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Automatic Orthographic
Alignment of Speech

by

Jerome S. Khohayting

Submitted to the Department of Electrical Engineering and Computer Science
in May, 1994 in partial fulfillment of the requirements for the Degree of

Master of Engineering and Bachelor of Science.

Abstract

The objective of the research is to develop a procedure for automatically aligning
an orthographic transcription with the speech waveform. The alignment process
was performed at the phonetic level. The words were converted into a sequence of
phonemes using an on-line dictionary and a network of phones was created using
phonological rules.

The phonetic alignment was accomplished using a microsegment-based approach
which utilized a probabilistic framework. Acoustic boundaries were proposed at points
of maximal spectral change, and were aligned with the phone network using a time-
warping algorithm incorporating both acoustic and durational weights to the score.
This approach was then compared to the traditional frame-based technique, which can
be interpreted as proposing boundaries at every frame before the process of aligning
with the network.

The acoustic as well as the durational models were trained on the TIMIT corpus,
and the algorithm was tested on a different subset of the corpus. To investigate the
robustness of the procedure, the resulting algorithm was trained and evaluated on
the same subsets, respectively, of the NTIMIT corpus, which is the telephone version
of the TIMIT utterances. A word overlap ratio of 93.2 % and a word absolute error
of 20.4 ms were achieved on the TIMIT corpus. This corresponds to a phone overlap
ratio of 81.7 % and a phone absolute error of 12.9 ms.

Thesis Supervisor: James R. Glass
Title: Research Scientist
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Chapter 1

Introduction

1.1 Overview

Automatic speech recognition has been a tantalizing research topic for many years. To

be successful, speech recognizers must be able to cope with many kinds of variability:

contextual variability in the realization of phonemes (i.e., coarticulation), variability

due to vocal tract differences between speakers and speaking styles, and acoustic

variability due to changes in microphone or recording environment. In order to be

able to model such variability, researchers use large corpora of speech to train and

test acoustic-phonetic models. Corpora are especially useful when orthographically

and phonetically aligned transcriptions are available along with the speech [13]. Such

corpora are also valuable sources of data for basic speech research. An example of

an aligned speech utterance is shown in Figure 1.1. In the figure, the spectrogram

for the sentence "Two plus seven is less than ten" is shown, as well as its aligned

phonetic and orthographic transcriptions.

Manual transcription of large corpora, however, is extremely time consuming, so

automatic methods are desired. There are different degrees of automating this pro-

cess. One method would require a phonetic transcription of an utterance before align-
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T wo plus stbrpen lransct then 
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Figure 1.1: Automatic Orthographic Alignment of Speech
Digital spectrogram of the utterance "Two plus seven is less than ten" spoken by a male
speaker. A time-aligned phonetic and orthographic transcription of the utterance are shown
below the spectrogram.
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ing it with the speech signal [14]. A fully automated system would require only the

orthography of the utterance, and could generate a phonetic network automatically

before aligning it with the waveform. This research focuses on the latter approach.

In the past, researchers have typically used a frame-based approach for phonetic

alignment. This research investigates a segment-based approach utilizing a stochastic

framework. An on-line dictionary is used to expand words into a baseform phoneme

sequence. This sequence is then converted to a phone network by applying a set of

phonological rules. The rules are intended to account for contextual variations in the

realization of phonemes. The phone sequence which best aligns with the speech signal

is determined using the phonetic alignment algorithm.

The aligment procedure is evaluated primarily on the TIMIT [13] and NTIMIT [11]

acoustic-phonetic corpus. Comparisons to results reported in the literature are made

whenever possible.

1.2 Previous Work

There has been considerable work done on the problem of orthographic transcrip-

tion by speech researchers in the past. The method of orthographic transcription is

normally accomplished by converting the text into possible phone sequences and per-

forming phonetic alignments with the speech signal. In this section, the work done on

phonetic alignment, as well as the techniques developed for orthographic alignment,

are described.

11



1.2.1 Phonetic Alignment

Frame-based Techniques

The most common approach to phonetic alignment is the use of frame-based proba-

bilistic methods. These methods use acoustic models to perform time-alignment based

on the frame by frame statistics of the utterance. Dalsgaard [7] used a self-organizing

neural network to transform cepstral coefficients into a set of features, which are then

aligned using a Viterbi algorithm. Ljolje and Riley [15] used three types of indepen-

dent models to perform the alignment algorithm-trigram phonotactics models which

only depended on the phoneme sequence on the sentence, acoustic models which

used three full covariance gaussian probability density functions, and phone duration

models. The three types of models were interrelated through a structure similar to

a second order ergodic continuous variable duration HMM (CVDHMM). They re-

ported an 80% accuracy for placing the boundaries within 17 milliseconds (ms) of the

manually placed ones. In a follow-up work [16], they utilized a similar CVDHMM

structure but performed training and testing on separate utterances spoken by the

same speaker. The results were naturally better-an 80% accuracy within a tolerance

of 11.5 ms was achieved instead. Brugnara [4] and Angelini [2] also used HMM's to

model the acoustic characteristics of the frames and the Viterbi algorithm to perform

segmentation. Blomberg and Carlson [3] used gaussian statistical modelling for the

parametric as well as spectral distributions, and for the phone and subphone dura-

tions. Fujiwara [9] incorporated spectrogram reading knowledge in his HMM's and

performed the segmentation algorithm.

Segment-based Techniques

An alternative approach was taken by Andersson and Brown [1] and by Farhat [8].

Both initially divided the speech waveform into short segments composed of several

12



frames having similar acoustic properties. Anderson and Brown classified the sig-

nal into voiced/unvoiced segments using a pitch-detection algorithm. Corresponding

segments of voiced/unvoiced events were generated from the text, and a warping al-

gorithm was used to match the segments. The speech signals used were typically

several minutes long and reasonable results were achieved. Farhat and his colleagues

compared performing time-alignment using a segmental model to a centisecond one.

In the latter approach, mel-frequency cepstral coefficients (MFCC's) were computed

every 10 ms and the Viterbi algorithm was used to do the matching. In the former,

the speech signal was first segmented with a temporal method. A similar vector of

MFCC's was computed every segment, and a similar Viterbi search was employed to

perform the alignment. The segmental approach achieved better results; using context

independent models, it produced a 25% disagreement with manual labelling allowing

a tolerance of 20 ms, as opposed to 35% for the centisecond approach. These works

suggest that the segmental methods are at least as successful as their frame-based

counterparts.

Other Techniques

The work of Leung [14] consists of three modules. The signal is first segmented into

broad classes. Then these broad classes are aligned with the phonetic transcription.

A more detailed segmentation and refinement of the boundaries is then executed. On

a test set of 100 speakers, the boundaries proposed by the alignment algorithm were

within 10 ms of the correct ones 75% of the time.

1.2.2 Orthographic Alignment

On the more general problem of orthographic transcription, Ljolje and Riley [15] used

a classification tree based prediction of the most likely phone realizations as input

13



for the phone recognizer. The most likely phone sequence was then treated as the

true phone sequence and its segment boundaries were compared with the reference

boundaries. Wheatley et al [18] automatically generated a finite-state grammar from

the orthographic transcription uniquely characterizing the observed word sequence.

The pronunciations were obtained from a 240,000-entry on-line dictionary. A separate

path through the word-level grammar was generated for each alternate pronunciation

represented in the dictionary. The word pronunciations were realized in terms of a set

of context-independent phone models, which were continuous-density HMM's. With

these phone models, the path with the best score was chosen and an orthographic

transcription was obtained.

1.3 Corpus Description

The TIMIT and NTIMIT acoustic-phonetic corpora are used in this thesis. The

TIMIT corpus was recorded with a closed-talking, noise-cancelling sennheiser micro-

phone, producing relatively good quality speech [13]. It is a set of 6,300 utterances

spoken by 630 native American speakers of 8 dialects, each speaking a total of ten

sentences, two of which are the same across the training set. The NTIMIT corpus is

formed by passing the TIMIT utterances over the telephone line, producing speech

which is noisier with a more limited bandwidth [13]. Evaluating alignment algo-

rithms on NTIMIT gives an indication of the robustness of the algorithm to different

microphones or acoustic environments.

In the training of the TIMIT sentences, a set of 4536 sentences uttered by 567

speakers each speaking eight sentences is used. The training speakers are listed in Ap-

pendix D.1. In the evaluation of the TIMIT utterances, a set of 250 sentences uttered

by 50 speakers each speaking five sentences is used. The test speakers are listed in

Appendix D.2. No test speaker was part of the training set. For the NTIMIT corpus,

14



the corresponding subsets of the database are used, respectively, for the training and

testing procedures.

These corpora come with their phonetic and orthographic sequences, together with

the time boundaries for each of these sequences, i.e. the phonetic and orthographic

transcriptions. This creates the possibility of a supervised training of the acoustic

and durational models used. Moreover, this aids in the testing of the algorithm,

because the supposedly correct answer is known and hence can be compared to the

transcription derived from the alignment algorithm.

1.4 Transcription Components

The ultimate objective of this thesis is to present a segmental approach to the prob-

lem of aligning in time the speech waveform with its orthographic transcription. A

schematic diagram for the alignment algorithm is shown in Figure 1.2.

First, acoustic models for each of forty-two phone classes are trained, using mel-

frequency cepstral coefficients, described in Section 2.2.2, as the acoustic parameters.

Durational models are likewise created.

The second step is to propose phone boundaries from the acoustic data. The

idea is that the more boundaries proposed, the chances of the exact boundaries each

being located near a proposed boundary is higher. Then it remains to identify these

"closest" boundaries among all the ones proposed. Proposing too many boundaries

makes this latter problem harder.

The next step is to create a network of possible phone sequence given the ortho-

graphic transcription. An on-line dictionary is used to create a baseform phoneme

sequence. The phonemes of the words are concatenated together to form the phoneme

sequence of the sentence. Then, by applying a set of phonological rules, a network

15



Acoustic
Models

Durational
Models

Figure 1.2: Schematic Diagram for the Alignment System

of possible phone sequences is formed from this phoneme sequence. The rules are

intended to account for contextual variations in the realization of phonemes.

Then, a Viterbi algorithm is used to traverse through the paths in the network of

phone sequences. For each path, a phonetic alignment is performed and a probability

is determined. Such a score includes acoustic as well as durational components. The

path with the best likelihood is then chosen and consequently an orthographically

aligned transcription is achieved.

A frame-based technique in which each frame is proposed as a boundary is also

developed. The network creation and alignment procedure is the same as the segment-

based approach, and the results are compared. Finally, this whole alignment proce-

dure is trained and tested on the TIMIT and the NTIMIT databases.
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1.5 Thesis Outline

A brief outline of the thesis is presented here. In Chapter 2, the probabilistic frame-

work is presented, and the development and training of acoustic and durational mod-

els are described. Classification experiments at the frame, microsegment and phone

levels are also carried out.

The boundary generation algorithm is discussed in Chapter 3. The various criteria

and parameters are enumerated, and the results are discussed. A set of optimal

boundary parameters is selected in the last section.

In Chapter 4, a discussion of the phonological variations is presented, and the

various phonological rules used for the network creation are described.

The alignment procedure is described at length in Chapter 5. Two different search

methods, the two-pass method and the full segment method, are presented and eval-

uated. The two-pass method is observation-based and experiments using frames and

microsegments as observations are separately performed.

Finally, a summary of the results of the alignment procedure is presented in Chap-

ter 6. Some possible future directions for the problem of time-alignment are also

described here.

17



Chapter 2

Modelling and Classification

The acoustic modelling for the alignment process is presented in this chapter. This

includes a discussion of the probabilistic framework as well as the different acous-

tic parameters. To test the accuracy of the models, classification experiments are

performed, and the results are analyzed.

