
Dynamic Modeling, Simulation, and Control of a
Series Resonant Converter with Clamped

Capacitor Voltage
by

Terrence Tian-Jian Ho

B.E., Electrical Engineering, The Cooper Union (1992)

Submitted to the Department of Electrical Engineering and
Computer Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

January 1994

© Terrence Tian-Jian Ho, MCMXCIV. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis

document in whole or in part, and to grant others the right to do so.

Author .......
Department of Electrical Engineering and Computer Science

January 14, 1994

Certified by................ ..........................
George C. Verghese

Professor of Electrical Engineering

/\- n f\. Thesis Supervisor

Accepted by .......
Frederic Morgenthaler

Chairman, Departmental Committee on Graduate Students

i

I

OA.

In

_..Cl p
% M .~unrJ~

-I/ :1



Dynamic Modeling, Simulation, and Control of a Series

Resonant Converter with Clamped Capacitor Voltage

by

Terrence Tian-Jian Ho

Submitted to the Department of Electrical Engineering and Computer Science
on January 14, 1994, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering

Abstract
A modified series resonant converter with clamped tank capacitor voltage exhibits
complex dynamic characteristics due to the clamping diodes. This thesis aims to
understand the dynamic behavior of the converter in a three-dimensional state-space.
Geometric features of the state trajectories are analyzed and sampled-data models are
developed. Based on the small-signal model around nominal operation, a feedback
controller is designed. Nonlinear control rules are established to deal with large
deviations from the nominal. The study is supported by simulation results obtained
using a specially constructed simulator.
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Chapter 1

Introduction

1.1 Background

There are many variations in the design of resonant converters, but most designs

share the same operating principles. The switches in the resonant converter generate

a square wave (+E and -E) or a quasi-square wave (+E, 0, and -E) from a dc

voltage source (E). This voltage waveform is applied across a resonant LC circuit

tuned to approximately the switching frequency to filter out the unwanted harmonics.

Output power may be controlled by adjusting the switching frequency, since the gain

drops off as the switching frequency moves away from the resonant frequency. If a

quasi-square wave is used as the input to the LC circuit, power can also be controlled

by adjusting the duty ratio of the quasi-square wave. One common application of

resonant converters is in high-frequency dc/dc power supplies. The ac current through

the LC circuit is rectified and low-pass filtered to produce dc. An isolation transformer

may precede the rectification.

One advantage of resonant converters is lower switching losses at high switching

frequency as compared to other types of dc/dc converters, since the switching can be

done when the current or the voltage is nearly zero. The higher operating frequency

reduces the size of energy storage components in the power converter and thus the

size of the converter itself. The disadvantage, on the other hand, is that the on-state

currents and off-state voltages are higher in the switching devices.
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A related disadvantage of the resonant converter is the high peak capacitor voltage

in series resonant converters or the high peak inductor current in parallel resonant

converters. In the series case, with increasing LC circuit filter selectivity as measured

by the quality factor, Q, the peak capacitor voltage can be Q times the source voltage.

A similar situation exists for the inductor current in the parallel case.

To combat this undesirable feature, the series resonant converter (SRC) under

investigation in this project has four clamping diodes placed around the resonant

tank capacitor to ensure that the voltage across the resonant tank capacitor can

never exceed the input voltage. The inductor and the primary side transformer are

split into two sections. This converter was developed at Raytheon by Jacobson and

DiPerna, [2]. The introduction of the clamping diodes was intended to improve the

performance of the converter under heavy load conditions. However, it resulted in

a large variety of possible operating modes, some of which may not be desirable in

normal operation of the converter. On the other hand, it also presented us with the

challenge of understanding the complex dynamics of the SRC and thereby developing

better feedback control.

Earlier numerical simulations of the steady-state behavior of the SRC based on

circuit models were carried out by Raytheon [2] and by Kato and Verghese [4, 5].

They had demonstrated the complexity of the boundaries between operating modes

of the circuit. Simulations based on state-space models and aimed at analyzing the

dynamic behavior of the SRC were done by Osawa in his Master's thesis [7]. His

simulation results in general agreed with what Raytheon and Kato had done, but

a few discrepancies in the region of discontinuous conduction mode, for example,

remained. The behavior of the state-space trajectories was analyzed. It was shown

that only four of the nine diode conduction configurations, or topological modes, need

to be analyzed. The others can be derived from these four because of symmetries in

the state-space models. Of the nine possible topological modes, one was analyzed in

detail in [7].

14



1.2 Objectives

The chief goal of this thesis is to obtain a more complete understanding of the dynamic

and steady-state behavior of the SRC in the face of the added complexity of operating

modes due to the clamping diodes. The analysis of the state-space trajectories is to

be aided with a computer simulation program, specially tailored for this circuit in

order to achieve a high degree of accuracy, speed, and flexibility.

The properties of the SRC around the nominal operating point are to be examined

through derivation and analysis of sampled-data models. A feedback controller will

be designed utilizing classical control methods. The goal here is to deliver constant

output power to the load and to maintain steady output voltage in the presence of slow

fluctuations in supply voltage, or other such disturbances, and modeling uncertainties.

1.3 Thesis Organization

We will start with a brief overview of resonant converter circuits and an introduction

to the basic operation of the series resonant converter in Chapter 2. We will also

discuss the justification for some simplifications in the circuit model of our SRC.

In Chapter 3, the different topological modes of the SRC, their boundary con-

ditions, and their state-space equations are stated. Also shown are some symmetry

properties that may simplify circuit analysis.

In Chapter 4, the trajectories are analyzed through their velocity fields, which

provide some simple but limited understanding, especially when the motion is confined

to a plane. The velocity fields are less helpful for more complicated motions, due to

difficulty in visualization.

Trajectory geometry is further analyzed in Chapter 5. Because of the simple

structure of the state-space equations, closed-form equations of the trajectories can

be easily derived. Descriptions of the trajectories in the various modes are presented.

Steady-state operating characteristics are described in Chapter 6. The selection of

a nominal operating point focuses the small-signal analysis to one specific condition.

15



Analytical models - large-signal and small-signal sampled-data models in partic-

ular - are derived and analyzed in Chapter 7. The results are obtained with the aid

of the symbolic computation capabilities of Maple, and verified by simulation.

A controller design is presented in Chapter 8. Simulation results of the closed-loop

system under various operating conditions are examined.

Chapter 9 gives a description of the structure and the design of the simulation

program, which is written in Matlab. Key features and a guide to the simulation

programs are outlined.

16



Chapter 2

SRC Circuit Operations and

Simplifications

2.1 A Brief Overview of Series Resonant Circuits

It is worthwhile to take a look at a simple series resonant converter (SRC) first, to

have some basic idea of how it works. A more complete and detailed treatment on

this topic can be found in Chapter 9 of [3].

Figure 2-1(a) shows the basic topology of the series resonant converter. The

admittance of the series RLC circuit seen by the source is

1 sC 1 2as

(s + R) s2LC + sRC + 1 R(s2 +2as + )

where wo = /1/C is the resonant frequency and 2a = R/L is the width of the

half-power or 3 dB points. The quality factor, Q = wo/2a, is a normalized measure of

the filter's selectivity. The higher the value of Q, the sharper the frequency response,

IY(jw)l. The magnitude of the frequency response of a sample Y(jw) with L = 2H,

C = 0.2ptF, and R = 20, is shown in Figure 2-1(b). The quality factor for this set of

parameters is

Q= C-' R = 1.58 (2.2)

17
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104 105 106 107 108

(b)

Figure 2-1: A simple series resonant circuit: (a) basic topology, and (b) magnitude
of the admittance Y(jw) with L = 2H, C = 0.2.uF, and R = 2.
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At resonance, s = jwo, the admittance Y(jw) is 1/R. The load voltage across the

resistor is equal to the source voltage. The capacitor voltage, however, is Q times the

source at the resonant frequency. The transfer function from va to vc is

Vc(s) _ 1 1 -W2
-Y(s (2.3)Va(s) sC s2LC + s RC + 1 (2 + 2as + w)(2.3)

At resonance, where w = wo

Vc | ao Q (2.4)
Va 2a

Even for a modest Q, the peak capacitor voltage, or the peak inductor current in

the parallel resonant converter case, can be excessively high. This is one major

disadvantage of resonant converters. The series resonant converter under study in

this thesis uses diodes to clamp the capacitor so that the peak capacitor voltage is

limited to within + the source voltage. This, however, makes the dynamic behavior

of the circuit more complicated, as we will see in later chapters.

When the input voltage is a square wave with an operating frequency close to w0,

and if Q is relatively large, the filtering of the harmonics by the LC circuit is effective.

Since the magnitude of Y(jw) drops as we move away from the resonant frequency,

output power can be controlled by adjusting the switching frequency. This technique

presents two disadvantages. How far the switching frequency can be varied is limited

by switch limitations or the presence of the third harmonic. If the Q of the circuit

is not very high, the range of control is limited since a relatively large change in the

switching frequency is necessary to achieve a relatively small change in output power.

An alternative approach to frequency modulation for output power control is

phase modulation. A quasi-square wave, instead of a square wave, constitutes the

source across the resonant circuit. This can be achieved by placing the RLC circuit

inside a full bridge, as shown in Figure 2-2. The SRC analyzed in this thesis is a

variation of this bridge topology, as we shall see later. Power control is achieved

by varying the duration (2 a) for which the input voltage is 'clamped' at zero volts,

since the the magnitude of the fundamental of the quasi-square wave is 4E cos a. The

corresponding 'duty ratio' of the applied voltage is /r = 1 - (2a/7r). One added

19
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Figure 2-2: Full bridge SRC (from [3]).

advantage of phase modulation control, as suggested in [10], is that it allows the

design of filters and magnetic components to be optimized at a specific frequency,

which improves the efficiency of these components.

2.2 Modeling Simplifications of the SRC with

Clamped Capacitor Voltage

In conventional dc/dc series resonant converters, the output ac current is rectified

and filtered. An isolation transformer is often used to couple the load with the LC

circuit. The modified SRC designed by Raytheon differs from the conventional SRC

in two ways. One is the clamping diodes around the tank capacitor, and the other is

20
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I

D5 io

Figure 2-3: Schematic diagram of the SRC with clamped tank capacitor voltage,
with C = 0.21 F, L1 = L2 = 1lH, RL = 0.0181Q2, CL = 10, 0001 LF, E = 200 to 350V,
n = 8, and f, = 275kHz.

the splitting of the inductor. Figure 2-3 shows the schematic diagram of the modified

circuit with its nominal component values. The diodes and switches are assumed ideal

throughout our development. If S1, S2 and S3 , S4 are switched in the complementary

manner shown in Figure 2-4, we may represent the voltage applied to the resonant

circuit via voltage sources el and e2, which are both square waves (0, +E) of the same

frequency, but with a phase difference. This is shown in Figure 2-5. The voltage across

the resonant circuit is el - e2.

For state-space descriptions, it is natural to take capacitor voltages and inductor

currents as state variables. The conventional SRC can be modeled with two state

variables as there is only one capacitor and one inductor. Its state-space trajectory can

be easily represented in 2-D. The circuit in Figure 2-3, however, will then be a fourth-

order system. This poses a problem for graphical representation and visualization.

Some reasonable approximations can be made, however, so as to reduce the order of

the system. The output capacitor CL in our case is 10, 000F, which is quite large.

The output filtering is therefore highly effective, and the voltage across the load does

not fluctuate much during typical operating conditions, so we may treat the load as a

constant voltage source, as shown in Figure 2-5. Given that a constant output power

21
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S 1

S2

S3

S4

I I I

-I
e 2 I I

E-

T/2 -

Figure 2-4: Waveforms of the switches and equivalent voltage sources.

of 4kW is to be maintained, the equivalent voltage source, VL, is therefore roughly

8.5 volts. With this approximation, the circuit in Figure 2-5 is third-order.

We will model the output stage of the converter as a constant voltage source in

most of our analysis of the converter. In the actual SRC circuit built by Raytheon, the

output current is hard to measure because of physical constraints, so for the feedback

controller, only the output voltage can be measured. Obviously, the constant voltage

approximation is then no longer adequate. We will at that stage model the output

either as a load resistor in parallel with the capacitor, as in Figure 2-3, or as a constant

current source in parallel with the load capacitor.

The supply voltage, E, is not constant. It droops slowly, and its rate of change is

much lower than that of the state variables. This slow variation in supply voltage will

be treated as disturbance in the control design. In the analysis of converter dynamics,
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D5

V
-L

D6

Figure 2-5: Simplified circuit diagram.

E is assumed to be constant.

The real circuit components also have parasitic capacitances and resistances, which

pose various problems, particularly in ensuring well-behaved switching. We will not

include any of these parasities in our circuit model. Their omission does not have a

large impact on dynamic modeling for purposes of controller design.

We then arrive at the simplified circuit model in Figure 2-5 for the series resonant

converter with clamped capacitor voltage. This is the model that we will use in

analysis and simulation. Again, the output stage has to be modeled a little differently

in control design.
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Chapter 3

Topological Modes and

State-Space Models

3.1 Topological Modes

The circuit shown in Figure 2-5 is piecewise LTI: we can write linear, time-invariant

state-space equations for each combination of the diode conduction state configura-

tions, i.e. for each topological mode. The natural state variables are il(t), i2(t), and

vC(t). For the six diodes in the circuit, there can be no more than 26 = 64 different

combinations of conduction states, but some combinations are not possible. We will

consider the clamping diodes on the primary side of the transformer and the output

rectifying diodes on the secondary side separately in order to keep the classification

more manageable. For the clamping diodes, there are a total of nine topological

modes. They are

24

MO all off

M1 D on M5 Dl on and D4 on

M2 D2 on M6 D2 on and D3 on

M3 D3 on M7 D1 on and D3 on

M4 D4 on M8 D2 on and D4 on



The output current is a transformed version of il(t) + i2(t), rectified by the two

secondary-side diodes. The two diodes also determine the sign of vp(t) when in con-

tinuous conduction. Discontinuous conduction occurs when both output diodes are

off and the output current is zero. The three topological modes associated with the

output diodes are

3.2 Boundary Conditions and Their Representa-

tion in 3-D State-Space

Diode currents and voltages determine the conduction states of the diodes, which in

turn determine the topological modes of the SRC. Diode current is positive and diode

voltage is zero when the diode is on, and diode current is zero and diode voltage is

negative when it is off. However, it can be shown [7] that the conditions on diode

currents and voltages that determine the topological modes may be rewritten in terms

of conditions on the three state variables, il(t), i2(t), vc(t), and the input switching

voltages, el(t) and e2 (t). Since the values of the state variables and input voltages

are readily available in simulation, this simplifies the determination of topological

modes in that diode currents and voltages need not be calculated. The boundary

conditions are listed in Table 3.1. Detailed derivations of these boundary conditions

are presented in Chapter 10 of [7].

A three-dimensional representation of the topological mode conditions in the state-

space is shown in Figure 3-1. The topological modes that occupy planes ('plane

modes') and those that occupy space region ('volume modes') are drawn separately

for clarity. As can be seen from Table 3.1, conditions for M1 through M8, and for S1

and S2 involve only the state variables. Mode MO occupies the i = i2 plane with the

additional condition el $ e2. The reason for this will be explained in Chapter 4, when

we discuss the trajectory fields in MO. S3 also has an additional contraint involving
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Topological Mode Boundary Conditions
il = i2

MO -E < vc < E
el 5 e2

M1 il > i2
O< vc E

M2 il < i2
-E < vc O

M3 il > i2
-E < vc < O

M4 il < i2
O < vc < E

M5 il > O,i2 > O
vc = E

M6 il < O, i2 < O
vc = -E

M7 il > 0, i 2 < 0
VC = 0

M8 il < O,i2 > 0
VC = 0

S1 il + i2 > 0
S2 il + i2 < 0
S3 il + i2 = 

el - e2 - 2nVL < vc < el - e2 + 2nVL

Table 3.1: Boundary conditions for the topological modes.
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the input voltages and the load voltage. The il +i 2 = 0 plane, as shown in Figure 3-1,

is only a possible region for S3. The actual S3 mode may only lie in a part of that

plane.

All the topological modes now hold a one-to-one correspondence between their

three-dimensional representation in the state-space and their boundary conditions.

Therefore, given a point in the state-space, the corresponding topological mode can

be determined immediately from Figure 3-1. (At the boundaries between two modes,

the converter can be considered to be in either or both modes.) The conditions

specified in Table 3.1 are conditions for sustained operation in each mode, so the

trajectory will remain within the particular mode until it reaches the edge and enters

a different mode. A change in topological mode as a result of a change in the input

voltages occurs only with MO and S3, since only their boundary conditions involve el

and e2. The input voltages do influence the directions of the trajectories in all cases,

though.

3.3 State-Space Equations

For each of the topological modes of the SRC, the state-space equations can be written

in the form

*(t) = Ajx(t) + Bju(t) (3.1)

where x(t) = [il(t) i2 (t) vc(t)]T, Bju(t) is a vector and is a function of ei(t), e2(t),

and vp(t), and j denotes the topological mode. Detailed derivations of these equations

are shown in [7]. They are listed in Table 3.2 for reference.

3.4 Symmetry Among Topological Modes

The symmetry in the structure of the SRC suggests possible symmetry in its tra-

jectories in the state-space. The similarities among the various state-space matrices

listed in Table 3.2 are also an indication. Three types of symmetry were found by

Osawa [7]: symmetry about the origin, about the MO plane, and about the line
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Continuous Conduction (S1 or S2) Discontinuous Conduction (S3)

vp = nVLsign(il + i2) vp = (el - e2 - vc)/2

O O el -e -2vp 0 0 0 0T2~L 2L

Ao = o - o Bou= C -,, Ao 0O ,Bou = O

c 0 0 O - 0 0 °-
C 

O 

0

e -E- 0 v,. +e2-2E
L 2L 2L

A LBjU = -e2+E-vD A- O O 1 ,Blu -e-2+2E
____ 0L,BlU L 2L , 2L

O O O 0
C C

A2 = [O O -_ , _ = _ A2 = ° ° 2B2U = -00 0 el-VP O O e 2L 1°2L 2LA Bu = B -e2-V A2 B3u - 2 -2E 
0 Uoo L1 [ ' L ] 2L ' 2L1[ O r ° 1E-v, 1 0 =l- 2 - 0A5 = O O ,B5 u= -2-V e0

I 0 0 0

A6 0 0 B3U -E-vp -el el 2EL , 2L

00 0 0 0
ICLo O O] L 0 j I 2L O V L
| *o o _ 1 _L |_ _ ° ° °_ 1 cL

A- el -v 0 el +e2
L o 2L 2L ]

A4 O0 O Bu = -2-p A = 0 B4u = -e2L 2L 2L

l- 0 0 0
C C 0

il = i2 = 0
00 0 el -E-vp v = E

As ,Bsu - -e2-v el = E
0 0 0 I I 0 e:=0

LoO 0LO ' lO
Table0~~~~~~~~li = 0 eS

0 0 0 e I -,~P ,lue:-
L 0c 0E 0 2

A7 = 0 B Bu -e2+E-o A 0 0 0 BpU= - el +E
L 2L

L 2L

A= 00 0 ,Bsu= -':-P As= 0 0 0 Bsu = -ei-

L0 0L 0 0 0 0 0 

Table 3.2: Matrices for state-space representation of the SRC.
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il + i2 = O, vc = O. Two trajectories (ila(t), i2a(t), vca(t)) and (ilb(t), i2b(t), vcb(t))

are symmetric about the origin if

(ilb, i2b, VCb) = (-ila, -i2a, -VCa) (3.2)

dilb di2b dvcb _

dt ' dt ' dt 

for all t. The trajectories are symmetric

dil. di2a dvca\
dt ' dt ' dt

about the MO plane if

(ilb, i2b, VCb) = (i2a, ila, VCa)

and ( dilb di2b dCb di2a dila dc
dt ' dt ' t d t ' dt ' dt

They are symmetric with respect to the line il + i2 = 0, vc = 0 if

(3.3)

(3.4)

(3.5)

(3.6)(ilb, i2b, VCb) = (-i2a,-ila,-VCa)

and
dilb di2b db di2a dila dvca (37)
dt ' dt ' dt dt ' dt ' dt

Table 3.3 lists the symmetric regions among different topological modes, with their

corresponding combinations of input voltages. The proofs are relatively simple and

the one for the M1, M2 pair is illustrated below. The others are stated here without

proof. Refer to [7] for more detail.

At a point in Ml, xl,

*1 = Alxl + Blu (3.8)

At the corresponding point in M2, x2 = -x1,

i = -A2X1 + B2u (3.9)
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Mode with (ei,e 2) w.r.t Mode with (el,e 2)
(0, 0) (E, E)

(M, E) (E, O)
(E, ) (0, E)
(E,E) ___ (0,0)
(O, 0) (E, E)

M4 (0,E) origin M3 (E,0)
(E, ) (O, E)
(E,E) ___ (0,0)
(0, 0) (E, E)

M6 (0, E) origin M5 (E, 0)
M6 (E,0) origin M5 (0,E)(E, ) (O, E)

(E,E) _ _ (0, 0)

(O, 0) (E, E)

M8 (0,E) origin M7 (E )
(E, 0) (0, E)
(E,E) ___ (0, 0)
(0, 0) (E, E)

M4 (0, E) MO (E,0)
(E, 0) plane (0, E)
(E, E) (0, 0)
(0,0) (E,E)

M3 (0, E) MO (E, 0)
(E,0) plane (0,E)
(E,E) __ _ _(0,0)
(0,0) line (0,0)

M3 (0, E) (E,o0)
(E,0) 1 +i 2 (0, E)
(E,E) V=0 (E,E)
(0,0) line (0,0)

M4 (0, E) (E,0)
(E,0) = (0i, E)
(E,E) (E,E)

Table 3.3: Symmetric regions among topological modes.
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Mode with (el,e 2) w.r.t Mode with (el, e2)
MO (0, E) origin MO (E, 0)

(O,E) (E,O)
M5 (0, 0) il = i2 M5 (0, 0)

(E,E) (E,E)
(O,E) (E,O)

M6 (0, 0) il = i M6 (0, 0)

(E,E) (E,E)
(O,E) (E,O)

M7 (0, 0) il + i2 = 0 M7 (0, 0)

(E,E) (E,E)
(0, E) (E, 0)

M7 (0, 0) il + i2 = 0 M7 (0, 0)

(E,E) _ (E,E)

Table 3.4: Symmetric regions within topological modes.

For the two points to be symmetric with respect to the origin,

= *1 -/c2 (3.10)

Since A1 is equal to A2 , this means that Blu must be equal to -B 2u. Note that

Blu =

el -E-v I
L

-e +E-vr
L

0
x1

el -vp
L

-e 2 -vP
L

X2

(3.11)

Since x2 = -xl and v = nVLsign(il + i2), it follows that vplx, = - vplx2. The

combinations of el and e2 at xl and x2 that will satisfy (3.11) are

el = 0, e = 0 at xl and el = E, e2 = E at x2

el = 0, e2 = E at xl and el = E, e2 = 0 at x2

el = E, e2 = 0 at xl and el = 0, e2 = E at x2

el = E, e2 = E at x1 and el = 0, e2 = 0 at x2
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Symmetry properties also exist within a topological mode itself. Again, without

proof, a list of the symmetric regions is shown in Table 3.4. This type of symmetry

is most evident in the velocity fields shown in Chapter 4.

These symmetry properties effectively reduce the analysis of the state-space trajec-

tories to only four modes: MO, M1, M5, and M7. The trajectories in other modes can

be derived from them. The symmetry of the circuit suggests that when the switching

is also done symmetrically, the steady-state limit cycle will have two half-cycles that

are symmetric with respect to the origin. This will be confirmed in Chapter 6.
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Chapter 4

Velocity Fields of State-Space

Trajectories

The velocity vector of the state trajectory at any point in the state-space, for some

combination of input voltages and load voltage, can be found directly from the state-

space equations in Table 3.2. A graphical representation can be obtained by plotting

out the trajectories for a short period of time from a number of different state-space

locations. The resulting diagrams, which will be called the trajectory velocity fields,

give a clear picture as to where and how fast the trajctories will move at various

points in the state-space. The plots shown in this chapter are generated using a value

of E = 200V and VL = 8.5V for 0.05lisec.

4.1 Topological Mode MO

Topological mode MO was analyzed in some detail in [7]. None of the clamping diodes

is conducting in this mode, so the two inductor currents, i and i2, must be equal.

To stay in MO, ve must satisfy

-(el + e 2) < C < 2E-(el + e 2)

-2E + (el + e2) < vc < (el + e2) (4.1)
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When el = e2, v = 0 is the only value that can satisfy both conditions. However,

with a nonzero inductor current, vc cannot be maintained at zero and the above

conditions are immediately violated. The trajectory will then leave mode MO. The

combination of vc = 0, i = 0, and i2 = 0 is a trivial solution. This situation is illus-

trated in Figure 4-11 where i and i2 are plotted against vc for the four combinations

of input voltages. The trajectories in (c) and (d) for the case of el = e2 start on the

il = i2 plane, but i vs. v and i2 vs. vc do not coincide as time goes on, showing

a difference in i and i2. The trajectories obviously do not stay on the i = i2 plane

except for the starting point. Thus, to sustain operation in MO, the input voltages

must be different. MO is, in fact, the only M mode in which a condition involving the

input voltages el and e2 is required.

