
Static Conformance Checking for Matrices

by

Roy Seto

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degrees of

Master of Engineering in Electrical Engineering and Computer Science

and

Bachelor of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1994

(Roy Seto, MCMXCIV. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly
paper and electronic copies of this thesis document in whole or in part, and to grant

others the right to do so.

Author A ...
Department of Electrical Engineering and Computer Science

May 16, 1994

Certified by-
) Raymie Stata

Department of Electrical Engineering and Computer Science
Thesis Supervisor

Certified by
Ijf John Guttag-.4citte Head, Computer Science and Engineering

\ . ll \Il iA Thesis Supervisor

Accepted by..........!........................
Frederic R. Morgenthaler

ittee on Graduate Students

Static Conformance Checking for Matrices

by

Roy Seto

Submitted to the Department of Electrical Engineering and Computer Science
on May 16, 1994, in partial fulfillment of the

requirements for the degrees of
Master of Engineering in Electrical Engineering and Computer Science

and
Bachelor of Science in Computer Science and Engineering

Abstract
Abstractions such as matrices or state-space models can be viewed as families with
common structure, modulo dimensional parameters such as numbers of rows and
columns (for matrices) or numbers of inputs, outputs, and states (for systems). Such
constructs occur frequently in engineering software. This thesis explores ways to au-
tomatically check "conformance" properties of these dimensional parameters such as
the requirement that the number of columns of a matrix product's first factor equal
the number of rows of the second factor. Our approach subsumes these parameters as
dependent type parameters and includes conformance checking in type checking. A
stylized language ("DP") is defined, along with typing rules and a checking algorithm.
It includes a mechanism (similar to ML's type inference mechanism [12]) which infers
implicitly instantiated parameters; this improves programmer convenience while pre-
serving safety. A script from the MATLAB [17] control toolbox is hand-translated to
DP and passed through a DP checker implementation to evaluate the type system's
usefulness. Possible extensions are described.

Thesis Supervisor: Raymie Stata
Title: Graduate Student, Department of Electrical Engineering and Computer Science

Thesis Supervisor: John Guttag
Title: Associate Head, Computer Science and Engineering

Acknowledgments

My primary supervisor, Raymie Stata, proposed this project and provided essential

guidance from beginning to end. He supplied numerous hints, steered me away from

quite a few dead ends, and suggested invaluable improvements to this document. This

thesis would not have been possible without his help.

My other supervisor, Professor John Guttag, also kept me on track with his prac-

tical and cheerful advice.

I would like to express my thanks to my parents for their support during my years

at MIT.

Contents

1 Introduction

1.1 Naive Approach.

1.2 Dependent Types

1.3 Parametric Polymorphism for Procedures . .

1.4 Parameter Inference.

1.5 Related Work

1.5.1 Differences from ML Type Inference.

1.6 Overview of the Thesis

2 A Type System with Implicit Depend,ent Paran

2.1 Abstract Syntax.

2.1.1 Terminology.

2.1.2 Emphasized Language Features

2.1.3 Syntax Description.

2.1.4 Scope and Naming Issues

2.1.5 A Syntactic Restriction on Signatures . .

2.2 Type-Correctness Rules

2.2.1 Type-Correctness of Programs

2.2.2 Type-Correctness of Procedure-Generator

2.2.3 Type-Correctness of Statements.

2.2.4 Provable Types of Expressions

2.3 Typechecking Algorithm

2.3.1 Algorithm for Expressions.

ieters 19

........... ..20

........... ..20

........... ..20

........... . 21

........... ..23
. 24

........... ..24

............ 25
Definitions 25

. 27

. 27

..30

........... ..30
7

11

12

13

14

15

17

17

18

.

.

.

.

.

.

.

.

.

.

.

.

2.3.2 Algorithm for Statements 32

2.3.3 Algorithm for Procedure Generators and Programs 33

2.3.4 Typechecking Example 34

2.3.5 Pragmatic Considerations in Typechecking 37

3 Application Case Study 39

3.1 The LQR Algorithm 40

3.2 MATLAB Implementation of LQR 40

3.3 DP Translation of the MATLAB LQR Script 43

3.3.1 Successful Aspects of DP 43

3.3.2 Insignificant Problems in the Example 44

3.3.3 Limitations of the DP Type System 47

4 Extensions 55

4.1 Expressiveness 55

4.1.1 Explicit Parameter Instantiation 55

4.1.2 Elimination of the Signature Restriction 56

4.1.3 Generalized Parameter Expressions 56

4.2 Safety 57

4.2.1 Provably Unsatisfiable Runtime Checks 57

4.2.2 Backward Check Propagation in the Flow Graph 57

4.2.3 Integration of Conformance and Bounds Checking 57

4.3 Performance 5............. 58

4.3.1 Loops 58

4.3.2 Elimination of Provably Correct Checks 58

5 Conclusions 61

A Listing of the Original MATLAB LQR Script 63

8

List of Figures

1-1 Example Program Requiring Parameter Inference .

2-1

2-2

2-3

2-4

2-5

2-6

2-7

2-8

2-9

2-10

2-11

3-1

3-2

3-3

3-4

3-5

3-6

3-7

3-8

3-9

Abstract Syntax

Syntax Example: Procedure-Generator Parameters

Typing Rule for Programs

Typing Rule for Procedure Definitions

Typing Rules for Statements

Typing Rules for Expressions

Definition of C, for Literals and Variable References

Definition of Ce for Call Expressions

Definition of C,....................

Trivial Example Program

Example of Program Requiring Runtime Parameter

. . .

. . .

. . .

. . .

. . .

. . .

.. .

. . .

. . .

. . .

Checks

MATLAB Implementation of LQR Algorithm (Simplified)

Translation of the LQR Script to DP, Part 1

Translation of the LQR Script to DP, Part 2

matlab-builtins.h
typebuiltins.h

scalar-builtins.h
vector-builtins.h
matrixbuiltins.h, Part 1

matrixbuiltins.h, Part 2

9

16

22

23

26

26

28

29

31

32

33

34

37

41

45

46

47

47

48

48

49

50

.

.

.

.

.

.

. . . .

.

.

.

.

.

.

.

.

.

10

Chapter 1

Introduction

Good type systems enhance software quality by helping programmers avoid mak-

ing mistakes. They achieve this goal both by documenting the program's meaning

and structure so that it is more comprehensible to human readers and by providing

information that enables compilers to check automatically for errors.

This thesis aims to improve safety for software relying heavily on a certain class

of data structures. Specifically, the data structures considered here can be charac-

terized as families of abstractions that have the same behavior modulo dimensional

parameters-matrices and systems of linear differential equations are two examples

that arise frequently in engineering and scientific applications. We enhance safety

by incorporating what we call "conformance" checks of these dimensional parameters

into the type system so that they can be expressed naturally in the programming

language and checked automatically by the language implemention. An example of a

conformance check is the well-known requirement for matrix multiplication that the

number of columns in the first operand be equal to the number of rows of the second.

Unfortunately, while type systems help to deal with the problem of erroneous

programs, they also introduce problems of their own:

1. Meaningful programs may not be legal because the type system is too strict.

2. Information in the source language demanded by the type system may make

programs more awkward for programmers to write.

11

This chapter introduces a combination of type-system features which provide

safety while minimizing these problems. Specific features introduced include de-

pendent types, parametric polymorphism, and type inference. The discussion will

motivate each feature as it is introduced, explaining how the feature helps meet a

need in the language.

1.1 Naive Approach

The simplest approach to the dimension conformance problem is to avoid dealing

with it altogether in the type system. Matrix conformance is not supported by the

compiler; instead, the programmer must manually write such checks on an individual

basis. Conformance failures in such systems are runtime errors.

Though this approach (or lack of approach) seems simpleminded, it is taken by

most systems in current use. For example, programmers representing matrices in C

must explicitly keep track of matrix bounds by defining their own variables. The

language provides no built-in support for checking conformance. Programming er-

rors related to dimensional conformance tend to manifest themselves at runtime as

memory protection violations.

Other languages provide somewhat more forgiving responses to errors. CLU's [10]

abstract typing and exception facilities allow the programmer to build representa-

tions for types having dimensional parameters that provide somewhat more graceful

runtime errors. For example, an abstract type defined to represent matrices could

include a definition of a matrix multiplication operation. This definition could first

test the dimensional conformance of its arguments. An exception would be signalled

at runtime in the event of a conformance failure, which would allow a more grace-

ful recovery than an arbitrary memory-access error would. As another example, the

numerical computation tool MATLAB [17] provides dynamically resizable matrices.

However, in these languages, conformance failures still are not detected until runtime.

12

1.2 Dependent Types

Especially for applications relying heavily on matrices, the ability to detect confor-

mance errors at compile time would aid program safety. One method for doing this

is to include the shape of the matrix in its type. In such a system, the matrix type

is "dependent" because the type depends on value-parameters-namely, the numbers

of rows and columns. A dependent type is a type that depends on a value [7, 11].

Subsuming dimensions in dependent matrix types enables the typechecker to verify

conformance statically. Early versions of Pascal took this approach for arrays.

In our language, we declare the family of dependent matrix types with the "type

generator" mat, which has two integer-valued parameters, as follows:

type mat int,int];

mat can be specialized by instantiating it with type parameters to generate a ground

type.

Unfortunately, this approach causes the first problem listed above, the rejection

of meaningful programs, to arise because it makes the granularity of types too fine.

If matrices of different shapes have distinct types, then separate versions of each

procedure must be defined to handle each shape of matrix. A matrix-multiplication

procedure that works for any two matrices Amx, and Bxp should be expressible as

a meaningful computational notion, but such an approach makes it illegal.

