract gate model used in this implementation.

The gate is then controlled as follows: if the enable bit is set to one, the gate behaves as

if it were faulted, in the manner prescribed by the fault select code. The number of bits in

the fault select code must be sufficient to encode all possible faults for all possible inputs,

given the fault model being considered. In our case, the largest number of inputs to any

single gate in the device was 12. Correspondingly, our fault select code needed five bits to

59

igonl1+ 1n L
I' fiUIl AlllJAICG

log2(2m)

Fault Select

m
Inputs / n

4/ Outputs

Figure 4.1: Model for a Faultable Gate

encode the 24 possible faults (stuck-at-one and stuck-at-zero for each input line) we might

inject into a gate of that size. Table 4.1 shows the fault select coding used in our system.

The fault select bus is fed to the device models, and connected as an input to each gate

in the system. Each gate also receives a distinct enable line as an input. The fault control

system is then manipulated by choosing the gate to be faulted, and setting that enable line

to one. The fault select code then determines how the chosen gate will be faulted.

Choosing to implement the faultable gates in this manner restricted our flexibility to

manipulate the system somewhat. For example, our faultable gate model does not permit

two signals in a given gate to be faulted simultaneously. As a consequence, we could not

modify our fault model for test set validation without redesigning the gate library. For the

purposes of this study, we felt that it was sufficient to implement the gate library for one

particular fault model. Nevertheless, implementing other, broader fault models using this

60

Gate

. 1

- - - - - -

Fault Select Code Type Of Fault

0 Unfaulted

1 Input 1 stuck at zero

2 Input 1 stuck at one

2n- 1 Input "n" stuck at zero

2n Input "n" stuck at one

Table 4.1: Fault Select Coding

structure needs to be explored properly before effective fault grading can be performed in

the proposed model. Koeppe [6] and Namitz et al. [8] describe fault insertion mechanisms

for broader classes of faults.

4.6 Control Apparatus

The control mechanism reflects a second choice we faced in designing our system. Our

target device has roughly 500 gates. We therefore constructed, at the system level, a 10-bit

gate select input which contains the index of the gate which is to be faulted. This signal is

propagated to the device level, where it is converted to a 1024-bit bus, a distinct line of

which is fed to each gate in the device. The bus is controlled so that all of its lines are set

to zero, except the line corresponding to the index of the 10-bit gate select input. In this

way, the high-level gate select mechanism is used to enable the control line for the chosen

gate within the device. This mechanism is clearly not practical for injecting faults into

devices with high gate-counts. Moreover, in emulation, a faultable gate will be imple-

mented not by a single gate, but by a group of programmable gates. Controlling the injec-

tion of faults in such a system efficiently will be a key issue in implementing the proposed

model.

61

Once the apparatus was in place for injecting a single stuck-at fault into a given signal

in the system, we needed to build a test control harness which applied the entire produc-

tion test set to the two device models, strobing and comparing their output signals. We

chose to strobe the signals of the models at 95% of each clock cycle. At this point in every

clock period, the output lines of the two devices were compared. If the two sets of signals

differed in any way, the failure was logged and the test run could be aborted.

The next level of control was the mechanism by which individual faults were injected

sequentially into the "faultable" device, the test set applied, and outputs compared for

each fault. For each fault, this fault grading harness applied the test set to both devices

until a difference in outputs was detected. At that point, the detection was logged, a new

fault was injected, and the test set was re-started. If the test set completed without any dif-

ference being detected, then this fact was logged, a new fault was injected, and the test set

was re-started.

Although the specified clockspeed at which our target device is designed to run is

312.5 MHz, we chose to run our fault grading simulation with a device clockspeed of 100

MHz. The reason for this is that we wanted to be certain that the device exhibits static

behaviour. This means that, in response to inputs on a given clock cycle, the device will

reach steady state before the next clock cycle.

The issue of static behaviour has tremendous relevance when dealing with emulation

technology. The issue is this: if emulation cannot be made to run as fast as a device's

intended clockspeed, can fault grading be performed at the emulation speed? If a device is

specified at 100 MHz, can fault grading be performed using emulation at 5 MHz? This can

only be done if there is no difference in the functional signature of the device, at 100 MHz

or at 5 MHz. This can only be true if the clock period does not begin to crowd into the

propagation delays for the device. If that happens, as is the case with pipelined devices,

62

then the device will not exhibit static behaviour: that is, it will have different signatures at

100 MHz and at 5 MHz. In such a case, fault grading clearly cannot be performed using

emulation, since the basis of the process is output strobing at a fixed percentage of the

clock period. This issue is a highly complex one, and needs to be analyzed in greater detail

if current emulation technology is to be used in the proposed model. It will disappear only

when emulation technology has advanced sufficiently to permit devices to be emulated at

their specified clockspeeds.

4.7 Initialization

Creating this fault grading control system required understanding the re-start and initial-

ization issues involved with the device. Initially, we found it difficult to implement the

system in such a way that each test run is independent from its predecessors and starts

from a known state. There are two aspects to this: First, we need to ensure that there exists

a way to force the initial internal state of the device to a known configuration. Second, we

need to verify that, on the initial test run, and on every test run thereafter, this initial state

is achieved before testing begins.

We developed, therefore, an initialization sequence which resets all of the device's

state and can be verified at the beginning of each test run, by strobing the internal and

external state of the device and datalogging the result. During this initialization period, the

output strobing and comparison of the two devices is disabled to prevent premature abor-

tion. When we implemented this system and began the fault grading, we found that our

test runs seemed to behave independently of one another.

This result can be misleading, however. We identified a few test runs in which the

expected initialization state was not achieved when strobing began; this was because the

63

faults injected in the device during those test runs were involved in the initialization

sequence itself, and therefore guaranteed that the device would not initialize properly.

How can this problem be circumvented? The paradox here is that we would like to

consider the initialization sequence outside the domain of the fault injected in the device.

However, a fault which affects other normal device behaviour may clearly also hamper the

activities which are performed during initialization. A production part with such a fault

would initialize improperly just as the model hypothesized in fault grading. By developing

and executing a clear initialization sequence, however, we can address the problem of ini-

tial state consistently for most situations.

A second, more troubling challenge is the strobing of internal state to verify successful

initialization. Strobing the initial state for our device required taking advantage of the

accessibility of the internal device design structure through normal behaviour. How simple

or feasible this may be for an arbitrary design is unclear. This issue must, however, be

addressed in the context of each individual device implemented using the proposed model.

4.8 Reporting

We condensed the reporting for our fault grading phase into two groups: internal and

external state for each test run; and fault grading results for each test run. The former con-

sists of state values for the device after each initialization sequence. The latter was format-

ted as a fault dictionary: there is one entry for each fault injected into the "faultable"

device. For each such entry, the dictionary states whether or not the test set identified the

fault, and if it did, the details of the detection point - first fail vector and fail signature. Fig-

ure 4.2 shows a sample set of entries from the fault dictionary generated for the device.

The highlighted columns indicate the fail vector and signature entries which are used later

for diagnosis of failing production parts.

64

Fault

1

2

3

4

5

6

7

8

Failing
:Vector

0000

0000

0 0 0 :.: :
..

S00 :.
i'i : .: ::

...{'........:
: :

'..: :00
.............

... .·:.....

. .ir0

:: ::: : :. :.
00"

.....

Total
Possible

Faults

Failing
Test

i:.:." . :'
.: etoUt:5

6:0i 98::i:i
. : .:

536630

654536
53I /

!3i :i l~::::.:::~::'

::,': i ',': ·: : ··::!2::(:::: i:: '···:.. '' i. i .:.v: .: s:=:. : :

? ::: .. ::::.:0 0 00........

0000. ,'..

1

2

3

4

5

6

7

8

233.8

.57..

,

.:il'57 . :.

'157 :

l :

pass

fail

pass

fail

fail

fail

fail

fail

fail

fail

fail

fail

fail

fail

fail

fail

25

25

25

25

25

25

26

1

1

26

1

1

1

1

i. : , ::

'..Irve.i.:: :.

5..?..: ::': '.'

. ::: .:.:

.
000

0000......

1100....

0000.....

1100,,',','.'

:00 0::i.

... :..

s000 ::

,::'..:.':. .'

=xOO000 ::

....... 7

"'

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

.':..: 'i
" .

'...'''"�'0E.":;: ,. .···
... . i:·· ::::,.. .

'71:.. ... ' i!Si

. : X. ::: . .::.0000

LtLLL:

0000::.._
':':v::::?i': : :

.: ::. . ~F..::.::::. ..

.:: :.: . :.: .. :.:.:.:: :

70::::X:~ ::1:l :.L/~ ':7. X::00:?

:i0 7 51:: :::5:!:f':.0X..

. 0. X .- ..

'0X...:.''

0000 ...
.0X00_

0''X .0::'i

0 0 0 0. .

i::i.:l!!.l::i:.::i.:::

. :. .:.:11

:: e t.::'1 : :'''-

:': 1, :' .Lj. 0..

.i: Di:.':'0 0 ..
1 1

00

00 -

00E

777_

..

.. :.F'/ -i. b':

::(:®55o:!0

..:0:0010,;, .

::... . .. :.:

..::':{: :;.;;.. :: " ...11111111
i::' :: .':::::: ::::

1 1': i e11 11

.. .'" :'i :': :: ' · "': :11111111::::::: :: ::: ::::: :: :::: :

';:;!(!: ' ::';' ' "
::. =.'.''~il.ll '''
:: : :::: :: :

| : :::: ::::::

i :':' ',',i' 'i ' ':1 1 1 1 1 = 11 1 1 1 1 1 1 1t ; :

Table 4.2: Sample Entries from Fault Dictionary

The coding for the fail signature is condensed in the following way. Expected values

are the values shown by the clean device; measured values are those for the faulted device.

'1' indicates that '1' was both expected and measured. The same is true of 'O'. 'L' indi-

cates that '1' was expected and, instead, '0' was measured. 'H' indicates that '0' was

expected and, instead, '1' was measured. 'x' indicates that '1' was expected, but the mea-

sured value was 'undefined'. 'X' indicates that '0' was expected, but the measured value

was 'undefined'.

65

Gate

256

256

256

256

256

256

256

256

257

257

257

257

257

257

257

257

...~:··' .b:' _

i�tiBirs
·'

Pass/
Fail

4.9 Modeling Issues

During the fault grading process, we discovered a serious problem in our faultable gate

models: some of the faults which should clearly have caused device failure were passing

undetected by the test set. We had tested half of the potential faults and our coverage so far

was only around 50%. We were very disappointed by this figure, because we expected

coverage of at least 75% for our test set.

The only way to understand why the faults were not identified was to trace through the

model from the faulted signals to the device outputs during a particular phase of testing.

Doing this for a few of our mystery faults identified the source of error: our faultable gate

models were inadequate for several of the gates in our library. Specifically, we did not cor-

rectly model the latches and flip-flops in the gate library so that undetermined inputs, and

transitions involving undetermined states were not propagated properly to their outputs.

This highlights the importance of modeling in the process of design verification and

fault grading. When we re-examined the original gate models which had been constructed

for the actual design and implementation of our target device, we were surprised by their

crudeness. There was no modeling of transitions to or from undetermined states in the

models. We analyzed each gate model once more, using transition tables to verify that

every possible input situation had been accounted for.

When we re-ran the fault grading simulation using the more comprehensive gate mod-

els, we found that a large percentage of faults which previously had been undetected were

now propagated to the device outputs and identified by our test set.

An issue which we have not been able to explore is how undetermined states will be

addressed in logic emulation. Emulation clearly cannot model undetermined states; the

impact this will have on fault grading is unclear. If our experience with this simulation is

66

any indication, the fault grading process in emulation will produce coverage results which

lie somewhere between our initial results and those we obtained after modeling undeter-

mined states rigorously. This is because our initial model ignored all transitions involving

undetermined states. As a result, a fault which makes a signal undetermined is never rec-

ognized in fault grading. Our final model assumed that every signal which becomes unde-

termined reflects a fault, and detects all such situations. In real hardware, there is no

"undetermined" state for a signal. It will either be correct or incorrect. Consequently, it

will sometimes propagate out as an error, and at other times propagate out as the correct

signal (by chance). The faults which propagate out as errors contribute to fault coverage.

Therefore, real emulation coverage measurements will be neither as imprecise as our first

model, nor as precise as our final model.

This issue needs to be considered more carefully in assessing the feasibility of emula-

tion as a tool for proper fault grading. Perhaps a combination of simulation (which is

already required for timing verification) and emulation will solve the problem.

4.10 Performance

By the time we finished the structures for fault injection, test control, and fault grading, we

had built a fairly substantial simulation model in Verilog HDL, containing the environ-

ment and device models, and using a test set that was several thousand cycles in length.

Fault grading required applying this test set to the system for each possible fault in our

fault model. Given the size of our device, there are 3,616 possible single-stuck-at faults for

our system.

The first attempt at fault grading resulted in unacceptable system performance. Run-

ning on a Sun SparcStation 10 workstation, the model took roughly 24 minutes to com-

plete a single test set run. Running this simulation several thousand times would take

67

Gross FigureCategory Gross Figure Average Per Fault
(3616 Faults)

Simulation Length (time) 121,795,130,000 ps 33,682,283 ps

Device Clock Period 10 ns 10 ns

Simulation Length (cycles) 12,179,513 cycles 3368 cycles

Real System Time 45:16:12 0:45

Simulation Speed 74.7 Hz 74.7 Hz

Emulation Speed 5 MHz 5 MHz

Projected Real System Time 2.436 s 673 gs
in Emulation

Table 4.3: Performance Measurements for Fault Grading Process

roughly 1400 hours of computation in the worst case, and would clearly not be feasible

given the time constraints of this study. As well, we anticipated, inevitably, the need to

make changes to the model after initial testing.

Considerable effort was spent, therefore, in profiling the Verilog model during execu-

tion in order to identify areas for optimization. Through a number of changes, including

optimization of the control harness and test set modifications necessitated by production

testing requirements, we were ultimately able to reduce the per-test execution time to

roughly three minutes, running alone on a Sun SparcStation 10. This brought the task

within reasonable bounds. In fact, since the test set was not fully executed in the common

case (when failure was detected, and the test aborted), we were able to complete the final

fault grading simulation in roughly 46 hours of system time on the Sparc 10. This simula-

tion executed at roughly 80 device cycles per second.

Estimating the emulation performance of this process is straightforward once an emu-

lation clockspeed is selected. Our fault grading system recorded the number of device

68

clock cycles taken by the simulation, which can then be assessed in real terms using any

emulation clockspeed we choose to assume. Current commercial emulation systems oper-

ate at approximately 5 MHz. Given this conservative estimate, the time required to per-

form the entire fault grading process for our device would be roughly 2.4 seconds. Table

4.3 shows the performance results achieved in the final simulation, compared with pro-

jected performance for emulation, at a speed of 5 MHz.

4.11 Results

Our fault grading results were slightly better than we anticipated. The final fault coverage

measured for our production test set using the single-stuck-at fault model was 80.5%. We

ran our simulation in sections, because we were able to use two or three machines in paral-

lel overnight. We tried to minimize this partitioning because each Verilog simulation

incurs a certain performance overhead. Table 4.4 shows our coverage results for each of

the simulations we executed.

From this table, it can be seen that certain gate numbers were not tested. Why is this

so? It is because we were able to use the proposed functionally-based fault grading model

to identify redundant gates within our sample circuit! In the first few simulations we

attempted using the fault grading model, we were puzzled by a group of gates which

clearly were not identified by the test set, and which nevertheless did not appear to cause

functional failure of the device. Upon closer inspection, it became clear that these gates

were completely unrelated to the device's functionality. They were inserted in the HDL

gate-level models in order to facilitate the fabrication of the two IC's which form our tar-

get device, Response Control (RIC) and Drive Control (DIC). Since RIC and DIC share a

similar structure with some variations, their designers used certain "dummy" gates in both

models that shared the same number of ports. Internally, these gates simply contained wire

69

Gates Tested Total Tests Passes Fails Coverage

6-54 140 32 108 77.1%

72-74 12 0 12 100%

79-119 164 11 153 93.3%

124-126 12 4 8 66.7%

144-350 1440 356 1084 75.3%

351-460 996 176 820 82.3%

461-516 852 125 727 85.3%T, ,TA. . . 3616~~:·: -''"''''':'' - ·:··: · - .. 0 1 1 8. .. .Tr :s ; ; . / , : .> ,, g , . ~ ~~~~~~~~i: s A,.,- i:,:·::::r : :--as: ::::::·I ·,.: ~:~:~:-- -

Table 4.4: Fault Grading Results

connections between their input and output ports which were different for RIC and for

DIC. Effectively, these gates would disappear in fabrication, and contained no logic at all.

They simply allowed the designers to use a common mask for RIC and DIC, while main-

taining different wiring for each chip. They are perfect (if unrealistic) examples of "redun-

dant" circuitry in a design; we were surprised and pleased to find these gates in our device.

Our fault grading process, based upon a functional test set, attempted to inject faults into

these gates. When our test set was unable to identify them, it led us to discover that these

gates were unused in the functional behaviour of the device. Therefore, our fault grading

succeeded, in a modest way, in identifying redundancy in our design.

As this section describes, however, there are clearly several issues to be addressed in

any realistic implementation of the proposed fault grading model using logic emulation.

Whether it will prove to be as successful or practical as our model in a commercial emula-

tion-based process still remains to be resolved.

70

71

Chapter 5

Production Line Testing

5.1 Introduction

Implementing the proposed model for production testing presented a difficult challenge.

The IADE production test environment consists of a software test control module, a logic

emulation system and a test head with pin electronics to interface with physical devices.

We faced two constraints: we could not afford to incorporate an emulation system into our

study; and the only equipment with pin electronics we could use was an existing Schlum-

berger component tester, the S9000. We needed, therefore, to use the pin electronics of the

S9000 to test actual production parts of the sample circuit in the manner proposed in the

IADE methodology. To understand the way in which we achieved this task, it is necessary

first to understand the current S9000 test environment, and the relationship it bears to the

proposed model. This section describes the S9000 production test architecture, the way in

which we interfaced our model to it, and the results we obtained for this phase of the pro-

posed process.

5.2 The S9000 Test Program Architecture

The IADE model for production test requires a test control to feed stimulus to the environ-

ment model of the device, which in turn translates this stimulus to device-level test vec-

tors, which are applied via pin electronics to the physical Device Under Test (DUT).

Outputs of the DUT are compared with the outputs of the emulated "clean" device model,

which is exercised in parallel with the DUT. The current S9000 production test architec-

ture is essentially a subsection of this model, excluding only the environment model and

second, "clean," device model (and the emulation system in which they are implemented).

72

Instead, the device is stimulated directly using a test program written using the S9000

tester software. This test set is applied via pin electronics to the physical DUT. The output

data which should return from the DUT is not generated by a second device model, but is

instead incorporated into the test program as "expect data."

A straightforward way to integrate our simulated device-environment system with the

current S9000 architecture would then proceed as follows: We begin by applying our envi-

ronment stimulus set to the device-environment system in simulation. We then record the

device-level input/output behaviour of the resulting simulation. The device input set is in

effect equivalent to the device stimulus program which would directly have been applied

to the DUT, and the device output set is equivalent to the "expect data" which would have

also been incorporated into the test program.

Bundling these vectors together, and formatting them to correspond to a normal S9000

test program, has the effect of capturing the data generated by our IADE implementation,

and converting it to a format compatible with the current test environment. As a result, we

could convert our environment-level production test set into a device-level production test

program that could be applied using current test head electronics to physical parts.

5.3 Issues in Conversion

We wrote a conversion program that filtered data from the simulation model built ear-

lier, and produced a test program that could be executed on the S9000 tester. As described

in section 4.2.1, two main issues surfaced in performing this conversion: first, the timing

limitations of the S9000 architecture made it impossible to perform certain test activities

which has been possible in simulation; and second, the complexity of the S9000 strobing

apparatus forced us to re-organize some parts of the test program.

73

Addressing these two problems, and formatting the test set to run properly as a test

program took some effort. This was partly due to the complexity associated with moving

from the simplistic simulation environment to the physical world, and the scope and flexi-

bility of the S9000 software, which offers the capability to perform much more sophisti-

cated testing than we required. Despite the simplicity of our device and test, we needed to

develop a fairly large test structure to specify all of the possible control parameters in an

S9000 program.

Once we had developed familiarity with this environment, it was necessary to make

adjustments to the test program until it correctly performed the behaviour we had

observed in the simulation environment. When this had been verified, we tested a produc-

tion part that was known to be good, to confirm that it also passed our test set. We then

turned to the set of 17 parts which had been provided to us by the manufacturer of the For-

matter ICs.

5.4 Testing the Sample Circuit

In order to understand diagnosis issues within the proposed environment, we chose to

apply the various diagnosis methods described to production parts of a sample circuit. The

circuit used for this analysis is the TGM Formatter subsystem described in Section 3. The

Formatter subsystem, consisting of the Response Control IC (RIC) and the Drive Control

IC (DIC), lies on the TGM multi-chip module along with one other device, the Event

Logic IC (ELIC), as shown in Figure 6.1.

For the purpose of this study, we chose to consider the RIC and DIC subsystem as our

target device, and remove the ELIC from the TGM module, pulling its input/output pins to

the edge of the module. This new chip, known as the Formatter Characterization Module,

is shown in Figure 6.2. We were provided with an unmarked batch of 17 good and bad

74

Timing Generator Module Pinout

Figure 5.1: Timing Generator Module

production parts. The task was to use the test set developed during the fault grading phase

of the study to test these parts and correctly identify the good and bad devices. For those

devices which we identified as faulty, the next task was to explore various diagnosis

75

Figure 5.2: Formatter Characterization Module

algorithms to try and determine the cause of failure for each bad part.

The environment in which this process was conducted does not match the proposed

emulation test environment. Since the resources were not available to implement the pro-

76

posed environment, we used the current Schlumberger S9000 test environment to conduct

the analysis.

5.5 Results

The first step in testing the devices was to exercise them with the production test set

we had developed. This test should immediately identify those parts which worked prop-

erly. The production test set had two parts. The first test verified the board-level connec-

tions of the Formatter Characterization Modules. This is known as a continuity test The

second test verified the actual functionality of the RIC and DIC chips on the modules. The

purpose of the first test was to filter out those parts which failed because of board-level

faults. Since, technically, the device we are concerned with is the formatter subsystem and

not the Formatter Characterization Module, we need to be concerned only with faults that

occur inside the RIC and DIC chips. Table 6.1 shows the results of this first set of tests.

Of the 17 chips tested, 11 passed both the continuity and functionality tests. These devices

need not be considered. Of the remaining 6 parts, two failed both continuity and function-

ality. As a result, the failures which occurred within these modules might be either at the

board level or on the chips themselves. We considered these parts beyond the scope of our

study. There remained 4 parts which passed continuity but failed functionality. They are

suitable candidates for diagnosis, because they contain errors within the RIC and DIC sub-

system, which we considered our sample circuit. These chips are highlighted in Table 6.1,

and form the basis for our exploration of diagnosis in the following section.

77

19 K ~ ~~~~~~~~~~ ~ ~ ~~~~~~~~~~~~~~ i.' .~~II~~~~~~~~~:P~~~~~~~~~~~~~~1~~~~~~ ~ . ' " '' 'J~i :........t:,. > .:.,,:,,,' ':,: ,:,:,',',-t.:S',. R'::; $ -;- mix, < R > -5 2,<: X RC,::', R "'........

78

Chip Number Continuity Functionality

2 Pass Pass

3 Pass Pass

4 Pass Pass

5 Pass Pass

6 Pass Pass

7 Pass Pass

8 Pass Pass

9 Pass Pass

10 Pass Pass

11 Pass Pass

12 Pass Pass

17 Fail Fail

18 Fail Fail
?:~:::''"-,-~: -::::: :..

Table 5.1: Production Test Results for Formatter Characterization Modules
. ;....,...,. ..:.1...1'..":.,-:-';.. ;;.;.,.,.:. I.,.....;..,.,:,.,-. - - -... 11 % �- �- - I �.. - 1. � % �,;.;.'.1.1 � % - .- -1- � 1. .;.;- ;.;. I., " .;.,..;..:. - I ;. ;:,:::.;;;,.: 1:1.. . .

79

Chapter 6

Production Line Diagnosis

6.1 Introduction

In recent years considerable interest has been generated in the semiconductor industry

around the task of increasing production yields and improving fabrication processes. The

principal source of feedback to drive this task has been data from production testing. How-

ever, the current test environment lacks device design knowledge and therefore does not

offer the potential for on-the-fly diagnosis of failing parts. One of the principal goals of the

proposed methodology is to introduce device design knowledge to the tester domain and

enable production test engineers to diagnose production failures for feedback into design

Yamaguchi et al. [15] describe a method of diagnosis which uses electron beam probing

and simulation techniques for identifying faulty function blocks. Our method is simpler

and more efficient, using instead a faulted device model for comparison and running at

emulation speeds.

This section begins by describing the proposed production test and diagnosis environ-

ment, and the sample circuit used to evaluate the proposal. Within this environment, diag-

nosis can be performed according to the traditional model of generating a set of

hypotheses, testing out the hypotheses, and discarding failed hypotheses to produce new

ones. The model of heuristics by which we carry out this process of generate and test

reflects the sophistication of the diagnosis algorithm. The next goal of this section is to

describe a variety of current models for diagnosis and examine their applicability to the IC

test environment in terms of complexity and effectiveness. Finally, this section describes

the process we undertook to practise these techniques upon production parts of the sample

circuit and the effectiveness of our diagnosis process.

80

6.2 Diagnosis Strategies

We have established in sections 2.4.4 and 2.4.5 the IADE model for production test which

allows the engineer to dynamically change the structure of the "good" device model DGn

used to test the DUT. The emulation system also gives the engineer access to the high-

level functional test set FE which is applied to the device. In the event that a production

DUT fails the standard test set, the engineer now has the ability to perform diagnosis in

real time. He knows the fail vector and signature exhibited by the DUT, and he has access

to the structure of the device model and the test set itself. Two types of diagnosis can be

performed at this point: structural diagnosis and behavioural diagnosis.

Structural diagnosis consists of hypothesizing a variety of structural faults which

could account for the failure exhibited by the DUT during the standard production test,

implementing each hypothesis using the faultable device model DGn , and testing out each

hypothesis by exercising it in parallel with the DUT and comparing their outputs.

Behavioural diagnosis can be performed by observing device behaviour in the vicinity

of the failure during the standard production test, modifying the test set FE and applying it

to the system to determine which specific activities of the device result in failure.

Because the proposed test environment provides access to both elements of the sys-

tem, diagnosis can be performed using one or both of these methods.

6.3 Structural Diagnosis

When a DUT fails the production test, it is because somehow its circuit does not match

the circuit of the device as it was designed. The main goal of structural diagnosis is to

guess what the actual circuit of the failing DUT might be. If the flawed structure is mod-

eled accurately, then the model's behaviour will match the behaviour of the DUT for all

vectors in the test set. The process of hypothesizing the structure of the failing DUT is not

81

restricted to any particular fault model. However, the more sophisticated and accurate the

fault model, the more likely it is that a hypothesis will match faults which occur in the real

world. For example, a simple model such as the single-stuck-at fault model will simplify

and shorten the task of building a hypothesis set, but it is very rare for a real DUT to fail in

production testing because of a single stuck-at fault.

The stages of structural diagnosis correspond roughly to the traditional AI methods of

Generate and Test, proposed by Newell [9], and Generate, Test and Debug, proposed by

Simmons & Davis [13]. The debugger begins by producing an initial hypothesis set, each

element of which is a potential structure for the failing DUT. The debugger then imple-

ments each hypothesis with the emulated device model using the diagnostic fault selector.

Each candidate model is then run in the system in place of the "good" device. If the out-

puts of the DUT and the hypothesis model DGn match for all vectors of the test set, then

the structure of the DUT has been determined, with respect to the given test set:

DUT (EG (FE)) - DG (EG (FE)) (6.1)

The hypothesis set can be developed using a variety of methods, which reflects the

basic trade-off between increasing the size of the diagnostic system and increasing its

sophistication. The most straightforward approach to generating a hypothesis set is by use

of a fault dictionary. A less bulky and more computation-intensive method involves per-

forming backtracing upon the failing outputs of the DUT. The third and most sophisticated

method for hypothesis generation is physical localization based upon the structural hierar-

chy of the device.

6.3.1 Fault Dictionary Look-up

When performing fault-grading for the production test set, the test engineer injects all

possible faults for a particular fault model into the device, and records the percentage of

those faults which are identified by the test set. At the same time, the engineer can build a

82

fault dictionary for the device. This contains entries, for each fault injected, which record

the type of fault injected, whether the device passed or failed when injected with the fault,

and, if it failed, the first failing vector and output signature at the fail.

If this dictionary is stored in the system, it can be retrieved during diagnosis and used

to produce an initial hypothesis set. Given a failing DUT, the engineer can search the fault

dictionary for entries which have the same fail vector and output signature. Each entry

which matches these items will suggest one possible fault which could exist in the current

failing DUT.

Although fault dictionary look-up can be the quickest and simplest method of candi-

date generation, it has several drawbacks. First, the dictionary will correspond only to the

fault model which was used in grading the test set. Therefore, if the fault model used for

grading was relatively narrow, then the hit rate for real failing parts will be correspond-

ingly low. Second, using a fault dictionary requires a large memory overhead for storing

the huge number of entries that even simple devices typically require. This overhead may

outweigh the computational advantage of a simple table look-up that fault dictionaries

provide.

6.3.2 Backtracing

The process of backtracing involves following signals from the failing output pins of

the device back into the design model to understand how possible failures at different

stages within the device would propagate to its outputs. For each failing pin, the signal it

presents is traced back into the device, stage by stage. The presumption is that each sub-

module which affected this signal could have corrupted it to produce the incorrect output.

Candidates are discarded if the circuit is laid out in such a way that faults in these candi-

dates would produce a different set of failing outputs than was observed in the DUT. Chen

83

& Srihari [3] describe a set of heuristics for ordering the set of candidate submodules in

terms of their likelihood to have caused the observed faults.

Although backtracing is more complicated than fault dictionary look-up, developing

backtracing algorithms based upon structure files is relatively straightforward. The diffi-

culty with backtracing is that for multiple failing pins, or for multiple-fault models, the

computation required to build and order hypothesis sets using backtracing can be substan-

tial.

6.3.3 Physical Localization

Physical localization proceeds from the basic premise that the design of a device is

normally partitioned to reflect different elements of its intended functionality. Designers

tend to organize the structure of a device by functionality both to provide modularity to

their design and to simplify their own understanding of the device.

When a DUT fails in production testing, the failing test vector and output signature

can be analyzed to determine what part of the device's functionality was being exercised

at the time of failure. Understanding the functionality which failed quickly narrows the

region in which to search for candidate failures. This localization can recursively be

applied to smaller and smaller parts of the physical circuit, until the resolution is small

enough for reasonable fault hypotheses to emerge.

This method overlaps with behavioural diagnosis, as it is closely tied to understanding

the device in terms of its required functionality, and as it involves analysis of the produc-

tion test set. It is also the most abstract and "intelligent" method of diagnosis. Davis &

Hamscher [4] provide a comprehensive analysis of this method of Model-Based Trouble-

shooting. Diagnostic systems, such as Genesereth's DART [5], use this type of design

knowledge to perform Generate and Test.

84

6.4 Behavioural Diagnosis

While structural diagnosis suggests candidate structural models of the failing DUT,

behavioural diagnosis does not affect the circuit of the faultable device. In fact, it can be

particularly effective in situations where parts of the design model are inaccessible, and so

structural diagnosis is useless. Behavioural diagnosis requires examining the device from

a primarily functional point of view. Based upon knowledge of the functional partitioning

of the device and a detailed understanding of the production test set, diagnosis can be per-

formed by manipulating the test set rather than the gate level design.

The test set is typically developed in an organized manner to exercise, in turn, different

elements of the device's required behaviour. When a DUT fails in production, the test set

can be examined to understand what type of activity caused the DUT to fail. Since the pro-

duction test set is compressed to optimize the passing of good parts, it will generally be

necessary to expand and modify this test set in order to localize precisely the failing activ-

ity.

As a result, the debugger's task is to generate a set of candidate test sequences, each of

which localizes the failing behaviour of the device in one way or another. Each of these

candidate sequences is put in place of the production test set, and applied to the system.

Based upon these results, the debugger should be able to resolve the failing functionality

to specific activities. If the device design is partitioned functionally, then this result can be

used to determine structural submodules which may have caused the observed failure.

The behavioural approach to diagnosis can very quickly isolate small portions of the

circuit, which can then be analyzed using structural techniques. However, this method

requires the debugger to have considerable design and functional understanding.

85

6.5 Analysis of Faulty Parts

Table 5.1 shows the results of testing 17 physical parts in the production test environ-

ment. We chose to diagnose those parts which passed continuity testing (which verifies

connections on the multi-chip module), but failed functionality. We surmised that these

were the parts for which faults existed on the RIC and DIC circuits themselves. Each chip

was then analyzed using both structural and behavioural diagnosis methods, to evaluate

the complexity and effectiveness of these methods in identifying the faults.

6.5.1 Structural Diagnosis

Because the environment in which we operated did not have emulation capability, the

process by which we tested candidate structures was as follows:

1. Generate a hypothesis structure DGn.

2. Model this hypothesis and exercise it using the simulated version of the test envi-

ronment shown in Figure 2.8.

3. Bundle the test set FD produced in simulation along with the expected device out-

puts from the hypothesis model DGn to produce an S9000 test program.

4. Run the test program on the failing DUT within the S9000 test environment.

5. If the DUT passes the test, then its structure matches that of DGn

This process is essentially no different from the process proposed for the new tester

environment. The only difference is that in the proposed environment, it would be possible

to perform these tasks automatically and in real time.

The next task was to generate a hypothesis set for each device. To do this, we applied

each of the diagnosis methods described in section 6.2 in increasing order of complexity.

Having already developed and stored a single-stuck-at fault dictionary for the test set, the

first step was to check the fault dictionary for entries which matched the first fail informa-

86

tion for each of the failing devices. If matches were found in the fault dictionary, these

faults were considered the first candidates in the hypothesis set. Each of these faults was

injected into the design model, and simulated to produce a test program which could be

applied to the failing DUT. If the DUT passed the entire test program, then the fault was

identified. Two of the failing parts had matches within the fault dictionary. Unfortunately,

in each case, the hypothesis structure did not match the structure of the DUT. The DUT

would pass the initial vector where it had failed on the "good" test program, but it would

then fail later on in the hypothesis program. This showed that in many cases, two different

structures will match in behaviour for part of a test set and then diverge when the differ-

ence between them is highlighted.

The next step in structural diagnosis was to generate candidates by performing back-

tracing. Following the stages of the circuit back from the output pins identified a set of

candidate submodules for testing. However, examining the fault dictionary entries for

each candidate fault showed that none of them failed at the right test vector and with the

right signature to correspond to the failing DUTs. In fact, this process proved to be redun-

dant once the fault-dictionary lookup had already been performed. However, when com-

pared with the space overhead imposed by the use of fault dictionaries, this approach

proved to be much more efficient in identifying candidates. In real-world situations, per-

forming backtracing is preferable to creating and storing fault-dictionaries during fault

grading.

Neither the fault dictionary lookup nor the approach of backtracing diagnosed any of

the failing devices correctly. Part of the problem is that both approaches relied upon the

single-stuck-at fault model, which is too narrow for any useful real-world diagnosis. The

final method we tried was a combination of physical localization and behavioural analysis,

which proved to be the most effective and intelligent approach to diagnosis.

87

6.5.2 Physical Localization and Behavioural Diagnosis

When the structural analysis techniques failed, our next strategy was to analyze the fail

vectors and signatures of each of the failing DUTs, in order to understand what region of

activity caused the device to fail. This would immediately narrow the scope of our search

to a particular segment of the design model for the device. It is important to note, however,

that identifying the fail cycle for a particular device does not immediately identify the

activity which results in failure. The primary reason for this is that production test sets,

such as the test set we used to exercise our devices, are highly compressed and optimized

in order to maximize throughput on the production line. Consequently, each activity per-

formed in the test suite is not necessarily isolated and checkpointed in such a way that fail-

ure in the region of the activity immediately identifies it to be the cause of the problem.

More commonly, groups of activities are bundled in such a way that any one of several

activities would cause the device to fail within a particular region.

This issue is readily addressed, however, by the debugger. The first goal of behavioural

analysis is to identify the group of activities which contains the cause of the failure. This

region can then be examined in further detail by expanding each activity into a clearly

encapsulated module which is isolated and checkpointed. Each of these modules is then

applied as stimulus to the diagnosis system model. Now failing behaviour can be resolved

to the granularity required to identify specific stimuli.

By applying this process to the failing devices, we found that all four parts failed the

functionality test in the same region: during activities which accessed their internal gain

registers (Chips 15 and 19) and delay registers (Chips 13 and 16). These registers are

described in Table 3.2. In the case of Chips 13 and 16, it occurred that the test set com-

pressed two activities together, making it unclear which activity caused the failure. As a

result, we created a new hypothesis test set for each chip, which would clearly determine

88

the point of failure. In fact, our initial hypothesis as to the cause of failure in both these

parts proved incorrect once the new test set was developed and applied.

It emerged finally that all four parts failed during the setting of the internal Linear

Delay Line gain and delay registers. Thus behavioural techniques brought us to a very spe-

cific and clear structural subsection of the circuit in which to hypothesize reasons for fail-

ure.

When we re-examined the circuit diagrams to consider the LDL modules, we found

that the Verilog models for these circuits were inaccessible to our fault select mechanism,

because they were modeled as mixed analog/digital circuits using behavioural descrip-

tions. As a result, there was no way in which to insert faults into internal gates in these

modules. We had reached the limits of our diagnostic localization.

The question arises: does this diagnosis suffice in understanding why our production

parts failed? After all, we were not able to identify a single gate-level fault in any of the

devices. The answer is that this level of diagnosis is perfectly valid, given the accessibility

we had to the models of our devices. In any device design model, there will be some ele-

mental black-box modules which cannot be opened for analysis. Whether this limit is

reached at transistor level, or at gate level, or, as in our case, at some higher level, is a

somewhat design-specific choice. It will necessarily limit the resolution to which faults

can be diagnosed, but it does not invalidate diagnosis or undermine its usefulness.

The following section describes in detail the diagnosis results for each of the four

devices we examined in this phase of the research.

89

Test Vector Register Memory Register Bus Fail Signature Register Being Read

770 90 L111 1111 D820

788 93 L1i 11L D823

944 119 Llll 1111 D820

962 122 L11i 11L1 D823

1106 146 Llll 1111 D820

1124 149 Llll 11L1 D823

1388 193 Llll 1111 D820

1406 196 L11l 11L1 D823

Table 6.1: Failing Test Vectors for Chip 13

6.6 Diagnosis Results

6.6.1 Chip 13

Chip 13 was the first part we examined which satisfied our criteria for diagnosis: it

passed the production test program for continuity and failed for functionality. This meant

that the device failure lay somewhere on the RIC and DIC circuits and not on the multi-

chip module. Each of the first 8 failures in the test program occurred in the register read/

write bus lines. Table 6.2 shows the characteristics of these fail points.

The fault dictionary showed no single stuck-at faults which resulted in failure on the

same test vector cycle and with the same signature as we had observed. When the fault

dictionary was queried for the fail signature alone, it showed 10 possible faults which

caused the same output pins to fail. Inspecting these faults by hand in the circuit model

ruled them out as possible causes of failure. The fault dictionary showed no faults which

caused the first failure to occur on the same test vector.

90

Register Memory Event Comments

48 Master Reset Checkpoint

56 Write all l's - D820 First register write

66 Set Kill Read Causes all reads to return 0

82 Clear Kill Read Disables Set Kill Read

90 Read back - D820 FAIL

93 Read back - D823 FAIL

119 Read back - D820 FAIL

122 Read back - D823 FAIL

146 Read back - D820 FAIL

149 Read back - D823 FAIL

193 Read back - D820 FAIL

196 Read back - D823 FAIL

Table 6.2: Failing Event Region for Chip 13

The behavioural diagnosis proved much more fruitful. We isolated as far as possible

the region in which the failures occurred and examined the events which had been applied.

Table 6.3 shows the analysis of this region of behaviour.

The ambiguity in this event group is illustrated by the highlighted element in Table

6.3. The problem is that immediately after the registers are set to all l's, the Set Kill Read

register command is executed. This command forces all register reads to return 0 values

for the registers. The next vector passes. Then the Set Kill Read option is disabled by

Clear Kill Read. The next vector fails.

This could be caused by one of two situations: A) the registers are written correctly,

and the Set Kill Read option works fine, but the Clear Kill Read does not properly re-

91

Register Memory Event Comment

48 Master Reset Checkpoint

56 Write all l's - D820 First register write

66 Set Kill Read (Disabled) Causes all reads to return 0

77 Read back - D823 FAIL

82 Clear Kill Read (Disabled) Disables Set Kill Read

90 Read back - D820 FAIL

93 Read back - D823 FAIL

119 Read back - D820 FAIL

122 Read back - D823 FAIL

146 Read back - D820 FAIL

149 Read back - D823 FAIL

Table 6.3: Failing Event Group for Chip 13, New Test Set

enable the register read mechanism, causing the next vector to fail; or B) the resisters are

not written correctly, but Set Kill Read is used before they can be tested, and the test fails

only after Clear Kill Read enables the registers to be read properly.

In order to test these two hypotheses, we began by simply removing both the Set Kill

Read and the Clear Kill Read commands from the test set. Table 6.4 shows the new event

group and the results. Now it is clear that the Set Kill Read and Clear Kill Read events did

not cause the failure, and that the failure occurred when the registers were originally writ-

ten. The final diagnosis for Chip 13 was that the delay registers in the LDL submodule of

the Drive Control IC were not functioning properly.

92

Test Vector Register Memory Register Bus Fail Signature Register Being Read

776 91 1111 Ll1 D821

950 120 1111 Ll1 D821

1112 147 1111 Ll1 D821

1394 194 1111 Lll D821

Table 6.4: Failing Test Vectors for Chip 16

Register Memory Event Comments

48 Master Reset Checkpoint

57 Write all l's - D821 First register write

66 Set Kill Read Causes all reads to return 0

82 Clear Kill Read Disables Set Kill Read

91 Read back - D821 FAIL

120 Read back - D821 FAIL

147 Read back - D821 FAIL

194 Read back - D821 FAIL

Table 6.5: Failing Event Region for Chip 16

6.6.2 Chip 16

Chip 16 proved to be almost identical to Chip 13 in the diagnosis results we obtained

for it. Each of the first 4 failures in the test program occurred in the register read/write bus

lines. Table 6.5 shows the characteristics of these fail points.

The fault dictionary showed no single stuck-at faults which resulted in failure on the

same test vector cycle and with the same signature as we had observed. When the fault

dictionary was queried for the fail signature alone, it showed 4 possible faults which

93

Register Memory Event Comment

48 Master Reset Checkpoint

57 Write all l's - D821 First register write

66 Set Kill Read (Disabled) Causes all reads to return 0

82 Clear Kill Read Disables Set Kill Read

91 Read back - D821 FAIL

120 Read back - D821 FAIL

147 Read back - D821 FAIL

Table 6.6: Failing Event Group for Chip 16, New Test Set

caused the same output pins to fail. Inspecting these faults by hand in the circuit model

ruled them out as possible causes of failure. The fault dictionary showed no faults which

caused the first failure to occur on the same test vector. Table 6.6 shows the results of iso-

lating and analyzing the region of behaviour in which the failures occurred.

This table illustrates the same ambiguity we found in Chip 13. The failure observed at

the device outputs could be due either to the Clear Kill Read event or to the register write

event itself. We therefore constructed the same hypothesis in which the Set Kill Read and

Clear Kill Read commands were removed from the test set and the system re-run. The

results are shown in Table 6.7.

As with Chip 13, the Set Kill Read and Clear Kill Read events did not cause the fail-

ure, and that the failure occurred when the registers were originally written. The final

diagnosis for Chip 16 was that the delay registers in the LDL submodule of the Drive Con-

trol IC were not functioning properly.

94

Test Vector Register Memory Register Bus Fail Signature Register Being Read

164 24 OOOL 0001 D860

209 27 1000 100H D863

329 35 111L OOOH D863

374 38 111L 0000 D862

389 39 OOOL 0001 D863

419 41 111L 0000 D861

434 42 000L 0001 D862

449 43 0010 001H D863

464 44 111L0000 D860

479 45 OOOL 0001 D861

512 47 111L 1111 D863

770 90 111L 1111 D820

776 91 111L 1111 D821

782 92 111L 1111 D822

788 93 111L 1111 D823

794 94 OOOL 0001 D860

800 95 001L 0011 D861

806 96 OllL0111 D862

812 97 111L 1111 D863

Table 6.7: Failing Test Vectors for Chip 15

6.6.3 Chip 15

Chips 15 and 19 gave results which were somewhat different from those we found for

Chips 13 and 16. For Chip 15, each of the first 19 failures in the test program occurred in

the register read/write bus lines. Table 6.8 shows the characteristics of these fail points.

95

Register Memory Event Comment

14 Master Reset Checkpoint

18-21 Set Gain - D860-D863 First Register Write

24 A evepnt d reabakdeay D860 :FAIL:

27 Apply event and read back delay - D863 FAIL

35 Apply event and read back delay - D863 FAIL

38 Apply event and read back delay - D862 FAIL

39 Apply event and read back delay - D863 FAIL

41L Apply event and read back delay - D861 FAIL

42 Apply event and read back delay - D862 FAIL

43 Apply event and read back delay - D863 FAIL

44 Apply event and read back delay - D860 FAIL

45 Apply event and read back delay - D861 FAIL

47 Apply event and read back delay - D863 FAIL

66 Set Kill Read Causes all reads to
return 0

78 Read back- D860 PASS

82 Clear Kill Read Disables Set Kill Read

90 Read back - D820 FAIL

91 Read back - D821 FAIL

92 Read back - D822 FAIL

93 Read back - D823 FAIL

94 Read back - D860 FAIL

95 Read back - D861 FAIL

96 Read back - D862 FAIL

97 Read back - D863 FAIL

Table 6.8: Failing Event Group for Chip 15

96

The fault dictionary appeared at first to provide useful information. Querying on both

fail vector and signature produced 4 candidates for the hypothesis set. For each of the can-

didates, the fault was injected into the "faultable" model, and the simulation re-run to pro-

duce the device-level test set. This test set was then integrated with the expect data for the

faulted model to produce a new test program. Each test program was then used on the

9000 tester to exercise Chip 15. Unfortunately, in each of the four cases, the device still

failed, albeit at a later point in the test program. This illustrated the possibility that fault

dictionary hits will still diverge from the DUT further on in the test set, despite their simi-

lar behaviour at the first fail in the original test program. In this case, the failures occurred

when the gain registers in the LDL modules were read. Table 6.9 shows the results of ana-

lyzing the event region in which the fails occurred.