2.1 Probabilistic Framework

In this section the acoustic framework is described. A durational component shall

be added in Chapter 5 when the actual search is performed. Let Si) be the set

of possible transcriptions of the speech signal given the word sequence, let a be the

acoustic representation of the speech signal, and let T be the observations. These

observations could range from speech frames to bigger intervals like microsegments

or full segments. Then, S* = Sj, where

j = arg max Pr(Si a, T). (2.1)
$

18



By Bayes' Law,

j = arg max Pr(, T Si) Pr(Si) (2.2)
i Pr(a-, T)

The factor Pr(a, T) is constant over all Si, and can be factored out. Moreover,

there is no language modelling techniques involved in this work. The factor Pr(Si) is

assumed to be equally probable over all i. Hence it remains to find

Pr(a, T Si). (2.3)

Let N be the number of phones in Si, and M be the number of observations in T.

We can then express the phones as Si,, 1 < I < N, the observations as Tk, 1 k <

M, and the acoustic information in the observation k as XTk. Equation 2.3 is then

equivalent to:

Pr(XTl3XT2 ...JXTM I SiS2...Si). (2.4)

For facility in computation, we approximate Equation 2.4 as:

II Pr(XTk Si ) (2.5)
f

where f is the set of mappings from the set of phones to the set of observations,

subject to the following conditions:

1. Each phone Si is mapped to at least one observation Tk,

2. Each observation Tk maps to exactly one phone Si,

3. The mapping preserves the order of the phone sequence with respect to the

observation sequence.

Furthermore, Si, shall be replaced by its corresponding phone class as described

in Section 2.2.1, since models were only trained for each class.

19



In practice, speech researchers have actually maximized the log of Equation 2.5.

This does not change the optimal path, since the log function is one-to-one and strictly

increasing. Its advantage is that the floating point errors are minimized since the log

of the product in Equation 2.5 becomes a sum of logarithms:

log n Pr(XTk Si,) =- log Pr(xTk I Sil). (2.6)
f f

A multivariate normal distribution is trained for each phone class a, and the

following formula holds for the probability of an acoustic vector given a phone class.

Pr( ) = ( ), (2.7)

where x is the characteristic MFCC vector of the observation, p is the number of

dimensions of the acoustic vector, and IK and E, are the mean MFCC vector and

the the covariance matrix of phone class a, respectively [12]. Taking logarithms, we

get:

p 1 1 -1(2.8)log Pr(x I a) = p log(2r) - . det( -) - - , ( ) (2.8)

The maximization of Equation 2.6 will be described in Chapter 5. Depending on

the nature of the speech observations, different procedural variations are used.

2.2 Modelling

2.2.1 Phone Classes

There are forty-two phone classes used in this research. The sixty-three TIMIT

labels are distributed among the phone classes according to their acoustic realization.

20



For instance, the phones [m] and [m] (syllabic m) are combined into a phone class.

Likewise, the stop closures of the voiced stops, [b9, [dol, and [g09, are grouped together,

as well as the stop closures of the unvoiced ones, [p]l,[t], and [k]. The complete list

of the phone classes is shown in Appendix A in IPA and ARPABET form.

There are several advantages of grouping the phones in this manner. First, the

number of classes is one-third less than the number of phones, hence there will be

some savings in terms of memory storage. Second, there will be computational savings

in parts of the alignment program where the classes are trained or accessed. Third,

some phones very rarely occur and hence the number of their observations in the

training set is very few if any. Creating separate models for such phones will not

make the training robust, and so they are grouped with other phones having similar

acoustic properties. Finally, since the phones within a class have very similar acoustic

properties, there will not be too much degradation in terms of performance. This is

because the problem at hand is alignment, hence not too much concern is put on the

actual phone recognition, but rather on predicting the time boundaries.

2.2.2 Signal Representation

The speech signal is sampled at the rate of 16 KHz. Then, every five ms, a frame

is created by windowing the signal with a 25.6 ms Hamming window centered on

it. The Discrete Fourier Transform (DFT) of the windowed signal is performed, the

DFT coefficients are squared, and the magnitude squared spectrum is passed through

forty triangular filterbanks [17]. The log energy output of each filter form the forty

mel-frequency spectral coefficients (MFSC), Xk, 1 k < 40, at that frame. Then,

fifteen mel-frequency cepstral coefficients (MFCC), Yi, 1 i < 15, are computed from

the MFSC's by a cosine transformation:

21



40

Yi = Xk cos[i(k - 1/2)7r/40], 1 < i < 15 (2.9)
k=l

The delta MFCC's are computed by taking the first differences between the

MFCC's of two frames at the same distance from the present frame. This distance

can be varied. If the present frame is labelled n, a delta of N means that the first

difference Di is given by

Di[n] = Yi[n + N]- Yi[n- N], 1 < i < 15. (2.10)

The delta values used in this research varied from one to seven, corresponding to a

difference of 10 to 70 ms.

2.2.3 Acoustic Modelling

The acoustic parameters used in this thesis are primarily the MFCC's and the delta

MFCC's. These parameters are computed for each speech observation in the following

way. For each such segmental observation, an average for each MFCC dimension is

computed. Experiments are conducted with and without the delta MFCC's. Without

these, the number of dimensions N is fifteen corresponding to the fifteen MFCC's.

With these, delta MFCC's are computed at both boundaries of the observation, and

N increases to forty-five. Experiments have also been performed to take advantage

of the context. Hence, for each observation, the acoustic parameters for the adjacent

observations are used as additional parameters for the present observation, increasing

the dimensionality of the mean vectors and covariance matrices.

2.2.4 Durational Modelling

Experiments are also conducted to include a durational component. This is done

to add more information to the acoustic modelling, preventing certain phones from
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having too long or too short a duration. For each phone, the score for all the obser-

vations hypothesized for that phone will be incremented by a durational component

corresponding to the total length of the duration of all the observations. Gaussian

durational models will be trained for each of the phones, and the logarithm of the

probability computed based on the models will be treated as the durational score.

The weight of each durational component with respect to the acoustic components is

varied and the results compared.

2.3 Training

As noted in Section 1.3, the TIMIT database include the manually-aligned phonetic

transcription boundaries. This allows for the possibility of a supervised training of

the acoustic and durational models.

2.3.1 Acoustic Models

In the training algorithm for the acoustic models, the observations are used as the

basic units for the training. In a frame-based approach, the observations are just the

frames themselves, and in a segment-based approach, they are the microsegments,

which are the output of the boundary generation algorithm described in Chapter 3.

The observations formed are then aligned with the labelled boundaries in the following

way. The left and right boundaries of each phone in the correct aligned transcrip-

tion is aligned with the closest proposed boundary. Then, every observation between

these two proposed boundaries will be labelled with the phone. There are two pos-

sible phonetic transcriptions that will arise. The first, which I call the "boundary

transcription", considers each observation as independent, and allows a sequence of

microsegments with the same phonetic label. It will have a total of the number of

boundaries minus one elements in the transcription. The second, termed "segment
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transcription", considers the whole segment between the two closest proposed bound-

aries, respectively, to the boundaries of the phone as one element in the transcription.

It is then appropriately labelled with the phone.

From the above algorithm, it is possible that both boundaries of a phone be

matched to the same proposed boundary. In this case the phone is considered deleted.

This problem will not arise in the case of a frame-based approach since all phones

in the TIMIT corpus are longer than 5 ms. In a microsegment-based approach, the

boundary generation algorithm should be accurate enough that the deletion rate will

be low. This issue will be discussed more in the next chapter.

The acoustic models are trained on the boundary transcription through the follow-

ing method. An average of the MFCC's is computed per observation and depending

on the experiment, some other acoustic parameters such as the delta MFCC's might

be computed as well. For each phone class, a multivariate normal distribution is as-

sumed, the occurrences in the training set of all the phones in the class are assembled

and the mean vector and covariance matrix for the phone class are computed.

2.3.2 Durational Models

The durational models consist of a mean duration and a standard deviation for each

phone, instead of each phone class. The storage costs for such a phone model is

cheaper and more accuracy can be attained this way. Once again, the TIMIT database

is used for the training, where for each phone, the durations of all the occurrences of

the phone in the aligned transcriptions are taken into account when computing the

phone duration's mean and standard deviation.

24



2.4 Classification

Phone classification of a speech segment is not strictly a subproblem of time-alignment.

In maximizing the best path in a network and choosing which phone an observation

of speech maps to, there is no need to choose the best phone among all the phones.

The choices of phones are constrained by the structure and the phones of the pro-

nunciation network. Nevertheless, classification experiments give an indication of how

good the acoustic modelling is. If the classification rate improves, this means that the

models are able to discriminate between sounds and it is plausible to believe that the

alignment performance will likewise improve. In this section, simple classification ex-

periments are performed and the results of these experiments are evaluated. Instead

of classifying the phones themselves, the objective is to classify a speech segment from

among the forty-two phone classes described in Appendix A.

Given an interval of speech, a feature vector x- of speech is computed, and the

phone class is chosen according to:

= arg max log Pr(Ok x), 1 < k < N, (2.11)
k

where the log of the probability is computed using Equation 2.8, using appropriate

acoustic models, and N is the number of phone classes. The percentage of the time

that the chosen class matches the class of the correct phone is the classification rate.

2.4.1 Frame Classification

The first experiments involved the analysis frames as observations. The models

trained from Section 2.3 using the frames as observations and creating a bound-

ary transcription structure from these observations are employed here. The same
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procedure for training was used on the test utterances. Hence, in this case, each ut-

terance was divided into frames, and classified into some phone class. Given a frame,

a feature vector was computed, using the same set of features used in the training

algorithm.

A feature vector of fifteen MFCC's computed from Equation 2.9 was computed

on the TIMIT database. When the models were trained on these and then tested,

a classification rate of 44.85% was achieved. The same experiment on the NTIMIT

database resulted in a 35.60% classification rate.

2.4.2 Microsegment Classification

The second set of experiments involved the microsegments as the observations. Ex-

actly the same procedure was used as in the case of frame classification, except that

other feature vectors were considered. The results are summarized in Table 2.1.

|| Database Delta(b) #Dimensions Classification Rate(%)
TIMIT 0 15 41.67
TIMIT 1 45 45.21
TIMIT 4 45 49.35
TIMIT 7 45 49.53

NTIMIT 0 15 34.93

Table 2.1: Microsegment Classification Results Using Different Deltas

It should be noted at this point that because the boundaries did not exactly

coincide with the actual phone boundaries, there are many instances that part of

microsegments labelled with a certain phone is not actually part of the phone segment

in the correct transcription and this contributes to the error. Comparing these results

with the ones for the frame classification, two conclusions can be made. One is that the

classification improves from no delta to positive delta. This is because in considering
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the microsegments, there is relatively less noise or randomness from one to the next,

and the information carried by the delta parameters is enhanced. The second is that

the rate improves more as delta is further incremented. This is probably due to an

even less randomness from one phone to several phones away from it, and hence a

better representation of change.

The next set of experiments take advantage of the context. Given a microsegment,

the acoustic vector was augmented by the vectors of the M microsegments before and

after it. The number M was varied, and the results shown in Table 2.2. The deltas

in Table 2.2 are still with respect to the original microsegment. From the table,

one sees that a similar phenomena occurs as in frame classification, that is, that the

addition of deltas does not help the classification rate. In this case, the reason is

that the delta MFCC's do not correlate with the additional microsegments, hence

adding these parameters hinder the performance. It should also be noted that as

more microsegments were added, the rate improves. The best result was when there

are three additional microsegments on each side and no delta parameters, where a

microsegment classification rate of 54.12% was achieved. A phone on average spans

4.4 microsegments, and as we approach this number more and more information

about the phone is represented in the feature vector, and this helps the classification

rate. It is also interesting to note that adding the delta parameters does not hurt the

classification rate much when trained and tested on the NTIMIT database.