Later versions of Pascal as well as Modula-3 (a Pascal descendant) avoid this

problem by using "open types" [14]. They continue to include the bounds of array

variables as part of the type. However, they allow array bounds to be unspecified

("open") in the signatures of procedures. The actual bounds can be queried at run-

time. This approach makes the matrix-multiplication example above legal.

Open types, though, negate much of the advantage of putting array bounds in

the type system since they actually indicate parts of types which are not specified or

checked statically. Detection of conformance errors is deferred until runtime, just as

if matrix and array bounds were not part of their types. This hole in the Pascal type

system is similar to the other type-specification loopholes examined in [18].

13

1.3 Parametric Polymorphism for Procedures

We can reconcile static typechecking with dependent types by using parametric poly-

morphism, which was explored as a central aspect of the ML language [13, 12]. In

ML, types, including types of functions, can be parameterized by type variables which

range over types. We adapt the notion of polymorphism by parameterizing procedures

by parameters which range over the integers. This enables the definition of procedure

generators accepting arguments whose types have parameters. (We will always use

the term "parameter" to denote a value or name which generalizes types, and use the

term "argument" to denote a value or name which generalizes "procedure generators."

The term "procedure generator" denotes a parameterized procedurel abstraction.)

In such a scheme, a procedure-generator for matrix multiplication could be de-

clared as follows:

proc mmul [r,c,i] (A: mat [r,i], B: mat [i,c]) returns mat [r,c];

In this declaration, the parameters of the maul procedure generator are r, c, and

i. The arguments are the parameterized types A and B. We don't need to indicate

that the parameters r, c, and i are integer-valued because this thesis considers only

integer-valued parameters. Now the expression

mmul 4,3,5] (X,Y)

denotes the application of the specialized procedure mmul [4,3,5] to X and Y, which

must have type mat [4,5] and type mat [5,3] to match the argument types in mmul's

signature. Exposing this conformance requirement in the signature facilitates its

verification at compile time. Assuming that mmul's definition is consistent with its

signature in this type system, then the type of mmul [4,3,5] (X,Y) could then be

statically determined to be mat [4,5.

This provides the safety benefit gained by expressing dimensional conformance

requirements in the type system without incurring the unacceptable limits on expres-

siveness suffered by the simple-minded dependent-type scheme of Section 1.2.

14

1.4 Parameter Inference

While the preceding section's scheme enables the type system to include conformance

checks while avoiding type-system problem (1), it exacerbates type-system problem

(2) by making the procedure-call syntax unwieldy and inconvenient. Consider a

naming environment in which matrices A, B, C, and D have types mat [4,3], mat [3,6],

mat [4,6], and mat [4,6]. If we want to assign the expression AB + C to D, we are

forced to write

D := madd[4,61 (mmul[4,3,6] (A,B), C);

Even an infix operator syntax would need to include tedious bookkeeping details:

D := A *[4,3,6] B +[4,6 C;

The need to specify these parameter values seems especially galling since we have

already declared elsewhere the parameter values of A, B, C, and D's types. It seems

reasonable to expect the compiler to infer what the proper procedure-generator pa-

rameter values should be to make the procedure call well-typed. This would allow

the far more intuitive syntax

D := madd(mmul(A,B), C);

or even

D := A * B + C;

The compiler would verify correct typing with respect to the type parameters-

that is, conformance-by deriving constraints on those parameters at each call site

and then attempting to find a consistent solution to the constraint equations. An

inconsistent set of constraints would indicate a static type error.

Figure 1-1 lists an example program informally illustrating the parameter-inference

process. The typechecking algorithm reconstructs the types of expressions bottom-up.

Therefore, it begins by performing the inference process on the expression double (C)

to find its type if it is well-defined. The formal argument X of double corresponds to

15

the actual argument C. The checker equates corresponding type parameters, deriving

the constraint equations r = i and c = j. Since for all i and j, there exist r and

c which make these equations true, double(C) is provably well-typed regardless of

what values i and j are instantiated with. Its type in the context of test's body

is mat [2*i,2*j], which was obtained by applying the substitution denoted by the

constraint equations to double's result type, mat [2*r,2*c].

type mat [int,int];

% Declare matrix-addition procedure
proc m_add[r,c](A,B: mat[r,c]) returns mat[r,c];

'. Declare a procedure which takes a matrix,
% returning one twice as big

proc double [r, c] (X: mat [r,c]) returns mat [2*r,2*c];

% Define a test procedure
proc test[i,j] (C:mat[i,j],D:mat[2*i,2*j])

returns mat [2*i,2*j]

{
return madd(double(C), D);

}

Figure 1-1: Example Program Requiring Parameter Inference

The next typechecking step is to perform the same process on the expression

madd(double(C), D). Instantiating the types of madd's formal arguments A and B

with the actual-argument types mat [2*i,2*j] and mat [2*i,2*j] gives us the con-

straint equations r = 2i, c = 2j, r = 2i, c = 2j. Like the system for double(C) above,

this system is consistent for all i and j, so conformance is proven correct at compile

time for all values of the parameters. The type of the expression mradd(double(C),

D) which is returned by test is mat [2*i,2*j] as advertised by test's signature, so

test's definition type-checks statically.

16

1.5 Related Work

Perhaps due to the specialized nature of the application, there has been little prior

research on the specific problem of static conformance checking. Raymie Stata devel-

oped a type system that subsumes units-checking in typechecking [16]. His system

bears a close resemblance to this one, incorporating units-polymorphism and units-

inference. It differs significantly in the fact that the algebra of units only has the

operations of multiplication, division, and equality, while the algebra of integers in-

cludes addition, subtraction, and the less-than and greater-than operators too. This

difference makes the equation-solving problem for the inference algorithm more diffi-

cult.

Cardelli and Wegner [5] give a good general overview of type-system theory, includ-

ing parametric polymorphism and type inference. Polymorphism and type inference

were introduced to the language community by ML [13]. Milner [12] wrote the sem-

inal paper defining ML's type system. Cardelli [4] explains this material at a more

introductory level. Note that ML's style of polymorphism and type inference differs

from the kind used in this thesis, as discussed below.

Gupta [8] discusses techniques for optimizing array-bound checks by taking ad-

vantage of dataflow information. Some of the possible extensions speculated on by

Chapter 4 could profit from similar techniques.

Dependent types were introduced (for another purpose) by Martin-LUf's theory

of intuitionistic types [11]. Cardelli [3] explains (in another context) the tradeoff

between expressiveness and static typing that is involved in dependent typing.

1.5.1 Differences from ML Type Inference

The differences between this flavor of parameter inference and ML's have important

consequences for the typechecking algorithm. Most importantly, our language requires

that procedure parameters be declared explicitly and that the parameters be used in

the types of the arguments of the procedure. ML doesn't require this-it infers formal

parameters themselves, as well as their values for the actual parameters. This makes

17

the inference problem for ML much more ambitious in that respect. There are also

some other differences:

* ML type variables are themselves types, so that ML parameterized types may

be arbitrarily deep type graphs. Our type parameters are always integer-valued,

so the structure of types is flat, not recursive. This allows the pattern-matching

process we use to be much simpler than ML's, which must remember matched

terms from other parts of the type graph.

* The algebra of ML types, the matched entities in ML inference, has only one

operation, equality. However, the algebra of integers, used in our style of type

inference, is much more complex, including operations for comparison, addition,

multiplication, division, and conceivably others, in addition to equality. As the

example program in Chapter 3 shows, the equality, addition, and multiplication

operations are definitely useful in realistic programs; and subtraction, division,

and inequality operators would also have a lesser usefulness. This implies that

a sophisticated checker for our language would need to embody much more se-

mantic knowledge than the ML typechecker, which only needs to decide whether

types are equal.

1.6 Overview of the Thesis

Chapter 2 gives a formal definition of the language introduced by this chapter. It

provides specifications for the type system and a typechecking algorithm carrying out

those specifications. Chapter 3 evaluates this language ("DP") by assessing how well

it satisfies its design goals in a case study of a practical program. The case-study

example has been verified by a working typechecker that implements the specifications

of Chapter 2. Chapter 4 proposes extensions to the DP type system. Chapter 5

describes some of the lessons that we have learned from the project.

18

Chapter 2

A Type System with Implicit

Dependent Parameters

In its discussion of checking matrix programs, Chapter 1 referred to several well-known

type-system features. By making matrix dimensions part of the type to improve

safety, the discussion introduced a form of dependent typing. The chapter suggested

using parametric polymorphism for procedures to increase the generality of the fine-

grained types created, and discussed using type inference to make the resulting system

more convenient without compromising its safety. A language incorporating these

features was informally introduced in the course of the discussion.

This chapter will formally define the syntax and type system of the language

introduced in Chapter 1. For convenience, we will refer to the language as "DP"

("dependent parameters"). The discussion begins by specifying the abstract syntax

and some context-sensitive syntactic restrictions. It then gives a set of type rules and

an algorithm for checking those rules at compile time.

Note that DP was designed for exploration of the typing issues at hand, not

practical use. It therefore omits niceties important in real languages.

19

2.1 Abstract Syntax

2.1.1 Terminology

In this thesis, the term procedure generator refers to parameterized procedure dec-

larations and definitions, while procedure denotes a ground procedure value derived

from a procedure generator by instantiating the parameters.

Likewise, a type generator represents the family of all ground types with the same

name but different instantiations for the parameters.

A parameter is a name that denotes integer values specializing procedure and type

generators. The parameters of a procedure generator's signature represent integers

(bound at compile time by the parameter-inference process) within that procedure

generator's argument types. Arguments, on the other hand, are names which denote

values instantiated within ground procedures at evaluation time.