It is clear from Table 6.9 that the fail occurred due to the initial register write. There is

no ambiguity in the Set Kill Read and Clear Kill Read options as there was in Chips 13

and 16. The final diagnosis for Chip 15 was that the gain registers in the LDL submodule

of the Drive Control IC were not functioning properly.

6.6.4 Chip 19

Chip 19, the last of the four chips we tested, turned out to be quite similar to Chip 15 in

its test behaviour. Each of the first 25 failures in the test program occurred in the register

read/write bus lines. Table 6.10 shows the characteristics of these fail points.

Querying the fault dictionary on both fail vector and signature produced 2 candidates

for the hypothesis set. For each of the candidates, the fault was injected into the "fault-

able" model, and the simulation re-run to see if the failing chip corresponded to the faulted

model. Unfortunately, as with Chip 15, neither of these hypotheses matched the behaviour

of the failing part through the entire test set.

97

Test Vector Register Memory Register Bus Fail Signature Register Being Read

164 24 OH01 0001 D860

209 27 lHOO 1000 D863

224 28 HH10 0010 D860

239 29 OLOO H100 D861

254 30 1HOO 1000 D862

269 31 OHOO 1111 D863

284 32 1HOO 1HOH D860

299 33 lHOO 1HOH D861

314 34 OHOO 1111 D862

329 35 111L OHOH D863

344 36 111L OHOH D860

359 37 111LOHOH D861

389 39 11L LOHOH D863

404 40 111L 0000 D860

419 41 l11L 0000 D861

434 42 111L 0000 D862

449 43 111L 0000 D863

464 44 111L 0000 D860

479 45 OHOL OH01 D861

494 46 111L0000 D862

512 47 OOOL 0001 D863

788 93 OHI0 OH1H D823

794 94 OOOH 0000 D860

800 95 111L 1111 D861

Table 6.9: Failing Test Vectors for Chip 19

98

Register Memory Event Comment

14 Master Reset Checkpoint

18-21 Set Gain - D860-D863 First Register Write

27 Apply event and read back delay - D863 FAIL

28 Apply event and read back delay - D860 FAIL

29 Apply event and read back delay - D861 FAIL

30 Apply event and read back delay - D862 FAIL

31 Apply event and read back delay - D863 FAIL

32 Apply event and read back delay - D860 FAIL

33 Apply event and read back delay - D861 FAIL

34 Apply event and read back delay - D862 FAIL

35 Apply event and read back delay - D863 FAIL

36 Apply event and read back delay - D860 FAIL

37 Apply event and read back delay - D861 FAIL

39 Apply event and read back delay - D863 FAIL

40 Apply event and read back delay - D860 FAIL

41 Apply event and read back delay - D861 FAIL

42 Apply event and read back delay - D862 FAIL

43 Apply event and read back delay - D863 FAIL

44 Apply event and read back delay - D860 FAIL

45 Apply event and read back delay - D861 FAIL

46 Apply event and read back delay - D862 FAIL

47 Apply event and read back delay - D863 FAIL

93 Apply event and read back delay - D823 FAIL

94 Apply event and read back delay - D860 FAIL

95 Apply event and read back delay - D861 FAIL

Table 6.10: Failing Event Group for Chip 19

99

As with Chip 15, the failures occurred when the gain registers in the LDL modules

were read. Table 6.11 shows the results of analyzing the event region in which the fails

occurred. The fail clearly occurred due to the initial register write. There is no ambiguity

in the Set Kill Read and Clear Kill Read options as there was in Chips 13 and 16. The final

diagnosis for Chip 19 was that the gain registers in the LDL submodule of the Drive Con-

trol IC were not functioning properly.

6.7 Conclusions

We were pleased with the final results of our diagnosis efforts. Given 17 production parts,

we were able to use the production test set developed in the IADE model to identify six

parts which failed functional verification, four of which we had the capacity to diagnose.

We then analyzed these four parts to the limit of our modeling resolution, and were able to

diagnose the cause of failure in each part to the elemental level. In following this process,

we gained some insight into the relative effectiveness of various diagnosis algorithms

within the context of the proposed IADE methodology.

The structural diagnosis techniques of fault dictionary lookup and backtracing perform

roughly the same function, we realized. It seems that the trade-off between these two

approaches is one of memory versus computation. In most real environments, however,

we suspect that the backtracing process, which is fairly straightforward but time-consum-

ing, is more efficient than using a fault dictionary. Even in the sample circuit we consid-

ered, the fault model used to develop the fault dictionary was far too simplistic to provide

any real diagnosis capability. For more complex circuits, the overhead of generating and

storing a large fault dictionary seems inappropriate.

Behavioural diagnosis and structural localization, however, combine to form a fairly

effective strategy for diagnosis of a wide range of faults. Behavioural diagnosis worked

100

effectively for us as a high-level filter, to help us focus our analysis very quickly on a

small part of the circuit. From this point, structural analysis of the circuit can hopefully be

used to resolve the fault to the elemental level. It should be noted, however, that this pro-

cess was performed manually in our study. Automated a process by which short behav-

ioural hypothesis tests are generated and exercised is a much more involved task. This

type of diagnosis is perhaps the most "intelligent"; developing a reliable algorithm for

such a process could help greatly toward automating diagnosis in the IADE environment.

Even without an automated debugger, diagnosis can conceivably be performed quite

easily in the proposed model, with the refinement of the test control interface. We envision

a test environment in which the circuit schematics, which represent the "clean" device

model being emulated, are accessible to the test engineer. If there is a simple (graphic?)

interface through which the engineer can manually hypothesize faults and insert them eas-

ily into the device model, the system can take advantage of the natural intelligence and

experience of the test engineer to perform diagnosis. Observing such manual diagnosis

can also be used to develop a knowledge base for the system, which can gradually begin to

capture the diagnosis expertise of the test engineer, and eventually allow the system to be

automated.

101

Chapter 7

Conclusion

7.1 Project Results

The IADE methodology we have proposed substantially modifies the current ASIC devel-

opment cycle. It builds upon existing concepts in system design (such as modeling of a

device within its environment), test engineering (functionally-based test set generation),

and circuit diagnosis. What it brings to IC design is an integrated framework for employ-

ing many such techniques in unison, with useful feedback paths between phases of design.

This is made possible, for the most part, by the computational impact of using logic emu-

lation in place of traditional simulation techniques. The speed improvement emulation

offers is significant enough, in the scale of development schedules, to warrant substantial

procedural changes to the current paradigm. We have attempted in this research project to

explore the value and applicability of the proposed methodology, by implementing each of

its phases for a sample ASIC. Our study leaves us with a moderate optimism for IADE. In

the course of our analysis, we have encountered several obstacles to full implementation

of the methodology, some of which we have not been able to resolve.

7.2 Methodology Issues

In the device design phase, for example, we are conscious of the fact that our implementa-

tion was done in simulation. Until we can explore an entire system fully emulated in con-

junction with a software test program interface, it is difficult to predict how complex the

control and integration task will be. As well, we did not produce a gate-level design for

our environment model. A task that needs to be addressed is implementing the gate-level

environment model efficiently and cheaply. Synthesis tools already exist for creating gate-

102

level models from behavioural descriptions; will these become fast enough and robust

enough to make developing the gate-level environment model transparent to the designer?

In the phase of test generation and fault grading, we need to explore further the parti-

tioning of the testing task between functional and timing verification before proper com-

mercial device test sets can be developed in IADE. Simulation will surely play a role in

this expanded system, for timing analysis cannot be performed without it. This being the

case, how difficult will it be to divide the task of testing between the emulation and simu-

lation domains? For fault grading with a single-stuck-at fault model, our faultable gate

design proved sufficient in simulation. More complex models will have to be developed to

handle different classes of faults.

In production testing, the primary task is the integration of the emulation system with

the pin electronics in the physical test head. Another area which requires some effort will

be developing a software interface for diagnosis of failing parts. This can either be an

automated tool, which uses a combination of behavioural and physical localization tech-

niques to diagnose the design, or an interface to the emulation model that will allow the

test engineer to manually diagnose failing parts, and which can perhaps accumulate diag-

nosis knowledge by observing and learning from their techniques.

7.3 Emulation Issues

What makes emulation so much more efficient than simulation (the use of hardware to

instantiate a circuit, rather than software) is also what makes it more difficult to implement

in a system such as IADE. In the course of our study, we have come across several issues

that need to be explored before emulation can be used in IADE. First, there is the issue of

modeling potentially large systems in emulation. Currently, individual commercial emula-

tion modules are not be large enough to model devices with very high gate counts. Model-

103

ing faultable gates will further increase the emulation system size required to implement a

particular device. There is clearly a cost/benefit compromise involved in using an emula-

tion system of a given size. There are systems available commercially which allow the

user to connect multiple emulation modules together for potentially infinite scalability. It

remains to be seen how effective the control and partitioning mechanisms will be for these

systems. Second, there is the issue of device speed versus emulation speed. We expect

emulation technology will advance sufficiently in the near future to permit devices to be

run at speed in IADE. Until we reach that point, devices will have to be developed in

IADE at emulation speeds. If device behaviour is static at normal speed, then we can

expect functional signatures to be identical at normal speed and at emulation speed. If this

is not the case, then we need to address the problem of mapping emulation speed signa-

tures (for fault grading and diagnosis) to the corresponding device speed signatures.

Finally, there is the problem that emulation cannot model indeterminate ("X") states. It is

unclear how much this will affect the task of device verification in production.

7.4 Conclusions

Given the scope and complexity of the proposed IADE methodology, we expected from

the outset to encounter many issues which stand in the way of its implementation in any

professional IC design environment. Because it offered so much potential to integrate and

streamline the design cycle, we felt it was worth a substantial exploration effort. We have

not been disappointed in either respect. There are a number of areas which need to be

researched further before IADE can be made to work robustly, but it has largely withstood

our scrutiny.

We were extremely pleased with the results obtained for test generation and fault grad-

ing; IADE indeed proved considerably more compact and efficient than current tech-

104

niques. Furthermore, implementing an environment model for the device clarified our own

understanding of the device as design engineers, an exercise which we feel will prove

rewarding in its own right as well as in the IADE fault grading model.

Fault grading in IADE proved very effective as well. We were able not only to quan-

tify the performance comparison between emulation and simulation, but also to see the

positive effect of using fault grading to justify a particular gate-level implementation. We

feel that this is one of the most significant contributions of IADE to the development

cycle.

We were most excited by the possibilities IADE offers for production testing and diag-

nosis. Given our sample batch of 17 devices, we were able to use various diagnosis tech-

niques to resolve device failure to the elemental level. This gave us an understanding of

the relative effectiveness of different diagnosis techniques, and also demonstrated the tre-

mendous value of introducing design knowledge into the production test domain.

If the issues we have raised in this initial feasibility study can be resolved, we feel that

IADE can be made viable within some ASIC design environments. We expect that when

these issues are further explored, they will simply set constraints on the applicability of the

IADE technique to different design problems. It is clear that IADE will not be a general-

purpose process for designing all integrated circuits. Nevertheless, if its specific range of

usefulness can be identified, it can dramatically improve development cycles for those cir-

cuits to which it is best suited.

105

References
[1] Abramovici, M., Breuer, M. and Friedman, A. Digital Systems Testing and Testable

Design. W.H. Freeman and Company, New York, N.Y. 1990.

[2] Ackerman, D. et al. Logic Simulation Using a Hardware Accelerator Together with an
Automated Error Event Isolation and Trace Facility. United States Patent Document,
Patent Number 5,146,460. Sept 8, 1992.

[3] Chen, J. and Srihari, S. A Method for Ordering Candidate Submodules in Fault Diag-
nosis. Department of Computer Science, State University of New York, Buffalo, New
York. June 29, 1988.

[4] Davis, R. and Hamscher, W.C. Model-Based Reasoning: Troubleshooting. Artificial
Intelligence Laboratory, Massachusetts Institute of Technology. July 1988.

[5] Genesereth, M. The Use of Design Descriptions in Automated Diagnosis. Department
of Computer Science, Stanford University. 1984.

[6] Koeppe, S. Methodfor Simulating an Open Fault in a Logic Circuit Comprising FETs
and Simulation Models for Implementing the Method. United States Patent Document,
Patent Number 4,868,825. Sept 19, 1989.

[7] Markowsky, G. Diagnosing Single Faults in Fanout-Free Combinational Circuits.
IBM Thomas J. Watson Research Center, Yorktown Heights, New York. February
1978.

[8] Namitz, W. et al. Programmable Fault Insertion Circuit. United States Patent Docu-
ment, Patent Number 5,058,112. Oct 15, 1991.

[9] Newell, A. Artificial Intelligence and the Concept of Mind. Computer Models of Lan-
guage and Thought, eds. Schank and Colby. 1973.

[10] Shirley, M.H. Generating Distinguishing Tests based on Hierarchical Models and
Symptom Information. Proceedings of the International Conference on Computer
Design. 1983.

[11] Shirley, M.H. Generating Tests by Exploiting Designed Behavior: Artificial Intelli-
gence Laboratory, Massachusetts Institute of Technology. May 26, 1986.

[12] Shirley, M.H., Wu, P., Davis, R., and Robinson, G. A Synergistic Combination of Test
Generation and Design for Testability. Proceedings of the IEEE International Test
Conference. Sept 1987.

[13] Simmons, R. and Davis, R. Generate, Test and Debug: Combining Associational
Rules and Causal Models. Artificial Intelligence Laboratory, Massachusetts Institute
of Technology. 1987.

[14] West, B.G. and Napier, T. Sequencer Per Pin Test System Architecture. Proceedings
of the IEEE International Test Conference. Sept 1990.

[15] Yamaguchi, N. et al. Method of Diagnosing Integrated Logic Circuit. United States
Patent Document, Patent Number 4,996,659. Feb 26, 1991.

106

107

Appendix A

Gate Models

A.1 Library of Faultable Gates

'timescale ns/lps

module QY1AND2A (Q,QB,X1,X2,EN,FAULT);
output Q,QB;
input X1,X2;
input EN;
input [4:0] FAULT;
parameter Trise=0.001;
parameter Tfall=0.001;
wire Q, X1F, X2F;
assign X1F = (EN&&FAULT===5'dl) ? 0: (EN&&FAULT===S5'd2) ? 1: X1;
assign X2F = (EN&&FAULT===S5'd3) ? 0: (EN&&FAULT===S5'd4) ? 1: X2;
and #(Trise,Tfall) z2 (Q,X1F,X2F);
not zl(QB,Q);

endmodule

module QY1AND2A_GOOD (Q,QB,X1,X2);
output Q,QB;
input X1,X2;
parameter Trise=0.001;
parameter Tfall=0.001;
not zl(QB,Q);
and #(Trise,Tfall) z2 (Q,X1,X2);

endmodule

module QY1AND3A (Q,QB,X1,X2,X3,EN,FAULT);
output Q,QB;
input X1,X2,X3;
input EN;
input [4:0] FAULT;
parameter Trise=0.001;
parameter Tfall=0.001;
wire Q, XIF, X2F, X3F;
assign X1F = (EN&&FAULT===5'dl) ? 0: (EN&&FAULT===5'd2) ? 1: X1;
assign X2F = (EN&&FAULT===5'd3) ? 0: (EN&&FAULT===5'd4) ? 1: X2;
assign X3F = (EN&&FAULT===5'd5) ? 0: (EN&&FAULT===5'd6) ? 1: X3;
and #(Trise,Tfall) z2 (Q,XlF,X2F,X3F);
not zl(QB,Q);

endmodule

module QY1AND3A_GOOD (Q,QB,X1,X2,X3);
output Q,QB;
input X1,X2,X3;
parameter Trise=0.001;
parameter Tfall=0.001;
not zl(QB,Q);
and #(Trise,Tfall) z2 (Q,X1,X2,X3);
endmodule

module QY1OR2A (Q,QB,X1,X2,EN,FAULT);
output Q,QB;
input Xl,X2;
input EN;
input [4:0] FAULT;

108

parameter Trise=0.001;
parameter Tfall=0.001;
wire Q, X1F, X2F;
assign X1F = (EN&&FAULT===5'dl) ? 0: (EN&&FAULT===5'd2) ? 1: X1;
assign X2F = (EN&&FAULT===5'd3) ? 0: (EN&&FAULT===5'd4) ? 1: X2;
or #(Trise,Tfall) z2 (Q,XlF,X2F);
not zl(QB,Q);
endmodule

module QY1OR2AGOOD (Q,QB,X1,X2);
output Q,QB;
input X1,X2;
parameter Trise=0.001;
parameter Tfall=0.001;
not zl(QB,Q);
or #(Trise,Tfall) z2 (Q,X1,X2);
endmodule

module QY1OR3A (Q,QB,X1,X2,X3,EN,FAULT);
output Q,QB;
input X1,X2,X3;
input EN;
input [4:0] FAULT;
parameter Trise=0.001;
parameter Tfall=0.001;
wire Q, X1F, X2F, X3F;
assign X1F = (EN&&FAULT===5'dl) ? 0: (EN&&FAULT===S5'd2) ? 1: X1;
assign X2F = (EN&&FAULT===5'd3) ? 0: (EN&&FAULT===5'd4) ? 1: X2;
assign X3F = (EN&&FAULT===5'd5) ? 0: (EN&&FAULT===5'd6) ? 1: X3;
or #(Trise,Tfall) z2 (Q,XlF,X2F,X3F);
not zl(QB,Q);

endmodule

module QY1OR3A_GOOD (Q,QB,X1,X2,X3);
output Q,QB;
input X1,X2,X3;
parameter Trise=0.001;
parameter Tfall=0.001;
not zl(QB,Q);
or #(Trise,Tfall) z2 (Q,X1,X2,X3);
endmodule

module QY1OR4A (Q,QB,X1,X2,X3,X4,EN,FAULT);
output Q,QB;
input X1,X2,X3,X4;
input EN;
input [4:0] FAULT;
parameter Trise=0.001;
parameter Tfall=0.001;
wire Q, X1F, X2F, X3F, X4F;
assign X1F = (EN&&FAULT===5'dl) ? 0: (EN&&FAULT===5'd2) ? 1: X1;
assign X2F = (EN&&FAULT===5'd3) ? 0: (EN&&FAULT===5'd4) ? 1: X2;
assign X3F = (EN&&FAULT===S5'd5) ? 0: (EN&&FAULT===5'd6) ? 1: X3;
assign X4F = (EN&&FAULT===5'd7) ? 0: (EN&&FAULT===5'd8) ? 1: X4;
or #(Trise,Tfall) z2 (Q,X1F,X2F,X3F,X4F);
not zl(QB,Q);
endmodule

module QY10OR4A_GOOD (Q,QB,X1,X2,X3,X4);
output Q,QB;
input Xl,X2,X3,X4;
parameter Trise=0.001;
parameter Tfall=0.001;
not zl(QB,Q);

109

or #(Trise,Tfall) z2 (Q,X1,X2,X3,X4);
endmodule

module QY1OR5A (Q,QB,Xl,X2,X3,X4,X5,EN,FAULT);
output Q,QB;
input X1,X2,X3,X4,X5;
input EN;
input [4:0] FAULT;
parameter Trise=0.001;
parameter Tfall=0.001;
wire Q, X1F, X2F, X3F, X4F, X5F;
assign XIF = (EN&&FAULT===5'dl) ? 0: (EN&&FAULT===5'd2) ? 1 : X1;
assign X2F = (EN&&FAULT===5'd3) ? 0: (EN&&FAULT===5'd4) ? 1: X2;
assign X3F = (EN&&FAULT===5'd5) ? 0: (EN&&FAULT===5'd6) ? 1: X3;
assign X4F = (EN&&FAULT===5'd7) ? 0: (EN&&FAULT===5'd8) ? 1: X4;
assign X5F = (EN&&FAULT===5'd9) ? 0: (EN&&FAULT===5'dlO) ? 1: X5;
or #(Trise,Tfall) z2 (Q,X1F,X2F,X3F,X4F,X5F);
not zl(QB,Q);

endmodule

module QY1OR5A_GOOD (Q,QB,X1,X2,X3,X4,X5);
output Q,QB;
input Xl,X2,X3,X4,X5;
parameter Trise=0.001;
parameter Tfall=0.001;
not zl(QB,Q);
or #(Trise,Tfall) z2 (Q,X1,X2,X3,X4,X5);
endmodule

module QY1MX2A (Q,QB,XO,X1,S,EN,FAULT);
output Q,QB;
input XO,X1,S;
input EN;
input [4:0] FAULT;
parameter Trise=0.001;
parameter Tfall=0.001;
wire Q, XOF, X1F, SF;
assign XOF = (EN&&FAULT===5'dl) ? 0: (EN&&FAULT===5'd2) ? 1: XO;
assign X1F = (EN&&FAULT==-5'd3) ? 0: (EN&&FAULT===5'd4) ? 1: X1;
assign SF = (EN&&FAULT===5'd5) ? 0: (EN&&FAULT===5'd6) ? 1: S;
mux2 #(Trise,Tfall) xl (Q,XOF,X1F,SF);
not x2 (QB,Q);

endmodule

module QY1MX2A_GOOD (Q,QB,XO,X1,S);
output Q,QB;
input XO,X,S;
parameter Trise=0.001;
parameter Tfall=0.001;
mux2 #(Trise,Tfall) xl (Q,XO,X1,S);
not x2 (QB,Q);

endmodule

module QY1MX4A (Q,QB,XO,X1,X2,X3,S1,SO,EN,FAULT);
output Q,QB;
input XO,X1,X2,X3,S1,SO;
input EN;
input [4:0] FAULT;
parameter Trise=0.001;
parameter Tfall=0.001;
wire Q, XOF, X1F, X2F, X3F, SOF, S1F;
assign XOF = (EN&&FAULT===5'dl) ? 0: (EN&&FAULT===5'd2) ? 1: XO;
assign X1F = (EN&&FAULT===5'd3) ? 0: (EN&&FAULT===5'd4) ? 1: X1;
assign X2F = (EN&&FAULT===5'd5) ? 0: (EN&&FAULT===5'd6) ? 1: X2;

110

assign X3F = (EN&&FAULT===5'd7) ? 0: (EN&&FAULT===5'd8) ? 1: X3;
assign S1F = (EN&&FAULT===5'd9) ? 0: (EN&&FAULT===5'dlO) ? 1: S1i;
assign SOF = (EN&&FAULT===5'dll) ? 0: (EN&&FAULT===5'd12) ? 1: SO;
mux4 #(Trise,Tfall) xl (Q,XOF,X1F,X2F,X3F,S 1F,SOF);
not x2 (QB,Q);
endmodule

module QY1MX4A_GOOD (Q,QB,XO,Xl,X2,X3,S 1,SO);
output Q,QB;
input X0,X1,X2,X3,S 1,S0;
parameter Trise=0.001;
parameter Tfall=0.001;
mux4 #(Trise,Tfall) xl (Q,X0,X1 ,X2,X3,S 1,SO);
not x2 (QB,Q);
endmodule

module QY1DFA (Q,QB,D,CLK,EN,FAULT);
output Q,QB;
input D,CLK;
input EN;
input [4:0] FAULT;
reg O, CLKF_OLD;
parameter Trise--=0.001;
parameter Tfall=0.001;
assign QB=-Q;
wire Q, DF, CLKF;
assign #(Trise,Tfall) Q=O;
assign DF = (EN&&FAULT===5'dl) ? 0: (EN&&FAULT===5'd2) ? 1: D;
assign CLKF = (EN&&FAULT===5'd3) ? 0: (EN&&FAULT===5'd4) ? 1: CLK;
always @ (posedge CLKF) begin
if ((CLKF_OLD===I'bO)&&(CLKF===1'bl)) O = DF;
if ((CLKF===I'bx)&&(DF!==O)) O = l'bx;
if ((CLKF_OLD===I'bx)&&(CLKF===1'bl)&&(DF!==O)) O = l'bx;
end
always @(CLKF) #0.001 CLKF_OLD = CLKF;
assign QB=-Q;
endmodule

module QY1DFA_GOOD (Q,QB,D,CLK);
output Q,QB;
input D,CLK;
reg O;
parameter Trise=0.001;
parameter Tfall=0.001;
assign QB=-Q;
assign #(Trise,Tfall) Q=O;
always @ (posedge CLK) O = D;

endmodule

module QYIDFRA (Q,QB,D,CLK,R,EN,FAULT);
output Q,QB;
input D,CLK,R;
input EN;
input [4:0] FAULT;
reg O, RFOLD, CLKF_OLD;
parameter Trise=0.001;
parameter Tfall=0.001;
assign QB=-Q;
wire Q, DF, CLKF, RF;
assign #(Trise,Tfall) Q=O;
assign DF = (EN&&FAULT===5'dl) ? 0: (EN&&FAULT===5'd2) ? 1: D;
assign CLKF = (EN&&FAULT===5'd3) ? 0: (EN&&FAULT===5'd4) ? 1: CLK;
assign RF = (EN&&FAULT===5'd5) ? 0: (EN&&FAULT===5'd6) ? 1: R;
always @ (RF) begin

111

if (((RF_OLD===I'bO)&&(RF===I'bl))ll((RF_OLD===I'bl)&&(RF===l'bO))) O = (RF === 1) ? l'bO:
0;
if ((RF_OLD===1'bO)&&(RF===1'bx)&&(O!==O)) O = 1l'bx;
if ((RF_OLD===I'bx)&&(RF===I'bl)&&(O!==0)) O = l'bO;
end
always @(RF) #0.001 RF_OLD = RF;
always @ (posedge CLKF) begin
if ((CLKF_OLD===1'bO)&&(CLKF===l'bl)) O = (RF === 1) ? l'bO: (DF===O) ? l'bO: (RF===l'bx) ?
l'bx: DF;
if (CLKF===I'bx) O = ((RF===1)II((O===0)&&(DF===0))) ? 'bO: ((RF===I'bO)&&(O===DF)) ? DF:
l'bx;
if ((CLKF_OLD===I'bx)&&(CLKF==='bl)) O = ((RF===1)ll((O===O)&&(DF===O))) ? l'bO:
((RF===1'bO)&&(O===DF)) ? DF: l'bx;
end
always @(CLKF) #0.001 CLKF_OLD = CLKF;

endmodule

module QY DFRA_GOOD (Q,QB,D,CLK,R);
output Q,QB;
input D,CLK,R;
reg O;
parameter Trise=0.001;
parameter Tfall=0.001;
assign QB=-Q;
assign #(Trise,Tfall) Q=O;
always @ (R) O = (R === 1) ? l'bO: 0;
always @ (posedge CLK) O = (R === 1) ? l'bO: D;

endmodule

module QYlBUFA (Q,QB,X1,EN,FAULT);
output Q,QB;
input X1;
input EN;
input [4:0] FAULT;
parameter Trise=0.001;
parameter Tfall=0.001;
wire Q, X1F;
assign X1F = (EN&&FAULT===5'dl) ? 0: (EN&&FAULT===5'd2) ? 1: X1;
assign QB=-Q;
assign #(Trise,Tfall) Q=X1F;

endmodule

module QYlBUFA_GOOD (Q,QB,X1);
output Q,QB;
input X1;
parameter Trise=0.001;
parameter Tfall=0.001;
assign QB=-Q;
assign #(Trise,Tfall) Q=X1;

endmodule

module QY1ZEROA (Q,EN,FAULT);
output Q;
wire Q, ZERO;
input EN;
input [4:0] FAULT;
assign ZERO= 'bO;
assign Q = (EN&&FAULT===5'dl) ? 0: (EN&&FAULT===5'd2) ? 1: ZERO;

endmodule

module QY1ZEROAGOOD (ZERO);
output ZERO;
assign ZERO= 'bO;

endmodule

112

module QY1STA (O,I1,I2,EN,FAULT);
output O;
input I1,I2;
input EN;
input [4:0] FAULT;
wire O, I1F, I2F;
assign I1F = (EN&&FAULT===5'dl) ? 0: (EN&&FAULT===5'd2) ? 1: I1;
assign I2F = (EN&&FAULT===5'd3) ? 0: (EN&&FAULT===5'd4) ? 1: I2;
assign O=I2F;
endmodule

module QY1STA_GOOD (0,11,12);
output 0;
input 11,I2;
assign O=I2;
endmodule

module QY1DIAGA (O,I1,I2,EN,FAULT);
output 0;
input I1,I2;
input EN;
input [4:0] FAULT;
wire O, I1F, I2F;
assign I1F = (EN&&FAULT===5'dl) ? 0: (EN&&FAULT===5'd2) ? 1: I1;
assign I2F = (EN&&FAULT===5'd3) ? 0: (EN&&FAULT===5'd4) ? 1: I2;
assign O=IlF;

endmodule

module QY1DIAGA_GOOD (0,I1,I2);
output O;
input I1,I2;
assign O=I1;

endmodule

module QY1S2DA (Q,QB,X,EN,FAULT);
output Q,QB;
input X;
input EN;
input [4:0] FAULT;
parameter Trise=0.001;
parameter Tfall=0.001;
wire Q, XF;
assign XF = (EN&&FAULT===5'dl) ? 0: (EN&&FAULT===5'd2) ? 1: X;
assign QB=-Q;
buf #(Trise,Tfall) xl (Q,XF);
endmodule

module QY1S2DA_GOOD (Q,QB,X);
output Q,QB;
input X;
parameter Trise=0.001;
parameter Tfall=0.001;
assign QB=-Q;
buf #(Trise,Tfall) xl (Q,X);
endmodule

module QY1D2SDA (Q,X1,X1B,EN,FAULT);
output Q;
input Xl,XlB;
input EN;
input [4:0] FAULT;
parameter Trise=0.001;
parameter Tfall=0.001;

113

wire Q, X1F, X1BF;
assign X1F = (EN&&FAULT=--=5'dl) ? 0: (EN&&FAULT===5'd2) ? 1: X1;
assign X1BF = (EN&&FAULT===5'd3) ? 0: (EN&&FAULT===5'd4) ? 1: X1B;
d2s #(Trise,Tfall) zl (Q,XlF,X1BF);
endmodule

module QY1D2SDA_GOOD (Q,Xl,XlB);
output Q;
input Xl ,X1B;
parameter Trise=0.001;
parameter Tfall=0.001;
d2s #(Trise,Tfall) zl (Q,X1,X1B);
endmodule

module QY1OR2DA (Q,QB,Xl,X1B,X2,X2B,EN,FAULT);
output Q,QB;
input Xl,XlB,X2,X2B;
input EN;
input [4:0] FAULT;
wire X1S,X2S;
parameter trr_xl=0.001;
parameter tff_xl=0.001;
parameter trr_x2=0.001;
parameter tff_x2=0.001;
wire Q, X1F, X1BF, X2F, X2BF;
assign X1F = (EN&&FAULT===5'dl) ? 0: (EN&&FAULT===5'd2) ? 1: X1;
assign X1BF = (EN&&FAULT===5'd3) ? 0: (EN&&FAULT===5'd4) ? 1: X1B;
assign X2F = (EN&&FAULT===5'd5) ? 0: (EN&&FAULT===5'd6) ? 1: X2;
assign X2BF = (EN&&FAULT===5'd7) ? 0: (EN&&FAULT===5'd8) ? 1: X2B;
d2s #(trr_xl,tff_xl) zl (XlS,XlF,X1BF);
d2s #(trr_x2,tff_x2) z2 (X2S,X2F,X2BF);
or z3 (Q,XlS,X2S);
not z4 (QB,Q);
endmodule

module QY10R2DA_GOOD (Q,QB,X1 ,XlB,X2,X2B);
output Q,QB;
input X1,XlB,X2,X2B;
wire XlS,X2S;
parameter trr_xl=0.001;
parameter tff_xl=0.001;
parameter trr_x2=0.001;
parameter tff_x2=0.001;
d2s #(trr_xl,tff_xl) zl (X1S,X1,X1B);
d2s #(trr_x2,tff_x2) z2 (X2S,X2,X2B);
or z3 (Q,XlS,X2S);
not z4 (QB,Q);

endmodule

module QY1OR3DA (Q,QB,X1,X1B,X2,X2B,X3,X3B,EN,FAULT);
output Q,QB;
input Xl ,X1B,X2,X2B,X3,X3B;
input EN;
input [4:0] FAULT;
wire XlS,X2S,X3S;
parameter trr_xl=0.001;
parameter tff_xl=0.001;
parameter trr_x2=0.001;
parameter tff_x2=0.001;
parameter trr_x3=0.001;
parameter tff_x3=0.001;
wire Q, XIF, X1BF, X2F, X2BF, X3F, X3BF;
assign X1F = (EN&&FAULT===5'dl) ? 0: (EN&&FAULT===5'd2) ? 1: X1;
assign X1BF = (EN&&FAULT===5'd3) ? 0: (EN&&FAULT===5'd4) ? 1: X1B;

114

assign X2F = (EN&&FAULT===5'd5) ? 0: (EN&&FAULT===5'd6) ? 1: X2;
assign X2BF = (EN&&FAULT===5'd7) ? 0: (EN&&FAULT===5'd8) ? 1: X2B;
assign X3F = (EN&&FAULT===5'd9) ? 0: (EN&&FAULT===5'd1O) ? 1: X3;
assign X3BF = (EN&&FAULT===5'dll) ? 0: (EN&&FAULT===5'd12) ? 1: X3B;
d2s #(trr_xl,tffxl) zl (X1S,X1F,X1BF);
d2s #(trr_x2,tff_x2) z2 (X2S,X2F,X2BF);
d2s #(trr_x2,tff_x2) z3 (X3S,X3F,X3BF);
or z4 (Q,X1S,X2S,X3S);
not z5 (QB,Q);
endmodule

module QY1OR3DA_GOOD (Q,QB,X1 ,X1B,X2,X2B,X3,X3B);
output Q,QB;
input X1,X1B,X2,X2B,X3,X3B;
wire X1S,X2S,X3S;
parameter trr_xl =0.001;
parameter tff_xl=0.001;
parameter trr_x2=0.001;
parameter tff_x2=0.001;
parameter trr_x3=0.001;
parameter tff_x3=0.001;
d2s #(trr_xl,tff_xl) zl (X1S,X1,X1B);
d2s #(trr_x2,tff_x2) z2 (X2S,X2,X2B);
d2s #(trr_x2,tff_x2) z3 (X3S,X3,X3B);
or z4 (Q,X1S,X2S,X3S);
not z5 (QB,Q);
endmodule

module QY1MX2DA (Q,QB,XO,XOB,X1,X1B,S,SB,EN,FAULT);
output Q,QB;
input XO,XOB,X1,X1B,S,SB;
input EN;
input [4:0] FAULT;
wire XOS,X1S,SS;
parameter trr_xO=0.001;
parameter tff_xO=0.001;
parameter trr_xl=0.001;
parameter tff_xl=0.001;
parameter delayS=0.001;
wire Q, XOF, XOBF, X1F, XIBF, SF, SBF;
assign XOF = (EN&&FAULT===5'dl) ? 0: (EN&&FAULT===5'd2) ? 1: XO;
assign XOBF = (EN&&FAULT===5'd3) ? 0: (EN&&FAULT===5'd4) ? 1: XOB;
assign X1F = (EN&&FAULT===5'd5) ? 0: (EN&&FAULT===5'd6) ? 1: X1;
assign X1BF = (EN&&FAULT===5'd7) ? 0: (EN&&FAULT===5'd8) ? 1: X1B;
assign SF = (EN&&FAULT===5'd9) ? 0: (EN&&FAULT===5'dlO) ? 1: S;
assign SBF = (EN&&FAULT===5'dll) ? 0: (EN&&FAULT===5'd12) ? 1: SB;
d2s #(trr_xO,tffxO) z (XOS,XOF,XOBF);
d2s #(trr_xl,tff_xl) z2 (X1S,X1F,X1BF);
d2s #delayS z3 (SS,SF,SBF);
mux2 z4 (Q,XOS,X S,SS);
not z5 (QB,Q);
endmodule

module QY1MX2DA_GOOD (Q,QB,XO,XOB,X1 ,X1B,S,SB);
output Q,QB;
input XO,XOB,X1,X1B,S,SB;
wire XOS,X1S,SS;
parameter trr_xO=0.001;
parameter tff_xO=0.001;
parameter trr_xl=0.001;
parameter tff_xl=0.001;
parameter delayS=0.001;
d2s #(trr_xO,tff_xO) zl (XOS,XO,XOB);
d2s #(trr_xl,tff_xl) z2 (X1S,X1,X1B);

115

d2s #delayS z3 (SS,S,SB);
mux2 z4 (Q,XOS,X1S,SS);
not z5 (QB,Q);

endmodule

module QY1MX4DA (Q,QB,XO,XOB,X 1,X 1B,X2,X2B,X3,X3B,S 1,S 1B,SO,SOB,EN,FAULT);
output Q,QB;
input XO,XOB,X1 ,XlB,X2,X2B,X3,X3B,S 1,S1B,SO,SOB;
input EN;
input [4:0] FAULT;
wire XOS,X1S,X2S,X3S,S1S,SOS;
parameter trr_xO=0.001;
parameter tff_xO0-.001;
parameter trr_xl=0.001;
parameter tf_xl=0.0OO1;
parameter trr_x2=0.001;
parameter tff_x2=0.001;
parameter trr_x3=0.001;
parameter tff_x3=0.001;
parameter delaySO=0.001;
parameter delayS 1=0.001;
wire Q, XOF, XOBF, X1F, X1BF, X2F, X2BF, X3F, X3BF, S1F, S1BF, SOF, SOBF;
assign XOF = (EN&&FAULT===5'dl) ? 0: (EN&&FAULT===5'd2) ? 1: XO;
assign XOBF = (EN&&FAULT===5'd3) ? 0: (EN&&FAULT===5'd4) ? 1: XOB;
assign XIF = (EN&&FAULT===5'dS) ? 0: (EN&&FAULT===5'd6) ? 1: X1;
assign X1BF = (EN&&FAULT===5'd7) ? 0: (EN&&FAULT===5'd8) ? 1: X1B;
assign X2F = (EN&&FAULT===5'd9) ? 0: (EN&&FAULT===5'dlO) ? 1: X2;
assign X2BF = (EN&&FAULT===5'dll) ? 0: (EN&&FAULT===5'd12) ? 1: X2B;
assign X3F = (EN&&FAULT===5'd13) ? 0: (EN&&FAULT===5'd14) ? 1: X3;
assign X3BF = (EN&&FAULT===5'd15) ? 0: (EN&&FAULT===5'd16) ? 1: X3B;
assign S1F = (EN&&FAULT===5'd17) ? 0: (EN&&FAULT===5'd18) ? 1: S1;
assign S1BF = (EN&&FAULT===5'd19) ? 0: (EN&&FAULT===5'd20) ? 1: S B;
assign SOF = (EN&&FAULT===5'd21) ? 0: (EN&&FAULT===5'd22) ? 1: SO;
assign SOBF = (EN&&FAULT===5'd23) ? 0: (EN&&FAULT===5'd24) ? 1: SOB;
d2s #(trr_xO,tff_xO) z (XOS,XOF,XOBF);
d2s #(trr_xl,tffxl) z2 (X1S,X1F,X1BF);
d2s #(trr_x2,tff_x2) z3 (X2S,X2F,X2BF);
d2s #(trr_x3,tff_x3) z4 (X3S,X3F,X3BF);
d2s #delaySO z5 (SOS,SOF,SOBF);
d2s #delayS1 z6 (SlS,SlF,S1BF);
mux4 z7 (Q,XOS,X1S,X2S,X3S,S 1S,SOS);
not z8 (QB,Q);

endmodule

module QY1MX4DA_GOOD (Q,QB,XO,XOB,X1 ,X1B,X2,X2B,X3,X3B,S 1,S 1B,S0,SOB);
output Q,QB;
input XO,XOB,X1 ,XIB,X2,X2B,X3,X3B,S1 ,SIB,S0,SOB;
wire XOS,XIS,X2S,X3S,S 1S,SOS;
parameter trr_xO=O.0O1;
parameter tff_x0=0O.OO1;
parameter trr_xl=0.001;
parameter tffxl=0.001;
parameter trr_x2=--O.001;
parameter tff_x2=0.001;
parameter trr_x3=0.001;
parameter tff_x3=0.001;
parameter delaySO=0.001;
parameter delayS 1=0.001;
d2s #(trr_xO,tff_xO) zl (XOS,XO,XOB);
d2s #(trr_xl,tff_xl) z2 (X1S,XI,X1B);
d2s #(trr_x2,tffx2) z3 (X2S,X2,X2B);
d2s #(trr_x3,tff_x3) z4 (X3S,X3,X3B);
d2s #delaySO z5 (SOS,SO,SOB);
d2s #delayS 1 z6 (SIS,S1,S1B);

116

mux4 z7 (Q,XOS,X1S,X2S,X3S,S S,SOS);
not z8 (QB,Q);

endmodule

module QY1CP1DA (Q,QB,R,RB,CLK,CLKB, EN, FAULT);
output Q,QB;
input R,RB,CLK,CLKB;
input EN;
input [4:0] FAULT;
wire RS,CLKS, RF, RBF, CLKF, CLKBF;
reg Q, RS_OLD, CLKS_OLD;
parameter delayR=0.001;
parameter delayCLK=0.001;
assign RF = (EN&&FAULT===5'dl) ? 0: (EN&&FAULT===5'd2) ? 1: R;
assign RBF = (EN&&FAULT===5'd3) ? 0: (EN&&FAULT===5'd4) ? 1: RB;
assign CLKF = (EN&&FAULT===5'd5) ? 0: (EN&&FAULT===5'd6) ? 1: CLK;
assign CLKBF = (EN&&FAULT===5'd7) ? 0: (EN&&FAULT===5'd8) ? 1: CLKB;
d2s #delayR zl(RS,RF,RBF);
d2s z2(CLKS,CLKF,CLKBF);
assign QB=-Q;
initial begin
Q= l'bO;
end
always @(negedge faultdrive.start_run) Q = l'bO;
always @ (RS) begin
if (((RS_OLD===1'bO)&&(RS===1 'bl))II((RS_OLD===1'bl)&&(RS===1 'bO))) Q = (RS === 1) ? l'bO:
Q;
if ((RS_OLD===1 'bO)&&(RS=== 'bx)&&(Q!==0)) Q = 1 'bx;
if ((RS_OLD===l'bx)&&(RS===l'bl)) Q = l'bO;
end
always @(RS) #0.001 RS_OLD = RS;
initial #0.1 forever @ (posedge CLKS) begin
if ((CLKS_OLD===l'bO)&&(CLKS===l'bl)) #delayCLK Q = (RS === l'bl) ? l'bO: (RS===l'bO) ?
l'bl: 'bx;
if (CLKS===l'bx) #delayCLK Q = (RS===l'bl) ? l'bO: ((RS===l'bO)&&(Q===l'bl)) ? l'bl: l'bx;
if ((CLKS_OLD===l'bx)&&(CLKS===l'bl)) #delayCLK Q = (RS==='bl) ? l'bO:
((RS===1b0)&&(Q==l'bl)) ? l'bl: l'bx;
end
always @(CLKS) #0.001 CLKS_OLD = CLKS;

endmodule

module QY1CP1DAGOOD (Q,QB,R,RB,CLK,CLKB);
output Q,QB;
input R,RB,CLK,CLKB;
wire RS,CLKS;
reg Q;
parameter delayR=0.001;
parameter delayCLK=0.001;
d2s #delayR zl(RS,R,RB);
d2s z2(CLKS,CLK,CLKB);
assign QB=-Q;
always @ (RS) Q = (RS === 1) ? l'bO: Q;
always @ (posedge CLKS) #delayCLK Q = (RS === 1) ? l'bO: l'bl;

endmodule

module QY1DFDA (Q,QB,D,DB,CLK,CLKB,EN,FAULT);
output Q,QB;
input D,DB,CLK,CLKB;
input EN;
input [4:0] FAULT;
wire DS,CLKS, DF, DBF, CLKF, CLKBF;
reg Q, CLKS_OLD;initial CLKS_OLD=l'bO;
parameter delayCLK=0.001;
assign DF = (EN&&FAULT=--5'dl) ? 0: (EN&&FAULT===5'd2) ? 1: D;