Given that the two input voltages are not the same, topological mode MO repre-

sents the i = i2 plane in state-space with vc limited to between +E and -E because

of the clamping diodes. Since the two inductor currents, i and i2, are equal, the

order of the circuit is reduced to two, and a plot of either i vs. vc or i2 vs. VC is

adequate for analysis of the trajectories. Both i vs. vc and i2 vs. vc are plotted

in Figures 4-1(a) and (b), but because the two overlap each other, only one graph is

visible. The velocities of the trajectories depend on circuit parameters and the initial

locations. It is a simple matter to derive them from the state-space equations listed

in Table 3.2.

From Figures 4-1(a) and (b), some general properties of the trajectory in this mode

can be seen. When the inductor current is positive, it charges up the capacitor, and

vc increases. Negative current reduces the capacitor voltage. If the initial current

is large enough, the capacitor voltage will eventually reach +E or -E, at which

time the SRC enters M5 or M6, respectively. Figures 4-1(a) and (b) are symmetric

with respect to the origin, a property described also in [7]. The mode numbers with

parentheses, shown in Figure 4-1 and the velocity fields on the next few pages, are

the topological modes the trajectories can move into once they reach the boundaries.

One condition for discontinuous conduction, S3, is i + i2 = 0. On the MO plane,

1Simulated with simO.m, see Appendix A.
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(b) Trajectories in MO for el=O, e2=E
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Figure 4-1: Velocity fields in mode MO for (a) e = E and e2 = O, (b) e = 0 and
e = E, (c) e = 0 and e2 = 0, (d) e = E and e2 = E.
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S3 can occur only on the vc axis, where il = i2 = 0. The additional condition on

vc says that the region for S3 is also limited to E - 2nVL < vc < E for el = E and

e2 = 0, and -E < v < -E + 2nVL for el = 0 and e2 = E. With the state-space

matrices Ao and Bou in Table 3.2, it can be shown that the derivatives of all state

variables in S3 are zero. Therefore, once the trajectory reaches S3, it will stop moving

until input conditions change. This effect is shown on the top part of the vc axis in

Figure 4-1(a) and on the bottom part in Figure 4-1(b). Osawa referred to this as the

'wall' on the vc axis, where the trajectory cannot move from one side to the other [7].

On the remaining part of the vc axis where S3 cannot be sustained, the trajectory

simply passes through. Osawa called this the 'window.'

4.2 Topological Modes M5 and M6

When the capacitor voltage attempts to increase beyond E, diodes D1 and D4 turn

on so that vc is clamped to E. The circuit operation in this mode M5 is relatively

simple. As the inductor currents must be positive, the circuit is guaranteed to be

in continuous conduction mode S1. The load voltage referred to the primary side,

vp, is positive, so the voltages across the two inductors are negative for all of the

four combinations of input voltages. For any particular set of input voltages, the

inductor voltages are constant. As a result, i and i2 decrease linearly at a constant

rate, independent of the values of il or i2, until one or both of them drop to zero.

Depending on which current drops to zero first, D1 or/and D4 turn off and the SRC

enters M4, M1, or MO. The rate of change in the inductor current depends only on

the input voltage combination and not on the location of the trajectory, as can be

seen in Figure 4-22.

Topological mode M6 is the dual of M5. The two are symmetric with respect to

the origin. Plots of trajectories in M6 will not be repeated here.

2 Simulated with sim5.m, see Appendix A.
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(a) Trajectories in M5 for el =E, e2=060 , 
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(b) Trajectories in M5 for el=0, e2=E
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(c) Trajectories in M5 for el=0, e2=0
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Figure 4-2: Velocity fields in mode M5 for (a) e = E and e2 = 0, (b) e = O0 and
e2 = E, (c) e = 0 and e2 = 0, (d) e = E and e2 = E.

38

cI



4.3 Topological Modes M7 and M8

In topological mode M7, the two upper diodes D1 and D3 are on, so the capacitor

voltage is zero. M7 is entered from either M1 or M3. Transition between M1 and M3

without entering M7 occurs when the two inductor currents are in the same direction.

Note that vc changes sign during the transition, but cannot stay at zero. Only when

i1 is positive and i2 is negative do both D1 and D3 turn on. The voltage at both ends

of the tank capacitor is +E now.

Once the combination of input voltages and the sign of vp are known, the voltages

across the inductors are constant. The trajectories should then move at a constant

rate, independent of the magnitude of the inductor currents. The S3 plane divides

the M7 plane into two regions, S1 and S2. Trajectories in S1 and S2 are symmetric

with respect to the line il + i2 = 0 for input voltage combinations el = 0, e2 = 0

and el = E, e2 = E. Trajectories for el = E, e2 = 0 in Figure 4-33 (a) and those for

el = 0, e2 = E in Figure 4-3(b) are also symmetric. For the values used in simulating

Figure 4-3, E - 2nVL > O. The voltage condition for sustainable S3 operation is not

satisfied on the M7 plane for el = E, e2 = 0 and el = 0, e2 = E, so S3 does not exist

at; all in these two cases. One the other hand, for el = 0, e2 = 0 and el = E, e2 = E,

the voltage condition for S3 is satisfied, and S3 is the i + i2 = 0, vc = 0 line on the

M7 plane. As can be seen in Figures 4-3(c) and (d), the trajectories tend towards S3.

Once they reach S3, depending on the input voltages, they either move towards the

origin or stop moving altogether.

Topological mode M8 is the dual of M7. The two are symmetric with respect to

the origin.

4.4 Topological Modes M1, M2, M3, and M4

The velocity vectors in volume modes can be derived from the state-space equations

as before. Unlike where the trajectories travel on planes, in M1, M2, M3, and M4,

3 Simulated with sim7.m, see Appendix A.
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Figure 4-3: Velocity fields in mode M7 for (a) el = E and e2 = 0, (b) el = 0 and
e2 = E, (c) el = 0 and e2 = 0, (d) el = E and e2 = E.
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they move through space. This makes the visualization of the trajectory fields difficult

even if 3-D imaging is used. Not only is it difficult to visualize a bunch of short curves

in space from their projections, it is equally difficult to see them in a 3-D plot from

any one perspective, due to the lack of depth. Fortunately, the vc component of the

trajectory velocity vector in modes M1 to M4 is either -d = il or v = i2 (Seedt C dt C

Table 3.2). Therefore, not much information is lost by projecting the trajectory field

onto the i vs. i2 plane at various levels of vc.

In M1, the vc component of the trajectory vector is directly proportional to i2. In

Figures 4-44 and 4-5, projections of the trajectories starting at four different values

of vc are plotted. For positive i2, the trajectory comes out of the paper towards the

reader in the direction of the vc axis, and for negative i2, it goes into the paper. To

indicate the direction of the vc component, an o is marked at the starting location

in the former case, and an x is marked in the latter case. Moving from one value of

vc to the next, we can see the gradual changes in the i and i2 components of the

velocity vectors.

The condition on vc for sustaining S3, stated in Table 3.1, dictates what part of

the i + i2 = 0 plane belongs to S3. For the simulations done here, E - 2nVL > 0. S3

is then confined to a band near v = 0, or v = E, or vc = -E, depending on the

input voltages. In M1, where vc is positive, when el is equal to e2, S3 occurs in the

lower range of vc around 0 from -2nVL to 2nVL. When el = E, e2 = 0, S3 occurs in

the upper range of vc near E from E - 2nVL to E. For el = 0, e2 = E, S3 does not

exist at all since in this case vc would have to be negative. This is why sometimes in

Figures 4-4 and 4-5, S3 is not labeled because it does not exist.

The trajectories in M2, M3, and M4 are related to those in M1 through the

symmetry properties stated in Table 3.3. The analysis is similar and thus will not be

repeated here.

4 Figure 4-4 and Figure 4-5 are simulated with siml.m. See Appendix A.
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Figure 4-4: Velocity fields in mode M1 for (a) el = E and e2 = 0, (b) el = 0 and
e = E at various levels of vc and with E = 200V.
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Figure 4-5: Velocity fields in mode M1 for (a) el = 0 and e2 = 0, (b) el = E and
e2 = E at various levels of vc and with E = 200V.
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Chapter 5

Trajectory Geometry

The trajectory velocity fields give a good picture of the speed and direction of the

trajectories at different points in the state-space. However, they are not adequate for

topological modes M1 to M4, which occupy space regions, because of difficulty with

3-D representation and visualization.

The trajectories of the conventional series resonant converter in 2-D consist of

segments of circular arcs when plotted against normalized axes. Even with the ad-

ditional inductor current in our SRC, we may guess that the 3-D trajectories in our

case will be arcs on spheres or cylinders when plotted against normalized axes. The

trajectory velocity fields in the last chapter have already given some indication of

this.

5.1 Topological Modes M1, M2, M3, and M4

In Table 3.2, we listed the state-space equations for each of the topological modes.

The differential equations may be solved to obtain closed-form expressions for the

trajectories. The relatively sparse state-space matrices suggest relatively simple solu-

tions. Trajectory behaviors in Modes M1, M2, M3, and M4 are similar, as indicated

by the symmetry properties. A more detailed analysis of mode M1 in continuous

conduction is presented here first. Trajectory behavior in the other modes and in dis-

continuous conduction mode S3 can be derived in the same manner, and are briefly
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described.

5.1.1 Analysis of Trajectories in Mode M1

The state-space equations for M1 in continuous conduction mode are

dil el - E - vp
dt L
di2 C -e2 + E- P-Lv + (5.1)dt + L

dvc 1 .
dt C

Inductor current i is completely decoupled from the other two state variables. Its

evolution in time is linear. The interaction between i2 and vc can be seen by cross

multiplying the second and the third equations:

1 di2 1 dye -e2 + E - vp dc2- -- VC dt + L(5.2)C dt L dt L dt

Integrating this, we get

1 2 1 2 -e2 + E - vp
2' 

+ 2' L _ _ = K' (5.3)

where is K' is a constant determined by the initial conditions. This is true for any

set of constant values of el, e2, and V,, that is, as long as we remain in the same

switching state and the same output S mode. Rearranging (5.3), we have

('i 2) + [ UVC - (-e2 +E - vp)] = K (5.4)

where K is a constant. This is the equation for an ellipse. The trajectory plotted

against normalized axes of %/ i 2 vs. x v is an arc of a circle centered at vC (-e 2 +

E - v) with radius v/K. It is clear that the center is determined by the input

switching voltage, which is just e2 in this case, and the transformer voltage, v,, whose

sign depends on the output diode configuration. The radius is determined by the
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-200-

il

Figure 5-1: A sample trajectory in M1 with el = e2 = E = 250V, vp = nVL = 8-8.5V,
i1(O) = 90A, i2(0) = 40A, vc(O) = 60V.

starting position of the trajectory. Since x/ il is a linear function of time, the state-

space trajectory is then a spiral on the surface of a cylinder whose axis is parallel

to the aL%.il axis and intersects the x/Uvc axis. Figure 5-11 shows an example of

the spiraling trajectory in M1 for el = e2 = E = 250V, vp = nVL = 8 8.5V, and

the initial conditions i(O) = 90A, i2(0) = 40A, vc(O) = 60V. Because of boundary

conditions, only the portion of the graph dotted with circles is actually in M1. The

rest of the spiral is drawn as a visual cue.

The solution to the state-space equation

i(t) = Ax(t) + Bu(t) (5.5)

is

x(t) = eAtx(o) + j eA(tr)Bu(r) dr (5.6)

'Drawn with spiralml.m, see Appendix A.
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Since we are looking at the trajectory in a particular topological mode for a particular

combination of el, e2, and vp, Bu is a constant vector, which makes the evaluation

a little simpler. However, because the A matrices are sparse, it is easier and more

intuitive to simply solve the set of differential equations directly to obtain closed-form

expressions for the state variables as a function of time. Doing this for M1, we get

il(t) el - E - (O)
L

i2(t) = ( 1 (5.7)

A 1I 1+o
(t) =sin (A t + + (- + E- )

where

A = VL i2(0) + C [(0) - (-e2 + E - )] (5.8)

and

= tan-l [vc(O) - (-e2 + E - v) (5.9)

By expanding the sine and cosine terms, we may write the state variables in vector

form as a function of time and initial conditions. This is the state transition matrix

form

x(t) = kj(t)x(O) + j(t) (5.10)

where j denotes the topological mode. For Ml, we have

1 0 0

-'k= 0 cos() -dsin(4) (5.11)

0 /sin( ) cos(t)

and
el-E-vp t

L

(1 csin( ) (-e2 + E - p) (5.12)

(l-cos( t )) (-e + E - v)
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The results obtained by solving Equation 5.6 are exactly the same as Equation 5.10.

It is not hard to verify, for example, that Hl(t) = eAlt.

5.1.2 Trajectory Geometry in M2, M3 and M4

Trajectories in M2 behave in very much the same way as in M1, barring the difference

in the location of the axis of the cylinder. This is consistent with the symmetry

property between M1 and M2 with respect to the origin for various combinations of

switching voltages. The state transition matrices are listed in Table 5.1.

The state-space equations for M3 are similar to those for M1 except that now i2

varies linearly with time, and only i and vc are coupled. The equation relating ix

and vc, similar to Equation 5.4, is

(Vi1) + [vCV - (e- E-U vp)] = K (5.13)

where K is a constant determined by the initial conditions. When plotted against

normalized axes, the state-space trajectory is a spiral on the surface of a cylinder

whose axis is parallel to the f/i 2 axis and intersects the V/Cvc axis. An example is

shown in Figure 5-22 for el = OV, e2 = E = 250V, v = nVL = 8.8.5V, and the initial

conditions il(0) = 90A, i2(0) = 40A, vc(0) = -60V. Again, because of boundary

conditions, only the portion of the graph marked with circles is actually in M3.

The trajectory geometry in mode M4 exhibits similar characteristics to that in

M3.

5.1.3 Discontinuous Conduction Mode S3

In the previous discussion about trajectory geometry, we have assumed continuous

conduction, so the transformer primary-side voltage vp is equal to ±nVL (with the sign

depending on the output diode conduction state). When the circuit is in discontinuous

conduction mode, vp is no longer a function of the output load voltage, and il +i2 = 0.

2 Drawn with spiralm3.m, see Appendix A.
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Figure 5-2: A sample trajectory in M3 with el = OV, e2 = E = 250V, vp = nVL=
8 - 8.5V, i(O) = 90A, i2(0) = 40A, vc(O) = -60V.

The trajectory is then confined to the i = -i2 or the S3 plane. We are then actually

dealing with a second-order system.

Assuming that the conditions for S3 are satisfied, and using the state-space equa-

tions for M1, S3:

dil 1 el + e2 - 2E
dt 2L 2L
di2 1 e el e2 - 2E
dt 2Lc 2L

dvc 1.
dt C ~2

we get

(v/li 2)2 + [vCvc - vC(-el- e 2E)]2 = K (5.15)

where K is a constant. The normalization factor for the current is Iv2. When plotted

against normalized axes of v/Li 2 vs. X/vc, the above equation still represents an

ellipse. However, the iil = -i2 plane is at a 450 angle to both the x/il
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and the v/Ji 2 axis. Taking the additional factor of V2 into account, the trajectory

projected onto the V/il = -/i 2 plane follows a circle.

The trajectories in M2, M3, and M4 in discontinuous conduction mode similarly

project as circles on the V/I il = -VLi 2 plane.

5.2 Topological Mode MO

The trajectory geometry in mode MO is in fact very similar to the situation in dis-

continuous mode for M1, except that the plane to which the trajectory is confined is

now the i = i2 plane. Since i is equal to i2, the effective inductance is 2L, and the

system is second-order. The trajectory on the MO plane follows a circle when plotted

against normalized axes of V7/il vs. V/Ivc. The velocity fields in Chapter 4 have

already demonstrated this circular pattern. In Figures 4-1(a) and (b), the pattern on

the left side of the vc axis is different from that on the right side due to the different

signs of vp on either side of this axis. The sign of vp affects the center of the circle

since the equation governing the relation between i = il = i2 and vc is

(V i)2 + [VCv- (el - -2v)]= K (5.16)

The state transition matrix is really second order, that is,

cos(LC) - sin( 12 ) (5.17)

and

(el- e2- 2vp) sin( ) (5.18)

(el - e2- 2vp) (1 - ost ___

However, we may write them as a pseudo third-order, as listed in Table 5.1.

Discontinuous conduction mode in MO is the intersection of the MO plane and

the S3 plane, which is just a part of the vc axis, as can be seen in Figure 3-1, so
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(el -e-2vp) L sin(2 )
(el - e2- 2v) sin( 2L)

el-e2-2vp)(1-cos(2 LC))
,,

1 0 0 el-E-vs t

2 = 0 cos() LC ) - = sin(4LC (-e+-v)sin()
/0 sin( ) cos( Jt) (-e2 +-vp) (1-cos(T ))

0 1el-VP
L

sin(I) 0 cos(7-) / (e1 -E-v,) (1--cos())
+4 = 0 1 0 r4 = -e2 +E-V t

L

Cos( 0 - sin(~c) C (el- vp) ALS (~C)),LsLt ) -sin) cos( (eL-v)(l-cos())'I'5 - 5) si n ( ?- ]I- 0 1 0 4 + tL

= I e = E - - t 1 coS )co t · 77- _ Cos( t

L

L

s = I -e2E- v t
L

e- -E- L t

: = I 47 -e2+E-vp tL
0

el -V t
L

178 = I '8 = -e-v t
L

0
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the trajectory is confined to the axis. Figures 4-1(a) and (b) had shown that the

trajectory velocity is zero there.

5.3 Topological Modes M5, M6, M7, and M8

The state-space matrices Aj(t) for M5, M6, M7, and M8 are all zeros. The trajectories

on these mode planes are all linear. The velocity field analysis in Chapter 4 has shown

this very clearly. The solution for the state variables in these modes is simply

x(t) = x(0) + Bu t (5.19)

where is Bu is a constant vector for any particular set of values for el, e2, and vp.

Therefore,

j(t) = I, j = 5, 6, 7, 8 (5.20)

and

'j(t) = Bu .t, j = 5,6,7,8 (5.21)

5.4 A Summary

The trajectory geometry in each individual topological mode is quite simple. When

plotted against the normalized axes, they are circles or lines in plane modes. In volume

modes, they are spirals riding on cylinders. The cylinders are oriented with axes either

parallel to the vil axis or the vTi 2 axis. The center of the circle and the location of

the axis of the cylinder are determined by the switching voltages and the transformer

primary-side voltage, which also decide the velocity of the trajectory. From any

point in the state-space, knowing the topological mode it is in and the switching

voltages, we may calculate the trajectory to any future time with Equation 5.10 and

the state transition matrices. The complete trajectory is simply a concatenation

of the individual pieces in each topological mode and switching state. Complexity

arises in the ordering of this sequence of topological modes subject to changes in the
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Trajectory for E=250 at nominal point

.. "'''.,-- A.'''' ..

i2 -100 -100 ii

Figure 5-3: 3-D trajectory from zero initial state under nominal operating conditions.

switching voltages.

Figure 5-33 shows a typical trajectory from zero initial conditions under nominal

operating conditions with E = 250 V, nVL = 8 8.5 V, f = 275 kHz, and b = 115.6°.

The graph is generated with the simulation program, which will be discussed later in

Chapter 9.

3 Simulated with simnom.m, see Appendix A.
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Chapter 6

Steady-State Characteristics

From Figure 5-3, we can see that at least for the circuit parameters used there the

series resonant converter settles into a steady-state fairly quickly after only a few

cycles from start-up. This rapid settling occurs for almost any values of switching

phase angle b, supply voltage E, and load voltage VL. This fact makes the steady-

state simulation of the SRC easy to perform, because if we simply start simulation

from the origin, we do not need to wait for an extraordinarily long period of time for

the SRC to settle. The steady-state behavior of the SRC was extensively simulated

and analyzed by Kato and Verghese in [5]. Osawa verified some of the results and

examined some discrepancies [7]. Kato also presented a numerical algorithm for

mapping the steady-state operating modes in [4].

6.1 Average Output Current

A primary aim in the design of the converter and a feedback control is to maintain a

constant output power. With the assumption that the output voltage, VL, is relatively

constant because of the large load capacitance, the average output current alone

determines the output power. The output current is a function of both the supply

voltage, E, and the switching phase angle or duty ratio, . As E and b increase, the

output current and thus output power increase. To attain an output power of 4kW

with a load voltage of 8.5V, the average output current , referred to the primary side
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Average output current at steady-state

0u
E

E

.o.

phase, degrees

Figure 6-1: Average output current characteristics for various supply voltage levels
with nVL = 8 · 8.5V.

of the isolation transformer with a turns ratio of n = 8, is i/n = 58.82A. Figure 6-11

shows the simulation results of average output current vs. phase for various supply

voltages. For different combinations of E and b, the steady-state limit cycle may go

through different sequences of topological modes. This information, however, is not

shown in the figure.

6.2 Operating Modes

The sequence of topological modes that the steady-state limit cycle goes through, i.e.

the operating mode, is dependent not only on supply voltage and switching phase,

but also on the output voltage. Although we have approximated the output stage as

a constant voltage source, its fluctuation still has some effect on the operating mode.

1Simulated with simsss.m and drawn by simsssi.m, see Appendix A.
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However, it is the ratio between E and VL that influences the mode sequence and not

the individual variables. The state-space equations for the topological modes are

x(t) = Ajx(t) + Bju(t) (6.1)

where Bju(t) is a vector whose elements are functions of el(t), e2(t), and vp(t).

Referring to Table 3.2, we see that E and VL do not enter the state matrices Aj, while

Bju is a linear combination of el(t), e2(t), and vp(t). Normalizing il(t), i2 (t), vc(t),

el(t), e2(t), and vp(t) by a factor K amounts to dividing the state-space equations

and boundary conditions by K. That is, the normalized state variables

il(t)/K

Xn,,(t)= i2(t)/K (6.2)

vc(t)IK

along with the normalized inputs, el(t)/K, e2 (t)/K, and vp(t)/K, are governed by

the same state-space equations and boundary conditions. The topological sequence

the trajectory goes through is unaffected by the normalizing factor. Since we have

assumed the value of E to be slowly varying and VL to be a constant, it makes more

sense to normalize all the variables by VL although normalizing by E is also a viable

alternative and is done in [4].

In the simulations, we use a nominal value of VLno. = 8.5V, and examine the

operating modes for different values of E and . The fluctuation in the load voltage

can be translated into a factor onto the value of E. That is, the operating modes for

any VL, E, and , are the same as with VL, = 8.5V, E v.n and oE.

Figure 6-22 shows the different operating modes at various combinations of E and

q. A binary box numerical method for mapping the operating modes is presented in

[4]. Simulations are first done at a relatively sparse grid of points and the operating

modes are checked at these points. More grid points near the boundaries are picked

and more simulations are done. The boundaries between operating modes can then

2Simulated with simsss.m and simssa.m, and generated by simssm.m, see Appendix A.
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Operating Modes

20 40 60 80 100 120 140 160 180

phase

Mode 0

o Modes 1, 7, 9

Legend: + Modes 2, 5
x Modes 3, 6

* Modes 4, 8

Figure 6-2: Operating modes for nVL = 8 * 8.5V.
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Operating Mode Topological Mode Sequence
0 MO-M1-M7-M0-M2-M8

1 MO-M1-M-M-M O-M3-M8-M4
2 MO-M1-MO-M2

3 MO-M1-M3-MO-M2-M4

4 MO-M1-M5-M1-M3-MO-M2-M6-M2-M4
5 MO-M1-M5-M1-M7-M3-MO-M2-M6-M2-M8-M4

6 MO-M1-M5-M1-MO-M2-M6-M2

7 MO-M5-M1-M3-MO-M6-M2-M4

8 MO-M5-M-MO-M6-M2

9 MO-M5-MO-M6

Table 6.1: Operating modes and corresponding topological mode sequences.

be found with successively higher resolution. In [4] and [5], the operating modes of the

SRC were examined for a different set of circuit parameters and normalizing factor.

The rules of the binary box method were not strictly adhered to in mapping the

operating modes shown in Figure 6-2. In addition, the operating modes are labeled

according to the associated sequence of M modes only, i.e., the conduction states of

the clamping diodes alone. The secondary-side diode modes, S, are not taken into

account, so there are fewer operating modes as compared to what was presented in

[4, 5]. Understandably, the operating mode map found here does not agree entirely

with that in [4, 5].

For the range of E and k simulated and examined, we have found ten steady-state

operating modes, listed in Table 6.1 along with their corresponding topological mode

sequences. Since the circuit is symmetric and switching is done symmetrically, it is

expected that the first half-cycle is symmetric with respect to the second half-cycle.

Of particular interest are the operating modes along the iz/n = 58.82A line shown in

Figure 6-1. This is the dashed line in Figure 6-2. As E changes slowly over time, the

switching phase will have to be moved along that line to maintain the constant 4kW

output power. Assuming that the output voltage is constant and the supply voltage

varies between 350V and 200V, Figure 6-2 indicates that the I/n = 58.82A line cuts

through only two steady-state operating modes, 1 and 3. It may enter operating
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modes 2, 4, or 6 at the low supply voltage end if there are some variations in the

output voltage or the supply voltage. Representative plots of the trajectories from

zero initial conditions for each of the operating modes except mode 3 are included in

Appendix C. The nominal operating point we select is in operating mode 3 and its

trajectories are shown in Figures 6-3 and 6-4.