2.1.2 Emphasized Language Features

Since DP was designed to explore dependent parameterization, that is the most com-

pletely elaborated feature in the language. In particular, a procedure declaration or

definition includes a list of formal type parameters which represent integer values

within the procedure's formal arguments and body. Procedure applications, on the

other hand, do not explicitly specify any parameters in the syntax; they are not nec-

essary because the compiler infers actual parameters at each call site. (As the case

study in Chapter 3 will show, it is worthwhile to extend the language to allow explicit

parameter instantiations, but the checker prototype built as part of the thesis project

did not allow this.) Type generators which take 0 or more integer parameters are de-

clared by the user at the beginning of each program. DP also includes the primitive

types bool and int.

DP skimps on features not directly related to checking dependent types. To enable

realistic evaluation of programs, it would be necessary to elaborate the type gener-

ator declarations mentioned above into an abstract type facility. This abstract type

20

facility would allow the definition of constructor procedures creating objects of ab-

stract (and parameterized) type from arguments of primitive type. To avoid defining

such a facility, DP permits procedures to be declared without giving definitions; this

provision allows the modeling of type constructors for the purpose of typechecking

but not evaluation. Procedure declarations also allow us to model primitive operators

and library procedures. Another realistic feature omitted from DP is while loops,

which could be added as syntactic sugar for lambda-lifted [9] tail-recursive proce-

dures. The syntax does not distinguish a main procedure, which would be necessary

to provide a code entry point for evaluation. We consider traditional (non-dependent)

type parameters orthogonal to our dependent parameters and omit them as well.

2.1.3 Syntax Description

Figure 2-1 gives the abstract syntax of DP, which is imperative and block-struc-

tured. 1 A program consists of a sequence of type declarations, a sequence of procedure

declarations, and a sequence of procedure definitions. Type declarations introduce

new type generators into the program. Procedure declarations provide signatures but

not bodies for procedure generators.

The signature for each procedure declaration and definition lists a number of P

("parameter") identifiers, which are formal names for the type parameters in the

signature. These formal parameter names are bound in the argument types (i.e., T's

associated with the I's) and body statements of the procedures.

For example, in the procedure declaration for matrix multiplication given in fig-

ure 2-2, the formal parameters r, c, and i are bound in the argument types matrix Er,

i] and matrixEi, c].

A statement can be a block, an if statement, an assignment to a variable which

has previously been declared as a formal argument or by a var construct, or a return

1The literature on type systems seems to favor example languages derived from the lambda-
calculus rather than from Algol. We felt that, although following this tradition would make the
syntax and type rules more elegant and concise, the block-structured form was closer to a language
suited to practical work with matrices, systems, and the like. There would probably not be any
fundamental differences in the type-system features under discussion if we translated this work to a
functional language.

21

::= typedecl* procdecl* procdef*

::= type I [int*]

::= procI[P*]({I:T },'),

::= proc I[P*]({I: T }, ')

::={ {varI := exp; }*stmt,
if (ezp) stmt else stmt2
I := ep;
return exp;

returns T;

returns Tstmt

I
P
I (exp*)
intlit
boollit

T
proctype [P*] (T*) - T

int
bool
I [term*]

intlit
P
term op term
(term)

* I / I + I

I

identifier

Figure 2-1: Abstract Syntax

22

program

typedecl

procdecl

procdef

stmt

exp

T

term

op

P

I

I

I

I

I

I

I

I

I

I

I

proc mmult[r,c,i: int](A: matrix[r,i], B: matrix[i,cl)

returns matrix r,c];

Figure 2-2: Syntax Example: Procedure-Generator Parameters

statement. A block is a sequence of bindings of block-local variables to initial expres-

sions, followed by a sequence of statements. The types of variable names declared

by var constructs are reconstructed from the initial expressions. Assignments can

be made only to variables, not parameters, since parameters are considered constant

within each application.

Expressions can be variable or parameter references, procedure calls, or integer

or boolean literals. Note again that calls explicitly instantiate arguments, but not

parameters, which are inferred. Procedures are not first-class and hence cannot be

expressions.

There are two primitive types, int and bool. All other types are denoted by type

generators instantiated with 0 or more value terms, where a value term is a restricted

integer expression whose identifiers are type parameters. Type generators must be

declared by typedecl's at the beginning of the program; a typedecl gives the name and

number of parameters of a type generator. The abstract syntax includes a proctype

type-expression which is used internally in the typing rules but is not allowed as the

type of arguments or variables (i.e., procedures are not first-class).

2.1.4 Scope and Naming Issues

Procedure definitions have global, mutually recursive (i.e. "letrec") scope. Type

generator names have global scope. Local variables introduced by blocks have "let"

scope. All identifiers must be declared before use. In particular, this includes the

requirement that parameter names in a procedure generator's arguments and body be

bound by the procedure generator's signature, which will have important implications

for the parameter inference process. Multiple declarations of the same name in the

same scope are illegal. Declarations of variables in inner scopes shadow declarations in

23

outer ones. There are separate namespaces for type generators, procedure generators,

parameters, and variables. Names used as expression rvalues may be either variables

or parameters; variables take precedence over parameters in name conflicts.

2.1.5 A Syntactic Restriction on Signatures

We require that each formal parameter of a procedure generator appear by itself

(i.e., as an atomic term) in the type of at least one formal argument. This means,

for example, that we would disallow the signature

proc foo [i, j] (A: matrix[i+2*j, i+j]) returns matrix[i, j];

because neither i nor j appear by themselves in the types of foo's arguments. Note

that the same relation between input and output types can be expressed by the change

of variables y = i + 2j and z = i + j, producing

proc foo y, z] (A: matrix[y, z]) returns matrix[2*z-y,y-z];

As subsection 2.3.5 explains, this restriction greatly simplifies the typechecking

algorithm. We feel that it should not inconvenience programmers because we canot

find realistic signatures in which the generalized form seems more natural.

2.2 Type-Correctness Rules

This section specifies the set of rules for proving that programs are type-correct.

Conformance of dimensional parameters is included in our notion of type correctness.

In the type rules, "type assumptions" (also known as "type environments") are

partial functions, represented by sets of ordered pairs of identifiers and types, mapping

identifiers to types. Formally, type assumptions are subsets of the set

{(I, T) I I E Identifiers A T E Types}.

The operator + denotes environment extension:

A + A' = {(I,T) I ((I,T) E A A (I,T) V AA') V (I,T) E A'}

24

We also define
n

EAi = A1 + + An
i=l

The notations x and y denote vectors of parameter terms; the notation P denotes

a vector of parameter names.

Since DP includes statements as well as expressions, the typechecking rules include

both rules asserting that a statement is type-correct and rules asserting that an

expression has a certain type. For statements (and the procedures and programs built

up from them), the predicates StmtOK, ProcdefOK, and OK denote the assertions

that statements, procedure generator definitions, and programs are type-correct. For

an expression E and a type T, the notation E:T denotes the assertion that E has

type T. The rules for proving type-correctness of statements are derived from [1].

2.2.1 Type-Correctness of Programs

Figure 2-3 gives the rule for proving that programs are type-correct. We can show a

program is type-correct by proving the type-correctness of each procedure definition in

a type environment extended with type bindings for all the procedures in the program.

This simultaneous extension of the environment reflects the mutually recursive scope

of procedure definitions. SigToName and SigToType are simple syntactic macros

which express the extraction of procedure names and types from their declarations

and definitions.

2.2.2 Type-Correctness of Procedure-Generator Definitions

Figure 2-4 gives the rule for typechecking definitions of procedure generators. This

rule is complicated by the fact that each formal parameter of a procedure generator

may be instantiated with any value by a caller. We express this requirement in

terms of the substitution of a universally-quantified vector of parameter values i for

the vector of formal parameters P. Thus, the rule is that a procedure-generator

definition type-checks if its body type-checks for all possible values of the procedure

generator's parameters.

25

A' = A + Ei'=I {(SigToName(procdecli), SigToType(procdeclI))}
A" = A' + E {(SigToName(procdefi), SigToType(procdefi))}

A=1 A" - ProcdefOK(procdefi)
A - OK(typedeclt ... typedeclm procdecl, ... procdecl, procdefl ... procdefp)

where

SigToName (proc I [P, ... , P, : int](I : T1, ... , I,: T,) returns Tbody)
= I

SigToType (proc I [P1, ... , P, : int](I: T ... , I,: T,) returns Tbody)
= proctype[Pi, ... , Pm](T, ... , Tn) -+ Tbody

Figure 2-3: Typing Rule for Programs

Vx E int m A + E:1t {(I, [x/P] Tj)} F- StmtOK ([x/P]stmt, [/P] Tbod)
A F- ProcdefOK (proc I [P1, .. , P,](II: T1, .. , I: Tn) returns Tbody stmt)

where
P = P,..., Pm

Figure 2-4: Typing Rule for Procedure Definitions

26

Imposing this universal quantification in the rule for procedure definitions enables

separate compilation of procedures. We check procedure bodies once for all possible

instantiations rather than rechecking them relative to each specific instantiation in

the program. Procedure calls can then be checked with knowledge of the callee's

signature but not its body.

2.2.3 Type-Correctness of Statements

Figure 2-5 gives the rules for typing statements. The StmtOK predicate includes

a second argument which specifies the return type expected if the statement is or

includes a return. A block is type-correct if its statements type check in an envi-

ronment extended with bindings for each local variable declared in a var construct.

(The types of the local variables are reconstructed by type checking their initializer

expressions). An if statement is type correct if its predicate has type bool and its

consequent statement is type-correct. An assignment is type-correct if the type of

the assigned expression is identical to the type of the assigned variable. A return

statement is type-correct if the type of the returned expression is equal to the type

declared by the signature of the enclosing procedure definition.

2.2.4 Provable Types of Expressions

Figure 2-6 gives the rules for typing expressions. The rules for literals are axioms.

Variable references have the types bound to the variables in the type environment,

and parameter references always have integer type.

