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Abstract
In this thesis, we address the problem of optimizing sequential logic circuits for low
power. We present a powerful optimization method that selectively precomputes the
outputs of the circuit one clock cycle before they are required and uses the precom-
puted values to reduce switching activity in the next clock cycle. We present different
precomputation architectures that exploit this observation.

The primary optimization step is the synthesis of the precomputation logic, which
computes the output values of the circuit for a subset of input conditions. If the
output values can be precomputed, the original logic circuit can be "turned off" in
the next clock cycle and, thus, has substantially reduced switching activity. The size
of the precomputation logic determines the power dissipation reduction, area increase
and delay increase relative to the original circuit.

Given a sequential logic circuit, we present an automatic method of synthesizing
precomputation logic so as to achieve maximum reductions in power dissipation.
We present experimental results on various sequential circuits. Up to 60 percent
reductions in power dissipation are possible with marginal increases in circuit area
and delay.

Thesis Supervisor: Srinivas Devadas
Title: Associate Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Average power dissipation has recently emerged as an important parameter in the

design of general-purpose as well as application-specific integrated circuits. Portable

systems that operate on a battery, such as cellular telephones, personal digital as-

sistants, and laptop computers, are the driving force behind low power electronics.

Since these systems are portable, strict requirements are placed on their size, weight,

and power. Furthermore, battery lifetime becomes a critical issue as it determines the

usefulness of the system, and ultimately its acceptance and success in the mass mar-

ket. The integrated circuits in battery operated systems, therefore, must efficiently

consume power.

In the case of general-purpose circuits, such as microprocessors for personal com-

puters and workstations, power is also becoming a critical factor. With technology

dimensions decreasing, more circuits and functionality are being added onto a single

chip. In addition, clock frequencies are being increased at staggering rates. These

technology trends have a cumulative effect on power dissipation, and in order to

continue them, power consumption must be taken into account during design. Fur-

thermore, integrated circuits require more sophisticated packaging if they dissipate

large amounts of power. The circuits may also require heat sinks in order to operate

efficiently and reliably. All of these combine to increase the most important param-
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eter of the product, its cost. The electronics that integrate complex functions and

require high throughputs must be carefully designed and optimized for low power in

order to be economical and reliable.

Optimization for low power can be applied at many different levels of the design

hierarchy. For instance, algorithmic and architectural transformations can trade-off

throughput, circuit area, and power dissipation [5]. Logic optimization methods have

been shown to have a significant impact on the power dissipation of combinational

logic circuits [17]. At the circuit and layout levels, transistors can be sized to improve

the power-delay product [18]. In addition, wire and driver sizing can reduce the power

consumed by interconnect while maintaining delay constraints [6]. Furthermore, scal-

ing technology parameters such as supply and threshold voltages can substantially

reduce power dissipation [5]. To effectively optimize designs for low power, however,

accurate power estimation methods must be developed and used.

In Complementary Metal Oxide Semiconductor (CMOS) circuits, the probabilis-

tic average switching activity is a good measure of the average power dissipation of

the circuit. Several methods to estimate power dissipation for CMOS combinational

circuits based on measuring the average switching activity have been developed (e.g.

[8, 13]). More recently, efficient and accurate methods of power estimation for se-

quential circuits have been developed [12].

In this thesis, we are concerned with the problem of optimizing sequential logic

circuits for low power. Previous work in the area of sequential logic synthesis for low

power has focused on state encoding [15] and retiming [11] algorithms. We present

a powerful optimization method that is based on selectively precomputing the output

values of the circuit one clock cycle before they are required, and using the precom-

puted values to reduce switching activity in the next clock cycle.

The primary optimization step is the synthesis of the precomputation logic, which

computes the outputs for a subset of input conditions. If the output values can be

precomputed, the original logic circuit can be "turned off" in the next clock cycle

11



and, hence, will have substantially reduced switching activity. Since the savings in

the power dissipation of the original circuit is offset by the power dissipated in the

precomputation phase, the selection of the subset of input conditions for which the

output is precomputed is critical. The precomputation logic adds to the circuit area

and can also result in an increased clock period.

Given a sequential logic circuit, we present an automatic method of synthesizing

the precomputation logic so as to achieve a maximum reduction in power dissipation.

We present examples and experimental results on various sequential circuits. For

some datapath circuits, 60 percent reductions in power dissipation are possible with

marginal increases in circuit area and delay.

We begin, in Chapter 2, by introducing some terminology pertaining to Boolean

functions. In Chapter 3, we describe how we accurately and efficiently estimate the

power dissipated in CMOS combinational and sequential logic circuits. In Chapter

4, we describe precomputation architectures, and we give examples of circuits that

use precomputation. An algorithm that synthesizes precomputation logic in order

to achieve the maximum reduction in power dissipation is described in Chapter 5.

We also present an algorithm that gives the best power reduction in multiple-output

functions. In Chapter 6, we give examples of circuits that are precomputable, but

for which the precomputation logic cannot be determined using our algorithms. We

also describe some additional precomputation architectures. One architecture, for

instance, applies precomputation to combinational logic circuits. Multiple-cycle pre-

computation, which shows how powerful precomputation-based optimization can be,

is described in Chapter 7. Experimental results for datapath as well as random logic

sequential circuits are given in Chapter 8.

12



Chapter 2

Preliminaries

2.1 Introduction

We introduce terminology that we need in the power estimation and optimization

methods described in subsequent chapters. In Section 2.2, we give some definitions

pertaining to Boolean functions. We describe how logic functions can be represented

graphically using Binary Decision Diagrams in Section 2.3.

2.2 Definitions

A Boolean function f of n input variables, xl,., x,, and of m output variables,

fil,'', fm, is a mapping f : Bn - Bm, where B = {O, 1}n and B' = {0, 1}m. For

each output fi of f, the ON-set can be defined to be the set of inputs x such that

fi(x) = 1. Similarly, the OFF-set is the set of inputs x such that fi(x) = 0. A

function in which m = 1 is a single-output function, and a function with m > 1 is a

multiple-output function.

The support of f, denoted as support(f), is the set of all variables xi that occur

in f as xs or i. For example, if f = x. *2 + X3, then support(f) = {x 1, x 2, x3}.

The cofactor of a function f with respect to a variable xi, denoted as f.i, is defined
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as:

fi = f(l '',*Xi-ll, i i+l, ',Xn) (2.1)

Likewise, the cofactor of a function f with respect to a variable xi, denoted as f, is

defined as:

fr = f(x, 7... ,xi-,0, Xi+l, , Xn) (2.2)

The Shannon expansion of function around a variable zi is given by:

f = xi .f, + . f (2.3)

2.3 Binary Decision Diagrams

A Binary Decision Diagram (BDD) [1, 10] is a rooted, directed graph with vertex

set V containing two types of vertices. A nonterminal vertex v has as attributes an

argument index index(v) E {1,- , n} and two children low(v), high(v) E V. A

terminal vertex v has as an attribute a value value(v) E {0, 1}).

The correspondence between BDDs and Boolean functions is defined as follows:

a BDD G having root vertex v denotes a function f, defined recursively as:

1. If v is a terminal vertex:

(a) If value(v) = 1, then f, = 1.

(b) If value(v) = 0, then f, = 0.