117

assign DBF = (EN&&FAULT===5'd3) ? 0: (EN&&FAULT===5'd4) ? 1: DB;
assign CLKF = (EN&&FAULT===5'd5) ? 0: (EN&&FAULT===5'd6) ? 1: CLK;
assign CLKBF = (EN&&FAULT===5'd7) ? 0: (EN&&FAULT===5'd8) ? 1: CLKB;
d2s zl(DS,DF,DBF);
d2s z2(CLKS,CLKF,CLKBF);
assign QB=-Q;
always @ (posedge CLKS) begin
if ((CLKS_OLD=== I'bO)&&(CLKS===1'bl)) #delayCLK Q = DS;
if ((CLKS==='bx)&&(DS!==Q)) #delayCLK Q = l'bx;
if ((CLKS_OLD===1 'bx)&&(CLKS===l'bl)&&(DS!==Q)) #delayCLK Q = l'bx;
end
always @(CLKS) #0.001 CLKS_OLD = CLKS;

endmodule

module QY1DFDA_GOOD (Q,QB,D,DB,CLK,CLKB);
output Q,QB;
input D,DB,CLK,CLKB;
wire DS,CLKS;
reg Q;
parameter delayCLK=0.001;
d2s zl(DS,D,DB);
d2s z2(CLKS,CLK,CLKB);
assign QB=-Q;
always @ (posedge CLKS) #delayCLK Q = DS;

endmodule

module QY1DFRDA (Q,QB,D,DB,CLK,CLKB,R,RB,EN,FAULT);
output Q,QB;
input D,DB,CLK,CLKB,R,RB;
input EN;
input [4:0] FAULT;
wire DS,CLKS,RS, DF, DBF, CLKF, CLKBF, RF, RBF;
reg Q, RSOLD, CLKS_OLD;
parameter delayCLK=0.001;
parameter delayR=0.001;
assign DF = (EN&&FAULT===5'dl) ? 0: (EN&&FAULT===5'd2) ? 1: D;
assign DBF = (EN&&FAULT===5'd3) ? 0: (EN&&FAULT===5'd4) ? 1: DB;
assign CLKF = (EN&&FAULT===5'd5) ? 0: (EN&&FAULT===5'd6) ? 1: CLK;
assign CLKBF = (EN&&FAULT===5'd7) ? 0: (EN&&FAULT===5'd8) ? 1: CLKB;
assign RF = (EN&&FAULT===5'd9) ? 0: (EN&&FAULT===5'd10) ? 1: R;
assign RBF = (EN&&FAULT===5'dll) ? 0: (EN&&FAULT===5'dl2) ? 1 :RB;
d2s zl(DS,DF,DBF);
d2s z2(CLKS,CLKF,CLKBF);
d2s z3(RS,RF,RBF);
assign QB=-Q;
always @ (RS) begin
if (((RS_OLD===1 'bO)&&(RS===l'bl))ll((RS_OLD=== 'bl)&&(RS===I'bO))) #delayR Q = (RS
1) ? l'bO: Q;
if ((RS_OLD==='bO)&&(RS===I'bx)&&(Q!==0)) Q = l'bx;
if ((RS_OLD===I 'bx)&&(RS===l'bl)&&(Q!==0)) Q = l'bO;
end
always @(RS) #0.001 RS_OLD = RS;
always @ (posedge CLKS) begin
if ((CLKS_OLD===l'bO)&&(CLKS===l'bl)) #delayCLK Q = (RS === 1) ? l'bO :(DS===0) ? l'bO:
(RS===l'bx) ? l'bx : DS;
if (CLKS===l'bx) #delayCLK Q = ((RS===-)II((Q===0)&&(DS===0))) ? l'bO:
((RS=== 'bO)&&(Q===DS)) ? DS: l'bx;
if ((CLKS_OLD===l'bx)&&(CLKS===l'bl)) #delayCLK Q = ((RS===l)II((Q===0)&&(DS===0))) ?
l'bO: ((RS===1 'bO)&&(Q===DS)) ? DS: l'bx;
end
always @(CLKS) #0.001 CLKS_OLD = CLKS;
endmodule

module QY1DFRDA_GOOD (Q,QB,D,DB,CLK,CLKB,R,RB);

118

output Q,QB;
input D,DB,CLK,CLKB,R,RB;
wire DS,CLKS,RS;
reg Q;
parameter delayCLK=0.001;
parameter delayR=0.001;
d2s zl(DS,D,DB);
d2s z2(CLKS,CLK,CLKB);
d2s z3(RS,R,RB);
assign QB=-Q;
always @ (RS) #delayR Q = (RS === 1) ? l'bO: Q;
always @ (posedge CLKS) #delayCLK Q = (RS === 1) ? 'b: DS;

endmodule

module QY1RSDA (Q,QB,S,SB,R,RB,EN,FAULT);
output Q,QB;
input S,SB,R,RB;
input EN;
input [4:0] FAULT;
wire SS,RS, SF, SBF, RF, RBF;
reg Q, RS_OLD, SS_OLD;initial RS_OLD=l'bO; initial SS_OLD=l'bO;
parameter delayR=0.001;
parameter delayS=0.001;
assign SF = (EN&&FAULT===5'dl) ? 0: (EN&&FAULT===5'd2) ? 1: S;
assign SBF = (EN&&FAULT===5'd3) ? 0: (EN&&FAULT===5'd4) ? 1: SB;
assign RF = (EN&&FAULT===5'd5) ? 0: (EN&&FAULT===5'd6) ? 1: R;
assign RBF = (EN&&FAULT===5'd7) ? 0: (EN&&FAULT===5'd8) ? 1: RB;
d2s #delayR zl(RS,RF,RBF);
d2s #delayS z2(SS,SF,SBF);
assign QB=-Q;
initial Q=l'bO;
always @(negedge faultdrive.start_run) Q = l'bO;
always @ (RS) begin
if (((RS_OLD===l'bO)&&(RS===1'bl))ll((RS_OLD===1'bl)&&(RS===l'bO))) Q = (RS===1) ? l'bO:
((SS===1) ? l'bl: Q);
if ((RS_OLD===l'bO)&&(RS===l'bx)) Q = ((Q===O)&&(SS===O)) ? l'bO: l'bx;
if ((RS_OLD===l'bx)&&(RS===l'bl)) Q = l'bO;
end
always @(RS) #0.001 RS_OLD = RS;
always @ (SS) begin
if (((SS_OLD===I'bO)&&(SS===I'bl))ll((SS_OLD===I'bl)&&(SS==='bO))) Q = (RS===1) ? l'bO:
((SS===1)? l'bl: Q);
if ((SSOLD===l'bO)&&(SS===l'bx)) Q = ((Q===l)&&(RS===0)) ? l'bl: l'bx;
if ((SS_OLD===I'bx)&&(SS===I'bl)) Q = (RS===1) ? l'bO: (RS===O)? l'bl: l'bx;
end
always @(SS) #0.001 SS_OLD = SS;
endmodule

module QY1RSDA_GOOD (Q,QB,S,SB,R,RB);
output Q,QB;
input S,SB,R,RB;
wire SS,RS;
reg Q;
parameter delayR=0.001;
parameter delayS=0.001;
d2s #delayR zl(RS,R,RB);
d2s #delayS z2(SS,S,SB);
assign QB=-Q;
initial Q=l'bO;
always @ (RS or SS) Q = (RS===1) ? l'bO: ((SS===I) ? l'bl: Q);
endmodule

module QY1DELDA (Q,QB,X1,X1B,EN,FAULT);
output Q,QB;

119

input X1,X1B;
input EN;
input [4:0] FAULT;
wire Q, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, XlF, X1BF;
assign X1F = (EN&&FAULT===5'dl) ? 0: (EN&&FAULT===5'd2) ? 1: X1;
assign X1BF = (EN&&FAULT===5'd3) ? 0: (EN&&FAULT===5'd4) ? 1: X1B;
parameter delayl = 0.100;
parameter delay2 = 0.100;
parameter delay3 = 0.100;
parameter delay4 = 0.100;
parameter delay5 = 0.100;
parameter delay6 = 0.100;
parameter delay7 = 0.100;
parameter delay8 = 0.049;
assign QB=-Q;
d2s zl (QI,XlF,XIBF);
assign #delayl Q2 = Q1;
assign #delay2 Q3 = Q2;
assign #delay3 Q4 = Q3;
assign #delay4 Q5 = Q4;
assign #delay5 Q6 = Q5;
assign #delay6 Q7 = Q6;
assign #delay7 Q8 = Q7;
assign #delay8 Q = Q8;
endmodule

module QYlDELDA_GOOD (Q,QB,X1,X1B);
output Q,QB;
input X ,X 1B;
assign QB=-Q;
d2s #(1.498,0.001) zI (Q,X1,X1B);

endmodule

module QYIONEDA (Q,QB,EN,FAULT);
output Q,QB;
input EN;
input [4:0] FAULT;
wire Q, Q2;
assign QB=-Q;
assign Q = (EN&&FAULT===5'dl) ? 0: 1;

endmodule

module QYlONEDA_GOOD (Q,QB);
output Q,QB;
assign Q=l'bl;
assign QB=l'bO;

endmodule

module vbidriv (ECL,Q,X,Y,EN,FAULT);
output Q;
inout ECL;
input X,Y;
input EN;
input [4:0] FAULT;
wire Q, XF, YF;
assign XF = (EN&&FAULT===5'dl) ? 0: (EN&&FAULT===5'd2) ? 1: X;
assign YF = (EN&&FAULT===5'd3) ? 0: (EN&&FAULT===5'd4) ? 1: Y;
and (strongl,weakO) xl (ECL,XF,YF);
buf x2 (Q,ECL);

endmodule

module vbidriv_GOOD (ECL,Q,X,Y);
output Q;
inout ECL;

120

input X,Y;
and (strong 1l,weakO) xl (ECL,X,Y);
buf x2 (Q,ECL);

endmodule

module vmono (O,OB,T);
input T;
output O,OB;
reg O;
wire T,OB;
parameter delay=2;
assign OB=-O;
initial 0=l'bO;
always @ (posedge T)
if (T === l'bl) begin
0=l'bl;
#delay O=l'bO;
end
endmodule

module vrs (O,OB,R,S);
input R,S;
output O,OB;
reg O;
wire R,S,OB;
parameter delay=O;
assign OB=-O;
initial O=l'bO;
always @ (R or S) #delay O = (R==1) ? l'bO: ((S==I) ? l'bl: 0);

endmodule

module vl (O);
output 0;
assign 0=l'bl;

endmodule

module vO (O);
output O;
assign 0=l'bO;

endmodule

module vnot (O,OB,I);
parameter delay=O;
input I;
output O,OB;
buf #delay xl (O,I);
not x2 (OB,O);
endmodule

module vand2 (O,OB,I1,I2);
parameter delay=O;
input I1,I2;
output O,OB;
and #delay xl (0,I1,I2);
not x2 (OB,O);
endmodule

module vand3 (O,OB,I1,I2,I3);
parameter delay=O;
input I1,12,I3;
output O,OB;
and #delay xl (0,I1,12,I3);
not x2 (OB,O);

endmodule

121

module vor2 (O,OB,I1,12);
parameter delay=O;
input 11,12;
output O,OB;
or #delay xl (0,11,12);
not x2 (OB,O);

endmodule

module vor3 (O,OB,I1,I2,I3);
parameter delay=O;
input I1,12,13;
output O,OB;
or #delay xl (0,11,12,13);
not x2 (OB,O);
endmodule

module vor4 (O,OB,I1,I2,I3,I4);
parameter delay=O;
input 11,12,13,14;
output O,OB;
or #delay xl (O,I1,I2,I3,I4);
not x2 (OB,O);

endmodule

module vor5 (O,OB,I 1,I2,I3,I4,15);
parameter delay=O;
input 11,12,13,I4,15;
output O,OB;
or #delay x Il (O,I1,I2,I3,I4,I5);
not x2 (OB,O);

endmodule

module vmux2 (O,OB,XO,X1,S);
parameter delay=O;
input XO,X1,S;
output O,OB;
mux2 #delay xl (O,XO,X1,S);
not x2 (OB,O);

endmodule

module vmux4 (O,OB,XO,X,X2,X3,S 1,SO);
parameter delay=O;
input XO,X1,X2,X3,S 1,SO;
output O,OB;
mux4 #delay x (O,XO,X1 ,X2,X3,S1 ,SO);
not x2 (OB,O);

endmodule

module vdf (O,OB,D,CLK);
parameter delay=O;
input D,CLK;
output O,OB;
reg O;
assign OB=-O;
always @ (posedge CLK) #delay O = D;

endmodule

module vdfr (O,OB,D,CLK,R);
parameter delay=O;
input D,CLK,R;
output O,OB;
reg 0;
assign OB=-O;

122

always @ (R) #delay O = (R === 1) ? l'bO: O;
always @ (posedge CLK) #delay O = (R === 1) ? l'bO: D;
endmodule

primitive mux2 (o,xO,xl,s);
output o;
input s,xO,x 1;
table
//xO xl so
0 ? 0:0;
1 ?O: 1;
?O1:0;
? 11:1;
OOx:0;
11 x: 1;
endtable

endprimitive

primitive d2s (o,x,xb);
output o;
input x,xb;
table
l x xb o;
01 :0;
10: 1;
endtable
endprimitive

primitive mux4 (o,xO,xl,x2,x3,sl 1,sO);
output o;
input xO,xl,x2,x3,sl,sO;
table
/ xO xl x2 x3 sl sO o
0???00:0;
1 ???00: 1;
?0??0 1:0;
? 1? ?0 1:1;
? 0 ? 10:0;

?? 1? 1 0:1;
???0 11:0;
? ? ? 111:1;
0?0?xO:0;
1 ? 1?x0:1;
?0?Ox 1:0;
? ? x l: l;
00??Ox:0;
1 ??Ox: 1;
??00 1 x:0;
?? 1 11x:1;
OOOOxx: x :0;
11 1 xx: 1;
endtable

endprimitive

123

A.2 Linear Delay Line Models

'timescale ns / ps
/*********************************LDL**********************************
'define LSB EVENT[5]

module LDL_HP (VOUT,VOUTB,VOTST,VO,VOB,VI,VIB,TYPE_OUT,TYPE_OUTB,bus_out,
EVENT,bus_in,VITST,
SEL,EN,MR,F6,TST,TCLK);

output VOUT,VOUTB,VOTST,VO,VI,VOB,VIB;
output [1:0] TYPE_OUT,TYPE_OUTB;
output [9:2] bus_out;
input [5:0] EVENT;
input [9:2] bus_in;
input VITST,SEL,MR;
input EN;
input F6,TST,TCLK; / F6 is bit 6 of func (register address)

real actual_delay;
wire [9:2] bus_out;
wire vin;

reg VOUT;
reg [9:2] GAIN; / LDL drive gain register
reg [9:2] DELAY; // LDL drive delay register
reg [4:0] hold_reg; // register holding MSB of delay
reg [1:0] eventreg,type_reg;
reg next_clock_trigger,trigger;

initial trigger = 0;

assign bus_out = ((EN==1) ? ((F6 == 0) ? GAIN: DELAY): 8'bO);

// output event TYPE
assign TYPE_OUT = type_reg;
assign VOUTB=-VOUT;
assign TYPE_OUTB=-TYPE_OUT;
assign VOB=-VO;
assign VIB=-VI;

always @ (posedge SEL) GAIN = bus_in;

always @ (posedge TCLK)
begin
if ('LSB == 1) begin I MSB is in the hold_reg

DELAY = {hold_reg[3:0],EVENT[3:0] }; I concatenate MSB & LSB of delay
event_reg = {holdreg[4],EVENT[4] 1; I concatenate event type

end
holdreg = EVENT[4:0]; / DTIME latch into hold_reg every TCLK
end

always @ (posedge TCLK) begin
next_clock_trigger = 'LSB;
@ (negedge TCLK)
trigger = (next_clock_trigger === l'bx) ? l'bO: nextclock_trigger;
end

always @ (posedge vin) type_reg = event_reg;

/***************************** LDL Core **** ***************** /
/* the time unit is ns */
/* the values listed below are subject to change. */

124

parameter VI_pulse_width = 0.5; // 0.5 ns
parameter VOUT_pulse_width = 1.5; // 1.5 ns
parameter To = 2.5; / zero_delay = 2.5 ns
parameter Cramp = 3; / ramp_capacitor = 3.0 pf
parameter voltperLSB = 1.5; // delay_level_delta = 1.5 mV
parameter Imax = 500; // max_gain_current = 500 uA
parameter dI = 1; / ramp_current_delta = 1.0 uA

parameter dV = Cramp * voltper_LSB;
parameter mdf = 1.0; // 0.7 < Min_Delay_Factor < 1.3

initial VOUT = 0;

assign VOTST = (TST === 1) ? VOUT: l'bO;

assign VO = VOUT;

assign VI = VITST I (TCLK & trigger);

not #(VI_pulsewidth) (VI_,VI);
and (vin,VI,VI_);

always @ (posedge vin) begin
actual_delay = (GAIN===8'bx) ? (To + mdf*DELAY*dV/(Imax-255*dI))

: (To + mdf*DELAY*dV/(Imax-GAIN*dI));
#(actual_delay) VOUT = 1;
end

always @ (posedge VOUT)
#(VOUT_pulse_width) VOUT = 0; / reset to 0 after VOUT_pulse_width

endmodule

125

Appendix B

Device Models

B.1 Drive Control IC

'timescale ps/lps
/***************************** Drive Control *****************************/
module drive_control_gate (DHIA,DINHA,DHIB,DINHB,

SETLOOUT,SETHIOUT,SETZOUT,SETONOUT,
TMUPA,TMUPB,
R,RS,RTXC,
SETLOIN,SETHIIN,SETZIN,SETONIN,
DA,DB,DC,DD,
THBSEL,DCLK, FAULT_SEL, GATE_SEL);

output DHIA,DINHA,DHIB,DINHB; I to PE
output SETLOOUT,SETHIOUT,SETZOUT,SETONOUT; I to even pin
output TMUPA,TMUPB; II to Response Control's TMU Mux
inout [9:2] R; // BDE from Event Logic Chip
input [1:0] RS;II BSE from Event Logic Chip
input RTXC; // BTXCE from Event Logic Chip

/* RTXC is pulsed only when RS is 3 (function cycle)
or the register in Drive/Response Control is addressed
if RS is 0 or 1 (read/write cycle) */

input SETLOIN,SETHIIN,SETZIN,SETONIN; II from odd pin
input [5:0] DA,DB,DC,DD; II from ESS
input THBSEL,DCLK;
input [4:0] FAULT_SEL;
input [9:0] GATE_SEL;

wor [9:2] R;
wire [9:2] data;
wire [7:0] func;
wire [5:0] funcb;
wire [1023:0] GATE_NUM;
assign GATE_NUM = 1 << GATE_SEL;

wire TMUPAB,TMUPBB; II to Response Control's TMU Mux
wire DHIAB,DINHAB,DHIBB,DINHBB,NDHI,NDINH;
wire SETLOOUTB,SETHIOUTB,SETZOUTB,SETONOUTB;
wire SETLOINB,SETHIINB,SETZINB,SETONINB;
wire DVOUTA,DVOUTB,DVOUTC,DVOUTD;
wire DVOUTAB,DVOUTBB,DVOUTCB,DVOUTDB;
wire DVOTSTA,DVOTSTB,DVOTSTC,DVOTSTD;
wire DVOA,DVOB,DVOC,DVOD;
wire DVIA,DVIB,DVIC,DVID;
wire DVOAB,DVOBB,DVOCB,DVODB;
wire DVIAB,DVIBB,DVICB,DVIDB;
wire [3:0] DVO = {DVOD,DVOC,DVOB,DVOA}, II to TMU

DVI = {DVID,DVIC,DVIB,DVIA }; // to TMU
wire [3:0] NDVO = {DVODB,DVOCB,DVOBB,DVOAB), // to TMU

NDVI = {DVIDB,DVICB,DVIBB,DVIAB }; II to TMU
wire PMXDHI,PMXDINH; // to TMU for device test purpose
wire PMXDHIB,PMXDINHB; II to TMU for device test purpose
wire [1:0] TYPEA,TYPEB,TYPEC,TYPED;
wire [1:0] TYPEAB,TYPEBB,TYPECB,TYPEDB;
wor [9:2] bus_out; II bus from each LDL
wire [9:2] bus_in = R; II bus from Registers to LDLs
wire [9:2] RI;

126

wire SELA,SELB,SELC,SELD; I/ indicate which LDL is selected
wire ENA,ENB,ENC,END; I/ indicate which LDL is selected

wire TGICRESET; II MR (master reset)
wire [4:0] HSPATHBSEL;
wire [2:1] HSPATHASEL;
wire [2:0] PECONTROL;
wire [1:0] PINSTATUS;

QY1ZEROA X096 (ZERO, GATENUM[1], FAULTSEL); I/ 0 input

QYlBUFA X015 (N062,N004,RS[1], GATENUM[6], FAULTSEL);// 1 input
QYlBUFA X001 (N066,N001,RI[5], GATENUM[7], FAULTSEL);

QY1AND2A X035 (SELCLK,N055,N005,WCLK, GATENUM[34], FAULTSEL);// 2 input
QY1AND2A X036 (SELA,N051,ENA,SELCLK, GATENUM[35], FAULTSEL);
QY1AND2A X037 (SELB,N050,ENB,SELCLK, GATENUM[36], FAULTSEL);
QY1AND2A X038 (SELC,N049,ENC,SELCLK, GATENUM[37], FAULTSEL);
QY1AND2A X039 (SELD,N048,END,SELCLK, GATENUM[38], FAULTSEL);
QY1AND2A X004 (TGICRESET,N065,N003,FNCCLK, GATENUM[39], FAULTSEL);
QY1DFA X005 (func[7],N061,RI[9],FNCCLK, GATENUM[40], FAULTSEL);
QY1DFA X006 (func[6],N060,RI[8],FNCCLK, GATENUM[41], FAULTSEL);
QY1DFA X007 (func[5],funcb[5],RI[7],FNCCLK, GATENUM[42], FAULTSEL);
QY1DFA X008 (func[4],funcb[4],RI[6],FNCCLK, GATENUM[43], FAULTSEL);
QY1DFA X009 (func[3],funcb[3],RI[5],FNCCLK, GATENUM[44], FAULTSEL);
QY1DFA X010 (func[2],funcb[2],RI[4],FNCCLK, GATENUM[45], FAULTSEL);
QY1DFA X011 (func[l],funcb[l],RI[3],FNCCLK, GATENUM[46], FAULTSEL);
QYI1DFA X012 (func[0],funcb[0],RI[2],FNCCLK, GATENUM[47], FAULTSEL);
QY 1DFA X063 (HSPATHBSEL[1],N096,RI[9],HSBLDCLK, GATENUM[48], FAULTSEL);
QY1DFA X064 (HSPATHBSEL[0],N095,RI[8],HSBLDCLK, GATENUM[49], FAULTSEL);
QY1DFA X060 (HSPATHBSEL[4],N094,RI[4],HSBLDCLK, GATENUM[50], FAULTSEL);
QY1DFA X061 (HSPATHBSEL[3],N093,RI[3],HSBLDCLK, GATENUM[51], FAULTSEL);
QY1DFA X062 (HSPATHBSEL[2],N092,RI[2],HSBLDCLK, GATENUM[52], FAULT SEL);
QY1DFA X097 (HSPATHASEL[1],N091,RI[9],HSALDCLK, GATENUM[53], FAULT SEL);
QY1DFA X065 (HSPATHASEL[2],N090,RI[2],HSALDCLK, GATENUM[54], FAULT SEL);
QYIDIAGA S01 (N137,func[2],funcb[2], GATENUM[55], FAULTSEL);
QYl1DIAGA S02 (N136,func[1],funcb[1], GATENUM[56], FAULTSEL);
QY1DIAGA S03 (N135,HSLDEN,Z, GATENUM[57], FAULTSEL);
QY1DIAGA S04 (N134,func[4],funcb[4], GATENUM[58], FAULTSEL);
QY1DIAGA S05 (N133,TGICDIAGM_bit5,TGICDIAGMbit6, GATE_NUM[59], FAULTSEL);
QY1DIAGA S10 (N142,PECONTROL[0],ZERO, GATENUM[60], FAULTSEL);
QY1DIAGA S07 (N132,PECONTROL[1],HSPATHASEL[l1], GATENUM[61], FAULTSEL);
QY1DIAGA S08 (N131,TGICDIAGM_bitl,ZERO, GATENUM[62], FAULTSEL);
QY1DIAGA S09 (N130,ZERO,PINSTATUS[1], GATENUM[63], FAULTSEL);
QY1DIAGA S06 (N129,ZERO,func[0], GATENUM[64], FAULTSEL);
QY1DIAGA S ll (N138,TGICDIAGM_bit0,ZERO, GATENUM[65], FAULTSEL);
QY1DIAGA S12 (N139,ZERO,PINSTATUS[0], GATE_ NUM[66], FAULTSEL);
QY 1DIAGA S13 (N128,ZERO,EVENTMODEbit7, GATE_NUM[67], FAULTSEL);
QY1DIAGA S14 (N127,ZERO,TGICDIAGMbit6, GATENUM[68], FAULTSEL);
QY1DIAGA S16 (N140,EVENTMODE_bit3,ZERO, GATE_NUM[69], FAULTSEL);
QY1DIAGA S18 (N143,PECONTROL[2],HSPATHASEL[2], GATENUM[70], FAULTSEL);
QYl1DIAGA S21 (N073,NOT06,ZERO, GATENUM[71], FAULTSEL);
QY1OR2A X030 (N045,S1,PECLRSET,EVCLRSET, GATE_NUM[72], FAULTSEL);
QY1OR2A X031 (N044,S0,PECLRSET,TGCLRSET, GATE_NUM[73], FAULT SEL);
QY1OR2A X098 (N057,NOT06,HSLDENB,func[0], GATE_NUM[74], FAULTSEL);
QY 1STA S15 (N126,ZERO,TGICDIAGMbit5, GATE_.NUM[75], FAULTSEL);
QY1STA S20 (N141,ZERO,HSPATHBSEL[2], GATENUM[76], FAULTSEL);
QY 1STA S 19 (N125,ZERO,TGICDIAGMbit2, GATENUM[77], FAULTSEL);
QYI1STA S17 (N124,ZERO,HSPATHBSEL[3], GATENUM[78], FAULTSEL);
vbidriv P66 (R[2],RI[2],data[2],OUTEN, GATE_NUM[79], FAULTSEL);
vbidriv P67 (R[3],RI[3],data[3],OUTEN, GATE_NUM[80], FAULTSEL);
vbidriv P68 (R[4],RI[4],data[4],OUTEN, GATE_NUM[81], FAULTSEL);
vbidriv P69 (R[5],RI[5],data[5],OUTEN, GATE_NUM[82], FAULTSEL);
vbidriv P70 (R[6],RI[6],data[6],OUTEN, GATE_NUM[83], FAULTSEL);

127

vbidriv P71 (R[7],RI[7],data[7],OUTEN, GATENUM[84], FAULTSEL);
vbidriv P72 (R[8],RI[8],data[8],OUTEN, GATE_NUM[85], FAULT_SEL);
vbidriv P73 (R[9],RI[9],data[9],OUTEN, GATE_NUM[86], FAULT_SEL);

QY1AND3A X032 (HSBLDCLK,N047,HSLDEN,func[O],WCLK, GATE_NUM[146],
FAULT_SEL);// 3input

QY1AND3A X033 (HSALDCLK,N046,HSLDEN,funcb[0],WCLK, GATE_NUM[147], FAULTSEL);
QY1AND3A X013 (FNCCLK,N064,RTXC,RS[O],RS[1], GATENUM[148], FAULT_SEL);
QY1AND3A X014 (WCLK,N063,RTXC,RS[O],N004, GATE_NUM[149], FAULT_SEL);
QY1AND3A X040 (N006,N086,RI[7],TGCLRSET,WCLK, GATE_NUM[150], FAULTSEL);
QY1AND3A X041 (N007,N085,RI[6],TGCLRSET,WCLK, GATE_NUM[151], FAULT_SEL);
QY1AND3A X042 (N008,N084,RI[5],TGCLRSET,WCLK, GATE_NUM[152], FAULT_SEL);
QY1AND3A X045 (N011 ,N083,RI[2],TGCLRSET,WCLK, GATE_NUM[153], FAULT_SEL);
QY1AND3A X044 (N010,N082,RI[3],TGCLRSET,WCLK, GATE_NUM[154], FAULT_SEL);
QY1AND3A X043 (N009,N081,RI[4],TGCLRSET,WCLK, GATENUM[155], FAULT_SEL);
QY1AND3A X047 (N013,N080,RI[8],TGCLRSET,WCLK, GATE_NUM[156], FAULTSEL);
QY1AND3A X046 (N012,N079,RI[9],TGCLRSET,WCLK, GATE_NUM[157], FAULT_SEL);
QY1AND3A X056 (N014,N078,RI[7],EVCLRSET,WCLK, GATE_NUM[158], FAULTSEL);
QY1AND3A X057 (N015,N077,RI[3],EVCLRSET,WCLK, GATE_NUM[159], FAULT_SEL);
QY1AND3A X069 (N016,N099,RI[2],PECLRSET,WCLK, GATE_NUM[160], FAULT_SEL);
QY1AND3A X070 (N017,N098,RI[9],PECLRSET,WCLK, GATE_NUM[161], FAULT_SEL);
QY1AND3A X071 (N018,N097,RI[8],PECLRSET,WCLK, GATE_NUM[162], FAULTSEL);
QY1DFRA X048 (TGICDIAGM_bitF,N076,func[O],N006,TGICRESET, GATE_NUM[163],

FAULT_SEL);
QYIDFRA X049 (TGICDIAGM_bit6,N075,func[0],N007,TGICRESET, GATE_NUM[164],

FAULT_SEL);
QY1DFRA X050 (TGICDIAGM_bit5,N074,func[0],N008,TGICRESET, GATE_NUM[165],

FAULT_SEL);
QY1DFRA X051 (TGICDIAGM_bit4,TGICDIAGM_bit4B,func[0],N009,TGICRESET,

GATE_NUM[166], FAULT_SEL);
QY1DFRA X052 (TGICDIAGM_bit3,N072,func[O],N010,TGICRESET, GATE_NUM[167],

FAULT_SEL);
QY1DFRA X053 (TGICDIAGM_bit2,N071,func[O],NO 1 ,TGICRESET, GATE_NUM[168],

FAULT_SEL);
QY1DFRA X054 (TGICDIAGM_bit 1,N070,func[O],N012,TGICRESET, GATE_NUM[169],

FAULT_SEL);
QYIDFRA X055 (TGICDIAGM_bitO,N069,func[0],N013,TGICRESET, GATE_NUM[170],

FAULT_SEL);
QY1DFRA X058 (EVENTMODE_bit7,N068,func[O],N014,TGICRESET, GATE_NUM[171],

FAULT_SEL);
QY1DFRA X059 (EVENTMODE_bit3,N067,func[O],NO15,TGICRESET, GATE_NUM[172],

FAULT_SEL);
QY1DFRA X066 (PECONTROL[2],N089,func[O],N016,TGICRESET, GATE_NUM[173], FAULT_SEL);
QY1DFRA X067 (PECONTROL[1],N088,func[O],N017,TGICRESET, GATE_NUM[174], FAULT_SEL);
QY1DFRA X068 (PECONTROL[O],N087,func[0],N018,TGICRESET, GATE_NUM[175], FAULT_SEL);
QY1MX2A X079 (N026,N122,N143,HSPATHBSEL[2],N129, GATE_NUM[176], FAULT_SEL);
QY1MX2A X095 (data[2],N109,N034,bus_out[2],LDLRD, GATE_NUM[177], FAULTSEL);
QY1MX2A X078 (N025,N108,ZERO,HSPATHBSEL[3],N129, GATE_NUM[178], FAULT_SEL);
QY1MX2A X094 (data[3],N107,N033,bus_out[3],LDLRD, GATE_NUM[179], FAULT_SEL);
QY1MX2A X077 (N024,N120,ZERO,HSPATHBSEL[4],N129, GATE_NUM[180], FAULT_SEL);
QY MX2A X093 (data[4],N106,N032,bus_out[4],LDLRD, GATE_NUM[181], FAULT_SEL);
QY1MX2A X076 (N029,N118,ZERO,ZERO,N 129, GATE_NUM[182], FAULT_SEL);
QY1MX2A X092 (data[5],N105,N031,busout[5],LDLRD, GATE_NUM[183], FAULT_SEL);
QY1MX2A X075 (N022,N1 16,ZERO,ZERO,N129, GATENUM[184], FAULT SEL);
QYI MX2A X091 (data[6],N 104,N030,bus_out[6],LDLRD, GATE_NUM[185], FAULT_SEL);
QYI MX2A X074 (N021 ,N1 14,ZERO,ZERO,N 129, GATE_NUM[186], FAULT_SEL);
QY1MX2A X090 (data[7],N103,N023,bus_out[7],LDLRD, GATE_NUM[187], FAULT_SEL);
QYIMX2A X073 (N020,N112,N142,HSPATHBSEL[O],N129, GATE_NUM[188], FAULTSEL);
QY1MX2A X089 (data[8],N102,N028,bus_out[8],LDLRD, GATE_NUM[189], FAULT_SEL);
QY1MX2A X072 (N019,N10O,N132,HSPATHBSEL[1],N129, GATE_NUM[190], FAULTSEL);
QY1MX2A X088 (data[9],N101 ,N027,bus_out[9],LDLRD, GATE_NUM[191], FAULT_SEL);
QY 10OR3A X024 (LDLRDB,LDLRD,func[7],funcb[5],N134, GATE_NUM[192], FAULT_SEL);
QY1OR3A X023 (N043,X,func[3],func[2],LDLRDB, GATE_NUM[193], FAULT_SEL);
QY1OR3A X026 (N056,ENA,func[l],LDLRDB,func[O], GATE_NUM[194], FAULT_SEL);

128

QY1OR3A X027 (N052,ENB,func[l],LDLRDB,funcb[O], GATE_NUM[195], FAULTSEL);
QY1OR3A X028 (N053,ENC,funcb[l],LDLRDB,func[O], GATE_NUM[196], FAULT_SEL);
QY1OR3A X029 (N054,END,funcb[l],LDLRDB,funcb[O], GATE_NUM[197], FAULT_SEL);

QY1OR4A X020 (MSBO,N042,func[7],func[6],func[5],func[4], GATE_NUM[250],
FAULT_SEL);// 4 input

QY1OR4A X016 (N041,PECLRSET,N137,N136,func[3],MSBO, GATE_NUM[251], FAULTSEL);
QY1OR4A X017 (N040,EVCLRSET,func[3],funcb[2],func[1],MSB0, GATE_NUM[252], FAULT_SEL);
QY1OR4A X018 (N039,TGCLRSET,funcb[3],func[2],funcb[1],MSB0, GATE_NUM[253], FAULTSEL);
QY 10OR4A X019 (HSLDENB,HSLDEN,func[3],funcb[2],funcb[l],MSBO, GATE_NUM[254],

FAULT_SEL);
QY1OR4A X025 (N038,N005,LDLRDB,func[6],func[3],func[2], GATE_NUM[255], FAULT_SEL);
QY10OR4A X003 (N059,N003,RI[9],RI[8],N001,N002, GATE_NUM[256], FAULT_SEL);

QY1OR5A X002 (N002,N058,RI[7],RI[6],RI[4],RI[3],RI[2], GATE_NUM[428], FAULTSEL);// 5 input
QY1OR5A X021 (N036,Z,MSBO,func[3],func[2],funcb[l],func[0], GATE_NUM[429], FAULT_SEL);
QY1OR5A X022 (N035,Y,N135,TGCLRSET,EVCLRSET,PECLRSET,X, GATE_NUM[430],

FAULT_SEL);
QY1OR5A X034 (N037,OUTEN,N073,N133,RS[O],RS [1],Y, GATE_NUM[431], FAULT_SEL);

QY1MX4A X087 (N034,N123,N026,ZERO,N125,N141 ,S 1,SO, GATE_NUM[436],
FAULTSEL); //6 input

QY1MX4A X086 (N033,N100,N025,N140,TGICDIAGMbit3,N124,S 1,SO, GATE_NUM[437],
FAULTSEL);

QY1MX4A X085 (N032,N121,N024,ZERO,TGICDIAGM_bit4,ZERO,S 1,SO,
GATE_NUM[438], FAULT_SEL);

QY1MX4A X084 (N031,N119,N029,ZERO,N126,ZERO,S1 ,SO, GATE_NUM[439], FAULT_SEL);
QY 1MX4A X083 (N030,N117,N022,ZERO,N 127,ZERO,S 1,SO, GATE_NUM[440], FAULTSEL);
QY1MX4A X082 (N023,N 115,N021 ,N128,TGICDIAGMbitF,ZERO,S 1,SO,

GATE_NUM[441], FAULT_SEL);
QY1MX4A X081 (N028,N1 13,N020,ZERO,N138,N139,S 1,SO, GATE_NUM[442], FAULT_SEL);
QY1MX4A X080 (N027,Nl11 ,N019,ZERO,N131 ,N130,S1,SO, GATE_NUM[443], FAULT_SEL);

/****************************** sub-module ********************* ***/
/* The LDL includes Event Logic Interface */

LDL_HPLDL_A(DVOUTA,DVOUTAB,DVOTSTA,DVOA,DVOAB,DVIA,DVIAB,TYPEA,TYPEAB,
bus_out,DA,bus_in,DVOTSTD,SELA,ENA,
TGICRESET,func[6],TGICDIAGM_bit4,DCLK);

LDL_HPLDL_B(DVOUTB,DVOUTBB,DVOTSTB,DVOB,DVOBB,DVIB,DVIBB,TYPEB,TYPEBB,
bus_out,DB,bus_in,DVOTSTA,SELB,ENB,
TGICRESET,func[6],TGICDIAGM_bit4,DCLK);

LDL_HPLDL_C(DVOUTC,DVOUTCB,DVOTSTC,DVOC,DVOCB,DVIC,DVICB,TYPEC,TYPECB,
bus_out,DC,bus_in,DVOTSTB,SELC,ENC,
TGICRESET,func[6],TGICDIAGM_bit4,DCLK);

LDL_LDL DL_D(DVOUTD,DVOUTDB,DVOTSTD,DVOD,DVODB,DVID,DVIDB,TYPED,TYPEDB,
bus_out,DD,bus_in,DVOTSTC,SELD,END,
TGICRESET,func[6],TGICDIAGM_bit4,DCLK);

assign SETLOINB=-SETLOIN;
assign SETHIINB=-SETHIIN;
assign SETZINB=-SETZIN;
assign SETONINB=-SETONIN;
drive_logicfault drivelogic_fault(DHIA,DINHA,DHIB,DINHB,DHI,DINH,

SETLOOUT,SETHIOUT,SETZOUT,SETONOUT,
PMXDHI,PMXDINH,
SETLOIN,SETHIIN,SETZIN,SETONIN,
DVOUTA,DVOUTB,DVOUTC,DVOUTD,
TYPEA,TYPEB,TYPEC,TYPED,
DHIAB,DINHAB,DHIBB,DINHBB,NDHI,NDINH,
SETLOOUTB,SETHIOUTB,SETZOUTB,SETONOUTB,

129

PMXDHIB,PMXDINHB,
SETLOINB,SETHIINB,SETZINB,SETONINB,
DVOUTAB,DVOUTBB,DVOUTCB,DVOUTDB,
TYPEAB,TYPEBB,TYPECB,TYPEDB,
THBSEL,PECONTROL[21PECONTROL[2],PECONTOL 1],PECONTROL[],
EVENTMODE_bit3,TGICDIAGM_bit3,TGICDIAGM_bit2,
FAULTSEL, GATE_SEL);

drive_TMU_fault drive_TMU_fault(TMUPA,TMUPB,DVO,DVI,DHI,DINH,PMXDHI,PMXDINH,
TMUPAB,TMUPBB,NDVO,NDVI,NDHI,NDINH,PMXDHIB,
PMXDINHB,HSPATHBSEL[3:2],TGICDIAGM_bitF,
TGICDIAGM_bit3,TGICDIAGM_bit 1,TGICDIAGM_bitO,
FAULTSEL, GATE_SEL);

endmodule

/****************************** Drive Logic ***************************** */
/* Drive Logic's main function is to set/reset DHI and DINH, and create
SETLOOUT,SETHIOUT,SETZOUT and,SETONOUT pulses.(SET_OUT pulses)
Whenver there is a DVOUT* coming in, Drive Logic will decode its type
to determine its action.
Whenever there is a SET_IN pulse coming, Drive Logic may set/reset
DHI/DINH.
If RDCF is set, then RDIN and RDHI is used to determine the status
of DHI/DINH and disregard of any DVOUT* and SET_IN pulses.
PMXDHI and PMXDINH are used for die testing purpose. When TSTPULSE is
set, SET_OUT pulses will set/reset them to indicate the presence of the
pulses.
When TSTVOH is set, the outputs of SET_OUT remains high and this is
used to check the VOH of these outputs
*/

module drive_logic_fault (DHIA,DINHA,DHIB,DINHB,DHI,DINH,
SETLOOUT,SETHIOUT,SETZOUT,SETONOUT,
PMXDHI,PMXDINH,
SETLOIN,SETHIIN,SETZIN,SETONIN,
DVOUTA,DVOUTB,DVOUTC,DVOUTD,
TYPEA,TYPEB,TYPEC,TYPED,
DHIAB,DINHAB,DHIBB,DINHBB,NDHI,NDINH,
SETLOOUTB,SETHIOUTB,SETZOUTB,SETONOUTB,
PMXDHIB,PMXDINHB,
SETLOINB,SETHIINB,SETZINB,SETONINB,
DVOUTAB,DVOUTBB,DVOUTCB,DVOUTDB,
TYPEAB,TYPEBB,TYPECB,TYPEDB,
THBSEL,RDCF,RDIN,RDHI,PMM,TSTPULSE,TSTVOH,
FAULT_SEL, GATE_SEL);

output DHIA,DINHA,DHIB,DINHB;
output DHIAB,DINHAB,DHIBB,DINHBB;
output DHI,DINH; // to TMU Mux
output NDHI,NDINH; II to TMU Mux (comp)
output SETLOOUT,SETHIOUT,SETZOUT,SETONOUT; II Pin Mux Mode output
output SETLOOUTB,SETHIOUTB,SETZOUTB,SETONOUTB; II Pin Mux Mode output (comp)
output PMXDHI,PMXDINH; II device test purpose
output PMXDHIB,PMXDINHB; II device test purpose (comp)

input SETLOIN,SETHIIN,SETZIN,SETONIN; // Pin Mux Mode input
input SETLOINB,SETHIINB,SETZINB,SETONINB; II Pin Mux Mode input (comp)
input DVOUTA,DVOUTB,DVOUTC,DVOUTD; II LDL output pulse
input DVOUTAB,DVOUTBB,DVOUTCB,DVOUTDB; II LDL output pulse (comp)
input [1:0] TYPEA,TYPEB,TYPEC,TYPED; II Event type
input [1:0] TYPEAB,TYPEBB,TYPECB,TYPEDB; I// Event type (comp)
input THBSEL;
input RDCF,RDIN,RDHI; II PECONTROL[2:0]

130

input PMM; II bit 3 of EVENTMODE
input TSTPULSE; II bit 3 of TGICDIAGM
input TSTVOH; // bit 2 of TGICDIAGM
input [4:0] FAULT_SEL;
input [9:0] GATE_SEL;

wire [1023:0] GATE_NUM;
assign GATE_NUM = 1 << GATE_SEL;

QY1ONEDA X84 (ONE,ONEB, GATE_NUM[2], FAULT_SEL);// 0 input

QY1S2DA X53 (N020,N101,TSTVOH, GATE_NUM[8], FAULT_SEL);// 1 input
QY1S2DA X54 (N092,N104,RDCF, GATE_NUM[9], FAULT_SEL);
QY1S2DA X59 (N157,N158,RDIN, GATE_NUM[10], FAULT_SEL);
QY1S2DA X60 (N079,N078,PMM, GATE_NUM[11], FAULT_SEL);
QY1S2DA X65 (N019,N018,TSTPULSE, GATE_NUM[12], FAULTSEL);
QY1S2DA X71 (N022,N021,THBSEL, GATE_NUM[13], FAULT_SEL);
QY1S2DA X83 (N106,N107,RDHI, GATE_NUM[14], FAULT_SEL);

QY1DELDA X88 (N133,N134,N115,N085, GATE_NUM[87], FAULT_SEL);// 2 input
QY1DELDA X92 (N135,N136,N116,N089, GATE_NUM[88], FAULT_SEL);
QY1DELDA X97 (N137,N138,N010,N011, GATE_NUM[89], FAULTSEL);
QY1DELDA X101 (N139,N140,N012,N013, GATE_NUM[90], FAULT_SEL);

QY1OR2DA X01 (N090,N091,TYPEAB [1],TYPEA[1],TYPEAB[0],TYPEA[0], GATE_NUM[257],
FAULT_SEL);// 4 input

QY 1OR2DA X02 (N094,N095,TYPEBB[1],TYPEB[1],TYPEBB[0],TYPEB[0], GATE_NUM[258],
FAULT_SEL);

QY 1OR2DA X03 (N098,N099,TYPECB[1],TYPEC[1],TYPECB[0],TYPEC[0], GATE_NUM[259],
FAULT_SEL);

QY 1OR2DA X04 (N096,N097,TYPEDB[1],TYPED[1],TYPEDB[0],TYPED[0], GATE_NUM[260],
FAULT_SEL);

QY 1OR2DA X05 (N059,N060,TYPEAB [1],TYPEA[1],TYPEA[0],TYPEAB[0], GATE_NUM[261],
FAULT_SEL);

QY 1OR2DA X06 (N057,N058,TYPEBB[1],TYPEB[1],TYPEBB [0] , GATE_NUM[262],
FAULTSEL);

QY 1OR2DA X07 (N001 ,N054,TYPECB[1],TYPEC[1],TYPEC[0],TYPECB [0], GATE_NUM[263],
FAULTSEL);

QY 1OR2DA X08 (N055,N056,TYPEDB[1],TYPED[1],TYPED [0],TYPEDB [0], GATE_NUM[264],
FAULT_SEL);

QY1 OR2DA X09 (N028,N036,TYPEA[1],TYPEAB[1],TYPEA[0],TYPEAB [0], GATE_NUM[265],
FAULTSEL);

QY1OR2DA X10 (N029,N037,TYPEB[1],TYPEBB[1],TY],TYPEB[O],TYPEBB[0], GATE_NUM[266],
FAULT_SEL);

QY 1OR2DA X11 (N032,N039,TYPEC[1],TYPECB[1],TYPEC[0],TYPECB[0], GATE_NUM[267],
FAULT_SEL);

QY 1OR2DA X12 (N035,N038,TYPED[1],TYPEDB[1],TYPED [0],TYPEDB [0], GATE_NUM[268],
FAULT_SEL);