The interesting rule is the one for procedure applications. The complication in

this rule arises because the actual-argument types are parameterized by the caller's

parameters and the formal-argument types are parameterized by the callee's formal

parameters. We substitute the vector of actual-parameter terms for the vector of

formal-parameter names P in the types of the callee's formal arguments Ti. Actual

parameters are inferred rather than explicitly instantiated; this leads to the existential

quantification of -. That is, procedure calls have a provable type if there exists a set

27

A 1=l A F- ezp i : Tj
A + S=L {(I, T1)} F- StmtOK(stmti, Treturn)

A F- StmtOK({varIl := epl; ... ; varl,:= ep,; stmt; ... ; stmtn; }, Treturn)

A F- ezp:bool
A StmtOK(stmt, Treturn)

A StmtOK(if(ezp) stmt, Treturn)

A F ezp:bool
A - StmtOK(stmtl, Treturn)
A StmtOK (stmt 2, T,,turn)

A - StmtOK (if(exp) stmt else stmt2 , Tretun,)

A - I:T
A - ep: T

A F- StmtOK(I := ep;, Teturn)

A I- ezp: Teturn
A F- StmtOK (return ezp;, Tret,,rn)

Figure 2-5: Typing Rules for Statements

28

- intlit :int

F- boollit:bool

-P:int

3y E int A=
A H I: proctype [P1 , ... ,

A I (ezpl, ...

A expi: [y/P] Tj

P,](Tl,-, XT) Tbody
expn): [YP] Tbod

where
P = Pi, . . , Pm

Figure 2-6: Typing Rules for Expressions

of actual parameters which allow the formal and actual argument types to match. If

it exists by that criterion, the type of a call expression is the result type of the callee

with actual parameters substituted for formal ones.

Note that the precondition side of the procedure-call rule does not constrain the

expected type Tbody of the call expression. This makes DP's flavor of type inference

different from ML type inference [12], which propagates constraints on type variables

more globally through programs. We feel that this choice enhances modularity when

reasoning about DP programs and simplifies the checking algorithm by making the

propagation of type constraints travel exclusively up the syntax tree.

29

--

2.3 Typechecking Algorithm

To implement a compile-time type checker, we require a algorithm which determines

whether or not the rules in Section 2.2 can be used to prove that syntactically correct

programs (where syntactic correctness includes the restrictions in subsections 2.1.4

and 2.1.5) are type-correct. Fortunately, the rules in Section 2.2 are syntax-directed;

thus, this algorithm can be structured as a type evaluator that propagates expression

types and results of OK-predicates up the syntax tree. The evaluator performs a

depth-first traversal of the parse tree, constructing type environments on its way

down and examining the types that came up from the lower-level nodes on its way

up.

The only potentially problematic parts of the rules are the existential and universal

quantification of parameters. As subsection 2.3.1 will show, our syntactic restriction

on signatures takes care of the existential quantifiers in the application rule. However,

we can't always get rid of the universal quantifiers in the abstraction rule at compile

time; some checking must be deferred until runtime, when there is enough information

to deal with this problem.

2.3.1 Algorithm for Expressions

Since the checker collects typing information about the the syntax tree bottom-up,

we begin this discussion by specifying its behavior for expressions. Because the rules

for typing literal expressions and variable-reference expressions are straightforward, it

is also straightforward to write an algorithm which determines what type, if any, the

rules can prove for such expressions. Figure 2-7 gives the definition, for these simple

cases, of the expression-checking function C,. C takes a type environment and an

expression and normally returns a type and set of runtime checks. (The set of runtime

checks is always empty for these simple cases, so we delay the detailed explanation

of runtime checks until it becomes relevant below.) C, can also return error, which

indicates that a type error has been detected statically. The figure assumes that the

types bool and int are sugar for the types bool[] and int[]. The runtime checks

30

C,(A, intlit) = (int[], })

Ce,(A, boollit) = (bool[l, {})

Ce(A, P) = (int[], {})

C (AI) _ { error if A undefined at I

(T[[a,.,a],{}) if A(I) = T[al, , n]

Figure 2-7: Definition of Ce, for Literals and Variable References

encode typechecking verifications that must be deferred until evaluation.

The restriction from subsection 2.1.5 that each formal parameter occur by itself

as the term of a formal-argument type makes finding a parameter of the caller to

substitute for each parameter of the callee trivial. This can be done by performing

syntactic pattern-matching between the callee's formal-argument types and the re-

constructed types of the actual-argument expressions. Each atomic term defines the

substitution for one of the callee's formal parameters. Since an atomic term must

exist for each formal parameter, the substitution is always fully defined.

However, there may be additional matches to make between caller's and callee's

parameters because the callee can have more terms in its argument types than pa-

rameters. These additional matches become additional constraints that must be met

in order for the typing decision for the call expression to be sound. We can trans-

form these additional constraints into equations in terms of the caller's parameters

by applying the substitution derived above to the callee's formal parameters.

Unfortunately, these additional constraint equations cannot be verified until run-

time because there is no way to prove in general that they hold for all possible

instantiations of the caller's formal parameters. However, once the actual parameters

are known for any particular call, it's easy to determine whether the constraints are

met. Hence, the additional constraints become runtime checks. Failure to satisfy

a runtime check is a type error because the static typing-determination is unsound

under those circumstances.

31

A(I) = proctype[pl,..., p,,,](T, T2) -- R[1,. .., k]
T = Ti[pI ,...,p, P *i, ... q]

T2 = T2 [q +1X..... *n]
(Ti[al,..., am+q], C) = C,(A, el)

(T2[am+q+l, .. , am+n], C2) = Ce(A, e2)
C = {Qm+i = [j/pj]/ 3Pi} U C1 U C2

= = ujupj1Oi
Ce(A,I(el, e2)) = (R[01,.. O],C)

Figure 2-8: Definition of Ce for Call Expressions

Figure 2-8 formalizes the above discussion in terms of Ce. To simplify notation,

this figure does not consider the fully general invocation. It makes the following

assumptions:

* The callee takes two arguments.

* The parameters can be found in the leftmost positions of the first argument

type in sorted order.

It should be obvious how this rule generalizes. In the figure, P1 through Pm are the

formal-parameter names of the callee. The O's and O's are integer expressions in terms

of the p's. The a's are integer expressions in terms of the caller's formal parameters.

The algorithm is expressed in terms of pattern-matching rules. The rules attempt

to destructure the call expression passed to C into a form allowing the pattern-

matching process described above to take place on the call expression's constituents.

If the call expression does not destructure into the specified form the result of C is

error.

2.3.2 Algorithm for Statements

The typechecking algorithm for statements, like the algorithm for literal expressions

and variable-reference expressions, is fairly straightforward since the statement-typing

rules are straightforward. The only thing C, has to do is extend the type environment

for subnodes, check subnodes, and collect the runtime checks from subnodes.

32

As in the definition of Ce for call expressions, C. is presented in terms of pattern-

matching rules. The rules define C, over all inputs if we specify that failure of a

pattern-match, which occurs if the result of applying C, or C, above the horizontal bar

is error, causes the application of C, below the bar to yield error as well. Figure 2-9

gives C.. Note that C, takes the expected return type as an additional input.

(Ti, Ci) = C,(A, T,, e,)
Cj = C.(A + E{(Ih, Ti)}, Tr, j)

C = (Ui C) u (Uj C)
C,(A, T,,var I = e; ... ;s i;...) = C

(bool[], Ct) = C,(A, e)
Cc = C.(A, T., sc)

C = C,(A, T, sa)
C =Ct U c U Ca

C,(A,T,,if e s, else sa) = C

A I:T
(T, C) = C,(A, e)

C,(A,T,,I := e) = C

(T[ol, ... , an], C) = C(A, e)
C = C U ai = i

C,(A,T[O1, ... , ,n], return e) = C

Figure 2-9: Definition of C.

2.3.3 Algorithm for Procedure Generators and Programs

The algorithm that determines whether a procedure generator type-checks is to apply

C, to the procedure generator's body statement and expected return type. If this does

not result in error then we conclude that the procedure generator's body is faithful to

its signature contingent on runtime verification of the runtime checks that C, returns.

The algorithm for programs is simply to apply the algorithm for procedure gener-

33

type matrix[int, int];

proc mmul[r,c,i](A:matrix[r,i], B:matrix[i,c])

returns matrix Er,c];

proc wrapper x,y,z](D:matrix[x,z], E:matrix[z,y])

returns matrix[x,y]

var tmp := mmul(D, E);

if (true) { }

return tmp;

Figure 2-10: Trivial Example Program

ators over each procedure-generator definition in the program in a type environment

that assumes that each signature in the program is correct. This corresponds precisely

to the typing rule for programs.

Since type errors, including failures of parameter inference detectable at compile

time, are detected at the lowest levels of the syntax tree, error messages provided by

a checker can provide quite useful information: they can cite the line number of the

erroneous expression and name the kind of problem (i.e., non-matching type gener-

ators for formal and actual arguments, provably inconsistent parameter equations,

or wrong numbers or arguments). The checker implementation built for the thesis

project does provide such localized error messages.

2.3.4 Typechecking Example

To make the preceding discussion concrete, we trace the typechecking algorithm as it

verifies the type-correctness of the example DP program in figure 2-10. To prove the

OK predicate for the program, we attempt to prove the ProcdefOK predicate for the

procedure definition of wrapper in the type environment

mmul: proctype[r,c,i] (matrix[r,i] ,matrix[i,c]) -- matrix[r,c]

wrapper: proctype[x,y,z](matrix[x,z],matrix[z,y])- matrix[x,y]

34

To prove the ProcdefOK predicate for wrapper, we must prove

StmtOK(body of wrapper, matrix[x,y])

in the type environment

mmul: proc[r,c,i](matrix[r,i] ,matrix[i,c] --matrix[r,c]

wrapper: proc[x,y,z] (matrix[x,z] ,matrix[z,y] --matrix[x,y]

D: matrix[x,z]

E: matrix[z,y]

This reduces to proving the type correctness of the if statement and the type correct-

ness of return tmp; in a type environment extended with a binding of tmp to the

type of the expression mmul(D,E).