6.3 The Selection of a Nominal Operating Point

Through simulation, we find that a switching phase angle of = 115.6° at E = 250V

gives us approximately 58.82A of average output current for a nominal load voltage of

Vr = 8.5V. We have chosen this point to be our nominal operating point since it gives

us approximately the desired output power. Figure 6-3 shows the time responses

from zero initial conditions of the voltage across the resonant circuit vt = el - e2, the

primary-side transformer voltage vp, the state variables, il, i2, vc, and the topological

mode numbers (M drawn on the positive part of the axis and S drawn on the negative

part). Figure 6-4 shows the projections of this start-up trajectory onto the state-space

planes. The 3-D plot of the same trajectory is shown in Figure 5-3. The circuit in

steady-state is in operating mode 3 at this nominal point. The topological modes

that the steady-state trajectory goes through are the following:

MO,S1 -- M1,S1 - M1,S2 -+ M3,S2 - MO,S2 - M2,S2 -, M2,S1 -* M4,S1

During each cycle, two of the transitions in the switching voltage vt cause a transition

in topological modes. They occur at MO-+M1 when vt transitions from E to 0 and

at MO--M2 when vt transitions from -E to 0. The trajectories in both cases are

on the MO plane before the transition. When el becomes equal to e2, the trajectory

immediately leaves the MO plane, as we have said earlier in Chapter 4. The other

two transitions only cause the trajectory to change direction. They occur in M1 and

M2 when vt transitions from 0 to -E and from 0 to E.

If we take the switch configuration into consideration, then the steady-state tra-

jectory at the selected nominal point will go through the following cycle, described

in terms of the complete configuration state of the circuit, (M,S,el,e 2), which includes
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Figure 6-3: Time responses from zero initial state at nominal operating point of
= 115.6250, E = 250V, and nVL = 8 .8.5V.
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the clamping diode configuration M, the output diode configuration S, and switch

configuration:

MO,S1,E,0 -+ M1,S1,E,E -- M1,S2,E,E - M1,S2,0,E -- M3,S2,0,E -
MO,S2,0,E -* M2,S2,0,0 M2,S1,0,0 M2,S1,E,O - M4,S1,E,O

The duration of a steady-state limit cycle is the period of the switching action. In

principle, we may define the beginnings of operating cycles to be at any regularly

spaced points in time with intervals equal to the period. However, it is more con-

venient to define the beginning of a cycle to be at one of the transition points of

Vt.
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Chapter 7

Analytical Models

After a nominal operating point has been selected at a particular phase angle for some

nominal values of supply voltage and output voltage, we may find the steady-state

operating mode using simulation. The steady-state trajectory can then be computed

with more accuracy using closed-form expressions based on the transition matrices,

as shown in Equation 5.10, subject to the boundary conditions listed in Table 3.1. A

small-signal sampled-data model can also be derived for the nominal operating point.

The small-signal transition matrices may be calculated via simulation or computed

by differentiating the large-signal sampled-data model.

7.1 Large-Signal Sampled-Data Model

The state transition matrices derived in Chapter 5 form the basis of the large-signal

sampled-data model. Since the circuit is piecewise LTI and closed-form expressions

are available for the state variables in any particular topological mode under any

particular switching conditions, the complete trajectory in a switching cycle can be

explicitly written as a concatenation of the trajectory segments in each topological

mode it traverses through. The state of the circuit at the end of a switching cycle can

be expressed in terms of its state at the beginning of the cycle, subject to some con-

straining conditions. The concept is presented in [11] and [1]. It is briefly introduced

here before we show its application to our circuit.
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7.1.1 Formulation

Suppose that a system operates cyclically, and that the system goes through N switch

and diode configurations in the kth cycle. The system in each of the configurations

can be described with a linear time-invariant state-space equation

i(t) = Aix(t) + Bju(t), i = 1, 2,..., N (7.1)

Denote the time at the start of the kth cycle by tk, and let the transition times

from one configuration to the next (relative to the start of the cycle) be put into a

vector:

Tk,1

Tk = ' (7.2)

Tk,N

where Tk,N is the duration of the kth cycle, so tk+l = tk + Tk,N. All independent

controlling parameters may be put into a vector, pk. These controlling parameters

may include some externally controlled switching times and some circuit parameters.

The controlling parameters also determine all the source waveforms in u in the state-

space equations. The transition times, Tk,i, may be directly controlled by external

control action or may be indirectly controlled when the states reach some boundaries

or threshold conditions. The N equations that govern the relationship between Tk,

Pk, and the initial state x(tk) can be put into a constraint equation of the form

c(x(tk), pk, Tk) = 0 (7.3)

The large-signal sampled-data description of the circuit is

X(tk+l) = f(x(tk), pk, Tk) (7.4)

For piecewise linear time-invariant systems, as in our case, the sampled-data equation

takes the form

x(tk+l) = F(pk, Tk)x(tk) + g(pk, Tk) (7.5)
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C(pk, Tk)x(tk) + d(Pk, Tk) = 0 (7.6)

where F and g can be expressed in terms of the Ai, Bi, and u(t). In steady-state,

X(tk) = X(tk+l) = X (7.7)

Further simplification can be made when the circuit is half-cycle symmetric. Let

the first half-cycle be governed by

X(t2m,+l) = fh(x(t2m), 2m, T2m)

Ch(x(t2m), P2m, T2m) = 0

(7.8)

(7.9)

If the symmetry between the second half-cycle and the first half-cycle can be expressed

with a matrix transformation, then

Wx(t 2m+2 ) = fh(WX(t 2m+l), P2m+1, T2 m+l) (7.10)

and

Ch(WX(t2m+l), P2m+l, T2m+1) = 0 (7.11)

where

W2 =I (7.12)

7.1.2 Application to SRC at the Selected Nominal Point

For the nominal point we have selected, we have found through simulation that the

complete topological mode sequence, (M,S,el,e 2), is

M1,S1,E,E -- M1,S2,E,E -- M1,S2,0,E -- M3,S2,0,E -- MO,S2,0,E --

M2,S2,0,0 -+ M2,S1,0,0 --+ M2,S1,E,0 -- M4,S1,E,0 -- MO,S1,E,0
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as we have shown previously. Let us take the start of a cycle to be at the point where

e2 switches from 0 to E while el is at E. For the case shown in Figure 6-3, in which

e2 lags el by 5, this is the point where vt falls from E to 0. This is also the point

where the trajectory leaves the MO plane and enters M1. Since the system is piecewise

linear time-invariant, we may shift the time axis and let the time at the beginning

of the cycle be zero. The duration of a cycle, TN, is equal to the switching period,

Ts = l/f.. Indexing the above configuration sequence from i = 1 to i = 10 = N, we

have

x(Ti) = l(Tl)x(O) + Fl(T,nVL,E,E) (7.13)

where Ti is the time at the end of the ith configuration state, and j(t), j(t, vp, el, e2 )

are the transition matrices (in mode Mj) derived in Chapter 5. At T1 , the trajectory

moves from S1 to S2, so the constraint equation is the boundary condition between

S1 and S2,

il(Tl) + i2(T) = 0 (7.14)

or in vector form

i (T)

[110] i2 (T) =[ 1 O]x(T) = O (7.15)

vc(T1 )

We continue the computation into i = 2:

x(T2) = 1 (T2 - T)x(Tl) + 1 (T2 - T, -nVL, E, E) (7.16)

= (T2 - T) [l((T)x(O) + '(Tl,nVL,E,E)] + P1(T2 - T, -nVL,E,E)

= l 1(T2)x(O) + 1 (T2 - Tl)*I(Tl, nVL,E,E) + 1(T2 - Tl,-nVL, E,E)

T2 is a known switching time where el changes from 0 to E. The constraint there is

simply

T2 r- T. = 0 (7.17)
2wr
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For i = 3, in (M1,S2,0,E),

x(T3 ) = 1(T3 - T2 )x(T 2) + 1(T3 - T2, -nVL, O, E) (7.18)

= 1(T3)x(O) + P1(T3 - Tl)Pl(Tl,nVL, E,E)

+ O1(T3 - T2)l(T2 - T,-nVL, E,E) + 1(T3- T2,-nVL, O,E)

The transition at T3 is a transition from M1 to M3, so the the constraint equation is

vc(T 3 ) = 0 (7.19)

or

[ 0 0 1 ]. X(T3) = (7.20)

The size of the expression for x gets large very quickly. We will continue with two

more steps without expanding the terms. For i = 4, in (M3,S2,0,E),

X(T4) = 3 (T4 - T3)X(T3) + 3(T4 - T3,-nVL, , E) (7.21)

with the constraint

il(T4) = i2(T4) (7.22)

or

[1-1 0] .x(T4) = 0 (7.23)

For i = 5, in (MO,S2,0,E),

x(T 5) = 1o(T5 - T4 )x(T4 ) + Io(T5 - T4, -VL, 0, E) (7.24)

with constraint
T,
2

(7.25)

Since the two half-cycles of the steady-state trajectory are symmetric with respect to

the origin, the description for the second half-cycle can be written entirely in terms of
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the first half-cycle. The matrix, W, that relates the two halves in this case is simply

-I. In the formulation of the sampled-data model, we are mostly concerned with

the state at the beginning of each cycle. The state at Ti is hidden in the equations.

However, the way we have set up the equations for finding the state at the end of

the half-cycle, x(Ts), we can also find the state at all the transition times in the

process. This is an advantage since a comparison of simulation results and analytical

computation results can be better made when we have all these points.

When the appropriate ij and %Pj are substituted into Equation 7.24 and the terms

expanded, the symbolic expression will be quite large. It clearly is to our advantage

to use a computer program with symbolic manipulation capabilities to work out the

details. The actual computation using this large-signal sampled-data model is carried

out in Maple. The source codes and the results are listed in Appendix B for reference.

7.1.3 Simulation and Analytical Computation Results

The state-space trajectory may be calculated using the method of assumed state. We

first; assume that the circuit is in one particular topological mode. We then do some

calculations, and check if the conditions for the assumed topological mode are satis-

fied. If not, we pick another topological mode. This is continued until the right mode

is found. However, we have said in Chapter 3 that once we know where the trajec-

tory is in the state-space along with a few conditions as illustrated in Figure 3-1, we

know what topological mode it is in. Little effort is needed to find the correct topo-

logical mode. Computation of the trajectory can be carried out with Equation 5.10

while checking for changes in topological modes and switching voltages. The simu-

lator written for the converter follows this latter method, except that the trajectory

is computed with a trapezoidal integration scheme. Using a numerical integration

method, the simulator inevitably has some numerical errors in its computation of the

trajectory, so we use it to find the approximate values of the state variables at the

beginning of a cycle before we use the analytical model to find more accurate values.

Simulation starts at the origin, and the trajectory quickly settles down to an

approximate steady-state within a few cycles. However, the states at the start of the
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subsequent cycles do not converge to a precise value quickly. Therefore, simulations

are run starting from a grid of points near x(0). The states at the end of the cycle

are compared with those at the beginning of the cycle and the one with the smallest

deviation is chosen. This process is repeated with finer resolution until we find the

x(O) that closes onto itself after a cycle, with very small error. A similar approach is

taken in the search for the steady-state x(0) using the analytical model. This search

process is done at two places: at the beginning of the cycle, where vt drops from E

to 0, and at the point where vt drops from 0 to -E (see Figure 6-3).

At vt : E -, 0, simulation results 1 show that in the steady-state

46.821 -46.832 46.821

x(0) = 46.821 , x(T) = -46.832 , and x(Tio) = 46.8195

180.088 -180.056 180.089

Computation via the large-signal sampled-data model shows that2

46.83790 -46.83787 46.83787

x(0) = 46.83790 , x(T) = -46.83787 , and x(Tjo) = 46.83787

179.97310 -179.97312 179.97311

At Vt :0 - -E, or T2, simulation results show that

52.616

x(T2) = -60.116

108.405

1Simulated with simsyo.m, see Appendix A.
2 See Appendix B for the source codes and results.
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while computation using the sampled-data model in Maple shows that

52.6590

x(T2) = -60.1024

108.4017

A more detailed listing of the data points is included in Appendix B.

As we can see, simulation results obtained with a trapezoidal numerical integra-

tion method do not differ too much from the results obtained using the closed-form

expressions in the analytical model. This validates the accuracy of the simulator.

More will be said about the simulator in Chapter 9. The states found for the nominal

operating cycle are used next in the computation of the small-signal sampled-data

model and the small-signal transition matrix.

7.2 Small-Signal Sampled-Data Model

7.2.1 Formulation

Again, detailed formulation of the procedure for deriving small-signal sampled-data

models for power electronic circuits can be found in [11] and [1]. Only an outline of

the concept and key equations are presented here.

Once we have the cyclic steady-state description,

x = f(x, p, T) (7.26)

and the constraint equation,

c(x, p, T) = 0 (7.27)

let; us represent the perturbations of the variables as follows:

X(tk) = X(tk) -X

pk = Pk-P (7.28)
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Tk = Tk-T

From the large-signal sampled-data model, we have

ki(tk+l) = f(x + :i(tk), p + pk, T + rk) - x

and the constraint equation,

C(X +: (tk), p + Pk,T + Tk) = 0

Retaining only the linear terms from the Taylor expansions gives us

Of
ki(tk+) =-k:tk)ax

+c
+ a P +ap

Of
+ appk +

Op

where the partial derivatives are Jacobians evaluated at the nominal steady-state x,

T, and p. Solve the second equation for Tk,

aOc -1 OC -c 1
Pk Japk (7.33)

Substitute it into the first equation, and we have

X(tk+l) = Foi(tk) + Gojk (7.34)

F. =Of Of tOc '- Oc
- 29x AT T ax

OfGo =p
dp

(7.35)

(7.36)
Of (c) - 1 ec
AT T ap

The system is locally asymptotically stable if and only if the eigenvalues of F are
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(7.30)

and.

Of -

T

Ox (tk)
c-

-Tk =O

(7.31)

(7.32)

where

and



within the unit circle.

If we perform Taylor expansions on the large-signal equations for a system with

half-cycle symmetry as in Equations 7.8 to 7.11, we have the following.

xk(t2k+l) = Fo5(t 2k) + GoP2k (7.37)

and

l(t2k+2) = WFo Wi(t2 k+1) + WGo2 k+l (7.38)

If W = -I and P2k+l = P2k as in our SRC, then

*(t2k+2) = F o(t 2k) + (FoGo - Go)P2k (7.39)

This is the full-cycle model written in terms of matrices derived for the half-cycle

model.

7.2.2 Application to SRC at the Selected Nominal Point

Since the SRC circuit is half-cycle symmetric with respect to the origin, the small-

signal model in Equation 7.37 is used. The nominal steady-state values of x, T, and

p for the first half-cycle have been found both through simulation and with the large-

signal model. It is fairly straightforward to set up the equations for the small-signal

model. In particular,

fh = X(T 5) (7.40)

and

Ch -

[1 0] x(T)

T2 - -i T.

[00 1 ] -x(T3)

[ 1 -1 0] x(T 4)

T5 2 T

(7.41)
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Expanding the two functions will put them in the form of Equations 7.8 and 7.9, but

the messy expressions will only obscure the meaning of the two functions. They are,

of course, functions of x(To), and Ti. The other terms in them such as nVL, E, and b

call be taken as the independent controlling parameters, p. We will take one of them,

the switching phase angle , to be the controlling parameter. It is then very easy to

compute the Jacobians and set up Equation 7.34 in Maple as shown in Appendix B.

Equation 7.34 and Equation 7.37, however, only calculate the perturbation at the

end of a cycle or a half-cycle. Perturbations in transition times can be found with

Equation 7.33, but to trace the perturbations in the state variables at these transition

times, we need to redefine the small-signal model. For example, to find x(Ti), we may

let

fh = x(T), i < 5 (7.42)

and retain the first i rows in Ch.

7.2.3 Simulation and Analytical Computation Results

The point that we have defined to be the beginning of a cycle is where the trajectory

leaves the MO plane and vt goes from E to 0. At this point, the circuit is really

second-order, so we would expect one of the eigenvalues of Fo to be 0. However, this

does not necessarily mean that if we sample the states at a different point in the

cycle, Fo will also have an eigenvalue of 0. Only 2-D perturbations make sense in the

first case while perturbations can be in all three directions in the second case. For

this reason, small-signal models are also developed for cycles beginning at the point

where vt drops from 0 to -E.

The transition matrix can be constructed numerically by perturbing the state in

several directions and finding the perturbations at the end of the cycle while holding

the independent controlling parameters constant. Suppose that we use three linearly

independent perturbations, X*, 2, and 3s, at the beginning of the nominal cycle.

The perturbations at the end of the cycle are Frl, For 2, and FoX3. Putting the
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vectors into a matrix form, we have

[Fil Foi2 Fois ]

Since ixl, i2, and i3 are linearly independent, we have

Fo = [ Fo F.i2 F 3 ] [ 

Sampled at vt : E --4 0, the small-signal transition matrix for the full cycle is

-0.0779

Fo = -0.0779

-0.3259

0.1274 0.0318

0.1274 0.0318

0.4910 0.1192

with eigenvalues

0.1647, 0.00393, 0

and
0.3432

go = 0.3432

5.6156

The eigenvalues found by simulation3 for the second-order transition matrix at the

same starting point are

0.165, 0.0041

and the third eigenvalue is taken to be 0.

Sampled at vt: 0 - -E, the small-signal transition matrix for the full cycle is

-0.0877 -0.0588 0.0300

Fo = 0.2419 0.1604 -0.0796

-0.2739 -0.1849 0.0959

'Simulated with simsyq.m, see Appendix A.
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with the same eigenvalues

0.1647, 0.00393, 0

and
-0.1158

go = -1.4622

4.6304

The transition matrix found via simulation is

-0.087 -0.058 0.0299

Fo = 0.243 0.159 -0.0793

-0.272 -0.180 0.0954

with eigenvalues

0.163, 0.0048, 0.0000

A more detailed listing of source codes and data points can be found in Appendix B.

As we can see, simulation results agree well with computed results from the small-

signal sampled-data model. Since the nominal cycle goes through the MO plane, the

small-signal transition matrix is only second-order with one additional eigenvalue at

0. The two nonzero eigenvalues have magnitudes smaller than 1. We may conclude

that the system is locally stable.

One of the nonzero eigenvalues is almost forty times as large as the other one.

This indicates that the system dynamics are mostly first-order. We will exploit this

approximation in our small-signal controller design. The dynamics of the system are

also quite fast. The largest eigenvalue is 0.1647, so the error is reduced to less than

20% within a single cycle. This is consistent with what we have seen in the (large-

signal) start-up simulations in Chapter 6, where the steady-state is reached in only a

few cycles.
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Chapter 8

Controller Design

Although the series resonant converter with clamped capacitor voltage (SRC) is LTI

in each topological mode, it is a nonlinear circuit. As we have seen in the last

chapter, the small-signal transition matrix has a dominant eigenvalue of 0.165, which

is more than one order of magnitude larger than the other nonzero eigenvalue. As

the dynamics of the system is mostly first-order, we may approximately model the

converter as a first-order LTI system, design a feedback controller around the nominal

operating point, and test the controller under various operating conditions.

8.1 Transfer Function of the Plant

The average output current depends on the switching phase angle, , and the supply

voltage, E. While b is available as a control input, E is not. The output current, i,

and the load current, iL, are not available for measurements or feedback because cur-

rent sensing is difficult in the actual implementation of the circuit. What is available

for feedback is the output voltage, vL. This means that the constant voltage source

model for the output stage is too simple for control design. The load may be modeled

as either a current source or a resistor in parallel with the output capacitor. The

plant to be controlled consists of the converter/load dynamics, with control input 

and output VL (or n VL if computation and design are done with variables referred

to the primary side of the transformer, as we shall do here for convenience).
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The SRC aims to provide a constant output power to the load. We have so far

assumed the output to be a voltage source since the output capacitance is large and

the output voltage is relatively constant. This translates to an aim for a constant

average output current. With the voltage source model becoming invalid, providing

constant power to the load now involves controlling the output voltage. Output

voltage regulation becomes an important issue.

8.1.1 Approximate Converter Transfer Function

The converter is approxmated as a first-order system with a small-signal continuous-

time transfer function from the input signal, AO, to the output, ATj/n, in the form

Pc(s) + 1 (8.1)
s +P'

From the small-signal transition matrix, we have found the discrete-time pole to be

at the eigenvalue, Al = 0.165. This translates approximately to a continuous-time

pole at

1
p = - ln Al (8.2)

= -275 x 103 * In 0.165

= 495.5 x 103

based on the discrete-time/continuous-time relationship

z = e - (8.3)

To find the numerator of the transfer function, we perturb the steady-state system

with a step change in q and numerically find the change in the average output current

after the circuit settles into steady-state again:

limaA/nlims __ 11lim =lim +7 - = P (8.4)t- A00 O - s S+pl S pl
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Simulation results' show that

Pi 2.53
Therefore, we have found the approximate transfer function from switching phase

angle perturbations, Ab, to the average output current perturbations, Aio/n:

P() 2.53 495.5 x 10 (8.5)
s + 495.5 x 103

The supply voltage in the actual system droops at a slow rate over time, from

about 350V to 200V. This voltage is treated as a disturbance, and the transfer

function from AE to Ao/n is assumed to have a similar form as Pc(s):

PE(S) = ' (8.6)
S +Pi

The constant in the numerator, y, is found with simulation in the same way as 3, by

perturbing the nominal point with a step change in E and finding the change in To/n.

Simulation results show that

a 0.91
pi

so the transfer function from supply voltage perturbations, AE, to the average output

current perturbations, ATn/n, is

0.91 495.5 x 103
PE (S)= (8.7)s+495.5 x 103

These two transfer functions are the approximate description of the SRC circuit

around the nominal operating point of = 115.625° and E = 250V. They serve as a

guide to the design of a small-signal feedback controller.

'Simulated with simpli.m, see Appendix A.
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Figure 8-1: Three different models for the output stage: (a) constant voltage source,
(b) capacitor in parallel with resistor, and (c) capacitor in parallel with current source.

8.1.2 Output Stage and Load Requirements

The converter needs to supply a constant power of 4kW at full-load. The power

demand on the SRC alternates between full-load and no-load, but at a rate that

is much slower than the dynamics of the converter. As the load capacitance is very

large, the average load voltage does not change very fast over time. It is reasonable to

assume that the load is a voltage source, as shown in Figure 8-1(a) when we examine

the dynamic behavior of the converter, especially since the converter exhibits very

fast dynamics and converges to the steady-state in only a few switching cycles, before

either the supply voltage variation or the load voltage variation become appreciable.

However, since the output current is not available for measurement and the output

voltage has to be used as the feedback signal, the constant voltage source model

for the load becomes invalid for control design. It becomes necessary to include the

dynamics of the output stage, particularly at the transitions between full-load and

no-load. At such transitions, the sudden application or withdrawal of current demand

by the load will cause an appreciable drop or rise in the output capacitor voltage even

though it has a large capacitance value. Since the behavior of the next stage in the

power system is not entirely clear, whether the load is better modeled as a resistor

or as a current source is uncertain. The simulator of the SRC is able to use any

of the three types of output models shown in Figure 8-1. While the dynamics of
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the converter have been simulated assuming the constant voltage source model, the

design of the feedback controller and the performance testing of the complete system

must be done for both the resistor model and the current source model.

For the resistor model in Figure 8-1(b), the transfer function from i to VL is

simply

Po(S)- RL 1/CL (8.8)
sRLCL + 1 s + 1/RLCL

With component values, RL = 0.018625Q and CL = 0.01F, we have

100
Po(s) = s + 5.536 x 103 (8.9)

The small-signal transfer function from Aio to AVL is the same. The transfer function

of the averaged quantities from Aio to AvL is also the same since the output is LTI

[3]. The transfer function under no-load condition can be obtained by letting R go

to oo, which yields 1/sCL.

For the current source model in Figure 8-1(c), the small-signal transfer function

from Aio to AVL is
1

Po(s) = (8.10)SCL

The transfer function of the averaged quantities and that under no-load condition are

the same.

In the constant voltage source model, the output current of the SRC is the same as

the load current. Controlling the output power to the load is the same as controlling

the output current of the converter. With the resistor model for the load, the load

current is proportional to the load voltage. Controlling the power delivered to the

load is equivalent to controlling the load voltage. With the current source model,

controlling power delivered to the load is again equivalent to controlling the load

voltage since now the load current is assumed to be constant. In either of the latter two

cases, maintaining a constant power to the load hinges upon maintaining a constant

load voltage. Of course, variations in the load voltage depend on the output current

of the SRC. An increase or decrease in the output current from nominal will raise or
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Figure 8-2: Bode plots of the plant transfer function.

lower the load voltage and thus affect the power delivered to the load.

8.1.3 Approximate Plant Transfer Function

The plant transfer function is simply the product of Po(s) and Pc(s). All variables

are referred to the primary side of the transformer, so the combined transfer function

will have a factor of n2, where n is the turns ratio of the transformer.

P(s) = n2Po(s)Pc(s) (8.11)

Based on this transfer function, we will design a small-signal LTI feedback controller.

Figure 8-2 shows the Bode plots of the plant when the load is modeled as a resistor.

For both resistive and current-source loads, the dominant dynamics is that of the

load; the converter current dynamics reflected in Pc(s) is much faster.
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Figure 8-3: System with small-signal feedback controller.

8.2 Small-Signal Feedback Controller and Perfor-

mance Evaluation

A small-signal feedback controller is designed for the nominal operating point using

classical control theory. The controller takes the continuous-time AnvL (the deviation

in the output voltage from the nominal value) as its input, and generates a continuous-

time phase correction AqO. A sampled version of the continuous time AqO at the

beginning of each switching period is subtracted from the nominal switching phase

angle.