QY1OR2DA X13 (N088,N118,DVOUTAB,DVOUTA,N090,N091, GATE_NUM[269], FAULT_SEL);
QY1OR2DA X14 (Ni 19,N093,DVOUTBB,DVOUTB,N094,N095, GATE_NUM[270], FAULT_SEL);
QY 1OR2DA X15 (N083,N120,DVOUTCB,DVOUTC,N098,N099, GATE_NUM[271], FAULT_SEL);
QY1OR2DA X16 (N121,N084,DVOUTDB,DVOUTD,N096,N097, GATENUM[272], FAULT_SEL);
QY1OR2DA X17 (N 114,N122,DVOUTAB,DVOUTA,N059,N060, GATENUM[273], FAULT_SEL);
QY1OR2DA X18 (N123,N063,DVOUTBB,DVOUTB,N057,N058, GATE_NUM[274], FAULTSEL);
QY1OR2DA X19 (N066,N124,DVOUTCB,DVOUTC,NO01,N054, GATE_NUM[275], FAULT_SEL);
QY1OR2DA X20 (N125,N067,DVOUTDB,DVOUTD,N055,N056, GATENUM[276], FAULTSEL);
QY1OR2DA X21 (Ni112,N126,DVOUTAB,DVOUTA,N028,N036, GATENUM[277], FAULTSEL);
QY1OR2DA X22 (N127,N1 13,DVOUTBB,DVOUTB,N029,N037, GATENUM[278], FAULT_SEL);
QY1OR2DA X23 (N045,N128,DVOUTCB,DVOUTC,N032,N039, GATENUM[279], FAULTSEL);
QY1OR2DA X24 (N129,N046,DVOUTDB,DVOUTD,N035,N038, GATE_NUM[280], FAULT_SEL);
QY1OR2DA X25 (N033,N130,DVOUTAB,DVOUTA,N036,N028, GATE_NUM[281], FAULT_SEL);
QY1OR2DA X26 (N131 ,N034,DVOUTBB,DVOUTB,N037,N029, GATE_NUM[282], FAULTSEL);
QY1OR2DA X27 (N027,N026,DVOUTCB,DVOUTC,N039,N032, GATE_NUM[283], FAULT_SEL);
QY1OR2DA X28 (N132,N 117,DVOUTDB,DVOUTD,N038,N035, GATE_NUM[284], FAULT_SEL);

131

QY1OR2DA X29 (N086,N087,N 18N88,N093,N1 19, GATE_NUM[285], FAULT_SEL);
QY1OR2DA X30 (N080,N081,N120,N083,N084,N121, GATE_NUM[286], FAULT_SEL);
QY1OR2DA X31 (N070,N071 ,N122,N 114,N063,N123, GATE_NUM[287], FAULT_SEL);
QY1OR2DA X32 (N072,N073,N124,N066,N067,N125, GATE_NUM[288], FAULTSEL);
QY1OR2DA X33 (N048,N049,N126,N112,N113,N127, GATE_NUM[289], FAULT_SEL);
QY 10OR2DA X34 (N050,N051,N128,N045,N046,N 129, GATE_NUM[290], FAULTSEL);
QY 10OR2DA X35 (N030,N031 ,N130,N033,N034,N131, GATE_NUM[291], FAULT_SEL);
QY1OR2DA X36 (N024,N025,N026,N027,N117,N132, GATE_NUM[292], FAULT_SEL);
QY1OR2DA X37 (N061 ,N047,N086,N087,N080,N08 1, GATE_NUM[293], FAULTSEL);
QY1OR2DA X38 (N069,N074,N070,N071,N072,N073, GATE_NUM[294], FAULTSEL);
QY1OR2DA X39 (N052,N053,N048,N049,N050,N051, GATE_NUM[295], FAULT SEL);
QY 10OR2DA X40 (N023,N044,N030,N031,N024,N025, GATE_NUM[296], FAULT_SEL);
QY1OR2DA X41 (SETDHI,SETDHIB,N061,N047,SETHIIN,SETHIINB, GATE_NUM[297],

FAULT_SEL);
QY1OR2DA X42 (N075,N076,N047,N061,N078,N079, GATE_NUM[298], FAULTSEL);
QY1OR2DA X43 (N082,N077,N074,N069,N078,N079, GATENUM[299], FAULTSEL);
QYIOR2DA X44 (RSETDHI,RSETDHIB,N069,N074,SETLOIN,SETLOINB, GATE_NUM[300],

FAULT_SEL);
QY1 OR2DA X45 (SETOFF,SETOFFB,N052,N053,SETZIN,SETZINB, GATE_NUM[301],

FAULT_SEL);
QYlOR2DA X46 (N040,N041,N053,N052,N078,N079, GATE_NUM[302], FAULT SEL);
QY1OR2DA X47 (N042,N043,N044,N023,N078,N079, GATE_NUM[303], FAULTSEL);
QY10OR2DA X48 (RSETOFF,RSETOFFB,N023,N044,SETONIN,SETONINB, GATE_NUM[304],

FAULT_SEL);
QY1CPIDA X49 (N062,N064,N159,N160,SETDHI,SETDHIB, GATE_NUM[305], FAULT_SEL);
QYICP1DA X50 (N108,N109,N161,N162,RSETDHI,RSETDHIB, GATE_NUM[306], FAULT_SEL);
QY1CP1DA X55 (N100,N105,N163,N164,SETOFF,SETOFFB, GATE_NUM[307], FAULT_SEL);
QY1CP1DA X56 (N 10O,N ll ,N165,N166,RSETOFF,RSETOFFB, GATE_NUM[308], FAULT_SEL);
QY OR2DA X63 (SETHIOUT,SETHIOUTB,N115,N085,N020,N101, GATE_NUM[309], FAULT_SEL);
QYl OR2DA X64 (SETLOOUT,SETLOOUTB,N116,N089,N020,N101, GATE_NUM[310],

FAULT_SEL);
QY 1OR2DA X68 (SETZOUT,SETZOUTB,N010,N01 1,N020,N101, GATE_NUM[311], FAULTSEL);
QY1OR2DA X69 (SETONOUT,SETONOUTB,N012,N013,N020,N101, GATE_NUM[312],

FAULT_SEL);
QY1RSDA X70 (DHI,NDHI,N065,N068,N009,N103, GATE_NUM[313], FAULT_SEL);
QYlRSDA X72 (DINH,NDINH,N007,N008,N102,N006, GATE_NUM[314], FAULT_SEL);
QY 1OR2DA X73 (DHIBB,DHIB,NDHI,DHI,N021 ,N022, GATE_NUM[315], FAULTSEL);
QY 10OR2DA X74 (DHIAB,DHIA,NDHI,DHI,N022,N021, GATE_NUM[316], FAULT_SEL);
QY1OR2DA X75 (N016,N017,SETHIOUTB,SETHIOUT,N018,N0 19, GATE_NUM[317], FAULT_SEL);
QY 1OR2DA X76 (N014,N015,SETLOOUTB,SETLOOUT,N018,N0 19, GATE_NUM[318],

FAULT_SEL);
QYIOR2DA X77 (DINHBB,DINHB,NDINH,DINH,N021,N022, GATE_NUM[319], FAULT_SEL);
QY1OR2DA X78 (DINHAB,DINHA,NDINH,DINH,N022,N021, GATE_NUM[320], FAULTSEL);
QY1OR2DA X79 (N005,N004,SETZOUTB,SETZOUT,N018,N019, GATE_NUM[321], FAULT_SEL);
QY 1OR2DA X80 (N003,N002,SETONOUTB,SETONOUT,N018,N019, GATE_NUM[322],

FAULTSEL);
QY1RSDA X81 (PMXDHI,PMXDHIB,N017,N016,N015,N014, GATE_NUM[323], FAULT_SEL);
QYIRSDA X82 (PMXDINH,PMXDINHB,N004,N005,N002,N003, GATE_NUM[324], FAULT_SEL);
QYI CP1DA X85 (N149,N150,N1 15,N085,N076,N075, GATE_NUM[325], FAULT_SEL);
QYIDELDA X86 (N141,N142,N133,N134, GATE_NUM[326], FAULT_SEL);
QY1RSDA X87 (NI 15,N085,N149,N150,N141 ,N142, GATE_NUM[327], FAULTSEL);
QYI CP I 1DA X89 (N 151 ,N152,N1 16,N089,N077,N082, GATE_NUM[328], FAULT_SEL);
QYIDELDA X90 (N143,N144,N135,N136, GATE_NUM[329], FAULT_SEL);
QY RSDA X91 (N 116,N089,N151 ,N152,N143,N144, GATE_NUM[330], FAULT_SEL);
QYlCP1DA X94 (N153,N154,N010,N011 ,N041,N040, GATE_NUM[331], FAULT_SEL);
QY1DELDA X95 (N145,N146,N137,N138, GATE_NUM[332], FAULT_SEL);
QYIRSDA X96 (NO10,N011,N153,N154,N145,N146, GATE_NUM[333], FAULT_SEL);
QY1CP1DA X98 (N155,N156,N012,N013,N043,N042, GATE_NUM[334], FAULT_SEL);
QY1DELDA X99 (N147,N148,N139,N140, GATE_NUM[335], FAULT_SEL);
QY 1RSDA X 100 (N012,N013,N155,N 156,N147,N148, GATE_NUM[336], FAULT_SEL);
QY1OR2DA X102 (N159,N160,DHI,NDHI,N092,N104, GATE_NUM[337], FAULT_SEL);
QY1OR2DA X103 (N161,N162,NDHI,DHI,N092,N104, GATENUM[338], FAULT SEL);
QY1OR2DA X104 (N163,N164,DINH,NDINH,N092,N104, GATE NUM[339], FAULTSEL);
QY1OR2DA X105 (N165,N166,NDINH,DINH,N092,N104, GATE_NUM[340], FAULT_SEL);

132

QY1MX2DA X61 (N065,N068,N062,N064,N106,N107,N092,N104, GATE_NUM[444],
FAULT_SEL);// 6 input

QY1MX2DA X62 (N009,N103,N108,N109,N107,N106,N092,N104, GATENUM[445], FAULT_SEL);
QY1MX2DA X66 (N007,N008,N100,N105,N157,N158,N092,N104, GATE_NUM[446], FAULT_SEL);
QY1MX2DA X67 (N102,N006,N110,Nlll,N158,N157,N092,N104, GATE_NUM[447], FAULT_SEL);

endmodule

/***************************** Drive TMU Mux ****************************/
/* The main fucnction of Drive TMU Mux is to output several signals through
TMUPA,TMUPB to RESPONSE CONTROL. HSPATHBSEL(bit 3 and 2) is used to
indicate which LDL and TGICDIAGM(bit 15,3,1 and 0) is used to select
which signal to outputs (TMUPA/TMUPB). The following table relates the
output signals to the codes of HSPATHBSEL and TGICDIAGM(LPBK,DRSTAT and
STRBZ):

HSPATHBSEL[3:2] LPBK,DRSTAT,STRBZ S9100 Signa(TMUPA/TMUPB)

00 OXX DVIA/DVOA
01 0XX DVIB/DVOB
10 OXX DVIC/DVOC
11 OXX DVID/DVOD
XX 100 DHI/DINH
XX 101 PMXDHI/PMXDINH <-- NEW
XX 110 DHI/DHI_ <-- NEW
XX 111 DINH_/DINH_ <-- NEW

Bit 3 of TGICDIAGM (TSTPULSE) is used for die testing. When it is
set, and the selected signal is DVI* or DVO*, the output will toggle
instead of output the pulses whenever the selected LDL creates a DVI
pulse or DVO pulse respectively.
*/

module drive_TMU_fault(TMUPA,TMUPB,DVO,DVI,DHI,DINH,PMXDHI,PMXDINH,
TMUPAB,TMUPBB,DVOB,DVIB,DHIB,DINHB,PMXDHIB,PMXDINHB,
HSPATHBSEL,LPBK,TSTPULSE,DRSTAT,STRBZ, FAULT_SEL, GATE_SEL);
output TMUPA,TMUPB; I// to RESPONSE CONTROL's TMU Mux
output TMUPAB,TMUPBB; I to RESPONSE CONTROL's TMU Mux
input [3:0] DVO,DVI; II DVI[0]/DVO[0] = DVIA/DVOA

II DVI[l]/DVO[l] = DVIB/DVOB
II DVI[2]/DVO[2] = DVIC/DVOC
II DVI[3]/DVO[3] = DVID/DVOD

input [3:0] DVOB,DVIB;
input DHI,DINH; II from Drive logic
input DHIB,DINHB; II from Drive logic (comp)
input PMXDHI,PMXDINH; II from Drive Logic
input PMXDHIB,PMXDINHB; II from Drive Logic
input [3:2] HSPATHBSEL;
input LPBK, II bit 15 of TGICDIAGM
TSTPULSE, II bit 3 of TGICDIAGM
DRSTAT, II bit 1 of TGICDIAGM
STRBZ; II bit 0 of TGICDIAGM

input [4:0] FAULTSEL;
input [9:0] GATE_SEL;

wire [1023:0] GATE_NUM;
assign GATE_NUM = 1 << GATE_SEL;

wire DVIN,DVOUT;

QY1S2DA X01 (N11,N12,HSPATHBSEL[3], GATE_NUM[15], FAULT_SEL);// 1 input
QY1S2DA X02 (N09,N10,HSPATHBSEL[2], GATENUM[16], FAULT_SEL);

133

QY1S2DA X03 (N07,N08,TSTPULSE, GATE_NUM[17], FAULTSEL);
QY 1S2DA X04 (N01,N02,DRSTAT, GATE_NUM[18], FAULT_SEL);
QY1S2DA X05 (N03,N04,STRBZ, GATE_NUM[19], FAULTSEL);
QY1S2DA X06 (N05,N06,LPBK, GATE_NUM[20], FAULT_SEL);

QY1MX2DA X11 (TMUPA,TMUPAB,DVIN,DVINB,N 13,N14,N05,N06, GATE_NUM[448],
FAULT_SEL); // 6 input

QY1MX2DA X12 (DVIN,DVINB,N15,N16,DVIPULSE,DVIPULSEB,N07,N08, GATE_NUM[449],
FAULT_SEL);

QY 1DFRDA X 13 (DVIPULSE,DVIPULSEB,DVIPULSEB,DVIPULSE,N 15,N16,N08,N07,
GATE_NUM[450], FAULT_SEL);

QY1MX2DA X14 (DVOUT,DVOUTB,N17,N 18,DVOPULSE,DVOPULSEB,N07,N08,
GATE_NUM[451], FAULT_SEL);

QY1DFRDA X15 (DVOPULSE,DVOPULSEB,DVOPULSEB,DVOPULSE,N17,N18,N08,N07,
GATE_NUM[452], FAULT_SEL);

QY 1MX2DA X16 (TMUPB,TMUPBB,DVOUT,DVOUTB,N19,N20,N05,N06, GATE_NUM[453],
FAULT_SEL);

QY 1MX4DA X07 (N 13,N 14,DHI,DHIB,PMXDHI,PMXDHIB,DHI,DHIB,
DINHB,DINH,N01,N02,N03,N04, GATE_NUM[502], FAULTSEL); //12 input

QY 1MX4DA X08 (N15,N16,DVI[O],DVIB [O],DVI[1],DVIB[1] ,DVI[2],DVIB [2],DVI[3],
DVIB[3],N1 1,N12,N09,N10, GATE_NUM[503], FAULTSEL);

QY1MX4DA X09 (N17,N18,DVO[O],DVOB[O],DVO[1],DVOB[1],DVO[2],DVOB[2],DVO[3],
DVOB[3],N11,N12,N09,N10, GATE_NUM[504], FAULT_SEL);

QY 1MX4DA X10 (N 19,N20,DINH,DINHB,PMXDINH,PMXDINHB,DHIB,DHI,DINHB,
DINH,N01,N02,N03,N04, GATE_NUM[505], FAULT_SEL);

endmodule

134

B.2 Response Control IC

'timescale lps/lps
/*************************** Response Control ***************************/
module response_control_gate (STFLA,STFLB,STFLC,STFLD,

TMUA,TMUB,DCLK,
R,RS,RTXC,
ACHA,BCLA,ACHB,BCLB,
TMUPA,TMUPB,
CA,CB,CC,CD,
THBSEL,CLK, FAULT_SEL, GATE_SEL);

output STFLA,STFLB,STFLC,STFLD; II to Event Logic Chip
output TMUA,TMUB; II to TMU
output DCLK; II to DRIVE CONTROL
inout [9:2] R; II BDE from Event Logic Chip
input [1:0] RS; II BSE from Event Logic Chip
input RTXC; II BTXCE from Event Logic Chip
input ACHA,BCLA,ACHB,BCLB; II from Test Head
input TMUPA,TMUPB; II from Drive Control
input [5:0] CA,CB,CC,CD; II from ESS
input THBSEL,CLK;
input [4:0] FAULT_SEL;
input [9:0] GATE_SEL;

wire [1023:0] GATE_NUM;
assign GATE_NUM = 1 << GATE_SEL;
wire ACHAB,BCLAB,ACHBB,BCLBB; II from Test Head
wire TMUPAB,TMUPBB; II from Drive Control

wor [9:2] R;
wire [9:2] RI;
wire [9:2] data;
wire [7:0] func;
wire [5:0] funcb;
wire [2:1] HSPATHASEL;
wire [4:0] HSPATHBSEL;
wire [2:0] PECONTROL;
wire CVOUTA,CVOUTB,CVOUTC,CVOUTD;
wire CVOTSTA,CVOTSTB,CVOTSTC,CVOTSTD;
wire CVOA,CVOB,CVOC,CVOD;
wire CVIA,CVIB,CVIC,CVID;
wire CVOAB,CVOBB,CVOCB,CVODB;
wire CVIAB,CVIBB,CVICB,CVIDB;
wire [3:0] CVO = {CVOD,CVOC,CVOB,CVOA}, II to TMU

CVI = {CVID,CVIC,CVIB,CVIA}; II to TMU
wire [3:0] NCVO = {CVODB,CVOCB,CVOBB,CVOAB }, I to TMU

NCVI = {CVIDB,CVICB,CVIBB,CVIAB ; //to TMU
wire [1:0] TYPEA,TYPEB,TYPEC,TYPED;
wire [1:0] TYPEAB,TYPEBB,TYPECB,TYPEDB;
wor [9:2] bus_out;
wire [9:2] bus_in = R; II bus to LDLs
wire CLKB;
wire ACH,ACHB,BCL,BCLB;

wire SELA,SELB,SELC,SELD; I// indicate which LDL is selected

parameter clock_buffer delay=0.8;
wire #clock_buffer_delay DCLK = CLK;

wire [1:0] PINSTATUS; //PINSTATUS[1:0] = {ACH,BCL}
wire TGICRESET;
wire ENA,ENB,ENC,END;
wire NACH,NBCL;

135

assign CLKB=-CLK;

LDL_HPLDL_A(CVOUTA,CVOUTAB,CVOTSTA,CVOA,CVOAB,CVIA,CVIAB,TYPEA,
TYPEAB,busout,CA,bus_in,CVOTSTD,
SELA,ENA,TGICRESET,func [6],TGICDIAGM_bit4,CLK);

LDL_HPLDL_B(CVOUTB,CVOUTBB,CVOTSTB,CVOB,CVOBB,CVIB,CVIBB,TYPEB,
TYPEBB ,bus_out,CB ,busin,CVOTSTA,
SELB,ENB,TGICRESET,func[6],TGICDIAGMbit4,CLK);

LDL_HPLDL_C(CVOUTC,CVOUTCB,CVOTSTC,CVOC,CVOCB,CVIC,CVICB,TYPEC,
TYPECB,bus_out,CC,bus_in,CVOTSTB,
SELC,ENC,TGICRESET,func[6],TGICDIAGMbit4,CLK);

LDL_HPLDL_D(CVOUTD,CVOUTDB,CVOTSTD,CVOD,CVODB,CVID,CVIDB,TYPED,
TYPEDB,bus_out,CD,bus_in,CVOTSTC,
SELD,END,TGICRESET,func[6],TGICDIAGM_bit4,CLK);

strobe_logicfault strobe_logic_fault (STFLA,STFLB,STFLC,STFLD,
CVOUTA,CVOUTB,CVOUTC,CVOUTD,
CVIA,CVIB,CVIC,CVID,
TYPEA,TYPEB,TYPEC,TYPED,
ACH,BCL,
CLK,
STFLAB,STFLBB,STFLCB,STFLDB,
CVOUTAB,CVOUTBB,CVOUTCB,CVOUTDB,
CVIAB,CVIBB,CVICB,CVIDB,
TYPEAB,TYPEBB,TYPECB,TYPEDB,
NACH,NBCL,
CLKB,EVENTMODE_bit7, FAULT_SEL, GATE_SEL);

assign TMUPAB=-TMUPA;
assign TMUPBB=-TMUPB;
assign ACHAB=-ACHA;
assign ACHBB=-ACHB;
assign BCLAB=-BCLA;
assign BCLBB=-BCLB;

response_TMU_fault response_TMUfault(TMUA,TMUB,
ACH,BCL,
TMUPA,TMUPB,CVO,CVI,
ACHA,BCLA,ACHB,BCLB,
TMUAB,TMUBB,
NACH,NBCL,
TMUPAB,TMUPBB,NCVO,NCVI,
ACHAB,BCLAB,ACHBB,BCLBB,
PINSTATUS [1],PINSTATUS[O],
THBSEL,HSPATHASEL,HSPATHBSEL,
TGICDIAGM_bitF,TGICDIAGM_bit3,
FAULT_SEL, GATE_SEL);

QY1ZEROA X096 (ZERO, GATE_NUM[3], FAULTSEL);// O input

QYlBUFA X001 (N066,N001,RI[5], GATE_NUM[21], FAULTSEL); // 1 input
QYlBUFA X015 (N062,N004,RS[1], GATE_NUM[22], FAULT_SEL);

vbidriv P66 (R[2],RI[2],data[2],OUTEN, GATE_NUM[91], FAULT_SEL);// 2 input
vbidriv P67 (R[3],RI[3],data[3],OUTEN, GATE_NUM[92], FAULTSEL);
vbidriv P68 (R[4],RI[4],data[4],OUTEN, GATE_NUM[93], FAULTSEL);
vbidriv P69 (R[5],RI[5],data[5],OUTEN, GATE_NUM[94], FAULT_SEL);
vbidriv P70 (R[6],RI[6],data[6],OUTEN, GATE_NUM[95], FAULTSEL);
vbidriv P71 (R[7],RI[7],data[7],OUTEN, GATE_NUM[96], FAULT_SEL);
vbidriv P72 (R[8],RI[8],data[8],OUTEN, GATE_NUM[97], FAULT_SEL);
vbidriv P73 (R[9],RI[9],data[9],OUTEN, GATE_NUM[98], FAULT SEL);

136

QY1AND2A X004 (TGICRESET,N065,N003,FNCCLK, GATE_NUM[99], FAULTSEL);
QY1AND2A X039 (SELD,N048,END,SELCLK, GATE_NUM[100], FAULT_SEL);
QY1AND2A X038 (SELC,N049,ENC,SELCLK, GATE_NUM[101], FAULTSEL);
QY1AND2A X037 (SELB,N050,ENB,SELCLK, GATE_NUM[102], FAULT_SEL);
QY1AND2A X036 (SELA,N051,ENA,SELCLK, GATE_NUM[103], FAULT_SEL);
QY1AND2A X035 (SELCLK,N055,N005,WCLK, GATE_NUM[104], FAULTSEL);
QY1DFA X065 (HSPATHASEL[2],N090,RI[2],HSALDCLK, GATE_NUM[105], FAULTSEL);
QY 1DFA X097 (HSPATHASEL[1],N091,RI[9],HSALDCLK, GATE_NUM[106], FAULT_SEL);
QY 1DFA X062 (HSPATHBSEL[2],N092,RI[2],HSBLDCLK, GATE_NUM[107], FAULT_SEL);
QY1DFA X061 (HSPATHBSEL[3],N093,RI[3],HSBLDCLK, GATE_NUM[108], FAULT_SEL);
QY1DFA X060 (HSPATHBSEL[4],N094,RI[4],HSBLDCLK, GATE_NUM[109], FAULT_SEL);
QY1DFA X064 (HSPATHBSEL[0],N095,RI[8],HSBLDCLK, GATE_NUM[110], FAULT_SEL);
QY1DFA X063 (HSPATHBSEL[1],N096,RI[9],HSBLDCLK, GATE_NUM[11], FAULTSEL);
QY1DFA X012 (func[0],funcb[0],RI[2],FNCCLK, GATE_NUM[112], FAULT_SEL);
QY1DFA X011 (func[l],funcb[l],RI[3],FNCCLK, GATE_NUM[113], FAULTSEL);
QY1DFA X010 (func[2],funcb[2],RI[4],FNCCLK, GATE_NUM[114], FAULT_SEL);
QY1DFA X009 (func[3],funcb[3],RI[5],FNCCLK, GATE_NUM[115], FAULTSEL);
QY1DFA X008 (func[4],funcb[4],RI[6],FNCCLK, GATE_NUM[116], FAULT_SEL);
QY1DFA X007 (func[5],funcb[5],RI[7],FNCCLK, GATE_NUM[117], FAULT_SEL);
QY1DFA X006 (func[6],N060,RI[8],FNCCLK, GATE_NUM[118], FAULTSEL);
QY1DFA X005 (func[7],N061 ,RI[9],FNCCLK, GATE_NUM[119], FAULTSEL);
QY1DIAGA S15 (N126,ZERO,TGICDIAGM_bit5, GATE_NUM[120], FAULT_SEL);
QY1DIAGA S20 (N141 ,ZERO,HSPATHBSEL[2], GATE_NUM[121], FAULT_SEL);
QY1DIAGA S19 (N125,ZERO,TGICDIAGM_bit2, GATE_NUM[122], FAULT_SEL);
QY1DIAGA S17 (N124,ZERO,HSPATHBSEL[3], GATE_NUM[123], FAULT_SEL);
QY1OR2A X031 (N044,S0,HSPABSET,TGCLRSET, GATE_NUM[124], FAULTSEL);
QY1OR2A X030 (N045,S1 ,HSPABSET,EVCLRSET, GATE_NUM[125], FAULT_SEL);
QY10OR2A X098 (N057,NOT06,HSLDENB,func[0], GATE_NUM[126], FAULT_SEL);
QY1STA S18 (N143,PECONTROL[2],HSPATHASEL[2], GATE_NUM[127], FAULT_SEL);
QY1STA S16 (N140,EVENTMODE_bit3,ZERO, GATE_NUM[128], FAULT_SEL);
QY1STA S14 (N127,ZERO,TGICDIAGM_bit6, GATE_NUM[129], FAULTSEL);
QY1STA S13 (N128,ZERO,EVENTMODE_bit7, GATE_NUM[130], FAULTSEL);
QY1STA S12 (N139,ZERO,PINSTATUS[0], GATE_NUM[131], FAULTSEL);
QY1STA S11 (N138,TGICDIAGM_bitO,ZERO, GATE_NUM[132], FAULT_SEL);
QY1STA S06 (N129,ZERO,func[0], GATE_NUM[133], FAULT_SEL);
QY1STA S09 (N130,ZERO,PINSTATUS[1], GATE_NUM[134], FAULTSEL);
QY1STA S08 (N131,TGICDIAGM_bitl ,ZERO, GATE_NUM[135], FAULTSEL);
QY1STA S07 (N132,PECONTROL[1],HSPATHASEL[1], GATE_NUM[136], FAULT_SEL);
QY1STA S10 (N142,PECONTROL[0],ZERO, GATE_NUM[137], FAULT_SEL);
QY1STA S04 (N134,func[4],funcb[4], GATENUM[138], FAULT_SEL);
QY1STA S03 (N135,HSLDEN,Z, GATE_NUM[139], FAULT_SEL);
QY1STA S02 (N136,func[1],funcb[1], GATE_NUM[140], FAULT_SEL);
QY1STA S01 (N137,func[2],funcb[2], GATE_NUM[141], FAULTSEL);
QY1STA S05 (N133,TGICDIAGM_bit5,TGICDIAGM_bit6, GATE_NUM[142], FAULT_SEL);
QY1STA S21 (N073,NOT06,ZERO, GATE_NUM[143], FAULT_SEL);

QY1AND3A X071 (N018,N097,RI[8],HSPABSET,WCLK, GATE_NUM[198], FAULT_SEL);// 3 input
QY1AND3A X070 (N017,N098,RI[9],HSPABSET,WCLK, GATE_NUM[199], FAULT_SEL);
QY1AND3A X069 (N016,N099,RI[2],HSPABSET,WCLK, GATE_NUM[200], FAULT_SEL);
QY1AND3A X057 (N015,N077,RI[3],EVCLRSET,WCLK, GATE_NUM[201], FAULT_SEL);
QY1AND3A X056 (N014,N078,RI[7],EVCLRSET,WCLK, GATE_NUM[202], FAULTSEL);
QY1AND3A X046 (N012,N079,RI[9],TGCLRSET,WCLK, GATE_NUM[203], FAULT_SEL);
QY1AND3A X047 (N013,N080,RI[8],TGCLRSET,WCLK, GATE_NUM[204], FAULT_SEL);
QY1AND3A X043 (N009,N08 1,RI[4],TGCLRSET,WCLK, GATE_NUM[205], FAULT_SEL);
QY1AND3A X044 (N010,N082,RI[3],TGCLRSET,WCLK, GATENUM[206], FAULT_SEL);
QY1AND3A X045 (N011,N083,RI[2],TGCLRSET,WCLK, GATE_NUM[207], FAULT_SEL);
QY1AND3A X042 (N008,N084,RI[5],TGCLRSET,WCLK, GATENUM[208], FAULTSEL);
QY1AND3A X041 (N007,N085,RI[6],TGCLRSET,WCLK, GATENUM[209], FAULT_SEL);
QY1AND3A X040 (N006,N086,RI[7],TGCLRSET,WCLK, GATE_NUM[210], FAULTSEL);
QY1AND3A X014 (WCLK,N063,RTXC,RS[O],N004, GATE_NUM[211], FAULT_SEL);
QY1AND3A X013 (FNCCLK,N064,RTXC,RS [O],RS[1], GATE_NUM[212], FAULT_SEL);
QY1AND3A X033 (HSALDCLK,N046,HSLDEN,funcb[0O],WCLK, GATE_NUM[213], FAULTSEL);
QY1AND3A X032 (HSBLDCLK,N047,HSLDEN,func[O],WCLK, GATE_NUM[214], FAULT_SEL);
QY1DFRA X068 (PECONTROL[O],N087,func[0O],N018,TGICRESET, GATENUM[215], FAULT_SEL);

137

QY1DFRA X067 (PECONTROL[1],N088,func[O],N017,TGICRESET, GATE_NUM[216], FAULT_SEL);
QY1DFRA X066 (PECONTROL[2],N089,func[O],N016,TGICRESET, GATE_NUM[217], FAULT_SEL);
QY1DFRA X059 (EVENTMODE_bit3,N067,func[O],N015,TGICRESET, GATE_NUM[218],

FAULTSEL);
QY1DFRA X058 (EVENTMODE_bit7,N068,func[O],N014,TGICRESET, GATE_NUM[219],

FAULT_SEL);
QY1DFRA X055 (TGICDIAGM_bitO,N069,func[O],N013,TGICRESET, GATE_NUM[220],

FAULT_SEL);
QY 1DFRA X054 (TGICDIAGM_bit 1,N070,func[O],N012,TGICRESET, GATE_NUM[221],

FAULT_SEL);
QY1DFRA X053 (TGICDIAGM_bit2,N071,func[O],NO11,TGICRESET, GATE_NUM[222],

FAULT_SEL);
QY 1DFRA X052 (TGICDIAGM_bit3,N072,func[O],N010,TGICRESET, GATE_NUM[223],

FAULT_SEL);
QY 1DFRA X051 (TGICDIAGM_bit4,TGICDIAGM_bit4B,func [O],N009,TGICRESET,

GATE_NUM[224], FAULT_SEL);
QY1DFRA X050 (TGICDIAGM_bit5,N074,func[O],N008,TGICRESET, GATE_NUM[225],

FAULT_SEL);
QY1DFRA X049 (TGICDIAGM_bit6,N075,func[0O],N007,TGICRESET, GATE_NUM[226],

FAULT_SEL);
QY1DFRA X048 (TGICDIAGM_bitF,N076,func[0],N006,TGICRESET, GATE_NUM[227],

FAULTSEL);
QY1MX2A X088 (data[9],N101 ,N027,bus_out[9],LDLRD, GATE_NUM[228], FAULT_SEL);
QY1MX2A X072 (NO19,N1 10,N132,HSPATHBSEL[1],N129, GATE_NUM[229], FAULT_SEL);
QY1MX2A X089 (data[8],N102,N028,bus_out[8],LDLRD, GATE_NUM[230], FAULT_SEL);
QY1MX2A X073 (N020,N 112,N142,HSPATHBSEL[O],N129, GATE_NUM[231], FAULT_SEL);
QY1MX2A X090 (data[7],N103,N023,bus_out[7],LDLRD, GATE_NUM[232], FAULTSEL);
QY1MX2A X074 (N021,N114,ZERO,ZERO,N129, GATE_NUM[233], FAULT_SEL);
QY1MX2A X091 (data[6],N104,N030,bus_out[6],LDLRD, GATE_NUM[234], FAULT_SEL);
QY1MX2A X075 (N022,N116,ZERO,ZERO,N129, GATE_NUM[235], FAULT_SEL);
QY1MX2A X092 (data[5],N105,N031,bus_out[5],LDLRD, GATE_NUM[236], FAULT_SEL);
QY1MX2A X076 (N029,N1 18,ZERO,ZERO,N129, GATE_NUM[237], FAULT_SEL);
QY1MX2A X093 (data[4],N106,N032,bus_out[4],LDLRD, GATE_NUM[238], FAULT_SEL);
QY1MX2A X077 (N024,N120,ZERO,HSPATHBSEL[4],N129, GATE_NUM[239], FAULT_SEL);
QY1MX2A X094 (data[3],N107,N033,bus_out[3],LDLRD, GATE_NUM[240], FAULT_SEL);
QY1MX2A X078 (N025,N108,ZERO,HSPATHBSEL[3],N129, GATE_NUM[241], FAULT_SEL);
QY1MX2A X095 (data[2],N109,N034,bus_out[2],LDLRD, GATE_NUM[242], FAULTSEL);
QYIMX2A X079 (N026,N122,N143,HSPATHBSEL[2],N129, GATE_NUM[243], FAULT_SEL);
QY1OR3A X023 (N043,X,func[3],func[2],LDLRDB, GATE_NUM[244], FAULT_SEL);
QY1OR3A X024 (LDLRDB,LDLRD,func[7],funcb[5],NI 34, GATE_NUM[245], FAULTSEL);
QY OR3A X026 (N056,ENA,func[1l],LDLRDB,func[0O], GATE_NUM[246], FAULT_SEL);
QY1OR3A X027 (N052,ENB,func[l],LDLRDB,funcb[O], GATE_NUM[247], FAULTSEL);
QY IOR3A X028 (N053,ENC,funcb[l],LDLRDB,func[O], GATE_NUM[248], FAULT_SEL);
QY IOR3A X029 (N054,END,funcb[l],LDLRDB,funcb[0O], GATE_NUM[249], FAULTSEL);

QY 10R4A X003 (N059,N003,RI[9],RI[8],NO01,N002, GATE_NUM[341], FAULT_SEL);// 4 input
QYIOR4A X025 (N038,N005,LDLRDB,func[6],func[3],func[2], GATE_NUM[342], FAULT_SEL);
QY 1OR4A X019 (HSLDENB,HSLDEN,func[3] ,funcb[2],funcb[l],MSBO, GATE_NUM[343],

FAULTSEL);
QY1OR4A X018 (N039,TGCLRSET,funcb[3],func[2],funcb[1],MSB0, GATE_NUM[344], FAULT_SEL);
QY 1OR4A X017 (N040,EVCLRSET,func[3],funcb[2],func[l],MSBO, GATE_NUM[345], FAULT_SEL);
QY1 OR4A X016 (N041,HSPABSET,N137,N1 36,func[3],MSBO, GATE_NUM[346], FAULT_SEL);
QY 10R4A X020 (MSBO,N042,func[7] ,func[6],func[5],func[4], GATE_NUM[347], FAULTSEL);

QY 10R5A X022 (N035,Y,N1 35,TGCLRSET,EVCLRSET,HSPABSET,X, GATE_NUM[432],
FAULT_SEL);// 5 input

QY1OR5A X021 (N036,Z,MSBO,func[3],func[2],funcb[1],func[0], GATE_NUM[433], FAULT_SEL);
QY 10R5A X002 (N002,N058,RI[7],RI[6],RI[4],RI[3],RI[2], GATE_NUM[434], FAULT_SEL);
QY 1OR5A X034 (N037,OUTEN,N073,N133,RS[O],RS[1],Y, GATE_NUM[435], FAULT_ SEL);

QY1MX4A X080 (N027,N111 ,NO19,ZERO,N13 1,N130,S 1,SO, GATE_NUM[454],
FAULT_SEL); //6 input

QYI MX4A X081 (N028,N1 13,N020,ZERO,N138,N139,S 1,SO, GATE_NUM[455], FAULT_SEL);
QY 1MX4A X082 (N023,N 15,N021 ,N128,TGICDIAGM_bitF,ZERO,S 1,SO,

138

GATE_NUM[456], FAULT_SEL);
QY1MX4A X083 (N030,N 117,N022,ZERO,N127,ZERO,S 1,S 0, GATE_NUM[457], FAULT_SEL);
QY1MX4A X084 (N031,N1 19,N029,ZERO,N126,ZERO,S 1,SO, GATE_NUM[458], FAULT_SEL);
QY 1MX4A X085 (N032,N121,N024,ZERO,TGICDIAGM_bit4,ZERO,S 1,SO,

GATE_NUM[459], FAULT_SEL);
QY1MX4A X086 (N033,N100,N025,N140,TGICDIAGM_bit3,N124 1,SO, GATE_NUM[460],

FAULT_SEL);
QY 1MX4A X087 (N034,N 123,N026,ZERO,N 125,N 141 ,S 1,SO, GATE_NUM[461], FAULTSEL);

endmodule

module strobe_logicfault (STFLA,STFLB,STFLC,STFLD,
CVOUTA,CVOUTB,CVOUTC,CVOUTD,
CVINA,CVINB,CVINC,CVIND,
TYPEA,TYPEB,TYPEC,TYPED,
ACH,BCL,CLK,
STFLAB,STFLBB,STFLCB,STFLDB,
CVOUTAB,CVOUTBB,CVOUTCB,CVOUTDB,
CVINAB,CVINBB,CVINCB,CVINDB,
TYPEAB,TYPEBB,TYPECB,TYPEDB,
ACHB,BCLB,CLKB,ESM, FAULT_SEL, GATE_SEL);

output STFLA,STFLB,STFLC,STFLD;
output STFLAB,STFLBB,STFLCB,STFLDB;
input CVOUTA,CVOUTB,CVOUTC,CVOUTD;
input CVOUTAB,CVOUTBB,CVOUTCB,CVOUTDB;
input CVINA,CVINB,CVINC,CVIND;
input CVINAB,CVINBB,CVINCB,CVINDB;
input [1:0] TYPEA,TYPEB,TYPEC,TYPED;
input [1:0] TYPEAB,TYPEBB,TYPECB,TYPEDB;
input ACH,BCL;
input ACHB,BCLB,CLKB;
input CLK,ESM; II ESM is bit 7 of EVENTMODE
input [4:0] FAULT_SEL;
input [9:0] GATE_SEL;

wire [1023:0] GATE_NUM;
assign GATE_NUM = 1 << GATE_SEL;

QY 10ONEDA X122 (ONE,ONEB,GATE_NUM[4],FAULT_SEL);// 0 input

QY1S2DA X123 (ESMI,ESMBI,ESM,GATE_NUM[23],FAULT_SEL);// 1 input

QY1CP1DA X81 (N123,N124,STBO,STBOB,STBOSET,STBOSETB,GATE_NUM[348],
FAULT_SEL);// 4 input

QY1CP1DA X82 (N125,N126,STBOB,STBO,RSTSTBS,RSTSTBSB,GATENUM[348],FAULTSEL);
QY1CP1DA X83 (N129,N130,STB 1,STB 1B,STB 1SET,STB 1SETB,GATE_NUM[349],FAULT_SEL);
QY1CP1DA X84 (N131,N132,STB 1B,STB 1,RSTSTBS,RSTSTBSB,GATENUM[350],FAULT_SEL);
QY1CP1DA X85 (N135,N136,STBZ,STBZB,STBZSET,STBZSETB,GATENUM[35 1],FAULT_SEL);
QY1CP1DA X86 (N137,N138,STBZB,STBZ,RSTSTBS,RSTSTBSB,GATE_NUM[352],FAULTSEL);
QY1CPlDA X102 (N145,N146,N140,N139,CVINAB,CVINA,GATE_NUM[353],FAULTSEL);
QY1CP1DA X107 (N149,N150,N148,N147,CVINB B,CVIGATE_NUM[354],FAULT_SEL);
QY1CP1DA X112 (N159,N160,N158,N157,CVINCB,CVINC,GATE_NUM[355],FAULT_SEL);
QY1CP1DA X 117 (N167,N168,N166,N165,CVINDB,CVIND,GATE_NUM[356],FAULT_SEL);
QY1DFDA X34 (EFAILB,EFAILBB,ELOGB,ELOGBB,EDGSTBB,

EDGSTBBB,GATE_NUM[357],FAULT_SEL);
QY1DFDA X33 (EFAILA,EFAILAB,ELOGA,ELOGAB,EDGSTBA,

EDGSTBAB,GATE_NUM[358],FAULT_SEL);
QY1DFDA X35 (EFAILC,EFAILCB,ELOGC,ELOGCB,EDGSTBC,

EDGSTBCB,GATE_NUM[359],FAULT_SEL);
QY1DFDA X36 (EFAILD,EFAILDB,ELOGD,ELOGDB,EDGSTDB,

EDGSTBDB,GATE_NUM[360],FAULT_SEL);
QY 1DFDA X93 (WFAILA,WFAILAB,WFAIL,NWFAIL,RSTSTBA,

RSTSTBAB,GATE_NUM[361],FAULT_SEL);

139

QY 1DFDA X94 (WFAILB,WFAILBB,WFAIL,NWFAIL,RSTSTBB,
RSTSTBBB,GATE_NUM[362],FAULT_SEL);

QY1DFDA X95 (WFAILC,WFAILCB,WFAIL,NWFAIL,RSTSTBC,
RSTSTBCB,GATE_NUM[363],FAULT_SEL);

QY1DFDA X96 (WFAILD,WFAILDB,WFAIL,NWFAIL,RSTSTBD,
RSTSTBDB,GATE_NUM[364],FAULT_SEL);

QY 1DFDA X103 (N140,N139,N145,N146,CLK,CLKB,GATE_NUM[365],FAULT_SEL);
QY1DFDA X105 (N142,N141 ,N143,N144,CLK,CLKB,GATE_NUM[366],FAULT_SEL);
QY1DFDA X106 (STFLA,STFLAB,N142,N141 ,CLK,CLKB,GATE_NUM[367],FAULTSEL);
QY1DFDA X 1I (STFLB,STFLBB,N154,N153,CLK,CLKB,GATE_NUM[368],FAULT SEL);
QY1DFDA X110 (N154,N153,N155,N156,CLK,CLKB,GATE_NUM[369],FAULT_SEL);
QY1DFDA X108 (N148,N147,N149,N150,CLK,CLKB,GATE_NUM[370],FAULTSEL);
QY1DFDA X116 (STFLC,STFLCB,N162,N161,CLK,CLKB,GATE_NUM[371],FAULTSEL);
QY1DFDA X115 (N162,N161,N163,N164,CLK,CLKB,GATE_NUM[372],FAULT_SEL);
QY1DFDA X113 (N158,N157,N159,N160,CLK,CLKB,GATE_NUM[373],FAULT_SEL);
QY1DFDA X121 (STFLD,STFLDB,N170,N169,CLK,CLKB,GATE_NUM[374],FAULTSEL);
QY1DFDA X120 (N170,N169,N151,N152,CLK,CLKB,GATE_NUM[375],FAULTSEL);
QY1DFDA X 118 (N166,N165,N167,N 168,CLK,CLKB,GATE_NUM[376],FAULT_SEL);
QY1OR2DA X21 (N033,N034,N002,N001,N004,N003,GATE_NUM[377],FAULT_SEL);
QY 1OR2DA X22 (N035,N036,N006,N005,N008,N007,GATE_NUM[378],FAULT_SEL);
QY 1OR2DA X29 (ELOGA,ELOGAB,N033,N034,N035,N036,GATE_NUM[379],FAULT SEL);
QYIOR2DA X30 (ELOGB,ELOGBB,N037,N038,N039,N040,GATE_NUM[380],FAULT_SEL);
QY 1OR2DA X24 (N039,N040,N014,N013,N016,N015,GATE_NUM[381] ,FAULT_SEL);
QY 1OR2DA X23 (N037,N038,N010,N009,N012,NO 1,GATE_NUM[382] ,FAULT_SEL);
QY10OR2DA X27 (N045,N046,N026,N025,N028,N027,GATE_NUM[383],FAULT_SEL);
QY 1OR2DA X28 (N047,N048,N030,N029,N032,N031,GATE_NUM[384],FAULT_SEL);
QY1OR2DA X32 (ELOGD,ELOGDB,N045,N046,N047,N048,GATE_NUM[385],FAULT_SEL);
QY 1OR2DA X31 (ELOGC,ELOGCB,N041,N042,N043,N044,GATE_NUM[386],FAULTSEL);
QY IOR2DA X26 (N043,N044,N022,N021 ,N024,N023,GATE_NUM[387],FAULT_SEL);
QY1 OR2DA X25 (N041,N042,NO018,N017,N020,N019,GATE_NUM[388],FAULT_SEL);
QYI OR2DA X 10 (EDGSTBBB,EDGSTBB,CVOUTBB,CVOUTB,