Reconstructing the type of mmul(D, E), within the above type environment, we

derive a system of equations between formal and actual parameters by performing

pattern matching between the formal-argument and actual-argument types of mmul

as follows: The instantiation of formal argument A with actual argument D gives us

the type equation

matrix[r,i] = matrix[x,z]

and the instantiation of formal argument B with actual argument E gives the type

equation

matrix[i,c] = matrix[z,y]

Pattern matching the parameters in these type equations yields the system of equa-

tions between the callee's formal parameters and actual parameters

Tr=

i=z
VZI,y,z 3r,i, c.

i=z
c=y

35

The actual parameters x, y, and z are universally quantified, while the formal param-

eters r, i, and c are existentially quantified, as a consequence of the corresponding

quantifications in the type rules. These quantifiers can be eliminated by thinking of

the existentially quantified parameters r,i, and c as "variables" and of the universally

quantified parameters x,y, and z as "constants." We choose one of the equations with

i on the left-hand-side to construct the substitution r -- x, i -, z, c + y. Now

we apply that substitution to the left-hand-side of the redundant equation i = z to

get the additional check-equation z = z. We also derive the type of the call ex-

pression mmul(D,E) by substituting the actual parameters x, z, and y for the formal

parameters r, i, and c in mmaul's result type matrix[r,c] to yield the type matrix[y,z].

Now we bind the type matrix[y,z] to the identifier tmp to check the statement

return tmp; in the type environment

mmul: proc[r,c,i] (matrix[r,i] ,matrix[i,c] --matrix[r,c]

wrapper: proc[x,y,z] (matrix[x,z] ,matrix[z,y] -matrix[x,y]

D: matrix[x,z]

E: matrix[z,y]

tmp: matrix[y,z]

Since tmp's type matches the return type expected by wrapper, and the if state-

ment type-checks, the definition of wrapper type-checks. Therefore the program type-

checks, with the provisos that we have collected the runtime check-equation z = z

that resulted from the call mmul(D,E) and placed it at the beginning of wrapper's

body, and that this equation holds true when execution reaches that point in the code.

This is one example of a "runtime" check that is easy for the compiler to eliminate

statically with a small amount of extra work.

Note that the checker must maintain a distinction between the formal parameters

on the left-hand-side of each equation and the actual parameters on the right-hand-

side. The need for result types to be expressed only in terms of actual parameters is

one reason for this distinction. The need to avoid name conflicts between formal and

actual parameters is another reason.

36

If we had not been able to optimize away the check equations at compile time,

it would be necessary to leave some of them in the compiled code to be confirmed

at runtime. For example, if we revised the example program to look like the one in

figure 2-11, we would need to insert the run-time check x = y in the code generated

for wrapper2 before the call to mmul(D,E).

type matrix[int, int];

proc mmul[r,c,i: int](A:matrix[r,i], B:matrix[i,c])

returns matrix r,c];

proc wrapper2[w,x,y,z: int] (D:matrix[w,x], E:matrix[y,z])

returns matrix[w,z]

return mmul(D, E);

}

Figure 2-11: Example of Program Requiring Runtime Parameter Checks

2.3.5 Pragmatic Considerations in Typechecking

The checking algorithm reduces the problem of proving the rules of Section 2.2 to

the problem of determining whether a system of nonlinear, integer equations is in-

consistent. We perform this consistency check at runtime for each instantiation by

inserting runtime checks into the compiled code which raise runtime errors if they are

not satisfied. This guarantees that all code that is executed is type-correct, because a

runtime error would be raised before the execution of any code with unsound typing

judgments.

The computational complexity of typechecking is polynomial in the length of the

program text. Let M denote the number of syntax-tree leaves (i.e., literals, variable-

references, and calls that do not contain other calls) of a program, and let N denote the

maximum number of parameters appearing in any procedure-generator's signature.

The checking algorithm traverses down the syntax tree, collects reconstructed types

at the leaves, and then traverses back up to verify that no error occurred at any leaf.

Hence each leaf is visited exactly once. At each leaf (call expression), the checker

37

extracts at most M equations on parameters, splitting them into the set of "defining

occurrences" and "extra equations." This takes O(M) time since each equation is

extracted by a constant-time pattern match. Multiplying, the overall time complexity

of typechecking is O(MN). Since the length of the program text is proportional to

M, the time complexity of typechecking can also be expressed as O(Nx (length of

program text)).

It should be clear from the above discussion why the syntactic restriction on

procedure signatures in subsection 2.1.5 simplifies the checking algorithm. Since each

formal parameter must appear in an atomic term in at least one formal argument type,

the parameter-equation set will automatically include an already-reduced substitution

for each formal parameter, with that formal parameter alone on the left-hand-side. If

a procedure application has more constraint equations than parameters, then addi-

tional equations (possibly non-atomic on the left-hand-side) will be inserted into the

compiled program as runtime conformance checks.

If DP did not include this restriction, then the algorithm for determining the exis-

tence of consistent parameter substitutions (i.e., the algorithm for checking procedure

calls) would need to find integer solutions to possibly nonlinear equations. This is

the decision problem for integer diophantine equations, also known as Hilbert's Tenth

Problem, which is undecidable [6].

One optimization for the typechecker would be to simplify or eliminate the residual

checks statically. This optimization opportunity reduces to the problem of reducing

nonlinear, integer equations.

38

Chapter 3

Application Case Study

This chapter evaluates how well, in practice, DP meets the needs for safety, con-

venience, and flexibility outlined in Chapter 1. We will argue that the DP typing

constructs successfully make programs cleaner and safer, though sometimes at a cost

in convenience. We will also show that the type system lacks the power to handle

certain ideas that could benefit from static verification.

We use the LQR (linear-quadratic regulator design) algorithm from control engi-

neering, described below in Section 3.1, as the example for the study. The original

code for LQR is given in the control and linear-systems toolbox of MATLAB [17, 15],

a commercial tool for numerical computation. This example is well suited for practical

evaluation of DP. It is widely used to do practical work in an engineering discipline,

so its length and complexity should be representative of procedures used in real life

to compute with matrices.

The chapter begins by providing a little background on the LQR algorithm and

briefly describing its original implementation in the MATLAB toolbox. It then gives

a translation of the algorithm to DP. This translation was checked in the exact form

given in this chapter by a typechecker implementing the specifications of Chapter 2.

Strengths and weaknesses of the type system are evaluated in terms of the quality of

the fit between the type system and the algorithm's computational notions.

39

3.1 The LQR Algorithm

The LQR algorithm is a widely-used algorithm for designing control systems [2]. It

takes four matrix inputs: A, B, Q, and R. A and B represent the physical system to

be controlled in terms of its state space, given by a linear differential equation of the

form
d
-x = Ax + Bu
dt

where x is a vector representing the state of the physical system and u is a vector

representing inputs to the system.

The matrices Q and R are design parameters. It is possible to give them physical

interpretations as weight matrices in a cost function. In practice, however, design-

ers usually treat this physical interpretation loosely, trying many different Q and

R in the process of finding a design that meets their criteria. Hence, the LQR al-

gorithm is used inside an outer loop, so factors influencing performance, including

runtime conformance checks, are worth optimizing. (LQR isn't in the innermost

loops, though-the eigenvalue decomposition algorithm is.)

The output of the LQR algorithm is a constant matrix K that is used to scale

the state of the system in a full-state feedback loop; thus, the closed-loop differential

equation for the system is
d

x = (A- BK)x.

3.2 MATLAB Implementation of LQR

A slightly simplified version of the MATLAB LQR script is given in figure 3-1. (Note

that the line numbers are not part of the script.) The complete original listing can

be found in Appendix A.

The script begins by performing conformance checking on the dimensions of the

arguments in an ad-hoc manner in lines 3-17. Although these checks look verbose,

they amount to confirming that A has dimensions n x n, B has dimensions n x nb,

Q has dimensions n x n, and R has dimensions nb x nb. These dimensions make

40

1 function [k,s,e]=lqr(a,b,q,r)
2

3 error(abcdchk(

4 if 'length(a)

S error(

6 end

7

a,b));
I length(b)

'A and B matrices cannot be empty.')

8 m,n] = size(a);

9 [mb,nb] = size(b);

10 [mq,nq] = size(q);

11 if (m = mq) I (n '= nq)

12 error('A and Q must be the same size');

13 end

14 [mr,nr] = size(r);

15 if (mr = nr) (nb = mr)

16 error('B and R must be consistent');

17 end

18

19 % Check if q is positive semi-definite and symmetric
20 nq = norm(q,1);

21 if any(eig(q) < -eps*nq) I (norm(q'-q,1)/nq > eps)

22 disp('Warning: Q is not symmetric and positive semi-definite');

23 end

24 % Check if r is positive definite and symmetric

25 nr = norm(r,l);

26 if any(eig(r) <= -eps*nr) I (norm(r'-r,1)/nr > eps)

27 disp('Warning: R is not symmetric and positive definite');

28 end

29

30

% Start eigenvector decomposition by finding eigenvectors of Hamiltonian:
31 v,d] = eig([a b/r*b';q, -a']);
32 d = diag(d);

33 [e,index] = sort(real(d)); % sort on real part of eigenvalues

34 if (((e(n)<O) & (e(n+l)>O)))

35 error('Can''"t order eigenvalues, (A,B) may be uncontrollable.');
36 else

37 e = d(index(l:n)); % Return closed-loop
38 end

39 chi = v(l:n,index(l:n)); % select vectors

40 lambda = v((n+l):(2*n),index(l:n));

41 s = -real(lambda/chi);

42 k = r\(b'*s);

eigenvalues

with negative eigenvalues

Figure 3-1: MATLAB Implementation of LQR Algorithm (Simplified)

41

sense physically if we consider that nb is the number of inputs and n is the number

of states.