The continuous-time output voltage, nvL, is available for feedback. However, it is

the average output voltage that we seek to control, so the averaged deviation of the

output voltage from its nominal value is of interest. The first piece of the feedback

controller is an averager in the form of a low-pass filter, with transfer function

KA(S) - PA (8.12)
s + pA
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The switching frequency of the circuit is at 275kHz, so the rectified output current

and thus the output voltage is at twice this frequency, at 3.46 x 106 radians/sec. For a

corner frequency at PA = 2.3 x 106, the attenuation above 3.46 x 106 is roughly more

than 1/2. More substantial low-pass filtering will require us to take the dynamics

of the averaging circuit into account during the design process, so we settle for this.

Therefore, we take
2.3 x 106

KA(S) = s + 2.3 x 106 (8.13)

The output of the averager, nvL, is compared to the nominal reference output voltage,

nVL,,) and the difference is the input to the next stage of the feedback controller.

However, since the reference is a constant value, the comparison can be done before

averaging, as shown in Figure 8-3. The averager, KA(S), takes the difference between

the output voltage and the reference as its input.

The simplest small-signal controller is a proportional-gain feedback controller.

However, to have better disturbance rejection at low frequencies, a proportional-plus-

integral (PI) controller is used. This gives a higher loop-gain at lower frequencies and

thus a lower sensitivity value. The transfer function of the feedback controller is of

the form

KB () = kB(s + ZB) (8.14)

Combined with the low-pass filter KA(S), the complete feedback controller transfer

function is

K(s) = KB(s)KA(s) (8.15)

The dynamics of the feedback controller should be slower than the dynamics of the

converter current dynamics in Pc(s), so that the two do not interact closely. We know

that the converter has a pole at pi = 495.5 x 103. While we need to maximize the

cross-over frequency of the loop gain, T(s) = P(s)K(s), and maintain sufficient phase

margin, we also need to keep the cross-over frequency much lower than pi. One of the

closed-loop poles tends towards the open-loop zero at zB, so for faster convergence of

the closed-loop system, we also wish to push ZB higher while still retaining sufficient

phase margin. Since the plant transfer function is only an approximation of the actual
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system, we must have enough phase margin in order to avoid possible instability. For

K(s) - 15(s + 2000) 2.3 x 106
s s -2.3 x 106

Figure 8-4 shows the Bode plots of the transfer functions of the feedback controller,

K(s), the loop gain, T(s), the sensitivity, S(s) = 1/(1 + T(s)), and the closed-loop

C(s) = T(s)/(1 + T(s)). From the Bode plots, we see that the cross-over frequency

of IT(jw)l is at about 2.1 x 105 with a phase margin of about 630. The closed-loop

system has poles at s = -2.36 x 106, s = -2.18 x 105 ± j2.67 x 105,s = -1.97 x 103.

The complex conjugate pair has an imaginary part equal to 42.5kHz, which is about

6.5 times slower than the switching frequency. The pole at s = -1.97 x 103 is very

close to the open-loop zero at s = -2000. A lower PA will average better and a higher

ZB will let the closed-loop settle to steady-state faster. However, as we can see from

the phase plots of K(s) and T(s), they will reduce the phase margin. A higher gain,

kB, will also reduce the phase margin. Although a phase margin of 30° to 40° may

be sufficient, the modeling errors and approximations we have made in designing the

controller may necessitate a larger margin. Simulations actually show that when the

gain, kB, is increased three times to 45, the closed-loop system becomes unstable in

some cases, even though there is substantial phase margin left in the Bode plots.

Simulations2 of the SRC with the feedback control system are run to validate

and verify the controller design. For the resistor load model, Figure 8-5(a) shows

the output voltage after the SRC has settled into the steady-state without feedback

control. Since the nominal phase angle, = 115.625° is only an approximation, the

output current it generates does not exactly equal the desired output current for 4kW

output power. The output voltage in Figure 8-5(a) slowly settles to a lower value than

the nominal 8 8.5V, indicating that b = 115.6250 is smaller than the phase angle

need to produce 4kW of output power. Figure 8-5(b) shows the same situation with

the feedback controller. With feedback, the average output voltage is maintained

closely around the nominal, without the drooping seen in (a). The smooth curve for

2 Simulated with simctr.m, see Appendix A.
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Figure 8-6: Output voltage, nvL, and feedback signal, AO, for system starting with
il(O) = O,i2 (0) = ,vc(O) = 0.

nvL shows the continuous-time output voltage, while the circle marks overlaid are its

values at the sample times, which are the beginnings of switching cycles. The smooth

curve for AO is the output of the feedback controller while the circle marks are the

values used to correct the phase for the switching cycle. The values of AO do not

necessarily agree with the actual output from the feedback controller when control

limits, nonlinear control, or disturbance feedforward come into play. Simulations for

the current model show very similar results and are not repeated here.

The behavior of the output voltage for the resistor output model when the SRC

starts from the zero initial state (but with the load voltage at nominal) is shown

in Figure 8-6. The oscillation in nvL and AO is roughly 6 times the period of the

switching frequency, as can be seen from the graphs in Figure 8-6 as well as in Figure 8-

5(b), and is due to the two complex poles at s = -2.18 x 105 i j2.67 x 105. For the

number of cycles simulated, the average output voltage does not reach precisely the
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Figure 8-7: Output voltage, nvL, and feedback signal, AO\, with initial AnvL = -1V.

desired nominal value, but recovers to the value at a rate determined by the slow pole

at s = -1.97 x 103.

The behavior of the output voltage for the resistor output model with an initial

deviation of -1V in the output voltage is shown in Figure 8-7. The small-signal

feedback controller is able to bring the output voltage to near the nominal value in

roughly 10 cycles.

In all these cases, the output voltage does not deviate from the nominal by too

much. Simulation results for the resistor load model or the current source load model,

therefore, differ only slightly. We have presented only the graphs for the resistor load

model here.
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8.3 Nonlinear Control Rules and Performance

Evaluation

To deal with large deviations from the nominal, nonlinear control rules are added to

the small-signal feedback controller, to achieve overall large-signal and small-signal

control.

The phase correction signal AO that is subtracted from the nominal phase angle

may be outside of the allowed range as a result of large deviation in output voltage.

So the first rule is that qbo' - AOS has to be within the allowed range of 0 to ir. The

maximum possible output current is generated at b = 180° and the minimum, or no,

current is generated at q = 00. This means that AO is clamped to between -64.3750

and 115.625°.

Another situation where nonlinear control is necessary is when the output goes

from full-load to no-load or vice versa. When the load demand is withdrawn, the

output current charges up the output capacitor. The phase angle will be reduced

from the nominal value. However, the design for the small-signal feedback controller

does not have a gain high enough for this large-signal case. The phase correction is

not enough to quickly counter the rise in output voltage. If it is possible to sense

the load current, then a change of the reference phase angle to zero at the transition

from full-load to no load can deal with the problem. With only voltage sensing, the

nonlinear control rule will be to maximize output current when the sampled output

voltage drops below a threshold, and to minimize the current when the voltage rises

above a threshold. At nominal, the average output current i0 /n is 58.82A. In one

switching cycle, T, = l/f. = 3.63 x 106sec, the change in the output voltage is

1 1
AVL = CL o T, = 8 58.82 3.63 x 106 = 0.17V (8.17)

CL 0.01

When referred to the primary side, AnvL = 1.37V. The nonlinear control threshold

above which minimum current will be delivered is set at 1.4V above the nominal

nvL,,, = 88.5 = 68V. The threshold below which maximum current will be delivered
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is set at 1.4V below the nominal.

In Figure 8-8(a), after the transition from full-load to no-load, the output voltage

and the phase correction grow exponentially to some limiting values, but the phase

correction is insufficient to curb the rise in the output voltage. (The subsequent return

to nominal values corresponds to the full load being reapplied.) Ideally, the switching

phase should go to zero when the converter enters no-load. The simulation is done

with the resistor output model. No-load is modeled by increasing the load resistance

by 100 times so that the quiescent current at no-load is roughly 1/100 of the full-load

current. The comparison shown in Figure 8-8(b) with nonlinear control shows that

the output voltage is limited to a much smaller range dictated by the threshold value.

Since the converter cannot absorb power, we must rely on the quiescent current at

no-load to slowly discharge the capacitor. Once the load reverts back to full-load and

draws the nominal current again, the controller is able to stablize the output voltage

within 10 to 15 cycles. In the actual power supply system, the no-load duration

is probably much longer than simulated here and the output capacitor will be able

to discharge fully to the nominal voltage. The simulation shown in Figure 8-8(b)

demonstrates that even if the quiescent current at no-load is not sufficient to discharge

the capacitor, the system is still well behaved. Again, simulation assuming a current

source output model shows very similar behavior because the deviation in the output

voltage from its nominal is not large. Only results for the resistor output model are

presented here.

How the feedback controller deals with even larger deviation in the output voltage

is shown in Figure 8-9. In this case, AnvL = -18V, such that the initial voltage is

at 50V, well below the nonlinear control threshold. This causes the phase correction

to dip below -250 ° initially, so the phase correction is clamped to -64.375 °. With

maximum phase, the output voltage quickly rises to its nominal value. With a large

deviation in the output voltage, the difference between the responses of a resistor

output model and a current source output model becomes noticeable.

From the examples we have shown, we can see that the small-signal feedback

controller with nonlinear large-signal control rules can deal adequately with deviations
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in the output voltage and the transition between full-load and no-load conditions.

Whether the output is modeled as a resistor or a current source does not effect

system performance in any fundamental way.

8.4 Disturbance Feedforward and Performance

Evaluation

The supply voltage of the converter droops over time at a slow rate. It has been

treated as a disturbance to the system. However, the small-signal feedback system

is not adequate in handling a drooping supply voltage. Figure 8-10(a) shows the

response of the output voltage from nominal operation but with a supply voltage,

E, that ramps down from 250V at -1V per cycle. As the supply voltage decreases,

a larger phase angle is needed to maintain the nominal output current. However,

the feedback controller is unable to produce enough phase correction. A second

PI stage was added to the feedback controller in an attempt to improve sensitivity

characteristics at low frequencies and to combat ramp function disturbances, but little

improvement was obtained.

The supply voltage as a disturbance is measurable, so a disturbance feedforward

scheme is feasible. The block diagram of the complete system with the feedforward

controller and nonlinear control is shown in Figure 8-11. We have assumed the transfer

function from disturbance to output is in a similar form to that from control input

to output. The feedforward controller, therefore, is simply a constant gain,

KE(S) = d (8.18)

With simulation results, we have

0.91
KE = 2 = 0.36

2.53

Note that the KE found here is only for the nominal operating point. From Figure 6-
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1, we can see that a given variation in the supply voltage, E, causes smaller variations

in output current at smaller phase angles, and larger variations at larger phase angles.

When E is far away from its nominal, Eno,,, we should expect errors in the feedforward

phase correction signal. However, even with this error, we can still see the improved

disturbance rejection in Figure 8-10(b). We have assumed in this case that the supply

droops at -1V/cycle. At this rate, the full range of supply voltage between 350V and

200V is covered in 150 switching cycles or 0.545 msec. This rate may be higher than

what can be expected in the actual system. The smooth curve for AO is the output of

the feedback controller while the circle marks are the phase correction values at the

start of a switching cycle. The difference between the two is due to the feedforward

correction. Again, since the deviation in the output voltage is not large, the responses

are similar for the two output models and only the responses for the resistor model

are presented here.

8.5 Initial Start-Up Behavior

At initial start-up the state variables of the converter are all zero, and the output

voltage is zero since the output capacitor is uncharged. (We have used the term

start-up elsewhere to mean zero initial state variables but with the output voltage at

the nominal; the difference should be clear in the context where the terms are used.)

The supply voltage may be assumed to be at the nominal value or at the higher end

of its range. With a large deviation in output voltage from the desired nominal, the

integrator in the feedback controller causes its phase correction signal to rapidly move

outside of the allowed range, below its lower bound. Since maximum output current

should be used to charge up the output capacitor quickly, this response would appear

to be satisfactory. However, after the output voltage has come close to its nominal

value and the phase correction should be close to zero, integrator windup [3] due to

the initial transient causes the phase correction to remain large on the negative side

for an extended period of time. The output current thus becomes excessively high

and the output voltage continues to rise until nonlinear control kicks in and reduces
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the switching phase to zero. Output voltage then drops into the region close to its

nominal, but the large phase correction still remaining from the feedback controller

will quickly bring the voltage up again. Although with nonlinear threshold control

the output voltage never goes out of the bounds by too much, it does not settle down

to its nominal value either. The small-signal feedback control never gets a chance to

work properly because of integrator windup.

To correct this problem, we have implemented a soft-start scheme. Instead of hav-

ing a fixed reference output voltage nvLn,, throughout, it will be gradually increased

from zero to the desired nominal value of 68V in about 30 cycles3 . Figure 8-12 shows

the resulting start-up behavior of the simulator. The supply voltage is assumed to be

constant at its nominal value of 250V without drooping. The response for the resistor

output model and the current source model are quite different initially. In the resistor

output model, little load current is drawn initially and the output capacitor charges

up faster than the rise in the reference. The phase correction is actually positive to

slow down the rise in output voltage. In our simulation, the reference nominal output

voltage increases linearly from zero to 68V and then flattens out. This sharp corner

causes a sharp change in Ab as can be seen in Figure 8-12. A smoother reference

may produce a smoother AO. Figure 8-13 shows the start-up behavior with a supply

voltage, E, that droops from 300V at -1V/cycle. For the 60 cycles simulated, the

supply voltage drops from 300V to 240V. For Figure 8-13(a), with a higher supply

voltage, nvL actually charges up too fast at the beginning so that it exceeds the ref-

erence by more than the nonlinear threshold of 1.4V. Nonlinear control kicks in and

the switching phase is reduced to zero for a cycle.

The simulation results shown in this chapter have demonstrated that in addition

to small-signal control near the nominal operating point, the augmented controller

is adequate in dealing with a variety of operating conditions including transitions

between full-load and no-load, and the initial start-up.

3 Simulated with simstr.m, see Appendix A.
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Chapter 9

Simulator Design

To aid the analysis of the series resonant converter (SRC) with clamped tank capacitor

voltage, a computer simulator based on the state-space model was written in Matlab.

It is a very important and useful tool in the numerical analysis of the converter and

is a major component of this project. Simulation results have been referred to and

presented throughout the previous chapters.

A simulation program of the SRC circuit based on the state-space model and

using trapezoidal numerical integration was written by Osawa [7] in his thesis. The

fundamental approach of the current simulator here is similar to that of Osawa's.

However, the current simulator has been completely redesigned and rewritten to fa-

cilitate numerous modifications and improvements, to resolve some of the simulation

errors he had encountered, and to enhance the accuracy of the simulation results. A

whole new set of functions has been added and the simulator has been expanded to

include new capabilities, such as the output of critical points at mode and switching

transitions (in addition to the regularly spaced time points), the simulation of the

dynamics of the load, the design of feedback controllers, etc. With the 3-D imaging

capability of Matlab release 4.0, animation of the evolution of the trajectories can be

done to assist visualization.

100



9.1 Simulator Structure

The principal task of the simulator is to generate the time response of the state vari-

ables of the circuit, given some initial state and certain other operating parameters.

The state variables are the inductor currents, il, i 2, and the tank capacitor voltage,

vc, if the load is modeled as a voltage source. When the load is modeled as a ca-

pacitor in parallel with a resistor or a current source, the output capacitor voltage

becomes an additional state variable. The simulation of the SRC circuit is centered

around the function srctrans(), which monitors the transitions in topological modes

and computes the value of the state at the next time point, using the trapezoidal

integration method. Some of the relatively self-contained subtasks such as numerical

integration, topological mode determination, switching signal generation, etc. are

handled by other functions. Together, they form the basic simulation program that

generates the time response of the SRC.

A higher-level simulation usually simulates the SRC in a certain way in order

to determine certain characteristics. It may include such tasks as the generation of

the trajectory fields, or the simulation of start-up dynamics, or the simulation of

the steady-state behavior, or the search for the nominal switching phase angle. It

often consists of several calls to srctrans() while changing some parameters between

calls. The returned data on the state variables are processed and relevant information

extracted and/or displayed with some auxiliary functions.

The auxiliary functions perform subtasks that are common to many simulation

programs. They could be functions that compute the average output current, or check

the operating mode of the circuit, or generate the feedback control signal, or display

the output waveforms, or carry out an animation of the trajectory in 3-D.

This division of tasks into functions allows the top-level simulation programs to

be relatively simple. On the other hand, if any part of the simulator needs to be

changed, may it be the integration method, or the modeling of the output stage, or

the feedback controller design, modifications can be implemented with ease in the

functions with little effect on the higher-level programs or the overall structure of the
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simulator.

Most of the Matlab source codes are listed in Appendix A.

9.2 Core Simulation Programs

The core simulation program that generates the time response of the SRC comprises

the function srctrans() and several functions it calls. The usage of these functions

can be found in the source codes and the comments.

9.2.1 SRC Transient Response, srctrans.m

Usage: [t,z,m,s, tm, m, mm,sm, nvl]= srctrans(x O,para1,para2)

srctrans() is a self-contained function that generates the complete trajectory of the

SRC from any starting point in the state-space, based on some circuit parameters such

as capacitor and inductor values, operating parameters such as switching frequency,

supply voltage, load voltage, and simulation parameters such as starting time, ending

time, and time-step size, etc. These parameters are usually specified in the higher-

level calling program, and they are passed in vector form, although some functions

only use a subset of the parameters contained in the vectors.

'The vector paral contains twelve parameters. They are the resonant circuit tank

capacitance C, inductance L = L1 = L 2, supply voltage E, load voltage nVL referred

to the primary side of the transformer, switching frequency wo, = 27rf, in radians per

second, phases of el and e2 in radians, error tolerance in determination of equality,

integration time-step size, starting time of simulation, ending time of simulation, and

output compression ratio.

The vector para2 was added at a later stage in the development of the simulator.

It contains the parameters needed to model the dynamics of the output stage. It

is optional if the output is modeled as a voltage source. There are six parameters

in para2. They are the load capacitance CL, load resistance RL, load current IL,

transformer turns ratio n, and load model number. When the load is modeled as a

capacitor in parallel with a resistor, the load current value is ignored; when the load
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is modeled as a capacitor in parallel with a current source, the load resistance value

is ignored.

The first four variables in the output of srctrans() are the regularly spaced time

points, and the state variables, topological mode M, topological mode S of the SRC

at those points. The next four variables are the critical points at mode transitions,

switching transitions, and other extra points calculated in addition to the regularly

spaced time points. The last output variable is the response of the load voltage

referred to the primary side of the transformer, with values at only the regular time

points.

A major component of srctrans() is in essence a look-up table for the various

topological mode transitions. This helps to overcome one major problem with Osawa's

simulator, namely that the penetration of a plane by the trajectory's moving from

one volume mode to another was not always detected. Tolerance levels were set to

determine if the trajectory was close enough to a plane for it to be counted as being on

the plane, so that equations for that plane could be used to carry out the calculations.

The tolerance level could not be set too low or a penetration of the plane would be

missed, but the tolerance could not be set too high or the accuracy of computation

would be compromised. The tolerance level had to be adjusted heuristically according

to the circuit parameters and the integration step size. However, once it was set,

depending on the magnitude of the state variables and other factors, detection of

mode transition was still not guaranteed.

From the 3-D representation of the topological modes of the SRC in Figure 3-1,

it is possible to list all the allowed topological mode transitions. The program uses

this information as follows. Knowing the topological modes and values of the state

variables at the current time point, srctrans() calls nextval() to find the state variables

at the next time point. It then calls ckcfg() to find the topological mode for the new

point. There are several possibilities here. When there is no change in the topological

modes, no action is required, and numerical integration carries on. When a change

in topological modes is detected, the function determines whether that transition is

valid. If the change is a valid one, it does a linear interpolation to find the time
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and place of transition, saves the data as a critical point, and then recalculates the

trajectory from this critical point using equations for the new mode to the next regular

time point. When the trajectory moves from one volume mode to another, boundary

conditions have to be checked to see if the trajectory has penetrated a plane mode.

One example is the transition from M1 to M3. The planar M7 sector is only

a part of the plane separating M1 and M3. When the trajectory seems to move

from M1 to M3, it might be captured by the M7 plane and continue to move on M7

instead of going into M3. If the appropriate boundary conditions for M7 are satisfied,

then the equations for M7 will be used to carry on the computation. Otherwise, the

equations for M3 will be used. An invalid transition is usually caused by a large time

step at a place near the boundary of more than two modes in the state-space, for

example, near the origin. There are instances where the correct sequence of mode

changes should go, say, from mode X to Y to Z, but a large time step may result in

a mode change that goes directly from X to Z. For example, M1 cannot go to M2

without going through either M3 or M4. Of course, a semi-degenerate case can be

that M1 goes to M2 directly through the line i = i2, but this should not happen

in general. Upon finding an invalid transition and after checking for some of the

semi-degenerate conditions, srctrans() reduces the time step and recalculates until a

valid mode transition is attained. The list of allowed mode transitions can be derived

by inspection most easily from the 3-D representation of the topological modes in

Figure 3-1, although the number of possible transitions is not small.

Switching changes, like mode transitions, usually do not occur exactly at the

regular time points. When a change in the switching voltages el or e2 is detected,

srctrans() calls edtexact() to find the exact time of the change and computes the state

variables at that critical point.

The capturing of these critical points is an important feature of the simulator,

especially since a comparison between the simulated trajectory and the computed

results using the analytical models are made at these points. The ability of srctrans()

to vary internally the integration time step, At, when necessary at critical points or

when invalid mode transitions occur, makes it possible to specify larger time steps to
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obtain a fast simulation without losing the details at transition points.

Depending on the load model specified, srctrans() also updates the load voltage at

the regular time points, using a trapezoidal integration method. The output current

and voltage are referred to the primary side in computation, so the turns ratio has to

be specified in para2.

Long simulations with small time steps may generate unreasonably large numbers

of data points. The user is provided with the option to specify the compression ratio,

k, in the last entry of paral, so that only the first and every k-th point thereafter are

returned. The function dilute() is called to perform this task. We describe dilute()

as an auxiliary function, since it can be used in many other places.

In the rest of this section, we will discuss the functions that srctrans() calls.

Although in principle these functions can be used elsewhere as auxiliary functions,

they are almost exclusively used by srctrans(), and are considered more as a part of

srctrans().

9.2.2 Evaluation of State at the Next Time Point, nextval.m

From the current state at time t, neztval() calculates the value of the state at time

t + At, where At is the integration time-step size, using the trapezoidal integration

method:

x((k + 1)At) ~ x(kAt) + [((k + 1)At) + i(kAt)] At (9.1)
2

Combining it with the state-space equation of the system,

/*(t) = Ax(t) + Bu(t), (9.2)

yields the integration formula

x((k+l)At) (IA )- {(+ ) x(kAt)+ [Bu(kAt)+ Bu((k + 1)At)}
(9.3)

Depending on the current topological mode the SRC is in, neztval() picks the appro-

priate state-space equations in its computation. The generation of the input voltages
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and the determination of the topological mode of the SRC are handled by eswitch()

and ckcfg(), respectively. The values are passed to nextval() from srctrans().

It is worth noting that most of the code in this function is used to find the right

state-space matrix for the given topological mode. Computation of the state takes

only one line of code using the formula shown above. The computation of the output

voltage referred to the primary side, nvL, is done in srctrans(), since its computation

does not depend on the topological mode.

9.2.3 Determination of Topological Modes, ckcfg.m

The topological mode of the SRC is determined by ckcfg() based on the boundary

conditions set out in Table 3.1. The effects of numerical errors must be taken into

consideration. For example, vc is clamped to +E, but numerical integration may

lead the trajectory to a point above the vc = E plane. This point above the vc = E

plane is counted as being in mode M5. The function ckcfg() does not modify the

trajectory; it only reports the possible mode the SRC may be in. It is left to srctrans()

to recognize this penetration of the M5 plane into an impossible region and to fix the

trajectory accordingly.

The conditions in Table 3.1 are stated with > and < signs, so a point on the

boundary is ambiguous when a mode number has to be assigned to it. Since the state-

space equations for either of the modes are the same on the boundary, it makes no

difference which mode number is assigned. In assigning mode numbers, the conditions

in Table 3.1 are modified so that a point in the state-space can have a unique mode

number. The decisions in some cases are made for a specific reason, while in other

cases they are rather arbitrary. One example is the boundary between modes M1 and

M3 outside of the M7 plane. On the side where i > 0, mode number M1 is assigned,

while on the other side where i < 0, mode number M3 is assigned. The reason is

that the trajectory naturally tends towards M1 in the former case and towards M3

in the latter case, if we simply take a look at the state-space equations. Of course, if

the mode numbers are assigned the other way around, the program would still work.

The origin is located on the boundary of seven modes, namely MO, M1, M2, M3, M4,
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M7, and M8. Any one of these can be assigned, but M7 was chosen to represent the

origin purly for convenience. MO may have been a better choice because simulations

have shown that the trajectory usually goes into MO from the origin.

9.2.4 Switching Signals, eswitch.m

The voltage across the resonant circuit, vt, is the difference el - e2, where el and e2

are two square waves of the same switching frequency but with a phase shift. One

way to specify and generate the two input voltages conveniently is through the use of

two sine waves of the same frequency and phase difference as the square waves. The

value of the input voltage is then assigned according to the sign of the sine wave.