ESMBI,ESMI,GATE_NUM[389],FAULTSEL);
QY 10OR2DA X05 (EDGSTBAB,EDGSTBA,CVOUTAB,CVOUTA,

ESMBI,ESMI,GATE_NUM[390],FAULT_SEL);
QY 1 OR2DA X 15 (EDGSTBCB,EDGSTBC,CVOUTCB,CVOUTC,

ESMBI,ESMI,GATE_NUM[391],FAULT_SEL);
QY1OR2DA X20 (EDGSTBDB,EDGSTDB,CVOUTDB,CVOUTD,

ESMBI,ESMI,GATENUM[392],FAULT_SEL);
QY 1 OR2DA X53 (N081,N082,CVOUTAB,CVOUTA,N049,N050,GATE_NUM[393],FAULT_SEL);
QY1OR2DA X54 (N083,N084,CVOUTBB,CVOUTB,N051,N052,GATE_NUM[394],FAULT_SEL);
QY 1OR2DA X55 (N085,N086,CVOUTCB,CVOUTC,N053,N054,GATE_NUM[395],FAULT_SEL);
QY 1 OR2DA X56 (N087,N088,CVOUTDB,CVOUTD,N055,N056,GATE NUM[396],FAULT_SEL);
QY 1OR2DA X69 (N 105,N 106,N082,N081 ,N084,N083,GATE_NUM[397],FAULT_SEL);
QY1OR2DA X70 (N107,N108,N086,N085,N088,N087,GATE_NUM[398],FAULT_SEL);
QY 1OR2DA X77 (STBOSET,STBOSETB,N105,N 106,N107,N108,GATENUM[399],FAULT_SEL);
QY 1OR2DA X57 (N089,N090,CVOUTAB,CVOUTA,N057,N058,GATE_NUM[400],FAULT_SEL);
QY 1 OR2DA X58 (N091 ,N092,CVOUTBB,CVOUTB,N059,N060,GATE_NUM[401],FAULT_SEL);
QY OR2DA X59 (N093,N094,CVOUTCB,CVOUTC,N061 ,N062,GATE_NUM[402],FAULT_SEL);
QYI OR2DA X60 (N095,N096,CVOUTDB,CVOUTD,N063,N064,GATE_NUM[403],FAULT_SEL);
QY I OR2DA X71 (N109,N 110,N090,N089,N092,N09 1,GATE_NUM[404],FAULT_SEL);
QY OR2DA X72 (N111,N112,N094,N093,N096,N095,GATE_NUM[405],FAULT_SEL);
QYI OR2DA X78 (STB 1SET,STB ISETB,N109,N 110,N 11 ,N 112,GATE_NUM[406],FAULT_SEL);
QY1 OR2DA X79 (STBZSET,STBZSETB,N113,N114,N 115,N 116,GATENUM[407],FAULT_SEL);
QY1 OR2DA X74 (N 115,N1 16,N102,N101 ,N104,N103,GATE_NUM[408],FAULT_SEL);
QY 1 OR2DA X73 (N 113,N 114,N098,N097,N 100,N099,GATE_NUM[409],FAULTSEL);
QYl OR2DA X64 (N103,N104,CVOUTDB,CVOUTD,N07 1,N072,GATE_NUM[410],FAULT_SEL);
QY1OR2DA X63 (N101 ,N102,CVOUTCB,CVOUTC,N069,N070,GATE_NUM[411],FAULT_SEL);
QY1OR2DA X62 (N099,N100,CVOUTBB,CVOUTB,N067,N068,GATENUM[412],FAULT_SEL);
QY 1 OR2DA X61 (N097,N098,CVOUTAB,CVOUTA,N065,N066,GATE NUM[413],FAULT_SEL);
QY 1OR2DA X65 (RSTSTBAB,RSTSTBA,CVOUTAB,CVOUTA,N073,N074,

GATE_NUM[414],FAULT SEL);
QY 10OR2DA X66 (RSTSTBBB,RSTSTBB,CVOUTBB,CVOUTB,N075,N076,

GATE_NUM[415],FAULT_SEL);
QY OR2DA X67 (RSTSTBCB,RSTSTBC,CVOUTCB,CVOUTC,N077,N078,

140

GATE_NUM[416],FAULT_SEL);
QY1OR2DA X68 (RSTSTBDB,RSTSTBD,CVOUTDB,CVOUTD,N079,N080,

GATENUM[417],FAULT_SEL);
QY1OR2DA X75 (N 117,N 118,RSTSTBA,RSTSTBAB,RSTSTBB,RSTSTBBB,

GATE_NUM[418],FAULT_SEL);
QY1OR2DA X76 (NI 19,N120,RSTSTBC,RSTSTBCB,RSTSTBD,RSTSTBDB,

GATE_NUM[419],FAULT_SEL);
QY1OR2DA X80 (RSTSTBS,RSTSTBSB,N1 17,N118,N1 19,N120,GATE_NUM[420],FAULT_SEL);
QY1OR2DA X89 (N127,N128,ACH,ACHB,ACH,ACHB,GATE_NUM[421],FAULTSEL);
QY1OR2DA X87 (N121,N122,BCL,BCLB,BCL,BCLB,GATENUM[422],FAULTSEL);
QY1OR2DA X91 (N134,N133,BCL,BCLB,ACH,ACHB,GATE_NUM[423],FAULTSEL);
QY1RSDA X88 (STBO,STBOB,N123,N124,N125,N126,GATE_NUM[424],FAULTSEL);
QY1RSDA X90 (STB I,STB1B,N129,N130,N131,N132,GATENUM[425],FAULTSEL);
QY1RSDA X92 (STBZ,STBZB,N135,N136,N137,N138,GATENUM[426,FAULTSEL);
QY1RSDA X101 (WFAIL,NWFAIL,STWFAIL,STWFAILB,

RSTSTBS,RSTSTBSB,GATE_NUM[427],FAULTSEL);

QY1OR3DA X01 (N001 ,N002,ACH,ACHB,BCL,BCLB,TYPEAB[1],
TYPEA[1],GATE_NUM[462],FAULT_SEL);// 6 input

QY 10OR3DA X02 (N003,N004,ACHB,ACH,TYPEA[1],TYPEAB[1],
TYPEAB[O],TYPEA[O],GATE_NUM[463],FAULT_SEL);

QY 1OR3DA X03 (N005,N006,ACH,ACHB,BCLB,BCL,TYPEAB[0],
TYPEA[0],GATE_NUM[464],FAULT_SEL);

QY1OR3DA X04 (N007,N008,TYPEAB[1],TYPEA[1],BCL,BCLB,TYPEA[0],
TYPEAB[O],GATE_NUM[465],FAULT_SEL);

QYlOR3DA X09 (N015,N016,TYPEBB [1],TYPEB [],BCL,BCLB,TYPEB[O],
TYPEBB[O],GATE_NUM[466],FAULT_SEL);

QY 10OR3DA X08 (N013,N014,ACH,ACHB,BCLB,BCL,TYPEBB[O],TYPEB[O],
GATE_NUM[467],FAULT_SEL);

QY1OR3DA X07 (N011 ,N012,ACHB,ACH,TYPEB[1],TYPEBB[1],TYPEBB[0],
TYPEB[O],GATE_NUM[468],FAULT_SEL);

QY1OR3DA X06 (N009,N010,ACH,ACHB,BCL,BCLB,TYPEBB[1],TYPEB[l],
GATE_NUM[469],FAULTSEL);

QY1OR3DA X16 (N025,N026,ACH,ACHB,BCL,BCLB,TYPEDB[1],TYPED[l],
GATE_NUM[470],FAULT_SEL);

QY1OR3DA X17 (N027,N028,ACHB,ACH,TYPED[1],TYPEDB[1],TYPEDB[O],TYPED[O],
GATE_NUM[471],FAULT_SEL);

QY 10OR3DA X18 (N029,N030,ACH,ACHB,BCLB,BCL,TYPEDB[0O],TYPED[O],
GATE_NUM[472],FAULT_SEL);

QY1OR3DA X19 (N031,N032,TYPEDB[l1],TYPED[1],BCL,BCLB,TYPED[],TYPEDB[0],
GATE_NUM[473], FAULT_SEL);

QY1OR3DA X14 (N023,N024,TYPECB[l],TYPEC[l],BCL,BCLB,TYPEC[0],TYPECB[0],
GATE_NUM[474],FAULT_SEL);

QY 10OR3DA X13 (N021,N022,ACH,ACHB,BCLB,BCL,TYPECB[O],TYPEC[0O],
GATE_NUM[475],FAULT_SEL);

QY1OR3DA X12 (N019,N020,ACHB,ACH,TYPEC[1],TYPECB [1],TYPECB [0],TYPEC[0],
GATE_NUM[476],FAULT_SEL);

QY1OR3DA Xll (N017,N018,ACH,ACHB,BCL,BCLB,TYPECB[1],TYPEC[l],
GATE_NUM[477],FAULT_SEL);

QY 10OR3DA X37 (N049,N050,TYPEAB[1],TYPEA[1],TYPEA[0],TYPEAB[0],ESMI,ESMBI,
GATE_NUM[478],FAULT_SEL);

QY1OR3DA X38 (N051,N052,TYPEBB[1],TYPEB[1],TYPEB[O],TYPEBB[0],ESMI,ESMBI,
GATE_NUM[479],FAULT_SEL);

QY1OR3DA X39 (N053,N054,TYPECB[1],TYPEC[l],TYPEC[0],TYPECB[0],ESMI,ESMBI,
GATE_NUM[480],FAULTSEL);

QY1OR3DA X40 (N055,N056,TYPEDB[1],TYPED[1],TYPED[0],TYPEDB[0],ESMI,ESMBI,
GATE_NUM[481],FAULT SEL);

QY1OR3DA X41 (N057,N058,TYPEAB[1],TYPEA[1],TYPEAB[O],TYPEA[0],ESMI,ESMBI,
GATE_NUM[482],FAULTSEL);

QY1OR3DA X42 (N059,N060,TYPEBB[1],TYPEB[1],TYPEBB[0],TYPEB[0],ESMI,ESMBI,
GATE_NLM[483],FAULT_SEL);

QY1OR3DA X43 (N061 ,N062,TYPECB[1],TYPEC[1],TYPECB[],TYPEC[0],TYPEC[0],ESMI,ESMBI,
GATE_NUM[484],FAULT_SEL);

QY 1OR3DA X44 (N063,N064,TYPEDB [1],TYPED[1],TYPEDB[O],TYPED[O],ESMI,ESMBI,

141

GATE_NUM[485],FAULT_SEL);
QY1OR3DA X48 (N071,N072,TYPED[1],TYPEDB[1],TYPEDB[0],TYPED[0],ESMI,ESMBI,

GATE_NUM[486],FAULT_SEL);
QY1OR3DA X47 (N069,N070,TYPEC[1],TYPECB[1],TYPECB[0],TYPEC[0],ESMI,ESMBI,

GATE_NUM[487] ,FAULTSEL);
QY1OR3DA X46 (N067,N068,TYPEB[1],TYPEBB [1],TYPEBB[O],TYPEB [0],ESMI,ESMBI,

GATE_NUM[488],FAULT_SEL);
QY 1OR3DA X45 (N065,N066,TYPEA[1],TYPEAB[1],TYPEAB[0],TYPEA[O],ESMI,ESMBI,

GATENUM[489],FAULT_SEL);
QY1OR3DA X49 (N073,N074,TYPEA[1],TYPEAB[1],TYPEA[0],TYPEAB[0],ESMI,ESMBI,

GATE_NUM [490],FAULTSEL);
QY 1OR3DA X50 (N075,N076,TYPEB[1],TYPEBB [1],TYPEB [0],TYPEBB [0],ESMI,ESMBI,

GATE_NUM[491],FAULT_SEL);
QY 1OR3DA X51 (N077,N078,TYPEC[1],TYPECB [1],TYPEC[0],TYPECB [0],ESMI,ESMBI,

GATE_NUM[492],FAULTSEL);
QY 1OR3DA X52 (N079,N080,TYPED[1],TYPEDB[I],TYPED[O],TYPEDB[0],ESMI,ESMBI,

GATE_NUM[493],FAULTSEL);
QY1OR3DA X98 (FSTB 1B,FSTB 1,N127,N128,STB1B,STB 1,ESMI,ESMBI,

GATE_NUM[494],FAULT_SEL);
QY 1OR3DA X97 (FSTBOB,FSTBO,N 121 ,N 122,STBOB,STBO,ESMI,ESMBI,

GATE_NUM[495],FAULT_SEL);
QY1OR3DA X99 (FSTBZB,FSTBZ,N133,N134,STBZB,STBZ,ESMI,ESMBI,

GATE_NUM [496],FAULT_SEL);
QY 1OR3DA X100 (STWFAIL,STWFAILB,FSTBO,FSTBOB,FSTB 1 ,FSTB1B,FSTBZ,FSTBZB,

GATE_NUM [497],FAULT_SEL);

QY1MX4DA X104 (N143,N144,N142,N141 ,N142,N141 ,WFAILA,WFAILAB,EFAILA,EFAILAB,
N140,N139,ESMI,ESMBI,GATE_NUM[506],FAULTSEL);// 12 input

QY1MX4DA X109 (N155,N 156,N 154,N 153,N154,N 153,WFAILB,WFAILBB,EFAILB,EFAILBB,
N148,N147,ESMI,ESMBI,GATE_NUM[507],FAULTSEL);

QY1MX4DA X114 (N163,N164,N162,N161,N162,N161,WFAILC,WFAILCB,EFAILC,EFAILCB,
N158,N157,ESMI,ESMBI,GATE_NUM[508],FAULTSEL);

QY1MX4DA X 119 (Ni 51,N152,N170,N169,N170,N169,WFAILD,WFAILDB,EFAILD,EFAILDB,
N166,N165,ESMI,ESMBI,GATE_NUM[509],FAULTSEL);

endmodule

module response_TMU_fault(TMUA,TMUB,
ACH,BCL,
TMUPA,TMUPB,CVO,CVI,
ACHA,BCLA,ACHB,BCLB,
TMUAB,TMUBB,
NACH,NBCL,
TMUPAB,TMUPBB,CVOB,CVIB,
ACHAB,BCLAB,ACHBB,BCLBB,
ACHS,BCLS,
THBSEL,HSPATHASEL,HSPATHBSEL,LPBK,TSTPULSE,
FAULT_SEL, GATE SEL);

output TMUA,TMUB;
output TMUAB,TMUBB;
output ACH,BCL; II to STROBE LOGIC
output NACH,NBCL; II to STROBE LOGIC
output ACHS,BCLS; I// to register section (single ended)
input TMUPA,TMUPB; II from DRIVE CONTROL's TMU Mux
input TMUPAB,TMUPBB; // from DRIVE CONTROL's TMU Mux
input [3:0] CVO,CVI; // from LDLs
input [3:0] CVOB,CVIB; II from LDLs
input ACHA,BCLA,ACHB,BCLB;
input ACHAB,BCLAB,ACHBB,BCLBB;
input THBSEL;
input [2:1] HSPATHASEL;
input [4:0] HSPATHBSEL;
input LPBK,TSTPULSE;
input [4:0] FAULT_SEL;

142

input [9:0] GATE_SEL;

wire [1023:0] GATE_NUM;
assign GATE_NUM = 1 << GATE_SEL;

QYIONEDA X15 (N034,N035,GATE_NUM[5],FAULT_SEL);// 0 input

QY1S2DA X01 (NOO1,N002,LPBK,GATE_NUM[24],FAULTSEL);// 1 input
QY 1S2DA X02 (N003,N004,THBSEL,GATE_NUM[25],FAULTSEL);
QY1S2DA X03 (N009,N010,HSPATHBSEL[3],GATE_NUM[26],FAULT_ SEL);
QY1S2DA X04 (N013,N014,HSPATHBSEL[1],GATE_NUM[27],FAULTSEL);
QY1S2DA X05 (NO1 1,N012,HSPATHBSEL[2],GATE_NUM[28],FAULT_SEL);
QY1S2DA X06 (N015,N016,HSPATHBSEL[0],GATE_NUM[29],FAULT_SEL);
QY1S2DA X07 (N017,N018,HSPATHBSEL[4],GATE_NUM[30],FAULTSEL);
QY1S2DA X08 (N019,N020,TSTPULSE,GATE_NUM[31],FAULT_SEL);
QY 1S2DA X09 (N005,N006,HSPATHASEL[2],GATE_NUM [32],FAULT SEL);
QY1S2DA X10 (N007,N008,HSPATHASEL[1],GATE_NUM[33],FAULT_SEL);

QY1D2SDA X23 (ACHS,ACH,NACH,GATE_NUM[144],FAULTSEL);// 2 input
QY1D2SDA X24 (BCLS,BCL,NBCL,GATE_NUM[145],FAULT_SEL);

QY1MX2DA X17 (N032,N029,N036,N027,N028,N030,N015,N016,
GATE_NUM[498],FAULT_SEL);// 6 input

QY1DFRDA X18 (N031,N033,N033,N031,N032,N029,N020,N019,GATE_NUM[499],FAULTSEL);
QY1MX2DA X19 (N023,N024,N032,N029,N031,N033,N019,N020,GATENUM[500],FAULT_SEL);
QY1MX2DA X22 (TMUB,TMUBB,_S 141,_S 142,N021 ,N022,N017,N018,

GATE_NUM[501],FAULT_SEL);

QY1MX4DA X11 (ACH,NACH,ACHA,ACHAB,ACHB,ACHBB,TMUPA,TMUPAB,TMUPA,
TMUPAB,N001 ,N002,N003,N004,GATE_NUM[510],FAULT_SEL);ll 12 input

QY1MX4DA X12 (BCL,NBCL,BCLA,BCLAB,BCLB,BCLBB,TMUPB,TMUPBB,TMUPB,
TMUPBB,N001,N002,N003,N004,GATE_NUM[511],FAULT_SEL);

QY1MX4DA X13 (N036,N027,CVI[0],CVIB[0],CVI[1],CVIB [1],CVI[2],CVIB[2],CVI[3],CVIB[3],
N009,N010,N011 ,N012,GATE_NUM[512],FAULT_SEL);

QY1MX4DA X14 (N028,N030,CVO[0],CVOB[0],CVO[],CVOB[0],CVO[2],CVOB [,CV2],-
CVO[3],CVOB[3],

N009,N010,N011 ,N012,GATE_NUM[513],FAULT_SEL);
QY1MX4DA X16 (TMUA,TMUAB,ACH,NACH,NBCL,BCL,TMUPA,TMUPAB,N036,N027,

N005,N006,N007,N008,GATE_NUM[514] ,FAULT_SEL);
QY1MX4DA X20 (_S 141,_S 142,ACH,NACH,NBCL,BCL,N034,N035,N034,N035,

NO 1,N012,N013,N014,GATE_NUM[515],FAULT_SEL);
QY1MX4DA X21 (N021 ,N022,TMUPA,TMUPAB,TMUPB,TMUPBB,N023,N024,N023,

N024,N013,N014,N015,N016,GATE_NUM[516],FAULTSEL);

endmodule

143

Appendix C

Environment Model Specifications

C.1 Development Structures

The environment model implemented for the formatter subsystem is organized in the fol-

lowing manner: it is based upon a system schematic defined using the Electric design tool,

which consists of modules, submodules and interconnects. Each of the lowest level sub-

modules in the design is treated as a black box and has an associated Verilog behaviour

file. Electric automatically integrates these behaviour files using the schematic description

to create one monolithic Verilog simulation file, which captures all of the environment's

behaviour and internal netlists. The modules are as follows:

* environment_control

* reg_control

* barrel

* mux_control

* dutcontrol

The env_control module is used to coordinate the various functions of the environ-

ment: applying register setup events, pattern events, mux events and dut events. The env_-

control module activates each of the other submodules and handles their termination

behaviour. Each of the other submodules is responsible for one event type. Because of the

design of the formatters and the overall Timing Generator Module, the environment uses

four instances of the barrel module in parallel to implement pattern events, rather than one

pattern control module. The schematic and modules are given below:

-* /electric/eets.lib

144

* -/verilog/env_control/env_control

* -/verilog/barrel/barrel

* -/verilog/mux_control/mux_control

* -/verilog/dutcontrol/dut_control

* -/electric/system.ver

The Electric schematic description and the Verilog behaviour models are considered

static, and are only modified during development of the environment model. When the

model is locked to a particular revision, these files are integrated in Electric to produce a

system.ver file which should not be changed by the runtime user.

C.2 Runtime Structures

The structures created and modified by the runtime users of the environment model

consist of the memories that describe event streams, and one runtime control file which

directs program flow.

The memories used in the Formatter environment are the time and type files for pat-

tern, dut and mux events, as well as three register setup files, for register address, data (on

a register write), and register access function (read/write). Each memory file is a column

of entries indexed from 0. Each entry is a dataword which must be in a parsable format.

Each memory file is accessed by a 16-bit binary address, starting at 0. The maximum

number of entries any file can have is 65,536. These files are described below:

C.3 Register Setup Files

A register setup event is stored as an address, operation, and data word. Verilog's syn-

tax does not permit these pieces of information to be stored in the same file, so there is a

separate file for each item describing an event. The register setup files are:

145

· -<local>/memory/rega.mem

* -<local>/memory/regd.mem

* -<local>/memory/regf.mem

Rega.mem contains 4-digit hexadecimal VTI internal machine addresses used in the

9000 tester. The following addresses correspond to valid registers within the formatter

subsystem:

Regf.mem contains 2-bit entries [1:0] describing the corresponding access operation

required for each address:

146

VTI Address Description

1800, 1801 PE Control (force f'n for PE Driver)

1802 Pin Status (readback of compare - achi, bclo)

1804, 1805 Event Mode

1840 TMU Path A Select

1841 TMU Path B Select

D808 TGIC Master Reset

D80A, D80B TGIC Diags

D820, D821, D822, D823 LDL Driver Gains for 4 barrels

D830, D831, D832, D833 LDL Strobe Gains for 4 barrels

D860, D861, D862, D863 LDL Driver Delays for 4 barrels

D870, D871, D872, D873 LDL Strobe Delays for 4 barrels

Access Code Operation

00 Register read

01 Register write

Regd.mem contains 4-digit hexadecimal data words to be written to the addresses

specified in the corresponding entries of rega.mem in the event of a write operation.

Unless the register operation is write, this entry will be ignored by the model when it

accesses those registers. The entries cannot be accessed independently, so that regd.-

mem[12] cannot be written to rega.mem[34].

There are two user-definable parameters associated with register setup events in the

system model: REG_CLK_PERIOD and RTXC_DELAY. Register setup is done by clock-

ing data back and forth to the formatter subsystem across an 8-bit bus - this activity can be

asynchronous with the global clock that controls pattern event streams. REG_CLK_PE-

RIOD specifies the clockspeed used for register setup, and RTXC_DELAY determines the

setup time for putting data on the 8-bit bus.

The following table shows the first four lines of a sample set of register memories:

Setting the LDL driver B and C gains would be done by accessing entries [1:2] in

these memories. Accessing entries [0:3] would set all four driver gains.

C.4 Event Memory Files

Every pattern, dut and mux event is described by two entries: an event time and an

event type. As with register setup events, these items have to be stored in separate files.

147

Rega.mem Regf.mem Regd.mem

D820 01 0230

D821 01 0230

D822 01 0230

D823 01 0230

For example, the mux events are stored in muxtime.mem and muxtype.mem. These

two files are always addressed in parallel, so that applying mux event 50 means applying

muxtime.mem[50] and muxtype.mem[50] to the environment. The pattern, mux and dut

memory files are described below:

C.5 Pattern Events

Pattern events are described in the following files:

· -<local>/memory/time.mem

* -<local>/memory/type.mem

Time.mem contains 32-bit binary words [31:0] which specify event times as follows:

* bits [7:0] have a fixed resolution of 12.5 ps (in fact, 12.5 ps is the desired operating

resolution of the formatters - by adjusting the driver gain registers described in sec-

tion 2.3, the actual resolution can be calibrated within a range of approximately 8 -

20 ps)

* bits [31:8] are controlled differently: the least significant bit of this set, bit [8], is

determined by the user-definable parameter GLOBAL_CLK_PERIOD which is

specified in the runtime control file envTest.v. This parameter is given in picosec-

onds and can be any even value >= 50 ps. Whatever the value, bits [31:8] of each

word in time.mem will be read in units of that value, and bits [7:0] will be read in

units of 12.5 ps.

* bits [7:0] are referred to as the time vernier. When GLOBAL_CLK_PERIOD = 3200

ps, these bits resolve the time to within one 3.2 ns period (this is the normal operat-

ing mode for the model). Otherwise, they can add anywhere from 0 ps to 3187.5 ps

to whatever unit is specified for bit [8] (i.e., whatever the value of GLOBAL_CLK_-

PERIOD).

148

· all times are given relative to a global starting point, and must be well ordered, ie.for

any index <n>, time.mem[n-1] <= time.mem[n] <= time.mem[n+l]

· for any index <n>, time.mem[n], time.mem[n+4] and time.mem[n-4] must fall

within different periods of size GLOBAL_CLK_PERIOD, i.e. they must differ by at

least one of bits [31:8]

Type.mem contains 3-bit entries [2:0] which describe event types as follows:

The following table shows the first four lines of a sample set of pattern memories:

When GLOBAL_CLK_PERIOD = 3200 ps, applying entries [1:2] in these memories

would result in: Drive HI @ 6.4 ns, Drive LO @ 6.4125 ns. Applying entries [0:3] would

149

Event Type Code Function

000 Drive Z

001 Drive On

010 Drive LO

011 Drive HI

100 Strobe Off

101 Strobe Z

110 Strobe LO

111 Strobe HI

Time.mem Type.mem

00000000000000000000000100000000 010

00000000000000000000001000000000 011

00000000000000000000001000000001 010

00000000000000000000001100000011 011

result in: Drive LO @3.2 ns, Drive HI @ 6.4 ns, Drive LO @ 6.4125 ns, Drive HI @

9.625 ns.

When GLOBAL_CLK_PERIOD = 10000 ps, applying entries [1:2] in these memories

would result in: Drive HI @ 20.0 ns, Drive LO @ 20.0125 ns. Applying entries [0:3]

would result in: Drive LO @ 10.0 ns, Drive HI @ 20.0 ns, Drive LO @ 20.0125 ns, Drive

HI @ 30.025 ns.

C.6 Mux Events

Mux events are described in the following files:

* -<local>/memory/muxtime.mem

* -<local>/memory/muxtype.mem

Muxtime.mem contains 36-bit binary words [35:0] which specify event times as fol-

lows:

* the least significant bit of each word is set by the user-definable parameter

MUX_RESOLUTION which is specified in the runtime control file envTest.v. This

parameter is given in picoseconds and can be any value >= 1 ps. Whatever the value,

each word in muxtime.mem will be read in units of that value.

* all times are given relative to a global starting point, and must be strictly ordered,

ie.for any index <n>, muxtime.mem[n-1] < muxtime.mem[n] < muxtime.mem[n+1]

Muxtype.mem contains 3-bit entries [2:0] which describe event types as follows:

* bit [2] of each type word is ignored by the model, since mux events can only be drive

events

150

Mux events generate pulses that are sent to the formatter subsystem. The width of

these pulses is set by the user-definable parameter MUX_PULSE_WIDTH which is spec-

ified in the runtime control file envTest.v. This parameter is given in picoseconds and can

be any value >= 1 ps.

Because pattern events and mux events pass through different logic within the format-

ter subsystem, they may not be synchronized when they appear at the outputs. A pattern

event and mux event which have the same global timing may not appear at the outputs

simultaneously. In order to calibrate this difference, the user may delay the beginning of

the mux events by manipulating the parameter MUX_DELAY which is specified in the

runtime control file envTest.v. This parameter is given in picoseconds and can be any

value >= 0 ps.

The following table shows the first four lines of a sample set of pattern memories:

151

Event Type Code Function

000/100 Drive Z

001/101 Drive On

010/110 Drive LO

011/111 Drive HI

Muxtime.mem Muxtype.mem

00000000000000000000000100000000 010

00000000000000000000001000000000 011

00000000000000000000001000000001 010

00000000000000000000001100000011 011

When MUX_RESOLUTION = 1 ps, applying entries [1:2] in these memories would

result in: Drive HI @ 512 ps, Drive LO @ 513 ps. Applying entries [0:3] would result in:

Drive LO @ 256 ps, Drive HI @ 512 ps, Drive LO @ 513 ps, Drive HI @ 1031 ps.

When MUX_RESOLUTION = 10 ps, applying entries [1:2] in these memories would

result in: Drive HI @ 5120 ps, Drive LO @ 5130 ps. Applying entries [0:3] would result

in: Drive LO @ 2560 ps, Drive HI @ 5120 ps, Drive LO @ 5130 ps, Drive HI @ 10310

ps.

C.7 Dut Events

Dut events are described in the following files:

* -<local>/memory/duttime.mem

* -<local>/memory/duttype.mem

Duttime.mem contains 36-bit binary words [35:0] which specify event times as fol-

lows:

* the least significant bit of each word is set by the user-definable parameter

DUT_RESOLUTION which is specified in the runtime control file envTest.v. This

parameter is given in picoseconds and can be any value >= 1 ps. Whatever the value,

each word in duttime.mem will be read in units of that value.

* all times are given relative to a global starting point, and must be strictly ordered,

ie.for any index <n>, duttime.mem[n-1] < duttime.mem[n] < duttime.mem[n+l]

Duttype.mem contains 2-bit entries [1:0] which describe event types as follows:

152

Event Type Code Function

00 ACHI = 0, BCLO = 0

01 ACHI = 0, BCLO = 1

Event Type Code Function

10 ACHI = 1, BCLO = 0

11 ACHI = 1, BCLO = 1

Dut events describe comparator inputs to the formatter subsystem that simulate the

results which the formatters would see coming from the test head in the course of opera-

tion. These values when strobed by the formatters determine pass/fail results that are out-

putted by the formatter subsystem.

Because pattern events and dut events pass through different logic within the model,

they may not be synchronized when they appear at the outputs. A pattern event and dut

event which have the same global timing may not appear to the formatters simultaneously.

In order to calibrate this difference, the user may delay the beginning of the dut events by

manipulating the parameter DUT_DELAY which is specified in the runtime control file

envTest.v. This parameter is given in picoseconds and can be any value >= 0 ps.

The following table shows the first four lines of a sample set of pattern memories:

When DUT_RESOLUTION = 1 ps, applying entries [0:1] in these memories would

result in: ACHI = 0, BCLO = 0 @ 256 ps, ACHI = 0, BCLO = 1 @ 512 ps. Applying

entries [0:3] would result in: ACHI = 0, BCLO = 0 @ 256 ps, ACHI = 0, BCLO = 1 @

512 ps, ACHI = 1, BCLO = 0 @ 513 ps, ACHI = 1, BCLO = 1 @ 1031 ps.

153

Duttime.mem Duttype.mem

00000000000000000000000100000000 00

00000000000000000000001000000000 01

00000000000000000000001000000001 10

00000000000000000000001100000011 11

When DUT_RESOLUTION = 5 ps, applying entries [0:1] in these memories would

result in: ACHI = 0, BCLO = 0 @ 1280 ps, ACHI = 0, BCLO = 1 @ 2560 ps. Applying

entries [0:3] would result in: ACHI = 0, BCLO = 0 @ 1280 ps, ACHI = 0, BCLO = 1 @

2560 ps, ACHI = 1, BCLO = 0 @ 2565 ps, ACHI = 1, BCLO = 1 @ 5155 ps.

C.8 Test Sequence Control

The event generation sequence is controlled by the file:

· -/verilog/run/envTest.v

This file contains all the information required to compose a customized multi-stage

event generation program for the formatter environment model. It determines what event

streams are processed, what streams are ignored, and how they are combined. The runtime

user can build an event program by specifying blocks of register, pattern, dut and mux

events to occur alone or together, in any order, and for any period of time. Each block of

events is specified by a start and end address. All of the events the user wishes to apply

must be in the memory files specified earlier. However, by addressing different blocks in

those files at different times, the user can design arbitrarily complex sequences of register

setup, pattern, dut and mux streams, together or independently, with all of the control

mechanisms available in the Verilog definition language, including while, for and if-then

constructs.

The test sequence control has access to all of the I/O signals in the interface to the

environment/formatter system shown in Figure 1. In the control file, the user can set and

vary input signals as well as a group of special parameters that customize the model to the

user's preference.

By initializing all of the interface inputs and parameters, the user effectively creates

one test sequence including one or more of register, pattern, mux and dut events. By using

154

the interface's outputs to trigger changes in the inputs and parameters, the user starts other

test sequences. In this manner, using all of the control syntax available in Verilog's defini-

tion language, the user can create arbitrarily complex and long sets of test sequences.

C.9 System Inputs

The user can specify the following inputs to the system, which format the test

sequence to the user's preference:

- THBSEL [0]

Because of the design of the ITS 9000 Tester, outputs from the formatters can be sent

to one of two test head modules; this toggle specifies which lines the formatter outputs fol-

low. The resulting driver outputs will be either DHIA and DINHA or DHIB and DINHB,

correspondingly, the comparator signals strobed will be either ACHA and BCLA or

ACHB and BCLB. When THBSEL = 0, the test head is A; when THBSEL = 1, the test

head is B.

* PATTERN_BEG [15:0]

* PATTERN_END [15:0]

These 16-bit addresses specify the pattern event block to be applied from the files

time.mem and type.mem on the current test sequence. To apply the first four events, for

example, the user would set PATTERN_BEG = 16'dO, PATTERN_END = 16'd3. The

maximum number of entries in the memory files is limited by the 16-bit address to 65536.

· REG_BEG [15:0]

· REG_END [15:0]

These 16-bit addresses specify the register setup event block to be applied from the

files rega.mem, regf.mem and regd.mem on the current test sequence.

*MUX_BEG [15:0]

155

MUX_END [15:0]

These 16-bit addresses specify the pattern event block to be applied from the files

muxtime.mem and muxtype.mem on the current test sequence.

* DUT_BEG [15:0]REG_END

· DUT_END [15:0]

These 16-bit addresses specify the pattern event block to be applied from the files dut-

time.mem and duttype.mem on the current test sequence.

* TEST_MODE [2:0]

This 3-bit code specifies which of the three event streams are activated on the current

test sequence. TEST_MODE is coded in the following way:

* bit [0] enables and disables pattern event streams

* bit [1] enables and disables mux event streams

* bit [2] enables and disables dut event streams

* on a given test run, any combination of these three event streams can be enabled to

allow the user to control access to all of the interfaces to the system

* when one of these event types is enabled, it references the start and end addresses

given above; when it is disabled, those addresses are ignored and do not have to be

reset

* REG_MODE [0]

The formatters are most frequently exercised in the following context: the registers are

initialized asynchronously for the current task, and then pattern, mux and dut events are

applied synchronously to the system. Since register events cannot occur at the same time

as the other event types, the control of a test sequence is handled by REGMODE and

TEST_MODE in the following way:

156

* as soon as REG_MODE is set to 1, the register block specified by REG_BEG and

REG_END is executed. While REG_MODE = 1, pattern, mux and dut events cannot

be executed.

* as soon as REG_MODE is set to 0, REG_BEG and REG_END are ignored, and the

event streams specified by TEST_MODE are applied using the start and end

addresses chosen for them.

The end of event streams is signaled by the following outputs:

* REG_DONE [0]

* PATTERNDONE [0]

* DUT_DONE [0]

Pattern and mux events are very closely tied within the model. If the user chooses to

apply both pattern and mux events, it is to exercise the formatters in a special (PINMUX)

mode of operation in which two identical formatter systems feed the same pin on the 9000

test head, in order to double the effective event speed of the tester. As a result, when both

pattern and mux events are applied, the test sequence is not considered finished until both

event streams have been completed. The environment model incorporates this internal

control mechanism, and outputs only one signal to indicate that pattern and mux events

have finished: PATTERN_DONE. Since dut event streams may be longer or shorter than

pattern event streams during the course of a test, the user is given control over responding

to the signal DUT_DONE.

The user can specify test sequences in the following way:

* set REG_MODE to 1, starting a register setup sequence

* when REG_DONE changes from 0 to 1 (at the positive edge), set REG_MODE to 0,

starting the pattern, mux and dut streams

157

* when both or either of PATTERN_DONE and DUT_DONE change from 0 to 1, the

sequence has completed; this can trigger changing the start and end addresses for all

the events, and changing REG_MODE back to 1, to start the new register setup

sequence

In this way, the user can write test programs that manipulate blocks of events and con-

trol flow between execution of those events to produce arbitrarily complex behaviour in

the environment/formatter system.

C.10 Control Parameters

The user can customize the test sequence by specifying the following parameters:

* GLOBAL CLK PERIOD

GLOBAL_CLK_PERIOD specifies the speed at which the entire system is operated,

although certain modules in the environment model have different internal clocks. This is

also the clock which drives the formatter chips themselves. Finally, it specifies the resolu-

tion of pattern event timing words, as described in section C.5.

* CLKOUTDELAY

Although the period of the formatter clock is given by GLOBAL_CLK_PERIOD,

there are certain situations in which the user may wish to delay the formatter clock from

the environment clock, in order to ensure outputs from the environment are stable before

they are clocked into the formatters. CLKOUT_DELAY specifies this delay value; when

CLKOUT_DELAY = 0 ps, the formatters and the environment are synchronized.

* REGCLK_PERIOD

· RTXC_DELAY

158

These parameters determine the clock rate for register setup (which is asynchronous

from the other event streams), and the strobing rate on the data bus which is used to initial-

ize registers. They are described in section C.4.

* MUX_RESOLUTION

* MUX_DELAY

* MUX_PULSE_WIDTH

These parameters determine the specific characteristics of mux event streams, and are

described in section C.6.

* DUT_RESOLUTION

· DUT_DELAY

These parameters determine the specific characteristics of dut event streams, and are

described in section C.7.

C.11 Memory File Converter

In order to make the interface to the runtime user more intuitive, a program has been

written which accepts as inputs files of the form:

* D0@6.4

* D1 @9.6125

and produces time and type files of the form required by the formatter/environment

model.

159

Syntax

Synopsis:

convert [-mbf] [parameter values] < [input file]

Options

[-mbf]

-m

-b

-f

[parameter

Parameter declaration, specifies which parameters are explicitly to

be set, and the order in which they follow:

Mode of operation, specifies whether output files are for pattern

events or for mux events:

p - pattern events

m - mux events

d - dut events

Default is pattern events.

Bit-length of timing words. Can be any integer value, but must be

large enough to accomodate largest timing value to be produced.

Default is 32. If mux/dut mode is specified, but bit-length is not,

then the default is 36.

File output command. Specifies output to two files:

<time.file> <type.file>

Both filenames must be given. If -f option is not used, output is sent

to tty.

values] When the parameters have been declared in the first

section, the values to which they are assigned fol-

low, in the order specified in the declaration:

160

convert -mbf m 36 -/time.mem -/type.mem < test

convert -fmb -/time.mem -/type.mem m 36 < test

When the declaration order changes, so does the

order of the values assigned.

Modes and Input FIles

The convert program operates in two modes that require different input file formats. In

pattern mode, each line of the input file has the following syntax:<event type><val-

ue>@<time in ns>

Event Types

This input string is coded in the following way for pattern and mux events:

There are four special cases in specifying event types:

* DX (case insensitive) - Drive On

161

Value Code Function

0 Lo

1 Hi

Z,z Z

X.x On (with Drive), Off (with Strobe)

ON On (only valid with Drive)

* DON (case insensitive) - Drive On

* TX (caseinsensitive) - Strobe Off

* X (case insensitive) - Strobe Off

* NOP (case insensitive) - No Operation (skip current barrel)

For dut events, the input string has the following format:

Event Times

TIming values are always specified in units of 1 ns. Although the environment model

allows pattern timing to be specified with greater flexibility, the convert program fixes pat-

tern event resolution to 12.5 ps, and requires that the clock period for pattern events be set

to 3200 ps. The resolution of mux and dut events can be set by the user, as explained in the

following sections. All events in the pattern, mux and dut files must meet the following

requirements:

* all times are given relative to a global starting point, and must be well ordered, ie.for

any index <n>, time[n-l] <= time[n] <= time[n+l]

* for any index <n>, time[n], time[n+4] and time[n-4] must fall within different clock

periods, i.e. they must differ by at least 3.2 ns

162

Event Type Code Function

00 ACHI = 0, BCLO = 0

01 ACHI = 0, BCLO = 1

10 ACHI = 1, BCLO = 0

11 ACHI = 1, BCLO = 1

Sample Files

Pattern Events

The following is a sample pattern file that is used by convert to create inputs to the

model:

patterntest

DO@3.2

dl @6.4

Dz@6.45

DOn@9.6

SO@9.6

s1@9.6125

tZ@12.8

X@16

This can be used with the command:

convert -mbf p 32 Jtime.mem Jtype.mem < patterntest

The output files produced are:

163

time.mem type.mem

00000000000000000000000100000000 010

00000000000000000000001000000000 O11

00000000000000000000001000000100 001

00000000000000000000001100000000 00000000000000000000000001100000000 000~~~

Mux Events

When convert is used in mux/dut event mode, it requires a slightly different input file.

This file consists of entries with the same format as those for pattern events. However, the

first line this file must be of the following format:resolution=<resolution value in ps>

If this is line is missing from the top of a mux/dut input file, the convert program will

signal an error. The resolution value can be any integer >= 1 ps. After this line, the mux/

dut file has the same format as the pattern file.