The script continues by checking that Q and R are positive definite (actually,

positive semi-definite in Q's case) and symmetric, applying numerical conditions based

upon the norms and eigenvalues of Q and R and printing runtime warnings if this

condition is not met.

The algorithm proper does not start until line 31, which finds the eigenvector

decomposition of the "Hamiltonian matrix"-a 2n x 2n matrix formed by "glu-

ing" together four n x n submatrices. The script sorts the eigenvectors and cor-

responding eigenvalues by the real parts of the eigenvalues and selects out the eigen-

value/eigenvector pairs whose eigenvalues have negative real parts (a numerical con-

dition for stability). In the process, it checks if there are enough stable eigenvalues.

If all is well, the script computes K as well as the auxiliary matrix S and auxiliary

vector of eigenvalues e. Computing these final results requires permuting columns of

matrices and elements of vectors according to the sorted ordering computed in line

33. This shuffling of matrix components is expressed by the array indexing operators

in lines 37, 39, and 40. The notation d(index(l :n)) in line 37 denotes the permuted

vector

[Dindez , ... DindezlJ]

and the notation v(1 :n, indez(1 :n)) denotes the permuted matrix

Vl,indezxl , Vl,index,,

V, indezx o VM,index,

Note that this notation also specifies a subsectioning operation that selects s x s

matrices from 2s x 2s ones.

42

3.3 DP Translation of the MATLAB LQR Script

This section gives a handwritten translation of the above MATLAB script to DP. The

resulting script expresses the constraints among dimensional parameters more clearly

than the MATLAB script does, providing better documentation to the human reader

and greater safety through compile-time checking. The DP program given here has

been passed as shown through the checker implementation, which discharged all the

conformance checks (though not the bounds checks, as we will see) statically. This

provides confirmation of the DP type system's usefulness for practical applications.

The example also points out some awkward aspects of the translation that result

from the fact that DP omits all features irrelevant to parameter checking. Subsec-

tion 3.3.2 explains why these aspects would not be problematic were the interesting

DP features integrated into a production language.

Finally, the example points out some genuine limitations of the type system which

cannot be solved by simple fixes; subsection 3.3.3 explains what the fundamental

problems are.

3.3.1 Successful Aspects of DP

Figures 3-2 and 3-3 list the main DP source file for the LQR algorithm. The most

noteworthy feature is the exposure of conformance requirements in lqr's signature.

This has two major benefits. First, the parameters in the signature compactly doc-

ument the conformance requirements for procedure generators. In the example, the

signature highlights the fact that there are two dimensional parameters of interest:

ip, the number of inputs, and sp, the number of states. Moreover, it makes the

conformance requirements for the arguments A, B, Q, and R immediately appar-

ent in terms of ip and sp. Contrast this clarity with the lack of information about

conformance requirements given by the MATLAB LQR script. The signature there

gives no information about conformance requirements. Neither, in fact, does the long

43

introductory comment in the original script (see Appendix A). It is necessary to

read the error-handling code in lines 3-17 of figure 3-1 to discern the conformance

requirements. These hand-written checks are verbose and idiosyncratically written;

hence, significantly more effort is necessary to deduce the conformance requirements

from them. Also, hand-written conformance checks like those are a likely source of

bugs since they involve repetitive and bothersome details, especially compared to the

more compact form encoded in the DP signature.

The second major benefit of exposing conformance requirements in the signature

is that it allows the conformance check to be moved to the call site from the start

of the procedure-generator definition. This allows the compiler to perform a deeper

analysis of conformance properties; in fact, it opens up the possibility of eliminating

the check altogether. The checker implementation succeeded very well with this on

the LQR program; it was able to optimize away all of the conformance checks by

applying the algorithm of Section 2.3 and then eliminating check-equations between

syntactically identical parameter expressions.

3.3.2 Insignificant Problems in the Example

There are some awkward constructs in this translation that stem solely from DP's

exclusion of features not directly related to parameter checking. Integrating these

well-known features would not involve difficult interactions with the dependent pa-

rameters:

* Since there are no builtin operators, we simulate them with procedure-generator

declarations; however, this leads to a more verbose expression syntax. For ex-

ample, the check in lines 11-13 that Q and R are positive definite and symmetric

is delegated to the helper procedures is_posdef and is_symmetric merely to

cope with this verbosity. Adding operator overloading would make programs

more concise but would pose no difficulty with dependent types since over-

loading would resolved among the type generators of arguments, not the type

parameters. Dependent parameterization would be orthogonal to overloading.

44

1 Translation of the MATLAB lqr script to DP.

2

3 #include "matlabbuiltins.h"

4

5 proc lqr [ip,sp](a:mat[sp,sp], b:matEsp,ip], q:mat[sp,sp], r:mat[ip,ip])
6 returns mat ip,sp]

7 % parameter ip is the number of system inputs

8 % parameter sp is the number of system states

9 {
10 X Check if q and r are positive definite and symmetric
11 if (not (and (and (isposdef(q), issymmetric(q)),

12 and (isposdef(r), issymmetric(r)))))

13 { var dummy := disp(); } Print warning to display

14

15 {

16 % Eigenvector decomposition of Hamiltonian
17 var H := mglue(A, matmul(rightdiv(B,R), trans(B)),

18 Q, matscale(realnegl(), trans(A)));

19 { var v := eigvec(H);

20 var d := eigval(H);

21

22 % sort on real part of eigenvalues

23 { var e2 := sortl(realvec(d));

24 var index := sort2(realvec(d));

25 if (not (and (real_lt(vec_fetch(e2,sp), realzero()),

26 realgt(vecfetch(e2,intplus(sp,1)),

27 realzero()))))

28 , Can't order eigenvalues, (A,B) may be uncontrollable.
29 { var dummy := error(); }

30

31 { % Return closed-loop eigenvalues
32 var e := vecchop(vecpermute(d,index),firstrow(A),i);
33 % select vectors with negative eigenvalues
34 var chi := matchop(matcpermute(v,index),A,1,1);
35 var lambda := matchop(matcpermute(v,index),A,

36 intplus(sp,1),1);

37 { var s := matscale(realnegi(), rightdiv(lambda,chi));

38 { var k := leftdiv(r,mat_mul(trans(b),s));

39 return k; }

40 }

41 }
42

43

44

45 }

Figure 3-2: Translation of the LQR Script to DP, Part 1

45

47 proc is_posdef En] (X:mat[n,n]) returns bool

48 {
49 var nx := norm(X);

50 if (vec_any_lt(eigval(X), realmul(realnegi(),realmul(eps(),nx))))

51 return false;

52 else

53 return true;

54 }
55

56 proc is_symmetricn] (X:mat[n,n]) returns bool

57 {

58 var nx := norm(X);
59 if (realgt(realdiv(norm(matsub(X,trans(X))), nx), eps()))
60 return false;

61 else

62 return true;

63 }

Figure 3-3: Translation of the LQR Script to DP, Part 2

* MATLAB supports multiple return values while DP does not. This leads to,

for example, the separate eigvec and eigval constructs in lines 19 and 20 which

find the eigenvectors and eigenvalues of the same matrix; the original MATLAB

script does both with the eig function (line 31 of figure 3-1). Also, the MATLAB

script returns three values: K, S, and E. The DP program returns only K, the

most useful. However, it does compute all three. Multiple return values could be

integrated with dependent types with a trivial change to the return-statement

typing rule.

* Because DP omits traditional type parameters, the type system does not dis-

tinguish between matrices of complex numbers and matrices of reals. Such a

distinction would provide greater safety for operations such as the realvec pro-

cedure called on lines 23 and 24. However, traditional type parameters and our

value parameters would be orthogonal constructs.

In light of these explanations, most of the translation from the MATLAB script

to the DP program should be fairly clear.

46

%%% Declarations to model the MATLAB builtin functions.

#include "typebuiltins.h"

#include "scalarbuiltins.h"

#include "vectorbuiltins.h"

#include "matrixbuiltins.h"

#include "miscbuiltins.h"

Figure 3-4: matlabbuiltins.h

%%%/ Declarations to model the MATLAB builtin types

type real;

type complex;

type vec[int];

type mat [int, int];

Figure 3-5: typebuiltins.h

A few constructs remain somewhat difficult to understand. Chief among these are

probably the mat chop and vec_chop procedures. The lack of clarity of expression

here stems from some fundamental limitations of the DP type system which this case

study brings to attention. These limitations will be discussed in the next section.