As a final experiment on the microsegments, instead of one set of fifteen MFCC

averages, three sets are used. A microsegment is divided into three equal subsegments

and a fifteen-dimensional MFCC vector is computed per subsegment, giving a total

of forty-five acoustic dimensions. This time, no additional microsegments were added

on either side, and as the delta was varied, the rate went down and then back up.

The results are summarized in Table 2.3.

In this example we can see the tradeoff of having adding delta parameters. Delta
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Database Additional ISegments Delta(6) #Dimensions Classification Rate ()
on Both Sides (M)

TIMIT 1 0 45 49.38
TIMIT 1 1 75 45.69

TIMIT 2 0 75 52.74

TIMIT 2 1 105 49.84
TIMIT 3 0 105 54.12
TIMIT 3 1 135 51.92

TIMIT 3 4 135 51.62
TIMIT 3 7 135 51.42

NTIMIT 1 0 45 39.76
NTIMIT 1 1 75 39.74
NTIMIT 2 0 75 43.80
NTIMIT 2 1 105 43.59
NTIMIT 3 0 105 46.03
NTIMIT 3 1 135 45.66

Table 2.2: Microsegment
Microsegments

Classification Results Using Different Deltas and Additional

Database Delta(b) #Dimensions I Classification Rate () |

TIMIT 0 45 43.99
TIMIT 1 75 39.26
TIMIT 2 75 43.10
TIMIT 3 75 45.41
TIMIT 4 75 46.98
TIMIT 5 75 48.25
TIMIT 6 75 48.98
TIMIT 7 75 49.15

Microsegment Classification Results Using Different Deltas and Three
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parameters are advantageous in that they embody some representation of change

characteristic to phones, and this is evident for larger deltas ( = 6, 7). A small,

positive delta, however, incorporates some noisy information and this outweighs the

advantages.

2.4.3 Segment Classification

Segment classification is based on the segment phonetic transcription structure de-

scribed in Section 2.3.1. Acoustic models were trained on this structure and the

models were tested on the same structure of the utterances in the test set. Aside

from varying the delta parameter, sometimes three MFCC averages per segment were

computed. These represent the beginning (onset), middle and end (offset) of the

phone, respectively.

The results are shown in Table 2.4. The best result of 69.0% was achieved when

three averages are computed and the delta value was 7. In general, the numbers in

Table 2.4 are naturally significantly higher than any of the numbers for microsegment

or frame classification. This is because the segments in the segment transcription

structure roughly correspond to the whole phones themselves except for some rela-

tively small boundary error. Moreover, the results improve again as is increased

above 6 = 1 for the same reasons as before, but tapers off after 6 = 7. Likewise, the

classification improves as the number of averages computed increases.

Most classification experiments in the literature are segment-based, and don't

propose any boundaries to create the segments. Instead, the exact segments are used

in the training and testing algorithm. To simulate the same experiments, the same

procedure was performed. The results are shown in Table 2.5, with varying number

of averages and deltas.

These results are very similar to those of Table 2.4. In fact, they're only slightly
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Database # Averages Delta(6) #Dimensions I Classification Rate () 
TIMIT 1 1 45 57.82
TIMIT 1 4 45 64.62
TIMIT 1 7 45 64.39
TIMIT 3 7 75 68.99

NTIMIT 1 1 45 45.54

Table 2.4: Segment Classification With Automatically Aligned Boundaries

Database Delta(6) #Averages #Dimensions Classification Rate( ) 
TIMIT 0 1 15 49.15
TIMIT 0 3 45 61.52
TIMIT 1 1 45 58.87
TIMIT 1 3 75 65.11

TIMIT 4 1 45 65.34
TIMIT 4 3 75 68.71
TIMIT 7 1 45 65.39
TIMIT 7 3 45 69.12

Table 2.5: Exact Segment Classification
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better, due to the fact that there are few errors caused by the boundary generation

algorithm. The best result of 69.1% was achieved when delta was 7 and three averages

per segment were computed. It is also important to note that the improvement in

performance caused by an increase in the number of averages computed is more sub-

stantial when 6 is lower. The classification rate only counts the number of correctly

classified segments, and does not account for near misses. The noisy fluctuations gen-

erated from picking small deltas produce a great deal of error where the correct phone

classes are very near the top choice, and the increase in the number of averages help

increase the probability of the correct phone classes enough to become the top choice.

The errors in picking bigger deltas, on the other hand, are probably more serious,

where the correct class is relatively farther to the top choice, and the augmentation

of acoustic vectors does not help much.

2.5 Summary

Full covariance gaussian acoustic models are trained at the frame, microsegment,

and full segment levels, and will be used in implementing the alignment algorithm.

In the training of the models, parameters, such as 6 and the number of averages

computed per observation, were varied. To determine which parameters resulted

with the most accurate models, classification experiments were performed. In general,

results improved when 6 values of 4 or higher were used and when more averages were

computed per observation.
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Chapter 3

Boundary Generation

The boundary generation procedure is described in this chapter. Different acous-

tic parameters are experimented with, and the results are evaluated using a set of

evaluation criteria.

3.1 Independence of Microsegments

In Chapter 2, the approximation in Equation 2.5 is used for computing the scores of

different phone paths. Whenever such a probability is expressed as a product of prob-

abilities, there is an assumption of independence between the different observations in

the path. Whether such an independence premise is valid or not greatly determines

the accuracy of such an approximation.

For frame-based procedures, the independence assumption is severely violated.

The average phone duration is approximately 80 ms [6]. Hence, if the present frame

is an [s] say, it is highly likely that the succeeding frame will also correspond to an

[s]. By grouping frames together into longer segments, one segment will be more

likely to be independent from its adjacent segments. The ideal situation is that the

signal be divided into the phones themselves. But this is exactly the problem we are
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trying to solve! The method of predicting acoustic-phonetic boundaries for phones

generally tends to hypothesize many boundaries at intervals of speech where there

is significant acoustic change. However, there is usually at most one actual phone

boundary at these regions. This is a good start, however, and is in fact the basis of

the microsegment-based approach.

In this chapter, the method of boundary selection is described. Acoustic models

are then trained from the microsegments formed out of this procedure. Finally, the

alignment algorithm chooses the actual phone boundaries from these boundaries and

produces an alignment.

3.2 Criteria

One disadvantage of using a microsegment-based approach is that if the boundaries

are chosen poorly, certain microsegments overlap with more than one phonetic seg-

ment in the correctly aligned transcription, which means that such a microsegment

does not correspond to exactly one phone. Such errors can be prevented if the bound-

aries are proposed more frequently. However, the more boundaries that are proposed,

the greater the independence assumption is violated, and the less exact the approxi-

mation. Hence, there is a tradeoff between lesser boundary errors and lesser approx-

imation errors. To maximize such a tradeoff, several measures are used to evaluate

the accuracy of the boundaries.

3.2.1 Deletion Rate

The first measure of boundary accuracy is the deletion rate, which is computed in the

following way. The proposed boundaries are aligned with the labelled boundaries.

For each of the labelled boundary, the closest proposed boundary is found and a
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new phonetic transcription is subsequently formed using these "closest" boundaries

as the new phonetic boundaries. Occasionally, two or more labelled boundaries will

match the same proposed boundary. The phones between these labelled boundaries

are consequently deleted in the new phonetic transcription. Such an event is clearly

undesirable. Hence, it is imperative the proposed boundaries be chosen such that

these deletions are limited.

We can now then define the deletion rate as the ratio of the number of phones

deleted over the total number of phones in the original transcription. This quantity

is to be calculated for each boundary generation procedure to evaluate it.

3.2.2 Boundary-to-Phoneme Ratio

A second important measure of choice of boundaries is the boundary-to-phoneme

ratio. To achieve more independence between the observations, a small boundary-to-

phoneme ratio is desired. However, this should not be at the cost of huge deletions and

errors. Another advantage of a small ratio is that with fewer boundaries, the number

of observations per path in the network is smaller and hence the computation time

is smaller. This becomes a big factor when real-time time-alignment algorithms are

desired, or if the utterances are longer than normal.

3.2.3 Errors of Boundary Accuracy

Finally, a third measure is the absolute error of the boundaries when compared to the

labelled transcriptions. As described earlier, a segment phonetic transcription can be

achieved when the closest hypothesized boundary to each labelled phone boundary

is found and used as a phoneme boundary for the new transcription. The average

absolute difference between these new phone boundaries and the true boundaries can

then be calculated.
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Such a result tests the accuracy of predicting the exact boundaries. This is crucial

since the training and testing algorithms will depend a lot on these new observations.

A large error means that there will be erroneous input to the training algorithm. For

instance, if the closest boundary to an [s t] sequence is very far to the left of the

actual phone boundary between the [s] and the [t], then a significant part of the [s]

will be trained as a [t], and this will prove costly in the testing procedure even if the

alignment process is sound. Moreover, this closest phonetic transcription symbolizes

the best the alignment procedure can do. A large average absolute error implies that

a good alignment procedure would not be attainable.

3.3 Parameters

This section describes the parameters used in creating the boundaries, as well as

reports the results of the evaluation. The parameters used are mainly acoustic pa-

rameters from the input speech signal, as well as some "smoothing" parameters.

3.3.1 Spectral Change and Spectral Derivative

The spectral change of the signal at frame i is computed from the spectrum by taking

the euclidean distance of the MFCC vectors between a certain number of offset frames

before and after the frame in consideration:

N

SC[i] = (Ai+i[k] - AiAi[k])2 , (3.1)
k=1

where SC[i] is the spectral change at time frame i, the quantity Ai[k] is the value

of the kth dimension of the acoustic parameter at time frame i, N is the number of

components in the acoustic vector and Ai is the offset. The offset used was 2 time
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frames (10 ms), so that sudden changes in the spectral change due to noise will not

be captured in the process of taking the euclidean distance.

Since the spectral change is a scalar function of time, the usual method of com-

puting the spectral derivative is to just take a first difference on the spectral change:

D[i] = SC[i + Ai] - SC[i - Ai]. (3.2)

However, the speech signal is noisy and taking a simple first difference will produce

errors. Hence, an alternative method is used [10]. The spectral change function

is smoothed by convolving it with a gaussian. The idea is that such a smoothing

process will remove much of the noisy variations on the spectral change. Denoting

the gaussian function by G, we have

SC' (SC * G)' = SC * G' + SC' * G. (3.3)

Since the speech signal is slowly time-varying, the second term on the right is small

relative to the first, and we are left with the following expression for the derivative:

SC' SC * G'. (3.4)

In other words, the derivative of gaussian is computed first then is convolved with

the spectral change function. The same method is used in computing further deriva-

tives of the spectral change. A plot of the spectral change, spectral derivative and

the second derivative of the spectral change for the utterance "How much allowance

do you get?" is shown in Figure 3.1. There is generally a peak in the spectral change

near phone boundaries. These correspond to positive-to-negative zero crossings of

the spectral derivative.
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Figure 3.1: Time Plots of Acoustic Parameters
Spectrogram of the utterance "How much allowance do you get?" The plots of the spectral
change, spectral derivative and second derivative waveforms are shown below the phonetic
transcription.
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3.3.2 Peaks in Spectral Change

Phone boundaries are often characterized by a huge spectral change, especially in the

case of a closure-stop or a fricative-vowel sequence. Hence, it is natural to look for

peaks in the spectral change. In dealing with a continuous waveform, a derivative is

taken and the zeroes of this derivative are located and judged as maximas or minimas.

Because of the discrete nature of the database, positive-to-negative zero crossings of

the spectral derivative are located instead.

3.3.3 Threshold on the Spectral Change

Speech is often accompanied by noise and this noise produces small, random oscil-

lations at various parts of the speech signal. Hence, in addition to the zero-crossing

of the first spectral derivative, it is necessary to impose further conditions. Without

these, there would be too many boundaries hypothesized at areas of the signal where

there is no acoustic-phonetic boundary. This would inflate the boundary-to-phoneme

ratio without providing much improvement on the deletion rate.