The following is a sample mux file that is used by convert to create inputs to the

model:

muxtest

resolution=l

DO@3.2

dl @6.4

Dz@6.45

DOn@9.6

SO@9.6

164

time.mem type.mem

00000000000000000000001100000000 110

00000000000000000000001100000001 111

00000000000000000000010000000000 101

00000000000000000000010100000000 100

s1@9.6125

tZ@ 12.8

X@16

This can be used with the command:

convert -mbf m 36 ./muxtime.mem ./muxtype.mem < muxtest

The output files produced are:

Dut Events

The following is a sample dut file that is used by convert to create inputs to the mod-

el:duttest

resolution=12.5

165

muxtime.mem muxtype.mem

000000000000000000000000110010000000 010

000000000000000000000001100100000000 011

000000000000000000000001100100110010 001

000000000000000000000010010110000000 000

000000000000000000000010010110000000 110

000000000000000000000010010110001100 111

000000000000000000000011001000000000 101

000000000000000000000011111010000000 100

00@3.2

01@6.4

10@6.45

11@9.6

10@9.6

01@9.6125

00@ 12.8

11@16

This can be used with the command:

convert -mbf d 36 Jduttime.mem /duttype.mem < duttest

The output files produced are:

166

duttime.mem duttype.mem

00000000000000000000000100000000 00

00000000000000000000001000000000 01

00000000000000000000001000000100 10

0000000000000000000000100000000 11

00000000000000000000001100000000 10

00000000000000000000001100000001 01

00000000000000000000010000000000 00

00000000000000000000010100000000 11

167

Appendix D

The Environment Model

module environment(PATTERNBEG, DA, DB, DC, DD, R, RS, CA, CB, CC, CD, REG_BEG,
REG_END, PATTERN_END, MUXBEG, MUX_END, TEST_MODE, DUT_BEG, DUTEND,
R_G, THBSELOUT, CLK, SETLOOUT, SETZOUT, SETHIOUT, SETONOUT, RTXC,
CLKOUT, REG_MODE, REG_DONE, PATTERN_DONE, ACHA, BCLA, ACHB, BCLB,
DUTDONE);
input [15:0] PATTERN_BEG;
input [15:0] PATTERN_END;
output [5:0] DB;
output [5:0] DA;
output [5:0] CB;
output [5:0] CD;
output [5:0] CC;
output [5:0] DC;
output [5:0] DD;
output [5:0] CA;
input [15:0] REGBEG;
input [15:0] REGEND;
inout [9:2] R;
output [1:0] RS;
'input [15:0] MUX_BEG;
input [15:0] MUX_END;
input [2:0] TEST_MOI)E;
input [15:0] DUTBEG;
input [15:0] DUT_END;
inout [9:2] R_G;
input THBSELOUT, CLK, REG_MODE;
output SETLOOUT, SETZOUT, SETHIOUT, SETONOUT, RTXC, CLKOUT, REG_DONE,
PATTERN_DONE, ACHA, BCLA, ACHB, BCLB, DUT_DONE;
wire [1:0] INDEXB;
wire [1:0] INDEXC;
wire [1:0] INDEXD;
wire [1:0] INDEXA;
dut_control U1 (.DUT_BEG(DUT_BEG),.DUT_END(DUT_END), .CLK(CLK),
.START_DUT_RUN(NET 1), .ACHA(ACHA), .BCLA(BCLA), .ACHB(ACHB), .BCLB(BCLB),
.DONE(DUT_DONE), .THBSEL(THBSELOUT));
rnux_control U2 (.MUX_BEG(MUXBEG), .MUX_END(MUX_END), .CLK(CLK),
.START_MUX_RUN(START_MUX_RUN), .SETLOOUT(SETLOOUT), .SETHIOUT(SETHIOUT),
.SETZOUT(SETZOUT), .SETONOUT(SETONOUT), .DONE(PATTERN_DONEM));
env_control U3 (.CLK(CLK), .REG_MODE(REG_MODE), .PATTERN_DONEA(PATTERN_DONEA),
.:PATTERN_DONEB(PATTERN_DONEB), .PATTERN_DONEC(PATTERN_DONEC),
.:PATTERN_DONED(PATTERN_DONED), .PATTERN_DONE(PATTERN_DONE),
.· START_PATTERN_RIJN(START_PATTERN_RUN), .INDEXA(INDEXA),
.START_REGSETUP(START_REG_SETUP), .CLKOUT(CLKOUT), .INDEXB(INDEXB),
.I[NDEXC(INDEXC), .INDEXD(INDEXD), .PATTERN_DONEM(PATTERN_DONEM),
.START_MUX_RUN(START_MUX_RUN), .TEST MODE(TEST_MODE),
.START_DUT_RUN(NET1));
reg_control U4 (.REG_BEG(REGBEG), .REG_END(REG_END), .CLK(CLK),
.START_REG_SETUP(START_REG_SETUP),
.R(R), .RS(RS), .RTXCi(RTXC), .DONE(REG_DONE), .R_G(R_G));
barrel U5 (.CLK(CLK), .PATTERN_BEG(PATTERN_BEG), .PATTERN_END(PATTERN_END),
.D)RIVE(DA), .DONE(PATTERN_DONEA), .STROBE(CA), .INDEX(INDEXA),
·START_PATTERN_RUN(START PATTERN_RUN));
barrel U6 (.CLK(CLK), .PATTERN_BEG(PATTERN_BEG), .PATTERN_END(PATTERN_END),
.DRIVE(DC), .DONE(PATTERN_DONEC), .STROBE(CC), .INDEX(INDEXC),
.START_PATTERN_RUN(START PATTERN_RUN));
barrel U7 (.CLK(CLK), .PATTERN_BEG(PATTERN_BEG), .PATTERN_END(PATTERN_END),
.I)RIVE(DB), .DONE(PATTERN_DONEB), .STROBE(CB), .INDEX(INDEXB),

168

.START_PATTERN_RUN(START_PATTERN_RUN));
barrel U8 (.CLK(CLK), .PATTERN_BEG(PATTERN_BEG), .PATTERN_END(PATTERN_END),
.DRIVE(DD), .DONE(PATTERN_DONED), .STROBE(CD), .INDEX(INDEXD),
.START_PATTERNRUN(START_PATTERN_RUN));

endmodule

II IMPORTED EXTERNAL FILE /usr/users/guru/thesis/verilog/dutt_control/dutcontrol
'timescale 1 ps / 1 ps

/************ ***************** DUT_CONTROL ****************************** **/

module dut_control(DUT_BEG, DUT_END, CLK,
START_DUT_RUN, THBSEL, ACHA, BCLA, ACHB, BCLB, DONE);

input [15:0] DUT_END;
input [15:0] DUT_BEG;
input CLK, START_DUT_RUN, THBSEL;
output ACHA, BCLA, ACHB, BCLB, DONE;

reg [35:0] DUTTIME_MEM [0:65535]; // cache for DUT pattern times
reg [1:0] DUTTYPE_MEM [0:65535]; // cache for DUT pattern types
reg CLK2; II internal clock, ps period
reg [15:0] MCOUNT; II pointer to memory addresses
reg [35:0] TCOUNT; //24 msb counter for 3.2ns resolution
reg [35:0] DTIME, LASTTIME, DELAY; II current 32-bit time
reg [1:0] TYPE; II current type
reg FIRE; II fires DUT event
reg ACHA, BCLA, ACHB, BCLB; II outputs to ric and dic
reg DONE; II file has been finished
wire [35:0] DEBUG;

initial begin
ACHA = l'bO;
BCLA = l'bO;
ACHB = l'bO;
BCLB = l'bO;
end

always @(posedge faultdrive.start_run) begin
ACHA = l'bO;
BCLA = 1'bO;
ACHB = l'bO;
BCLB = l'bO;
end

always @(posedge START_DUT_RUN) begin
@(posedge CLK) begin
init_run;
end
end

always @(posedge CLK) if ((START_DUT_RUN===l' bO)&&(faultdrive.el .reg_mode===1 'bO))
TCOUNT = TCOUNT+1;
always @(posedge FIRE) #1 FIRE = l'bO;

always @(TCOUNT) if (DONE===l'bO) begin
if (TCOUNT === DTIME+1) FIRE = 'bl;
#0.1 dut_run;
end

always @(negedge FIRE) if (MCOUNT > DUT_END) #5 DONE = l'bl;

/*----------------------------- End of model ----------------------------*/

169

/***************************** task **********************************

task initrun;
begin
// loading of caches from files
$readmemb(". ./memory/duttype.mem",

DUTTYPE_MEM);
$readmemb(". ./memory/duttime.mem",

DUTTIME_MEM);
MCOUNT [15:0] = DUT_BEG [15:0];
DTIME = DUTTIME_ MEM[MCOUNT]+(envdrive.DUT_DELAY/envdrive.DUT_RESOLUTION);
TYPE = DUTTYPE_MEM[MCOUNT];
TCOUNT = 36'b0;
LASTTIME = 36'bO;
FIRE = 1'bO;
DONE = 1 'bO;
end
endtask

task dutrun;
begin
if (FIRE===1'bl) begin
case (THBSEL)
1'bO: begin
ACHA = TYPE[1];
BCLA = TYPE[O];
end
l'bl: begin
ACHB = TYPE[1];
BCLB = TYPE[O];
end
endcase
LASTTIME = DTIME;
MCOUNT = MCOUNT+1;
DTIME = DUTTIME_MEM[MCOUNT]+(envdrive.DUT_DELAY/envdrive.DUT_RESOLUTION);
if (MCOUNT <= DUT_END) TYPE = DUTTYPE_MEM[MCOUNT];
end
end
endtask

endmodule

I IMPORTED EXTERNAL FILE /usr/users/guru/thesis/verilog/mux_control/mux_control
'timescale I ps / 1 ps

/***************************** MUX_CONTROL ********************************/

module mux_control(MUXBEG, MUX_END, CLK, START_MUX_RUN,
SETLOOUT, SETHIOUT, SETZOUT, SETONOUT, DONE);

input [15:0] MUX_END;
input [15:0] MUXBEG;
input CLK, START_MUX_RUN;
output SETLOOUT, SETHIOUT, SETZOUT, SETONOUT, DONE;

reg [35:0] MUXTIME_MEM [0:65535]; // cache for mux pattern times
reg [2:0] MUXTYPE_MEM [0:65535]; // cache for mux pattern types
reg [15:0] MCOUNT; 1I pointer to memory addresses
reg [35:0] TCOUNT; 24 msb counter for 3.2ns resolution
reg [35:0] MTIME, LASTTIME, DELAY; I current 32-bit time
reg [2:0] TYPE; I current type
reg FIRE; 11 fires mux event
reg SETLOOUT, SETHIOUT, SETZOUT, SETONOUT; // outputs to ric and dic

170

reg DONE; II file has been finished

initial begin
SETLOOUT = l'bO;
SETHIOUT = 1'bO;
SETZOUT = 'bO;
SETONOUT = l'bO;
end

always @(posedge faultdrive.startrun) begin
SETLOOUT = 1'bO;
SETHIOUT = l'bO;
SETZOUT = l'bO;
SETONOUT = l'bO;
end

always @(posedge START_MUX_RUN) begin
@(posedge CLK) begin
initrun;
end
end

always @(posedge CLK) if ((START_MUX_RUN===1 'bO)&&(faultdrive.el.reg_mode===1 'bO))
TCOUNT = TCOUNT+1;

always @(posedge SETLOOUT) #(envdrive.MUX_PULSE_WIDTH) SETLOOUT = l'bO;
always @(posedge SETHIOUT) #(envdrive.MUX_PULSE_WIDTH) SETHIOUT = l'bO;
always @(posedge SETZOUT) #(envdrive.MUX_PULSE_WIDTH) SETZOUT = l'bO;
always @(posedge SETONOUT) #(envdrive.MUX_PULSE_WIDTH) SETONOUT = l'bO;
always @(posedge FIRE) #1 FIRE = l'bO;

always @(TCOUNT) if (DONE===I'bO) begin
if (TCOUNT === MTIME+I) FIRE = l'bl;
#0.1 muxrun;
end

always @(negedge FIRE) if (MCOUNT > MUX_END) #5 DONE = l'bl;

/*----------------------------- End of model ----------------------------*/

/********************************* task **********************************/

task init run;
begin
I loading of caches from files
$readmemb(". ./memory/muxtype.mem",

MUXTYPE_MEM);
$readmemb(". ./memory/muxtime.mem",

MUXTIME_MEM);
MCOUNT [15:0] = MUX_BEG [15:0];
MTIME = MUXTIME_MEM[MCOUNT]+(envdrive.MUX_DELAY/envdrive.MUX_RESOLUTION);
TYPE = MUXTYPE_MEM[MCOUNT];
LASTTIME = 36'bO;
TCOUNT = 36'bO;
SETLOOUT = 1'bO;
SETHIOUT = l'bO;
SETZOUT = l'bO;
SETONOUT = l'bO;
FIRE = 1'bO;
DONE = l'bO;
end
endtask

task mux_run;

171

begin
if (FIRE===1'bl) begin
case (TYPE)
3'b000: begin
SETZOUT = l'bl;
end
3'bO01: begin
SETONOUT = l'bl;
end
3'bO10: begin
SETLOOUT = l'bl;
SETONOUT = l'bl;
end
3'b011: begin
SETHIOUT = 'bl;
SETONOUT = l'bl;
end
endcase
LASTTIME = MTIME;
MCOUNT = MCOUNT+I;
MTIME = MUXTIME_MEM[MCOUNT]+(envdrive.MUX_DELAY/envdrive.MUX_RESOLUTION);
if (MCOUNT <= MUX_END) TYPE = MUXTYPE_MEM[MCOUNT];
end
end
endtask

endmodule

I IMPORTED EXTERNAL FILE /usr/users/guru/thesis/verilog/env_control/env_control
'timescale 1 ps/ 1 ps

/********** ******************* ENV_CONTROL ********************************/

module env_control(INDEXA, INDEXB, INDEXC, INDEXD, CLK, REG_MODE,
PATTERN_DONEA, PATTERNDONEB, PATTERN_DONEC,
PATTERN_DONED, PATTERN_DONEM, PATTERN_DONE,
START_PATTERN_RUN, START_REG_SETUP, CLKOUT,
TEST_MODE, START_MUX_RUN, START_DUTRUN);

output [1:0] INDEXD;
output [1:0] INDEXC;
output [1:0] INDEXB;
output [1:0] INDEXA;
input CLK, REG_MODE, PATTERN_DONEA, PATTERN_DONEB,

PATTERN_DONEC, PATTERN_DONED, PATTERN_DONEM;
input [2:0] TESTMODE;
output PATTERN_DONE, START_PATTERN_RUN, STARTREG_SETUP,

CLKOUT, START_MUX_RUN, STARTDUT_RUN;

reg [1:0] INDEXA, INDEXB, INDEXC, INDEXD;
reg PATTERN_DONE, STARTPATTERN RUN, START_REG_SETUP,

START_MUX_RUN, START_ DUT_RUN;
reg PDONE;
reg [5:0] DONE_COUNT;
wire CLKOUT;

assign #(envdrive.CLKOUT_DELAY) CLKOUT = CLK;

initial begin
fork
DONE_COUNT = 6'bO;
case (REGMODE)
1'bl: begin
init_reg_setup;

172

end
l'bO: begin
initpatternun;
end

endcase
join
end

II switching between register setup and pattern run modes
always @(negedge REG_MODE) begin
@(posedge CLK) begin

init_patternrun;
end
end

always @(posedge REG_MODE) begin
@(posedge CLK) begin

init_regsetup;
end
end

always @(posedge PATTERN_DONEA) DONE_COUNT[4] = 1;
always @(posedge PATTERN_DONEB) DONE_COUNT[3] = 1;
always @(posedge PATTERN_DONEC) DONE_COUNT[2] = 1;
always @(posedge PATTERN_DONED) DONE_COUNT[1] = 1;
always @(posedge PATTERN_DONEM) DONE_COUNT[O] = 1;
always @(posedge PDONE) DONE_COUNT[5] = 1;

always @(posedge CLK) #1 if ((REG_MODE===I'bO)&&(START_PATTERN_RUN===I'bO))
begin
if (TEST_MODE[O]===l'bl) begin
if (DONE_COUNT[4: 1]===4'bl 111) begin
fork
PDONE = l'bl;
#(envdrive.GLOBAL_CLK_PERIOD/2) PDONE = 0;
#(envdrive.GLOBAL_CLK_PERIOD/2) DONE_COUNT[4:1] = 4'bO;
join
end
end
else begin
fork
PDONE = l'bl;
#(envdrive.GLOBAL_CLK_PERIOD/2) PDONE = 0;
#(envdrive.GLOBAL_CLK_PERIOD/2) DONE_COUNT[4:1] = 4'bO;
join
end
end

always @(posedge CLK) #1 if ((REG_MODE ===l'bO)&&(START_PATTERN_RUN===l'bO)) begin
if (TEST_MODE[1]===l'bl) begin
if ((DONE_COUNT[5]===1 'bl)&&(DONECOUNT[0]===1 'b)) begin
fork
PATTERN_DONE = 1'bl;
#(envdrive.GLOBAL_CLK_PERIOD/2) PATTERN_DONE = l'bO;
#(envdrive.GLOBAL_CLK_PERIOD/2) DONE_COUNT = 6'b0;
join
end
end
else if (DONE_COUNT[5]===1'bl) begin
fork
PATTERN_DONE = 1'bl;
#(envdrive.GLOBAL_CLK_PERIOD/2) PATTERN_DONE = l'bO;
#(envdrive.GLOBAL_CLK_PERIOD/2) DONE_COUNT = 6'bO;
join

173

end
end
always @(posedge CLK) #1 if ((REG_MODE ===l'bO)&&(TEST_MODE===3'bO)) begin
fork
PATTERN_DONE = l'bl;
#(envdrive.GLOBAL_CLK_PERIOD/2) PATTERN_DONE = 'bO;
#(envdrive.GLOBAL_CLK_PERIOD/2) DONE_COUNT = 6'bO;
join
end

/*----------------------------- End of model ----------------------------*/

/********************************* task **********************************/

task init_pattern_run;

begin
PATTERN_DONE = 'bO;
DONE_COUNT = 6'bO;
fork
INDEXA = 2'bO0;
INDEXB = 2'bOl;
INDEXC = 2'b10;
INDEXD = 2'bll;
PDONE = l'bO;
case (TEST_MODE[O])
1'bl: begin
START_PATTERN_RUN = 'b 1;
#(3*(envdrive.GLOBAL_CLK_PERIOD/2)) START_PATTERN_RUN = l'bO;
end
l'bO: START_PATTERN_RUN=1'bO;
endcase
case (TEST_MODE[1])
'bl: begin

START_MUX_RUN = 'bl;
#(3*(envdrive.GLOBAL_CLK_PERIOD/2)) START_MUX_RUN = l'bO;
end
'bO: START_MUX_RUN = 'bO;

endcase
case (TEST_MODE[2])
l'bl: begin
START_DUT_RUN = 1'bl;
#(3*(envdrive.GLOBAL_CLK_PERIOD/2)) START_DUT_RUN = l'bO;
end
l'bO: START_DUT_RUN = l'bO;
endcase
join
end

endtask

task init_reg_setup;
begin
PDONE = 'bO;
PATTERN_DONE = l'bO;
DONE_COUNT = 6'bO;
START_REG_SETUP = 'bl;
#(envdrive.GLOBAL_CLK_PERIOD-) STARTREG_SETUP = l'bO;
end
endtask

/*************************** end of task **********************************

endmodule

174

II IMPORTED EXTERNAL FILE /usr/users/guru/thesis/verilog/reg_control
'timescale 1 ps / 1 ps

/***************************** REG_CONTROL *******************************/

module reg_control(REGQBEG, REG_END, R, RS, CLK, STARTREGSETUP, RTXC,
DONE, R_G);

output [1:0] RS;
inout [9:2] R, R_G;
input [15:0] REG_END;
input [15:0] REG_BEG;
input CLK, START_REG_SETUP;
output RTXC, DONE;

reg [15:0] REGAMEM [0:65535]; // cache for setup register addresses
reg [15:0] REGDMEM [0:65535]; / cache for setup register data
reg [1:0] REGFMEM [0:65535]; / cache for register functions
reg [15:0] REGADDR; II current register address
reg [15:0] REGDATA; II current register data
reg [1:0] REGFUNC; II current register function
reg [15:0] MCOUNT; I pointer to memory addresses
reg CLK2; II// internal clock, 4 800ps
reg [1:0] RS;
wor [9:2] R, R_G;
reg [9:2] RTMP;
reg RTXC, DONE;

assign R = (RS!=2'bOO) ? RTMP: 8'bO;
assign R_G = (RS!=2'bOO) ? RTMP: 8'bO;

initial begin
CLK2 = l'bO;
#(envdrive.GLOBAL_CLK_PERIOD/2) CLK2= l'bl;
end

always @(posedge CLK2) if (faultdrive.el .reg_mode===1 'bl) #(envdrive.REG_CLK_PERIOD/2) CLK2 =
l'bO;
always @(negedge CLK2) if (faultdrive.el.reg_mode===l'bl) #(envdrive.REG_CLK_PERIOD/2) CLK2
= l'bl;

always @(posedge CLK) #1 if (START_REG_ SETUP===1 'bl) begin
init_run;
end

always @(posedge faultdrive.el .reg_mode) begin
CLK2 = l'bO;
@(posedge CLK) CLK2=I'bl;
end

I incrementing mcount for pattern run mode
always @(posedge CLK2) #1 begin
if ((START_REG_SETUP===1'bO)&&(MCOUNT<REG_END))
begin
FMEM[MCOUNT]);
MCOUNT = MCOUNT+1;
REGADDR = REGAMEM[MCOUNT];
REGDATA = REGDMEM[MCOUNT];
REGFUNC = REGFMEM[MCOUNT];
end
else if (START_REG_SETUP===1 'b 1)
begin
FMEM[MCOUNT]);
MCOUNT = MCOUNT;

175

REGADDR = REGAMEM[MCOUNT];
REGDATA = REGDMEM[MCOUNT];
REGFUNC = REGFMEM[MCOUNT];
end
else if ((MCOUNT>=REG_END)) begin
RS = 2'b10;
RTMP = 8'blllllll;
DONE = l'bl;
end
end

always @(posedge CLK2) #2 if (DONE--=l'bO) reg_run;
always @(posedge CLK2) #2 if (DONE===l'bl) RS = 2'b10;
always @(posedge RTXC) #envdrive.RTXC_DELAY RTXC = 'bO;

/*----------------------------- End of model ----------------------------*/

/********************************* task *** *** **********************

task initrun;

begin
II loading of caches from files
$readmemh("../memory/rega.mem",

REGAMEM);
$readmemh(". ./memory/regd.mem",

REGDMEM);
$readmemb(". ./memory/regf.mem",

REGFMEM);
MCOUNT [15:0] = REG_BEG [15:0];
RTXC = l'bO;
DONE= l'bO;
//$display("TIME = %t, MCOUNT = %b, REGF_MEM[MCOUNT] = %b\n", $time, MCOUNT, REG-
FMEM[MCOUNT]);
REGADDR = REGAMEM[MCOUNT];
REGDATA = REGDMEM[MCOUNT];
REGFUNC = REGFMEM[MCOUNT];
end

endtask

task reg_run;

begin
if (DONE=== 'bO) begin
RS = 2'bll;
case (REGADDR)
16'h1800: RTMP = 8'hO;
16'h1801: RTMP = 8'hl;
16'h1802: RTMP = 8'h2;
16'h1804: RTMP = 8'h4;
16'h1805: RTMP = 8'h5;
16'h1840: RTMP = 8'h6;
16'h1841: RTMP = 8'h7;
16'hD808: RTMP = 8'h8;
16'hD80A: RTMP = 8'hA;
16'hD80B: RTMP = 8'hB;
16'hD820: RTMP = 8'h20;
16'hD821: RTMP = 8'h21;
16'hD822: RTMP = 8'h22;
16'hD823: RTMP = 8'h23;
16'hD830: RTMP = 8'h30;
16'hD831: RTMP = 8'h31;
16'hD832: RTMP = 8'h32;

176

16'hD833: RTMP = 8'h33;
16'hD860: RTMP = 8'h60;
16'hD861: RTMP = 8'h61;
16'hD862: RTMP = 8'h62;
16'hD863: RTMP = 8'h63;
16'hD870: RTMP = 8'h70;
16'hD871: RTMP = 8'h71;
16'hD872: RTMP = 8'h72;
16'hD873: RTMP = 8'h73;
endcase
#(envdrive.RTXC_DELAY) RTXC = l'bl;
@(negedge CLK2) begin
RS = REGFUNC;
case (REGADDR)
16'h1800: RTMP = {REGDATA [1:0], REGDATA[7:2]};
16'h1801: RTMP = REGDATA [1:0], REGDATA[7:2]};
16'h1802: RTMP = {REGDATA [1:0], REGDATA[7:2]};
16'h1804: RTMP = {REGDATA [1:0], REGDATA[7:2]};
16'h1805: RTMP = {REGDATA [1:0], REGDATA[7:2]};
16'h1840: RTMP = {REGDATA [1:0], REGDATA[7:2] };
16'h1841: RTMP = {REGDATA [1:0], REGDATA[7:2]);
16'hD808: RTMP = {REGDATA [1:0], REGDATA[7:2] };
16'hD80A: RTMP = {REGDATA [1:0], REGDATA[15], REGDATA[6:2]};
16'hD80B: RTMP = {REGDATA [1:0], REGDATA[15], REGDATA[6:2]};
16'hD820: RTMP = REGDATA [9:2];
16'hD821: RTMP = REGDATA [9:2];
16'hD822: RTMP = REGDATA [9:2];
16'hD823: RTMP = REGDATA [9:2];
16'hD830: RTMP = REGDATA [9:2];
16'hD831: RTMP = REGDATA [9:2];
16'hD832: RTMP = REGDATA [9:2];
16'hD833: RTMP = REGDATA [9:2];
16'hD860: RTMP = REGDATA [9:2];
16'hD861: RTMP = REGDATA [9:2];
16'hD862: RTMP = REGDATA [9:2];
16'hD863: RTMP = REGDATA [9:2];
16'hD870: RTMP = REGDATA [9:2];
16'hD871: RTMP = REGDATA [9:2];
16'hD872: RTMP = REGDATA [9:2];
16'hD873: RTMP = REGDATA [9:2];
endcase
#(envdrive.RTXC_DELAY) RTXC = l'bl;
end
end
end

endtask

endmodule

// IMPORTED EXTERNAL FILE /usr/users/guru/thesis/verilog/barrel/barrel
'timescale 1 ps / 1 ps

/******************************** BARREL ********************************/

module barrel(PATTERN_BEG, PATTERN_END, DRIVE, STROBE, INDEX, CLK,
START_PATTERN_RUN, DONE);

input [1:0] INDEX;
output [5:0] STROBE;
output [5:0] DRIVE;
input [15:0] PATTERNEND;
input [15:0] PATTERN_BEG;
input CLK, START_PATlERNRUN;

177

output DONE;

reg [31:0] TIME_MEM [0:65535]; II cache for pattern times
reg [2:0] TYPE_MEM [0:65535]; II cache for pattern types
reg [15:0] MCOUNT; I pointer to memory addresses
reg [23:0] TCOUNT; 24 msb counter for 3.2ns resolution
reg [31:0] ETIME; II current 32-bit time
reg [2:0] TYPE; II current type
reg [31:8] MSB; 24 msbs of time
reg [7:0] VERNIER; II 8 lsbs of time
reg FIRE_TAG; II fires tag bit to formatters
reg [5:0] TMP; II temporary word register
reg DRIVE_MODE; II 1 for drive event, 0 for strobe
reg [5:0] DRIVE, STROBE; II outputs to ric and dic
reg DONE; II file has been finished
wire [31:0] DEBUG;

event END_RUN;

assign DEBUG = TIME_MEM[MCOUNT];

initial begin
DRIVE = 6'bO;
STROBE = 6'b0;

end

always @(posedge CLK) if (START_PATTERN_RUN===1 'bl)
begin
init_run;

end

always @(posedge CLK) TCOUNT = TCOUNT+1;

// incrementing mcount for pattern run mode
always @(posedge CLK) #3
begin
if ((START_PATTERN_RUN===I'bO)&&(FIRE_TAG=== 'bl)&&(MCOUNT<=PATTERN_END+4))
begin
while (TIME_MEM[MCOUNT+4]===32'hffffffff)
begin
MCOUNT = MCOUNT+4;
end
MCOUNT = MCOUNT +4;
#1 if (TIME_MEM[MCOUNT]!==32'bx) ETIME = TIME_MEM[MCOUNT];
if (TYPE_MEM[MCOUNT] !==3'bx) TYPE = TYPE_MEM[MCOUNT];
#1 MSB = ETIME[31:8];
VERNIER = ETIME[7:0];
DRIVE_MODE = (TYPE[2]===0) ? 'bl : l'bO;
end
else if (START_PATTERN_RUN===l'bl)
begin
while (TIME_MEM[MCOUNT]===32'hffffffff)
begin
MCOUNT = MCOUNT+4;
end
#1 if (TIME MEM[MCOUNT]!==32'bx) ETIME = TIME_MEM[MCOUNT];
if (TYPE_MEM[MCOUNT] !==3'bx) TYPE = TYPEMEM[MCOUNT];
#1 MSB = ETIME[31:8];
VERNIER = ETIME[7:0];
DRIVE_MODE = (TYPE[2]===0) ? 1'bl : l'bO;
end
else if ((MCOUNT>PATTERN_END+4))
begin
DRIVE = 6'bO;

178

STROBE = 6'b0;
DONE = l'bl;
end
end

always @(posedge CLK) #2 count;
always @(posedge CLK) #2 pattern_run;
always @(posedge CLK) #2 if (MCOUNT>PATTERN_END) ->END_RUN;

always @(END_RUN) @(posedge CLK)
begin
DRIVE = 6'bO;
STROBE = 6'bO;
DONE = l'bl;
end

always @(posedge FIRETAG)
begin
#((envdrive.GLOBAL_CLK_PERIOD/2)+10) FIRE_TAG = l'bO;
end

always @(posedge DRIVE[5]) #(envdrive.GLOBAL_CLK_PERIOD) DRIVE[5] = l'bO;
always @(posedge STROBE[5]) #(envdrive.GLOBAL_CLK_PERIOD) STROBE[5] = l'bO;

/*----------------------------- End of model ----------------------------*/

/********************************* task **********************************/

task initrun;
begin
I loading of caches from files
$readmemb(". ./memory/time.mem",

TIME_MEM);
$readmemb(". ./memory/type.mem",

TYPE_MEM);
case (INDEX)
2'b00: MCOUNT [15:0] = PATTERN_ BEG [15:0];
2'b01: MCOUNT [15:0] = PATTERN_BEG [15:0] + 1;
2'b10: MCOUNT [15:0] = PATTERN_BEG [15:0] + 2;
2'bl 1: MCOUNT [15:0] = PATTERN_BEG [15:0] + 3;
endcase

FIRE_TAG = l'bO;
TMP [5] = l'bO;
DRIVE = 6'bO;
STROBE = 6'bO;
#0.1 DONE = l'bO;
TCOUNT = 24'bl;
end
endtask

task count;

begin
if (START_PATTERN_RUN=== 1'bO)
begin
if (TCOUNT===MSB+2) @(negedge CLK)
fork
FIRE_TAG = l'bl;
join
end

end

endtask

179

task pattern_run;

begin
if (DONE ===l'bO)
begin
case (DRIVE_MODE)
l'bl:if ((ETIME !== 32'bx)&&(ETIME!==32'hffffffff))
begin
DRIVE [3:0] = (FIRE_TAG=== 'bl) ? VERNIER[3:0]: VERNIER[7:4];
II drive mode: 000->00, 001->01, 010->10, 011->11
// strobe mode: 100->00, 101->01, 110->10, 111->11
case (TYPE)
3'bOOO: DRIVE [4] = 0;
3'bOOl: DRIVE [4] = (FIRE_TAG===I'bl) ? 'bl: l'bO;
3'bO10: DRIVE [4] = (FIRE_TAG===I'bl) ? l'bO: l'bl;
3'b011: DRIVE [4] = l'bl;
3'blOO: DRIVE [4] = l'bO;
3'blOl: DRIVE [4] = (FIRE_TAG===l'bl) ? l'bl: l'bO;
3'b110: DRIVE [4] = (FIRE_TAG===l'bl) ? l'bO: 'bl;
3'blll: DRIVE [4] = l'bl;
endcase
DRIVE [5] = (FIRE_TAG===I'bl) ? l'bl: l'bO;
end
l'bO:if ((ETIME !== 32'bx)&&(ETIME!==32'hfffffff))
begin
STROBE [3:0] = (FIRE_TAG===l'bl) ? VERNIER[3:0]
,I STROBE mode: 000->00, 001->01, 010->10, 011->11
// strobe mode: 100->00, 101->01, 110->10, 111->11
case (TYPE)
:3'bOOO: STROBE [4] = 0;
3'bOO1: STROBE [4] = (FIRE_TAG==='bl) ? l'bl : l'b
3'b010O: STROBE [4] = (FIRE_TAG===I'bl) ? l'b0: l'b
3'b011: STROBE [4] = l'bl;
3'blOO: STROBE [4] = l'bO;
3'b101: STROBE [4] = (FIRE_TAG===1'bl) ? l'bl: l'b
3'b110: STROBE [4] = (FIRE_TAG==='bl) ? l'bO: l'b
3'blll: STROBE [4] = l'bl;
endcase
STROBE [5] = (FIRE_TAG===I'bl) ? l'bl: l'bO;
end
endcase
end
end
endtask

VERNIER[7:4];

10;
b1;

10;
bl;

endmodule

180

181

Appendix E

Control Modules

E.1 Test Set Control Module

'include "/cadusr2/tg2/verilog/formatter/reg_chipaddr.def

'timescale 1 ps / 1 ps

module envdrive (SEQUENCE, SEQUENCE_INDEX, STARTRUN, GATE, FAULT, DONE, FAILTEST,
FAILINDEX, FAILCLOCK, EXPECTPINS, FAILPINS, XPINS);

input [15:0] SEQUENCE, SEQUENCE_INDEX;
input [4:0] FAULT;
input [9:0] GATE;
input START_RUN;
output DONE;
output [15:0] FAILTEST, FAILINDEX, FAILCLOCK;
output [21:0] EXPECTPINS, FAILPINS, XPINS;

reg[15:0] test-number, test_index, OLD_SEQUENCE_INDEX, clock_count;
reg[15:0] FAILTEST, FAILINDEX, FAILCLOCK;
reg [21:0] EXPECTPINS, FAILPINS, XPINS;
reg DONE;

reg clock, thbsel, reg_mode;
reg [2:0] testmode;
reg [15:0] pattern_beg, reg_beg, reg_end, pattern_end, mux_beg, mux_end,
dut_beg, dut_end;
reg [4:0] faultsel;
reg [9:0] gate_sel;
reg strobe_enable;
wire regdone, patterndone, dutdone;

system sl(pattern_beg, reg_beg, reg_end, pattern_end, mux_beg, mux_end,
test_mode, dut_beg, dut_end, FAULT, GATE, thbsel, clock,
DHIA, DINHA, DHIB, DINHB, setloout, sethiout,
setzout, setonout, STFLA, STFLB, STFLC, STFLD, tmua, tmub, reg_mode,
reg_done, patterndone, dutLdone, DHIA_G, DINHA.G, DHIB_G,
DINHB_G, setloout_g, sethioutg, setzout_g, setonout_g,
STFLA_G, STFLBG, STFLCG, STFLD_G, tmua_g, tmub_g);

parameter GLOBAL_CLK_PERIOD=10000;
parameter CLKOUT_DELAY = 100;
parameter REG_CLKPERIOD = GLOBAL_CLKPERIOD*6;
parameter RTXC_DELAY = GLOBAL_CLK_PERIOD;
parameter MUX_RESOLUTION = 10000;
parameter MUX_PULSE_WIDTH = 10000;
parameter MUX_DELAY = 3*GLOBAL_CLK_PERIOD+2850;
parameter DUT_RESOLUTION = 10000;
parameter DUT_DELAY = 3*GLOBAL_CLK_PERIOD+2850;
parameter PATTERN_DELAY = 4*GLOBAL_CLK_PERIOD+2850;
parameter GATE_LEAD = 2490;

integer e_messages, e_broadcast, ebroadcast2, einitstate, e_initio, e_dictionary;

initial begin
e_messages = $fopen("errors.dat"); if (e-messages == 0) $finish;
e_initstate = $fopen("initstate.dat"); if (e_initstate == 0) $finish;

182

e_init_io = $fopen("init_io.dat"); if (einitio == 0) $finish;
e_dictionary = $fopen("dictionary.dat"); if (e_dictionary == 0) $finish;

//I stdout = $fopen("stdout.dat"); if (stdout == 0) $finish;
e_broadcast = 1 I e_messages;

II e_broadcast2 = 1 I stdout;
clock = 'bO;
init_test;
$fstrobe (e_init_io, " Seq G Flt Clk IIDHIA IDINHAIDHIB IDINHBlsetlolsethilsetz IsetonISTFLAISTFLBI

STFLCISTFLDItmua Itmub I R\n");
$fstrobe (e_initstate, " Seq G Flt Clk IIWFAILIWFLA IWFLB IWFLC IWFLD IPINSTATIEMOD71

HSPATHAI HSPATHBSEL ITGICRITGICFITGIC61TGIC41TGIC3\n");
$fstrobe (e_dictionary, " Sequence Gate Fault Clock II Failing Test I Failing Index I Failing Pin\n");
end

task init test;
begin
clock_count = 16'bO;
strobe_enable = l'bO;
FAILTEST = 16'bO;
FAILPINS = 22'bO;
XPINS = 22'bO;
EXPECTPINS = 22'bO;
test_number = 16'd0;
test_index = 16'dl;
thbsel = l'bO;
mux_beg = 16'd00;
mux_end = 16'd00;
dut_beg = 16'd00;
dut_end = 16'd00;
reg_mode = l'b 1;
test_mode = 3'bOO1; //DUT-MUX-PAT
reg_beg = 16'd00;
reg_end = 16'd12;
pattern_beg = 16'dOO;
pattern_end = 16'dl ;
@(posedge envdrive.pattern_done) #GLOBAL_CLK_PERIOD strobe_enable = l'bl;
end

endtask

task end_test;
begin
FAILTEST = test_number;
FAILINDEX = test_index;
FAILCLOCK = clock_count;
#1 strobe_enable = l'bO;
if (test_number !== faultdrive.LAST_TEST) begin
if ((testLmode[0]===0)&&(test mode[l]==0)) @(posedge dutdone) begin

#(GLOBAL_CLK_PERIOD) DONE = l'bl;
end
else if ((testmode[O]===1)l(test_mode[1]=== 1)) @(posedge pattern_done) #(GLOBAL_CLKP ERIOD)

DONE = l'bl;
end
else if (testnumber === faultdrive.LAST_TEST) @(negedge clock) DONE = l'bl;
end

endtask

task next_test;
begin
OLD_SEQUENCE_INDEX = SEQUENCEINDEX;
#(GLOBAL_CLKPERIOD*3/2) if (SEQUENCE_INDEX===OLD_SEQUENCEINDEX) regmode =
1'bl;
end
endtask

183

task faultstrobe;
begin
fork

if (DHIA !== DHIAG) begin
if (DHIA_G ===l'bX) XPINS[21] = l'bl;
FAILPINS[21] = l'bl;
$fstrobe(e_broadcast, "\t\t\t<==========FAIL==========>\n\nTest Sequence: %d\n

Faulted gate: %d\nFault injected: %d\nFailing test: %d\nFailing index: %d\nFail
on clock cycle: %d\nError at time %d: DHIA = %d \t DHIA_G = %d\n", SEQUENCE,
GATE, FAULT, testnumber, test_index, clock_count, $time, DHIA, DHIA_G);

$fstrobe (e_dictionary, " %d %d %d %d II %d I %d I DHIA = %d \t DHIA_G = %d", SEQUENCE,
GATE, FAULT, clockcount, testnumber, testindex, DHIA, DHIA_G);

end
if (DINHA !== DINHA_G) begin
if (DINHA_G ===1'bX) XPINS[20] = 'bl;
FAILPINS[20] = l'bl;
$fstrobe (e_broadcast, "\t\t\t<==========FAIL==========>\n\nTest Sequence: %d\nFaulted

gate: %d\nFault injected: %d\nFailing test: %d\nFailing index: %d\nFail on clock cycle:
%d\nError at time %d: DINHA = %d \t DINHA_G = %d\n", SEQUENCE, GATE,
FAULT, testnumber, test-index, clock_count, $time, DINHA, DINHA_G);

$fstrobe (e_dictionary, " %d %d %d %d II %d I %d I DINHA = %d \t DINHA_G = %d",
SEQUENCE, GATE, FAULT, clock_count, testnumber, test_index, DINHA,
DINHA_G);

end
if (DHIB !== DHIB_G) begin
if (DHIB_G ===l'bX) XPINS[19] = 'bl;
FAILPINS[19] = l'bl;
$fstrobe (e_broadcast, "\t\t\t<======== FAIL… ======>\n\nTest Sequence: %d\nFaulted

gate: %d\nFault injected: %d\nFailing test: %d\nFailing index: %d\nFail on clock cycle:
%d\nError at time %d: DHIB = %d \t DHIB_G = %d\n", SEQUENCE, GATE, FAULT,
test_number, testindex, clock_count, $time, DHIB, DHIBG);

$fstrobe (e_dictionary, " %d %d %d %d II %d I %d I DHIB = %d \t DHIB_G = %d", SEQUENCE,
GATE, FAULT, clock_count, test_number, testindex, DHIB, DHIB_G);

end
if (DINHB !== DINHB_G) begin
if (DINHB_G ===l'bX) XPINS[18] = l'bl;
FAILPINS[18] = l'bl;
$fstrobe (ebroadcast, "\t\t\t< =========FAIL==========>\n\nTest Sequence: %d\nFaulted

gate: %d\nFault injected: %d\nFailing test: %d\nFailing index: %d\nFail on clock cycle:
%d\nError at time %d: DINHB = %d \t DINHB_G = %d\n", SEQUENCE, GATE,
FAULT, test_number, testindex, clock_count, $time, DINHB, DINHBG);

$fstrobe (e_dictionary, " %d %d %d %d II %d I %d I DINHB = %d \t DINHB_G = %d",
SEQUENCE, GATE, FAULT, clock_count, testnumber, testindex, DINHB,
DINHB_G);

end
if (setloout !== setloout_g) begin
if (setlooutg ===l'bX) XPINS[17] = l'bl;
FAILPINS[17] = 'bl;
$fstrobe (e_broadcast, '\t\t\t<==…=======FAIL==========>\n\nTest Sequence: %d\nFaulted

gate: %d\nFault injected: %d\nFailing test: %d\nFailing index: %d\nFail on clock cycle:
%d\nError at time %d: setloout = %d \t setlooutg = %d\n", SEQUENCE, GATE, FAULT,
test_number, testindex, clock_count, $time, setloout, setloout_g);

$fstrobe (e_dictionary, " %d %d %d %d II %d I %d I setloout = %d \t setlooutg = %d",
SEQUENCE, GATE, FAULT, clock count, testnumber, testindex, setloout, setloout_g);

end
if (sethiout !== sethioutg) begin
if (sethioutg ===l'bX) XPINS[16] = 'bl;
FAILPINS[16] = 'bl;
$fstrobe (e_broadcast, "\t\t\t<=======- FAIL==========>\n\nTest Sequence: %d\nFaulted

gate: %d\nFault injected: %d\nFailing test: %d\nFailing index: %d\nFail on clock cycle:
%d\nError at time %d: sethiout = %d \t sethioutg = %d\n", SEQUENCE, GATE, FAULT,
testnumber, testindex, clockcount, $time, sethiout, sethioutg);

$fstrobe (e_dictionary, " %d %d %d %d II %d I %d I sethiout = %d \t sethiout_g = %d",
SEQUENCE, GATE, FAULT, clock_count, test_number, testindex, sethiout, sethiout_g);

184

end
if (setzout !== setzout_g) begin
if (setzoutg ===l'bX) XPINS[15] = l'bl;
FAILPINS[15] = l'bl;
$fstrobe (e_broadcast, "\t\t\t<==========FAIL==========>\n\nTest Sequence: %d\nFaulted

gate: %d\nFault injected: %d\nFailing test: %d\nFailing index: %d\nFail on clock cycle:
%d\nError at time %d: setzout = %d \t setzoutg = %d\n", SEQUENCE, GATE, FAULT,
testnumber, test_index, clock_count, $time, setzout, setzout_g);

$fstrobe (e_dictionary, " %d %d %d %d II %d I %d I setzout = %d \t setzout_g = %d",
SEQUENCE, GATE, FAULT, clock_count, test_number, test_index, setzout, setzoutg);

end
if (setonout !== setonout_g) begin
if (setonout_g ===l'bX) XPINS[14] = l'bl;
FAILPINS[14] = l'bl;
$fstrobe (e_broadcast, "\t\t\t<==========FAIL==========>\n\nTest Sequence: %d\nFaulted

gate: %d\nFault injected: %d\nFailing test: %d\nFailing index: %d\nFail on clock cycle:
%d\nError at time %d: setonout = %d \t setonout_g = %d\n", SEQUENCE, GATE,
FAULT, testnumber, testindex, clock_count, $time, setonout, setonout_g);

$fstrobe (e_dictionary, " %d %d %d %d II %d I %d I setonout = %d \t setonout_g = %d",
SEQUENCE, GATE, FAULT, clock_count, testnumber, testindex, setonout,
setonout_g);

end
if (STFLA !-- STFLA_G) begin
if (STFLA_G ===l'bX) XPINS[13] = l'bl;
FAILPINS[13] = l'bl;
$fstrobe (e_broadcast, "\t\t\t<==========FAIL==========>\n\nTest Sequence: %d\nFaulted

gate: %d\nFault injected: %d\nFailing test: %d\nFailing index: %d\nFail on clock cycle:
%d\nError at time %d: STFLA = %d \t STFLA_G = %d\n", SEQUENCE, GATE, FAULT,
testnumber, testindex, clock_count, $time, STFLA, STFLA_G);

$fstrobe(e_dictionary, " %d %d %d %d II %d I %d I STFLA = %d \t STFLA_G = %d",
SEQUENCE, GATE, FAULT, clock_count, testnumber, testindex, STFLA, STFLA_G);

end
if (STFLB !== STFLB_G) begin
if (STFLB_G ===l'bX) XPINS[12] = l'bl;
FAILPINS[12] = l'bl;
$fstrobe (e_broadcast, "\t\t\t<==========FAIL==========>\n\nTest Sequence: %d\nFaulted

gate: %d\nFault injected: %d\nFailing test: %d\nFailing index: %d\nFail on clock cycle:
%d\nError at time %d: STFLB = %d \t STFLB_G = %d\n", SEQUENCE, GATE, FAULT,
testnumber, testindex, clock_count, $time, STFLB, STFLB_G);

$fstrobe (e_dictionary, " %d %d %d %d II %d I %d I STFLB = %d \t STFLB_G = %d",
SEQUENCE, GATE, FAULT, clock_count, testnumber, testindex, STFLB, STFLB_G);

end
if (STFLC !== STFLC_G) begin
if (STFLC_G ===l'bX) XPINS[11] = l'bl;
FAILPINS[11] = l'bl;
$fstrobe (e_broadcast, "\t\t\t<==========FAIL==========>\n\nTest Sequence: %d\nFaulted

gate: %d\nFault injected: %d\nFailing test: %d\nFailing index: %d\nEFail on clock cycle:
%d\nError at time %d: STFLC = %d \t STFLC_G = %d\n", SEQUENCE, GATE, FAULT,
test_number, testindex, clock_count, $time, STFLC, STFLC_G);

$fstrobe (e_dictionary, " %d %d %d %d II %d I %d I STFLC = %d \t STFLC_G = %d",
SEQUENCE, GATE, FAULT, clock_count, testnumber, testindex, STFLC, STFLCG);

end
if (STFLD !== STFLDG) begin
if (STFLD_G ===l'bX) XPINS[10] = l'bl;
FAILPINS[10] = l'bl;
$fstrobe (e_broadcast, "\t\t\t<==========FAIL==========>\n\nTest Sequence: %d\nFaulted

gate: %d\nFault injected: %d\nFailing test: %d\nFailing index: %d\nFail on clock cycle:
%d\nError at time %d: STFLD = %d \t STFLD_G = %d\n", SEQUENCE, GATE, FAULT,
test number, testindex, clock_count, $time, STFLD, STFLD_G);

$fstrobe (e_dictionary, " %d %d %d %d II %d I %d I STFLD = %d \t STFLD_G = %d",
SEQUENCE, GATE, FAULT, clock_count, test_number, test-index, STFLD, STFLDG);

end
if (tmua !== tmua_g) begin
if (tmuag ===l'bX) XPINS[9] = l'bl;

185

FAILPINS[9] = l'bl;
$fstrobe (ebroadcast, "\t\t\t< … -=-FAIL========->\n\nTest Sequence: %d\nFaulted

gate: %d\nFault injected: %d\nFailing test: %d\nFailing index: %d\nFail on clock cycle:
%d\nError at time %d: tmua = %d \t tmuag = %d\n", SEQUENCE, GATE, FAULT,
test_number, testindex, clock_count, $time, tmua, tmua_g);

$fstrobe (e_dictionary, " %d %d %d %d II %d I %d I tmua = %d \t tmua_g = %d", SEQUENCE,
GATE, FAULT, clock_count, test_number, test_index, tmua, tmua_g);

end
if (tmub !== tmubg) begin
if (tmubg ===l'bX) XPINS[8] = 'bl;
FAILPINS[8] = l'bl;
$fstrobe (e_broadcast, "\t\t\t<= =-====…FAIL---== =====>\n\nTest Sequence: %d\nFaulted

gate: %d\nFault injected: %d\nFailing test: %d\nFailing index: %d\nFail on clock cycle:
%d\nError at time %d: tmub = %d \t tmub_g = %d\n", SEQUENCE, GATE, FAULT,
test_number, testindex, clock_count, $time, tmub, tmub_g);

$fstrobe (e_dictionary, " %d %d %d %d II %d I %d I tmub = %d \t tmub_g = %d", SEQUENCE,
GATE, FAULT, clock_count, test_number, testindex, tmub, tmub_g);

end
if (sl .R !== s 1.RG) begin
if (sl.R_G[9] ===l'bX) XPINS[7] = l'bl;
if (sl.R_G[8] ===l'bX) XPINS[6] = l'bl;
if (sl.R_G[7] ===l'bX) XPINS[5] = l'bl;
if (s 1.R_G[6] ===l'bX) XPINS[4] = l'bl;
if (sl.R_G[5] ===l'bX) XPINS[3] = l'bl;
if (sl.RG[4] ===l'bX) XPINS[2] = l'bl;
if (sl.R_G[3] ===l'bX) XPINS[1] = l'bl;
if (sl.RG[2] ===l'bX) XPINS[0] = l'bl;
if (s.R[9] !== sl.R_G[9]) FAILPINS[7] = l'bl;
if (sl.R[8] !== sl.R_G[8]) FAILPINS[6] = l'bl;
if (sl.R[7] !== s.R_G[7]) FAILPINS[5] = l'bl;
if (sl.R[6] !-- sl.RG[6]) FAILPINS[4] = l'bl;
if (s 1.R[5] !== sl.R_G[5]) FAILPINS[3] = l'bl;
if (sl.R[4] !== sl.R G[4]) FAILPINS[2] = l'bl;
if (sl.R[3] !== sl.R_G[3]) FAILPINS[1] = l'bl;
if (sl.R[2] !== sl.RG[2]) FAILPINS[O] = l'bl;
$fstrobe (e_broadcast, "\t\t\t<==========FAIL==========>\n\nTest Sequence: %d\nFaulted

gate: %d\nFault injected: %d\nFailing test: %d\nFailing index: %d\nFail on clock cycle:
%d\nError at time %d: R[9:2] = %b \t R_G[9:2] = %b\n", SEQUENCE, GATE, FAULT,
test_number, testindex, clock_count, $time, sl.R, sl.RG);