2. If v is a nonterminal vertex with index(v) = i, then f is the function:

fv(x1, ... n) = 7 fo(v)(x," .., ,) + xi fhigh(v)(x1,'.. ,n) (2.4)

where xi is the decision variable for vertex v.

Ordered BDDs (OBDDs) have a restriction such that for any nonterminal vertex v,

if low(v) is also nonterminal, then index(v) < index(low(v)). Similarly, if high(v) is

also nonterminal, then index(v) < index(high(v)). From these conditions, it is easy

14



f=a.b
Ordering : a=l, b=2

* 0

Odd Parity Function

f=a+b
Ordering:a=l, b=2

Figure 2-1: Examples of Ordered Binary Decision Diagrams

to see that an OBDD is an acyclic graph. The OBDDs for some simple functions are

shown in Figure 2-1. Terminal vertices are represented as squares, while nonterminal

vertices are represented as circles. The low child is pointed to by the arrow marked

0, and the high child is pointed to by the arrow marked 1.

Reduced OBDDs (ROBDDs) as proposed in [4] are a minimal OBDD representa-

tion for a given function and are defined as follows:

Definition 2.1 An OBDD G is reduced if it contains no vertex v with low(v) =

high(v) nor does it contain distinct vertices v and w such that the subgraphs rooted

15



by v and w are isomorphic.

In [4], it is also proved that an ROBDD is a canonical representation of a Boolean

function. We use ROBDDs to represent logic functions in our power estimation and

optimization methods.

16



Chapter 3

Power Estimation

3.1 Introduction

Before we can optimize a circuit for low power, we need to accurately and efficiently

estimate the power that the circuit dissipates. In Section 3.2, we describe a simple

model that estimates the dynamic power of a CMOS logic gate. Methods to efficiently

determine the power in combinational logic circuits are described in Section 3.3.

Finally, in Section 3.4, an accurate method to determine the power in sequential

circuits is presented.

3.2 A Power Dissipation Model

In a simple model, the energy dissipated in a CMOS circuit is directly related to the

switching activity. In particular, the assumptions are:

* The only capacitance in a CMOS logic gate is at the output node of the gate.

* Current is flowing either from VDD to the output capacitor, or from the output

capacitor to ground.
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* Any change in the gate's output voltage is a change from VDD to ground, or

vice-versa.

All of these are reasonably accurate assumptions for well-designed CMOS gates

[9] and they imply that the energy dissipated by a CMOS gate each time its output

changes is approximately equal to the change in energy stored in the. gate's output

capacitance. If the gate is part of a synchronous digital system controlled by a global

clock, it follows that the average power dissipated by the gate is given by:

Pavg = 0.5 X Cload X Vdd f x E(transitions) (3.1)

where Pag denotes the average power, Cload is the load capacitance, Vdd is the supply

voltage, fy, is the global clock frequency, and E(transitions) is the expected value

of the number of gate output transitions per clock cycle [13], or, equivalently, the

average number of gate output transitions per clock cycle. All of the parameters in

Equation 3.1 can be determined from the technology or circuit layout information

except E(transitions), which depends on the logic function being performed and the

statistical properties of the primary inputs. Equation (3.1) is used by the power

estimation techniques such as [8, 13] to relate switching activity to power dissipation.

In the optimization method presented in this thesis, we assume that Clomd, Vdd,

and f are fixed, and we target the quantity E(transitions), also known as the

switching activity, to minimize the average power dissipation. In the following section,

we describe how we compute E(transitions).

3.3 Power Estimation of Combinational Circuits

The combinational logic estimation techniques summarized in this section were orig-

inally developed in [8].

18



3.3.1 Estimating Switching Activity

A logical function implemented by a gate gi in a circuit is denoted as fi. The prob-

ability of the function fi being a 1 is pn, and the probability of fi being a 0 is

1 _ pone

In the case of static CMOS circuits, the application of a vector pair (I0, It) causes

transitions to occur at gate outputs. Assuming a zero-delay model, each gate in a

CMOS circuit can make at most one transition, either from low to high or from high

to low, upon the application of a vector pair. In a zero-delay model, all gates switch

instantaneously. If the vectors applied are uncorrelated, then the probability that the

gate gi makes a low to high transition is (1 - pone)pone. Similarly, the probability of a

high to low transition is pone(l - pine). Hence, the expected number of transitions is:

E(transitions) = 2pie(1 -pne) (3.2)

In the case of a CMOS circuit with arbitrary gate delays, a gate may make multiple

transitions, in other words glitch, on the application of a vector pair. In that case,

E(transitions) could be greater than 1.

3.3.2 Symbolic Simulation

Given a combinational logic function and the static probabilities of the inputs i.e., the

probability of the input being a 0 and the probability of the input being a 1, symbolic

simulation can be used to calculate the average switching activity at each gate in the

circuit. Once the switching activity is known, the average power dissipated can be

computed using Equation 3.1. The total average power of the circuit is the sum of

the average power dissipated by each gate in the circuit.

In symbolic simulation, we construct a Boolean function representing the logical

value at a gate output for each time point. For instance, we compute the functions

f:(t) and f(t + 1) for a particular gate gi i.e., the value of the function at time t and

at time t + 1. The Boolean condition that corresponds to a 0 -- 1 transition on gi

19



between times t and t + 1 is represented by the function fi(t) fi(t + 1). Therefore, the

probability of a 0 - 1 transition occurring between time t and t + 1 is the probability

of the Boolean function fi(t) fi(t + 1) evaluating to a 1. Similarly, a 1 -+ 0 transition

on g, can be represented by the function f(t) fi(t + 1). Hence, the probability of

the node making a transition between times t and t + 1 is the probability of

fi(t) . fi(t + 1) + f(t). fA(t + 1) = fi(t) f(t + 1) (3.3)

being a 1, where stands for the exclusive-or operator. These probabilities can be

evaluated exactly using BDDs which represent the symbolic simulation equations. For

each gate, the probabilities of transitions occurring at each time point are evaluated,

and these probabilities are summed over all the time points to obtain the average

switching activity.

For a general delay model, symbolic simulation takes into account the correlation

due to reconvergence of input signals and accurately measures switching activity.

3.4 Power Estimation of Sequential Circuits

The sequential logic estimation techniques summarized here were originally presented

in [12].

Power and switching activity estimation for sequential circuits is significantly more

difficult than combinational circuits because the probability of the circuit being in

any of its possible states has to be computed. As an example, consider the sequential

circuit of Figure 3-1. When a vector pair (vl, v2) is applied to the combinational logic,

it is composed of a primary input part and a present state part, namely (il@sl, i2@s2).

Given ilsl, the next state s2 is uniquely determined by the functionality of the

combinational logic. This correlation between the vector pairs has to be taken into

account in accurate, sequential switching activity estimation.

20



Primary
Inputs

Primary
Outputs

Figure 3-1: A Synchronous Sequential Circuit

3.4.1 Modeling Correlation

To model the correlation between two vectors in a sequential circuit, the combina-

tional estimation method described in Section 3.3 has to be augmented. This is

summarized in Figure 3-2.

Figure 3-2 shows the block corresponding to the symbolic simulation equations

for the combinational logic part of the general sequential circuit shown in Figure 3-1.