One possible condition is a threshold on the spectral change. This would exclude

most of the tiny oscillations from being proposed as boundaries. However, such

a threshold cannot be too small either, because a lot of phoneme boundaries are

accompanied by very little spectral change, such as in the case of a vowel-semivowel

sequence. Clearly, further modifications shall be needed to be able to identify most

of these subtle phoneme boundaries without picking too many random boundaries.

3.3.4 Threshold on Second Derivative of Spectral Change

Another possible additional constraint is a threshold on the second derivative of spec-

tral change. A positive-to-negative zero-crossing in the derivative of the spectral
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change implies a peak in the spectral change. Imposing a threshold on the second

derivative in addition to this would only pick boundaries at time frames where the

slope of the first derivative zero-crossing is bigger, i.e. the transition from positive

to negative in the spectral change is faster, implying a more dramatic change in the

spectrum.

3.3.5 Associations on Acoustic Parameters

A variant of the threshold on the second derivative constraint is made by comparing

first differences of the spectral change. If the previous first difference is above a certain

positive value Ad and the present is below - A d, a boundary can be proposed. This

condition corresponds to a significant change in the second derivative, but is more

precise on the limits.

3.3.6 Constant Boundaries per Spectral Change

An alternative to having a small threshold above is to impose a larger threshold

and then adding various boundaries between the acoustic boundaries. In adding

new boundaries, one possibility is to consider the areas where the spectral change

is more concentrated. Certainly, phoneme boundaries are more likely to appear at

these regions than at areas where the spectral change is close to zero. Moreover, the

longer a segment is, the more phone boundaries it probably contains. Taking these

two facts into account, it is reasonable to propose adding boundaries at a constant

rate per spectral change.
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3.4 Results

In this section the results of different boundary generation algorithms are evaluated.

The different parameters described in the previous section are varied, and the resulting

deletion rate, boundary-to-phoneme ratio and error rates are compared.

3.4.1 Uniform Boundaries

For baseline performance comparison, the results of using uniform boundaries are

evaluated. They are summarized in Table 3.1.

|[ rate(ms. per bdy.) deletions(%) ratio error(ms.) ]
5 0.0 16.16 0

10 0.1 8.08 2
15 0.3 5.40 4
20 1.1 4.06 5
25 1.9 3.25 6
30 3.2 2.72 7
35 4.9 2.34 8
40 6.1 2.05 10
45 8.6 1.83 11
50 11.3 1.65 12

Table 3.1: Results of Uniform Boundaries

The first entry in the table corresponds to a boundary rate of 5 ms per boundary.

This is the same as proposing a boundary every frame. As expected, there are no

errors or deletions, and the boundary-to-phoneme ratio is high, namely 16.2 bound-

aries per phone. The goal of the next boundary experiments is to significantly reduce

this number without making the deletion rate or error too big. It is important to

note that as the boundary rate is lowered, the deletions go up quickly in the case of

uniform boundaries.
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3.4.2 Acoustic Boundaries

Threshold on Second Derivative

The next experiment involves imposing a second derivative threshold to the spectral

change, in addition to a positive-to-negative zero-crossing of the first derivative. The

results are summarized in Table 3.2.

. Second Der. Threshold deletions(%) ratio error(ms.)
0 8.05 1.74 7.66
10 8.73 1.68 7.82
20 9.59 1.50 8.58
30 10.83 1.38 9.42

Table 3.2: Varying Threshold on Second Derivative of Spectral Change

These boundaries, however, are not satisfactory by themselves. A no-threshold

condition on the second derivative, which means that the only constraints are on the

first derivative, gives a very high deletion rate. Clearly, some other way of rewarding

more boundaries is needed.

Associations

Another method of proposing acoustic boundaries is by using association on acoustic

parameters. Tables 3.3 and 3.4 show the results of using associations on the cepstral

and spectral coefficients, respectively, where the threshold is on the second order

difference.
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|t Threshold on 2nd Ord. Diff. || deletions(o) ratio error(ms.) 
0.0 3.37 2.781 5.99
6.0 5.05 2.375 7.59
12.0 7.59 2.054 9.51
18.0 10.66 1.800 11.66

24.0 13.94 1.590 13.98

Table 3.3: Results of Associations on Cepstral Coefficients

II Threshold on 2nd Ord. Diff. deletions(%) ratio error(ms.)
0.0 3.38 2.808 6.08
3.0 10.30 1.835 11.55
6.0 20.04 1.308 19.39

Table 3.4: Results of Associations on Spectral Coefficients

These results show that associations permit a high deletion rate even though the

ratio is low. Furthermore, the tradeoff is bad in relation to uniform boundaries. For

instance, a uniform rate of 35 ms produces a deletion rate of 4.9% and a boundary-

to-phoneme ratio of 2.34, whereas a 6.0 threshold on the second derivative results in

a deletion rate of 5.1% and a ratio of 2.4.

3.4.3 Adding More Boundaries

The above methods by themselves do not produce desired low deletion rates. Clearly,

somehow, a new ways of adding boundaries, possibly non-acoustic ones, is needed.

Uniform Boundaries

A simple way of adding boundaries is to put them at a constant rate. For instance,

boundaries produced at a constant rate can be added to the set of boundaries derived
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by imposing a second derivative threshold. The results of adding uniform boundaries

assuming a threshold of 10.0 is presented in Table 3.5.

] rate(ms. per bdy.) J] deletions(%) ] ratio error(ms.)
10 0.09 9.65 2.71
15 0.16 6.97 3.46
20 0.37 5.63 4.04
25 0.60 4.83 4.53
30 0.69 4.29 4.90
35 0.87 3.91 4.57
40 1.09 3.62 4.90
45 1.42 3.40 5.16
50 1.75 3.22 6.07

Table 3.5: Results of Adding Uniform Boundaries To Second Derivative Threshold

From Table 3.1, a uniform rate of 20 ms per boundary produces a deletion rate

of 1.1 percent and a 4.1 boundary-to-phoneme ratio. From Table 3.5, if we add

boundaries which are zero-crossings of the first derivative and whose second derivative

is above 10, then the deletion rate goes down to a tolerable 0.37 percent, but the

boundary-to-phoneme ratio increases only to 5.6. This is clearly a favorable tradeoff.

However, the procedure of adding uniform boundaries is a naive way of doing so,

since no acoustic information is taken into consideration. Hence there is room for

improvement.

Constant Boundaries Per Spectral Change

A more clever way of increasing the boundary ratio is to propose new boundaries

where they are more probable to appear. As described before, a way to do this would

be to propose constant boundaries per spectral change. Table 3.6 shows the results

on adding new boundaries in this manner to those already proposed by imposing a
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threshold on spectral change.

Threshold 1 Bdy. Per Sp. Change (x10 - 4 ) deletions(%o) ratio I error(ms.) J
0.0 0.0 8.17 1.744 8.45

100.0 0.0 9.18 1.570 9.08
175.0 0.0 13.81 1.189 12.26
175.0 3.0 4.70 1.731 8.46
175.0 5.0 1.85 2.399 6.78
175.0 10.0 0.53 3.688 5.05
175.0 14.0 0.27 4.464 4.50
175.0 25.0 0.20 5.874 3.77
200.0 0.0 15.86 1.110 13.77
200.0 3.0 5.05 1.692 8.79
200.0 5.0 1.93 2.366 6.96
200.0 10.0 0.51 3.660 5.08
200.0 14.0 0.29 4.446 4.51
200.0 25.0 0.20 5.879 3.77

Table 3.6:
Threshold

Adding Constant Boundaries Per Spectral Change To Spectral Change

By comparing Tables 3.5 and 3.6, we see that the results of the latter are indeed

much better. For instance, in Table 3.5, a uniform rate of 20 ms per boundary

produces a deletion rate of 0.37% and a boundary rate of 5.6, whereas a threshold of

175.0 and a rate of 14- 10- 4 in Table 3.6 results in a deletion rate of 0.27% and a

boundary rate of 4.5, an improvement in both categories.

Similar results occur when we add new boundaries to those imposed by a second

derivative threshold. They are shown in Table 3.7. These results are in the same

order as that of the results in Table 3.6, in terms of the tradeoffs between boundary

ratio and deletion rate.
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I[ Threshold Bdy. Per Sp. Change (x10 - 4 ) I deletions(%) ratio error(ms.) 
0.0 0.0 8.17 1.744 8.45
0.0 5.0 1.49 2.697 6.06
0.0 10.0 0.40 3.898 4.85
0.0 15.0 0.23 4.788 4.28

15.0 0.0 9.27 1.559 9.07
15.0 5.0 1.60 2.581 6.25
15.0 12.0 0.38 4.229 4.64
15.0 18.0 0.21 5.158 4.09

Table 3.7: Adding Constant Boundaries Per Spectral Change To Second Derivative
Threshold

Minimum Distance Constraint

One obvious problem with adding new boundaries by imposing a constant boundaries

per spectral change condition is that there will be a lot of segments that will have a

huge concentration of spectral change within some small duration of time, say 25 to 30

ms. After adding new boundaries, there will be too many boundaries proposed in this

small segment, by the constant boundaries per spectral change criterion. This often

is very unrealistic, since even the shortest phones take up a couple of milliseconds.

Hence, a minimum distance between boundaries criteria is proposed at this point,

with the belief that this will lessen the number of boundaries without affecting the

deletion rate too much. Table 3.8 shows the results of adding the minimum distance

constraint on the results of Table 3.6, with the spectral change threshold set at 175.0.

Table 3.9 shows the effects on putting minimum boundary distance criteria after

imposing a threshold on the second derivative of 10.0.

The tradeoff improved somewhat after imposing the minimum boundary condition

to add new boundaries to the ones already proposed by putting a threshold on the

spectral change, by comparing Tables 3.6 and 3.8. It worsened somewhat if the initial

45



Minimum Distance (ms)11 Bdy. Per Sp. Change (x 10- 4 ) deletions(%) | ratio [ error(ms) J
8 16.0 0.24 4.714 4.45
8 14.0 0.29 4.402 4.63
9 16.0 0.25 4.661 4.56
9 14.5 0.32 4.428 4.70

Table 3.8: Adding Minimum Distance Criterion to Spectral Change Threshold of
175.0 and Constant Boundaries

D Minimum Distance (ms) Bdy. Per Sp. Change (x10 - 4 ) I deletions(o) | ratio error(ms)
8 16.0 0.25 4.831 4.36
8 14.0 0.27 4.530 4.55
9 16.0 0.27 4.775 4.47
9 14.5 0.31 4.475 4.66

Table 3.9: Adding Minimum Distance Criterion to Second
10.0 and Constant Boundaries

Derivative Threshold of

boundaries were chosen by imposing a threshold on the second derivative.

3.5 Selection

From the results of the previous section, the objective now is to pick a set of criteria

which will be used in the orthographic alignment.

Comparing the different results of using different set of parameters in the previous

section, the tradeoff seems to be the best when a minimum distance constraint is used

to add new boundaries to the ones already created when a threshold on the spectral

change is used. Hence, the choice of parameters is narrowed down to the set of

parameters listed in Table 3.8.

There is clearly no best set of parameters when comparing the entries in this table.
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Figure 3.2: Example of Boundary Generation Technique
The top transcription is the correct phonetic transcription of the utterance "How much
allowance do you get?" shown in Figure 3.1. The middle transcription is the result of
applying the boundary generation procedure using the optimal parameters chosen. The
last transcription is the boundary transcription structure described in Section 2.3.1 formed
by aligning the top two transcriptions in the figure using a closest boundary criterion.