$fstrobe (e_dictionary, " %d %d %d %d II %d I %d I R[9:2] = %b \t R_G[9:2] = %b",
SEQUENCE, GATE, FAULT, clock_count, testnumber, test_index, s 1.R, sl.RG);

end
EXPECTPINS[21] = DHIA;
EXPECTPINS[20] = DINHA;
EXPECTPINS[19] = DHIB;
EXPECTPINS[18] = DINHB;
EXPECTPINS[17] = setloout;
EXPECTPINS[16] = sethiout;
EXPECTPINS[15] = setzout;
EXPECTPINS[14] = setonout;
EXPECTPINS[13] = STFLA;
EXPECTPINS[12] = STFLB;
EXPECTPINS[11] = STFLC;
EXPECTPINS[10] = STFLD;
EXPECTPINS[9] = tmua;
EXPECTPINS[8] = tmub;
EXPECTPINS[7] = sl.R[9];
EXPECTPINS[6] = sl.R[8];
EXPECTPINS[5] = sl.R[7];
EXPECTPINS[4] = sl.R[6];
EXPECTPINS[3] = sl.R[5];
EXPECTPINS[2] = sl.R[4];
EXPECTPINS [1] = sl.R[3];
EXPECTPINS [0] = s 1.R[2];

186

join
#1 if (FAILPINS !==22'bO) begin
#1 end_test;
end
end

endtask

task strobeinit;
begin
$fstrobe (e_init_io, "%d %d %d %d II %d %d I %d %d I %d %d I %d %d I %d %d I %d %d I %d %d I %d

%d I %d %d I %d %d I %d %d I %d %d I %d %d I %d %d I %b %b", SEQUENCE, GATE,
FAULT, clock_count, DHIA, DHIAG, DINHA, DINHA_G, DHIB, DHIB_G, DINHB,
DINHB_G, setloout, setloout_g, sethiout, sethiout_g, setzout, setzout_g, setonout,
setonout_g, STFLA, STFLAG, STFLB, STFLB_G, STFLC, STFLC_G, STFLD,
STFLD_G, tmua, tmua_g, tmub, tmublg, sl.R, sl.R_G);

$fstrobe(e_initstate, "%d %d %d %d II %b %b I %b %b I %b %b I %b %b I %b %b I %b %b I %b %b I %b
%b I %b %b I %b %b I %b %b I %b %b I %b %b I %b %b", SEQUENCE, GATE, FAULT,
clock_count, sl .U3.U2.strobe_logic.WFAIL, s 1 .U1 .U1 .strobe_logicfault.WFAIL,
sl .U3.U2.strobe_logic.WFAILA, sl.Ul.Ul.strobelogic_fault.WFAILA,
s 1.U3.U2.strobe_logic.WFAIL_B, s 1.U1 .Ul.strobe_logic_fault.WFAILB,
sl .U3.U2.strobe_logic.WFAIL_C, sl.U.U1 .U.strobe_logic_fault.WFAILC,
s 1.U3.U2.strobe_logic.WFAIL_D, s 1 .U1 .U1 .strobe_logicfault.WFAILD,
sl .U3.U2.PINSTATUS, sl.U1.U1.PINSTATUS, sI.U3.U2.EVENTMODE_bit7,
sl.U1 .U1 .EVENTMODE_bit7, sl .U3.U2.HSPATHASEL, sl.U1.U1.HSPATHASEL,
sl.U3.U2.HSPATHBSEL, sl.U1.U1 .HSPATHBSEL, sl.U3.U2.TGICRESET,
sl.U1.U1.TGICRESET, sl .U3.U2.TGICDIAGM_bitF, sl.U1.U1.TGICDIAGM_bitF,
sl.U3.U2.TGICDIAGM_bit6, s .U1 T CDIAGMit6, sl.U3.U2.
TGICDIAGMbit4, sl.U1 .U1.TGICDIAGM_bit4, sl .U3.U2.TGICDIAGM_bit3,
s 1 .U1.U 1.TGICDIAGM_bit3);

end
endtask

always @(negedge START_RUN) begin
if (SEQUENCE===O) begin
if (SEQUENCE_INDEX!==1) inittest;
end
else if (SEQUENCE!==O) init_test;
end

always #(GLOBAL_CLK_PERIOD/2) clock = -clock;
always @(posedge clock) clock_count = clock_count+l;
always @(posedge reg_done) reg_mode = l'bO;
always @(posedge DONE) #(GLOBAL_CLK_PERIOD/2) DONE = l'bO;
always @(posedge strobe_enable) #(GLOBAL_CLK_PERIOD/2) strobe_init;

always @(posedge clock) #(0.95*GLOBAL_CLK_PERIOD) if ((strobe_enable===1 'bl)&&(faultdrive.-
FAIL_ENABLE===l' b 1)) faultstrobe;

always @(test_number) begin
$strobe("Clock: %d\t Test: %d", clock_count, testnumber);
end

always @(posedge pattern_done) begin
if ((test_number===0)&&(test_number!==faultdrive.LAST_TEST)) begin
test_mode = 3'bO01; //DUT-MUX-PAT
reg_beg = 16'd13;
reg_end = 16'd22;
pattern_beg = 16'd12;
pattern_end = 16'd12;
next_test;
#1 test_number = test_number +1;
end
end

187

always @(posedge pattern_done) begin
if ((test_number>=l)&&(test_number<=23)&&(testnumber!==faultdrive.LAST_TEST)) begin
testmode = 3'bOO; //DUT-MUX-PAT
reg_beg = reg_end+l;
#1 reg_end = reg_beg;
pattern_beg = pattern_end+l;
#1 begin
case (testindex)
16'dl: pattern_end = pattern_beg+l; //2,24,13-14; 6,28,23-24; 10,32,33-34; 14,36,43-44;

18,40,53-54; 22,44,63-64;
16'd2: pattern_end = pattern_beg+2; //3,25,15-17; 7,29,25-27; 11,33,35-37; 15,37,45-47;

19,41,55-57; 23,45,65-67;
16'd3: pattern_end = pattern_beg+3; //4,26,18-21; 8,30,28-31; 12,34,38-41; 16,38,48-51; 20,42,58-61
16'd4: pattern_end = pattern_beg; //5,27,22; 9.31,32; 13,35,42; 17,39,52; 21,43,62;
endcase
if (test_number===23) pattern_end = 75; / 24,46,68-75;
end
next_test;
#1 begin
test_number = test_number +1;
if ((test_index=--=0)II(test_index==-4)) test_index = 16'bl;
else test_index = testindex+l;
end
end
end

always @(posedge pattern_done) if ((testnumber===24)&&(test_number!==faultdrive.LAST_TEST))
begin
test_mode = 3'bOO1; //DUT-MUX-PAT
reg_beg = 16'd46;
reg_end = 16'd344;
pattern_beg = 16'd76;
pattern_end = 16'd76;
nexttest;
#1 test_number = test_number +1;
test_index=16'bl;
end

always @(posedge pattern_done) if ((test_number===25)&&(test_number!==faultdrive.LAST_TEST))
begin
test_mode = 3'bOl 011; //DUT-MUX-PAT
reg_beg = 16'd345;
reg_end = 16'd345;
pattern_beg = 16'd77;
pattern_end = 16'd 115;
mux_beg = 16'dO;
mux_end = 16'd3;
nexttest;
#1 test_number = testnumber +1;
test_index=16'bl;
end

always @(posedge pattern_done) if ((test_number-==26)&&(test number!==faultdrive.LAST_TEST))
begin
test_mode = 3'bOl 011; //DUT-MUX-PAT
reg_beg = 16'd353;
regend = 16'd354;
mux_beg = 16'd4;
mux_end = 16'd7;
patternbeg = 16'd144;
pattern_end = 16'd210;
nexttest;
#1 test_number = testnumber +1;
end

188

always @(posedge pattern_done) if ((testnumber===27)&&(testnumber!==faultdrive.LAST_TEST))
begin
test_mode = 3'bOl 1; //DUT-MUX-PAT
reg_beg = 16'd358;
reg_end = 16'd359;
mux_beg = 16'd8;
mux_end = 16'd9;
pattern_beg = 16'd213;
pattern_end = 16'd215;
next_test;
#1 testnumber = testnumber +1;
end

always @(posedge pattern_done) if ((test_number===28)&&(test_number!==faultdrive.LAST_TEST))
begin
test_mode = 3'bOl1; //DUT-MUX-PAT
reg_beg = 16'd360;
reg_end = 16'd360;
mux_beg = 16'd10;
mux_end = 16'd11;
pattern_beg = 16'd216;
pattern_end = 16'd219;
nexttest;
#1 test_number = test_number +1;
end

always @(posedge pattern_done) if ((test_number===29)&&(testnumber!==faultdrive.LAST_TEST))
begin
test_mode = 3'bO001; //DUT-MUX-PAT
reg_beg = 16'd365;
reg_end = 16'd365;
pattern_beg = 16'd230;
pattern_end = 16'd237;
nexttest;
#1 test_number = test_number +1;
end

always @(posedge pattern_done) if ((testnumber===30)&&(testnumber!==faultdrive.LAST_TEST))
begin
test_mode = 3'bOO1; //DUT-MUX-PAT
reg_beg = 366;
#1 reg_end = 384;
pattern_beg = 16'd238;
pattern_end = 16'd245;
nexttest;
#1 test_number = test_number +1;
test_index = 16'dl;
end

always @(posedge patterndone) begin
if ((test_number>=31)&&(test number<=37)&&(testLnumber!==faultdrive.LAST_TEST)) begin
test_mode = 3'bOO1; //DUT-MUX-PAT
reg_beg = regend+l;
#1 reg_end = reg_beg;
pattern_beg = pattern_end+l;
#1 begin
case (testindex)
16'dl: pattern_end = pattern_beg+7; //32,385,246-253
16'd2: pattern_end = pattern_beg+7; //33,386,254-261
16'd3: pattern_end = pattern_beg+7; //34,387,262-269
16'd4: pattern_end = pattern_beg+4; //35,388,270-274
16'd5: pattern_end = pattern_beg+5; //36,389,275-280
16'd6: pattern_end = pattern_beg+6; //37,390,281-287

189

16'd7: pattern_end = pattern_beg+7; //38,391,288-295
endcase
end
nexttest;
#1 begin
test_number = test_number +1;
if (test index==7) testindex = 16'bl;
else test_index = test_index+l;
end
@(posedge envdrive.sl .U2.START_PATTERN_RUN) thbsel = -thbsel;
end
end

always @(posedge patterndone) if ((testnumber===38)&&(test_number!==faultdrive.LAST_TEST))
begin
test_mode = 3'bOO1; //DUT-MUX-PAT
reg_beg = 396;
#1 reg_end = 398;
patternbeg = 16'd330;
pattern_end = 16'd337;
nexttest;
#1 test_number = test_number +1;
test_index = 16'dl;
@(posedge envdrive.sl .U2.START_PATTERN_RUN) thbsel = I'bO;
end

always @(posedge pattern_done) begin
if ((testnumber>=39)&&(test_number<=44)&&(test number!==faultdrive.LASTTEST)) begin
test_mode = 3'b001; //DUT-MUX-PAT
reg_beg = reg_end+l;
#1 reg_end = reg._beg;
pattern_beg = pattern_end+1;
#1 begin
case (testindex)
16'dl: pattern_end = pattern_beg+7; //40,399,338-345
116'd2: pattern_end = pattern_beg+7; //41,400,346-353
1. 6'd3: pattern_end = pattern_beg+4; //42,401,354-358
1]6'd4: pattern_end = patternbeg+5; //43,402,359-364
i 6'd5: pattern_end = patternbeg+6; //44,403,365-371
16'd6: pattern_end = pattern_beg+7; //45,404,372-379
endcase
end
next_test;
#1 begin
test_number = test_number +1;
if (testindex==6) testindex = 16'bl;
else test_index = test_index+l;
end
@((posedge envdrive.sl 1.U2.START_PATTERN_RUN) thbsel = -thbsel;
end
end

always @(posedge pattern_done) if ((testnumber===45)&&(test number!==faultdrive.LAST_TEST))
begin
thbsel = l'bO;
test_mode = 3'bOO1; //DUT-MUX-PAT
regbeg = 409;
reg_end = 410;
pattern_beg = 406;
pattern_end = 413;
next test;
#1 test_number = test_number +1;
test_index= 16'dl;
end

190

always @(posedge pattern_done) begin
if ((testnumber===46)&&(testLnumber!==faultdrive.LAST_TEST)) begin
test_mode = 3'bOO1; //DUT-MUX-PAT
reg_beg = 411;
#1 reg_end = 411;
pattern_beg = 414; //47,411,414-417
#1 pattern_end = 417;
next_test;
#1 test_number = test_number +1;
@ (posedge envdrive.sl .U2.START_PATTERN_RUN) thbsel = 1 'bl;
end
end

always @(posedge pattern_done) begin
if ((test_number>=47)&&(testLnumber<=49)&&(testnumber!==faultdrive.LAST_TEST)) begin
test_mode = 3'bOO1; //DUT-MUX-PAT
case (test_number)
16'd75: begin
reg_beg = 418;
#1 reg_end = 418;
pattern_beg = 442; //48,418,442-445
pattern_end = 445;
end
16'd76: begin
reg_beg = 419;
#1 reg_end = 419;
pattern_beg = 446; //49,419,446-449
pattern_end = 449;
end
16'd77: begin
reg_beg = 420;
#1 reg_end = 420;
pattern_beg = 450; //50,420,450-453
pattern_end = 453;
end
endcase
next_test;
#1 test_number = test_number +1;
@(posedge envdrive.sl.U2.START_PATTERNRUN) thbsel = -thbsel;
end
end

always @(posedge pattern_done) if ((testnumber===50)&&(testLnumber!==faultdrive.LASTTEST))
begin
thbsel = l'bO;
test_mode = 3'b101; //DUT-MUX-PAT
reg_beg = 421;
reg_end = 427;
dut_beg = 0;
dut_end = 0;
pattern_beg = 454;
pattern_end = 458;
next_test;
#1 testnumber = test_number +1;
@(posedge envdrive.sl.U2.START_PATTERN_RUN) thbsel = 1;
end

always @(posedge patterndone) if ((testnumber===51)&&(testnumber!==faultdrive.LAST_TEST))
begin
test_mode = 3'b 100; //DUT-MUX-PAT
reg_beg = 428;
reg_end = 676;
dutbeg = 1;

191

dut_end = 1;
nexttest;
#1 testnumber = testnumber +1;
@(posedge envdrive.sl .U2.START_MUX_RUN) thbsel = 1;
end

always @(posedge dut_done) if ((test_number===52)&&(testnumber!==faultdrive.LAST_TEST)) begin
test_mode = 3'b 100; //DUT-MUX-PAT
reg_beg = 677;
reg_end = 677;
dut_beg = 2;
dut_end = 2;
nexttest;
#1 test_number = test_number +1;
@(posedge envdrive.sl.U2.START_MUX_RUN) thbsel = 1;
end

always @(posedge dut_done) if ((test_number===53)&&(testnumber!==faultdrive.LAST TEST)) begin
test_mode = 3'blOO; //DUT-MUX-PAT
reg_beg = 678;
reg_end = 678;
dut_beg = 3;
dut_end = 3;
nexttest;
#1 test_number = test_number +1;
@(posedge envdrive.sl .U2.START_MUX_RUN) thbsel = 1;
end

always @(posedge dut_done) if ((test_number===54)&&(test_number!==faultdrive.LASTTEST)) begin
test_mode = 3'b 100; //DUT-MUX-PAT
reg_beg = 679;
reg_end = 679;
dut_beg = 4;
dut_end = 4;
next_test;
#1 test_number = test_number +1;
@ (posedge envdrive.sl .U2.START_MUX_RUN) thbsel = 1;
end

always @(posedge dut_done) if ((test_number===55)&&(test number!==faultdrive.LAST TEST)) begin
test_mode = 3'bl00; //DUT-MUX-PAT
reg_beg = 680;
reg_end = 680;
dut_beg = 5;
dutend = 5;
next_test;
#1 test_number = test_number +1;
@ (posedge envdrive.sl .U2.START_MUX_RUN) thbsel = 1;
end

always @(posedge dut_done) if ((testLnumber===56)&&(testnumber!==faultdrive.LAST_TEST)) begin
test_mode = 3'b100; //DUT-MUX-PAT
reg_beg = 681;
reg_end = 681;
dut_beg = 6;
dut_end = 6;
nexttest;
#1 testnumber = testnumber +1;
@(posedge envdrive.sl.U2.START_MUX_RUN) thbsel = 1;
end

always @(posedge dutdone) begin
if ((testnumber>=16'd52)&&(test number<=16'd56)&&(testnumber!==faultdrive.LAST-TEST)) begin
regbeg = 682;

192

#1 reg_end = 683;
pattern_beg = 459;
#1 pattern_end = 462;
next_test;
#1 test_number = test_number +1;
end

always @(posedge pattern_done) begin
if ((test_number>=58)&&(testnumber<=60)&&(testnumber!==faultdrive.LAST_TEST)) begin
test_mode = 3'b100; //DUT-MUX-PAT
reg_beg = reg_end+l;
#1 reg_end = reg_beg+3;
pattern_beg = pattern_end+l; //59,684-687,463-466; 60,688-691,467-470; 61,692-695,471-474
#1 pattern_end = pattern_end+3;
next_test;
#1 test_number = test_number +1;
end
end

always @(posedge pattern_done) if ((testnumber===61)&&(test_number!==faultdrive.LAST_TEST))
begin
thbsel = 0;
test_mode = 3'blOl; //DUT-MUX-PAT
reg_beg = 696;
reg_end = 706;
dut_beg = 7;
dut_end = 7;
pattern_beg = 475;
#1 pattern_end = 475;
next_test;
#1 test_number = test_number +1;
end

always @(posedge pattern_done) if ((testnumber===62)&&(test_number!==faultdrive.LAST_TEST))
begin
test_mode = 3'b001; //DUT-MUX-PAT
reg_beg = 707;
#1 reg_end = 707;
pattern_beg = 476;
pattern_end = 479;
next_test;
#1 testnumber = testnumber +1;
end

always @(posedge pattern_done) if ((testnumber===63)&&(testnumber!==faultdrive.LAST_TEST))
begin
test_mode = 3'b 101; //DUT-MUX-PAT
reg_beg = 708;
#1 reg_end = 710;
dut_beg = 8;
dut_end = 16;
pattern_beg = 480;
pattern_end = 651;
next_test;
#1 test_number = test_number +1;
end

always @(posedge pattern_done) if ((testnumber===64)&&(testnumber!==faultdrive.LAST_TEST))
begin
test_mode = 3'bO11; //DUT-MUX-PAT
reg_beg = 711;
#1 reg_end = 713;
dut_beg = 17;
dut_end = 19;

193

pattern_beg = 652;
pattern_end = 699;
next_test;
#1 test_number = test_number +1;
end

always @(posedge pattern_done) if ((test number===65)&&(test_number!==faultdrive.LAST_TEST))
begin
test_mode = 3'bOO1; //DUT-MUX-PAT
reg_beg = 714;
#1 reg_end = 717;
pattern_beg = 700;
pattern_end = 700;
nexttest;
#1 test_number = test_number +1;
end

always @(posedge pattern_done) begin
if ((test_number>=66)&&(test_number<=68)&&(testnumber!==faultdrive.LAST_TEST)) begin
test_mode = 3'bOO1; //DUT-MUX-PAT
reg_beg = regend+1;
#1 reg_end = reg_beg;
pattern_beg = pattern_end+l;
#1 begin
case (testindex)
16'dl: pattern_end = pattern_beg+l; 11//67,718,701-702
16'd2: pattern_end = pattern_beg+2; //68,719,703-705
16'd3: pattern_end = pattern_beg+3; //69,720,706-709
endcase
end
next test;
#1 begin
test_number = testnumber +1;
if (test_index==3) testindex = 16'bl;
else test_index = test_index+l;
end
end
end

always @(posedge pattern_done) if ((testnumber===69)&&(test number!==faultdrive.LAST_TEST))
begin
test_mode = 3'b 100; //DUT-MUX-PAT
reg_beg = 721;
#1 reg_end = 721;
dutbeg = 20;
#1 dut_end = 20;
nexttest;
#1 test_number = test_number +1;
test_index = 1;
end

always @(posedge dutdone) begin
if ((test_number>=70)&&(test number<=77)&&(test number!==faultdrive.LAST_TEST)) begin
testmode = 3'b100; //DUT-MUX-PAT
reg_beg = reg_end+l;
#1 reg_end = reg_beg;
dutbeg = dut-end+l;
#1 dut_end = dut_beg+8;
#1 begin
case (test_index)
16'dl: dut_end = dut_beg+7; //71,722, 21-28
16'd2: thbsel = 1; 1172,723, 29-37
16'd3: begin
dut_end = dut_beg; //73,724, 38-38

194

thbsel = 0;
end
16'd4: dut_end = dutbeg+7; //74,725, 39-46
16'd5: thbsel = -thbsel; //75,726, 47-55
16'd6: thbsel = -thbsel; //76,727, 56-64
16'd7: thbsel = -thbsel; //77,728, 65-73
16'd8: begin
reg_beg = 738; //78,730,75
reg_end = 738;
dutbeg = 75;
dut_end = 75;
thbsel = 0;
end
endcase
end
next_test;
#1 begin
test_number = testnumber +1;
if (testindex==8) testindex = 16'bl;
else test_index = testindex+1;
end
end
end

always @(posedge dutdone) if ((testnumber===78)&&(testnumber!==faultdrive.LAST_TEST)) begin
test_mode = 3'b001; //DUT-MUX-PAT
reg_beg = 739;
#1 reg_end = 739;
pattern_beg = 710;
#1 pattern_end = 710;
next_test;
#1 test_number = test_number +1;
testindex = 1;
end

always @(posedge pattern_done) begin
if ((test_number>=79)&&(testnumber<=85)&&(testnumber!==faultdrive.LAST_TEST)) begin
test_mode = 3'b001; //DUT-MUX-PAT
reg_beg = reg_end+l;
#1 reg_end = reg_beg;
pattern_beg = pattern_end+l;
#1 begin
case (testindex)
16'dl: pattern_end = pattern_beg; //80,740,711
16'd2: pattern_end = pattern_beg+l; //81,741,712-713
16'd3: pattern_end = pattern_beg+1; //82,742,714-715
16'd4: pattern_end = pattern_beg+2; //83,743,716-718
16'd5: pattern_end = pattern_beg+2; //84,744,719-721
16'd6: pattern_end = pattern_beg+3; //85,745,722-725
16'd7: pattern_end = pattern_beg+3; //86,746,726-729
endcase
end
next_test;
#1 begin
test_number = testnumber +1;
if (testindex==7) test_index = 16'bl;
else test_index = testindex+l;
end
end
end

always @(posedge pattern_done) if ((test_number=-==86)&&(testnumber!==faultdrive.LAST_TEST))
begin
test_mode = 3'bl00; //DUT-MUX-PAT

195

reg_beg = 755;
#1 reg_end = 756;
dut_beg = 76;
#1 dut_end = 76;
next_test;
#1 test_number = test_number +1;
end

always @(posedge dut_done) if ((testnumber===87)&&(testnumber!==faultdrive.LASTTEST)) begin
test_mode = 3'b101; //DUT-MUX-PAT
reg_beg = 771;
#1 reg_end = 773;
dut_beg = 77;
#1 dut_end = 77;
pattern_beg = 762;
#1 pattern_end = 762;
nexttest;
#1 test number = test_number +1;
test_index = 1;
end

always @(posedge patterndone) begin
if ((test_number>=88)&&(test_number<=102)&&(test_number!==faultdrive.LAST_TEST)) begin
test_mode = 3'bOOl; //DUT-MUX-PAT
reg_beg = reg_end+l;
#1 reg_end = reg_beg;
pattern_beg = pattern_end+l;
#1 begin
case (testindex)
16'd1l: pattern_end = pattern_beg; //89,774, 763
16'd2: pattern_end = pattern_beg+l; //90,775, 764-765
16'd3: patternend = pattern_beg+l; //91,776, 766-767
16'd4: pattern_end = pattern_beg+2; //92,777, 768-770
16'd5: pattern_end = pattern_beg+2; //93,778, 771-773
16'd6: pattern_end = pattern_beg+3; //94,779, 774-777
16'd7: pattern_end = pattern_beg+3; //95,780, 778-781
16'd8: begin
pattern_beg = 814;
pattern_end = 818; //96,789, 814-818
end
1.6'd9: pattern_end = pattern_beg+4; //97,790, 819-823
1.6'd 10: pattern_end = pattern_beg+5; //98,791, 824-829
16'dl 1: pattern_end = pattern_beg+5; //99,792, 830-835
16'd12: pattern_end = pattern_beg+6; //100,793, 836-842
16'd13: pattern_end = pattern_beg+6; //101,794, 843-849
16'd14: pattern_end = pattern_beg+7; //102,795, 850-857
16'dl5: pattern_end = pattern_beg+7; //103,796, 858-865
endcase
end
next_test;
#1 begin
test_number = test_number +1;
if (testindex==1 5) test_index = 16'bl;
else test_index = test_index+l;
end
end
end

always @(posedge patterndone) if ((test_number===103)&&(test_number!==faultdrive.LAST_TEST))
begin
testmode = 3'b 100; //DUT-MUX-PAT
reg_beg = 805;
#1 reg_end = 805;
dut_beg = 78;

196

#1 dut_end = 78;
next_test;
#1 test_number = test_number +1;
end

always @(posedge dutdone) if ((test_number=--==104)&&(testnumber!--faultdrive.LASTTEST)) begin
test_mode = 3'bOO1; //DUT-MUX-PAT
reg_beg = 806;
#1 reg_end = 806;
pattern_beg = 898;
#1 pattern_end = 902;
next_test;
#1 test_number = test_number +1;
test_index = 1;
end

always @(posedge pattern_done) begin
if ((test_number>= 105)&&(test_number<=1 1 1)&&(testnumber! ==faultdrive.LAST_TEST)) begin
test_mode = 3'bOO1; //DUT-MUX-PAT
reg_beg = reg_end+1;
#1 reg_end = reg_beg;
pattern_beg = pattern_end+1;
#1 begin
case (test_index)
16'dl: pattern_end = pattern_beg+4; //106, 807, 903-907
16'd2: pattern_end = pattern_beg+5; //107, 808, 908-913
16'd3: pattern_end = pattern_beg+5; //108, 809, 914-919
16'd4: pattern_end = pattern_beg+6; //109, 810, 920-926
16'd5: pattern_end = pattern_beg+6; //110, 811, 927-933
16'd6: pattern_end = pattern_beg+7; //111, 812, 934-941
16'd7: pattern_end = pattern_beg+7; //112, 813, 942-949
endcase
end
nexttest;
#1 begin
test_number = test_number +1;
if (test_index==7) test_index = 16'bl;
else test_index = testindex+l;
end
end
end

always @ (posedge pattern_done) if ((testnumber===112)&&(test number!==faultdrive.LASTTEST))
begin
test_mode = 3'b100; //DUT-MUX-PAT
reg_beg = 822;
#1 reg_end = 822;
dut_beg = 79;
#1 dut_end = 79;
nexttest;
#1 test_number = test_number +1;
end

always @(posedge dutdone) if ((testnumber=== 13)&&(testnumber!==faultdrive.LAST_TEST)) begin
test_mode = 3'bOO1; //DUT-MUX-PAT
regbeg = 823;
#1 reg_end = 823;
pattern_beg = 982;
#1 pattern_end = 986;
next_test;
#1 testnumber = test_number +1;
test_index = 1;
end

197

always @(posedge pattern_done) begin
if ((test_number>=1 14)&&(test number<= 120)&&(testnumber !=--faultdrive.LAST_TEST)) begin
test_mode = 3'b001; /IDUT-MUX-PAT
reg_beg = reg_end+l;
#1 reg_end = regbeg;
pattern_beg = pattern_end+1;
#1 begin
case (test_index)
16'dl: pattern_end = pattern_beg+4; //115, 824, 987-991
16'd2: pattern_end = pattern_beg+5; //116, 825, 992-997
16'd3: pattern_end = pattern_beg+5; //117, 826, 998-1003
16'd4: pattern_end = pattern_beg+6; //118, 827, 1004-1010
16'd5: pattern_end = pattern_beg+6; //119, 828, 1011-1017
16'd6: pattern_end = patternbeg+7; //120, 829, 1018-1025
16'd7: pattern_end = pattern_beg+7; //121, 830, 1026-1033
endcase
end
next test;
#1 begin
test_number = test_number + 1;
if (testindex==7) testindex = 16'bl;
else test_index = test_index+l;
end
end
end

always @(posedge pattern_done) if (test number===faultdrive.LAST_TEST) begin
end_test;
end

endmodule

198

E.2 Fault Injection Control Module

'include "/usr/users/guru/thesis/formatter/dic/regchipaddr.def'

'timescale 1 ps / 1 ps
'define f faultdrive.end_simulation;.
'define u faultdrive.update_status;.
'define c $strobe(faultdrive.e1 .clock_count);.

module faultdrive;

reg [15:0] sequence, passes, fails, sequence_index, sequence_indexmax;
reg [4:0] fault;
reg [9:0] gate;
reg start_run;

wire done;
wire [15:0] fail_no, fail_index, fail_clock;
wire [21:0] expect_pins, fail_pins, x_pins;

integer messages, broadcast, summary, cnt;
real percent;
reg[8*34: 1] summary_pins;

parameter TESTCASE="fmt_tstO";
parameter START_GATE = 6;
parameter END_GATE = 54;
parameter START_FAULT = 1;
parameter END_FAULT = 1;
parameter FAULT_ENABLE = 1;
parameter END_FAULT_ENABLE = 0;
parameter FAIL_ENABLE = 1;
parameter LAST_TEST = 121;

envdrive el (sequence, sequence_index, start_run, gate, fault, done, fail_no, fail_index, fail_clock, expect_-
pins, fail_pins, x_pins);

initial begin
messages = $fopen("messages.dat"); if (messages == O) $finish;
summary = $fopen("summary.dat"); if (summary == 0) $finish;
broadcast = 1 I messages;
end

initial begin
fork
if ($test$plusargs("dumpall")) $dumpvars;
if ($test$plusargs("shortdumpall")) begin
$dumpvars;
wait (el.testnumber===26) $dumpoff;
end
if ($test$plusargs("profile")) $startprofile;
sequence = 16'b0;
fails = 16'b0;
passes = 16'b0;
start_run = l'bO;
initsequence;
$fstrobe (broadcast, "***************************FAULT GRADING TEST*************

*************\n\nNo. of Sequences: %d\nGate Numbers: %d to %d\nFault Model:
Single Stuck-At Fault\n", END_GATE-START_GATE+1, gate, END_GATE);

$fstrobe (summary, " Sequence Gate No.Inputs Fault Clock II Pass/Fail II Failing test I Failing index I
Drive Setout STFL TMU R\n");

join
end

199

always @(posedge done) increment;
always @(posedge start_run) #7500 start_run = 1 'bO;

task init_sequence;
begin
gate = START_GATE;
if ((gate>=6)&&(gate<=516)) sequence_index = START_FAULT;
if (FAULT_ENABLE===O) sequenceindex = 0;
#1 sequence_index_max = sequenceindex;
if ((gate>=6)&&(gate<=33)) sequenceindex_max = 2;
else if ((gate>=34)&&(gate<=145)) sequence_index_max = 4;
else if ((gate>=146)&&(gate<=249)) sequence_index_max = 6;
else if ((gate>=250)&&(gate<=427)) sequence_index_max = 8;
else if ((gate>-428)&&(gate<=435)) sequence_index_max = 10;
else if ((gate>=436)&&(gate<=501)) sequence_index_max = 12;
else if ((gate>=502)&&(gate<=516)) sequence_index_max = 24;
if ((gate===326)11(gate===329)11(gate===332)11(gate===335)) sequence_index_max = 4;
if (END_FAULT_ENABLE===1) sequence_index_max = END_FAULT;
fault = sequence_index;
end

endtask

task increment;
begin
if (fail_no!==LAST_TEST) begin
$strobe("expect: %b\nfails: %b\nundetermined_gate: %b", expectpins, fail_pins, x_pins);
for (cnt = 21; cnt>=0;cnt = cnt-1) begin
summary_pins = (fail_pins[cnt]===1) ? ((x_pins[cnt]===1) ? ((expectpins[cnt]===l) ? {summary_pins,
"x" }: { summary_pins, "X" }):
((expect_pins[cnt]===I) ? { summary_pins, "L" }:{ summary_pins, "H" })):
((expect_pins[cnt]===1) ? {summary_pins, "1" }: {summary_pins, "O"});
if ((cnt===18)11(cnt===14)11(cnt===10)ll(cnt===8)) summary_pins = {summary_pins, " I "};
end
$fstrobe (messages, "\t\t\t<==========FAIL=========>\n\nTest Sequence: %d\nFaulted gate:

%d\nNumber of inputs tested (stuckl&stuck_0): %d\nFault injected: %d\nFailing test:
%d\nFailing index: %d\nFail on clock cycle: %d\n", sequence, gate,
sequence_indexmax, fault, fail_no, failindex, fail_clock);

Sfstrobe (summary, "%d %d %d %d %d II fail II %d I %d I %s", sequence, gate, sequence_index_max,
fault, fail_clock, fail_no, fail_index, summary_pins);

#1 fails = fails +1;
end
else if (fail_no===LAST_TEST) begin
$fstrobe (broadcast, "\t\t\t<==========PASS=======--=>\n\nTest Sequence: %d\nFaulted gate:

%d\nNumber of inputs tested (stuck_l&stuck_O0): %d\nFault injected: %d\nClock cycle:
%d\n", sequence, gate, sequenceindex_max, fault, fail_clock);

$fstrobe (summary, " %d %d %d %d %d II pass", sequence, gate, sequence_index_max, fault, fail_clock);
#1 passes = passes +1;
end
if ((sequence_index >= sequence_index_max)ll(FAULT_ENABLE===0-O)) begin
#1 gate = gate+l;
#1 sequence_index = 1;
if ((gate>=6)&&(gate<=33)) sequence_index_max = 2;
else if ((gate>=34)&&(gate<=145)) sequence_indexmax = 4;
else if ((gate>=146)&&(gate<=249)) sequence_index_max = 6;
else if ((gate>=250)&&(gate<=427)) sequence_index_max = 8;
else if ((gate>=428)&&(gate<=435)) sequence_index_max = 10;
else if ((gate>=436)&&(gate<=501)) sequence_index_max = 12;
else if ((gate>=502)&&(gate<=516)) sequence_index_max = 24;
fault = sequence_index;
#1 if (sequence < END_GATE-STARTGATE) begin
start_run = l'bl;
#1 sequence = sequence+l;
end

200

else if (sequence >= END_GATE-START_GATE) analysis;
end
else if (sequenceindex < sequenceindex_max) begin
if (FAULT_ENABLE===1) sequence_index = sequence_index+1;
#1 fault = sequence_index;
start_run = l'bl;
end
end
endtask

task analysis;
begin
percent = 100*fails/(passes+fails);
$fstrobe (broadcast, "\n\n******************************SUMMARY

*********** *********************\n\nNo. of Sequences: %d\nNo. of faults applied:
%d\nPasses: %d\nFails: %d\nPercent Coverage: %f\n\n\nSimulation Time: %d
picoseconds\nSimulation Cycles: %d\nEquivalent Emulation Time: %d nanoseconds",
sequence+l, passes+fails, passes, fails, percent, $time, $time/10000, $time/10000/5);

$fstrobe (summary, "\n\n********************************SUMMARY
*******************************\n\nNo. of Sequences: %d\nNo. of faults applied:
%d\nPasses: %d\nFails: %d\nPercent Coverage: %f\n\n\nSimulation Time: %d
picoseconds\nSimulation Cycles: %d\nEquivalent Emulation Time: %d nanoseconds",
sequence+l, passes+fails, passes, fails, percent, $time, $time/10000, $time/10000/5);

#10000 $finish;
end

endtask

task end_simulation;

begin
analysis;
$finish;
$strobe ("\n\n**UPDATE

********************************\n\nNo. of Sequences: %d\nNo. of faults applied:
%d\nPasses: %d\nFails: %d\nPercent Coverage: %fn\n\nSimulation Time: %d
picoseconds\nSimulation Cycles: %d\nEquivalent Emulation Time: %d nanoseconds",
sequence+l, passes+fails, passes, fails, percent, $time, $time/10000, $time/10000/5);

end
endtask

task update_status;
begin
percent = 100*fails/(passes+fails);
$strobe ("\n\n************************** UPDATE

********************************\n\nNo. of Sequences: %d\nNo. of faults applied:
%d\nPasses: %d\nFails: %d\nPercent Coverage: %f\n\n\nSimulation Time: %d
picoseconds\nSimulation Cycles: %d\nEquivalent Emulation Time: %d nanoseconds",
sequence+l, passes+fails, passes, fails, percent, $time, $time/10000, $time/10000/5);

end
endtask

'include "/home/nfs/uhi27/guru/thesis/asap/simul/fmt.dbg.gate"
endmodule

201

Appendix F

The Functional Test Set

F.1 Sample Event Stream Memory File - Pattern Events

initialisation

DIC PATTERNS program delay DAC in: A-11 B-22 C-44 D-88

program delay DAC in: A-22 B-44 C-88 D-Of

program delay DAC in: A-44 B-88 C-Of D-fO

program delay DAC in: A-88 B-Of C-fO D- 11

program delay DAC in: A-Of B-fO C-ll D-22

202

dO@O
dO@O
d10@0
dO@O
x@6.4
x@6.4
x@6.4
x@6.4
x@12.8
x@12.8
x@12.8
x@12.8
dl @.2125
nop
dO@ .425
nop
nop
dz@.850
nop
nop
nop
don @ 1.7
d 1 @.425
nop
dO@.850
nop
nop
dz@l1.7
nop
nop
nop
don@.1875
dl @.850
nop
dO@ 1.7
nop
nop
dz@.1875
nop
nop
nop
don@3
dl@l.7
nop
dO@.1875
nop
nop
dz@3
nop
nop
nop
don@.2125
dl@.1875
nop

dO@3
nop
nop
dz@.2125
nop
nop
nop
don@.425
dl@3
nop
dO@.2125
nop
nop
dz@.425
nop
nop
nop
don@.850
dl @.2125
dO@3.8375
dz@7.8875
don@ 12.7875
dO@O
dl@16
dz@ 19.2
don@22.4
dO@25.6
nop
dl @28.8
dz@32
don@35.2
dO@38.4
nop
dl @41.6
dz@44.8
don@48
dO@51.2
nop
dl@54.4
dz@57.6
don@60.8
dO@64
nop
dz@67.2
dl @70.4
dz@73.6
dO@76.8
nop
dz@80
dl @83.2
dz@86.4
dl@89.6
nop
dz@92.8
dl @96
dz@99.2
dO@ 102.4
nop
dz@ 105.6
dl @ 108.8#
dz@112
dO@115.2
don@3.2
dO@O.

program delay DAC in: A-fO B-ll C-22 D-44

program delay DAC in: A-11 B-22 C-44 D-88
.2125+.425+3.2
3.8375+.850+3.2
7.8875+1.7+3.2
Set TSTPULSE in order to initialise PMXDHI/PMXDINH
Check every LDL can produce all SET_OUT pulses

Check D1 and DO of each LDL can also set on driver

Reset TSTPULSE

203

Set TSTPMXVOH

Reset PMM

Reset TSTPMXVOH

Set TSTPULSE

Set PMM

Reset TSTPULSE

Event Sequence Test(a) D1 DO D1 DO D1 ...(check DHI toggles)

(b) DZ DON DZ DON ...(check if DINH toggles)

(c) D1 DZ DO DZ ...(check if D/DO will reset DINH)

204

dz@0.2
dl @0
dl@O
dO@O.1
dz@0.2
don@3.2
dz@0.2
dl @O
don@3.2
dO@O.1
dz@0.2
don@3.2
dl @0
dO@0.1
don@3.2
dO@0.1
dz@0.2
dl @0
dl@0
dO@0.1
dz@0.2
don@3.2
dz@0.2
(ll @O
don@3.2
(10@0.1
dl1@16
dO@ 19.2
d1 @22.4
d0@25.6
flop
l 1@28.8

cd0@32
d1@35.2
dO@38.4
nop
dz@41.6
don @44.8
dz@48
don@51.2
nop
dz@54.4
don@57.6
dz@60.8
don@64
dz@67.2
dl @70.4
dz@73.6
dO@76.8
dz@80
nop
dl@83.2
dz@86.4
dO@89.6
dz@92.8
nop
d1@96
dz@99.2
dO@ 102.4
dz@ 105.6
nop
dl@ 108.8
dz@112
dO@115.2

dz@118.4
nop
don@ 121.6
dz@ 124.8
dl@128
dO@ 131.2
d1@134.4
nop
nop
dz@137.6
dl@ 140.8
dO@ 144
dz@ 147.2
don@ 150.4
nop
d1@153.6
dO@ 156.8
dz@ 160
don @ 163.2
nop
d1@166.4
dO@ 169.6
dz@ 172.8
don@ 176
nop
dl @ 179.2
dO@ 182.4
dz@ 185.6
don@ 188.8
dl @0
dz@O
dz@O
nop
dl@3.2
nop
don@O
nop
dO@3.2
nop
nop
dl@O
nop
nop
nop
dz@3.2
dO@O
nop
don@3.2
nop
nop
don@O
dz@3.2
dO@6.4
dl@9.6
dz@ 12.8
dO@ 16
don@6.0125
dl@O
dO@2
dz@4.0125
dl@16
dO@ 18
dz@20.0125
don@22.0125

(d) DON DZ D1 DO D1 DZ

(e) D1 DO DZ DON ...

