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ABSTRACT

The limitations of the quantum postulates are examined using the self consistent
quantum formalism of nonlinear optics. An optics analog of the EPR paradox is
presented. This Gedankenexperiment uses squeezed vacuum states of light to test
Bell's inequality. The generation of squeezed states in the nonlinear Sagnac ring
interferometer is reviewed. A new variant of this system, which employs the Sagnac
ring as the reflector in a laser resonator, is presented. A unique squeezed state, which
we call modulated vacuum, results. It is shown that the phase uncertainty of the
pump inside the laser cavity does not inhibit the squeezing action. The discussion on
squeezed states is applied to Bell's inequality. The conditions for violation of Bell's
inequality with squeezed vacuum are derived. It is shown that Bell's inequality is
violated in the limit of small photon number. We show how a quantum cryptography
system may be set up using pulses of squeezed vacuum, where Bell's inequality is
used to test for eavesdropping.
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Chapter 1

Introduction

1.1 Historical Backround

The development of the fundamental quantum postulates did not proceed as smoothly

as the current orthodoxy in quantum mechanics would lead one to believe. Although

Schroedinger's wave equation proved to be a powerful mathematical tool, capable of

explaining Bohr's quantization rules for the hydrogen atom, the scientific community

was divided over its physical significance. Schroedinger believed his wave function to

be a real physical field, similar to the electromagnetic field [1], while Born thought

of the wave function as a "phantom" field whose square magnitude is a probability

density [2]. Heisenberg supported Born's interpretation with his uncertainty princi-

ple [3]. Einstein, on the other hand, held that description of the wave function is

incomplete, and must be generalized by a deterministic theory that brings quantum

mechanics in line with classical mechanics. Bohr stressed the wave particle duality as

the essence of quantum phenomena. He argued that the wave vs. particle descriptions

are complementary in the sense that they allow humans to use classical concepts to

explain phenomena outside the scope of human experience [4]. According to Bohr,
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CHAPTER 1. INTRODUCTION

the wave function is a mathematical structure that embodies this complementarity.

It is evident that there was a myriad of varying opinions as to how to interpret the

emerging quantum theory.

The foundation of modern quantum theory was formulated by Bohr, Heisen-

berg and Pauli at a series of meetings in Copenhagen. This so-called Copenhagen

interpretation is a synthesis of Bohr's complementarity principle, Born's probabilistic

interpretation of the wave function, and Heisenberg's uncertainty principle. Einstein's

vigorous opposition to this view was highlited in a famous debate with Bohr at the

fifth Solvay Conference on "Electrons and Photons." [5] At this conference, Einstein

confronted Bohr with several thought experiments that seemingly "proved" that the

uncertainty principle can be violated. But Bohr was able to show in every case that

under closer examination there was no violation. It was this victory against Einstein

that probably convinced most scientists to embrace the Copenhagen interpretation.

Einstein, however, was not deterred by this setback. His most forceful assault on the

Copenhagen interpretation came years later with the EPR paradox.

1.2 Conceptual Difficulties

The orthodox quantum theory pictures an elementary particle, like an electron, as a

probability distribution without definite position or momentum. Associated with the

electron is a wave function T(x, t), which gives the probability I (x, t) 12 of finding

it at a particular position x. The main conceptual difficulty with this interpreta-

tion of the wave function is that the probability density describes a single electron

rather then a large ensemble as in classical statistical mechanics. Of course, when a

14



1.2. CONCEPTUAL DIFFICULTIES

measurement is made, we must find the electron at some point in space. The wave-

function is then said to "collapse," so that a subsequent measurement will again find

the electron at that point. But we still can say nothing about the position of the elec-

tron before the measurement. It could have been anywhere given by the probability

I (x, t) 12. This would not be strange if we assume that the wave function gives only

an incomplete description of nature. In statistical mechanics we have no problems

with giving a probabilistic description to systems which cannot possibly be described

deterministicaly (a large aggregate of atoms, for example). The strangeness comes

about because quantum theory asserts that a probabilistic description is necessary in

principle. One consequence is Heisenberg's uncertainty principle, which states that

it is impossible to know both the position and momentum of a particle at the same

time. A measurement of momentum will leave the particle with a completely random

position and vice versa. Hence we are led to believe that physical properties come

into existence only when they are measured. Many scientists could not accept such a

strange conception of reality, a discomfort elegantly expressed by Bernard d'Espagnat

[6]:

The mind demands something more: not necessarily determinism - there

is nothing intrinsically irrational about randomness - but at least objective

explanations of observed regularities, or in other words causes. Underly-

ing this demand is the intuitive notion that the world outside the self is

real and has at least some properties that exist independently of human

consciousness.
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CHAPTER 1. INTRODUCTION

The group of physicists advocating the position expressed by d'Espagnat became

known as realists. The most prominent among them was Albert Einstein.

1.3 EPR and Hidden Variables

In 1935, Einstein, Podolsky and Rosen (EPR) published a classic paper arguing that

quantum mechanics fails to provide a complete description of physical reality [7]. EPR

described a Gedankenexperiment that clearly reveals the paradoxical consequences of

quantum mechanics. The thought experiment consisted essentially of two particles

that interact such that their positions and momenta become correlated. In quantum

language, the two single particle wave functions become "entangled." EPR consid-

ered the entangled wave function 6(X1 - x 2 - a), which is an eigenfunction of the

operator 1 - 2 with eigenvalue a, and of the operator Pi + 2 with eigenvalue 0.

A measurement of the observable i1 will cause the wave function to collapse into an

eigenstate of position, thereby determining with certainty the outcome of a position

measurement on particle 2. Now the measurements could in principle be done many

light years apart. Hence a measurement on one particle should have no influence on

the second particle. But this is exactly what happens unless we assume that the par-

ticles had all along the particular values that were measured. EPR then showed, by

analogous arguments on the momentum, that such an assumption leads to a violation

of Heisenberg's uncertainty principle, with the conclusion " ... we have thus shown

that the wave function does not provide a complete description of the physical reality

Most scientists rejected Einstein's paradox, favoring Bohr's defense of the Copen-
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1.3. EPR AND HIDDEN VARIABLES

hagen interpretation [8]. Bohr argued that one must treat both the measuring in-

strument and the particles as a single system. Accordingly, turning the dial on the

measuring instrument (i.e. choosing to measure position versus momentum) alters

the state of the whole system. Despite Bohr's arguments, some researchers were in-

fluenced by EPR to search for a more "complete" theory. The view that quantum

mechanics gives only partial or incomplete statistical information inevitably led to

the so called hidden variable theory.