All of them have low deletion rates, as well as low boundary ratios and absolute

errors, and the numbers don't really differ much. In any case, the second entry, with

a minimum boundary distance of 8 ms, in addition to a spectral change threshold

of 175.0 and additional boundary rate of 14 ms per spectral change, was chosen to

be the set of parameters of the boundary selection algorithm. Figure 3.2 shows the

result of the boundary selection process when applied to a waveform of the utterance

"How much allowance do you get?" The middle transcription is the set of boundaries

generated from the waveform having the top transcription as its correct phonetic

transcription.
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Chapter 4

Network Creation

In this chapter, the process of generating a network of all possible phones given the

orthographic transcription is described. Each word in the transcription is transformed

into its underlying phoneme sequence through the use of an on-line dictionary. This

dictionary is composed of the 6,256 words which make up the TIMIT lexicon [13].

4.1 Phonological Variations

The need for generating a phone network comes from the fact that phonemes are

abstract linguistic units. Because of the coarticulation that may take place when

different phonemes are produced one after another, the manner in which the phonemes

are generated may change. Different phonemes can be realized in different ways, and

phones are the realizations of the phonemes. For instance, the phoneme /t/ may be

released as in the word "table", or it may be spoken with just a flap of the tongue as

in "butter". All these possible realizations of phoneme sequences are embodied in a

set of rules which is described in the next section.

Figure 4.1 illustrates the various steps in network generation. The baseform pro-

nunciations are obtained through dictionary lookup. The phonemes of the words
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Figure 4.1: Network Generation
The orthographic transcription of the utterance "How much allowance do you get?" is shown
on top. Below it is its correct phonetic transcription. Then, a simple network consisting
of the phonemes from the dictionary lookup of the orthography is shown. Finally, the
whole network of possible phone realizations of the phonemes is depicted, after applying
the phonological rules.

are then concatenated together to form a simple network of one path from the first

phoneme of the first word to the last phoneme of the last word. This network is

represented by arcs and nodes, with the arcs denoting phones and the nodes denoting

(possible) phone boundaries. Since there usually are pauses or silence between words,

optional pauses are added in the form of additional arcs between words, as well as

in the beginning and at the end of the utterance. The first network in Figure 4.1

is an example of the simple network. From this simple network a more complicated

one is created after the application of the rules. In the figure, the second network

is created from the first one by this process. Later on, the speech signal will be di-

vided into smaller observations in several ways, and the network will be aligned with

the observations. The path in the network which aligns best with the observations

probabilistically according to Equation 2.2 is then chosen to be the correct one.
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4.2 Rules

The set of rules create a network of phones from the phoneme sequence. These rules

are meant only to add arcs and nodes to the network, not to replace existing arcs. It

is the objective of the alignment algorithm to choose among all the possible paths.

A set of fifty-seven rules was used in this transformation, and they can be grouped

in the following categories. They are summarized in Appendix B, and applied in the

order they appear.

4.2.1 Gemination

When two phonemes with the same identity occur in sequence (usually at a word

boundary), there is typically only one phone realized. This rule combines the same

phonemes adjacent to one another in the network into one phone. As an example, in

Figure 1.1, the phoneme /s/ at the end of the word "plus" and at the beginning of

the word "seven" is realized as a single phone in the transcription.

4.2.2 Palatalization

In American English the palatal feature can often be assimilated by a preceding

alveolar consonant. Thus, for example, a /sS/ sequence will often be realized as a

[S], as shown in Figure 4.2 for the words "gas shortage". Also shown in the figure

is the realization of the words "did you", where the palatal feature of the /y/ has

spread into the preceding /d/. The result is an affricate [j]. Palatalization can also

be produced by /2/ but this phoneme occurs much more rarely.
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Figure 4.2: Examples of Palatalization
Spectrogram of the words "gas shortage" and "did you." The underlying /sS/ sequence in
"gas shortage" is mostly palatalized as a [] at 0.3 s. In "did you", the /dy/ sequence is
realized as a [j].
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Figure 4.3: Example of Flapping
Spectrogram of the word "butter." The underlying /t/ is realized as a flap [r] at 0.18 s.

4.2.3 Flapping

When alveolar stops or nasal consonants are preceded and followed by a vowel and the

following vowel is unstressed, the realization of the consonant can be reduced. In the

word "butter," for instance, the phoneme /t/ is not released, but is instead produced

by simply flapping the tongue with the upper cavity of the mouth. Fittingly, such a

phone is called a flap and is denoted [r]. Figure 4.3 shows a spectrogram of the word

"butter" uttered by a male speaker. Notice that at time 0.18 s the phoneme /t/ is

realized as a flap. Likewise, a nasal flap occurs occasionally when an /n/ is both

followed and preceded by a vowel, such as in the word "winner."
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4.2.4 Syllabic Consonants

Syllabic consonants typically occur in reduced syllables. When a schwa, /a/ occurs

just before an /n/, the two phonemes may combine into a syllabic n, [In], as in the

last syllable of the word "button." The same is true for the phoneme // preceding

the phonemes /m/, //, or the glide /1/, as in the word "bottle."

4.2.5 Homorganic Nasal Stop

In a nasal stop consonant sequence, the nasal will often assimilate the place of articu-

lation of the stop. This phonological rule applies to almost all words in a vocabulary

(e.g. "bank"), and is captured directly in the dictionary baseform pronunciations.

However, it can also occur between words as well. For example, in the /nk/ sequence

in the words "one carat," the phoneme /n/ could possibly be realized as the phone

[r3] by some speakers.

4.2.6 Fronting

In American English, the vowel /u/ can be fronted when it occurs in an alveolar

context. As shown in Figure 4.4, which contrasts the words "boom" and "dune", the

effect produces a higher than normal second formant. The vowel /u/ is also normally

fronted when it occurs in /yu/ sequences as in the word "tuesday".

4.2.7 Voicing

This rule applies to the change in the voicing state of a phone in the context of the

phones preceding and following it. The two most common examples are the realization

of the phoneme /h/ as a voiced h, [fi], when it's followed and preceded by vowels,
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Figure 4.4: A Contrast of a Fronted and a Non-Fronted [u].
Spectrogram of the words "boom" and "dune." The /u/ is not fronted in the word "boom,"
but is fronted in the word "dune", due to the surrounding alveolar consonants.

and the devoicing of a schwa in the context of two unvoiced consonants. The schwa

between the [s] and [] in the word "Massachusetts" is an example of the latter. When

such a word is uttered, this schwa is often reduced and not heard at all, which mainly

due to its devoicing.

4.2.8 Epenthetic Silence and Glottal Stops

Epenthetic silences arise due to a mistiming of the articulators during speech produc-

tion. During the production of the /s n/ sequence in the word "snow" for example,

there is often a complete closure in the oral tract before the velum is lowered. The

resulting short interval of silence is called epenthetic silence. This effect can also

occur for /m/ or /1/, as in the words "small", and "sleep".

Glottal stops often occur at the onset of voicing of a vowel when it is not preceded
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by a consonant. They can also be used to mark word boundaries comprised of a vowel

vowel sequence as in the case of "to all".

4.2.9 Aspiration

When an utterance begins with a vowel or a /w/, an alternative to the glottal stop is

often a short period of aspiration. In addition, many speakers produce "wh" words

with an initial [h].

4.2.10 Stop Closures

The rules that cover stop sequences are applied most often. The basic rule is to

substitute a stop with its stop closure-stop sequence. However, there are quite a few

exceptions. They can divided into several subcases.

Affricates

Affricates are produced by making a complete closure in the oral tract. The nature

of the stop closure depends on the affricate it precedes. By convention, a [ta] is used

to represent the closure of a [] and [d the closure of a [j].

Stop-Fricative Sequences

In a stop-fricative sequence, the stop released is mixed with the frication noise of the

following fricative. Thus, there is no reliable acoustic landmark to locate. The se-

quence can be in the form of unvoiced stop consonants followed by unvoiced fricatives,

or of voiced stops consonants followed by voiced fricatives. They are summarized in

Appendix B.
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Stop-Stop Sequences

When two stops occur one after the other, it is seldom the case that both are re-

leased. A situation similar to that of stop-fricative sequences occur. The first stop is

optionally not released and is replaced by its corresponding stop closure.
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Chapter 5

Alignment Procedure and
Evaluation

In this chapter the alignment procedure is described. Different search methods are ex-

plored and their results are compared. Several evaluation criteria are used to perform

the comparison, and are described in Section 5.2.1.

5.1 Search

In this section the search process is described in greater detail. A probabilistic frame-

work was presented in Section 2.1 and will be the basis of the search. The mod-

els employed in the framework depend on the speech observations used. Separate

mean vectors and covariance matrices have to be trained for a frame-based and a

microsegment-based approach.

The dynamic time-warping (DTW) algorithm [19] is used to perform the search

process throughout. The algorithm finds the best path in the network incorporating

both the acoustic and durational scores. The framework in Section 2.1, however, only

accounts for the acoustic component of the search. A durational component shall be
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added in the maximization process. This is accomplished in two different ways-the

observation-based search and the full segment search. They are discussed in turn

below.

5.1.1 Observation-based Search

The observation-based search are based solely on the underlying speech observations,

which in this research are either the frames or the microsegments. It is inherently

different from the full segment search in that it does not hypothesize whole phoneme

segments to begin with. Instead, it treats the observations independently and decides

which phone the observation is most likely a part of.

A two-pass strategy is employed in the search. A schematic diagram for this

method is shown in Figure 5.1. The outer box in the figure will represents the

"Alignment Algorithm" component in Figure 1.2. Both passes are modified versions

of the dynamic time-warping algorithm. In the first pass, only acoustic scores are

taken into account. The output of the first pass is the best path of the network and

an alignment of this path with the boundaries, i.e. a phonetic alignment and an

orthographic alignment are achieved. For a more detailed description of this method,

refer to Appendix C.1.

The second pass takes the best path from the first-pass and performs an indepen-

dent alignment of this path with the boundaries again. Both acoustic and durational

models are used here. Again, refer to Appendix C.1 for a more precise description

of this method. The output of the second pass is the final alignment of the phones

from the best path with the boundaries. The time complexity of the whole two-pass

process is O(N2 ).

An example of an alignment using this two-pass algorithm is depicted in Figure 5.2.

The phonetic and orthographic transcriptions are the first phonetic and orthographic
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Acoustic
Models

Bou
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Two-Pass Alignment Algorithm

Figure 5.1: Schematic Diagram for the Observation-Based Method
The observation-based search employs a two-pass system to perform the alignment of the
boundaries with the phone network. The durational models are used only in the second
pass, while the acoustic models are used in both.

aIhmd _~IwI~~L~wlllawh I -- eh I tra t hE _
|h# hh w mIah |;h I |aw ax s 1 d4d. | eh tcl t h I

h# hhawm ah tclch l law Ilax 14s idcluw lv iuw g eh tclt h#

r_- Jmrh allowance do y Iget
how much allowance do Iou get
how Imuch 'allowance do you get 

Figure 5.2: Example of Two-Pass Alignment Technique
The top transcription is the correct phonetic transcription of the utterance "How much
allowance do you get?" The second phonetic transcription is the result of the first pass
alignment. The final phonetic transcription is the result of applying the second pass to the
labels of the second phonetic transcription. The corresponding orthographic transcriptions
are shown below the phonetic transcriptions.

59



transcriptions shown, respectively. The next ones correspond to the result of the

first pass algorithm matching the phone network with the boundaries. The final ones

correspond to the results of the second pass. Note that the second pass improved

the word boundary between the words "do" and "you," but not the word boundary

between the words "you" and "get." These phenomena occur because of two reasons.

First, as can be seen at time 1.0 s in the spectrogram of the utterance in Figure 3.1,

the underlying /g/ is poorly articulated. For this reason, the process did not propose

a [g], and, since the phonetic segment was a poor match with a normal [g] release,

the alignment suffered when compared with the "correct" transcription. Secondly,

the durational information for the phone [u] is incorporated in the second pass, which

lengthened the duration of the phone in both the words "do" and "you."

5.1.2 Full Segment Search

The full segment search incorporates the acoustic and durational scoring into one

search process. Unlike the two-pass process presented above, this method is phoneme-

based in the sense that the DTW algorithm matches whole phone segments to the arcs

in the network. Refer to Appendix C.2 for a full description of this method. This

procedure still has time complexity O(N 2 ), but because of the more complicated

nature of the search relative to the observation-based one, the running time is a lot

longer.