The symbolic simulation equations have two sets of inputs, namely (IO, It) for the

primary inputs and (PS, NS) for the present state lines. However, given IO and PS,

NS is determined by the functionality of the combinational logic. This is modeled

by prepending the next state logic to the symbolic simulation equations.

The configuration of Figure 3-2 implies that the switching activity can be deter-

mined given the vector pair (IO, It) for the primary inputs and PS for the state lines.

Therefore, to compute the switching activity, we require the static probabilities for

the primary input and the present state lines.

21



PS,

PS 2

PSN

Figure 3-2: Modeling Correlation in a Sequential Circuit

3.4.2 State Probability Computation

The static probabilities for the present state lines marked PS in Figure 3-2 are also

correlated. Knowledge of present state probabilities as opposed to present state line

(PS) probabilities is required. The state probabilities depend on the connectivity

of the State Transition Graph (STG) of the circuit and can be computed using the

Chapman-Kolmogorov equations for discrete-time Markov Chains [14]. This method

is described below.

For each state si, 1 < i < K in the STG, a variable prob(si) corresponds to the

steady-state probability of the machine being in state si at t = oo. For each edge e in

the STG, e.Current signifies the state that the edge fans out from, e.Next signifies

the state that the edge fans out to, and e.Input signifies the input combination

corresponding to the edge. Given static probabilities for the primary inputs to the

machine, prob(Input), the probability of the combination Input occurring, can be

22



0/0

0/1 0/o

1/1

Figure 3-3: A State Transition Graph

computed as follows:

prob(e.Input) = prob(e.Current) x prob(Input) (3.4)

For each state si, an equation can be written as:

prob(si) = E prob(e.Input) (3.5)
e such that e.Next = si

Given K states, K - 1 equations are obtained. One final equation that is needed is:

K
E prob(si) = 1 (3.6)

i=1

This linear set of K equations can be solved to obtain the different prob(si)'s.

For example, consider the STG of Figure 3-3. The following equations are obtained

assuming a probability of 0.5 for the primary input being a 1:

prob(R) = 0.5 x prob(A) (3.7)

prob(A) = 0.5 x prob(R) + 0.5 x prob(B) + 0.5 x prob(C) (3.8)

prob(B) = 0.5 x prob(R) + 0.5 x prob(A) (3.9)

The final equation is:

prob(R) + prob(A) + prob(B) + prob(C) = 1 (3.10)

23
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Solving this linear system of equations results in the state probabilities, prob(R) =

6 prob(A) = 3, prob(B) = and prob(C) = .

3.4.3 Power Estimation Given Exact State Probabilities

A power estimation method that uses the exact state probabilities obtained from the

Chapman-Kolmogorov method is described below. As was shown in Section 3.3, the

symbolic simulation equations express the exact switching conditions for each gate

in the circuit. Prepending the next state logic block, as illustrated in Figure 3-2,

accounts for the correlation between the present and next states. Finally, computing

the exact state probabilities models the steady-state behavior of the circuit.

As described in Section 3.3, power estimation of a combinational circuit can be

carried out by creating a set of symbolic functions, such that summing the signal

probabilities of the functions corresponds to the average switching activity in the

circuit. In the case of sequential circuits, some of the inputs to the symbolic functions

are the present state lines of the circuit and the others are the primary input lines.

The signal probability calculation procedure has to appropriately weigh these

combinations. As an example, consider the function

f = il Apsl V il A ps Aps 2 (3.11)

whose signal probability is to be computed. Assume that the probability of i being a

1 is 0.5, and the state probabilities are prob(00) = , prob(Ol) = 3, prob(10) = 4 and

prob(11) = 4 (the first bit corresponds to psl and the second to ps2). The probability

of f can be calculated by summing the probabilities of the two product terms in f

since the two terms have a null intersection. The probability of the first term is

prob(ii A psi) = prob(il) x (prob(10) + prob(11))

= 0.5 x ( +1)
41
4
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Similarly, the probability of the second term is

prob(il A j A ps2) = prob(ii) x prob(01)

= 0.5 x 3

1
6

Finally we have

prob(f) = 4 + 
5
12

The major disadvantage of this estimation method is its average-case exponential

complexity - the probability of each state is computed and the number of states grows

exponentially with the number of flip-flops in the circuit. In [12], however, approxi-

mate methods are described that are computationally efficient. We use these methods

to obtain accurate estimates of power dissipation in our optimization experiments.
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Chapter 4

Precomputation Architectures

4.1 Introduction

We present a sequential logic optimization method that is based on selectively pre-

computing the outputs of the circuit one clock cycle before they are required and

using the precomputed values to reduce switching activity in the next clock cycle.

We begin by defining the predictor functions, which are the basis for precomputa-

tion, in Section 4.2. In Sections 4.3 and 4.4, we describe two different precomputation

architectures and discuss their characteristics in terms of power dissipation, circuit

area, and circuit delay. In Section 4.5, we generalize precomputation to multiple-

output functions. We illustrate examples in Section 4.6. Finally, in Section 4.7, we

briefly discuss the testability of precomputation-based logic circuits.

4.2 The Predictor Functions

Consider the circuit of Figure 4-1. We have a combinational logic block A that is

separated by registers R1 and R2. While R1 and R2 are shown as distinct registers

in Figure 4-1, they could, in fact, be the same register. We will first assume that the

logic block A has a single output and that it implements the function f.
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Figure 4-1: The Original Circuit

We define two Boolean functions g1 and g2, called the predictor functions, that

depend on the same subset of inputs to the logic block A as follows:

91=1 =1 f=1 (4.1)

92 =1 := f=0 (4.2)

When gl and g2 are both 0, we do not know anything about the function. Also,

gl and 92 cannot both be 1 during the same clock cycle as that would imply that the

the function f is both 0 and 1.

4.3 First Precomputation Architecture

In Figure 4-2, the first precomputation architecture is shown. During clock cycle t,

if either gl or g92 evaluates to a 1, we set the load-enable signal of register R1 to a 0.

This means that in clock cycle t + 1 the inputs to the combinational logic block A do

not change. If l9 evaluates to a 1 in clock cycle t, the input to register R2 is set to a

1 in clock cycle t + 1, and if 92 evaluates to a 1, then the input to register R 2 is set

to a 0.

A power reduction in block A is obtained because for a subset of input conditions

corresponding to 91 + 9g2, the inputs to A do not change implying zero switching

activity. However, the area of the circuit has increased due to the additional logic of

gl and g2, the two additional gates shown in the figure, and the two flip-flops marked

FF. The delay between R 1 and R 2 has increased due to the addition of the OR-AND
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Figure 4-2: First Precomputation Architecture

gate. Note also that g, and g2 add to the delay of paths that originally ended at R1,

but now pass through g or g2 and the NOR gate before ending at the load-enable

signal.

The choice of gl and g92 is critical. We wish to include as many input conditions in

gl and 92. In other words, we wish to maximize the probability of g or 92 evaluating

to a 1 as that corresponds to turning off the logic block the largest percent of the time.

In the extreme case, this probability is unity if g = f and g2 = f. However, this

implies a duplication of the logic block A and no reduction in power with a twofold

increase in area! To obtain a reduction in power with marginal increases in circuit

area and delay, gl and 92 have to be significantly less complex than f. One way of

ensuring this is to make gl and g2 depend on significantly fewer inputs than f.