Set TMUPA/B to PMXDHI/PMXDINH

check no event sequence or SET_IN pulses can set DHI/DINH

check no event sequence or SET_IN pulses can reset DHI/DINH

check no SETIN pulse or drive events can change DHI/DINH

check no SETIN pulse or drive events can change DHI/DINH

check no SETIN pulse or drive events can change DHI/DINH
check no SETIN pulse or drive events can change DHI/DINH

check event sequence to change DHI/DINH

Check TMU Mux and minimum DHI/DINH pulse width - barrel A

205

dl@0
don@2.8125
dO@2
dz@.8125
dl@9.6
dO@11.6
dz@ 13.6125
don@ 15.6125
dl @0
dO@2
donC@2.8125
dz@.8125
dl@9.6
dO@11.6
dz@13.6125
don@ 15.6125
dl @0
dO@2
dz@.8125
don@2.8125
dl @9.6
d0@ 11.6
dz@ 13.6125
don@ 15.6125
dl @0
flop
flop
flop
(10@6.4
[lop
dz@O
flop
nop
flop
don @6.4
nop
nop
clz@O

nop

nop
dlon @6.4
hlop
n.op
fop
dl@0
nop
nop
nop
dO@6.4
nop
dl@0
dO@O.
dz@0.'2
nop
don@6.4
dz@0.2
nop
dl @O0
dO@O. 1
nop
nop
don@6.4
dO@O. I

barrel B

barrel C

barrel D

Check TMUPA/B pulses with only its events - barrel A

ban-el B

banel C

barrel D

Check TMUPA/B output no pulses for other barrels' events - A

barrel B (THBSEL = 1)

barrel C (THBSEL = 0)

206

dz@0.2
nop
dl @O
nop
nop
nop
don@6.4
dl@O
dO@O. 1
dz@0.2
nop
don@6.4
don@2.8125
dl @O
dO@2
dz@.8125
dl@9.6
dO@ 11.6
dz@ 13.6125
don@ 15.6125
dl @O
don@2.8125
dO@2
dz@.8125
dl@9.6
dO@ 11.6
dz@ 13.6125
don@ 15.6125
dl @O
dO@2
don@2.8125
dz@.8125
dl@9.6
dO@ 11.6
dz@ 13.6125
don@ 15.6125
dl@O
dO@2
dz@.8125
don@2.8125
d1@9.6
dO@ 11.6
dz@13.6125
don@ 15.6125
dl@O
nop
nop
nop
dO@6.4
nop
dz@O
nop
nop
nop
don@6.4
nop
nop
dz@O
nop
nop
nop
don@6.4
nop
nop

barrel D (THBSEL = 1)

Check TMUPA/B toggle for the selected DVI/O pulse - A

barrel B

barrel C

barrel D

Check TMUPA/B toggle with only its events - barrel A

barrel B

barrel C

barrel D

207

Check TMUPA/B not toggle for other barrels' events - A

barrel B (THBSEL = 1)

barrel C (THBSEL = 0)

barrel D (THBSEL = 1)

Set LPBK {DRSTAT,STRBZ} = 00 TMUPA/B select DHI/DINH

DRSTAT,STRBZ} = 01 TMUPA/B sel PMXDHI/PMXDINH(TSTPMXVOH = 0)

Set PMM (PMXDHI/PMXDINH changes as DHI/DINH changes)

Reset TSTPULSE (PMXDHI/PMXDINH stay the same)

Set TSTVOH (PMXDHI/PMXDINH stay the same)

Reset TSTVOH (PMXDHI/PMXDINH stay the same)

Set TSTPULSE (PMXDHI/PMXDINH toggle)

208

nop
dl @O
nop
nop
nop
dO@6.4
nop
dl@O
dO@O.1
dz@0.2
nop
don@6.4
dz@0.2
nop
dl @0
dO@0.1O.l
nop
nop
don@6.4
dO@0.l
dz@0.2
nop
1d @0
hop
hop
tlop
don@6.4
(11 @0
dO@0.1
dz@0.2
nop
don@6.4
dl@0
dz@3.2
don@6.4
dO@9.6
d1@28.8
dz@32
don@35.2
dO@38.4
dl @0
dz@3.2
don@6.4
dO@9.6
dl@0
dz@.8
don@ 1.6
dO@2.4
dl@O
dz@.8
don @ 1.6
dO@2.4
dl @O
dz@.8
don@ 1.6
dO@2.4
dl @o
dz@0.8
don@ 1.6
dO@2.4
dl@0O
dz@0.8
don@ 1.6
dO@2.4

Reset PMM (PMXDHI/PMXDINH stay the same)

TMUPA/B select DINHJDINH_ (THBSEL = 0)

TMUPA/B select DHI/DHI_ (THBSEL = 1)

TMUPA/B select DHI/DINH (THBSEL = 0)

**RIC ** # Initialize all delay registers by sending TX(FF)

program delay DAC in: A-A5 B-5A C-96 D-69

program delay DAC in: A-69 B-A5 C-5A D-96g

program delay DAC in: A-96 B-69 C-A5 D-5A

program delay DAC in: A-5A B-96 C-69 D-A5

Master reset
Clear all fail buckets

enable window strobe and clear fail buckets

strobe events (short window strobe) - fails

passes

fails

209

dl@0
dz@0.8
don@ 1.6
dO@2.4
dl @0
dz@3.2
don@6.4
dO@9.6
dl @0
dz@3.2
don@6.4
dO@9.6
dl@0
dz@3.2
don@6.4
dO@9.6
tO@3.1875
tO@6.3875
tO@9.5875
tO@ 12.7875
tO@ 15.9875
tO@2.0625
tO@4.325
tO@8.275
tO@ 10.9125
tO@1.3125
tO@5.2625
tO@7.525
tO@ 11.475
tO@ 1.875
tO@4.5125
tO @ 8.4625
tO@ 10.725
tO@1.125
tO@5.075
tO@7.7125
tO@ 11.6625
x@O
tl @O
tl @0
tl @0
tl @0
x@O
x@O
x@O
x@O
tz@9.6
tz@ 12.8
x@12.8
x@ 16
x@24.4
x@27.6
tz@22.4
tz@25.6
tl @35.2
tl @38.4
x@37.2
x@40.4
x@50
x@53.2
tl @48
tl@51.2
tO@60.8
tO@64

6.4ns barrel reuse (8ns marker separation) - passes

fails

passes

fails

passes

fails

passes

fails

(intermediate window strobe) - passes

210

x@62.8
x@66
x@75.6
x@78.8
tO@73.6
tO@76.8
tl @86.4
nop
nop
nop
x@94.4
nop
flop
flop
tO@ 102.4
flop
flop
nop
x@110.4
tl@112
nop
nop
nop
x@120
nop
nop
nop
tO@ 128
nop
nop
nop
tO@136
t1@137.6
nop
nop
nop
x@145.6
nop
nop
nop
tO@ 153.6
nop
nop
nop
x@161.6
tl @ 163.2
nop
nop
nop
x@171.2
nop
nop
nop
t@ 179.2
nop
nop
nop
x@187.2
tl @ 188.8
x@192
tl@ 195.2
x@ 198.4
x@204.8
tl @201.6

fails

passes

fails

(long window strobes) - passes

fails

(really long window strobes) - passes

fails

passes

211

x@211.2
tl@208
tO@214.4
x@217.6
tO@220.8
x@224
x@230.4
tO@227.2
x@236.8
tO@233.6
tl @240
x @243.2
tl @246.4
x@249.6
x@256
t1@252.8
x@262.4
tl @259.2
tz@265.6
x@268.8
tz@272
x@275.2
x@281.6
tz@278.4
x@288
tz@284.8
tl @291.2
tl @300.8
tl @310.4
x@297.6
x@307.2
x@316.8
x@326.4
tl @320
tO@329.6
tO@339.2
tO@348.8
x@336
x@345.6
x@355.2
x@364.8
tO@358.4
tl @368
t1@380.8
tl @393.6
tl @406.4
x@377.6
x@390.4
x@403.2
x@416
tz@419.2
tl @432
tl@444.8
tl @457.6
x@428.8
x@441.6
x@454.4
x@467.2
tz@470.4
tl @483.2
tl @496
tl @508.8
x@480
x@492.8

window strobes catch excursions of compare data

Input ONE from Test Station A

Input ZERO from Test Station A

Input Z from Test Station A

212

x@505.6
x@518.4
tl @537.6
nop
nop
nop
x@560
tl @572.8
nop
nop
nop
K@595.2
tl @608
nop
nop
nop
: @630.4
tl @643.2
lop
]lop
flop
x @665.6
tl1@3.2
t1@6.4
t 1@9.6
tl@ 12.8
t0@ 16
t0@ 19.2
t0@22.4
t0@25.6
tl @28.8
t1@32
tl @35.2
tl @38.4
tz@41.6
tz@44.8
tz@48
tz@5 1.2
tO0@70.4
t0@73.6
t0 @76.8
t@ 80
tl @83.2
tI @86.4
tI @89.6
tl @92.8
tO@96
t()@99.2
tO@ 102.4
tO@ 105.6
tz@ 108.8
tz@ 112
tz@ 115.2
tz @ 118.4
tz@ 137.6
tz@ 140.8
tz2 @144
tz;@ 147.2
tO @ 150.4
tO@ 153.6
tO@ 156.8
tO @ 160
tz @ 163.2
tz @ 166.4

send TX to each barrel to clear WFAIL latches
send TX to each barrel to clear WFAIL latches

send TX to each barrel to clear WFAIL latches

send TX to each barrel to clear WFAIL latches

TMUA/TMUB select CVIA/CVIA
TMUA/TMUB select CVIA/CVOA
TMUA/TMUB select CVIB/CVIB

TMUA/TMUB select CVIB/CVOB

TMUA/TMUB select CVIC/CVIC

TMUA/TMUB select CVIC/CVOC

TMUA/TMUB select CVID/CVID

TMUA/TMUB select CVID/CVOD

TMUA/TMUB select CVIA/CVIA

TMUA/TMUB select CVIA/CVOA

TMUA/TMUB select CVIB/CVIB

TMUA/TMUB select CVIB/CVOB

TMUA/TMUB select CVIC/CVIC

TMUA/TMUB select CVIC/CVOC

TMUA/TMUB select CVID/CVID

213

tz@ 169.6
tz@ 172.8
tl @176
tl@179.2
tl@ 182.4
tl@ 185.6
x@O
nop
x@O
x@O
nop
x@O
nop
nop
nop
x@O
tl @1.6
x@1.6
nop
tO@1.6
nop
x@1.6
nop
nop
tz@1.6
nop
nop
x@1.6
nop
nop
nop
x@1.6
nop
nop
nop
x@1.6
nop
tl@l1.6
t0@4.8
tz@8
nop
tl@1.6
t0@4.8
tz@8
tl@1.6
nop
t0@4.8
tz@8
tl@ 1.6
nop
t0@4.8
tz@8
tl@ 1.6
t0@4.8
nop
tz@8
tl @1.6
t0@4.8
nop
tz@8
tl@1.6
t0@4.8
tz@8
nop

tl@1.6
t0@4.8
tz@8
nop
tl@1.6
x@1.6
nop
x@ 1.6
nop
x@1.6
nop
nop
tO@ 1.6
nop
nop
x@ 1.6
nop
nop
nop
tz@ 1.6
lop
lop
nop
x @1.6
nop
tl@ 1.6
tO@ 1.6
tz@ 1.6
flop
tl@1.6
t0@4.8
tz@8
tl@1.6
Fop
t0@4.8
tz@8
tl@1.6
nop
t'O@4.8
tz @ 8
tl@ 1.6
t0@4.8
nop
tz@8
tl@1.6
t0@4.8
nop
tz @ 8
tl@ 1.6
t0@4.8
t;z@ 8
nop
tI, @1.6
tO@4.8
tz @ 8
nop
tl @1.6
nop
nop
nop
t I @9.5875
tl@1.6
nop
nop

TMUA/TMUB select CVID/CVOD

TMUA/TMUB select CVIA/CVIA
TMUA/TMUB select CVIA/CVOA
TMUA/TMUB select CVIB/CVIB

TMIUA/TMUB select CVIB/CVOB

TMUA/TMUB select CVIC/CVIC

TMUA/TMUB select CVIC/CVOC

TMUA/TMUB select CVID/CVID

TMUA/TMUB select CVID/CVOD

TMUA/TMUB select CVIA/CVIA

TMUA/TMUB select CVIA/CVOA

TMUA/TMUB select CVIB/CVIB

TMUA/TMUB select CVIB/CVOB

TMUA/TMUB select CVIC/CVIC

TMUA/TMUB select CVIC/CVOC

TMUA/TMUB select CVID/CVID

TMUJA/TMUB select CVID/CVOD

TMUJA/TMUB select CVIA/CVIA

TMIJA/TMUB select CVIA/CVOA

214

TMUA/TMUB select CVIB/CVIB

TMUA/TMUB select CVIB/CVOB

TMUA/TMUB select CVIC/CVIC

TMUA/TMUB select CVIC/CVOC

TMUA/TMUB select CVID/CVID

TMUA/TMUB select CVID/CVOD

TMUA/TMUB select CVIA/CVIA

TMUA/TMUB select CVIA/CVOA

TMUA/TMUB select CVIB/CVIB

TMUA/TMUB select CVIB/CVOB

TMUA/TMUB select CVIC/CVIC

215

nop
tl @9.5875
nop
x@1.6
nop
nop
nop
x@9.5875
nop
x@1.6
nop
nop
nop
x@9.5875
nop
nop
tO@1.6
nop
nop
nop
t0@9.5875
nop
nop
tO@1.6
nop
nop
nop
t0@9.5875
nop
nop
nop
x@1.6
nop
nop
nop
x@9.5875
nop
nop
nop
x@1.6
nop
nop
nop
x@9.5875
nop
tl @0O
t0@3.2
tz@6.4
nop
tl@0
t0@3.2
tz@6.4
tl @0
nop
t0@3.2
tz@6.4
tl @0
nop
t0@3.2
tz@6.4
tl @0
t0@3.2
nop
tz@6.4

tl @O
t0@3.2
fop
tz@6.4
tl@O
t0@3.2
tz@6.4
nop
tl @0
tO @ 3.2
tz@6.4
nop
tl @ 1.6
hop
lop
flop
tl1 @9.5875
l @ 1.6

lop
lop

fop
t 1 @9.5875
nop
x@ 1.6
Ilop
flop
nop
x@9.5875
nop
x@1.6
nop
nop
nop
x @9.5875
fop
nop
tO@ 1.6
flop
nflop
flop
t0@9.5875
nop
nop
tO@ 1.6

nop
nop
nop
t()@9.5875
nop
nop
nop
x@1.6
nop
nop
nop
x@9.5875
nlop
nfop
nflop
x@1.6
nop
nop
nop
x@9.5875

TMUA/TMUB select CVIC/CVOC

TMUA/TMUB select CVID/CVID

TMUA/TMUB select CVID/CVOD

TMUA/TMUB select CVIA/CVIA

TM:UA/TMUB select CVIA/CVOA

TMUA/TMUB select CVIB/CVIB

TMUA/TMUB select CVIB/CVOB

TMUA/TMUB select CVIC/CVIC

TMUA/TMUB select CVIC/CVOC

TMUA/TMUB select CVID/CVID

TMIJA/TMUB select CVID/CVOD

216

nop
tl@0
t0@3.2
tz@6.4
nop
tl@0
t0@3.2
tz@6.4
tl @0
nop
t0@3.2
tz@6.4
tl@0
nop
t0@3.2
tz@6.4
tl@0
tO@ 3.2
nop
tz@6.4
tl @0
t0@3.2
nop
tz@6.4
tl @0
t0@3.2
tz@6.4
nop
tl @0
tO@ 3.2
tz@6.4
nop
tl@1.6
nop
nop
nop
tl @9.5875
tl@1.6
nop
nop
nop
tl @9.5875
nop
x@1.6
nop
nop
nop
x@9.5875
nop
x@1.6
nop
nop
nop
x@9.5875
nop
nop
tO@1.6
nop
nop
nop
t0@9.5875
nop
nop
t0@1.6

TMUA/TMUB select CVIA/CVIA

TMUA/TMUB select CVIA/CVOA

TMUA/TMUB select CVIB/CVIB

TMUA/TMUB select CVIB/CVOB

TMUA/TMUB select CVIC/CVIC

TMUA/TMUB select CVIC/CVOC

TMUA/TMUB select CVID/CVID

TMUA/TMUB select CVID/CVOD

TMUA/TMUB select CVIA/CVIA

TMUA/TMUB select CVIA/CVOA

TMUA/TMUB select CVIB/CVIB

TMUA/TMUB select CVIB/CVOB

TMUA/TMUB select CVIC/CVIC

TMUA/TMUB select CVIC/CVOC

217

TMUA/TMUB select CVID/CVID

TMUA/TMUB select CVID/CVOD

'TMUA/TMUB select CVIA/CVIA

TMUA/TMUB select CVIA/CVOA

TMUA/TMUB select CVIB/CVIB

TMUA/TMUB select CVIB/CVOB

TMUA/TMUB select CVIC/CVIC

TMUA/TMUB select CVIC/CVOC

TMUA/TMUB select CVID/CVID

TMJA/TMUB select CVID/CVOD

218

nop
nop
nop
t0@9.5875
nop
nop
nfop
x@ 1.6
fop
nop
nop
x@9.5875
lop
nop
hop
x @ 1.6
nlop
nlop
hlop
x@9.5875
op

tl@0
t0@3.2
tz@ 6.4
nop
tl@0
t0@3.2
tz@6.4
tl@0
nop
tiO@3.2
tz@6.4
tl @O
nop
tO@3.2
tz@6.4
tl@0O
tO @ 3.:2
nop
tz@6.4
tl@O
tO @ 3.'2
nop
tz @6.4
tl@0
t(O@3.2
tz;@6.4

tO @ 3.2
tz @ 6.4:
nop

219

Appendix G

Utility Programs

G.1 Event Stream Parser

,/
*

#include <stdio.h>
#include <ctype.h>
#define TRUE 1
#define FALSE 0

main(argc, argv)
int argc;

char **argv;

char linebuf[1024];
char *gets();
char *fgets();
char dorc, dorc2, state;

float time, res;

float lsb, lsblast;

char *bin;

char type [3];
char duttype [2];
char *dec to bin();
char *all_ones();
FILE *ftime, *ftype, *fopen();

int MODE, BIT, FILEON, FILEARG, count;

1count = 1;

MODE = 0;

BIT = 32;

FILEON = 0;

FILEARG = 0;

if (argc>l){

switch (argv[1] [1]){

case 'm': {

/* (void)printf("got to argv[1] [1]= m\n");*/
if (argv[2] [0]=='m') {

MODE = 1;

BIT = 36;

}

if (argv[2][0]=='d') {

MODE = 2;

BIT = 36;

220

break;}
case 'b': {

/* (void)printf("got
BIT = atoi(argv[2]);
break;}

case 'f': {

/* (void)printf("got
FILEON = 1;

FILEARG = 2;

break;}}
switch (argv[1] [2]){

case 'm': {

to argv[l][1]= b\n"); */

to argv[1l[l]= f\n");*/

/* (void)printf("got to argv[l] [2]= m\n");*/

if (FILEARG!=O){

if (argv[FILEARG+2][0]=='m') {

MODE = 1;

BIT = 36;

}
if (argv[FILEARG+2][0]=='d')

MODE = 2;

BIT = 36;

else {

if (argv[3][0]=='m') MODE = 1;

if (argv[3][0]=='d') MODE = 2;

break;}
case 'b': {

/* (void)printf("got to argv[l] [2

if (FILEARG!=0){
BIT = atoi (argv[FILEARG+2]);}

else BIT = atoi (argv[3]);
break;}

case 'f': {

/* (void)printf("got to argv[l] [2

FILEON = 1;

FILEARG = 3;

break; } }
switch (argv[l] [3]){

case 'm': {

/* (void)printf("got to argv[

if (argv[FILEARG+2][0]=='m') MOE

if (argv[FILEARG+21[0]=='d') MOE

break;}
case 'b': {

/* (void)printf("got to argv[l] [3
BIT = atoi (argv[FILEARG+2]);
break;

case 'f': {

/* (void)printf("got to argv[1]
FILEON = 1;

FILEARG = 4;

break;))}}

]= b\n");*/

]= f\n"); */

1] [3]= m\n");*/
)E = 1;

)E = 2;

3]= b\n");*/

3]= f\n");*/['

221

* (void)printf("m: %i\tb: %i\tf: %i,%i\n", MODE, BIT, FILEON, FILEARG);
*/

if (FILEON == 1)

{
if ((ftime = fopen(argv[FILEARG], "w")) == NULL)
fprintf (stderr, "Cannot open %s\n", argv[1]);
if ((ftype = fopen(argv[FILEARG+1], "w")) == NULL)
fprintf (stderr, "Cannot open %s\n", argv[2]);

lsblast = 0;

if ((MODE == 1) I(MODE == 2)){
if (gets(linebuf) == NULL)fprintf (stderr, "%i: %s: invalid event de

scription format\n", lcount,linebuf);
if (strlen(linebuf) == 0)fprintf (stderr, "%i: %s: invalid event des

cription format\n", lcount,linebuf);
if (sscanf (linebuf, "resolution=%f", &res) == 1) {

if (res >= 1) (void)printf("resolution = %fps\n", res);
else fprintf (stderr, "%i: %s: invalid event description format\n"

lcount,linebuf);

else fprintf (stderr, "%i: %s: invalid event description format\n",
lcount,linebuf);}

for (;;)

{
if (gets(linebuf) == NULL) break;
if (strlen(linebuf) == 0) break;
if (sscanf (linebuf, "%c@%f", &state, &time) == 2) {
if ((state == 'X')II(state == 'x')) {
if (MODE == 0){

lsb = (time/0.0125);

if (sblast > lsb) printf ("%i: warning: event times are not well-
ordered\n", lcount);

lsblast = lsb;

bin = dec_to_bin(lsb,BIT);}
if (MODE == 1){

lsb = ((time/res)*1000);
/* (void)printf("lsb = %f\n", lsb);*/

if (sblast > lsb) printf ("%i: warning: event times are not well-
ordered\n", lcount);

lsblast = lsb;

bin = dec_to_bin(lsb,BIT);}
type[0] = '1';

type[1] = '0';

type[2] = '0';}

else fprintf (stderr, "%i: %s: invalid event description format\n", lcou
nt,linebuf);}

else if (sscanf (linebuf, "%c%c%c@%f",&dorc,&dorc2,&state, &time)=
=4) {

222

if (((dorc == 'D')II(dorc == 'd'))&&((dorc2 == 'O')II(dorc2 == 'o'))&&((

state == 'N') II(state == 'n'))) {

if (MODE == 0){

lsb = (time/0.0125);

if (lsblast > lsb) printf ("%i: warning: event times are not well-
ordered\n", lcount);

lsblast = lsb;

bin = dec_to_bin(lsb,BIT);}
if (MODE == 1){

lsb = ((time/res)*1000);

/* (void)printf("lsb = %f\n", lsb);*/

if (lsblast > lsb) printf ("%i: warning: event times are not well-
ordered\n", lcount);

lsblast = lsb;

bin = dec_to_bin(lsb,BIT);}
/* (void)printf ("drive on\n");*/

type[O] = '0';

type[1] = '0';

type[2] = '1';}

else fprintf (stderr, "%i: %s: invalid event description format\n", lcou
nt,linebuf);

else if (sscanf (linebuf, "%c%c@%f", &dorc, &state, &time) == 3) {

/* (void)printf ("time: %f\n", time);*/
if (MODE == 0){
lsb = (time/0.0125);

if (lsblast > lsb) printf ("%i: warning: event times are not well-
ordered\n", lcount);

lsblast = lsb;

bin = dec_to_bin(lsb,BIT);

}
if ((MODE == 1)II(MODE == 2)){

lsb = ((time/res)*1000);

/* (void)printf("lsb = %f\n", lsb);*/

if (lsblast > lsb) printf ("%i: warning: event times are not well-
ordered\n", lcount);

lsblast = lsb;

bin = dec_to_bin(lsb,BIT);

}
if (MODE == 2){

if (dorc == '0') duttype[0] = '0';

else if (dorc == '1') duttype[0] = '1';

if (state == '0') duttype[1] = '0';
else if (state == '1') duttype[1l] = '1';

else fprintf (stderr, "%i: %s: invalid event description format\n", lc
ount,linebuf); }

if ((MODE == 0)II(MODE == 1)){

if ((dorc == 'D') II(dorc == 'd'))

223

type[O] = '0';

else if ((dorc == 'S')II(dorc == 's')Il(dorc == 'T')Il(dorc == 't'))
type[O] = '1';

else fprintf (stderr, "%i: %s: invalid event description. format\n", lc
ount,linebuf);

if (state == '0'){

type[l] = '1';
type[2] = '0';

}
else if (state == '1'){

type[l] = '1';

type[2] = '1';

}
else if ((state == 'Z') I(state == 'z')){

type[l] = '0';

if ((dorc == 'D') I(dorc == 'd')) {
/* (void)printf ("drive z\n");*/

type[2] = '0';)

else if ((dorc != 'D')&&(dorc != 'd')) type[2] = '1';

}

else if ((state == 'X') I(state == 'x')){
type[l] = '0';

if ((dorc == 'D') I(dorc == 'd')) {

/* (void)printf ("drive x\n");*/
type[2] = '1';)

else if ((dorc != 'D')&&(dorc != 'd')) type[2] = '0';

else fprintf (stderr, "%i: %s: invalid event description format\n", lc
ount,linebuf);

}

else if (sscanf (linebuf, "%c%c%c", &dorc, &dorc2, &state) == 3) {

if (((dorc=='N') I(dorc=='n'))&&((dorc2=='O') I(dorc2=='o'))&&((state=='
P') (state=='p'))) {

bin = all_ones(BIT);
type[0] = '0';

type[1] = '0';

type[2] = '0';}

else fprintf (stderr, "%i: %s: invalid event description format\n", lcou
nt,linebuf); }

else fprintf (stderr, "%i: %s: 0 invalid event description format\
n", lcount,linebuf);

{

if (FILEON == 1){
fprintf (ftime, "%s\n", bin);
if (MODE == 2) fprintf (ftype, "%s\n", duttype);

else fprintf (ftype, "%s\n", type);

}
else {

if (MODE == 2) (void)printf ("%s\t%s\n", bin, duttype);

224

else (void)printf ("%s\t%s\n", bin, type);}

}

lcount = lcount+l;

char *dec_to_bin(input, length)
int length;

float input;

{

float divisor;
int count;

float power();
char *output = (char *) malloc(sizeof(char)*(length+l));

count = length;

while (count > 0)

{

divisor = power(2, count-l);
/* (void)printf ("dec: %f, divisor: %f ", input, divisor); */

if (input >= divisor)

{

input = input - divisor;
output [length - count] = '1';

/* (void)printf ("bit %d set to %c\n", (length-count), '1'); */

}
else {output [length - count] = '0';}

/* (void)printf ("bit %d set to %c\n", (length-count), '0'); */

count = count - 1;
}

/* (void)printf ("last dec: %f, divisor: %f\n", input, divisor); */

if (count >= length) fprintf(stderr, "error in dec_to_bin function");
/* (void)printf ("bin: %s\n", output); */
return output;

}

char *all_ones(length)
int length;

{
char *output = (char *) malloc(sizeof(char)*(length+l));

while (length > 0)

{
output [length-l] = '1';
length = length - 1;

}
return output;

float power(base, n)
int base, n;

225

float p;

if (n==O) return(1);
for (p = 1; n > 0; --n)

p = p* base;
return p;

}

226

G.2 S9000 Test Program Generator

1**1
/* verilog file for formatters characterization module test vectors generation */
/* works with Guru's environment */
/* Generates 4 .m9k vector files */
/* TESTCASE_O.m9k: 100Mhz test (1 clock per cycle)*/
/* TESTCASE_l.m9k, -- */
/* TESTCASE_2.m9k, I-> 300Mhz tests (3 clocks per cycle)*/
/* TESTCASE_3.m9k -- */
/* */
/* author :Didier Wimmers */
/*rev: 0.1 */
/* creation :08-04-93 */
/* date: 08-20-93 */
1**1

1******************************1
/* Pin list order in Pindef: */
1******************************1
/******************
clk =
clk_ =
clkcal =
clkcal_ =
cgO =
cgl =
cg2 =
cg3 =
tclk =
tclk_ =
tclkcal =
tclkcal_ =
tcgO =
tcgl =
tcg2 =
tcg3 =

dclk =
dclk_ =

rbus =
rs =
rtxc =
th2sel =

da =
db =
dc =
dd =
ca =
cb =
cc =
cd =

achia =
achia =
bcloa =
bcloa =
achib =
achib =
bclob =
bclob =

227

zin =
z in =
onin =
on in =
hiin =
hi =
loin =
lo in =

dhia =
dhia_ =
dinha =
dinha_ =
dhib =
dhib =
dinhb =
dinhb_ =

hspa =
hspa_ =
hspb =
hspb_ =

on_out =
on_out_=
z-out =
zout_ =
lo_out =
lo_out_ =
hi_out =
hi_out =

stfla =
stflb =
stflc =
stfld =

ptemp =
ntemp =
tempad =
tempbd =
tempar =
tempbr =

vbbd
vbbr =

'define FMTIO envdrive.s1.U2
wire [8*1:1] RBUS_CYCLE = (('FMTIO.R===8'hxx) ? "X" :(('FMTIO.RS[1]==O && 'FMTIO.RS[O]==O
& & 'FMTIO.RTXC==1) ? "R" : "W"));

integer file_stat[0:3];
reg [3:0] fno;
parameter size=1;

initial
begin
file_stat[0] = $fopen({TESTCASE,"_O.m9k" 1); if (file_stat[O] == 0) $finish;
end

initial
begin
for(f_no=0; fno<=size; f_no=fno+l)

228

begin
$fdisplay(file_stat[fno], "#include <fmt.pindef.h>\n");
$fdisplay(file_stat[f_no], "#pattern %s_%h", TESTCASE, f_no);
$fdisplay(file_stat[fno], "PINDEF_TABLE = fmt_pindef');
end

$fdisplay(file_stat[0], "TIMING = tim200\n");

for(fno=l; fno<=size; f_no=f_no+l)
begin
$fdisplay(file_stat[f_no], "TIMING = tim_fastl\n");
end

for(fno=0; fno<=0; fno=f_no+l)
begin
$fdisplay(file_stat[f_no], "#include <fmt.vecdef.h>");
$fdisplay(file_stat[fno], "\n");
$fdisplay(file_stat[f_no], ";Pindef Type: I=input O=output B=input/output");
$fdisplay(file_stat[f_no], "; I I 0 0 11I 11 0 0 1O 1 0 0 BBB I O
0000000000000000000OOOOOOOOOOII");
$fdisplay(file_stat[f_no], "; ---

$fdisplay(file_stat[f_no], "; C C C C C C C C T T T T T T T T D D RRR R R T DDDDDD DDDDDD
DDDDDD DDDDDD CCCCCC CCCCCC CCCCCC CCCCCC A A B B A A B B Z Z O O H H L L H H I
IHHIIHHHHOOZZLLHH S S S S PNTT TTV V");
$fdisplay(file_stat[f_no], "; L L K K G G G G L L K K C C C C C C BBB S T H AAAAAA BBBBBB
CCCCCC DDDDDD AAAAAA BBBBBB CCCCCC DDDDDD C C C C C C C C I I N N I I O O I I N N I
INHSPSPNNOOOOIITTTT TTPPPPB B");
$fdisplay(file_stat[f_no], "; K K L L 0 1 2 3 K K L L G G G G L L UUU X 2 543210 543210 543210
543210 543210 543210 543210 543210 H H L L H H L L N N I I I I I I A A H A B B H B P A P B O O U
TOOOOFFFFMMAB A D B B");
$fdisplay(file_stat[f_no], "; ---- 0 1 2 3 - SSS C A - A -B - B -- N -N -N - -A - -B - A -B - T -T - T -
T-ABCDPPDDRRDR");
$fdisplay(file_stat[f_no], "%s%h_start;",TESTCASE, f_no);
end

end

/***1
event firstpartcaptured;

reg [31:0] count;
reg clk;
reg clk_;
reg clkcal, clkcall, clkcal2, clkcal3;
reg clkcal_, clkcal_l, clkcal_2, clkcal_3;
reg cgO;
reg cgl;
reg cg2;
reg cg3;
reg tclk;
reg tclk_;
reg tclkcal, tclkcall, tclkcal2, tclkcal3;
reg tclkcal_, tclkcal_l, tclkcal2, tclkcal_3;
reg tcg0;
reg tcgl;
reg tcg2;
reg tcg3;
reg dclk, dclkl, dclk2, dclk3;
reg dclk_, dclk_l, dclk_2, dclk_3;

reg [7:0]rbus, rbusl, rbus2, rbus3;
reg[8* 1:1]rbus_cycle, rbus_cycle 1, rbus_cycle2, rbus_cycle3;

229

reg [1 :O]rs, rsl, rs2, rs3;
reg rtxc, rtxcl, rtxc2, rtxc3;
reg th2sel, th2sell, th2sel2, th2sel3;

reg [5:0]da, dal, da2, da3; llto be changed (Binary?)
reg [5:0]db, dbl, db2, db3;
reg [5:0]dc, dcl, dc2, dc3;
reg [5:0]dd, ddl, dd2, dd3;
reg [5:0]ca, cal, ca2, ca3;
reg [5:0]cb, cbl, cb2, cb3;
reg [5:0]cc, ccl, cc2, cc3;
reg [5:0]cd, cdl, cd2, cd3;

reg achia, achial, achia2, achia3;
reg achia_, achia_l, achia_2, achia_3;
reg bcloa, bcloal, bcloa2, bcloa3;
reg bcloa_, bcloa_l, bcloa_2, bcloa_3;
reg achib, achibl, achib2, achib3;
reg achib_, achib_l, achib_2, achib_3;
reg bclob, bclobl, bclob2, bclob3;
reg bclob_, bclob_l, bclob_2, bclob_3;

reg zin, zinl, z_in2, z_in3;
reg z_in_, , z_in_ 2, zin_3;
reg onin, oninl, onin2, onin3;
reg onin_, onin_l, on in_2, onin_3;
reg hi_in, hiinl, hi_in2, hiin3;
reg hi_in_, hi_in_l, hi_in_2, hiin_3;
reg lo_in, lo_inl, loin2, loin3;
reg loin_, loin_l, loin_2, loin3;

reg dhia, dhial, dhia2, dhia3;
reg dhia_, dhia_l, dhia_2, dhia_3;
reg dinha, dinhal, dinha2, dinha3;
reg dinha_, dinha_l, dinha_2, dinha_3;
reg dhib, dhibl, dhib2, dhib3;
reg dhib_, dhib_l, dhib_2, dhib_3;
reg dinhb, dinhbl, dinhb2, dinhb3;
reg dinhb_, dinhb_l, dinhb_2, dinhb_3;

reg hspa, hspal, hspa2, hspa3;
reg hspa., hspal, hspa_2, hspa_3;
reg hspb, hspbl, hspb2, hspb3;
reg hspb_, hspb_l, hspb_2, hspb3;

reg on_out, on_outl, on_out2, on_out3;
reg on_out_, on_out_l, on_out2, on_out_3;
reg z_out, zoutl, zout2, zout3;
reg zout, z_out_l, zout2, z_out_3;
reg loout, looutl, lo_out2, loout3;
reg lo_out_, lo_out_l, io_out_2, loout_3;
reg hiout, hi_outl, hi_out2, hi_out3;
reg hi_out_, hi_outl, hi_out_2, hiout_3;

reg stfla, stflal, stfla2, stfla3;
reg stflb, stflbl, stflb2, stflb3;
reg stflc, stflcl, stflc2, stflc3;
reg stfld, stfldl, stfld2, stfld3;

reg ptemp;
reg ntemp;
reg tempad;
reg tempbd;
reg tempar;

230

reg tempbr;

reg vbbd;
reg vbbr;

initial
begin
count = 1;
end

always @(posedge 'FMTIO.CLK)
#(envdrive.GLOBAL_CLK_PERIOD*O.OO) //strobe inputs @ CLK leading edge //strobe also dclk
begin

clk ='FMTIO.CLK;
clk_ = 1-clk;
clkcal = 0;
clkcal_ = 1;
cgO = 1;
cgl = 1;
cg2 = 1;
cg3 = 0;
tclk = clk;
tclk_ = 1-clk;
tclkcal = 0;
tclkcal_ = 1;
tcg0 = 1;
tcgl = 1;
tcg2 = 1;
tcg3 = 0;
dclk = clk;
dclk_ = 1-clk;

II rbus = 'FMTIO.R;
rbus = (('FMTIO.R===8'hxx) ? 8'hOO :'FMTIO.R);
rbus_cycle= RBUSCYCLE;
rs = (('FMTIO.RS===2'bxx) ? 2'b10O: 'FMTIO.RS);
rtxc = (('FMTIO.RTXC===l'bx) ? l'bO: 'FMTIO.RTXC);
th2sel = (('FMTIO.THBSEL===I'bx) ? l'bO: 'FMTIO.THBSEL);

da = (('FMTIO.DA===6'bxxxxxx) ? 6'hOO: 'FMTIO.DA);
db = (('FMTIO.DB===6'bxxxxxx) ? 6'hOO: 'FMTIO.DB);
dc = (('FMTIO.DC===6'bxxxxxx) ? 6'hOO: 'FMTIO.DC);
dd = (('FMTIO.DD===6'bxxxxxx) ? 6'hOO: 'FMTIO.DD);
ca = (('FMTIO.CA===6'bxxxxxx) ? 6'hOO: 'FMTIO.CA);
cb = (('FMTIO.CB===6'bxxxxxx) ? 6'h00: 'FMTIO.CB);
cc = (('FMTIO.CC===6'bxxxxxx) ? 6'hOO: 'FMTIO.CC);
cd = (('FMTIO.CD===6'bxxxxxx) ? 6'hOO: 'FMTIO.CD);

achia =(('FMTIO.ACHA===l'hx) ? 0: 'FMTIO.ACHA);
achia_ = 1 - achia;
bcloa =(('FMTIO.BCLA===l'hx) ? 0: 'FMTIO.BCLA);
bcloa_ = 1 - bcloa;
achib =(('FMTIO.ACHB===l'hx) ? 0: 'FMTIO.ACHB);
achib_ = 1 - achib;
bclob =(('FMTIO.BCLB===I'hx) ? 0: 'FMTIO.BCLB);
bclob_ = 1 - bclob;
z_in = (('FMTIO.SETZIN===I'bx) ? 0: 'FMTIO.SETZIN);
z_in_ = 1 - zin;
on_in = (('FMTIO.SETONIN===I'bx) ? 0: 'FMTIO.SETONIN);
on_in_ = 1 - on_in;
hi_in = (('FMTIO.SETHIIN===1'bx) ? 0: 'FMTIO.SETHIIN);
hi_in_ = 1 - hiin;
lo_in = (('FMTIO.SETLOIN===l'bx) ? 0: 'FMTIO.SETLOIN);

231

lo in_ =1 - lo_in;

#(envdrive.GLOBAL_CLK_PERIOD*0.95); II time is now 95% of GLOBAL_CLK_PERIOD after CLK's
posedge. Strobe outputs
dhia = 'FMTIO.DHIA;
dhia_ = 1 - dhia;
dinha = 'FMTIO.DINHA;
dinha_ = 1 - dinha;
dhib = 'FMTIO.DHIB;
dhib_ = 1 - dhib;
dinhb = 'FMTIO.DINHB;
dinhb_ = 1 - dinhb;

hspa = 'FMTIO.TMUA;
hspa_ = 1 - hspa;
hspb = 'FMTIO.TMUB;
hspb_ = 1 - hspb;

on_out = 'FMTIO.SETONOUT;
on_out_ = 1 - on_out;
z_out = 'FMTIO.SETZOUT;
zout_ =1- z_out;
lo_out = 'FMTIO.SETLOOUT;
lo_out_ = 1 - lo_out;
hi_out = 'FMTIO.SETHIOUT;
hi_out_ = 1 - hi_out;

stfla = 'FMTIO.STFLA;
stflb = 'FMTIO.STFLB;
stflc = 'FMTIO.STFLC;
stfld = 'FMTIO.STFLD;

ptemp = 0;
ntemp = 0;
tempad = 0;
tempbd = 0;
tempar =0;
tempbr = 0;

vbbd = 0;
vbbr = 0;

#(envdrive.GLOBAL_CLK_PERIOD*0.01); II time is now 96% of GLOBAL_CLKPERIOD after CLK's
posedge
-> firstpartcaptured;

end

always @(firstpart_captured)
begin
#(envdrive.GLOBALCLK_PERIOD*0.0);

$fstrobeh(file_stat[0],
"INC ","TSNORM"," {",
clk,,clk_,,clkcal,,clkcal_,,count[0],,count[O],,"0",,"0",,,
tclk,,tclk_,,tclkcal,,tclkcal_,,count[], ,count[O], ,"0", ,"0",,,

dclk,,dclk_,,
"%s",rbus_cycle,rbus,,rs,,rtxc, ,th2sel,,,
"%b",da,,"%b",db,," %b",dc,,"%b",dd,,"%b",ca,,"%b",cb,,"%b",cc,,"%b",cd,,,
achia,,achia_,,bcloa,,bcloa_,,achib,,achib_,,bclob,,bclob,,,
zin,,zin_,,onin,,on_in_,,in,,n_ ,,lo_hiin,,lo_in,,in,,,
dhia,,dhia_,,dinha,,dinha_,,dhib,,dhib_,,dinhb,,dinhb_,,,
hspa,,hspa_,,hspb,,hspb,,,
on_out,,on_o out_,,z_out,,z_ ,loout,,lo_ouL, ,hiout,,hiout_,,,

232

stfla,,stflb,,stflc,,stfld,,,
ptemp, ,ntemp, ,tempad, ,tempbd, ,tempar, ,tempbr,,,
vbbd,,vbbr,
"}1);

count = count + 1;
end

233

G.3 Fault Dictionary Database Builder

!/usr/local/bin/perl

dbmopen(HIST1, 'failclock.db', 0666) 11 die "can't dbmopen failclock.db";
dbmopen(HIST2, 'failsig.db', 0666) 11 die "can't dbmopen failsig.db";
dbmopen(HIST3, 'failtest.db', 0666) 11 die "can't dbmopen failtest.db";
dbmopen(HIST4, 'failcs.db', 0666) 11 die "can't dbmopen failcs.db";
dbmopen(HIST5, 'failgate.db', 0666) 11 die "can't dbmopen failgate.db";
dbmopen(HIST6, 'failct.db', 0666) 11 die "can't dbmopen failct.db";

while(<>){
split;
if ($_[7]=-/fail/){
$clock = $_[5];
$test = $_[9].":".$_[11];
$sig = "$_[13]$_[15]$_[17]$_[19]$_[21]";
if (($_[2]>=482)&&($sig=/^00000000x000001 111111 1$/)) {
$sig=$sig."b";

$gate = "$_[2]:$_[4]";
$contentl = "$_[2]:$_[4]";
$content2 = "$_[2]:$_[4]";
$content3 = "$_[2]:$_[4]";
$content4 = "$_[2]:$_[4]";
$content5 = "$test:$clock:$sig";
$content6 = $test;
if (($_[2]>=372)&&($clock==91)) {
$clock=$clock."b";
I
if($HISTI {$clock}){
$contentl = $HISTI {$clock ." ".$contentl;
I
if($HIST2{ $sig })
$content2 = $HIST2{$sig} ." ".$content2;
}
if($HIST3 { $test.":".$sig) {
$content3 = $HIST3 {$test.":".$sig} ." ".$content3;
}
if($HIST4{"$clock:$sig") {
$content4 = $HIST4{"$clock:$sig"I ." ".$content4;
}
if($HIST5 {$gate}){
$content5 = $HIST5 {$gate}." ".$content5;

if($HIST6{ $clock) {
if ($HIST6{$clock} !=$content6){
$content6 = $HIST6{$clock}." ".$content6;
I

print "$clock = $content\n";
$HIST1 {$clock} = $contentl;
$HIST2{$sig} = $content2;
$HIST3{$test.":".$sig = $content3;
$HIST4{"$clock:$sig"} = $content4;
$HIST5{$gate} = $content5;
$HIST6{$clock} = $content6;
}}

dbmclose(HIST1);
dbmclose(HIST2);
dbmclose(HIST3);
dbmclose(HIST4);
dbmclose(HIST5);

234

dbmclose(HIST6);

G.4 Fault Dictionary Database Query

!/usr/local/bin/perl

$outfile = "possible_gates";
if($#ARGV == 0){
$clock = $ARGV[0];
} elsif($#ARGV >=1){
$argset = $ARGV[0];
I
if($argset=-/^-c$/){
$clock = $ARGV[1];
I if($argset=/^-t$/)
$test = $ARGV[1];
I if($argset=/A-ct$/){
$clock = $ARGV[1];
} if($argset=~/^-s$/){
$sig = $ARGV[1];
I if($argset=/^-cs$/){
$clock = $ARGV[1];
$sig = $ARGV[2];
I if($argset=-/^-cf$/){
$clock = $ARGV[1];
} if($argset=/A-tsf$/){
$test = $ARGV[1];
$sig = $ARGV[2];
$outfile = $ARGV[3];
I if($argset=-/A-ts$/){
$test = $ARGV[1];
$sig = $ARGV[2];
I if($argset=-/A-sf$/){
$sig = $ARGV[1];
$outfile = $ARGV[2];
I if($argset=~/A-csf$/){
$clock = $ARGV[1];
$sig = $ARGV[2];
$outfile = $ARGV[3];
}

open(OUT_FH, ">$outfile");
open(ERR_FH, ">>errors");
dbmopen(HIST1, 'failclock.db', 0666) 11 die "can't dbmopen failclock.db";
dbmopen(HIST2, 'failsig.db', 0666) 11 die "can't dbmopen failsig.db";
dbmopen(HIST3, 'failtest.db', 0666) 11 die "can't dbmopen failtest.db";
dbmopen(HIST4, 'failcs.db', 0666) 11 die "can't dbmopen failcs.db";
dbmopen(HIST5, 'failgate.db', 0666) 11 die "can't dbmopen failgate.db";
dbmopen(HIST6, 'failct.db', 0666) 11 die "can't dbmopen failct.db";

if (($argset=/^-cs$/)ll($argset=-/^-csf$/)){
if ($HIST4 {"$clock:$sig") {
foreach $record (split(/ /,$HIST4{"$clock:$sig"))){
split(/:/,$HIST5 {$record });
print OUT_FH "$record\t->\t$_[0]\t$_[1]\t$_[2]\t$_[3]\n"; } }

if (($clock==91)&&($sig!=/00000000x000001 111111 $/)){
foreach $record (split(/ /,$HIST4{$clock."b:".$sig})){
split(/:/,$HIST5 {$record});
print OUT_FH "$record\t->\t$_[0]\t$_[1]\t$_[2]\t$_[3]\n"; } }

if (($clock!=91)&&($sig=-/A00000000x0000O 111111 1$/)){
foreach $record (split(/ /,$HIST4{$clock.":".$sig."b")){
split(/:/,$HIST5 {$record });
print OUTFH "$record\t->\t$_[0]\t$_[1]\t$_[2]\t$_[3]\n"; } }

235

if (($clock==91)&&($sig=/^00OOOOOOOOxO0000 111111 1$/)){
foreach $record (split(/ /,$HIST4{$clock."b:".$sig."b" })){
split(/:/,$HIST5 { $record });
print OUT_FH "$record\t->\t$_[0]\t$_[1]\t$_[2]\t$_[3]\n"; } } I

elsif (($argset=l/^-c$/)ll($argset=-/A-cf$/))
if ($HIST {$clock}){
foreach $record (split(/ /,$HIST1 {$clock})){
split(/:/,$HIST5 {$record });
print OUT_FH "$record\t->\t$_[O]\t$_[l]\t$_[2]\t$_[3]\n"; } }
if ($clock==91){
foreach $record (split(/ /,$HIST1 {$clock."b"))){
split(/:/,$HIST5 { $record});
print OUT_FH "$record\t->\t$_[0]\t$_[]\t$_[2]\t$_[3]\n"; } } }

elsif (($argset=~/^-s$/)l11($argset=~/A-sf$/)) {
if ($HIST2{ $sig}){
foreach $record (split(/ /,$HIST2{$sig})){
split(/:/,$HIST5 {$record });
print OUT_FH "$record\t->\t$_[0]\t$_[1]\t$_[2]\t$_[3]\n";
II

if ($sig=-/^00000000ox00000oo1 1 1 1$/){
foreach $record (split(//,$HIST2{$sig."b" })){
split(/:/,$HIST5 {$record);
print OUT_FH "$record\t->\t$_[O0]\t$_[1]\t$_[21\t$_[31\n"; } } }

elsif (($argset=/-ct$/)11($argset=/^-ctf$/))
if ($HIST6{$clock}){
foreach $record (split(/ /,$HIST6{$clock})){
print OUT_FH "$record\n";

if ($clock==91){
foreach $record (split(/ /,$HIST3{$clock."b" })){
print OUT_FH "$record\n"; } } }

elsif (($argset=~/A-ts$/)11($argset=~/A-tsf$/)){
if ($HIST3 {$test.":".$sig}){
foreach $record (split(/ /,$HIST3{$test.":".$sig })){
split(/:/,$HIST5 {$record });
print OUT_FH "$record\t->\t$_[0]\t$_[1]\t$_[2]\t$_[3]\n";
II

if ($sig=/^00000000x000001 111 1 1 1$/){
foreach $record (split(/ /,$HIST3 {$test.":".$sig."b"})){
split(/:/,$HIST5 {$record });
print OUT_FH "$record\t->\t$_[0]\t$_[1]\t$_[2]\t$_[3]\n";} } })

dbmclose(HIST1);
dbmclose(HIST2);
dbmclose(HIST3);
dbmclose(HIST4);
dbmclose(HIST5);
dbmclose(HIST6);
close OUTFH;
close ERR_FH;

236

distance_final.outl Tue May 3 05:42:31 1994

/* see file: analyzedistance.com for data preparation */

/* calcualte each measurement's difference from its mean */
data dis2;
set distance;
MDISBG = DISBG - 4.4756831;
MDIS_TR = DIS_TR - 4.4870583;
MDISEUD = DIS_EUD - 4.5400638;
MDIS_SHT = DIS_SHT - 5.0866029;

MST_BG = MDIS_SHT - MDIS_BG;
MST_TR = MDIS_SHT - MDIS_TR;
MST_EUD = MDIS_SHT - MDIS_EUD;

run;

proc means data=dis2 mean stderr t prt;
var MST_EUD MST_TR MST_BG;
title 'Paired Comparisons T Test';

run;

Paired Comparisons T Test

Variable Mean Std Error T Prob>ITI

MST_EUD 6.2112933E-8 0.0136398 4.5537992E-6 1.0000
MST_TR 2.6593807E-8 0.0135057 1.9690868E-6 1.0000
MSTBG 5.428051E-8 0.0132487 4.0970309E-6 1.0000
_..