The hidden variable theory is similar to the classical statistical description of

atoms in a gas. Since we can never know all the positions and momenta (the "hidden

variables" in this case) of all the atoms in a gas, we must accept a partial, but for all

practical purposes sufficient, probabilistic description. Hence we are perfectly happy

in only knowing the average quantities (pressure, temperature, density, etc.) since

that is all we need to design practical devices. Similarly, one may assume the existence

of hidden variables in the quantum theory, where the wave function is a result of

some average over the hidden variables. In most cases these hidden variables play no

part in the physical description of matter. The wave function and the corresponding

quantum averages usually give a sufficient description. But as Einstein demonstrated,

there are situations where knowledge of these hidden variables would resolve strange

paradoxes of the "incomplete" quantum theory. It should be noted that there are also

cases in the classical statistical description of matter where knowledge of the average

quantities is not a sufficiently accurate description. For example, in high-temperature

plasmas the fluid equations sometimes fail to give an accurate description. In this case

one must seek a more complete statistical description given by Boltzmann's equation.
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CHAPTER 1. INTRODUCTION

Returning to the subject of hidden variables, we note that the lack of knowledge

of these variables seems to make the theory superfluous. If it is impossible to make

predictions that can be tested with experiments, then the hidden variable vs. the

Copenhagen interpretation is just matter of taste. This was the state of affairs until

1965, when J.S. Bell published his seminal paper [9]. In this paper Bell used the

hidden variable theory to derive an inequality, now known as Bell's theorem, that

allows an experimental comparison between quantum mechanics and hidden variable

theory. Furthermore, Bell showed for a simpler version of the EPR experiment that

quantum mechanics violates his inequality. This set the stage for theoretical and

experimental research that is still very active today. We will not go into an exhaustive

review of all the experiments performed to date, except to note the celebrated work

of Alain Aspect and co-workers with correlated polarization states of light [10,11].

Excellent reviews of both theory and experiments are given by John F. Clauser and

Abner Shimony [12], d'Espagnat [5], and Jim Baggott [13]. Although most of the

experiments so far have favored quantum mechanics, many issues have yet to be

completely resolved and scientists continue to search for new ways to probe into the

quantum world. Bell believed that the search should continue, as he wrote regarding

the Aspect experiments [14]:

... I certainly hope it is not the end. I think that the probing of what

quantum mechanics means must continue, and in fact it will continue,

whether we agree or not that it is worth while, because many people are

sufficiently fascinated and perturbed by this that it will go on.

18



1.4. QUANTUM OPTICS

1.4 Quantum Optics

In this thesis we will apply the formalism of quantum optics to the weighty issues

raised by EPR. The corpuscular or quantum nature of light played a decisive role in

the evolution of quantum theory. Indeed, it all began with Planck's description of

black body radiation [15] and Einstein's photoelectric effect [16]. The development

of quantum electrodynamics greatly enlarged the range of phenomena explained by

quantum theory. For example, the mysterious passing of one photon through both

slits of Young's interference experiment could now be formally described as single

photon interference [17]. The development of laser technology and photon counting

techniques led to experiments showing how the interference pattern emerges as a

succession of one-photon interference experiments [18].

Quantum optics also predicts two-photon interference. Two-photon interfer-

ence effects where first demonstrated by Hanbury-Brown and Twiss [19]. They used

photon counting techniques to measure the second order correlation or interference

between photons of a split beam. Similar methods where later used to demonstrate

photon antibunching [20-22], a manifestation of nonlinear two-photon processes. The

possibility of applying the quantum properties of light to communication and interfer-

ometry led to the investigation of squeezed states [23-25]. Squeezed states of light are

also created through multiple photon interactions in nonlinear media. Squeezed light

has properties very different from ordinary laser or thermal light. In particular, the

photons in squeezed light display large quantum correlations in phase. We will show

how such quantum correlations lead to nonlocal interference effects and violation of

Bell's inequality.

19



20 CHAPTER 1. INTRODUCTION

Much of the material for this thesis comes from the author's work on squeezing

[26-28] and its applications to Bell's theorem [29]. The thesis includes a detailed

discussion of Bell's theorem and a review of squeezed light and its generation. A

new system for generating squeezed light inside a laser resonator will be analyzed.

The optics version of the EPR experiment with squeezed light is discussed and the

conditions for violation of Bell's inequality will be derived. Bell's theorem will be

applied to a quantum cryptography system that uses pulses of squeezed light.



Chapter 2

Bell's Theorem

2.1 EPR Paradox

In this chapter we will discuss in detail a simplified version of the EPR Gedankenex-

periment due to Bohm [30]. Bohm considered the dissociation of a spin-0 system into

two spin-1/2 particles. Conservation of linear momentum requires that the particles

fly apart in opposite directions and conservation of a angular momentum is satisfied if

the particles are in a singlet state. When the particles are sufficiently separated that

no more interactions can take place between them, observers make measurements

of their spin components using Stern-Gerlach analyzers. The Stern-Gerlach analyz-

ers are set up independently to measure the spin of particles 1 and 2 in arbitrary

directions and b. A schematic of this system is shown in fig. 2.1.

Let us consider the simple case when both analyzers are aligned in the z-

direction. We may expand the wave function in a superposition of eigenstates of

21



CHAPTER 2. BELL'S THEOREM

z
b

2

Figure 2.1: Dissociation of a spin-0 system followed by spin measurements.
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2.1. EPR PARADOX

spin in the z-direction. The singlet state is then given by:

I) = {) -)2- -) 1 +)2} (2.1)

where + denotes spin up and - spin down. Both particles have an equal probability of

being spin up or spin down. A measurement of spin on one of the particles, however,

collapses the wave function into a eigenstate corresponding to the particular outcome

of the measurement. The result of a spin measurement on the second particle is

then determined with certainty. Even when the measurements are made light years

apart, if particle 1 measures spin up, we know that particle 2 will measure spin down.

It seems that a measurement on particle 1 exerts an influence on the outcome of

measurements on particle 2 in violation of the locality principle.

The above analysis is frequently used in physics texts to demonstrate the EPR

paradox. Actually, the situation is more subtle. Consider a classical system made up

of a gun that shoots red and blue bullets randomly in opposite directions. Further,

suppose that the gun is loaded with only two bullets, one red and one blue. Then after

it shoots off the two bullets in opposite directions, measurements are made on their

colors. Note that here again a measurement on one bullet determines with certainty

the outcome of a measurement on the second bullet. Does this classical system then

violate the locality principle? There is no paradox here because in classical mechanics

particles have definite properties independent of measurements. Hence, even though

we don't know the color of the bullet before a measurement is made, we do know

that it has a definite color. That is, if we measure blue for bullet 1, then bullet 2

had the color red all along. The measurement on bullet 1 does not really influence

23



CHAPTER 2. BELL'S THEOREM

the outcome of measurements on bullet 2. We cannot make the same assertion in

quantum mechanics. According to the quantum picture, the spin of particle 2 is

not defined until a measurement is made on the system. Hence the measurement on

particle 1 really does exert some kind of nonlocal influence on particle 2.