4.4 Second Precomputation Architecture

In the second precomputation architecture shown in Figure 4-3, the inputs to logic

block A have been partitioned into two sets, corresponding to the registers R1 and

R2. If gl or g2 evaluates to a 1 during clock cycle t, the load-enable signal of register
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Figure 4-3: Second Precomputation Architecture

R2 is set to a 0. This means that the outputs of R2 do not change during clock

cycle t + 1. However, since register R 1 is updated in clock cycle t, the function f will

evaluate to the correct logical value.

As in the case of the first precomputation architecture, a power reduction is

achieved because only a subset of the inputs to block A change, implying reduced

switching activity. The area of the circuit has increased, but not as much as in the

first architecture. The delay of the paths that ended at R1 have increased, but the

delay from R 1/R 2 to R3 has remained the same. Once again, g, and g92 have to be

significantly less complex than f, and the probability of gl + 92 being a 1 should be

high in order to substantially reduce power dissipation.

In Chapter 5, we describe an algorithm to select inputs to gl and g92 so that the

probability of gl + g92 = 1 is maximized. We also discuss how the gl and 92 functions

that satisfy Equations 4.1 and 4.2 can be obtained.
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Figure 4-4: Precomputation of a Multiple-Output Function

4.5 Multiple-Output Functions

In general, the logic block A shown in Figures 4-2 and 4-3 can be a multiple-output

function with outputs F = {fi,..., f m } as shown in Figure 4-4.

The predictor functions are then defined as:

91i = 1 f i = 1 (4.3)

92i = fi = 0 (4.4)

for each output fi. The function g whose complement drives the load enable signal

is given as:
m

g = II (i + 92i) (4.5)
i=l

Once again, we want to maximize the probability of g being a 1 in order to get

the most power reduction. In the case of multiple-output functions, we want to select

a subset of the outputs to precompute because the probability of g being a 1 rapidly

decreases as more outputs are precomputed. Typically, we want to select the most

complex functions (in terms of area) to precompute. In Chapter 5, we describe an

algorithm to select the best outputs to precompute. We also discuss, in detail, how we

construct the final, precomputed multiple-output function since logic corresponding

to the outputs not selected for precomputation may need to be duplicated.
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Figure 4-5: Precomputation of a Comparator Function

4.6 Examples

We give examples that illustrate that substantial power gains can be achieved with

marginal increases in circuit area and delay.

Consider an n-bit comparator, a function that takes two n-bit inputs C and D

and computes C > D. The circuit with its precomputation logic is shown in Figure

4-5. The precomputation logic is as follows:

g = C(n-1) · D(n-1) (4.6)

g2 = C(n-1) · D(n- 1) (4.7)

Clearly, when gl = 1, C is greater than D, and when g2 = 1, C is less than D.

We have to implement

g1 + 92 = C(n-1) D(n-1) (4.8)

where 0 stands for the exclusive-nor operator.

Assuming a uniform probability for the inputs, 1 the probability that the XNOR

gate evaluates to a 1 is 0.5 regardless of n. For large n, we can neglect the power

1 The assumption here is that each C(i) and D(i) has a 0.5 static probability of being a 0 or a 1.
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X1 X2 X3 4 fi f2 f3 

0 0 0 1 0 0 0 1
O 0 1 - O 0 1 0

0 1 - 0 1 0 0

1 - - - 1 0 0 0

Table 4.1: Truth-Table of a Priority Function

dissipated by the XNOR gate, and, therefore, achieve a power reduction close to 50%.

The reduction, however, will depend on the relative power dissipated by the vector

pairs with C(n-1) 0 D(n-1) = 1 and the vector pairs with C(n-1) 0 D(n-1) = 0.

If we add the inputs C(n - 2) and D(n - 2) to gl and 92, it is possible to achieve a

power reduction close to 75%.

We can continue adding more inputs to the gl and 92 functions, thereby, increasing

the percent of the time that the function can be precomputed. However, as more

inputs are added, the precomputation logic becomes more complicated (and we need

to account for the power that it dissipates), and we are disabling fewer inputs. Hence,

we expect to reach an optimal point where the power dissipation is at a minimum. If

more inputs are included in the precomputation logic beyond this point, the power

gains will begin to diminish.

Another example is an n-bit priority function with inputs X = (xl,.. ,x,) and

outputs F = (fi,... , f,,). This function selects the highest priority input. In other

words, an output fi is a 1 if xi is a 1 and xj is a 0 for all j > i. The truth-table for a

4-input, 4-output priority function is shown in Table 4.1.

Figure 4-6 shows the priority function with its precomputation logic. Since x is

the highest priority input, we can disable all the low priority inputs whenever xl is a

1. Again, assuming a uniform probability for the inputs, the low priority inputs can

be disabled 50% of the time. If x2 is added to the precomputation logic, the inputs

can be disabled 75% of the time.
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Figure 4-6: Precomputation of a Priority Function

4.7 Testability of Precomputation-Based Logic

Circuits

Ensuring that logic circuits are testable is often a critical part of the design process.

Considerable attention has been devoted to improving the testability of combinational

as well as sequential logic circuits [7]. The focus of this thesis, however, is not to

completely evaluate the testability of precomputation-based logic circuits, but to just

briefly discuss the issue.

If a scan design methodology is used to test the original circuit, then the precom-

puted circuit is also testable. For instance, in the second precomputation architecture,

during testing, the input registers can be set to specific vectors and the value of the

function can be observed at the output register. However, precomputation could af-

fect the testability of the preceeding logic block. Figure 4-7 shows a simple case where

we are interested in determining if a particular node is stuck-at-0. A stuck-at-O fault,

for example, occurs when a particular input or node is inadvertently connected to

ground during the manufacturing process.

To test the node c for a stuck-at-O fault, nodes a and b must be set to Os and a

1 must be applied to node c. However, since a and b are part of the precomputation

logic in the next stage, the output of the OR gate computing a + b + c can never be
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Figure 4-7: Redundancy in a Precomputation-Based Logic Circuit

observed at the register R3, because whenever a + b = 0, the load-enable signal is a

0 and the register is not updated with a new value. In essence, the precomputation

logic that has been added is redundant as it is already contained in the logic of the

previous stage.

34

A



Chapter 5

Synthesis of Precomputation Logic

5.1 Introduction

We describe algorithms to determine the best subset of inputs to the precomputation

logic and to find the best set of outputs to precompute in the case of multiple-output

functions. We focus primarily on the second precomputation architecture illustrated

in Figure 4-3. To ensure that the precomputation logic is significantly less complex

than the original circuit, we restrict ourselves to identifying gi and g2 such that they

depend on a relatively small subset of the inputs.

In Section 5.2, we discuss observability don't-cares and their relationship to pre-

computation. In Section 5.3, we show how we can determine the functionality of the

precomputation logic, and we describe an algorithm to select inputs to the precompu-

tation logic. We also give an example to illustrate how the algorithm works. Finally,

in Section 5.4, we present an output-selection algorithm, and we discuss the need for

logic duplication when precomputing multiple-output functions.
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5.2 Precomputation and Observability Don't-

Cares

Assume that we have a logic function f(X) with X = {(x, .. ,x,}, as in Figure 4-2.