5.2 Alignment

In this section, the whole alignment algorithm is evaluated. The results of the

observation-based two-pass search as well as the full segment search are examined,

and they are discussed in turn below.
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5.2.1 Evaluation Criteria

There are two main criteria for evaluating phonetic and word level alignment. The

first is the average absolute error between the phone (or word) boundaries in the

correct transcription and those in the transcription that results from the algorithm.

The second measure involve the amount of overlap between corresponding segments

of speech. Let Ns be the total number of phone segments (or words) in the test

set, Oi, 1 i < Ns, be the duration of overlap of phone (or word) i between the

corresponding segments in the correct and output phonetic transcription, and Di, 1 <

i Ns, be the duration of phone (or word) i in the correct transcription. Then overlap

measure is given by

i=Ns

Overlap= i (5.1)

i=ls

This value will always be between 0 and 1 since Oi < Di for all i.

5.2.2 Two-Pass Evaluation

Several stages of the two-pass strategy is examined. The first to be explored is the

accuracy of the boundary generation algorithm. Such procedure is similar to that

of the generation of the boundary transcription structure in Section 2.3. Each of

the phone boundaries in the correct phonetic transcription provided by the TIMIT

database is matched to the proposed boundaries using a closest time criteria. Hence,

a segment transcription structure described in Section 2.3 is created, and is assumed

to be the output transcription. The two evaluation criteria described above are then

measured, which would give a rough measure of the boundary accuracy.
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The second evaluation measures the effectiveness of the search process. Here, the

correct phonetic labels are given, but of course not their correct boundaries, and a

simple network from the first label to the last label is created. Each stage of the two-

pass strategy is then evaluated. The two criteria are measured on both the outputs

of the first and second pass.

The final evaluation measures the quality of the whole alignment process which

includes network generation. The only additional input is the orthography. The

results of both stages are again evaluated by both measures.

The overall error of the system can be thought of as a sum of the errors produced

by the boundaries, by the acoustic modelling, by the network generation, and by

the search. As described earlier, the microsegment approach has advantages over the

frame-based approach in the acoustic modelling and search categories, but obviously

will be worse in the boundary generation category, since a frame-based technique

will produce no errors here. The hope is that the difference in this category is small

enough to be overcome by microsegment approach's advantages in the others.

Frame-Based Evaluation

The first set of alignment evaluations are on the frame-based approach. The main

parameters here are delta (6) and the durational scale -y. There is only one set of

averages that can be computed per frame, and 6 was allowed to vary only from 0 to

1. The first pass does not involve the durational scale factor, since only the acoustic

score is incorporated. The results are summarized in Table 5.1.

An overlap ratio of 82.8% and an average absolute error of 16.7 ms were achieved

on the TIMIT database when 6 was set to 0 and the correct labels were given. This

worsened when 6 was changed to 1. These reflect the search procedure. When only

the words were given, a two-pass system as described is used, and the evaluations are
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Given Labels After 1st Pass
Database Delta(6) Overlap Absolute Overlap Absolute

Ratio(%) Error(ms) Ratio(%S) Error(ms)
TIMIT 0 82.8 16.7 77.1 20.1
TIMIT 1 82.2 17.2 76.9 19.7

NTIMIT 0 74.6 30.0 67.8 36.2
NTIMIT 1 73.9 30.8 67.5 35.7

Table 5.1: Frame Alignment Phone-Level Ideal and First Pass Results

made after each pass. After the initial pass, the measures slightly improved as delta

was switched from 0 to 1, mainly due to the increased information brought about by

the delta MFCC parameters. After the second pass, the results of the overall system

for different durational scale factor y are tabulated in Table 5.2.

The best TIMIT results were when -y = 5 with = 0, where the overlap ratio

was 79.8% and the average absolute ratio was 15.9 ms. For the NTIMIT corpus, the

same parameters achieved the best results, with an overlap ratio of 74.3% and an

error of 22.2 ms. The word level evaluation using the same parameters as above are

summarized in Tables 5.3 and 5.4.

Similar results were achieved at the word level. Both measures worsened as the

delta parameters were added. Moreover, the best results after the second pass were

achieved with y = 5 and 6 = 0, both for the TIMIT and NTIMIT corpora. For the

TIMIT corpus, a word overlap ratio of 92.3% and an absolute error of 23.7 ms were

achieved with these parameters.

Looking at Tables 5.1, 5.2, 5.3 and 5.4, an interesting observation is that the

alignment process did not seem to improve much when parameters that helped the

classification process were used. In some cases the results actually worsened, and when

they improved, it wasn't by much. For instance, in evaluating frame classification,
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Durational After 2nd Pass
Database Delta(6) Scale(y) Overlap Absolute

Ratio(%) Error(ms)
TIMIT 0 0 76.8 20.9
TIMIT 1 0 76.8 19.6
TIMIT 0 5 79.8 15.9
TIMIT 1 5 78.8 16.8
TIMIT 0 10 78.7 17.0
TIMIT 1 10 78.6 16.9
TIMIT 0 15 76.9 19.0
TIMIT 1 15 77.8 17.7
TIMIT 0 20 74.7 22.2
TIMIT 1 20 76.9 18.8

NTIMIT 0 0 67.6 36.2
NTIMIT 1 0 67.3 35.8
NTIMIT 0 5 74.3 22.2
NTIMIT 1 5 72.0 25.6
NTIMIT 0 15 68.7 31.3
NTIMIT 1 15 69.2 30.3
NTIMIT 0 20 66.1 35.8
NTIMIT 1 20 67.4 33.8

Table 5.2: Frame Alignment Phone-Level Second Pass Results

After 1st Pass
Database Delta(6) Overlap Absolute

Ratio(%) Error(ms)
TIMIT 0 90.4 29.4
TIMIT 1 90.2 29.3

NTIMIT 0 83.3 51.3
NTIMIT 1 85.8 49.1

Table 5.3: Frame Alignment Word-Level First Pass Results
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Durational After 2nd Pass
Database Delta(b) Scale(y) Overlap Absolute

Ratio(%) Error(ms)
TIMIT 0 0 90.2 30.2
TIMIT 1 0 90.2 29.2
TIMIT 0 5 92.3 23.7
TIMIT 1 5 91.6 25.5
TIMIT 0 10 92.3 24.6
TIMIT 1 10 91.7 25.7
TIMIT 0 15 91.9 27.0
TIMIT 1 15 91.5 26.7
TIMIT 0 20 91.3 29.7
TIMIT 1 20 91.3 27.9
TIMIT 0 30 89.7 36.5

NTIMIT 0 0 83.0 51.5
NTIMIT 1 0 85.7 49.2
NTIMIT 0 5 88.9 34.2
NTIMIT 1 5 89.2 37.8
NTIMIT 0 15 87.3 42.4
NTIMIT 1 15 88.7 42.3
NTIMIT 0 20 86.4 47.7
NTIMIT 1 20 88.0 45.8

Table 5.4: Frame Alignment Word-Level Second Pass Results
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the classification rate worsened when was switched from 0 to 1, but in Table 5.1,

swtiching 6 from 0 to 1 did not help the first-pass results relative to the ideal results

in Columns 3 and 4. The same effect are transferred to the word-level results. This

leads to the conclusion that the errors caused by the search process dominate the

flaws in the alignment procedure.

Microsegment-Based Evaluation

Assuming the boundary selection parameters chosen in Section 3.5, the evaluation of

the generation of boundaries of the microsegment approach produced a phone overlap

ratio of 95.15%, and an absolute error of 4.1 ms., a number which is less than the

frame duration. Since these numbers are close to perfect, it is safe to conclude that

the boundary generation method is sound overall.

An evaluation of the other aspects of the microsegment approach is carried out.

Different parameters are varied throughout, including 6, the number of averages com-

puted, the number of additional observations on both side M, and y, the durational

scale factor.

The first set of results on the TIMIT database, summarized in Table 5.5, is on

the phone evaluation and assumes M = 0, and y = 5.0.

There are several observations to be made here. Columns 3 and 4 in Table 5.5

show the results of aligning the boundaries with the correct phonetic transcription.

First, the increase in the value of 6 or the number of averages, while causing an

increase in the classification performance in the previous chapter, does not help that

much in the two measures of alignment accuracy. A delta value of = 1 with one

average produces a result of 85.5 % overlap ratio and 12.6 ms error. Increasing the

delta value to 6 = 7 makes the results in both categories worse. When the number of

averages computed per microsegment is three, the results likewise worsened, to 84.5%
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Number Given Labels After 1st Pass After 2nd Pass
Delta(6) of Overlap Absolute Overlap Absolute Overlap Absolute

Averages Ratio(X) Error(ms) Ratio(%,) Error(ms) Ratio(%) Error(ms)
1 1 85.5 12.6 80.3 14.7 81.7 12.9
4 1 85.3 12.7 80.0 14.5 79.7 14.6
7 1 84.8 13.1 79.7 14.9 79.5 14.9
0 3 85.2 12.9 79.9 14.9 79.7 15.0
1 3 84.5 13.6 78.8 15.7 78.6 15.8
2 3 85.0 13.1 79.6 15.0 79.3 15.1
3 3 85.3 12.9 80.0 14.7 79.8 14.8
4 3 85.5 12.6 80.4 14.5 80.2 14.6
5 3 85.7 12.3 80.5 14.3 80.3 14.3
6 3 85.9 12.2 80.6 14.2 80.4 14.2
7 3 85.9 12.2 80.6 14.1 80.3 14.2

Table 5.5: Microsegment Alignment Phone-Level Results

overlap and 13.6 ms absolute error. However, when the delta was increases all the

way up to 6 = 7, the results improved somewhat to 85.9% overlap and 12.2 ms error.

Looking at the classification results using these same parameters, at Tables 2.1 and

2.3, the set of parameter values which gave good classification did not necessarily do

better in alignment, and often did worse. Since the results in Columns 3 and 4 reflect

the search algorithm, it is safe to conclude that better acoustic modelling does not

help the search process in the experiment.

Columns 5 and 6 test primarily the acoustic modelling, together with the search.

The best parameter value for classification, in Tables 2.1 and 2.3, are = 4 or 7, with

one average. They helped the alignment algorithm a little bit, relative to Columns 3

and 4, especially in the absolute error category. However, the improvements are not

significant, and the using 6 = 1 still provided the best results, primarily for its better

search results.

The last two columns test the whole system, including the durational models.
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The main result here is the improvement using the first row parameters. Both the

error and overlap measures were enhanced significantly, getting very close to the ideal

results given in Columns 3 and 4. As for the rest, they stayed the same relative to

the first pass results.

Number After 1st Pass After 2nd Pass
Delta(6) of Overlap Absolute Overlap Absolute

Averages Ratio(o) j Error(ms) Ratio(o) J Error(ms)
1 1 92.7 22.5 93.2 20.4
4 1 92.6 22.7 92.6 22.6
7 1 92.5 22.9 92.6 22.8
0 3 92.0 23.3 92.0 23.1
1 3 91.8 25.1 91.9 24.9
2 3 91.9 24.3 91.9 24.1
3 3 92.1 23.3 92.2 23.1
4 3 92.2 22.7 92.3 22.5
5 3 92.3 22.6 92.4 22.3
6 3 92.3 22.7 92.4 22.4
7 3 92.4 22.5 92.4 22.4

Table 5.6: Microsegment Alignment Word-Level Results

The word level evaluation using the same parameters as above are summarized in

Table 5.6. The results are pretty much the same as in Table 5.5. The values after the

first pass did not vary significantly, whereas a marked improvement was shown when

using the parameter values 6 = 1 with one microsegment average in the second pass.

The best results are achieved when using these parameters, where the overlap ratio

was at 93.2 % and the absolute error is 20.4 ms.