3.3.3 Limitations of the DP Type System

As mentioned above, the case study does illustrate some fundamental limitations of

DP's type system. The most troublesome parts of the LQR script from this point of

view are the subvector and submatrix selection operations used in lines 37, 39, and 40

of the original MATLAB script. This operation takes a vector or matrix along with

a set of indices for a subvector or submatrix as arguments. The translation, in terms

of the chop operations in lines 32, 34, and 35 of the DP program, takes the original

matrix or vector, a second matrix or vector, and an index of a starting element as

arguments, and returns a new matrix of the same dimensions as the second matrix,

composed of enough elements from the original matrix to fill the new matrix, starting

from the specified starting index element. The following limitations explain the need

47

%%Y.Y. Declarations to model the MATLAB builtin scalar functions

%%%Y. model boolean-operator builtins
proc or(a,b:bool) returns bool;

proc and(a,b:bool) returns bool;

proc not(a:bool) returns bool;

%%% model integer builtins
proc intplus(a,b:int) returns int;

.%%%. model real-number builtins

proc realzero() returns real; % a literal real-valued 0
proc realnegi() returns real; % a literal real-valued -1
proc real_mul(a,b:real) returns real;

proc real_div(a,b:real) returns real;

proc reallt(a,b:real) returns bool;

proc realgt(a,b:real) returns bool;

.%%%. model complex-number builtins

proc getreal(x:complex) returns real;

Figure 3-6: scalarbuiltins.h

%%%.. Declarations to model the MATLAB builtin vector functions

proc sortl[n](X:vec[n]) returns vec[n]; . returns sorted elements
proc sort2[n](X:vec[n]) returns vecEn]; returns permutation vector
proc realvec[n](X:vec[n]) returns vec[n]; . vector containing real components

proc vecscale[n](x: real, A: vec[n]) returns vec[n];
proc vecfetch[n](X: vec[n], i:int) returns real;

. chop X down to the size of Y, starting from index i

proc vecchop[nl,n2] (X:vec [nl],Y:vec [n2],i:int) returns vec[n2];

. permute by permutation vector pi

proc vec_permute [n] (X,pi:vec [n]) returns vec [n];

% returns true iff any element of is less than y

proc vec_any_lt [n] (X:vecEnJ,y:real) returns bool;

Figure 3-7: vectorbuiltins.h

48

.%%% Declarations to model the ATLAB matrix builtins

% matrix "gluing" constructor
proc mglue ml,ni,m2,n2]

(A: mat[ml,nil], B: mat[ml,n2],

C: mat[m2,nl], D: mat[m2,n2])

returns mat[mi+m2, ni+n2];

. matrix transpose and inverse

proc trans r,c](X: mat r,c]) returns mat[c,r];

proc inv[r,c] (X: mat[r,c]) returns mat[c,r];

7 multiply a matrix by a matrix

proc matmul[r,i,c] (A: matEr,i], B: mat[i,c]) returns matEr,c];

7. subtract two matrices

proc matsubEr,c](A,B: mat[r,c]) returns matEr,c];

% scale a matrix by a real

proc mat_scale[r,c](x: real, A: matEr,c]) returns mat[r,c];

7. Left division and right division are formally equivalent

7. to the definitions below. ATLAB actually uses

' a different algorithm for numerical reasons.

proc leftdivEr,i,c](A: matEi,r], B: mat[i,c]) returns mat[r,c]

{
return matmul(inv(A), B);

}

proc rightdiv[r,i,c](B: mat[r,i], A: mat[c,i]) returns mat[r,c]

{
return matmul(B, inv(A));

}

Figure 3-8: matrix builtins.h, Part 1

49

. matrix norm
proc normom,n](x:mat[m,n]) returns real;

% columns of result are the eigenvectors of x

proc eigvec n](x:mat n,n]) returns mat[n,n];

% find the vector of eigenvalues
proc eigvalEn] (x:mat En,n]) returns vec n];

% chop matrix X down to the size of matrix Y., starting from element [i,j]

proc matchop[mi,ni,m2,n2](X:mat mi,nl],

Y:mat[m2,n2],

i,j:int) returns mat[m2,n2];

% permute columns of matrix X according to permutation vector pi
proc matcpermuteEr,c] (X:mat[r,c],pi:vec[c]) returns mat Er,c];

% get the first row of X

proc firstrow[m,n] (X:mat [m,n]) returns vec En];

Figure 3-9: matrixbuiltins.h, Part 2

for this convoluted translation:

* Most seriously, parameter expressions cannot be expressed in terms of argu-

ments. The MATLAB submatrix selection operation allows the indices for the

submatrix to be indicated as an argument, providing maximum flexibility for

the shape of the submatrix. This flexibility to defer decisions about matrix

shape until runtime, however, comes at a price for static typing: namely, a

static type system cannot prove anything about those shapes. It would be

possible to extend the DP type system to allow parameter expressions to be ex-

pressed in terms of arguments. However, the usefulness of this would be quite

questionable if determining much of the new type information was impossible

at compile time.

Therefore, the translation of the submatrix operations must avoid using an

argument variable to specify the dimensions of the new submatrix. Fortunately,

the example in the case does not require that much runtime flexibility because

we can determine statically that the submatrix must be of dimensions sp x sp.

50

This allows the translation to solve this problem by specifying the size of the

new submatrix in terms of one of the caller's argument matrices. Then the

dimensions once again can be inferred in terms of parameters.

If we allowed parameter expressions to be expressed in terms of arguments, the

typechecker would have to perform dataflow analysis to determine whether those

argument values could be evaluated at compile time. If so, then checking would

proceed using those optimized values; otherwise, typechecking would have to be

deferred to runtime.

* In DP's current form, parameter values must be left implicit. Situations some-

times arise in which it is much more natural for the programmer to explicitly

instantiate parameter values. The solution to the chop problem above still

seems unsatisfactory because the second matrix is provided solely for its shape

information, which seems rather inelegant. Allowing the parameters to be spec-

ified explicitly instead of forcing all parameters to be inferred would make the

translation seem more natural. Unlike the binding-time problem with argu-

ments above, there is no fundamental reason why the DP type system could

not be extended to allow for this.

* The existing parameter constraints are all in terms of equalities which indicate

whether type parameters which must conform actually do so. Some other kinds

of checks we would like to make would need to be inequalities. The check in

lines 4-6 of the original MATLAB script, which makes sure that the row and

column sizes of the A and B matrices are greater than zero, is a situation in

which this need arises: we would like to be able to encode the requirements that

ip > 0 and sp > 0.

Adding inequalities would introduce some new complications. Signatures would

be allowed to include inequality constraints on their parameters which would

need to be satisfied for a call to be valid. Now, procedure-generator bodies

could be checked using these inequality constraints as additional assumptions.

A check for the inequality constraints would have to be included at call-sites

51

where the callee imposed such an inequality constraint.

One major consequence of those limitations is that, while the type system does

an excellent job of reconciling dimensional conformance, it does not handle bounds

checking. Conformance refers to correct agreement between type parameters and

signatures. It refers to shapes of data objects in the program. The case study shows

that these shapes can often be deduced at compile time, allowing them to be subsumed

in the type system. Examples of conformance checking include matrix multiplication,

transpose, permutation, and addition.

Bounds checking, on the other hand, relates argument values (which, in the gen-

eral case, cannot be determined until runtime) to type parameters. Matrix and vector

element fetch, as well as the inequality checks that would be desirable in the subma-

trix operation as described above, are examples of operations that would benefit from

bounds checking. However, this kind of analysis requires too much dynamic informa-

tion at compile time to be as successful as the conformance checks.

These problems illustrate the central tradeoff of type systems. Mark Manasse

writes,

The fundamental problem addressed by a type theory is to insure that

programs have meaning. The fundamental problem caused by a type

theory is that meaningful programs may not have meanings ascribed to

them. The quest for richer type systems results from this tension. [3]

This tradeoff is evident in this case study: Applying the DP type system to the

LQR script certainly gives more confidence that the dimensions of the matrices used

throughout the program make sense. However, this comes at the price of making the

operation of cutting up big matrices into smaller submatrices harder to express legally.

Likewise, we feel uneasy about the lack of static confirmation of matrix bounds, but

it seems evident that an attempt to force programs to be statically bounds-checkable

would limit the expressiveness of the language so much that it would be almost useless.

Compromises in safety of the DP type system-such as the choice of deferring parts

of typechecking until runtime if necessary-result from attempts to deal with the

52

fundamental tension in the problem.

53

54

Chapter 4

Extensions

This chapter describes possible extensions to the type system defined in Chapter 2.

The extensions can be classified into three groups by their motivations: expressive-

ness, safety, or performance. Each extension is discussed in terms of the benefit it

would provide and the impact it would have on the typechecking algorithm. Some

of the extensions listed may not be worthwhile because they may be too difficult to

implement.

4.1 Expressiveness

4.1.1 Explicit Parameter Instantiation

As defined in Chapter 2, DP does not provide a way to instantiate parameters ex-

plicitly. Subsection 3.3.3 gives an example of a situation that would be much less

awkward without this limitation.

Integrating parameterized types with an abstract type facility would also require

explicit parameter instantiation. To make DP's parameterized types really useful,

programs must be able to define constructor procedures that build representations

for them given arguments of primitive types. Such a constructor procedure would

require explicit parameters to give the dimensions of the constructed objects if the

arguments passed to the constructor were not parameterized themselves.

55

Adding the ability to specify procedure-generator parameters explicitly would pose

no fundamental difficulties. However, for maximum expressiveness, explicit instanti-

ations of parameters in terms of arguments as well as parameters and literals would

be allowed. The compiler could evaluate any such expressions whose values could

be determined at compile time, allowing checking to proceed statically. Remaining

checks would have to be deferred until runtime. This compromise would trade safety

for expressiveness.

4.1.2 Elimination of the Signature Restriction

It would be nice to eliminate the requirement defined in subsection 2.1.5 that each

parameter of a procedure generator appear by itself in one of the formal-argument

types. However, this may not really improve the usefulness of the language; we have

not been able to think of any practical problems for which the generalized form seems

natural.

Also, if we eliminated this restriction, the checker would need to solve systems of

arbitrary integer equations in order to reconstruct types of call-expressions. This is

undecidable (see subsection ??).

4.1.3 Generalized Parameter Expressions

DP specifies a separate grammar for the expressions that are allowed to instantiate

parameterized types. This grammar allows only the operators +, -, x, and /. Allow-

ing general expressions to instantiate parameterized types would increase flexibility.

To implement this, the typechecker would have to verify that these expressions had

integer type. If such an expression's value could be determined at compile time (for

example, because the expression was in terms of manifest constants), then checking

could still be done statically. Checking would have to be deferred to runtime if the

expression could not be statically evaluated.