The observability don't-care set for an input xi is defined as:

ODCi = fi . f + fi7,fz7 (5.1)

where f,i and f are the cofactors of f with respect to xi, and f,i and f~- are the

cofactors of f with respect to xi.

Observability don't-cares arise when a logic function's structure limits, under cer-

tain input conditions, the observability of a node at an output [7]. If an input xi is

in ODCi, then we can disable the loading of xi into the input register. If we wish to

disable the loading of registers Xk+l," ,x ,, we need to implement the function
n

g= II ODC (5.2)
i=k+l

and use V as the load-enable signal for the registers corresponding to Xk+l,., X,.

5.3 Precomputation Logic

Let us now consider the architecture of Figure 4-3. Assume that xl, ,xk, with

k < n have been selected as inputs to the predictor functions gl and g2.

We need to find gl and g2 such that they satisfy the constraints of Equations 4.1

and 4.2, and such that prob(gl + 92 = 1) is maximized.

We can determine gl and g2 using universal quantification. The universal quan-

tification of a function f with respect to a variable xi is defined as:

Uif = f.i f. (5.3)

Given a subset of inputs S = {l1, ... , k}, we define a set D = X - S. The universal

quantification of a function f with respect to a set of variables D is given as:

UDf = U+1 . .. Ulnf (5.4)
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Theorem 5.1 gl = UDf satisfies Equation 4.1. Furthermore, no function

h(xi, ... , Xk) exists such that prob(h = 1) > prob(gl = 1) and such that

h= 1 f=1.

Proof. If some input combination al, , ak causes gl(al,' ,ak) = 1, then for that

combination of xl," , k and all possible combinations of variables in k+l, ... ,xn

f(al,',ak, Xk+l, ''', Xn)= 1.

We cannot add any minterm xl,' ',Xk to gl because for any minterm that is

added, there will be some combination of xk+l, ,Xn for which f(xl,... , ,) will

evaluate to a 0. Therefore, we cannot find any function h that satisfies Equation 4.1

and such that prob(h = 1) > prob(gl = 1). ·

Similarly, for a subset of inputs S, the function 92 is given as:

g2 = UD = U+,, ... Unf (5.5)

When we implement the load-enable signal g = (gl + ga), we are implementing the

function given by Equation 5.2.

5.3.1 Selecting a Subset of Inputs

Given a function f, we wish to select the "best" subset of inputs S of cardinality k.

Given S, we have D = X - S and we compute gl = UDf and g92 = UDf. The best

set of inputs are those which result in prob(gl + g2 = 1) being a maximum for a given

k. We know that prob(gl + 92 = 1) = prob(g, = 1) + prob(g2 = 1) since li and g2

cannot both be 1 during the same clock cycle. The above cost function ignores the

power dissipated by the precomputation logic, but since the number of inputs to the

precomputation logic is significantly smaller than the total number of inputs, this is

a good approximation.

We present a branching algorithm that determines the set of inputs that maximize

the probability of gl + g2 = 1. This algorithm is shown in pseudo-code in Figure 5-1.
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SELECTINPUTS( f, k ):

{

BESTPROB = 0;
SELECTED-SET = 4;
SELECT_RECUR( f, f, 0, X, XI- k );
return( SELECTED-SET );

SELECTRECUR( gl, 92, D, Q, 1):

{

if( IDI + IQI < )
return;

pr = prob(g, = 1) + prob(g2 = 1);
if( pr < BESTPROB )

return;
else if( DI == l) {

BESTPROB = pr;
SELECTEDSET = X- D;
return;

}

choose xi E Q such that i is minimum;
SELECT_RECUR( U,igl, Ug 2, D U xi, Q - xi, I );
SELECT_RECUR( 91, g2, D, Q- xi, );
return;

Figure 5-1: Procedure to Determine the Optimal Set of Inputs
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The procedure SELECTINPUTS has as arguments the function f and the

desired number of inputs k to the precomputation logic. SELECTINPUTS calls

the recursive procedure SELECT_RECUR with five arguments. The first two ar-

guments are the gl and g2 functions, which are initially f and f. An input is selected

within the recursive procedure and the two functions are universally quantified with

respect to that input. The third argument D corresponds to the set of inputs not in

gl and g2. The fourth argument Q corresponds to the set of "active" inputs, which

may be selected or discarded. Finally, the argument corresponds to the number of

inputs that have to be universally quantified in order to obtain gl and g2 with k or

fewer inputs.

If IDI + IQI < 1, it means that we have selected too many inputs in the earlier re-

cursions and we will not be able to universally quantify enough inputs. The functions

gl and g2, hence, will depend on too many inputs (> k).

We calculate the probability of gl + g92 = 1. If this probability is less than the

maximum probability encountered thus far, we can immediately return because of

the following invariant:

prob(U,if) = prob(f, fF) < prob(f) Vx, f (5.6)

Therefore, as we universally quantify inputs from the gl and g2 functions, the pr

quantity monotonically decreases because f always contains Uxif.

We finally store the selected set of inputs with the best probability.

5.3.2 Implementing the Logic

The Boolean operations of OR and universal quantification required in the input-

selection procedure can be carried out efficiently using ROBDDs [4]. In the algorithm,

we obtain a ROBDD for the gl + g2 function, which then can be converted into a

multiplexor-based network (see [2]) or into a sum-of-products cover. The network

or cover can be optimized using standard combinational logic optimization methods

that reduce area [3] or those that target low power dissipation [17].
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Figure 5-2: A Comparator Example

5.3.3 A Comparator Example

The input-selection algorithm presented in Section 5.3 traverses a binary tree to find

the best inputs to the precomputation logic. A partial tree for a 3 - bit comparator,

with inputs a, bo,... a2, b2 and k = 2, is shown in Figure 5-2.

The algorithm begins its search with g = f and g2 = f. At a particular node, if

the left branch is taken, the input is universally quantified from the precomputation

logic, and, hence, is discarded. Whenever the right branch is taken, the input is

selected to be in the precomputation logic. The algorithm finds the solution with

inputs a2 and b2 since it maximizes the probability of gl + g92 = 1. The light-shaded

nodes in the tree are never reached because of the pruning condition i.e., that the

probability of gl + 92 = 1 monotonically decreases. The dark-shaded node marked

a2 is also never reached because too many variables have been selected to be in the
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precomputation logic. The solution obtained at that point has more than k = 2

inputs.

5.4 Multiple-Output Functions

The procedures described so far can be generalized for a multiple-output function

with outputs F = {fi,... , f,m } like the one shown in Figure 4-4.

The functions gli and g2i are given as:

g9 = UDof (5.7)

g2i = UDfi (5.8)

where, again, D = X - S.

5.4.1 Selecting a Subset of Outputs

We describe an algorithm, which for a multiple-output function, selects a subset of

outputs and a subset of inputs in order to maximize a cost function that depends on

the probability of the precomputation logic and the number of selected outputs. The

pseudo-code for this algorithm is shown in Figure 5-3.

The inputs to procedure SELECTOUTPUTS are the multiple-output function

F, and the number k, which corresponds to the number of inputs to the precompu-

tation logic.