When M was increased, the results did not improve much, even though the classi-

fication rate was enhanced. For M = 3 with a delta value of 1, a 92.5% first-pass word

overlap ratio was achieved, with a word error of 24.2 ms. The second pass improved

the outcome very slighly, to 92.6% word overlap ratio and 24.0 ms error.
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Comparing the corresponding results for the microsegment-based two-pass align-

ment system and the frame-based two-pass system, we see that the former generally

achieved better results. This can be attributed mainly to the former satisfying the

independence assumption better, as was first mentioned in Section 3.1. Each ob-

servation in the microsegment-based approach is more independent of its adjacent

observations, and hence the Equation 2.5 is more accurate.

Another observation is that as with the frame-based approach, the errors due to

the search algorithm are the most dominant ones. Using parameters which improved

the acoustic modelling (i.e., classification) did not help much in the overall alignment

procedure. For the microsegment-based approach, this is evident, for instance, in

Table 5.6, where increasing 6, which significantly improved classification, did not

help much in the alignment procedure.

5.3 Full-Segment Search Evaluation

In this section the full-segment search method is evaluated. The main purpose of this

evaluation is to compare the results with the best ones of the two-pass system. Both

methods used the same parameters in performing the alignment. The best two-pass

system is the microsegment-based system with 6 = 1 and one microsegment average.

Hence, in the full-segment evaluations, to calculate the scores of each phone, the

microsegments within the phone are used to calculate its score. 6 is set to 1 and

the duration scale factor y is allowed to vary. The phone-level results for the TIMIT

database are shown in Table 5.7.

The alignment results were progressively worse as y was increased, both in the

evaluations when the correct phone labels are given and when only the words are

given. The word-level results are given in Table 5.8, where a similar occurrence

happens. The best word-level results were achieved with using -y = 10, and with
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Durational Given Labels Overall System
Scale(y) Overlap Absolute Overlap Absolute

Ratio( o) Error(ms) Ratio (%) Error(ms)
10 78.4 21.2 68.5 27.8
20 74.2 25.6 65.1 31.1
30 70.8 30.0 62.5 34.9

Table 5.7: Full-Segment Search Phone-Level Ideal and Overall Results

these parameters an word overlap ratio of 91.5% and an average absolute error of

36.6 ms were achieved.

Durational Overall System
Scale(y) Overlap Absolute

Ratio(1%) Error(ms)
10 91.5 36.3
20 90.6 39.7
30 89.6 44.4

Table 5.8: Full-Segment Search Word-Level Overall Results

5.4 Summary

Comparing the results of the full-search method with those of the two-pass system,

we see that the latter performed the alignment process better. The overlap ratio is

comparable to the best results of both the frame- and microsegment-based two-pass

systems. However, the average absolute error is much worse. Overall, the best system

is the microsegment-based two-pass system with 6 = 1 and one average computed per

microsegment. This results in a word overlap ratio of 93.2% and word error of 20.4

ms, which corresponds to a phone overlap ratio of 81.7% and a phone error of 12.9

ms.
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Chapter 6

Conclusions

6.1 Summary

There are three major results. First, the two-pass system generally performed a more

accurate alignment procedure than the full segment search system. The word overlap

ratio of the best results of methods are both over ninety percent, and is generally

comparable. However, the average word absolute error for the best result of the full

search is around 16 ms more than that of the two-pass search. Moreover, the two-pass

system is computationally more efficient.

Second, between the two two-pass systems evaluated, the microsegment-based

approach worked better than the frame-based approach. This can be attributed

mainly to the independence assumption that the former satisfies better.

Finally, the errors in the search algorithm dominated the alignment procedure. An

increase in the classification rate did not guarantee an improvement in the alignment

algorithm. For instance, the best result was achieved using the two-pass system with

the microsegments as the observations. The parameter values that generated this

result were 6 = 1 with one microsegment average per observation. A breakdown of

the errors using this set of parameters is shown in Table 6.1.
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1[ Word Level Overlap Ratio(o) Absolute Error(ms) ]
after 1st pass 92.7 22.5
after 2nd pass 93.2 20.4
Phoneme Level

using correct boundaries 95.2 4.1
using correct labels 85.5 12.6

after 1st pass 80.3 14.7
after 2nd pass 81.7 12.9

Table 6.1: Full-Segment Search Word-Level Overall Results

We can see from the table that the biggest source of error is when going from

being given the correct boundaries to being given the correct labels. This is indeed

the search process. The boundary generation, as well as the acoustic and durational

modelling, are relatively more sound.

6.2 Comparison To Other Work

Although a lot of speech researchers have worked on the problem of alignment in

the past, only Riley and Ljolje [15] have tried to perform orthographic alignment on

the TIMIT database. They achieved a phone-level result of 80% of the boundaries

within 17 ms of the TIMIT-provided boundary, which roughly corresponds to my

phone-level average error of 12.9 ms. The work of Farhat [8] were slightly worse than

that of Riley's. They achieved a phone-level result of 75% of the boundaries within

20 ms of the manually-labelled ones. The other relevant work was that of Leung [14].

He achieved a phone-level result of 75% of the proposed boundaries within 10 ms of

the correct ones.
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6.3 Future Work

From the previous section, the most promising technique is microsegment-based two-

pass system. It is therefore natural to explore this technique in future research.

Four main sources of improvements are as follows. First, since the search algorithm

provided the biggest cause of error, different methods of performing the search process

can be explored. Perhaps there is a better way to incorporate both passes into one

that can improve the alignment without sacrificing too much computation time.

Second, even though the boundary generation algorithm seems sound, one cannot

rule out the possibility that the errors attributed to other sources might actually be

caused in part by the boundary creation scheme. After all, these boundaries determine

the microsegments which are the basis for all the work after that. Hence, it might be

a good idea to explore other ways of generating boundaries.

Third, the acoustic modelling can also be enhanced. Other methods of repre-

senting the speech signal can be explored, such as the wavelet function. This takes

advantage of the tradeoff in time and frequency, and is most promising in the classi-

fication and alignment problems.

Finally, it would be interesting to see how the alignment method would perform on

a spontaneous speech corpus such as the SWITCHBOARD corpus. The occurrence

of non-lexical items not part of the given orthographic transcription could pose some

problems to the alignment procedure outlined above. Additional modelling would

have to be incorporated to the existing one to handle disfluencies (e.g., filled pauses,

restarts) which do not typically occur in read corpora. For instance, simple inter-word

models such as word spotting techniques might be used to account for this variability.
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Appendix A

Phone Classes

The forty-two phone classes in IPA and ARPABET forms are shown in Tables A.1

and A.2, respectively.

Table A.1: Forty-Two Phone Classes in IPA form
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. Category Phones II Category Phones II Category Phones .
Vowels: [i] Glides: [1], [11] Fricatives: [z]

[I], [i] ] [r] i [S], []

[E] [Y] [V]

[a1] _____ [w] [f]

[a], [], [ah
] Voiced [b], [d, [6]

[u], [i] Closure: [9] [0]
[o] Unvoiced [p0 ], [ta, [s]

[I], [a] Closure: [kD] Nasals: [m], [m]

[e] Voiced [b] [n], [n], []
[ad] Stops: [d] [r], []
[:Y] [f] Affricates: []

[aw] [g] [j]

[o] Unvoiced [p] External Sil.: [h#], [h#1],[h#2]
[3], [a'] Stops: [t] Internal [], [D],

Aspiration: [h], [fi] [k] Silence: [?]



Table A.2: Forty-Two Phone Classes in ARPABET form
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[ Category Phones Category Phones Category Phones
Vowels: iy Glides: 1, el Fricatives: z

ih, ix r sh, zh

eh y v
ae w f

ax, ah, axh Voiced bcl, dcl, dh
uw, ux Closure: gcl th

uh Unvoiced pcl, tcl, s
ao, aa Closure: kcl Nasals: m, em

ey Voiced b n, en, nx
ay Stops: d ng, eng
oy dx Affricates: ch
aw g jh
ow Unvoiced p External Sil.: h#,h#l,h#2

er, axr Stops: t Internal epi,pau
Aspiration: hh, hv k Silence: q



Appendix B

Phonological Rules

Listed below in the table are the fifty-seven phonological rules.
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Rule Heading Left Context Present Phone Right Context Possible Phone Subs.
Gemination: [n] [n] [n]

[m] [m] [m]

[u] [u] [u]

[1] [1] [1]

[f] [f] [f]

[v] [v] [v]

[0] [0e] [0e]

[6] [6] [6]

[S] [s] [s]

[z] [] []
[9] [S] []

Palatalization: Is] [Y]

[t] [y] []

[d] [y] [J]

AF [] []
AF [] [±]



Rule Heading Left Context Present Phone Right Context Possible Phone Subs.
Flapping: VOWEL AS VOWEL [r]

VOWEL In] VOWEL []
Syllabic SCHWA n] [n]

Consonants: SCHWA [m] [m]

SCHWA [] []
SCHWA [1] []

[r] SCHWA [a']

SCHWA [r] [a]

Homorganic NVN VS [r]
Nasal NLN LS [m]
Stop: NAN AS [n]

Fronting: [Y] [u] [iil
ALVEOLAR [u] ALVEOLAR [ii]

Voicing
VOICED [h] VOICED [fi]

UNVOICED SCHWA UNVOICED [ah]

Epenthetic [s] NASAL-OR-L [0]

Silence:

Aspiration: PAU # [w] [h]
Glottal PAU # VOWEL [?]
Stops VOWEL # VOWEL [?]
Stop [] [to

Closures [] [d9]
It] [Is] [t]

[d] [z] [d9]

[k] Is] [kg

[g] [z] [gO]

[P] [S] s[p]

[b] [z] [bI]

[b] STOP [b]
[d] STOP [d!

[9] STOP [b9]

[P] STOP [IP]

[t] STOP [tc ]

[k] STOP [k
O

]

[b] [b °] [b]

[d] [d9] [d]

[9 [g0 ] [9]

[P] [PF] [p]

It]7 7 [t [ It]

[k] [ke] [k]



These rules are used to generate the network from the orthographic transcription.

The code for some of the abbreviations used in the table are as follows:

1. ALVEOLAR - [s] [z] [t] [d] [n] [n]

2. LS (labial stop) - [b] [p]

3. AS (alveolar stop) - [d] [t]

4. VS (velar stop) - [g] [k]

5. UNVOICED- [p] [t] [k] [s] [] [0] [f] [] [h]

6. NASAL- [m] [n] []

7. NVN (non-velar nasal) - [m] [n]

8. NLN (non-labial nasal) - [] [n]

9. NAN (non-alveolar nasal) - [m] []

10. SCHWA- [] [i]

11. AF (alveolar fricative) - [s] [z]

12. NASAL-OR-L- [m] [n] [] [1]

13. PAU- [?] [] [h#]

14. # - word boundary
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Appendix C

Alignment Algorithms

The two modified DTW algorithms are described in greater detail in this section.

Both algorithms take as input the phone network and the acoustic boundaries, and

output the time-aligned speech signal.

C.1 Two-Pass Observation-Based Method

The first method is the two-pass method. A schematic is shown in Figure 5.1. In the

first pass, only acoustic scores are taken into account. The scores are calculated by

means of Equation 2.8. The DTW algorithm treats the boundaries from the boundary

generation algorithm on one axis and the arcs of the network which represent the

phones on another. A score matching each observation and each arc in the network

is computed and stored. Then, given a ith arc and the jth boundary, the algorithm

determines the best path through the network that ends with the matching of the

observation whose right boundary is the ith arc and the jth boundary. The best

path through the network will be the one that is determined at the final step, when

the the last boundary and the last arc are matched. Assuming that there is a limit

on the number of arcs that arrive at any given node, this algorithm has a time
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complexity of O(N2 ). The output of the algorithm is the best path of the network

and an alignment of this path with the boundaries, i.e. a phonetic alignment and an

orthographic alignment are achieved.