EPR argued that the only way to avoid violation of the locality principle is

to assert that the particles had the particular spin components that were measured

all along. But this assertion leads to a contradiction with quantum mechanics. Let

us suppose that the particles have definite spin components just like the bullets had

definite colors. We can make measurements of either z or x spin components of

particle 1, thus determining with certainty the outcome of spin component of particle

2. If we then assume that the particles had those spin components all along, then we

must admit that a particle can have well defined spin in both z and x directions at

the same time, a violation of Heisenberg's uncertainty principle. EPR thus concluded

that quantum mechanics cannot give a complete description of physical reality.

2.2 Hidden Variables

Let us now consider the EPR experiment from the view of hidden variable theory.

Since the wave function I ) cannot adequately predict the results of measurements,

the existence of a more complete specification of the state is postulated. Associated

with every possible outcome of a measurement is a hidden variable A and a normalized

probability distribution p(A). The average value of an observable O(A) is given by:

(0(A)) = p(A)O(A)dA (2.2)

24



2.3. BELL'S INEQUALITY

This description is very similar to classical statistical mechanics. For example, p can

be the Maxwellian distribution where the hidden variable corresponds to velocity.

Similarly, there may exist hidden variables that describe each outcome of the EPR

experiment. The probability distribution p is set up by the initial interaction of the

particles. Unfortunately, we have no knowledge of the distribution p since the hidden

variables are truly "hidden," they cannot be directly measured or controlled.

2.3 Bell's Inequality

It turns out that knowledge of p is not necessary to derive a result that can be

compared with experiment [9]. Consider the correlation between the spins of the two

particles in fig. 2.1. According to the quantum rules this correlation is given by:

E(a, b) = ( 1 . a . b I ) = -a b (2.3)

where is the Pauli spin operator and we have normalized the units of angular

momentum to the quantum of action h/2. The "nonlocal" quantum correlations can

be perceived from eq. 2.3 when a and b point in the same direction. In this case the

two spin measurements are perfectly anti-correlated:

(2.4)
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CHAPTER 2. BELL'S THEOREM

Bell used the hidden variable theory together with the locality principle to derive an

inequality for the correlation E. Hidden variable theory prescribes that:

E(a, b)= J p(A)Sla · S2b(A)dA (2.5)

where Sla S2b is the observable for the product of spin of the two particles. The local-

ity principle asserts that the measurement of spin of particle 1 should be independent

of the measurement of spin of particle 2. This condition is expressed mathematically

by:

Sl,a S2b(A) = Sla(A) S2b(A) (2.6)

Now let us consider the difference of two correlations involving three independent

orientations of the Stern-Gerlach analyzers:

E(a, b) - E( , -) = /p(A) (Sla(A) S2b(A)- Sla(A) S2c(A)) dA (2.7)

Manipulating the right side we get:

E(a, b) - E(a, ) = f p(A)Sl(A) S2b(A) (1 + Slb(A) S2C(A)) dA -

f p(A)Sla(A) S2(A) (1 + Slb(A) S2b(A)) dA (2.8)

Now taking the absolute value and using the triangle inequality yields:

IE(d, b)- E(c-, E) I< I Jp(A)Sla(A) S2b(A) (1 + Slb(A) S2c(A)) dA I +

26



2.3. BELL'S INEQUALITY

I Jp(A)Sla(A) S2c(A) (1 + S 6l(A) S2b(A)) dA (2.9)

To proceed further, we use some of the results of quantum mechanics. This

is not inconsistent since hidden variable theory is supposedly a generalization of the

quantum theory. Hence the spin is still quantized: S1, S2 = ±1.

The inequality 2.9 is still true when we take the absolute values inside the

integrals. Then, noting that I S1 S2 1< 1, we dispose of the absolute values all

together:

I E(a b)- E(I, < f p(A) (1 + Slb(A) S2c()) dA +

f p(A) (1 + Slb(A) · S2b(A)) dA (2.10)

If we impose condition 2.4, the second integral vanishes and we are left with Bell's

inequality:

I E(a, b) - E(a, c I< 1 + E(b, c (2.11)

We have arrived at this inequality by using the formalism of hidden variables, con-

strained by the locality principle and some results from quantum mechanics. It is

easy to show, however, that there is a range of analyzer orientations where Bell's

inequality is violated by quantum mechanics. In particular, for a b = b c = 1/2 and

a c= -1/2, we have I E(a,b) - E(a,c) = 1 while 1 + E(b,c) = 1/2. Thus Bell's

inequality provides a concrete test of quantum vs. hidden variable theory.

27



CHAPTER 2. BELL'S THEOREM

Although we have used some quantum results in the derivation of Bell's in-

equality, one might wonder whether it is also possible to prepare a classical system

of two particles, similar to the gun shooting red and blue bullets, with statistics that

violate Bell's inequality. It can be proved that any system with classical statistics

automatically satisfies Bell's inequality. Such a proof has been given by Ekert in the

context of quantum cryptography based on Bell's theorem [32]. Ekert proposed using

an entangled state of two spin-1/2 particles to send a sequence of random numbers.

This sequence can then be used as a "key" in a public-key cryptography system. The

security of the key is assured by Bell's inequality. Ekert showed that substitution of a

classical pair of particles by an eavesdropper will inevitably give the system "elements

of reality" that satisfy Bell's inequality. We will discuss quantum cryptography in

more detail in chapter 4.
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Chapter 3

Squeezed States of Light

3.1 Quantum Formalism

In the quantum theory of light a formal analogy exists between the oscillation of

a harmonic oscillator and a single mode of the electromagnetic field. A particular

physical structure (i.e. a cavity) always has a natural set of eigenmodes. An arbitrary

electromagnetic disturbance can be described by a sum over these modes or as an

ensemble of harmonic oscillators in the quantum picture. Each oscillator is quantized

by replacing classical amplitudes with Boson operators [32,33]. Hence the classical

plane wave

E(x, t) = Ee - iwt+ikx + E*eiwt - ikx (3.1)

becomes

^ ] = ^ ae-iut+ikx + ate iwt-ik3}E(x, t) r I--(-iwtik .(3.2)
- W +a 
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30 CHAPTER 3. SQUEEZED STATES OF LIGHT

where a and at are Boson annihilation and creation operators. They are defined by

the commutation relations:

[a, at] = 1 (3.3)

[a,a] = [&t,at] =0

The Boson operators are not Hermitian; they cannot be measured experimentally.