The procedure SELECTORECUR receives as inputs two sets G and H, which

are the current set of outputs that have been selected and the set of outputs which

can be added to the selected set. Initially, G = 4 and H = F. The cost of selecting a

set of outputs G is prG x gates(G)/totalgates, where prG corresponds to the signal

probability of the precomputation logic, gates(G) corresponds to the number of gates

in the outputs of G, and totalgates corresponds to the total number of gates in the

network (across all outputs of F).
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SELECTOUTPUTS( F = {fi, ... , f m}, k):

BESTCOST = 0;
SELOPSET = ;
SELECT_ORECUR( ¢,
return( SELOPSET );

SELECTORECUR( G, H,
{

proldG, k ):

If = gates(G U H)/totalgates x proldG;
if( If < BESTCOST)

return;
BESTPROB = total-gates/gates(G U H) x BEST-COST;
if( G )

if( SELECT-INPUTS( G, k ) == NULL )
return;

prG = BESTPROB;
cost = prG x gates(G)/totalgates;
if( cost > BEST-COST) {

BESTCOST = cost;
SELECTEDSET = G;
return

}

choose fi E H such that i is minimum;
SELECT_ORECUR( G U fi, H - fi, prG, k );
SELECT_ORECUR( G, H - f, prG, k );
return;

}

Figure 5-3: Procedure to Determine the Optimal Set of Outputs
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There are two pruning conditions used in the procedure SELECTORECUR.

The first corresponds to assuming that all the outputs in H can be added to G without

decreasing the probability of the precomputation logic. This is a valid condition

because the quantity proldG in each recursive call can only decrease with the addition

of outputs to G, and the only way the cost can improve is if more outputs are selected.

We can then set a lower bound on the probability of the precomputation logic prior

to calling the input-selection procedure. Assuming that all the outputs in H can be

added to G, we are not interested in a precomputation logic probability that results

in a cost that is equal to or lower than BESTCOST.

5.4.2 Logic Duplication

Since we are only precomputing a subset of outputs, we may incorrectly evaluate the

outputs that we are not precomputing as we disable certain inputs during particular

clock cycles. If an output that is not being precomputed depends on an input that is

being disabled, then the output will be incorrect.

Once a set of outputs G C F and a set of precomputation logic inputs S C X have

been selected, we need to duplicate the registers corresponding to (support(G) - S) n

support(F - G). The inputs that are being disabled are in support(G) - S. Logic in

the F - G outputs that depends on the set of duplicated inputs has to be duplicated

as well. It is precisely for this reason that we maximize prG x gates(G)/total-gates

rather than prG in the output-selection algorithm as we want to reduce the amount

of duplication as much as possible.

An example of a multiple-output function where the registers and logic need to

be duplicated is shown in Figure 5-4.

The original network has outputs fi and f2 and inputs xl,.. ,x 4. The function

fi depends on inputs x 1 ,... , 3 and the function f2 depends on inputs x 3 and x4.

Hence, the two outputs are sharing the input 3. Suppose that the output-selection

procedure determines that fi is the best output to precompute and that inputs xl
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Figure 5-4: Logic Duplication in a Multiple-Output Function
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and x2 are the best inputs to the precomputation logic. Therefore, just as in the case

of a single-output function, the inputs x1 and x2 feed the input register, whereas, x3

feeds the register with the load-enable signal. However, since f2 depends on x3 and

the register with the load-enable signal contains stale values in some clock cycles, we

need to duplicate the register for x3 and the logic from x3 to f2.
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Chapter 6

Special Cases

6.1 Introduction

We present more examples of logic circuits that are precomputable as well as addi-

tional precomputation architectures.

In Section 6.2, we give examples of circuits that cannot be automatically pre-

computed using the input-selection and output-selection algorithms discussed earlier.

This is because the circuits either have to implemented in a particular way, or, in

some cases, we are precomputing internal signals and not the function's outputs.

We describe new architectures and discuss their advantages and disadvantages in

Section 6.3. Both the circuits and architectures described here show the power of

precomputation-based optimization.

6.2 Special Circuits

We give examples illustrating how some datapath circuits can be precomputed. Such

circuits, for instance, can be part of a cell library, and, hence, can be easily used and

accessed when designing low power integrated circuits.
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Operation Code
So0 1 82

Add 0 0 0

Subtract 0 0 1

Shift-Left 0 1 0

Shift-Right 0 1 1

AND 1 0 0

OR 1 0 1

XOR 1 1 0

NOT 1 1 1

Table 6.1: Specification of an Arithmetic Logic Unit

6.2.1 An Arithmetic Logic Unit

Table 6.1 shows the operations and instruction codes for a simple arithmetic logic unit

(ALU). The operations of the ALU can be partitioned into two sets, one containing

the arithmetic and shift functions and the other containing the logic functions. Note

that for the first set of operations, the instruction bit so = 0 and that for the second

set so = 1.

Figure 6-1 shows how we can implement the ALU so that it is precomputable.

The circuit operates on two inputs A and B and produces a result C. When the

instruction bit so = 0, only the arithmetic and shift blocks are enabled and the logic

functions are turned off. Likewise, when so = 1, only the logic functions are evaluated

while the arithmetic and shift blocks are turned off by setting the load-enable signal

of their input register to a 0. The s and s2 bits drive the select line of a multiplexor

that sets the output C to the correct function.

The savings in power dissipation that are obtained by turning off part of the ALU

are partially offset by the register duplication. The registers had to be replicated in

order for the ALU to function correctly.

The ALU operations were partitioned arbitrarily to illustrate the example. In fact,

they could have been partitioned in any way. In a real implementation, for instance,

the functions should be divided so that each of the blocks is equally complex. In
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Figure 6-2: Partial Products of a Multiplier

other words, we are not interested in turning off a small part of the ALU a fraction

of the time. We want to disable a large part of the logic most of the time. If some

operations share a lot of logic, it would not be worthwhile to place those operations

in different sets as logic would have to be duplicated. The instruction codes should be

tailored keeping in mind how frequently they occur and how much logic is needed to

implement them in order to get the best power reduction. Furthermore, for ALUs that

perform a large number of functions, the operations can be partitioned into several

blocks and the same technique can be used to get a savings in power dissipation.

6.2.2 An Array Multiplier

Figure 6-2 shows how the partial products of a 4 - bit multiplier with inputs A =

{a, *. , a3} and B = {bo, ,... , b3} are calculated.

In Figure 6-3, we show the first three stages of a pipelined array multiplier. This

circuit performs the calculation in the same manner as in Figure 6-2. At each stage,

1 - bit of the input B is ANDed with the vector A. The result is shifted and added

to the partial product from the previous stage. Note that the shift operation can be

implicit in the way the AND gates and adders are connected.

Figure 6-4 shows how the ith stage of the multiplier can be precomputed. The

observation here is that when bi = 0, the partial product at the ith stage is 0, and,

hence, it does not contribute to the final product. Therefore, when bi = 0, that stage

is turned off and the partial product from the previous stage is propagated to the
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Figure 6-4: Precomputing the ith Stage of an Array Multiplier

next stage. For the case when bi = 1, a shifted version of the input A is added to the

partial product of the previous stage.

As is shown in Figure 6-4, the original And/Add/Shift block is now just an

Add/Shift block, and it calculates a partial product only when bi = 1. The input bi

drives the load-enable signal of the input registers so that when it is a 0, the input A

and the partial product from the previous stage are prevented from propagating into

the Add/Shift block. A multiplexor selects the correct partial product depending on

the value of bi and passes it to the next stage.