56

4.2 Safety

4.2.1 Provably Unsatisfiable Runtime Checks

The typechecker creates runtime-check equations to encode constraints that it has

not verified at compile time. If the typechecker can prove that no assignment of

parameters in the runtime checks will allow them to be consistent, then it can detect

a larger portion of erroneous programs statically.

Implementing this feature would require a more sophisticated equation-solving

algorithm, or, at the least, a set of heuristics that detected some cases of unsatisfiable

check equations.

4.2.2 Backward Check Propagation in the Flow Graph

An interprocedural flow analysis could identify code points at which a later runtime

check would inevitably be made. This would enable the compiler to move the runtime

checks backwards through the code, possibly disqualifying more errors based upon

the added information exposed.

For example, runtime checks at the beginnings of procedure-generator bodies could

be moved to the call sites. Specific information about each call site could then be

applied to disqualify calls that had no possibility of being correct.

Note that this movement may also enable some checks to be discharged (proven

true for all parameter values) at compile time.

4.2.3 Integration of Conformance and Bounds Checking

Subsection 3.3.3 explains why a large portion of conformance checking can be per-

formed statically, but bounds checking generally cannot. However, bounds checking

and conformance checking can be integrated into the same framework. This would

require the system to express parameter constraints in terms of inequalities as well

as equalities.

[8] discusses techniques for reducing the runtime overhead of bounds checking.

57

These techniques include elimination of redundant checks, possibly enabled by moving

them through the flow graph. It is possible that the analysis needed to do this kind

of bounds-check optimization can be combined with the analysis used in bounds

checking.

4.3 Performance

4.3.1 Loops

DP omitted loops for simplicity. This did not reduce its expressive power because,

with the help of lambda lifting, loops can be desugared into tail recursion. However,

explicit inclusion of loops may allow the optimization of redundant checks by allowing

the motion of loop-invariant runtime checks outside the loops.

4.3.2 Elimination of Provably Correct Checks

A more sophisticated equation-solving algorithm would be able to determine whether

check equations were true for all parameter values, as well as whether checker equa-

tions were unsatisfiable regardless of the parameter values. This would allow the

runtime checks to be eliminated, speeding up execution and improving confidence in

the program.

The working implementation of the DP checker already does this in the simplest

cases. It can recognize check equations in which the left-hand and right-hand sides

are syntactically the same, eliminating them. This allowed all the checks for the LQR

example to be eliminated statically.

A more sophisticated optimizer would embody more semantic knowledge. It would

know and apply simple algebraic properties of the integers such as

ax E Int · x + 0 = x

Vx E Int lx = x

Vx E Int x + x = 2x

58

Algebraic simplification would allow more check equations to be proven true statically.

59

60

Chapter 5

Conclusions

As subsection 3.3.1 argues, the combination of type-system features we have described

significantly improves the safety of matrix programs and the documentation of con-

formance requirements in the language. This shows that conformance checking can

be successfully integrated into type systems.

There are, however, fundamental limits to the power of the system in terms of

the tradeoff between safety and expressiveness. Most importantly, as subsection 3.3.3

notes, it is fundamentally impossible to perform static analysis on dynamic informa-

tion. Thus, if programs enjoy the flexibility gained by making dimensional parameters

dependent on runtime values, they must forego the safety afforded by static typecheck-

ing for the affected constructs. Many of the limitations of this dependent type system

are variants of this problem.

This work also highlights the general fact that dependent type systems must

embody significant knowledge about their value domains. For maximum effectiveness,

the checker for DP should be able to take advantage of many semantic properties

of the algebra of integers in order to discharge checks or prove them unsatisfiable

statically. The need for this domain-specific knowledge implies that the transferability

of technology among type systems dependent on varying value domains would be

limited. For example, a type system applying the features of DP to types dependent

on boolean values would probably be significantly different from this one, and it is

questionable how much the two systems could be integrated into the same framework.

61

This fact limits the usefulness of dependent type systems for general-purpose

languages. It is in specialized application domains-such as the domain of matrix

computation explored here-that they will prove most useful.

62

Appendix A

Listing of the Original MATLAB

LQR Script

This appendix contains a complete listing of the original MATLAB LQR script dis-

cussed in Chapter 3. Differences between this script and the simplified one given in

figure 3-1 are very minor and should not affect the applicability of the script as a

case-study example:

* The case-study version in figure 3-1 omits the long introductory comment.

* The case study omits the optional fifth argument n, the "cross-term." The

only operations done with nn are matrix multiplication, transpose, and addition.

Since these operations are used elsewhere in the script, omitting nn does not

impact the level of language expressiveness the script requires.

function [k,s,e]=lqr(a,b,q,r,nn)

Y.LQR Linear quadratic regulator design for continuous systems.

% [K,S,E] = LQR(A,B,Q,R) calculates the optimal feedback gain

% matrix K such that the feedback law u = -Kx minimizes the cost

% function:

% J = Integral {x'qx + u'Ru} dt

X.

63

% subject to the constraint equation:

% x = Ax + Bu

% Also returned is S, the steady-state solution to the associated

% algebraic Riccati equation and the closed loop eigenvalues E:

S -i

0 = SA + A'S - SBR B'S + Q E = EIG(A-B*K)

% [K,S,E] = LQR(A,B,Q,R,N) includes the cross-term N that relates

% u to x in the cost function.

% J = Integral {x'Qx + u'Ru + 2*x'Nu}

% The controller can be formed with REG.

% See also: LQRY, LQR2, and REG.

X J.N. Little 4-21-85

% Revised 8-27-86 JL

% Revised 7-18-90 Clay M. Thompson

% Copyright (c) 1986-93 by the MathWorks, Inc.

error(nargchk(4,5,nargin));

error(abcdchk(a,b));

if length(a) I 'length(b)

error('A and B matrices cannot be empty.')

end

[m,n] = size(a);

[mb,nb] = size(b);

[mq,nq] = size(q);

64

if (m -= mq) I (n = nq)

error('A and Q must be the same size');

end

[mr,nr] = size(r);

if (mr '= nr) I (nb = mr)

error('B and R must be consistent');

end

if nargin == 5

[mn,nnn] = size(nn);

if (mn = m) I (nnn = nr)

error('N must be consistent with Q and R');

end

% Add cross term

q = q - nn/r*nn';

a = a - b/r*nn';

else

nn = zeros(m,nb);

end

% Check if q is positive semi-definite and symmetric

nq = norm(q,1);

if any(eig(q) < -eps*nq) I (norm(q'-q,1)/nq > eps)

disp('Warning: Q is not symmetric and positive semi-definite');

end

Y Check if r is positive definite and symmetric

nr = norm(r,1);

if any(eig(r) <= -eps*nr) I (norm(r'-r,1)/nr > eps)

disp('Warning: R is not symmetric and positive definite');

end

% Start eigenvector decomposition by finding eigenvectors of Hamiltonian:

65

[v,d] = eig([a b/r*b';q, -a']);

d = diag(d);

[e,index] = sort(real(d)); % sort on real part of eigenvalues

if ('((e(n)<O) (e(n+l)>O)))

error('Can''t order eigenvalues, (A,B) may be uncontrollable.');

else

e = d(index(i:n)); % Return closed-loop eigenvalues

end

chi = v(l:n,index(i:n)); % select vectors with negative eigenvalues

lambda = v((n+l):(2*n),index(1:n));

s = -real(lambda/chi);

k = r\(nn'+b'*s);

66

Bibliography

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Tech-

niques, and Tools. Addison-Wesley, Reading, MA, 1986.

[2] Brian D. O. Anderson and John B. Moore. Optimal Control: Linear Quadratic

Methods. Prentice Hall, New Jersey, 1990.

[3] Luca Cardelli. A polymorphic A-calculus with Type:Type. Technical Report

DEC/SRC TR-10, Digital Equipment Corporation Systems Research Center,

May 1986.

[4] Luca Cardelli. Basic polymorphic typechecking. Science of Computer Program-

ming, 8(2), April 1987.

[5] Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and

polymorphism. Computing Surveys, 17(4):471-522, December 1985.

[6] Michael Garey and David Johnson. Computers and Intractability. A Guide to

the Theory of NP-Completeness. W. H. Freeman, 1979.

[7] David Gifford and Franklyn Turbak. Course notes for 6.821 programming lan-

guages. Unpublished lecture notes, 1992.

[8] Rajiv Gupta. A fresh look at optimizing array bound checking. In Proceedings

of the ACM SIGPLAN'90 Conference on Programming Language Design and

Implementation., pages 272-282. ACM SIGPLAN, 1990.

67

[9] Thomas Johnsson. Lambda-lifting-transforming programs to recursive equa-

tions. Technical report, University of Goteborg Programming Methodology

Group, June 1986.

[10] Barbara Liskov and John Guttag. Abstraction and Specification in Program

Development. MIT Press, Cambridge, MA, 1986.

[11] P. Martin-Lof. Intuitionistic type theory. Notes of Giovanni Sambin on a series

of lectures given in Padova, Italy, June 1980.

[12] Robin Milner. A theory of type polymorphism in programming. Journal of

Computer and System Sciences, 17:348-375, 1978.

[13] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML.

MIT Press, Cambridge, MA, 1990.

[14] Greg Nelson. Systems Programming with Modula-3. Prentice Hall Series in

Innovative Technology. Prentice Hall, 1991.

[15] Katsuhiko Ogata. Solving Control Engineering Problems with MATLAB. MAT-

LAB Curriculum Series. Prentice Hall, 1993.

[16] Raymie Stata. Dimensional analysis for software. Unpublished article, September

1992.

[17] The Student Edition of MATLAB. MATLAB Curriculum Series. Prentice Hall,

1992.

[18] J. Welsh, W. Sneeringer, and C. Hoare. Ambiguities and insecurities in Pascal.

Software Practice and Experience, November 1977.

68