In certain cases, we may want el and e2 to be held at a constant dc value. This is

the case when we examine the trajectory velocity fields for the different combinations

of input voltages in Chapter 4. This can be done by setting the switching frequency

to zero and substituting in place of the phase values in paral the values of dc voltages

for el and e2.

9.2.5 Locating Exact Switching Times, edtexact.m

The function edtexact() was written out of the need to find the state variables at

the precise switching times. However, the values of el and e2 are ill-defined at the

transition times because we have modeled the input voltages as ideal square waves.

Given that switching has taken place between t and t2 at t + At, edtexact() returns

the value of At plus a very small amount E so that at t + At + c, the value of the

switching voltage is defined. This value of At + e is return to srctrans(). Hence, the

so-called precise value of switching time is really off by a very small percentage. In

the codes, is set to 10-7 of At. Given that there are approximations and errors from

many other sources, this error is entirely acceptable.
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9.3 Auxiliary Functions

After the time response of the SRC has been obtained from srctrans(), the raw data

may need to be processed in some fashion. For example, we may want to find the

average current, or we may want to display and print the trajectories. The auxiliary

functions perform some of these tasks.

9.3.1 Average Output Current, iavg.m

One of the important quantities that characterizes the SRC circuit is its average

output current. The output current referred to the primary side is the rectified

version of the sum of the inductor currents, i.e., i/n = il + i2 1. If the SRC is

truly in the steady-state, a moving average of the output current with a window size

equal to the switching period should be constant in time. The size of the ripples in

the windowed moving average may serve as an indication of the degree to which the

SRC is in steady-state. Discretization in time may introduce some errors, since the

window size stated in number of points does not correpond exactly to the duration

of a period in continuous time. This may artificially introduce some ripples in the

moving average. However, if the number of points in a period is sufficiently large,

such errors are small.

The number of computed points in a switching period of duration Ts is equal to

T,/At. The output of srctrans() is a diluted version, so the window size in number

of points is T/(k At), where k is the compression ratio. The moving average at

any time t is the average of the output current in the preceding period. Note that

iavg() only generates output at points after the first period, or t > T. If the input

is not regularly spaced, iavg() attempts to adjust the window size at every point, t,

so that if the window size is W, W points will be less than one period while W + 1

points will be more than one period. This, however, will weigh closely spaced points

more heavily. Therefore, the input to the function should be regularly spaced. The

function also outputs the average of the last period and the ripple size of the last

period. This is based on the assumption that usually the trajectory settles towards
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some steady-state, so the last period should be closest to steady-state and the average

output current of the last period should be closest to the true value. This assumption,

however, does not always hold.

9.3.2 Output Display, plsrc.m

The function plsrc() handles the screen display and plotting of the trajectories. Two

types of graphs can be displayed. One is the projections of the trajectories, as in the

standard method of displaying a 3-D object by projecting it onto three orthogonal

planes. This amounts to plotting one state variable versus another: vc vs. i2, VC

vs. il, and i2 vs. il. The second type of graph consists of four plots of responses of

various variables vs. time. The first plot is the voltage across the resonant circuit,

vt = el - e2, along with one of the switching voltages, el. The second plot displays

the tank capacitor voltage, vc, and the primary-side transformer voltage, vp. The

third displays the two inductor currents, i and i2, and the sum of the two currents.

A rectified version of the sum of the two currents is the output current. The last plot

traces the topological modes of the SRC as time goes on. It puts the M number on

the positive side of the axis and the S number on the negative side.

'The state variables are obtained from srctrans() while the values of the switching

voltages and transformer voltage can be obtained from evp(). The function plsrc() has

the ability to 'dilute' long input time series to under 1000 points, since the resolution

of either screen display or hard copy printing does not need more points. This avoids

generating unnecessarily large output files. The user also has the option of large-size

plots or small-size ones, and the option of screen display or saving the graphs to an

output file for hard copy printing.

Simpler output display routines are often written as part of the main simulation

programs if the display manipulation is not too complicated.
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9.3.3 3-D Animation, anim.m

Animation of the trajectory in 3-D requires Matlab 4.0 and above for its 3-D display-

ing capabilities. As we have said in Chapter 5, the trajectories are spirals on cylinders

in topological modes M1, M2, M3, and M4, and are circles or lines on the other mode

planes. The function anim() displays the trajectory in 3-D with a moving window.

To assist visualization, it also plots the projections of the trajectory alone with a

sketch of the cylinders and the planes it rides on. It calls on cylin() and planes() to

sketch the cylinders and the planes. The trajectory is not plotted against normalized

axes, so the projections of the trajectory do not follow circles but ellipses. Being able

to see the trajectories evolve in time as it moves in 3-D state-space gives us a better

feel for how the trajectories behave.

9.3.4 Feedback Controller, fbctrl.m

The feedback controller is simulated in fbctrl(). The feedback controller is a linear

system and its simulation can be handled by the Matlab function sim(). The input

to the feedback controller is the difference between the output voltage, nvL, and the

its nominal value, nVL.om, which can be a constant in most cases or a time series

like nvL for soft-start. The transfer function of the feedback controller is transformed

into a state-space description with the Matlab function tf2ss(). Each design of the

controllers is given a controller number, providing an easy way for the calling program

to pick any one of them in the design process.

9.3.5 Other Auxiliary Functions

Other useful auxiliary functions include the following.

srccomb. m

The data points at the regularly spaced time points and those at the critical points

are placed in separate variables by srctrans(). The two can be combined into one

sequence in order of time by srccomb().
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dilute.m

While a small time-step size and a large number of points may be necessary for

computation accuracy, they are not needed for output. The function dilute() picks

the first and every k-th column thereafter out of a time series, where k is the specified

factor.

evp. m

The switching voltages, el and e2, can readily be found for any time point, so there

is no need for srctrans() to include them as part of the output. The primary-side

transformer voltage, v,, can also be calcuated when we know the switching voltages,

the tank capacitor voltage, and the output mode S. When in S1, v = n VL; when

in S2, v = -n VL; and when in S3, v = el - e2 - vc. This is true whether vL is

assumed to be constant or not. Note that evp() should be run before plsrc() since

the switching and transformer voltages are needed in the plots.

cylin. m

The function cylin() is mostly used by anim() to handle the sketching of cylinders.

Using specified parameters such as the orientation of the cylinder, its radius, center,

etc., cylin() sketches the cylinder.

planes. m

The function planes() is also mostly used by anim(). It sketches the planes the

trajectory rides on.

mseq. m

Given the time response of mode M numbers, mseq() finds the topological mode

sequence in the last period of the time response and the corresponding number of

points for each mode. It finds only the mode sequence for the clamping diode modes

M.
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9.4 Simulation Calling Programs

To perform a specific simulation, a higher-level program calls srctrans(), often many

times with varying parameters, and uses some of the auxiliary functions to process

the data in order to extract useful information. Many of the graphs and data shown

in the previous chapters are generated by these simulation programs. These programs

have names starting with sim.

9.4.1 Trajectory Fields, simO.m, siml.m, sim5.m, sim7.m

The trajectory velocity fields shown in Chapter 4 are generated by repeatedly calling

srctrans() from a lattice of initial points. While holding the input switching voltages

at some combination of constant values, the trajectories are simulated for a short

period of time. The resulting trajectories approximately show the relative velocities

of the trajectories at these initial points.

9.4.2 Searching for the Nominal Phase Angle, simnom.m

To achieve a constant output power of 4kW, the average output current referred to the

primary side of the transformer has to be maintained at 58.82A. Given a particular

supply voltage E, and output voltage VL, a search for the switching phase angle ,

that will achieve the desired average output current is performed with the simple

method of bisection. A fairly loose range of phase angles is set at first, with the

upper bound giving an average output current larger than the desired value and the

lower bound giving a smaller value. Simulation is run at the midpoint until the SRC

settles into steady-state. The average output current is computed and the range of

phase angles is updated. Another midpoint phase angle is tested and the process is

repeated until the range is reduced to a small size, yielding the approximate nominal

phase angle.
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9.4.3 Steady-State Operating Modes and Average Output

Current, simsss.m, simsssi.m simssa.m, simssm.m

Assuming that the output can be modeled as a voltage source, we wish to find the

average output current for a range of supply voltages, E, and a range of phase angles,

,. We also wish to find the operating mode at each of these points. The program

simsss simulates the trajectories at each E, combination until the trajectories settle

into steady-state. The average output current values are computed with iavg() and

the M mode sequences are found with mseq(). All the data is saved, to be processed

by simssm. The program simsssi uses the data saved by simsss and plots the average

output current vs. phase angle for various supply voltages.

To establish a map of operating modes at various E and , it is necessary to

simulate more points in areas bordering different operating modes in addition to the

grid of points simulated in simsss. This is done with simssa. The binary box method

for determining the operating mode regions is briefly discussed in Chapter 6. The

program simssa is a similar to simsss, and builds on top of the data obtained by

simrsss to simulate at additional points. The locations of the new points are entered

manually, since it is not worthwhile to write an automated scheme for locating the

additional points (because the simulation time is much larger than the time needed

to modify the simssa file a little and enter a few points).

The program simssm sifts through the M sequences at each E, point, compares

the mode sequence with the mode sequences of known operating modes, determines

its operating mode number if it matches one of the known operating modes, or assigns

a new operating mode number if a match cannot be found. It then plots the operating

mode table.

9.4.4 Nominal States at Switching Times, simsyo.m

The nominal phase angle found by simnom delivers the desired average output current

only approximately. However, for the angle selected, we need to know the trajectory

more precisely in order to find the small-signal transition matrices. Although the
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trajectory of the SRC converges to a steady-state very fast, the precise values at the

switching times do not converge fast. Numerical errors also accumulate if we run

the simulation for a very long period of time. Therefore, after the trajectory has

roughly settled into steady-state and we know the approximate values of the state at

the switching times, simulations are run from a grid of points near the approximate

state for about one period. The starting point that closes onto itself after one cycle

with the least amount of deviation is chosen to be the nominal starting point. This

process is repeated with finer resolution. The search for the nominal values of the

states are performed at two switching times, vt: E -- 0 and vt 0 -- -E.

9.4.5 Small-Signal Transition Matrices, simsyq.m

Once we have found the precise states at the two switching times that will close onto

themselves after a cycle, we may perturb the states by a little in different directions,

and find the perturbations at the end of the cycle. Small-signal transition matrices

can be constructed according to the formula shown in Chapter 7. Perturbations

of different magnitudes and directions are applied at the two switching times and

the transition matrices at the two places are computed. Averages of the transition

matrices are taken and the eigenvalues are found. The output is written to a diary

file and is listed in Appendix B for comparison with values computed in Maple using

the analytical model.

9.4.6 System with Feedback Controller, simplt.m, simctr.m

simstr.m

In simplt the switching phase angle, , or the supply voltage, E, is perturbed by a

little at the beginning of a switching cycle, after the circuit is already in steady-state.

The program waits for the circuit to settle into steady-state again and finds the new

average output current. We may then calculate the numerators, ,3 and y, of the

transfer functions for the converter, as set out in Chapter 8.

The closed-loop system with feedback controller is simulated in simctr. It is sim-
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ulated on a cycle-by-cycle basis, because the phase angle correction is sampled at the

beginning of every switching cycle. A variety of different operating conditions can

be specified by changing the parameters, such as initial state variables, load model,

nominal values for phase angle, supply voltage, output voltage, their initial values,

etc. The small-signal feedback controller is simulated with fbctrl(), but the nonlinear

control rules and the feedforward controller codes are written here. Operating con-

ditions, such as load demand and supply voltage, can also be changed from cycle to

cycle, to simulate conditions such as the transition between full-load and no-load, or

the droop in supply voltage. Since the droop in E is assumed to be slow, it is ap-

proximated by a step decrease from cycle to cycle. Parts of the control system such

as disturbance feedforward, or the nonlinear control rules, can be disabled by taking

out the corresponding lines of code in the program. The program output consists

of a plot of the output voltage and the control signal from the feedback controller

as continuous waveforms. The sampled control signal actually used to correct the

phase at the beginning of each switching cycle is plotted as a discrete-time series.

It is not necessarily the same as the control signal from the output of the feedback

controller, due to saturation, nonlinear control, and disturbance feedforward. Most

of the simulations shown in Chapter 8 are produced with this program.

The program simstr is very similar to simctr. It is used to simulate the start-up

conditions of the converter. To correct integrator windup in the feedback controller

due to large initial deviation in output voltage from its nominal value, a soft-start

strategy is applied by specifying the reference nvL,,, as a smooth ramp function,

starting at near zero and reaching the nominal value in about 30 cycles. This is a

special case because in almost all other situations, the nominal values are used.
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Chapter 10

Conclusion

We have first examined individually the topological modes of the series resonant

converter with clamped tank capacitor voltage. In each of the topological modes, the

circuit is LTI, so state-space equations can be written to represent them. State-space

representation also forms the basis for the simulation program. Although the number

of topological modes is not small, by separating the clamping diode modes and the

output diode modes, we have kept the analysis manageable.

Analysis of the state-space trajectories in each of the topological modes is first

carried out via trajectory velocity fields. Trajectory geometry is further examined by

solving the state-space equations. Depending on the topological mode, the trajectories

can be lines or circular arcs in plane modes or spirals in volume modes, when plotted

against normalized axes. A complete trajectory is simply a concatenation of the

segments in the topological modes it goes through.

With simulations, we have found ten operating modes for the range of supply

voltages and switching phase angles for normal operations of the converter. A nominal

operating point that produces the desired 4kW output power is selected. From the

solutions to the state-space equations, large-signal transition matrices are derived

for the nominal operating point. Large-signal and small-signal sampled-data models

around the nominal point are developed, and the results are verified by simulation.

The small-signal model shows that the SRC has fast dynamics and is essentially

first-order.

116



By approximating the SRC as a first-order system, a small-signal feedback con-

troller is developed using classical control methods. Nonlinear control rules are added

to handle large-signal errors, and a disturbance feedforward scheme is added to im-

prove disturbance rejection characteristics. Simulations under various circuit operat-

ing conditions validate the controller design.

Most of the modeling and analysis have been done with the assumption that the

supply voltage and the output voltage are constant. Consideration of the output

model has been incorporated in the controller design process, and the simulation pro-

gram is able to model the output dynamics. Further studies of this SRC circuit may

include more accurate modeling of the converter by taking into acount the dynamics

of the output and the supply voltage variation. More detailed analysis of the SRC

at other operating points should be performed to see if the first-order approximation

of the SRC is indeed justified. Although the controller design based on a first-order

approximation of the SRC proved to be quite adequate in performance, a higher-

order model of the dynamics of the converter may give us a better controller design,

particularly in terms of better disturbance rejection.

The simple controller designed in this thesis performed well. However, it is still

of interest to see if our analysis of trajectory geometry can lead to nonlinear con-

trollers whose large-signal performance can be theoretically guaranteed (in contrast

to the empirical 'guarantees' provided by more simulation of a variety of operating

conditions, as done in this thesis). One such design of a nonlinear controller for the

conventional series resonant converter is presented in [6]. Another challenge for future

work is to provide a simple explanation for why the SRC dynamics (with constant-

voltage load) is essentially first-order. Related to this is the task of directly deriving

approximate continuous-time first-order models of the dynamics, perhaps in the style

of [8] or [9].
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Appendix A

Simulator Source Codes

A.1 Core Programs

srctrans. m
function tall,xall,mall,sall,tmor,xmor,mmor,smor,nVLall]...
=srctrans(xO,para,para2)

X. Ct,x,m,s,tm,mm,msm,nvl]=srctrans(xO,para,para2)

% [t,s,m,s]=srctrans (O,paral ,para2)
% generates the transient response of the state trajectory given the
% initial state xO and parameters contained in para and para2.
7% The initial xO is assumed to be a valid state so that no fixing is
, needed on xO.

% [t,x, ,,tm,smxm,mm,sm =srctrans(xO,paral,para2)
X With eight output arguments, both the regularly spaced points and
% the critical points are outputed.
X Use SRCCOMB to insert the critical points into the regular points.

% [Ct,x,m,s,tm,xm,mm,sm,nvl]=srctrans(xO,paral,para2)
% With nine output arguments, the output voltage is also available
% but only at reguarly spaced time points.

% parai=[C; L; E; initial nVL; freq,dc; phi; ph2; err;
f dt; tlower; tupper; compression ratio]

% para2 is optional. It specify additional parameters where default
%. values are substituted if it is not given
Y para2=[CL; RL; IL; n; VLcase];
Y. with default para2=[.01; 0.0181; 8; 0; 0];
% VLcase=O: VL is constant
% VLcase=l: VL in parallel with RL
Y, VLcase=2: Output is a current source, must specify IL

% Written Spring 93, Terrence Ho
% Modified 6/23/93 to make output sequence equally spaced in time
%X Modified 6/26/93 to make time reference tlower and tupper absolute
% Modified 7/20/93 to fix undifferentiable transition points between modes
% Modified 8/2/93 to fix transition in control inputs
% Modified 8/5/93 to enable output of critical points
% Modified 12/8/93 to enable special switching cycle case number ecase
% Modified 12/9/93 to enable variable VL and its output and additional para2
% Modified 12/20/93 to take out ecase as it is not used at all

X ===== default constant parameters =======
if nargin==2 % When no parameters on the output model is
CL=.01; % specified, assume constant voltage output model.
RL=. 0180625;
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IL=8.6/0.0180625/8;
nt=8;
VLcase=O;

X ecase=O;
else
CL=para2(1); % Read the individual parameters from the
RL=para2(2); X parameter vectors.
IL=pra2 (3);
nt=para2(4);
VLcase=para2(5);

' ecase=para2(6);
end
E=para(3);
err=para(8);
dtorg=para(9);
tlower=para(10);
tupper=para(ii);
compress=round(para(12)); % ake sure compression ratio is an integer
if compress<=0 % and it should be made positive.
compress=i;

end;

X ===== Initial condition.
dt=dtorg;
tall=tlover:dtorg:tupper;
tlen=length(tall);
pctmark=fix(tlen/10);
k=1;
kk=1;
xct=xO;
ilct=xO(1);
i2ct=xO(2);
vcct=xO(3);

5S 

% Generate the regularly spaced time points

A variable used to signal "percent completed"
% Initializing some indices

X Set initial state

Eelct e2ct]=eswitch(tall(k) ,para);
[elnt e2nt]=eswitch(tall(k)+dt,para);
[mct, sct] =ckcfg(xct, eict, e2ct ,para);
xall=xct; X Fill the first point with initial values
mall (i)=mct;
sall(l)=sct;
nVLall(1) =para(4);

% ===== Start the iteration
disp('Nessage, srctrans(): Percentage completed: );
while k<=tlen-1 X k+1 is filled in the loop
if rem(k,pctmark)=0 X Display percentage completed
disp(round(i00*(tall(k)-tlower)/(tupper-tlower)))

end;
act=0; X Initialize some variables and flags for
itcount=0; % each new point
dtcum=0; X Cumulative time from last time point
next=O;
nVL=nVLall(k); X nVL is assumed to be constant at each point
para(4)=nVL; % Reset para. Some subrountines use nVL
while next=l K Repeat until ready for next regular time point

if act==2, itcount=itcount+l; X Display the number of times of
if itcount>=2, itcount, end; end halving dt.

if elct'=elnt e2ct'=e2nt X If there is a change in switching
dt=edtexact(tall(k)+dtcum, tall(k)+dtcum+dt, para);

end; X find the precise time
xnt=nextval(xct,elct,e2ct, eln 2nt,mct,sct,dt,para);
ilct=xct(1); % Find the next point
i2ct=xct(2); X dt is not necessarily equal to dtorg
vcct=xct(3);
ilnt=xnt(i);
i2nt=xnt(2);
vcnt=xnt(3);
[mt,snt =ckcfg(xnt,elnt,e2nt,para);
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% === Determining transition in modes and S
if mnt==mct & snt==sct %
act=i;

o change in mode=======================
'o change in modes ========

elseif mnt=-mct & snt'=sct % Fix discontinous conduction ==
if(sct==i & sat==2) I (sct==2 sant==) % S->S2 or S2->SI
f=-(ilct+i2ct)/(ilnt-ilct+i2nt-i2ct); % den can't be zero
xnw=xct+f*(xnt-xct); % or the vector will be // il+i2=0
xnt=xnw; % xnv is the crossing pt on il+i2=0 plane
xnt(2)=-xnt(i); % force il+i2=0 just in case
dt=dt*f;
act=3;
if xnw(3)>=elct-e2ct-2*nVL & xnv(3)<=elct-e2ct+2*nVL % vcnw ok
snt=3; % If the crossing pt ill stay in S3, set snt
end % otherwise, snt stay the same as before

else % Other changes in S are fine
act=1; % This may need fixing.

end

% Change in mode =======
elseif mnt'-mct & '(sct==l & snt==2) & '(sct==2 & snt==l)
if mct==S t (mnt==l I mnt==4 I mnt==O) % leaving M6
act=i;

elseif mnt==6 t (mct==O mct==l I mct==4 ) % going onto 6
if vcnt==E % vcnt is guaranteed to be >=E
act=1;
elseif vcnt'=vcct % dx not // to vc=E
f=(E-vcct)/(vcnt-vcct);
xnt=xct+f*(xnt-xct);
xnt(3)=E; % Force vc to E just in case there
dt=dt*f;
act=3;
else
disp('Error. dx parallel to M6, not on 65 but
disp('Error partially recovered.');
xnt(3)=E;
act=i;

is a small error

going onto M6.');

end;
elseif mct==6 (mnt==2 mnt==3 mnt==O) % leaving e
act=i;
elseif mnt==6 (mct==O mct==2 mct==3) % going onto m6
if vcnt==-E % vcnt is guaranteed to be <= -E
act=l;
elseif vcnt'=vcct % dx not // to vc=-E
f=(-E-vcct)/(vcnt-vcct);
xnt=xct+f*(xnt-xct);
xnt(3)=-E; % Force vc to -E just in case there is a small err4
dt=dt*f;
act=3;
else
disp('Error. dx parallel to 6, not on M6, but going onto H6.
disp('Error partially recovered.');
xnt(3)=-E;
act=3;
end;
elseif mct==7 (mnt== I mnt==3 ) % leaving M7
act=i;
elseif (mct==l & mt==7) I (mct==3 mnt==7) % h1 or M3 onto

,);

N7
act==i;
elseif (mct==l t mnt==3) I (mct==3 mnt==i) % bet. hi H3, ck N7
f=-vcct/(vcnt-vcct); % den won't be zeros or dx // vc=O
xnv=xct+f*(xnt-xct);
xnt=xnw;
xnt(3)=0; % force vc=O just in case
dt=dt*f;
act=3;
if xnw(i)>=O & xnw(2)<=O
mnt=7; % If the crossing pt is in M7, fix mnt
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end;

elseif mct==8 & (mnt==2 [ mnt==4 ) h leaving M8
act=l;
elseif (mct==2 mnt==8) (mct==4 k mnt==8) % 2 or M4 onto M8
act=i;
elseif (mct==2 mnt==4) I (mct==4 mnt==2) % bet. M2 M4, ck M8
f=-vcct/(vcnt-vcct); % den won't be zeros or dx // vc=O
xnw=xct+f*(xnt-xct);
xnt=xnv;
xnt(3)=0; % force vc=O just in case
dt=dt*f;
act=3;
if xnv(i)<=O k xnw(2)>=0
mnt=8; % If the crossing pt is in M8, fix mnt
end;

elseif mct==O (mnt==l mnt==2 I mnt==3 mnt==4 I mnt==7 I mnt==8)
act=l; % leaving MO

elseif mnt==O (mct==l mct==2 I mct==3 mct==4 I mct==7 I mct==8)
act=l; % onto MO; !!! There may be complications here !!

elseif (mct==l mnt==4) (mct==4 & mnt==) I (mct==2 & mnt==3) ...
I (mct==3 & mnt==2)

f=(ilct-i2ct)/(-iint+iict+i2nt-i2ct); % den can't be zero
xnw=xct+f*(xnt-xct); % or the vector will be // il=i2
xnv(2)=xnw(1); % force il=i2 just in case
[elnw e2nv]=eswitch(tall(k)+dt*f,para);
[mnw,snw]=ckcfg(xnw,elnw,e2nw,para);
if mnw==O
mnt=O; % fix numbers
xnt=xnw;
dt=dt*f;
act=3;
else
act=l; % dx doesn't go through MO, leave it
end

% semidegenerate case
elseif (mct==7 & mnt==8) (mct==8 & mnt==7)
f=-ilct/(iint-iict); % vc=O and find pt goint through i=O
xnw=xct+f*(xnt-xct);
if abs(xnv(2))<err % check for i2=0
act=l;
else
act=2;
end;
elseif (mct==l & mnt==2) (mct==2 & mnt==i) I (mct==3 & mnt==4) ...