Assuming that the inputs to the multiplier have equal probability of occuring, a

particular stage can be turned off 50% of the time. To get a 50% reduction in power

for the entire multiplier, each stage must be precomputed. The savings in power,

once again, is reduced because of the register duplication. Note that the addition of

the multiplexors does not affect the power savings as they replaced the AND gates
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Figure 6-5: A Carry-Select Adder

that were in the original circuit.

The power dissipation of the array multiplier can be improved substantially if a

combinational logic precomputation technique is used. This type of architecture is

described in Section 6.3. In that architecture, the duplicated registers can be replaced

with pass transistors or transmission gates, which are much smaller, and, hence do

not dissipate as much power.

6.2.3 A Carry-Select Adder

Figure 6-5 shows a 16 - bit carry-select adder. The low-order 8 - bits are added

just as in a normal adder. The remaining high-order bits are added in parallel, once

assuming a carry-in of a 0 and once assuming a carry-in of a 1. When the carry

of the low-order sum is finally computed, it selects the correct 8 - bit sum through

a multiplexor. The carry-select adder is typically used in designs which require a

fast adder. For the example shown, if the delay of the multiplexor is ignored, the
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16- bit sum is computed with the same delay as an 8- bit adder. The speed increase,

however, comes at the expense of area.

We can precompute the carry that drives the select line of the multiplexor. Note

that this signal is not an output of the circuit. The precomputation logic is as follows:

g = a7 b7 (6.1)

92 = b7 (6.2)

Clearly, when a7 and b7 are both high, the carry will be high, and we can turn off the

high-order 8- bit adder with a carry-in of a 0, as eventually, the multiplexor will select

the other sum. Similarly, when a 7 and b7 are both 0, the carry will be a 0 regardless

of whether there were carries generated from the previous stages. Hence, we can turn

off the adder with a carry-in of a 1 by setting its input register's load-enable signal

to a 0 (not explicitly shown in the figure).

Assuming a uniform probability for the inputs, we can see from Equations 6.1

and 6.2 that we can turn off the adder with the carry-in of a 0 25% of the time,

and, similarly, we can turn off the other adder another 25% of the time. Like the

previous examples, we can include a 6 and b6 in the precomputation logic and increase

the percent of the time that we can turn off the adders. The precomputation logic

equations can be determined directly from the generate and propagate terms of a

carry-lookahead adder [19].

We also need to duplicate some of the input registers, in particular, those for

inputs as, bs, .. , als5, b1s. If only one set of registers is used to drive both the high-

order 8 - bit adders, then, when we disable those registers, the sum will be incorrect.

6.2.4 A Maximum Function

Figure 6-6 shows how one should implement a maximum function in order for it to

be precomputable. The function computes MAX(K, L). The two inputs K and L

are compared and the output of the comparator drives the select line of a multiplexor
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Figure 6-6: Precomputation of a Maximum Function
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which chooses the correct input. The comparator can be precomputed, as was shown

in Figure 4-5. Note, once again, we need to duplicate the input registers as they

contain old or stale values during particular clock cycles.

6.3 Special Architectures

In this section, we describe additional precomputation architectures. We first present

an architecture that is applicable to all logic circuits and does not require, for in-

stance, that the inputs should be in the observability don't-care set in order to be

disabled. This was the case for the architectures shown in Chapter 4. We also extend

precomputation so that it can be used in combinational logic circuits.

6.3.1 Multiplexor-Based Precomputation

All logic functions can be written in a Shannon expansion as was shown in Chapter

2. For the function f with inputs X = {xl, ... , n}, we can write:

f = x1. f, + 1. f~- (6.3)

where f, and f- are the cofactors of f with respect to xl.

Figure 6-7 shows an architecture based on Equation 6.3. We implement the func-

tions f, and f-. Depending on the value of xl, only one of the cofactors is computed

while the other is disabled by setting the load-enable signal of its input register. The

input x1 drives the select line of a multiplexor which chooses the correct cofactor.

The main advantage of this architecture is that it applies to all logic functions.

The input xl in the example was chosen for the purpose of illustration. In fact, any

input xl, ... ,x, could have been selected. Unlike the architectures described earlier,

we do not require that the inputs being disabled should be don't-cares for the input

conditions which we are precomputing. In other words, the inputs being disabled do

not have to be in the observability don't-care set. A disadvantage of this architecture
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Figure 6-7: Precomputation Using the Shannon Expansion

is that we need to duplicate the registers for the inputs not being used to turn off

part of the logic. On the other hand, no precomputation logic functions have been

added to the circuit.

The algorithm to select the best input for this architecture is also quite different.

We will not discuss this algorithm in detail, except to mention that in this case,

we are interested in finding the input that yields the most area efficient f, and fy-

functions.

6.3.2 Combinational Logic Precomputation

The architectures described so far apply only to sequential circuits. We now describe

precomputation of combinational circuits.

Suppose we have some combinational logic function f composed of two sub-

functions A and B as shown in Figure 6-8(a). Suppose we also want to precompute

this function with the inputs 4 and 5. Figure 6-8(b) shows how this can be ac-

complished. For simplicity, pass transistors, instead of transmission gates, are shown.
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Figure 6-8: Combinational Logic Precomputation
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The function g with inputs x4 and x5 drives the gates of the pass transistors. As in

the previous architectures, g = gl + g2. Hence, when g is a 0, the pass transistors are

turned off and the new values of logic block A are prevented from propagating into

logic block B. The inputs x4 and x5 are also inputs to the logic block B just as in the

original network in order to ensure that the output is set correctly.

For the combinational architecture, there is an implied delay constraint i.e., the

pass transistors should be off before the new values of A are computed. In the example

shown, the worst-case delay of the g block plus the arrival time of inputs 4 or x5

should be less than the best-case delay of logic block A plus the arrival time of the

inputs xl, 2, or x3. The arrival time of an input is defined as the time at which the

input settles to its steady state value [7]. If the delay constraint is not met, then it

may be necessary to delay the xs, 2, and x3 inputs with respect to the x4 and x5

inputs in order to get the switching activity reduction in logic block B.
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Chapter 7

Multiple-Cycle Precomputation

7.1 Introduction

The architectures presented in Chapter 4 can be referred to as single-cycle precom-

putation as they predict the outputs of the circuit one clock cycle before they are

required. In this chapter, we present multiple-cycle precomputation.

In Section 7.2, we describe the basic idea behind multiple-cycle precomputation

and discuss its advantages. We show some examples in Section 7.3.

7.2 Basic Strategy

It is possible to precompute output values that are not required in the next clock

cycle, but are required two or more clock cycles later.

Consider the architecture of Figure 7-1. If the outputs of R3 are not used except

to compute f, then we can precompute the value of f using a subset of the inputs to

the logic block A. If f can be precomputed for a set of input conditions, then for these

conditions we can set the load-enable signal of R2 to a 0. This will reduce switching

activity not only in logic block A, but also in logic block B. Furthermore, we can

single-cycle precompute the logic block B to get additional savings in power. Another
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Figure 7-1: Multiple-Cycle Precomputation

advantage of multiple-cycle precomputation is that while the logic block A may not

be precomputable, the overall function f may be precomputable, hence, resulting in

a more powerful optimization.