More relevant for experiments are the in-phase q and quadrature-phase p components

of the electric field. They are physical observables, described by Hermitian operators:

a+&t
q = - ~~~2 ~(3.4)

P = 2i (3.5)

q and are very similar to position and momentum. Their commutator is given by:

[44'3 = (3.6)

The fact that and P are physical observables corresponding to the in-phase and

quadrature-phase components becomes clear when we write the electric field operator

as:

E(x, t) = h{qCos(kx - wt) + pSin(kx - wt)} (3.7)
E V



3.2. COHERENT STATES

p

q

Figure 3.1: Coherent State

3.2 Coherent States

The closest one can come experimentally to a classical monochromatic plane wave

is with laser light. Ideal laser light is described quantum mechanically by coherent

states [34,35]. Thermal light or black body radiation is also described by statistical

mixtures of coherent states. Coherent states can be thought of as classical waves with

small quantum fluctuations. The quantum fluctuations in a coherent state are phase

independent. They can be visualized by a "noise" circle in phase space (see fig. 3.1).

The coherent states are defined mathematically as eigenstates of the annihilation
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CHAPTER 3. SQUEEZED STATES OF LIGHT

operator [34], i.e.

a I a) = a a) (3.8)

The average value of the electric field operator in a coherent state is:

2hw
(a I E(x, t) I a) = a /--Cos(kx - wt) (3.9)

where, without loss of generality, a was taken to be real. Note that this average yields

the classical electromagnetic wave.

Using the commutation rules 3.3 it is easy to calculate the fluctuations in the

two quadratures of a coherent state:

sq2 = (a jlla) - (a a) 2 =1 (3.10)

16p2 = (aI P 2 a)-(a lPla)2 = - (3.11)

The quantum fluctuations in j and P satisfy the minimum uncertainty product allowed

by their commutator. It is also important to notice that q2 and 6p2 are independent

of the amplitude. The amplitude is related to the average photon number by:

(a t ala ) =1 a 12 (3.12)

Hence, for very large average photon number, the quantum fluctuations will be in-

significant in comparison. In this limit the coherent state approaches a classical wave.

In the other extreme of small average photon number the quantum fluctuations will
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3.3. SQUEEZED STATES 33

dominate. This means that even in the absence of an electric field there will be "vac-

uum" fluctuations. Vacuum fluctuations are also known as virtual photons. They

are responsible for such phenomenon as spontaneous emission and the Van der Waals

force [32]. We will use photons of squeezed vacuum in the next chapter to test Bell's

inequality.

3.3 Squeezed States

Like coherent states, squeezed states are defined as eigenstates of a certain operator

[24], i.e.

(,a + vat) a, v, V) = (a + va*) I a, p, v) (3.13)

a plays the role of an amplitude, and # and v are any two complex numbers satisfying

the condition:

I 12 _-IY 12= 1 (3.14)

The fluctuations in the quadrature components of a squeezed state are calculated by

using equations 3.13, 3.14 and the commutation relations 3.3:

6q2 = 1 1 e_ 12 (3.15)

2 = 12 (3.16)69 = ] (3.16)
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ID

Iq

Figure 3.2: Squeezed State
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3.4. GENERATION OF SQUEEZED STATES

The parameters #, and v determine the shape and orientation of the squeezed ellipse

in figure 3.2. The minimum and maximum axis of the ellipse are along a rotated

coordinate system with angle:

q=Tan 2 I + ]V * +- *) (3.17)

The corresponding minimum and maximum fluctuations are:

5q12
= 1 II 1 IV 112 (3.18)

p 2 = 1 11II+IV112 (3.19)

Note that condition 3.14 ensures that the mimimum uncertainty product 6q'6p' = 1/4

is satisfied. Hence the area of the noise ellipse of a squeezed state is equal to the area

of the noise circle of a coherent state. The average photon number in a squeezed state

is given by:

(a I ata I a) =1 a 12 + I V 12 (3.20)

A squeezed vacuum state is obtained when a = 0. Unlike the vacuum state, squeezed

vacuum has a non zero average photon number.

3.4 Generation of Squeezed States

A squeezed state is generated mathematically by a certain transformation of the wave

function in the Schroedinger picture or equivalently by a transformation of the boson
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CHAPTER 3. SQUEEZED STATES OF LIGHT

operators in the Heisenberg picture [24]. The latter formulation corresponds closely

to the transformation of classical amplitudes in optics and often provides the most ef-

ficient means of calculation. According to the Heisenberg picture, a squeezed state is

obtained when light passes through a system that transforms the Bose operator from

a to t&a + va t with and v satisfying condition 3.14. Since linear systems preserve

coherent states, the squeezing system must be nonlinear. Moreover, the nonlinear

interaction must be phase dependent, i.e. it must exert a different force on the two

quadrature components. The most succesful experiments have been performend us-

ing degenerate parametric amplification [36] and four-wave mixing [37]. Parametric

ampification works by amplifying one quadrature while attenuating the conjugate

component. Hence the fluctuations in one quadrature are suppressed at the expense

of increased fluctuations in the conjugate component. Four-wave mixing can give rise

to an intensity dependent index of refraction. The larger amplitude fluctuations ex-

perience a greater nonlinear phase shift. Thus the noise circle is deformed or squeezed

into an ellipse. In this thesis we will concentrate on degenerate four wave mixing in

optical fiber.

The main reason for using degenerate four wave mixing is that the nonlinear

interaction is not bandwidth limited by phase matching. Hence ultra-short pulses may

be used to enhance the nonlinear effect. The Kerr effect in silica fibers is a convenient

means of realizing degenerate four wave mixing experimentally. Furthermore, a fiber

ring can be used as a Mach-Zehnder interferometer to separate the pump and signal

waves. The pump can then be reused as the local oscillator in homodyne detection.

Figure 3.3 shows a schematic of the nonlinear Mach-Zehnder interferometer squeezer
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[38]. The two input modes a and b are the signal and pump, respectively. The

input beam splitter mixes these two fields into modes c and d, which then propagate

through nonlinear I(err media. Nonlinear interactions in the Kerr media give rise to

squeezing. Interference at the output beam splitter separates the pump g from the

squeezed signal f.