I (mct==4 & mnt==3)
f=-vcct/(vcnt-vcct); % den won't be zeros or dx // vc=O
xnw=xct+f*(xnt-xct);
if xnw(2)==xnwC(:L) % going through il=i2 is allowed
act=l;
else
act=2;
end
else % The transition can't be done without an intermiate step
disp('Info. Transition not listed or not allowed. (act=2)');
act=2; ' half the time step dt
end;

else , Impossible cases
, disp('Message, srctrans(): Change in M and S1<->S2.')
% act=2; % Causes problems because the boundary is assigned to Si

, Reduction in dt does not solve some cases
disp('Should never get here. ');
end

if act==l
dtcum=dtcum+dt;
dt=dtorg-dtcum; % dt is set to the remaining portion to next t pt
xct=xnt;
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mct=mnt;
sct=snt;

elseif act==3
dtcum=dtcum+dt;
dt-dtorg-dtcum;

% same code for act==3 and act==l
%, with mtest section take out
% adjust dt and rerun

xct=xnt;
mct--mnt;
sct=snt;
[mtest stest]=ckcfg(xnt,elnt,e2nt,para);
if mnt-=mtest
disp('discrepency in ');

mact sct xct' eict e2ct;
mnt snt xnt' elnt e2nt;
mtest stest zeros(i,S)]

end;
if snt'=stest
disp('discrepency in S');
[mct sct xct' elct e2ct;
mnt snt xnt' elnt e2nt;
mtest stest zeros(l,S)]

% just checking ...
% may take these lines out

end;
elseif act==2 % else half dt and recalculate as much as necessary
dt=dt/2;
disp('Reduction in dt at));
disp(Emct sct xct' elct e2ct; mnt snt xnt' elat e2nt]);

else
disp('Error. ull action number. Error in programming.');

end

if abs(dtorg-dtcum)<dtorg*le-9
k=k+l; % increinent k and store data only if
xall(:,k)=xct; % at equally space time interval
mall(k)=mct; % k=1 is for xO, new data start at k=2
sall(k)=sct;
Eelct e2ct]=eswitch(tall(k),para);
[elnat e2nt]=esitch(tall(k)+dtorg,para);

dt=dtorg;
next=i; % Set flag and ready for next regular t pt
if VLcase==O % load is VL
nVLall(k)=nVLall(k-1);
elseif VLcase==l % load is RL in parallel with CL

% nVLall(k)=nVLall(k-l)+(nt*nt*(abs(xall(l,k-l)+xall(2,k-1))) ...
% -nVLall(k-i)/RL)*dtorg/CL; % Forward Euler

nVLall(k)=((C-dtorg/(2*RL*CL))*nVLall(k-)+(dtorg*nt*nt/(2*CL)) ...
*(abs(xall(,k-)+xall(2,k-))+abs(xall(ik)+xall(2,k)))) ...
/(l+dtorg/(2*RL*CL)); % trapezoidal

elseif VLcase==2 % load is current source in paralle with CL
nVLall(k)=nVLall(k-i)+dtorg *(nt*nt*(abs(xall(,k-)+xll(2,k-)) ...
+abs(xall(l,k)+xall(2,k)))/2-nt*nt*IL)/CL; % trapezoidal

end % nvl is available only at regular t pts
else
tmor(kk)=tall(k)+dtcum; % Save the critical points
xmor(:,kk)=xct;
mmor(kk) =mct;
smor(kk)=sct;
kk=kk+1;
Ceict e2ct]=eswitch(tall(k)+dtcum,para);
[elnt e2nt]=eswitch(tall(k)+dtcum+dt,para);

end
end

end;

disp('Nessage, srctrans(): Transient response computation completed.');

% ======7.…=== Compress the output to reduce the number of points =======
tall=dilute(tall,compress);
xall=dilute(xall,compress);
mall=dilute(mall,compress);
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sall=dilute(sall,compress);
nVLall=dilute(nVLall,copross);

neztval.m
function xnt=nextval(x,el,e2,eint,e2nt,mcfg,scfg,dt,para)
. xnt=nextval(x,el,e2,elt,2nt,en,mcfg,scfg,dt,para)
% Takes x(t), u(t), u(t+dt), mode, S mode, dt
% and finds x(t+dt) using trapezoid method

% Written Spring 1993, Terrence Ho

C=para();
L=para(2);
E=para(3);
nVL=para(4);
if scfg==i
vp=nVL;
elseif scfg==2
vp=-nVL;
end;

% Get the right A matrix
if scfg==3 % <--- discontinuou
if mcfg==O0
A=[O 0 0; 0 0 0; 1/C 0 0];
elseif mcfg==l I mcfg==2
A=[O 0 ./L; 0 0 -.S/L; 0 1/C 0;
elseif mcfg=3 I mcfg==4
A=E[ 0 -.6/L; 0 0 .6/L; 1/C 0 0];
elseif mcfg==B I mcfg==6
disp('Error in nextval. M6, 6 sho
else
A=zeros(3,3);
end
else % <--- normal condu
if mcfg==0
A=[O 0 -.6/L; 0 0 -.S/L; /C 0 0;
elseif mcfg==l I mcfg==2
A=[ 0 0 ; 0 0 -/L; 0 1/C 03;
elseif mcfg==3 I mcfg==4

A=[O 0 -/L; 0 0 0; /C 0 0;
else
A=zeros(3,3);
end
end

S conduction S3

uld not occur with S3');

tction S or S2

% Now get the u's
if scfg==3 % <--- discontinuous conduction S3
if mcfg==O0
u=zeros(3,1);
unt=zeros(3,1);
elseif mcfg==l I mcfg==3 I mcfg==7
u=[(ei+e2)/2-E; -(el+e2)/2+E; 01/L;
unt=[(elnt+e2nt)/2-E; -(elnt+e2nt)/2+E; 0/L;
elseif mcfg==2 I mcfg==4 I mcfg==8
u=[(el+e2)/2; -(el+e2)/2; 0/L;
unt=[(elnt+e2nt)/2; -(eint+e2nt)/2; 0]/L;
else
disp('Error in nextval. M6, n6 should not occur with S3');

% <--- normal conduction S1 or S2
if mcfg==O
u=.6*(ei-e2-2*vp)*[1;1;0]/L;
unt=. *(elnt-e2nt-2*vp)*[1;1; 0/L;
elseif mcfg==l I mcfg==3 I mcfg==7
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u=[el-E-vp; -e2+E-vp; O]/L;
unt=Eelnt-E-vp; -e2nt+E-vp; O]/L;
elseif mcfg==2 mcfg==4 I mcfg==8
u=[el-vp; -e2-vp; O]/L;
unt=[elnt-vp; -e2nt-vp; O/L;
elseif mcfg==
u=[el-E-vp; -e2-vp; O]/L;
unt=[elnt-E-vp; -e2nt-vp; O]/L;
else
u=[el-vp; -e2+E-vp; O]/L;
unt=Eelnt-vp; -e2nt+E-vp; O/L;
end

end

xnt=inv(eye(3)-A*dt/2)*((eye(3)+A*dt/2)*x+(unt+u)*dt/2);

ckcfg. m
function [m,s]=ckcfg(x,el,e2,para);
X m,s]=ckcfg(x,el,e2,para)
% Finds possible mode and S mode
% the switching voltages.

% Written Spring 93, Terrence Ho

E=para(3);
nVL=para(4);
err=para(8);
il=x(l);
i2=x(2);
vc=x(3);

if abs(ii-i2)<err
i1=(ii+i2)/2;
i2=il;

end

if abs(il+i2)<err
il=(il-i2)/2;
i2=-il;

end

for a point in state-space given

% Tolerance used for determination of equality

%, ==…========= Determination of Mode ===== =======
m=10; % error trap
if vc>=E % On the top plane (and everything above) ==…
if i>O & i2>0
m=S; i1=O0 or i2=0 is not included in NS to avoid S3
elseif i>i2 % the region not of MS must be Mi or 4
m=i;
elseif i<i2
m=4;
else
m=O; % or possibly MO
end;

elseif vc<=-E % On the bottom plane (and everything below) 
if il<O t i2<0 % i=O or i2=0 is not included in M6 to avoid S3
m=6;
elseif il>i2 % the region not of MN must be 3 or 2
m=3;
elseif il<i2
m=2;
else
m=O; X or possibly MO
end;
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elseif vc>O
if il>i2
m=1;
elseif i<i2
m=4;

else
m=O;

end;
elseif vc<O
if il>i2
m=3;
elseif ii<i2
m=2;

else
m=O;

end;
else
if il>=O & i:
m=7;
elseif i<=O
m=8;
elseif ii>i2
if ii>O
m=1;
elseif i<O
m=3;

end;
elseif ii<i2
if i>O
m=4;
elseif il<O
m=2;
end;
else
m=O;

end;
end;

if m==O
vcl=(ei+e2+vi
vc2=(el+e2-v4
if vci>E
m=1;
elseif vcl<O
m=2;

elseif vc2>E
m=3;
elseif vc2<0
m=4;

end;
end;

if m==10
disp('Error.

end;

% In the upper half, O<vc<E ==

% for i=i2 it may be 0

% In the bottom half, O>vc>-E

for i=i2 it may be O%

%
2<=0

i'
& i2

X
Y.
%7.z
7.
%

On the middle plane of vc=O
% Unlike in 6S or M6, the equal signs includes

the i=O or i2=0 boundaries for convenience in I7 & M8
!>=0
Starting at the origin, M7 will be assigned !!!!****
if not in either M7 or M8 and on boundary of H1 & 3
assign half to i since the trajectory leads to i
in that region; it tends towards S on the top plane
assign the other half to 3 since the trajectory leads
to M3; it tends towards M6 on the bottom plane

%, if not in 7 or 8 and on boundary of 2 & M4
% assign half to 4 since the trajectory leads to 4
% in that region; it tends towards M5 on the top plane
% assign the other half to 2 since the trajectory leads
% to 2; it tends towards E on the bottom plane

% The remaining case of i=i2
% It is only a possibility that it's O

% Further determination of HO===== ========
c)/2;
c)/2;

% If no mode is found to fit the state variables
No mode assigned to the set of state variables.');

% ====-=========== Determination of ode S
if i+i2>0
s=;

elseif ii+i2<0
s=2;

else % i+i2=0
if vc>=el-e2-2*nVL vc<=el-e2+2*nVL
s=3;

else
s=1;

end;
end;

% cannot sustain S3 so arbitrarily assigned to Si
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eswitch. m
function el,e2]=eswitch(t,para)
% [el e2]=eswitch(t,para)
% For nonzero frequency rad/sec, phi and ph2 are restricted to between
% -pi and pi in radians.
% Positive phase shift the control to the left and negative to the right.
%, To get a dc value for e, set freq=O, phase=O or E
7, t must be a scalar

% Written, Spring 93, Terrence Ho

E=para(3);
freq=para(5);
phi=para(6);
ph2=para(7);

if freq==O
ei=phl;
e2=ph2;
else
ei=E*(sin(freq*t+phl)>=O); E i sin >=O; 0 if sin <0
e2=E*(sin(freq*t+ph2)>=0);
end

edtexact.m
function dt=edtexact (tct,tnt ,para)
%, dt=edtexact(tct,tnt,para)
, Finds the (almost) exact time of change in el and e2

X Written 8/4/93, Terrence Ho

E=para(3);
freq=para(S); % freq, phi, and ph2 are in radians
phl=para(6);
ph2=para(7);
T=2*pi/freq;

elct=E*(sin(freq*tct+phl)>=O); % E if sin >)=; 0 if sin <0
eint=E*(sin(freq*tnt+phl)>=O); X same method as in eswtich.m
e2ct=E*(sin(freq*tct+ph2)>=0); % can use eswitch to find these values.
e2nt=E*(sin(freq*tnt+ph2) >=0);
dtmax=tnt-tct;

if (freq==O) I (elct--elnt & e2ct==e2nt)
disp('Nessage from edtexact(). o change in ei or e2. );
dt=dtmax;
else
if elct'=eint
dtp=rem((freq*tnt+phl),pi)/freq; % w*(t+dtp)+ph=n*pi+delta; dtp=delta/w;

%, if elct<eint % going from neg to pos no need to add extra dt
X dti=dtmax-dtp;
% else

dtl=(dtmax-dtp)*(l+le-7); % add a little to dt to avoid boundary
% end % to ensure a change in el is maintained
else
dti=dtmax;
end
if dtl>dtmax % When dtmax is so close to the exact switching time
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disp('Warning, edtexact(): dti>dtmax'); disp([dtl dtmax]);
dtl=dtmax; % just use dtmax
elseif dtl<=O
disp('Warning, edtexact(): dtl<=O'); disp([Cdti dtmax]);
dtl=dtmax;
end
if e2ct'=e2nt
dtp=rem((freq*tnt+ph2),pi)/freq;
if dtp>dtmax I dtp<O
disp('Error, edtexact(): dt>dtmax or dt<O.');
end

X if elct<elnt % going from neg to pos no need to add extra dt
% dtl=dtmax-dtp;
% else

dt2=(dtmax-dtp)*(l+le-7);
. end
else
dt2=dtmax;
end
if dt2>dtmax % When dtmax is so close to the exact switching time
disp('Warning, edtexact(): dt2>dtmax'); disp(Edt2 dtmax]);
dt2=dtmax; % just use dtmax
elseif dt2<=O
disp('Warning, edtexact(): dt2<=0'); disp(Edt2 dtmax]);
dt2=dtmax;
end
dt=min([dtl dt2]); % If there is a change in both el and e2, take smaller
end

A.2 Auxiliary Programs

iavg.m
function iav,iavt,ripple]=iavg(t,x,para)

% [iav,iavt,ripple]=iavg(t,x,para)
% iav=moving average with window size approximately equal to switching period
% iavt=average of last period, defined as the precalculated window size
X ripple=peak-to-peak ripple in last period

% Written Spring 93, Terrence Ho

freq=para(S);
dt=para(9);
compress=round(pars(12));
if compress<=O
compress=l;

% ake sure compression ratio is an integer
% and it should be made positive.

end;

T=2*pi/freq;
window=round(T/dt/compress); % only an approximation

iout=abs(x(l,:)+x(2,:));
if indow>=length(iout) % If there is less than one period of data
disp('Warning, iavg(): ot enough points for the window size.');
iav=zeros(iout);
iavt=sum(iout)/length(iout);
ripple=max(iout)-min(iout);
else % Otherwise,
iav=zeros(l:window); % iav is zero for the first period of data

% for i=l:window % The other option is a variable window si:
% iav(i)=sum(iout(:i))/i; X for the first period
end
for i=window+l:length(iout)
pts=window; % Dynamic adjustment of window size to bes

mze

t
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while (i-pts>=i) % fit one period
if (t(i)-t(i-pts+i)) > T % window too large
pts=pts-i;
elseif (t(i)-t(i-pts))<T % window too small
pts=pts+l;
else % If window is smaller than T, but window+i
break % is greater than T, this is the right size.
end % This is not necessary i time points are
end % regularly spaced. Dynamic adjustment will
iav(i)=sum(iout(i-pts+i:i))/pts; Y, weigh closely spaced points more.
end

end
% The following codes assume no dynamic

iavlastT=iav(length(iav)-vindow+i:length(iav)); % window size adjustment
iavt=sum(iavlastT)/length(iavlastT); % iavt is not necessarily equal
ripple-max(iavlastT)-min(iavlastT); % to iav(lenght(iav))

plsrc.m
function plsrc(tin,xin,vpin,elin,e2in,min,sin,tmin,tmax,task,size,prt)
% plsrc(t ,x,vp,el,e2,m,s,tmin,tmax,task,size,prt)
% If the number of points to be plotted exceeds 1000, they will be diluted
% to ensure fast display and printing.
% To perform multiple tasks, enter the product of the task numbers
X as the task number.
% task 2: projections of trajectories onto 1) vc vs. i2; 2) c vs. ii;
X and 3) i2 vs. it
7, task 3: transient response of 1) el-e2,el; 2)vc; 3)ii+i2,ii,i2;
% and 4)Configuration mode number and -S
% size==O: small plots (default)
% size==l: large plots
% prt==O: no printing (default)
% prt==l: printing, output meta

for kmin=i:length(tin)
if tin(kmin)>=tmin
break
end

end
for kmax=length(tin):-1:1
if tin(kmax)<=tmax
break
end
end

if kmax-kmin+i<=1000 X
t=tin(kmin:kmax); X
x=xin(:,kmin:kmax);
vp=vpin(kmin:kmax);
ei=eiin(kmin:kmax);
e2=e2in(kmin:kmax);
m=min(kmin:kmax);
s=sin(kmin:kmax);
else %
dilute=round((kmax-kmin+i)/500);
jj=l; %
kk=kmin; %
while (kk>=knin & kk<=kmax)
t(jj)=tin(kk);
x(: ,jj)=xin(:,kk);
vp(jj)=vpin(kk);
el(jj)=elin(kk);
e2(jj)=e2in(kk);
m(jj)=--min(kk);
s(jj)=sin(kk);

file appended to plotsrc.met

X Find the index for the
% the time series

beginning of

% Find the index for the end of the
X time series

If there are less than 1000 points
to be plotted, fine

Otherwise, dilute the time series so
% that there less than 1000 points

Screen display or hard copy plotting
does not need anywhere near 1000 points
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jj=jj+l;
kk=kk+dilute;
end
end

if round(task/2)==task/2 X ================= trajectory
clg;
axis('square');

if size==l, subplot(121), else subplot(221), end
plot(x(2,:),x(3,:),'v');
grid; xlabel('i2'); ylabel('vc');
demi2vc=axis; axis; , save the dimensions of i2 vs. vc

if size==, subplot(122), else subplot(222), end
plot(x(l,:),x(3,:),'-w',x(2,:),x(3,:),'--w');
grid; xlabel('il,i2(dashed)'); ylabel('vc');
demilvc=axis; axis; X save the dimensions of il vs. vc

if size==l
if prt==l, meta plotsrc, else, pause, end
clg
end;

if size==i, subplot(122), else subplot(224), end
axis([demiivc(1:2) demi2vc(i:2)]); % use the saved dimensions so that
plot(x(i,:),x(2,:),'w'); % the projections agree in dimensions
grid; xlabel('ii'); ylabel('i2');
axis;

if prt==i, meta plotsrc, else, pause, end

axis('normal');
end;

if round(task/3)==task/3 X ==.. .====== transient
clg;

if size==l, subplot(211), else subplot(221), end
plot(t,el-e2,'-v', t,el,'--v'); % Svitching voltages
grid; title('el-e2, el(dashed)');

if sise==, subplot(212), else subplot(222), end
plot(t,x(3,:),'-w',t,vp,'--v'); % vc and vp
grid; title('vc, vp(dashed)');

if size==l
if prt==l, meta plotsrc, else, pause, end
clg
end;

if size==i, subplot(212), else subplot(223), end
plot(t,m,'ow',t,-s,'ow'); X topological modes
grid; title('Node and -S');

if size==i, subplot(211), else subplot(224), end % currents

grid; title('il+i2, ii(dashed), i2(dashdot)');

if prt==i, meta plotsrc,
%else, pause,
end
end;
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anim.m
function anim(t,x,m,s,para,wsize,vspace,tpause,el,e2,vp)
%function anim(t,x,m,s,para,wsiz, wspace,tpause,el,e2,vp)
%X size=vindov size
% wspace=number of points the window should move up after each screen
% tpause=time delay between each window display
% ol,e2,vp are optional. If not specified, they will be calculated here
X Requires Natlab 4.0 or above with 3-D plotting capabilities

% Written 10/93, Terrence Ho

C=para(1);
L-para(2);
E=para(3);
if nargin<11
disp('Message, anim(): Computing el, e2, and vp.');
el ,e2,vp]=evp(t,x,m,s,para);

end

imin=min(min(x(i:2,:))); imax=max(max(x(1:2,:))); X setting axis limits
idif=imax-imin; iavg=. 6*(imin+imax);
iabmax--max(abs(imax),abs(imin));
%vmin--min(x(3,:)); vmax=--max(x(3,:));
vmin=-E; vmax=E;
vdif=vmax-vmin; vavg=. *(vmin+vmax);
iwmin=iavg-. 76*idif; iwmax=iavg+.76*idif;
vwmin=vavg-. 76*vdif; vwmax=vavg+. 76*vdif;

hold off; clg;
wbeg=i; wend=wbeg+wsize-1;
while wend<=length(t)
axis([iwmin,iwmax,iwmin,iumax,vvmin,vvmax]); hold on;
xlabel('il'); ylabel('i2'); zlabel('vc'); title('3-D Trajectory');
plot3(x(1,wbeg:wend),x(2,wbeg:wend),x(3,wbeg:wend)); grid; hold on;
plot3(iwmax*ones([1 ,wsize]) ,x(2,wbeg:wend),x(3,wbeg:wend), 'w--'); hold on;
plot3(x(1,wbeg:wend),imax*ones([i,wsize]),x(3,wbeg:vend), v--'); hold on;
plot3(x(1,wbeg:wend),x(2 eg:end)vwmin*ones(E,wsize]),'w--'); hold on;

% disp(m(wend));
i=wend;
if m(i)==1 % Find the center and radius of the cylinders
shl=-e2(i)+E-vp(i); % for M=1,2,3,4 and plot the cylinders
ri=sqrt(L*x(2,i)^2+C*(x(3,i)-shl)'2);
cylin(l,rl,shl,sqrt(L),sqrt(C),2,0,iwmin,iwmax,30);
elseif m(i)==2
sh2=-e2(i)-vp(i);
r2=sqrt(L*x(2,i)'2+C*(x(3,i)-sh2)^2);
cylin(l,r2,sh2,sqrt(L),sqrt(C),2,0,iwmin,iwmax,30);
elseif m(i)==3
sh3=el(i)-E-vp(i);
r3=sqrt(L*x(1,i)^2+C*(x(3,i)-sh3)^2);
cylin(2,r3,sh3,sqrt(L),sqrt(C),2,0,iwmin,iwmsx,0);
elseif m(i)==4
sh4=el(i)-vp(i);
r4=sqrt(L*x(l,i)'2+C*(x(3,i)-sh4)^2);
cylin(2,r4,sh4,sqrt(L),sqrt(C),2,0,iwmin,iwmax,0);
elseif m(i)==O

X planes(0,6, iwmin,iwmax,vmin,vwmax);
elseif m(i)==6
planes(6,5,iabmax,iabmax,E,E);
elseif m(i)==6
planes(6,6,-iabmax,-iabmax,-E,-E);
elseif m(i)==
planes(7,5,iabmax,-iabmax,0,0);
elseif m(i)==7
planes(8,5,-iabmax,iabmax,0,0);
end

130



pause(tpause);
hold off; clg;
vbeg=vbeg+wspace;
wend=vend+wspace;
end

cylin. m
function [x,y,z,xl,yl,zl)=cylin(orient,r,shift,iif,vcf,noc,nol,llow,lhigh,phi)
% function x,y,z,xl,ylzl]=cylin(orient,r,shift,iif,vcf,noc,nol,llow,lhigh,phi)
. orient=i: axis of cylinder parallel to x-axis
% orient=2: axis of cylinder parallel to y-axis
.r=radius of the cylinder
.shift=distance between axis of cylinder and the xy-plane

% iif=factor in current
% vcf=factor in voltage
% noc=number of circles to be plotted in illustrating the cylinder
% nol=number of lines to be plotted in illustrating the cylinder
% llow=the lower limit of the cylinder
.lhigh=the upper limit of the cylinder
% phi=the shift in angle for placing the lines
a Use with Natlab 4 and up only

% Written 10/93, Terrence Ho

nopt = 60; % use this number of points to draw the circles.
theta=(0:nopt)/nopt*2*pi; % data for circles
x=r*cos(theta)/iif;
y=r*sin(theta)/vcf+shift;
z=linspace(llow,lhigh,noc);

if nol'=O
thetal=((:nol-i)/nol+phi/360)*2*pi; data for lines
xl=r*cos(thetal)/iif;
yl=r*sin(thetal)/vcf+shift;
zl=Ellow,lhigh];

end

if nargout == 0
if orient==2
for ii=i:noc; % draw circles
plot3(x,z(ii)*ones(1,nopt+l),y,' :w);
hold on
end
if nol'=O
for ii=l:nol; % draw lines
plot3([xl(ii),xl(ii)],zl,[yl(ii),yl(ii)],':w');
hold on
end
end

% hold off
elseif orient==1
for ii=l:noc; % draw circles
plot3(z(ii)*ones(1,nopt+1),x,y,':w,);
hold on
end
if nol'=O
for ii=l:nol; % draw lines
plot3(zl, Exl(ii) ,xl(ii)],[yl(ii),yl(ii)],' :w');
hold on
end
end

% hold off
end
end
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planes.m
function planes(mode,nol,imin,imax,vmin,vmax)
%,function planes(mode,nol, imin, imax,vmin,vmax)
XFor mode=O, imin,imax,vmin,vmax
%Discontinuous conduction mode plane mode=i2
%For mode=6, il=imin>0 and i2=imax>0 and vc=vmin>0
%For mode=6, ii=imin<0 and i2=imax<0 and vc=vmin<0
For mode=7, il=imin>0 and i2=imax<0

%For mode=8, ii=imin<0 and i2=imax>0
.Use with Natlab 4 and up only

Written 10/93, Terrence Ho

il=imin; i2=imax; 7, for modes 5,6,7,8
vc=vmin;

if mode==0
x=linspace(imin,imax,nol);
z=linspace(vmin,vmax,nol);
for i=l:length(x)
plot3(Cx(i) x(i)],[x(i) x(i)],vmin vmax], ':w');
hold on;
end
for i=1:length(z)
plot3(Eimin imax],Eimin imax],Ez(i) z(i)],':w');
hold on;
end;

elseif mode==12
x=linspace(imin,imax,nol);
z=linspace (vmin,vma,nol);
for i=l :length(x)
plot3([x(i) x(i)] ,[-x(i) -x(i)],Evmin vmax], ':w');
hold on;
end
for i=1:length(z)
plot3([imin imax],C-imin -imax],[z(i) z(i)],': w');
hold on;
end;
elseif mode== I mode==6
x=linspace(0,il,nol);
y=linspace(0, i2,nol);
plot3(C[O il],[O 0],[vc vc],':w'); hold on;
plot3([O 0],[i2 0],Evc vc],':w'); hold on;
for i=l :length(x)
plot3([x(i) 0],[0 x(i)],[vc vc],':w');
hold on
end

elseif mode==7 I mode==8
x=linspace(0,il,nol);
y=linspace(0,i2,nol);
plot3([O i,CO 0],[0 0],':w'); hold on;
plot3([O O],[i2 o], 0,' :w'); hold on;
for i=l:length(x)
plot3([x(i) 0],[0O y(i)],[O O],':w');
hold on
end

end;
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fbctrl. m
function [phi,state=--bctrl(t,nvl,nvlnom,init ,nctr)
% [phi,state]=fbctrl(t ,nvl,nvlnom,nctr)

t has to be regularly spaced.
% nctr specifies the feedback controller desired

% Feedback controller design
%, Written 12/11/93, Terrence Ho

if nctr==i % Proportional gain
phi=16*(nvl-nvlnom);
state=phi;
elseif nctr==2 % PI
it init==O
[phi,state]=lsim(15*[ 1 3],[1 O],nvl'-nvlnom',t');

else
[phi,state]=lsim(1*El le3],[1 O,nvl'-nvlnom',t',init');

end;

phi=phi';
state=state,;
elseif nctr==3 % PI with averager
B=23e6;
sa,b,c,d]=tf2ss(B*lS*[E 2e3],[1 B 01);
if init=-O
Cphi,state]=lsim(a,b,c,d,nvl'-nvlnom',t');

else
Ephi,state]=lsim(a,b,c,d,nvl'-nvlnom',t',init);

end;

phi=phi';
state=state';

elseif nctr==4 % Double PI with averager
B=23e6;
Ea,b,c,d]=tf2ss(B*16*conv([1 2e3],E1 e3]),[1 B 0 0O);
if init==O
Ephi,state]=lsim(a,b,c,d,nvl'-nvlnom,t');
else
Ephi,state]=lsim(a,b,c,d,nvl'-nvlnom',t',init);
end;

phi=phi';
state=state';

else
disp('Error, fbctrl(): Invalid controller number specified. ');
end

srccomb.m

function [tret,xret,mret,sret]=srccomb(tll,xall,mallsall,tmor,xmormor,smor)
, t,x,m,s]=srccomb(tl,xl,ml,si,t2,x2,m2,s2)
% Points in the two series are combined in order of time.
% They should share no common point in time.