7.3 Examples

We give examples illustrating multiple-cycle precomputation.

Consider the circuit of Figure 7-2. The function f computes (C + D) > (X + Y)

in two clock cycles. 1 Attempting to precompute C + D or X + Y using the methods

described previously do not result in any savings because there are too many outputs

to consider. However, two-cycle precomputation can reduce switching activity by

12.5% if the precomputation logic functions are as follows:

g = C(n-1).D(n-1) . X(n-1). Y(n-1) (7.1)

g2 = C(n-1). D(n-1)-X(n-1) Y(n-1) (7.2)
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Figure 7-2: An Add-Compare Function
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Figure 7-3: An Add-Maximum Function

where gl and 2 satisfy the constraints of Equations 4.1 and 4.2. Since prob(gl +g2) =

2- = 0.125, we can disable the loading of registers C(n - 2 0), D(n - 2 : 0),

X(n - 2 : ), and Y(n - 2 : 0) 12.5% of the time. This percent can be increased to

over 45% by using C(n - 2) through Y(n - 2). We can, in addition, use single-cycle

precomputation (as illustrated in Figure 4-5) to further reduce the switching activity

in the comparator of Figure 7-2.

Next, consider the circuit of Figure 7-3. The multiple-output function F computes

MAX(C + D, X + Y) in two clock cycles. We can use exactly the same g and 92

functions as those for the add-compare function, except that gl is used to disable the

loading of registers X(n - 2 : 0) and Y(n - 2 : 0), and g2 is used to disable the loading
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of C(n - 2 : 0) and D(n - 2 : ). We exploit the fact that if C + D > X + Y, there

is no need to compute X + Y, and vice versa. Finally, we can implement the MAX

fiunction as shown in Figure 6-6 and precompute it.
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Chapter 8

Experimental Results

8.1 Introduction

In this chapter, we present experimental results on various sequential circuits. The

examples that are shown in Section 8.2 were described using the Berkeley Logic Inter-

change Format, a language to specify combinational and sequential logic functions.

The algorithms presented in Chapter 5 were implemented using sis [i6], a C-based

programming environment for sequential logic synthesis and optimization. All exper-

iments were performed on a Sun SPARC-10 workstation.

8.2 Results

We present results for datapath circuits in Table 8.1. We show results for random logic

circuits in Table 8.2. For each circuit, the number of literals, logic levels, and power of

the original circuit, the number of bits, literals, and logic levels of the precomputation

logic, the final power, and the percent reduction in power are shown.

All power estimates are in micro-Watts and are computed using the techniques

described in Chapter 3. A supply voltage of 5V and a clock frequency of 20MHz were

assumed. Load capacitances were obtained by sizing the transistors in each logic
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CKT Original Precompute Logic Optimized
Lits Levs Pwr Bits Lits Levs Pwr % Red

compl6 286 7 1281 2 4 2 965 25

4 8 2 683 47
6 12 2 550 57
8 16 2 518 60

10 20 2 538 58
priority 16 126 16 455 1 1 1 381 16

2 3 2 270 41

3 6 2 209 54
4 10 2 190 58

5 15 2 187 59

6 21 2 196 57

addcompl6 3026 8 6941 4/0 8 2 6346 9
4/8 24 4 5711 18
8/0 51 4 4781 31

8/8 67 6 3933 43
maxl6 350 9 1744 8 16 2 1281 27

csal6 975 10 2945 2 4 2 2958 0

4 11 4 2775 6

6 18 4 2676 9

8 25 5 2644 10

addmax16 3090 9 7370 4/0 8 2 7174 3
4/8 24 4 6751 8
8/0 51 4 6624 10
8/8 67 6 6116 17

Power Reductions for Datapath Circuits

gate so that its delay was roughly equal to the delay of a minimum-sized inverter.

Capacitance values were based on a 2 CMOS technology. The switching activity of

each gate was computed using symbolic simulation and was based on a zero delay

model. The precomputation logic was optimized for area using the rugged script of

sis.

Power dissipation decreases for almost all cases. For circuit compl6, a 16-bit

parallel comparator, the power decreases by as much as 60% when 8 of the 32 inputs

are used in the precomputation logic. For all examples, as is indicated by the literal

count, the precomputation logic is much smaller than the original circuit.
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CKT Original Precompute Logic Optimized
Lits Levs Pwr Bits Lits Levs Pwr I% Red

9symml 267 8 1452 7 41 8 1429 2
cml50a 61 5 744 1 1 1 552 26

cm152a 28 4 370 9 2 1 261 29
i2 230 4 5606 22 30 3 2324 59
majority 12 4 173 3 4 2 124 28
mux 54 6 715 1 1 1 533 25
parity 60 5 187 0 0 0 187 0

t481 1028 11 1562 8 16 3 1393 11

Table 8.2: Power Reductions for Random Logic Circuits

In Table 8.1, we also show the improvement in power dissipation as more inputs are

included in the precomputation logic. As expected, however, the power gains diminish

once we reach a certain point. If more inputs are added to the precomputation logic,

the power savings are offset by the increased complexity of the precomputation logic

and the fact that fewer inputs are being disabled.

Multiple-cycle precomputation results are given for circuits addcompl6 and

addmaxl6. For circuit addcompl6, for instance, 4/8 bits for the precomputation

logic indicate that 4 bits were used to precompute the adders in the first cycle and 8

bits were used to precompute the comparator in the next cycle.

The random logic circuits in Table 8.2 are from the MCNC benchmark set. For

circuit i2, we get a 59% reduction in power dissipation. The parity function, also

shown in Table 8.2, is a circuit that is not precomputable. This function counts the

number of ones in a bit string, and its output is a 0 if there are an even number of

ones in the string or a 1 if there are an odd number of ones. One can never predict

the output of the parity function just by looking at a few of its inputs. All of the

inputs must be known to determine its output.
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Chapter 9

Conclusion and Future Work

We presented a method of precomputing the outputs of a sequential circuit one clock

cycle before they were required and used this knowledge to reduce power dissipation

in the succeeding clock cycle. Different architectures that exploited precomputation

were presented.

Precomputation increases circuit area and adversely affects circuit performance.

In order to keep the area and delay increases small, we synthesized the precomputation

logic so that it depended on a small set of inputs. When the logic block had a

large number of outputs, it was worthwhile to selectively apply precomputation-based

optimization on a small set of complex outputs. This selective partitioning entailed a

duplication of combinational logic and registers, and the savings in power was offset

by this duplication.

We presented special circuits and architectures that showed the power of this

optimization method. We also extended the idea of precomputation in order to predict

the outputs of a circuit two clock cycles ahead of time.

Although circuit area and delay increased, significant reductions in power dissipa-

tion were obtained. This suggests that synthesis, optimization, and even design for

low power may be fundamentally different from the traditional problem of synthesis,

optimization, and design for area and delay. Clearly, precomputation is not good in
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terms of area and delay, but it does extremely well for low power.

Several issues presented in this work are further being researched. For instance,

new precomputation architectures are being explored. Algorithms that can automate

the multiplexor-based and multiple-cycle precomputation architectures are also being

studied. Furthermore, ensuring that precomputation-based logic circuits are fully

testable is another important problem. Finally, more work is needed in trying to find

special types of circuits that are precomputable.
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