All of the quantum statistics of the squeezed light output are contained in its

field annihilation operator f. Thus, we wish to calculate the output operator f as

a function of the input annihilation operators a and b, by following the evolution of

a and b in the Heisenberg formulation. We use different letters for the annihilation

operators so as to indicate their assignments to different reference planes.

Consider first the effect of the input beam splitter. Since a beam splitter is

linear and loss-free, the operators obey the same transformation as classical excitation

amplitudes. For a 50/50 beam splitter and a particular choice of reference planes, we

have the transformation:

1
c= -(a + i)

1
d = /(ia + b) (3.21)

The corresponding unitary operator

i
4

(a tg+ a bt ) (3.22)

describes the evolution of the state function in the Schroedinger formulation. It
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follows that a beam splitter maintains coherent states, with the eigenvalues obeying

the same transformation relations as the operators.

Now let us see how the operator c is changed as it passes through the nonlinear

medium. The Hamiltonian of the Kerr media is [39]:

1 hl 2w2X(3) t2~2
H = hw(tc+ _) + h X 2 2 (3.23)

where h is Planck's constant, e is the dielectric constant, X(3) is the Kerr susceptibility,

w is the carrier frequency and V is the mode volume. The equation of motion in time

for is obtained in the usual way, which can be transformed into an equation of

motion in space:

-it I tV22X (3) t (3.24)

Here v is the group velocity. Since t: commutes with the Hamiltonian, it is a

constant of motion. Hence we may simply integrate the above equation to get:

c(L) = e'~'c (3.25)

where we took a propagation distance L and r. = W2 X( 3
)L A similar analysis applies

to operator in the second arm of the interferometer. After performing another

(output) beam splitter transformation we obtain the operator f of the squeezed light:

1 {ei (at ibt)(a+i) (a + ib) + ei(-it+bt)( ia+b ) (+ b3.26)
x/2- vf2 - x/2-i
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To see that f does correspond to a squeezing operator we make some approximations.

If we assume that the nonlinearity is weak and the pump b is much larger than the

signal a, then the exponents can be expanded to first order to yield [26]:

= ei ' {(1 + 2 btb) + K2 } (3.27)

We have seen that an intense field (i.e. large average photon number) in a coherent

state can be well approximated by a classical wave. Thus replacing the operator b

with a classical c-number fl, and ignoring constant phase factors, yields:

f = a + vat (3.28)

with = 1 + i I / 12 and = 2 Note that condition 3.14 is satisfied to first order

in nonlinear phase shift · = CK#2. Thus, for small nonlinear phase shift, the output

light in mode f is squeezed. When the nonlinear phase shift is larger than unity, the

squeezed ellipse gets deformed even further into a crescent shape [40]. We will be

particularly interested in squeezed vacuum. If the input mode a is empty, i.e. if only

vacuum fluctuations enter in mode a, then the output signal will be in a squeezed

vacuum state.

3.5 Beating the Shot Noise Limit

One of the most fruitfull applications of squeezed states is the ability to suppress

noise in interferometric measurements below the shot noise limit. In this section we

will analyze a Mach-Zehnder interferometer to illustrate this property of squeezed
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states. Fig. 3.4 shows a schematic of a Mach-Zehnder interferometer with homodyne

detection. A probe beam b passes through both arms of the interferometer. Any

disturbance that causes a phase shift between the two paths can be seen in the

interference fringes of the output beam f. Alternatively, the scheme of fig. 5 uses

homodyne detection to measure the phase shift.

We will assume that the local oscillator g used for homodyne detection can be

approximated as a classical signal. Then the operator corresponding to the difference

current is given by:

i = 2g {e" + e-'ft} (3.29)

where ib is the phase and g is the (classical) amplitude of the local oscillator. Note

that, with proper adjustment of the local oscillator phase b, i can measure either the

in-phase or quadrature components of f.

The output operator f can be written in terms of the inputs to the interferometer

as:

f = e' {2Sin( )- bCos(2) (3.30)

Mode b is the probe beam and mode a is usually empty. Since we will normally be

looking for small phase changes q, f may be expanded as:

f = +=o+ ] =0AO
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f = ib+ -(ia- b)AS (3.31)

Since the pump may approach a classical signal, all the noise will come from

the vacuum fluctuations entering in mode &. To see this, let us calculate the signal

to noise ratio of the difference current 2. We fix the phase of the local oscillator so

that the in-phase component of mode f is measured. The shot noise formula yeilds:

signal (btb) 2 (3.32)
noise -b4 I (3.32)

Now, if input port a is empty, phase independent vacuum fluctuations will enter in

mode with b42 = 1/4. In this case we get the usual shot noise formula. This

was once thought to be the fundamental quantum limit in photodetection. But, if

squeezed vacuum is injected in port a, the fluctuations in the in-phase part of a can

be made arbitrarily small; the shot noise limit can be overcome. Recent experiments

with squeezed states have shown a 5 db noise reduction below the shot noise limit

[41,42]. In experiments utilizing the nonlinearities of optical fiber, a major source

of classical noise that limits squeezing is Guided Acoustic Wave Brillouin Scattering

(GAWBS) [43,44]. One way to limit GAWBS is to use a powerful pump in a short

fiber [28]. If the round trip time through the fiber is less than the GAWBS inverse

bandwidth, GAWBS noise is suppressed. Another possibility is to use the nonlinear

Sangac ring as the reflector in a laser resonator to take advantage of the higher power

inside the resonator. We analyze such a scheme in the next section.
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3.6 Squeezing with a Number State

It may be advantageous to put the squeezer directly into a modelocked laser resonator,

where higher power pulses may be utilized [45,26]. Fig. 3.5 shows a schematic of such

a system. The nonlinear Sagnac ring acts as a reflector for the laser. All the power is

reflected from the ring back into the laser cavity through port a of the 50/50 coupler.

Normally the second port b would just emit vacuum fluctuations. For large enough

average power in the laser, squeezing occurs in the fiber ring. In this case squeezed

vacuum photons are emited from port b.

The analysis of squeezing for this system does not proceed as for the squeezer

of section 3.4. The main difference is that the pump pulse is no longer in a coherent
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state. Since the pump pulse sees the nonlinearity of the fiber ring on every round trip

through the laser cavity, it is transformed into a highly nonclassical state. The noise

circle is deformed into a crescent shape with large phase uncertainty [40].

We will take the number state as our model for squeezing with a pump of

large phase uncertainty [26]. A number state has total phase uncertainty, and as

we shall discover, also presents some interesting quantum features. Fig. 3.6 shows

the complete system for squeezing with a number state and homodyne detection.

An analysis of the noise characteristics for this system will give us an idea of how

squeezing inside a laser cavity will work.