The second pass takes this best path and performs an independent alignment of

this path with the boundaries again, this time taking into account durational scores.

It throws away any score or matching derived from the first pass. Once again, the

DTW algorithm for the second pass is observation-based, having the phones in the

best path on one axis and the boundaries on the other. However, since durational

scores are phoneme-based, a conjecture is made at each step on how long the present

segment will be. Given the ith phone and the jth boundary, the best matching

between the observation O whose boundaries are the jth and (j+l)th and the ith

phone is determined by the following method. There are two possible choices at

this point. There could be a phone transition, where a matching occurs between the

observation 01 left of O to the (i-l)th phone, or a non-transition, where a matching

occurs between the observation 01 and the ith phone. Let TotSob be the array of the

best scores at each matching of a phone and boundary; hence the values TotSob(k, I)

are known at this point for k < i and 1 < j except for k = i and 1 = j, which

is to be determined now. This score incorporates all acoustic scores and durational

scores up to that point in the path. The scores Strans and Snon-trans for each choice,

respectively, are likewise composed of an acoustic score and a durational score. The

first choice involves a transition of phoneme, and we have:

Strans = ASob(i,j) + af. DSob,trans, (C.1)

where ASob(i, j) and DSob,trans are the acoustic component and durational compo-

nents, respectively, and y is the durational scaling factor. Experiments are con-

ducted for different values of y. ASob(i, j) is computed by means of Equation 2.8, and

DSob,trans is computed using the durational model. The formula for determining the
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durational score for a phone a is the following:

1DS, = -log(27ru) - * ((Sa- )/a) 2, (C.2)

where ye and a, are the mean and standard deviations of the duration of the phone

a, respectively, and 6a is the duration of phone a. For Snon-trans, we have:

Snon-trans = ASob(i, j) + Y DSob,non-tans. (C.3)

But since there is no transition, the exact phone duration of the phone i is not

known. We can only conjecture at this point. A good guess would be to assume that

the duration is an average one, and hence the second part of the RHS of Equation

C.2 is assumed zero:

DSob,non-trans = -log(2a). (C.4)

Then S(i,j) can now be calculated by the following rule:

If Strans + TotSob(i- 1,j - 1) Snon-trans + TotSOb(i,j - 1),

TotSob(i,j) = Strans + TotSb(i - 1,j- 1);
else

TotSob(i,j) = TotSob(i,j - 1) + ASob(i,j)

Note that for the second case only the acoustic score is added to the total score

at that point. Durational scores are only added when there is a transition. The time

complexity of the second pass is likewise O(N2 ), and hence the time complexity of the

whole two-pass process is O(N 2 ). The output of the second pass is the final alignment

of the phones from the best path with the boundaries.
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C.2 Full Segment Search Method

The full segment search is described in detail in this section. Here, the DTW algorithm

matches whole phone segments to the arcs in the network. Given the ith arc which

represents phone a and the jth boundary, the best score TotSf,(i,j) at this point

is the score of the best path which ends with the phone a terminating at the jth

boundary. All the acoustic and durational scores are incorporated into TotSfl(i, j).

A maximum number of observations M that a phone can match to is preset. M was

chosen to be 150 for a frame-based search and 15 for a microsegment-based search.

To describe the full search algorithm, we label the arcs which have the starting node

of the ith arc as their end node as al, 1 < < L. Now, given some boundary k,

j-M k < j-1, we look at the best path which matches all the observations between

boundaries k and j, to the phone a. The weight WS(i,j,k) of this matching has an

acoustic score ASfS(i, j, k) and a durational score DSf (i, j, k). They are calculated

as follows:

j-1
ASf,(i, j,k) = logPr(xm , o a), (C.5)

m=k

where Equation 2.8 is used to calculate the log of the probability. Equation C.2 is

used to compute DSf(i, j, k), with the time difference between boundaries k and j

substituted for 6a. Then,

WS(i, j, k) = ASfs(i, j, k) + y' DSfs(i, j, k), (C.6)

where y is the durational scaling factor as before. This weight is added to the quantity

Bi,j,k:

B(i, j, k) = maxTotSf,(al, k) (C.7)
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which is the best path matching any of the arcs a with the boundary k to get the

score C(i,j,k) of the best path matching the all the observations between boundaries k

and j to the phone o. A final maximization is processed to compute for TotSfs(i, j):

TotSfs(i,j) = max B(i,j,k). (C.8)j-M~kj-1

The output of this algorithm when i and j have reached their final respective values

gives an alignment of the speech signal with the proposed boundaries. Because there

is a limit set of the number of arcs that can arrive at a node, as well as on M,

the number of observations that can match with a phone, the above procedure still

has time complexity O(N2 ). If there was no limit on M, which is to say a phone can

occupy everything till the first boundary, then the time complexity goes up to O(N4 ),

which gives a good measure on the complexity of the algorithm.

83



Appendix D

Train and Test Speakers

D.1 Train Speakers

mwacO mrwaO mjaiO fmpgO mwgrO msdhO mkagO mjfrO mhitO mdlc2
fljgO fkfbO fcjsO fbcgl mmwbO mmdbO mjlbO maebO fklcO fgdpO
mwsbO mwchO mtrcO mtdtO mmdbl fsmaO mesjO mdlsO mdac2 fawfO
msdbO mjjgO mjbrO mfxvO mesdO mdbbl mchhO mthcO mravO mjswO
mjlgl mdrmO mdnsO mbomO makbO ftlhO mkrgO mrpcO mtmtO mwjgO
mjfhO mmsmO mtatO fexmO fskpO mjvwO mkjlO mpglO mreeO mrwsO
mefgO mrtkO mprkO mmwhO mjlsO mhpgO mcmjO fedwO fcrhO fcmmO
fmldO fsgfO ftbrO mcttO mpghO mvjhO mwbtO fdjhO fdtdO fhlmO
fjklO fmgdO fsjgO mafmO mdefO mdvcO mkddO msvsO faksO fgwrO
fisbO fjdm2 fpasO mbpmO mhbsO mklwO mnjmO mparO mrmbO mtabO
fbchO mfgkO fpazO fplsO mbcgO mbmal mdlfO mejlO mhrmO mremO
mrldO mrxbO msesO mklnO mmamO mrdmO mrehl ftlgO fsxaO fsdjO
fksrO fhesO feehO fcmrO fckeO fdhcO fbjlO faswO mtrrO mrczO
mpdfO mklsl mgwtO mealO mdwmO mdwkO mdldO mcshO fpktO fmmhO
fdrdl mjmpO milbO mglbO mtlbO fmkfO mkahO mdhsO ftmgO fsklO
flacO mtjgO mtdpO msatO mrjhO mmwsO mmlmO mkjoO mkdtO mjwgO
mjaeO fnklO mtwhl mtppO mrhlO mmxsO mjxaO mjrkO mcddO frllO
mtebO fmahl fljdO fdxwO mrjtO mrewl mpmbO mpgrl mkdbO mjmaO
mgrlO mdpbO fsmsl femeO fcagO mrmsl mrjm4 falkO mmabl mferO
flasO fkmsO fcmhl mwvwO mvrwO mtlcO mfmcO mrpcl mrabl mnlsO
mmaaO mgesO mdcmO mbthO fdacl mjtcO mjjmO mdsjO mbdgO majcO
mcefO fbmhO flagO fdasl fcmhO mclmO mdawl mdjmO mjrfO mmdm2
mrjm3 mnetO msjkO mtprO mbwmO mddcO mrgsO mrgmO fdawO fdmyO
mmvpO fsmmO mgslO mwemO fpmyO fmjbO mdhlO fsjsO mtqcO mppcO
mjdmO mgawO mmbsO fadgO mjesO mtpgO mcxmO mrcgO fsdcO fjmgO
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mlnsO mmgkO mahhO mjwtO fscnO fjcsO mjthO faemO fearO ftajO
mejsO mrljO mjmmO mjjjO fjsaO mrmlO mcssO mmccO fecdO mjbgO
mtjmO fjlgO mrbcO mgrtO mkamO fntbO mklsO mrtjO mjsrO fnlpO
flhdO flkdO mplbO mrjmO mdedO mtjsO fsemO mjlnO mjdcO mmdsO
fjhkO mmdmO fsahO framl mcpmO mdrdO fcegO mmgcO mjacO mrlrO
fdrwO fskcO mpebO mprtO mdrbO medrO mjpmO mljcO mdacO fvkbO
mrkoO fmjuO frjbO mersO fkaaO mvloO mjkrO mjxlO mrflO mtcsO
mcthO mpgrO mlbcO feacO mmjbl flmaO fjwbl fcylO mkajO mtkdO
mpamO mdlbO felcO mtbcO fjxmO mprbO mpaml mhjbO mbmaO mbwpO
mctwO mdlmO fslbl mrcsO mcewO mdtbO mesgO mabcO fcftO mmeaO
mbsbO mtrtO fjasO fklhO mtwhO mmarO flkmO mdbbO mdmtO mfwkO
fcrzO mmjrO mrjsO fmcmO mdmaO mdwhO mmrpO mdlhO mdlrO mtatl
mlllO mjarO mmdgO mseml fjlrO mdwaO mjeeO mdemO fmjfO mrjbl
mgshO mdcdO mgrpO mhmgO mlelO mljbO mrabO mbjkO mdssl fpadO
mkxlO mtpfO mpfuO futbO mjraO msasO mbmlO mkesO mrspO mrjoO

mtdbO mrmhO mjhiO megjO fhewO fnmrO msmsO fcdrl mmebO mgagO
mgarO fgmdO fjspO mraiO mwrpO mrrkO fjrpl mmabO mrebO mrreO
mpcsO flmcO mrcwO mbgtO ftbwO fcmgO mstkO msmrO madcO mslbO
fmbgO mlihO mbjvO mdpsO mdssO makrO marcO mjpml mrppO mcrcO
mctmO mtlsO mmdml mwshO mlshO mewmO mtkpO fmemO mterO mrjrO
fsagO mcdcO mcdrO mwewO fkdwO mstfO fgjdO mprdO fbasO mrdsO
mkchO mwdkO mcaeO mchlO fcjfO mfrmO mjdml fcltO mljhO mdbpO
frngO mtaaO mzmbO fgrwO mdlcO mtasO mjpgO mrggO falrO mgjcO
mtjuO maddO mjrgO fcall mcemO fsrhO fspmO fsjkl fvfbO mclkO
mjdaO mtasl mrwsl mjmdO mmdhO mrvgO mrsoO flmkO mrtcO mabwO
mjfcO mrmsO mrlkO fcauO fmmlO mpwmO mdabO mdscO mgakO mpabO
fjenO fjlmO fpjfO mfxsO mmagO mjdgO mrljl mjwsO mwarO fjskO
mjrhl mjrhO fklcl flehO mjjbO mrddO msahl mjebl mjdeO mhxlO
fblvO fpafO mhmrO mgmmO fslsO mbbrO mdpkO mcreO mklrO mmpmO
mccsO mcalO mtxsO mwreO fpabl fletO fkdeO fjxpO fjsjO fjreO
fzmbO fzcsO faDbO mtmnO fetbO mwadO fltmO fdmlO fsbkO mdksO

fcajO fmafO fbmjO mntwO mpswO fvmhO mtmlO

D.2 Test Speakers

msjsl fjemO mjrpO mdwdO mjebO mrjml mtmrO fjwbO fajwO fdncO
msfvO mgjfO mbefO mgafO mlntO mapvO fdfbO fsjwO msrgO msfhO
mgxpO mbnsO marwO msmcO mkclO mroaO flbwO fdmsO frewO fsakO
mkltO msfhl mrkmO mdasO mcmbO mramO fkkhO flodO fmahO mjdhO
flnhO mkdrO mdlrl mbarO maeoO mdlcl fpacO frehO mresO fjrbO
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