% Taken out from srctrans.m and written as a separate file
7 8/5/93, Terrence Ho

ii=l;

jjj=1;ii=1;
kk=l;
while(ii<=length(tall) & jj<=length(tmor)) % Before reach the end of
if tall(ii)<tmor(jj) % the two time series
tret(kk)=tll(ii); % add to the output the appropriate
xret(:,kk)=xall(:,ii); % value from the series with a
mret(kk)--mall(ii); % smaller time value.
sret(kk)=sall(ii);
ii=ii+l; kk=kk+1;
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elseif tall(ii)>tmor(jj)
tret(kk)=tmor(jj);
xret(: ,kk)=xmor(:,jj);
mret(kk)mmor(jj);
sret(kk)-mmor(jj);
jj=jj+l; kk=kk+1;
else
disp('Error, srccomb(): tall(ii)==tmor(jj) should not occur.');
disp('Break if necessary.');
end

end
if jj==length(tmor)+i % If tmor ends first
tret=[tret tall(ii:length(tall))]; % add the rest of tall to tret
xret[xret xall(: ,ii:length(tall))];
mret=Gmret mall(ii:length(tall))];
sret=[sret sall(ii:length(tall))];

elseif ii==tlen+i Y. Otherwise, if tall ends first
tret=[tret tmor(jj:length(tmor))]; % add the rest of tmor to trot
xret=[xret xmor(: ,jj:length(tmor))];
mret= mret mor(jj:length(tmor))];
sret=[sret smor(jj:length(tmor))];
disp('Nessage, srccomb(): t2(last)>tl(last) should be avoided.');

else
disp('Error, srccomb(): Error in programming.');

end

dilute. m
function out=dilute(in,factor)
Z out=dilute(in,factor)
.picks out the +n*factor-th column

factor=round(factor);
if factor==O factor==1
out=in;
else
j=1;
k=1;
while j<=length(in)
out(: ,k)=in(: ,j);
k=k+i;
j=j+factor;
end;
end;

evp.m
function el,e2,vp]=evp(t,x,m,s,para,nvl)
% ei,e2,vp=esvp(t,x,m,s,para,nvl)
X nvl is optional. eeded only when nVL is not constant
% Evaluates the input voltages el, e2 and transformer primary voltage vp

%. Written 6/11/93, Terrence Ho
%. Modified 12/9/93, to enable variable nvl

for ind=l :length(t)
[el(ind) e2(ind)1=eswitch(t(ind),para);
if narginr=6
if s(ind)==l, vp(ind)=para(4);
elseif s(ind)==2, vp(ind)=-para(4);
else, vp(ind)=(ei(ind)-e2(ind)-x(3,ind))/2;
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end;
else
if s(ind)==1, vp(ind)-nvl(ind);
elseif s(ind)==2, vp(ind)=-nvl(ind);
else, vp(ind)=(el(ind)-e2(ind)-x(3,ind))/2;
end
end

end

mseq. m
funct ion mseq,mcnt] mseq(m,para)
Z mseq,mcnt]--mseq(m,para)
% mseq contains the topological mode sequence extracted.
% mcnt contains the number of points belong to each mode
%, This function extracts the mode sequence of m for its last cycle

% Written Summer 93, Terrence Ho

freq=para(6);
dt=para(9);
compress=para(12);
T=2*pi/freq;
vindov=round(T/dt/compress);

len=length(m);
mT=m(len-vindow+: len);
i=l;
start=1;
mseq(i)-mT(i);
for k=l:length(mT)
if mT(k)'--mseq(i)
mcnt (i)=k-start;
start=k;
i=:i+l;
mseq(i)--mT(k);
end.
end
mcnt(i)=k-start+1; % take
mseq=mseq';
mcnt=mcnt);

% only an approximation

% take the last cycle

care of the last element when k=length(m)

A.3 Simulation Calling Programs

simO.m
% SRC Simulation program, simO.m
, Generates the trajectory field for NO
V. Written April 22, 1993, Terrence Ho

clear;
clg;

!delete src.d fldmO*.met
diary src.d

X C; L; E; nVL; freq,dc; phi; ph2; err;
% parameters for actual circuit

dt; tlower; tupper; compression
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for e=1:4
if ==1
para=[.2e-6; ie-6; 200; 1*8.5*8;
clg; subplot(121)
elseif e==2
para=[.2e-6; e-6; 200; 1*8.5*8;
subplot(122)
elseif e==3
para=[.2e-6; le-6; 200; 1*8.5*8;
clg; subplot(121)
else
para=[.2e-6; le-6; 200; 1*8.5*8;
subplot(122)
end

0; 200; 0; ie-11; 0.006e-6; 0; .06e-6; 1 ];

0; 0; 200; 1e-11; 0.0056-6; 0; .06e-6; I 1;

0; 0; 0; e-11; 0.0056e-6; 0; .065-6; I ];

0; 200; 200; le-11; 0.005e-6; 0; .06e-6; 1];

first=l;
axis(1.2*[-50,60,-200,200]);
for vc=linspace(-200,200,9)
for il=linspace(-50,50,9)
xO=[il;il;vc];
clear t x m s
Ct,x,m,s]=srctrans(xO,para);
plot(x(l,:),x(3,:),'w',x(2,:),x(3,:),'w');
if first==, first=O; hold, end;
plot(il,vc,'ow');
end
end
xlabel('ii,i2'); ylabel('v); %grid;
text(20,206,'(65)'); text(-30,-226,'(H6)');
if e==11 e==2, text(-6,0,,'(52)'); tet(60,0,'(Si)'); text(0,80,'(S3)'); end;
if ==1, title('(a) Trajectories in MO for ei=E, e2=0');
elseif e==2, title('(b) Trajectories in O for el=O, e2=E');
meta fldmOe
elseif e==3, title('(c) Trajectories leaving NO for e1=0, 2=0');
elseif e==4 title('(d) Trajectories leaving NO for el=E, e2=E');
meta fldmOO
end;
hold
end;

diary off
Z!gpp fldmOe -dps
%!gpp fldmO0 -dps

sim .m
% SRC Simulation program, siml.m
% Generates the trajectory fields in 1
% Vritten April 22, 1993, Terrence Ho

clear;
clg;

!delete src.d fldml*.met
diary src.d

% C; L; E; nVL; freq,dc; phi; ph2; err;
% parameters for actual circuit

dt; tlower; tupper; compression

axis('square');
for e=1:4
if e==1
para=[.2e-; e-6; 200; 1*8.5*8; 0; 200; 0; le-11; 0.006e-6; 0; .06e-6; I ];
elseif e==2
para=[.2e-6; le-6; 200; 1*8.6*8; 0; 0; 200; le-Il; 0.006e-6; 0; .06e-6; 1 ];
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elseif e==3
para=[.2e-6; e-6; 200; 1*8.6*8; 0; 0; 0; le-ll; 0.005e-6; 0; .06e-6; I ];

else
para=.2e-6; le-6; 200; 1*8.5*8; 0; 200; 200; e-11; 0.005e-6; 0; .05e-6; 1];

end

clg;

vc=linspace(26,175,4);
for vci=i:4
if vci==i, subplot(221)
elseif vci==2, subplot(222)
elseif vci==3, subplot(223)
else , subplot(224), end
first=l;
axis([-30 60 -60 30]);
for il=linspace(-20,50,6)
for i2=linspace(20,-0,6)
if i>=i2
xO=[il;i2;vc(vci)];
clear t x m s
[t,x,m,s]=srctrans(xO,para);
plot(x(I,:),x(2,:),'w');
if first==l, first=O; hold, end;
if x(3,length(x)) > x(3,1)
plot(il,i2,'ow');
else
plot(iI,i2,'xw');
end;

end;

end
end
xlabel('il'); ylabel('i2'); %grid;
if vci==i, text(-25,20,'vc=26S');
elseif vci==2, text(-25,20,'vc=76');
elseif vci==3, text(-25,20,'vc=126');
else , text(-25,20,'vc=175');
end
text(42,-8,'(SI)'); text(-6,-60,'(S2)');
if e==i, title('(a) M1 for el=E, e2=0');
text(-lO,0,'(NO)');
if vci==2 I vci==3 I vci==4, text(20,-30,'(S3)'); end;
elseif e==2, title('(b) M1 for e1=0, e2=E');
text(-lO,O,'(MO)');
elseif e==3, title('(a) M1 for el=O, e2=0');
if vci==l I vci==2 I vci==3, text(20,-30,'(S3)'); end;

elseif e==4, title('(b) M1 for el=E, e2=E');
if vci==l I vci==2 I vci==3, text(20,-30,'(S3)'); end;

end;
.hold
end
if e==i, meta fldmleO
elseif e==2, mets fldmlOe
elseif e==3, met, fldmOO00
elseif e==4, meta fldmiee
end;
end;

axis('normal');
diary off
%!gpp fldmieO -dps
%!gpp fldmlOe -dps
%!gpp fldmOO -dps
%!gpp fldmlee -dps
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sim5. m
X SRC Simulation program, simS.m
% Generates the trajectory fields in MS
Y. Written April 22, 1993, Terrence Ho

clear;
clg;

!delete src.d fldmS*.met
diary src.d

% C; L; E; nVL; freq,dc; phi; ph2; err; dt; tlower; tupper; compression
% parameters for actual circuit

axis('square');
for e=1:4
if e==l
para=[.2e-6; e-6;
clg; subplot(121)
elseif e==2
para=[.2e-6; ie-6;
subplot(122)
elseif e==3
para=[.2e-6; le-6;
clg; subplot(i21)
else
para=[.2e-6; le-6;
subplot(i22)
end

200; 1*8.6*8; 0; 200; 0; le-11; 0.005e-6; 0; .05e-6; I ];

200; 1*8.6*8; 0; 0; 200; ie-11; 0.006e-6; 0; .06e-6; 1 ];

200; 1*8.5*8; 0; 0; 0; le-11; 0.005e-6; 0; .06e-6; 1 ];

200; 1*8.6*8; 0; 200; 200; e-11; 0.005e-6; 0; .06Se-6; 1];

first=i;
axis(E-10 60 -10 60]);
for ii=linspace(S,65,6)
for i2=linspace(S,56,6)
xO=[il;i2;200];
clear t x m s
[t,x,m,s]=srctrans(xO,para);
plot(x(1,:),x(2,:),'v');
if first=l, first=O; hold, end;
plot(il,i2,'ow');
end
end
xlabel('il'); ylabel('i2'); %grid;
text(26,-7,'(MH)'); text(-9,25,'(M4)');
if e==l e==2, text(-10,-10,'(MO)'); end
if e==l, title('(a) Trajectories in M6
elseif e==2, title('(b) Trajectories in MS
meta fldmSe
elseif e==3, title('(c) Trajectories in S
elseif e==4 title('(d) Trajectories in MS
meta fldm60
end;
.hold
end;

axis('normal')
diary off
%!gpp fldmSe -dps
%!gpp fldmS0 -dps

sim l.m

for el=E, e2=0');
for el=0, e2=E');

for el=O, e2=0');
for el=E, e2=E');

% SRC Simulation program, sim7.m
% Generates the trajectory fields in M7
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% Written April 22, 1993, Terrence Ho

clear;
clg;

!delete src.d fldm7*.met
diary src.d

% C; L; E; nVL; freq,dc; phi; ph2; err; dt; tlower; tupper; compression
, parameters for actual circuit

axis('square));
for e=1:4
if e==1
para=[.2e-6; le-6; 200; 1*8.6*8; 0; 200; 0; le-11; 0.005e-6; 0; .05e-6; 1 ];
clg; subplot(121)
elseif e==2
para=[.2e-6; le-6; 200; 1*8.6*8; 0; 0; 200; ie-11; 0.005e-6; 0; .06e-6; 1 ];
subplot(122)
elseif e==3
para=[.2e-6; sle-; 200; 1*8.6*8; 0; 0; 0; le-11; 0.005e-6; 0; .05e-6; 1 ];

clg; subplot(121)
else
para=[.2e-6; le-6; 200; 1*8.65*8; 0; 200; 200; le-li; 0.006e-6; 0; .05e-6; 1];
subplot(122)
end

first=i;
axis([-lO 60 -60 10]);
for il=linspace(5,55,6)
for i2=linspace(-6,-65,6)
xO=Eil;i2;0];
clear t x m s
[t,x,m,s]=srctrans(xO,para);
plot(x(1,:),x(2,:),'w');
if first==i, first=O; hold, end;
plot(il,i2,'ow');
end
end
xlabel('il'); ylabel('i2'); %grid;
text(-10,-25,'(M3)'); text(20,2,'(H1)');
text(40,-20,'(SI)'); text(i6,-45,'(S2)');
if e==3 e==4, text(26,-30,'(S3)'); end;
if ==1, title('(a) Trajectories in M7 for e=E, e2=0');
elseif e==2, title('(b) Trajectories in 7 for e1=0, e2=E');
meta fldm7e
elseif e==3, title('(c) Trajectories in M7 for el=O0, e2=0');
elseif e==4 title('(d) Trajectories in 7 for el=E, e2=E');
meta fldm70
end;
hold
end;

axis('normal');
diary off
%!gpp fldm7e -dps
%!gpp fldm70 -dps

simnom. m
% SRC Simulation program, simnom.m
% Searches and finds the nominal operating phase angle for 4kW output power
%Y Modified 6/17/93, Terrence Ho

clear;
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clg;
!delete nom.d
diary nom.d

% parameters for actual circuit
7, C; L; E; nVL; freq,dc; phi; ph2; err; dt; tlower; tupper; compression
para=[.2e-6; e-6; 250; 8.6*8; 2*pi*275e3; 0; -pi*135/180; le-lI;

0.005e-6; 0; 30e-6; 3 ];

xO=[O; 0; 0];
phasehi=li6; % These two values obtained by running more
phaselo=114; X coarse simulations or from simsss.m
iouttarget=4000/8.5/8; % The desired average output current
iout=O;
ite=1;
while (phasehi-phaselo)*2/(phasehi+phaselo) > .01 ...

abs((iout-iouttarget)/iouttarget) > .01 % within 1% accuracy
% More stringent accuracy requirement can and will screw up the iterations

phase=(phasehi+phaselo)/2; % Numerical search method of bisection
para(7)=-pi*phase/180;
[t,x,m,s]=srctrans(xO,para);
[iav,iout,ripple]=iavg(t,x,para);
disp('ripple '); disp(ripple/iout);
plot(t,iav,'');
if iout>iouttarget
phasehi=phase;
elseif iout<iouttarget
phaselo-phase;
else
break;
end
disp('At iteration '); disp(ite);
disp('iout= '); disp(iout);
disp('phase= '); disp(phase);
ite=ite+1;

end;

disp('The nominal phase for iouttarget = '); disp(iouttarget);
disp('is ); disp(phase');
disp('with iout= '); disp(iout);

save nom % Saves the trajectory
[el,e2,vp]=evp(t,x,m,s,para); % Plots the found nominal trajectory
!delete plotsrc.met
plsrc(t,x,vp,el,e2,m,s,0,20e-6,6,1,1)
!delete plotnom.met
!mv plotsrc.met plotnom.met

diary off

simsss.m
X SRC Simulation program, simsss.m
X Finds the steady-state operating modes for an array of E and phase
Y. Run simssm.m after this to determine the mode and to plot
% Written /17/93, Terrence Ho
% Modified 12/4/93

clear;
clg;
!delete src.d
diary src.d

% C; L; E; nVL; freq,dc; phi; ph2; err; dt; tlower; tupper; compression
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E=200:25:350;
phase=20:10:180;

index=1;
for e=l:length(E)
for i=l:length(phase)
% The first 119 points belong to the grid of E and phase in all the
% variables ??all. Other programs may append data point after these
% but should write to a differnt mat file as a good practice
% parameters for actual circuit
para=[.2e-6; ie-6; E(e); 1*8.5*8; 2*pi*275e3; 0; -pi*phase(i)/180; le-11;

0.006e-6; 0; 20e-6; 2 ];

xO=[O; 0; 0];
freq=para(5);
dt=para(9);
compress=para(12);
T=2*pi/freq;
window=round(T/dt/compress); % only an approximation

clear t m s
[t,x,m,s]=srctrans(xO, para);
Eiav,iavt,ripple]=iavg(t,x,para); % find average current
ss=[ripple<.Ol*iavt; ripple<.02*iavt; ripple<.O*iavt];
if ss==zeros(3,1) % I ripple is more than S%
para(9)=0.002e-6; % run a longer and finer simulation
para(ll)=40e-6;
para(12)=10;
clear t x m s
[t,x,m,s]=srctrans(xO,para);
[iav,iavt,ripple]=iavg(t,x,para);
ss=[ripple<.Ol*iavt; ripple<.02*iavt; ripple<.0S*iavt];

end
Eall(index)=E(e); % save all the variables
phall(index)=phase(i);
xall(:,index)=x(:,length(t));
paraall(:,index)=para;
ssall(:,index)=ss;
[msequ,mcnt]--mseq(m,para); % Find the mode sequence
mlen=length(msequ);
msequall(l:mlen,index)=msequ;
mcntall(l:mlen,index)-=mcnt;
rippleall(index)=ripple;
igavall(index)=iavt;
igav(i,e)=iavt;
disp('Steady-state? ); disp(ss);

7, clg; plot(t,iav,'w'); grid; title('Moving average iav at primary');
totalpt=index;
index=index+i;

save sssa %
end;
save sssb %
end;
save sss

diary off

simsssi. m

temporary file

temporary file

% Simulation Program, simsssi.m
% Plots the stead-state output currents vs. phase for various E
% Written Summer 93, Terrence o
% Modified 11/27/93

clear
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clg
load ss
iouttarg=ones(phase)*4000/para(4);
plot(phase,igav,'v',phase,igav,'ow',phase,iouttarg,'-w'); grid;
text(phase(i),igav(i,1),'E=200V');
text(phase(i),igav(i,2),'E=225V');
text(phase(i),igav(i,3),'E=260V');
text(phase(i),igav(i,4),'E=276V');
text(phase(i),igav(i,6),'E=300V');
text(phase(i),igav(i,6),'E=325V');
text(phase(i),igav(i,7),'E=360V');
text(phase(i),58.82,'68.82A');
xlabel('phase, degrees'); ylabel('iout referred to primary, Amps');
title(lAverage output current at steady-state')
!delete iavpe.met
meta iavpe

simssa. m
X SRC Simulation program, simssa.m
% Adds more data points to the basic grid used in simsss.m
X Run simssm.m after this to determine the mode and to plot
X Written based on simsss.m, 12/6/93, Terrence Ho

clear;
clg;
!delete src.d
diary src.d

%!cp sss.mat ssa.mat % first time use ass.mat
load ssa

X The following new points are added to the grid in simsss.m
%E=210; phase=9:10:146;
%E=240; phase=[106 136 145];
XE=265; phase=[105 116 126 146];
%E=290; phase=[ll6 125 146];
%E=[316 340]; phase=lO6 115];
%E=[340 316 290 270 220]; phase=[110 120];
%E=[286 276 270 260 240 226]; phase=126;
%E=[210 240]; phase=130;
%E=[220 2351; phase=[12S 130 135];
%E=[180 370]; phase=20:10:180;
%E=140; phase=20:20:180;
%E=160; phase=:20:20180;
%E=350:-50:150; phase=177;
%E=i90; phase=[86 96 140 146 160 166];
%E=[225 160 140]; phase=90;
%E=210; phase=[90 100 140];
%E=220; phase=10S;
%E=225; phase=[96 116 136];
%E=250; phase=106;
%E=[370 360 2756; phase=106;
%E=[370 350 325 300 276]; phase=116;
%E=[180 170 160]; phase=86;
%E=190; phase=90;
%E=[220 200 170]; phase=96;
%E=[260 240); phase=100;
%E-=360 280 220]; phase=116;
%E=[340 330 320 280 250 230 220 200 170]; phase=146;
%E=260; phase=120;
%E=200; phase=135;
%E=[190 190 160 160 150 160 140 170 180 230 290 360 360 360 280 ...
% 330 210 160 360 170 160];
Xphase=[3S 46 60 70 80 85 86 90 96 96 106 105 110 120 120 ...
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% 150 150 150 155
%E=[260 260 260 240
% 150 140 160 240
% 180 160 220 230
% 340 180 160 150
%phase=[20 25 25 25
. 65 70 75 95 100
% 145 150 150 150

15566 15566 155 160

%E=[240 230 220 210
, 140 280 300 310
Xphase=[20 20 20 20
% 75 110 126 145
%E=360:-10:260;
%phase=17.265;
XE=[190 190 180 170
%phase=[20 26 26 30
%E=[170 170 170 160
%phase=[70 75 80 75
%E=[370 370 370 370
% 330 330 320 320
. 260 250 215 215
% 175 180 290 280
% 260 250 245 246
% 215 210 210 200
V 170 160 160];
%phase=[102.6 107.6
% 107.5 112.5 107.
9 96 95 102.
X 90 87.5 122.
% 127.6 127.6 1256
% 136 132.5 137.
% 157.5 157.5 162.
%E=[206 206 206 206

156 170];
230 220 210
230 270 280
240 260 270
170 190 170
25 25 26 35
100 106 105
150 150 160
160 160 165
200 210 190
170 150 330
26 30 30 36
160 15566 150

160 150 150
36 60 66 60
320 330 360
106 110 145
360 360 350
310 310 300
210 200 200
270 265 260
240 230 216
200 190 190

210 200 180
330 240 260
280 290 310
160 150];
35 35 40 45
120 125 130
160 150 150
165 165];
170 170 160

190 180 170 170 170 ...
260 220 300 270 260 ...
320 340 360 370 360 ...

45 55 6 ...
140 145 145 145 ...
160 150 150 155 155 ...

170 160 170 160 150 ...
150 140 140];
40 45 50 55 60 65 70 ...
166 170 170];

150 140 330 150 160 140];
66 15566 170 176 1763];
360 370 220 210 200 190 265];
145 145 100 120 125 135 120];
350 340 340 ...
290 280 260 ...
190 180 185 ...
250 245 215 ...
210 220 215 ...
180 180 170 ...

112.5 117.5 107.6 112.6 107.5 112.6 107.5 112.6 ...
.5 112.5 110 112.5 112.5 112.5 112.5 106 ...
.5 100
.6 122

127
.5 137
.6];
200];

.5

.5

.5

97.6
122.5
127.5
142.5

97.5
122.6
127.5
142.5

92.6 92.5
122.5 122.5
127.6 127.5
147.5 147.6

92.5 90 ...
122.5 122.5 ...
132.6 132.5 ...
162.6 152.5 ...