We assume that the pump b has a large photon number n, so that the output

pump g and signal operator f have the approximate form:

= eii'tbb (3.33)

f = e2b (1 + btb)a + at} (3.34)

In section 3.4, where the pump was in a coherent state, we where able to linearize the

operator f by replacing b with its classical c-number average. This simplification also

showed that f was equivalent to a squeezing operator. In the case of a number state

pump, we must retain the nonlinear form of the operator f shown above. A number

state cannot be approximated as a classical wave, even in the limit of large photon

number. This also implies that the output of the squeezer is not ordinary squeezed

vacuum. We shall call it modulated vacuum for reasons that will become clear in what

follows.
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Noise in the difference current of the homodyne detector is obtained from the

matrix elements AN and AN 2 , where:

AN = tf + ft (3.35)

AN2 = +tJ{(1 -iKLtb)a 2 +
u1\11--)at-a b-a 

(1 - btb)at- 2 } (3.36)

Taking averages with input state I F) =1 0)a I n)b yeilds:

(T A TN ) = 0 (3.37)

( I AN2 I) n + -(2n3 - 3n2 ) - r(n2 - n)Sin(2b) -

K/2

I(n - 2n2)Cos(24,) (3.38)

The analogous result for a coherent state pump is:

2 2 fl 3

(I I AN2 j ') = + (2 3 - - Ksi(2)Sin2 2 Cos(20p) (3.39)
4 2

where n is the average photon number. Note that the two results agree to first order in

nonlinear phase shift. A more detailed analysis shows that the noise characteristics

agree to higher orders [27]. It is interesting that the results for squeezing with a

number state are the same as for a coherent state, while the physical mechanism is

rather different. A coherent state pump transforms the noise circle in phase space

into an ellipse, giving rise to ordinary squeezing. The operation of a number state
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pump, on the other hand, may be visualized by assigning to each phase component

its own probability ellipse. This results in a superposition of many probability ellipses

with different orientations of major axes. Hence the amplitude noise of modulated

vacuum is actually greater than unsqueezed vacuum fluctuations. But when the pump

is reused as the local oscillator in homodyne detection, since it is phase correlated

with the modulated vacuum, the minimum noise can be extracted from each ellipse.



Chapter 4

Test of Bell's Inequality With
Squeezed Light

4.1 EPR Effect With Photon Interference

In describing quantum interference Feynman wrote that it is "... a phenomenon

which is impossible, absolutely impossible, to explain in any classical way ... it con-

tains the only mystery." [46] Although Feynman was refering to one-photon interfer-

ence in Young's double slit experiment, his remark is even more relevant to nonlocal

two-photon interference. Two-particle interferometry employs spatially separated,

quantum mechanically entangled states [47]. The interference fringes appear in the

coincidence counting rate for detecting both particles. The EPR experiment studied

in Ch. 2 is an example of two-particle interferometry. Two-photon interference be-

tween parametrically generated photon pairs was experimentally observed by Mandel

and co-workers [48,49]. They observed a nonlocal correlation in the simultaneous

detection of the signal and idler photons. Subsequently, parametrically generated

photon pairs were used in EPR experiments to test Bell's inequality [50-53]. In this
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chapter we will describe a test of Bell's inequality based on nonlocal interference be-

tween photons of squeezed vacuum [29,53]. A schematic of this system is shown in

fig. 4.1.

Squeezed vacuum, labeled by mode f, is split by a 50/50 beam splitter into

modes h1 and 1h2. These modes propagate in opposite directions to homodyne de-

tectors. Mode hil interferes with coherent local oscillator tl at a 50/50 beam splitter

and the two emerging modes l+ and i1_ are detected with photomultipliers. Simi-

larly, mode 1 2 is detected at a second homodyne detector. The difference current of

a homodyne detector reflects the phase information of the incident light (see Ch.3).

Since photons of squeezed vacuum are quantum correlated in phase, we anticipate an

interference effect between the difference currents. This nonlocal interference appears

experimentally in the correlation function:

E(01, 02) = (( J l+ - J-)(J 2+ - J2-)) (4.1)
((J1 + + J1 )(J2+ + J2-))

The brackets indicate a time average over the experimentally measured detector cur-

rents. q0 and 2 are the phases of local oscillators 1 and 2.

The current of a photomultiplier tube is proportional to the electron photoe-

mission rate. The electron emission rate is the same as the photon absorbson rate,

which is proportional to the average photon number of the incident light. Hence the

quantum mechanical version of 4.1 is given by:

ET @ : (tz _, -z-"-)2+ 2 2-2-) |t i)

E(01, 02) = ( I: ( I+] + -] -)(]+~2+ - ]_2-) ') (4.2)
(" I: (+i,+ + h 2-)(h++ + 2 ) 
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Figure 4.1: Measurement of Bell's inequality.
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where :: denotes normal ordering of the operators. Normal ordering follows from the

quantum rules for calculating the transition rate for a joint absorption of photons at

two different detectors [54].

The experimental scheme described above allows a comparison between the

predictions of quantum and hidden variable theory. In particular, nonlocal quantum

interference may give rise to a violation of Bell's inequality. A quadrature phase form

of Bell's inequality can be derived from a hidden variable theory, as was done in Ch.2

for the system of two spin-1/2 particles [50,55]:

- 2 < E( 1, 0 2) - E(q1, 0 21) + E( 1 , 2 ) - E(q1,, 02) < 2 (4.3)

4.2 Conditions for Violation

In this section we will derive the conditions necessary for violation of Bell's inequality

with a squeezed vacuum input in mode f. The calculation is done in Heisenberg's

formulation. Averages are taken with respect to the input state:

I 1) = Cei )bl I e 0')b 2 I I)f I 0) O (4.4)

The local oscillator modes bl and b2 are in coherent states. For simplicity, we let them

have equal amplitudes a but different phases 1 are 2. Since the input beamsplitter

has one empty input port, we must take into account the vacuum fluctuations entering

this port in mode . The input mode f is in a squeezed vacuum state, created in the

nonlinear Mach-Zehnder squeezer of Ch. 3.
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The correlation function E may be simplified by first taking averages with re-

spect to the states of the local oscillators and vacuum mode 9, which yields [29,53]:

E(2 {(itf I 4t] )Sin(01- 2)+ (Is f 2 1 s)Sing(l + 2 - E)}

= -E(01 ) =- a4 + ( ft I ,a2 + ( I ft 22 j )
(4.5)

where (s I f2 I us) = Reic. It is evident that the correlation function E depends on

the statistical properties of the light corresponding to operator f. We found in Ch. 3

how f depends on the signal a and pump b operators of the nonlinear Mach-Zehnder

squeezer:

{ei(at-ib)(a+i ) (a + ib) + ei~(-iat+bt)(ia+b ) (i& + b) (4.6)

Recall that the wave function at the input to the squeezer is I ,)f =I O)a ) /3)b-

Mode a is in a vacuum state and mode b is a coherent state pump. The calculations

of averages like (ftf) are considerably simplified by transformation to a Hilbert space

spanned by eigenstates of operators c and d, defined by:

1
= /(&+ ib)

1
d = v-(ia+b) (4.7)

Now we have a simple expression for f:

f= 2{Pf+i(d} (4.8)

where F = ei rc t c and G = eiKdtd. Averages are now taken with respect to the trans-
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formed state function I s) =1 'i)c I )d. Taking P to be real, we turn next to the

calculation of (, f I ftf ). In terms of operators c and d, we have:

tf= {t - idtdthP + atptd + dtd}

It is clear that

2 =
(at?) = (dtd) = 2

Using the relations

FcI i )cFVI- I )d

vl c if I
V'2-

we obtain

( dtGtF) = -( t Gd) =
i/ 2 i/ i,

( ei
2 

Then using a property of coherent states

(a I 7) = e(- 1a-21 12 +a )

we finally get

(tf]) = 2
2

{1 - e2(co ° K- l ) } 

(4.9)

(4.10)

= i/ i ,iei r. _ /_2)d

1 i/ )C e i.) d

xF2 xF2 V2-

(4.11)

(4.12)

I ei.) (4.13)

(4.14)
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Similarly, we get

2)= 2 e/sei2(ei 2 1-) _ e2(eiK_-)(4.16)

(ft2 2) 4= 3- Cos()e 2(Cos()-1) _12(Cos(2)1) (4.17)
2 4 4.17)

We may now determine under what conditions Bell's inequality is violated.

When the correlation function E is of the form:

E(l 1, 02) = ASin(ql - 2) + BSin(l 1 + 02 - ) (4.18)

violation occurs if and only if A2 + B 2 > 1/2 [53]. Figure 4.2 shows a plot of A2 + B2

as a function of local oscillator photon number and nonlinear phase shift 0 = rCp2.

Violation of Bell's inequality occurs only when the local oscillator photon number

and the nonlinear phase shift are less than unity. The latter result also implies small

average photon number of the squeezed vacuum since it is roughly equal to (D2/4.

4.3 Limit of Small Photon Number

To understand why the limit of small photon number violates Bell's inequality, we ex-

pand the squeezed vacuum state in this limit and follow its evolution. The expansion

will be truncated to first order in , which corresponds to the limit of small photon

number. In this limit, the field operator at the output of the squeezer is given by

f = la + vat, where Y = 1 + i/2 and v = i/2. Since f annihilates the vacuum
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Figure 4.2: Plot of Bell's inequality.
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state, we have:

(l&a + vat) I AS) = 0 (4.19)

Expanding 9) in number states then yields:

(ya + at) E cn I n) = O

{,cn\/ n- 1) + c,,v/n I n + 1) = 0 (4.20)

This equation provides a recursion relation, which can be used to solve for c,. For

non-zero co, only the even terms remain:

C2n = (l) 2n Co (4.21)

The normalization condition is used to solve for co. If we only keep terms up to first

order in A, then the input state in fig. 4.1 is:

I )f I )g = )f I )g 2 12)f 1 0) (4.22)

The state after the input beam splitter is obtained through the operation of the

unitary operator U (see Ch. 3), which yields:

I )BS =1 0)hl I )h - I 1)hl I 1)h - 4 2)l 1 0)h2 + I 0)hl I 2)h2 (4.23)

The first two terms are similar to the state of a twin beam of parametrically generated

light in the limit of small parametric gain, which was shown to give maximum violation
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of Bell's inequality [53]. The off diagonal terms result from the beam splitting process.

The beam splitter adds phase independent "noise" that decreases the quantum phase

correlations in Bell's inequality. This noise is due to the vacuum fluctuations that

enter in the mode g. It can be suppressed by using two squeezed vacuum inputs. In

this case the input state is:

I s)f I s,) = O)f I )g 1 2)f 1 O) - I O)f 1 2)g (4.24)

Operating on this state with the beam splitter transformation U, we now get:

I )BS =1 O)hi I 0)h- - I I1)h, I )hz (4.25)

The correlation function E is easily calculated for this state to be:

E(I, 2)= 4 + 1a2)2 + 1 2 COS( 1 + 02) (4.26)

In the limit -- 0 while a - V//2, E approaches Cos(l + 0 2). This form of E gives

maximum violation of Bell's inequality. A2 + B2 for two squeezed vacuum inputs is

plotted in fig. 4.3 for D = .2 along with the corresponding result for one squeezed

vacuum input (dashed curve). To make a fair comparison, the total average photon

number of the squeezed light must be made the same for both cases. This was done

by setting -+ D/v/ in the results for two squeezed vacuum inputs.
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Figure 4.3: Violation with two squeezed inputs.
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4.4 Applications to Quantum Cryptography

Quantum physics was first introduced into cryptography by the work of Weisner [56]

and Bennett and Brassard [57]. Their idea was based on the fact that quantum

systems are inevitably perturbed by even the slightest measurement. The system

first proposed by Bennett and Brassard (BB84) encodes a random sequence of 's

and O's into single quanta in orthogonal polarization states. This random sequence

serves as the key in public-key cryptography. The security of the key is ensured

by Heisenberg's uncertainty principle. Any measurements on one polarization by an

eavesdropper inevitably randomizes the conjugate component, giving him away. A

system based on EPR correlated spin-1/2 particles was first proposed by Ekert [32],

where Bell's inequality provides the test for eavesdroping. Ekert et. al. [58] also

proposed a more practical system using correlated photon pairs. We will consider a

similar quantum cryptography system based on non-local phase correlations between

squeezed vacuum states of light.

First we review some basic ideas in quantum cryptography. The quantum key

distribution system is most simply described in terms of spin-1/2 particles. The

objective is to provide two users, say Bob and Alice, with a secret key wich they

can use to open cryptograms. The system is very similar to the experiment shown

in fig. 2.1. Two spin-1/2 particles are emitted in a singlet state and propagate

in opposite directions. Particle 1 is sent to Bob, who measures randomly either

the x or y component of spin. Alice makes similar measurements on particle 2.

After recording the results of their measurements on a sequence of particles, Alice

and Bob communicate publicly to determine when they both measured the same
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Figure 4.4: Quantum key distribution.

component of spin. They then discard all measurements where they did not both

measure the same spin component or where either of the detectors failed due to

imperfect quantum efficiency. Since the particles are in a singlet state, and assuming

the quantum system was not disturbed by eavesdropping, the remaining data will

be perfectly anticorrelated. For example, if Bob measures S = -1, then Alice will

measure S! = +1. Thus a random sequence of 's and O's is established (see fig. 4.4).

Any eavesdropping by an adversary will destroy the nonlocal correlations. Bob

and Alice can check for this by subjecting a subset of their data to a quantum statis-

tical test. This test involves comparing the correlations between their measurements

and the predictions of quantum mechanics. One possibility is to use Bell's inequality.

Bob: +x +y -y -y -x
Alice: -x +x +y +y +x

Key: 1 1 1 0
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In the case of spin-1/2 particles it is simpler to just look at the sum of two correlation

functions [59]:

E(x, ) + E(7, y- = (SSx 2) + (SylSy2) (4.27)

According to the quantum rules this sum is equal to -2. It was proved by Bennett,

Brassard and Mermin [59] that any eavesdropping, no matter how sophisticated, will

ruin the quantum correlations.

The EPR optics analog of measuring Sx/Sy of a spin-1/2 particle is to measure

4/p of a photon. The detection is achieved by replacing Stern-Gerlach analyzers

with homodyne detectors as in fig. 4.1. A homodyne detector measures the in-phase

component }, if its local oscillator is in phase with the signal, and the quadrature-

phase component P, if it is r/2 out of phase. The analogy becomes most transparent

when we represent the q/iP operators as matrices in the limit of small photon number.

In this limit, we can work in a subspace spanned by photon number states I 0) and

I 1), defined by vectors:

10) = and 1) = ( (4.28)

The in-phase and quadrature-phase operators are then analogous to the Pauli spin

matrices, viz.

= -ax (4.29)

2 ( 2 (4.30)

2 -i 0 2
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We may also define "spin up" and "spin down" eigenstates. For example, the eigen-

states of q are:

)= ( and I-) = ( ) (4.31)

The ideal quadrature entangled state, analogous to the spin singlet state, would then

be:

I ) = {I +), I -)h- -) h I +)hz} (4.32)

where l1 and 112 refer to the modes of fig. 4.1. In terms of photon number states this

wavefunction is given by:

[ ') = { O)h, | l)h2- 1)hl I )h2} (4.33)

If it were possible to prepare such entangled states of light, then we could set up

our quantum key distribution system just as the one described above, where eq.

4.27 is used to test for eavesdropping. Unfortunately, such states are difficult to

produce in the laboratory. The best we can do with squeezed states is the entangled

wavefunction:

I )B = O)h, I )h2 - I )h, I 1)h2 (4.34)

This wavefunction does not give the perfect correlations required for the quan-

tum statistical test 4.27. But we saw that squeezed vacuum photons do give rise
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to non-local interference effects that violate Bell's inequality. Hence, by analogy to

Ekert's scheme for spin-1/2 particles, we may use Bell's inequality to test for eaves-

dropping. This scheme may be realized experimentally by a simple modification of the

setup in fig. 4.1. The quantum key is encoded into pulses of squeezed vacuum. Bob

and Alice measure both the difference and sum currents of their homodyne detectors.

The sum current gives the string of 's and O's that represent the key. The difference

current is used to test for eavesdropping via Bell's inequality. Bob and Alice vary the

phases of their local oscillators randomly to prevent the eavesdropper from doing a

quantum non-demolition (QND) measurement [60]. A QND measurement can detect

an observable without disturbing its free motion. Of course the conjugate observable

is still altered. Since the eavesdropper does not know which quadrature component

Bob and Alice measure untill after they communicate publicly, he cannot avoid dis-

turbing the quantum statistics of the photons. A general proof that eavesdropping

fails is similar to that done by Ekert for spin-1/2 particles.

There are some issues that must be worked out before the ideal scheme de-

scribed above can be used in practice. The most obvious problem is how to transmit

quantum information over long distances. With present technology, losses limit quan-

tum transmissions to a few kilometers. In addition we cannot create perfect squeezed

states. One would have to consider the situation where the eavesdropper has better

technology. If the eavesdropper can produce 10 db squeezing while we could only

get 5 db, then maybe he can think of a measuring scheme that does not effect Bell's

inequality enough to be detected. These practical issues, along with an experimental

realization of Bell's inequality with squeezed light, are left for future work.



Chapter 5

Conclusions

The hidden variable theory was developed to explain certain "paradoxical" results of

quantum mechanics, most notably the EPR paradox. Ever since the famous debates

between Einstein and Bohr on the foundations of quantum mechanics, scientists have

looked to find new ways to probe into the quantum world. The laser opened up for

exploration the world of quantum optics. Extensive experiments were performed on

photon interference to understand Feynman's "only mystery." Bohr's complementary

principle held up to the test; photons did indeed behave as both waves and particles.

This is no longer a mystery but a fact of life.

The development of ultra-short pulse lasers offered even more prospects in quan-

tum optics. Nonlinearities in optical media could now be used to create highly non-

classical states of light. This made possible investigations into the nature of quantum

measurement. The collapse of the wavefunction has always been a problematic notion

in quantum theory. It leads to paradoxical results when applied to two-particle inter-

ference experiments. The optics experiment discussed in this thesis presents the same

paradox. Photons of squeezed vacuum from a nonlinear Mach-Zehnder interferometer
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exhibit non-local quantum correlations. The unique properties of squeezed states were

reviewed and a new approach for squeezing inside a laser resonator was analyzed. It

was shown that nonlocal quantum correlations between photons of squeezed vacuum

can be measured and compared with both quantum and hidden variable theory using

Bell's inequality. The predictions of quantum mechanics lead to a violation of Bell's

inequality in the limit of small quantum numbers.

Squeezed states were originally developed for special applications in interfer-

ometry, like gravity wave detection. New ideas for applications are continuing to

evolve. We presented a scheme that uses pulses of squeezed vacuum for quantum

cryptography. The non-local phase correlations are used to check for eavesdropping.

A possibility for future work would be an experimental realization of the quantum

cryptography system presented in this thesis. Experiments to improve squeezing

performance beyond the 5 db result will also continue at the MIT ultra-fast optics

group.

Using the self consistent quantum formalism of nonlinear optics, we were able

to do a full analysis of the EPR experiment, including quantization of the measuring

operatus. Quantization of the measuring system may be the only way to get around

the paradoxes resulting from the "collapse of the wavefuntion" postulate. But we will

still have to live with the fact that reality exists only when it is measured.
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