%phase=[130 132.6 136 137.6 132.6];
%E=[230 230 225];
%phase=[130 132.5 132.6];

=================== Simulation codes starts here =====
index=totalpt+l;
for e=i:length(E) % These two lines for single loop when length of
i=e; % E and length of phase are equal

Xfor e=l:length(E) X These two lines for double loop when length of
% for i=l:length(phase) E and length of phase are not equal

X C; L; E; nVL; freq,dc; phi; ph2; err; dt; tlower; tupper; csompression
para=[.2e-6; le-6; E(e); 1*8.6*8; 2*pi*275e3; 0; -pi*phase(i)/180; le-il;

0.005e-6; 0; 20e-6; 1 ];
xO=[O; 0; 0];

Et,x,m,s]=srctrans(xO,para);
[iav,iavt,ripple]=iavg(t,x,para);
ss=[ripple<.Ol*iavt; ripple<.O2*iavt; ripple<.OS*iavt];
if ss==zeros(3,1)

X para(9)=0.002e-6; para(ll)=40e-6; para(12)=10;
para(11)=60e-6; para(12)=1;
Et,x,m,s]=srctrans(xO,para);
[iav,iavt,ripple]=iavg(t,x,para);
ss=Cripple<.O*iavt; ripple<.02*iavt; ripple<.0S*iavt];
end
Eall(index)=E(e);
phall(index)=phase(i);
xall(:,index)=x(:,length(t));
paraall(:,index)=para;
ssall(:,index)=ss;
[msequ,mcnt]--mseq(m,para);
mlen=length(msequ);
msequall(l:mlen,index)msequ;
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mcntall(1 :mlen, index)--mcnt;
rippleall(index)=ripple;
igavall(index)=iavt;
disp('Steady-state? '); disp(ss);
clg; plot(t,iav,'w'); grid; title('Moving average iav at primary');
totalpt=index;
index=index+1;
save sstmp t x m s para
clear t x m s
save ssa

end
%end
diary off

% uncomment this line for double loop

simssm.m
% Simulation Program, simssm.m
% Builds a operating mode map based on N sequence using data in sss or ssa
% Written 6/20/93, Terrence Ho
% Modified 12/6/93 to eliminate the shortest mode in sequences with
% odd number of modes
% Nodified 12/23/93 to eliminate modes of length=l

clear;
clg;
%load ss % examine data points generated by simsss.m
load ssa % examine data points generated by simssa.m
!delete msq.d
diary msq.d

7, 8, length, sequence
knownseq=E0 6 01 7 0 2 8 0 0 0 0 0 0;

1 8 01 7 3 0 2 8 4 0 0 0 0;
2 4 0 1 0 2 0 0 0 0 0 0 0 0;
3 6 01 3 0 2 4 0 0 0 0 0 0;
4 10 0 1 5 1 3 0 2 6 2 4 0 0;
5 12 0151 6 7 3 0 2 6 2 8 4 ;
6 8 015 6102 6 2 0 0 0 0;
7 8 06 1 3 06 2 4 0 0 0 0;
8 6 0 5 106 2 0 0 0 0 0 0;
9 4 056 0 6 0 0 0 0 0 0 0 ;

mseqsize=size(msequall);
for index=l:totalpt
knownsize=size(knownseq);
mcnt--mcntall(:,index);
msequ=msequall(:,index);

for k=:mseqsize(1)
if mcnt(k)==O0
k=k-1;
break
end

end
if k'=1 & msequ(k)==msequ(1)
mcnt(1)=mcnt(1)+mcnt(k);
k=k-1;
end

% oew entry may be added to it

% Find the length of the sequence
% to be examined

% the last m may be
% same as 1st

% k is the length

if round(k/2)'=k/2 % if k is odd, there may be a problem
[tmp,least]=min(mcnt(1:k)); Z find the shortest mode
disp('Odd k at index='); disp(index);% This doesn't work all the time!!!
disp('with ); disp(mcnt(least)); X If the modes is very short
if mcnt(least)<=6 % (arbitrary number, maybe okay to
disp('point(s). Mode deleted: '); % delete the mode if under this )
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disp(msequall(least,index)); % take the mode out.
mcnt=[ecnt(i:least-1) ;mcnt(least+l:k)];
seq=msequall (1i:least-i,index) ;msequall(least+1:k,index)];
k=k-1;

else
disp('points. ode not deleted.'
seq-msequall(:k, index);

end
else
seq=--msequall(1:k,index);

end
X Otherwise, pick out the sequence

jj=1; % Get rid of all the length=1 modes
k2=round(k/2); % in a symmetric way
for ii=I:k2
if mcnt(ii)>=2 mcnt(ii+k2)>=2
msequtmpt(jj,1)--msequ(ii); msequtmp2(jj ,i)=msequ(ii+k2);
mcntmpi(jj,1)=mcnt(ii); mcntmp2(jj ,i)=mcnt(ii+k2);
jj=jj+I;

end
end
if (jj-1)=k2
disp('Nodes of length <2 taken out at index= '); disp(index);
mcnt=[mcntmpl(l:jj-1);mcntmp2(1:jj-I)];
seq=E[msequtmpi (:jj-1);msequtmp2(1:jj-1)];
k=(jj-i)*2;

end

found=O;
for n=l:knownsize(1)
if knownseq(n,2)==k
for shift=O:k-I
for ind=i:k
code(ind+shift)=knownseq(n,inz

end
if shift'=O
code (1:shift)=code(k+1 :k+shif
end
if code(i:k)==seq'
found=l;
seqmap(index)=knownseq(n,1);
break;

end
end

end
if found==1
break

end
end

X Compare to = length known seq

X Get every possible order of code
d+2);

t);

% and compare to seq

% save the operating mode number

if found==O If finds a new operating mode
disp('lew sequence found at E= '); disp(Eall(index));
disp('phase= '); disp(phall(index));
disp('index= '); disp(index); X add to the known table
knownseq(knownsize(1)+I,i)=knownseq(knownsize ())+I;
knownseq(knownsize(1)+ ,2)=k;
knownseq(knownsize(1)+1,3: 2+k)=seq';
seqmap(index)=knoenseq(knownsize(I)+±);
end

end

disp('The known sequences are: ');
disp(knownseq);
knownsize=size (knownseq);
save msq

Y.

% Save the information

Plotting the operating mode map

145

==================



%,contour(mseqmap(:,length(E):-1:1)',knownsize(l),phase,E,'w')
%contour(mseqmap(:,length(E):-1:1)',1,phase,E,'i'); hold on
%;for e=l:length(E)

%, for i=l:length(phase)
/, plot(phase(i),E(e),'+wv');
% text(phase(i),E(e),48+mseqmap(i,e));
/, end
%end
Emin=min(Eall); Emax=max(Eall); Eavg=.5*(Emin+Emax); Edev=.S6*(Emax-Emin);
El=Eavg-Edev; Eh=Eavg+Edev;
pmin=min(phall); pmaxmax(phall); pavg=.S*(pmin+pmax); pdev=.S6*(pmax-pmin);
pl=pavg-pdev; ph=pavg+pdev;
axis([pl ph E1l Eh]);
for i=l:totalpt
if seqmap(i)==0
plot(phall(i),Ea:l(i),'.w'); hold on;
elseif seqmap(i)==2 I seqmap(i)==6
plot(phall(i),Eall(i),'+w'); hold on;
.elseif seqmap(i)==l I seqmap(i)==9 I seqmap(i)==7
plot(phall(i),Eall(i),'ow'); hold on;
elseif seqmap(i)==3 seqmap(i)==6
plot(phall(i),Eall(i),'xw'); hold on;
elseif seqmap(i)==4 I seqmap(i)==8
plot(phall(i),Eall(i),'*w'); hold on;
else
plot(phall(i),Eall(i),'.w'); hold on;
end
/, if ssall(3,i)'=l
% text(phall(i),Ell(i),'D');
. end

% text(phall(i),Eall(i),48+seqmap(i));
end
axis; hold off;
xlabel('phase'); ylabel('E');
title('Operating Modes');

% For nonconvergent or slowly
% convergent points, use symbol 'D'

% Draw the boundary lines manually
linel=[179 179; 375 135];
line2=[151 151 147.6 147.5 144 144 164 170 179;

375 329 324 217 211 196 153 145 145];
line3=[164 161 142; 153 153 194];
line4=[144 142 137.5 136 132 122.5 107.5 104 98.5 94 94 91.25 88.75;

196 194 195 202.5 202.5 222.5 222.5 212.5 212.5 192 186 177.5 177.5];
lineS=[113.75 113.75; 375 285];
line6=[103.75 103.75 106.25 106.25 108.75 108.75 111.25 111.25 113.75;

375 367 362 347 342 321 316 306 302];
line7=[113.75 110 102.5 102.5 97.5 97.5 92.5 91.25 91.25 88.75 88.75 87 ...

82.5 82.5;
285 277 277 258 252 217 210 202 189 185 175 157 152 135];

line8=[113.75 116.75 116.75 118.75 118.75 121.25 121.25 123.75 123.75 ...
126.25 126.25 128.75 128.75 133.75 133.75 141;
285 282 275 272 265 261 255 251 242.5 ...
242.5 236 232 225 216 210 194];

line9=[142 138 133 133 131.25 131.25 128.75 128.75 126.25 126.25 123.75 ...
123.75 118.75 118.75 116.25 116.25 113.75;
194 212 220 225 230 236 239 246 249 261 265 ...
282 298 322 327 363 365];

lineO=[17 37.5 50 82.5; 240 185 165 152];
linei=[135.5 125 115 106 98.5 92 83; 200 225 250 275 300 325 350];
hold on
plot(linel(l,:),linel(2,:),'v');
plot(line3(1,:),line3(2,:),'w');
plot(lineS(1,:),line6(2,:),'v');
plot(line7(1,:),line7(2,:),'w');
pl.ot(line9(1,:),line9(2,:),'w');
plot(linei(l,:),linei(2,:),'--w'
text(30,150,'0'); text(52,280,'1
text(110,150,'2'); text(111,233,
text(119,280,'4'); text(l08,350,

plot(line2(1,:),line2(2,:),'v');
plot(line4(1,:),line4(2,:),'w');
plot(line6(1,:),line6(2,:),'w');
plot(line8(1,:),line8(2,:),'w');
plot(lineO(1,:),lineO(2,:),'w');
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text(162,170,'6'); text(133,310,J7');
text(S16,280,'8'); text(182,266,'9');
hold off
!delete mseqmap.met
meta mseqmap

diary off

simsyo.m
%, SRC Simulation program, simsyo.m
% Poincare plane in synchronization with control inputs
% Searching for the nominal point at two places
% 8/7/93 Terrence Ho

clear;
clg;

para=[.2e-6; le-6; 260; 8.5*8; 2*pi*275e3; 0; -pi*116.626/180; le-11;
0.001e-6; 0; 30e-6; 2];

freq=para(6); % freq, phi, and ph2 are in radians
phi=para(6);
ph2=para(7);
T=2*pi/freq;
para(10)=(2*pi-ph2)/freq;
para(ll)=para(iO)+1.1*T;

dothis=O;
if dothis==1
N=1000; X N and n used to enable running the program from the middle
n=i; % Locate the nominal starting
%for i=46.79:.01:46.85 X point at E->O
% for vc=179.90:.05:180.30
for il=46.819:.001:46.825 % Simulate from a grid of points
for vc=180.06:.01:180.10
if n>I
n
xO=[il;ii;vcl;
xlO(:,n)=xO;
[tr,xr,mr,sr,tm,xm,mm,smJ=srctrans(xO,para);
tl=[ti tm];
xl=Exi xmI;
ni=[nl length(tm)];
save syol
end
n=n+l;
end

end

%axis([46.7 46.9 179.8 180.41)
axis([46.818 46.826 180.04 180.11])
for ii=li:length(ni) % Plot the points and manually
b=sum(nl(l:ii))-ni(ii)+l; % determine the best point from
e=sum(nl(l:ii)); % the graphs
plot(xlO(2,ii),xlO(3,ii),'ow',xl(2,b:e),xl(3,b:e),'xw'); grid;
x.O(:,ii)'
end
xlabel('i2'), ylabel('vc');
axis;
% Nominal found to be close to (46.820->46.821,180.08->180.09)

load syo2
para(10)=(3*pi-phl)/freq;
para(ll)=para(lO)+l.*T;
M=40;
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m=1;
%for i=52.61:.01:62.63
% for i2=-60.11:.01:-60.09
X. for vc=108.39:.01:108.41
for i1=62.612:.002:62.618 % Locating the nominal starting
for i2=-60.118:.002:-60.112 X point at 0-> -E
for vc=108.40:.002:108.41 X Simulate from a grid of points
if m>M
m
xO=[il;i2;vc]
x20(:,m)=[il;i2;vc];
[t,r,mr,sr,stm,m, ,mm,sm]=srctrans(xO,para);
t2=[t2 tm];
x2=[x2 xmI;
n2=[n2 length(tm)];
save syo2

end
m=m+l;
end
end

end

end of dothis ==========

load syo2
for ii=l:length(n2) X Manually search for the best
b=sum(n2(1:ii))-n2(ii)+1; X starting point from the graphs
e=sum(n2(1:ii));
x20(:,ii)'
clg
subplot(221); axis([-60.119 -60.111 108.39 108.42]);
plot(x20(2,ii),x20(3,ii),'ow',x2(2,b:e),x2(3,b:e),'x'); grid;
xlabel('i2'), ylabel('vc');
subplot(222); axis([52.611 62.619 108.39 108.42]);
plot(x2O(1,ii)z20(3,ii),'ov',x2(1,b:e),x2(3,b:e),'xw'); grid;
xlabel('il'), ylabel('vc');
subplot(224); axis([62.611 62.619 -60.119 -60.111]);
plot(20(1i,ii),z20(2,ii),'ow',x2(1,b:e),x2(2,b:e),'xw'); grid;
xlabel('il'), ylabel('i2');

X pause
end
axis;
X ominal near 2.616 -80.116 108.406

simsyq. m
% SRC Simulation program, simsyq.m
% Poincare plane in synchronization ith control inputs
% Finding the small-signal transition matrix at O->M1
% Written 8/9/93, Terrence Ho
% Rerun on 10/24/93

clear;
clg;
!delete syq.d
diary syq.d

load syq

dothis=O;
para=[.2e-6; le-6; 260; 8.6*8; 2*pi*276e3; 0; -pi*115.625/180; le-11;

0.001e-6; 0; 30e-6; 2];
freq=para(6); freq, phI, and ph2 are in radians
phl=para(6);
ph2=para(7);
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T=2*pi/freq;
paralspara;
paral(10)=(2*pi-ph2)/freq;
paral (11)=parai(10)+i.*T;
x0=1[46.8208;46.8208;180.088];
para2=para;
para2(10)=(3*pi-phl)/freq;
para2(11)=para2(10)+1. *T;
x02=[62.616; -60.116; 108.405];

if dothis==1
Pl=eye(3);
P2=[1 I 0;

1 0 1;
0 1 1];

[tr,xr,mr,sr,tl,xl,mm,sm=srctrans(xOi,paral);
Etr,xr,mr,sr,til,xllm, sm]=srctrans(xl+Pl(:,1),paral);
Etr,xr,mr,ar,tl2,x12,mm,sm]=srctrans(x01+Pl(:,2),paral);
Etr,xr,mr,sr,t3,xl3,a,sm=srctrans(xOl+Pl(:,3),paral);
[tr,xr,mr,sr,t21,x21,mm,.sm=srctrans(xOl+P2(:,1),paral);
[tr,xr,mr,sr,t22,x22, ,sm]=srctrans(xO+P2(:,2),paral);
Etr,xr,mr,sr,t23,x23,mm,sm]=srctrans(x01+P2(:,3),paral);
clear tr xr mr sr, save syq

Etr,xr,mrrs,tti , xxii, sm=srctrans(x02,para2);
Etr,xr,mr,sr,ttll ,xx1 ,mm,sm]=srctrans(xO2+Pl(:,1),para2);
Etr,xr,mr,sr,tti2,xxi2,mmsm]=srctrans(xO2+Pl(:,2),para2);
Etr,xr,mr,sr,ttl3,xx13,m,sm=srctrans(xO2+Pl(:,3),para2);
Etr,r ,mr,sr,tt21,xxm21, sm]=srctrans(xO2+P2(:,1),para2);
Etr,xr,mr,sr,tt22,xx22,mm, =srctrans(xO2+P2(:,2),para2);
[tr,xr,mr,sr,tt23,xx23,mm, sm=sctrans(xO2+P2(:,3),para2);
clear tr xr mr sr, save syq

P3=.5 * eye(3);
P4=.5 * [ 1 0;

1 0 1;
0 1 i];

Etr,xr,mr,sr,t31,x31,mm,sm]=srctrans(xOl+P3(:,1),paral);
Ctr,xr,mr,sr,t32,x32,m, sm]=srctrans(xOl+P3(:,2),paral);
Etr,xr,mr,sr,t33,x33,, sm=srctrans(xOl+P3(:,3),paral);
Etr,xr,mr,sr,t4i,41, , sm]=srctrans(xOi+P4(: ,1),paral);
Etr,xr,mr,sr,t42,x42m, sm=srctrans(xOl+P4(:,2),paral);
Etr,xr,mr,sr,t43,x43,m,sm]=srctrans(xOi+P4(:,3),paral);
clear tr xr mr sr, save syq

tr, xr,mr, sr, tt 31, xx3 , ,sm=srctrans(xO2+P3(:, 1),para2);
[tr,xr,mr,sr,tt32,xx32, ,sm]=srctrans(xO2+P3(:,2),para2);
[tr, r,mr,sr,tt33,xx33,mm,sm]=srctrans(xO2+P3(:,3),para2);
[tr,xr,mr,sr,tt41,xx41,mm,sm]=srctrans(xO2+P4(:,1),para2);
[tr,xr,mr,sr,tt42,xx42m, am=srctrans(xO2+P4(:,2),para2);
[tr,xrmr,sr,tt43,xx43,m,sm=srctrans(xo2+P4(:,3),para2);
clear tr xr mr sr, save syq

P5=[.6 .7 .9;
.5 .8 1;
.4 . .3];

Etr,xr,mr,sr,tS1,x1i,ma,sm=asrctrans(xOl+[PS(2,2) ;P(2:3,2) ,paral);
Etr,xr,mr,sr,t52,x52,mm,sm]=srctrans(xOl+[ps(2,3) ;PS(2:3,3) ,paral);

Etr,xr ,mr,sr,ttSi,xx1i,mm,sml=srctrans(xO2+PS(:,i),para2);
tr,xr ,mr, r,tt52,xx62,mm,sm =arctrans(x02+P6 (:,2),para2);

Etr,xr,mr,sr,ttS3,xx63,uu,sm=srctrans(xO2+PS(:,3),para2);
clear tr xr mr sr, save syq

paral (7)=para(7)+*pi/180;
[tr, xr ,mr, sr,t6,x,m,sm] =srctrans(x ,paral);
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paral(7)=para(7)+. *pi/180;
[tr,xr,mr,sr, t7,x7,mm,smn=srctrans(xOl,paral);
clear tr xr mr sr, save syq

para2(7)=para(7)+1*pi/180;
[tr,xr,mr,sr,tt6,xx6 ,m,sm]=srctra n (x02,para2);
para2(7)=para(7)+. 6*pi/180;
Etr,xr,mr,sr,tt7,xx7,mm,sm]=srctrans(x02,para2);
clear tr xr mr sr, save syq
end X of dothis =======================

disp('Simulation from E=>O: States at transition
disp((tI-paral(10))')
disp('from initial state ')
disp(xOl')
disp('are ')
disp(xi')

Tl=[xll(:,10)-xOl
Cvi ,dl]=eig(Tl);
T2=txli(:,10)-xl(
Ev2,d2]=eig(T2);

T3= [x21(: ,10)-xOl
T3=T3(2:3,2:3);
[v3,d3]=eig(T3);
Ta=[x2l(:, 10)-xO
Eva,da]=eig(Ta);

points at time');

x12(:,10)-xOl x13(:,10)-xOl];
eig(T1)';
:,10) x12(:,10)-xl(:,10) x3(:,10)-xl(:,10)];
eig(T2)';

x2r(:,10)-xOi x13(:,10)-xOl];

eig(T3)';
x22(:,i0)-xOl
eig(Ta)';

x23(:,10)-xOl]*inv(P2);

Tb=[x3l(:,10)-xOl x32(:,10)-xOl x33(:,10)-xOl]*inv(P3); eig(Tb)';
Tc=[x41(:,10)-xO1 x41(:,10)-xOl x33(:,10)-xOl];
Tc=Tc(2:3,2:3)*inv(.6*eye(2)); eig(Tc)';
Td=[x4I(:,10)-xO1 x42(:,10)-xOl x43(:,10)-xOl]*inv(P4); eig(Td)';
Te=[xSl(:,10)-xOi x52(:,10)-xOl];
Te=Te(2:3,:)*inv(P6(2:3,2:3)); eig(Te)';

disp('Transition matrix and igenvalues at E=>O: );
Tavgl=(T3+Tc+Te)/3; disp(Tavgl)
disp(eig(Tavgi))

T4=[xxll(:,1)-x02 xx12(:,11)-x02
[v4,d4]=eig(T4); eig(T4)';
T=xx2l(:,11)-x02 xx22(:,11)-x02
[v6,dS6=eig(Tb); eig(TS)';
T6=[xx31(:,11)-x02 xx32(:,11)-x02
T7=[xx41(:,11)-x02 xx42(:,11ii)-x02
T8=[xx61(:,11)-x02 xx52(:,11)-x02

xx13(:,11)-x02];

xx23(:,11)-xO2]*inv(P2);

xx33(:,11)-xO2]*inv(P3);
xx43(:,11)-x02]*inv(P4);
xxS3(:,11)-xO2]*inv(P);

disp('Transition matrix and eigenvalues at O=>-E: );
Tavg2=(T4+T5+T6+T7+T8)/5; disp(Tavg2)
disp(eig(Tavg2)')

load syq
B6=x6(:,10)-xOl;
B7=2*(x7(:,10)-xO1);
Ba=xxG(:,11)-x02;
Bb=2*(xx7(:,11)-x02);

diary off

simplt.m
% SRC Simulation program, simplt.m
% Finds the numerator in plant transfer function
% Written 12/8/93, Terrence Ho
% Modified 12/19/93
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clear;
clg;
!delete src.d
diary src.d

7 C; L; E; nVL; freq,dc; phi; ph2; err; dt; tlower; tupper; compression
para=[.2e-6; e-6; 250; 8.5*8; 2*pi*276e3; 0; -pi*116.626/180; le-li;

0.002e-6; 0; 30e-6; 2 ];

xO=[-52.616;60.ii6;-108.405]; % values from simsyo.m

[tl,i,ml,si,ttl,xxl,aIm,ssl]=srctrns(xO,para);
[iav,iavtl,ripplel]=iavg(ti,xi,para);
clg; plot(ti,iav,'w'); grid; title('Noving average iav
disp('Average current at nominal is '); disp(iavti);

at primary');

para2=para;
para2(7)=-pi* 6.6256/180; % Increase the phase angle
[t2,x2,m2,s2,tt2,xx2,mm2,ss2]=srctrans(xO,para2);
[iav,iavt2,ripple2]=iavg(t2,x2,para2);
clg; plot(t2,iav,'w'); grid; title('Noving average iav at primary');
disp('Average current after step change in phase by +1 degree is ');
disp(iavt2);

para3=para;
para3(7)=-pi*114.625/180; X Decrease the phase angle
[t3,x3,m3,s3,tt3,xx3,mm3,ss3]=srctrans(xO,para3);
Eiav,iavt3,ripple3]=iavg(t3,x3,para3);
clg; plot(t3,iav,'w'); grid; title('!oving average iav at primary');
disp('Average current after step change in phase by - degree is ');
disp(iavt3);

para4=para;
para4(3)=262;
[t4,x4,m4,s4,tt4,xx4,mm4,ss4]=srctrans(xO,para4);
[iav,iavt4,ripple4]=iavg(t4,x4,para4);
clg; plot(t4,iav,'v'); grid; title('Moving average iav at primary');
disp('Average current after step change in supply voltage by 2V is ');
disp(iavt4);

para6=para;
paras(3)=248;
[t6,xS,mS,s6,tt6,xx6,mm6,ss6]=srctrans(xO,para6);
Ciav,iavt6,rippleS]=iavg(tS,x,para);
clg; plot(t6,iav,'V'); grid; title('Moving average iav at primary');
disp('Average current after step change in supply voltage by -2V is ');
disp(iavt6);

save plt para xO iavtl iavt2 iavt3 iavt4 iavt5

diary off

simctr. m
% SRC Simulation program, simctr.m
% System with feeback controller
X Specify output model in param
% Specify feedback controller in fbctrl()
7 Specify initial value of nVL in para
% Written 12/11/93, Terrence Ho
7, Modified 12/93

clear;
clg;
!delete src.d
diary src.d
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CTRno=3; % set feedback controller, final design is 3
OUTno=i; % V=O; R//C=I; I//C=2;
CYCno=40; % set number of cycles to be simulated
nvlnom=8.5*8; % set nominal nVL
phinom=115.682; % phinom is the duty ratio in degrees
Enom=260; % set Enom
nvlinit=8.56*8; % set initial nVL
dE=O; % specify i there is drooping in E
Einit=2SO; % set initial E
%xO=[O;O;]0; % Set initial states: zero initial
xO=[-52.616;60.116;-108.406]; % nominal values from simsyo.m

% C; L; E; nVL; freq,dc; phi; ph2; err; dt; tlover; tupper; compression
para=[.2e-6; le-6; Einit; nvlinit; 2*pi*275e3; 0; -pi*115.626/180; le-Li;

0.006e-6; 0; 20e-6; 1 ];
% CL, RL, ILn, nvlcase
param=[0.01; 0.0180625; 8.5/0.0180626/8; 8; OUTno];

freq=para(5);
T=2*pi/freq;

for ite=i:CYCno
if dE==, para(3)=para(3)-1; end

X Comment
% Drooping in E at -V/cycle

out the following block i no load change
if ite>10 & ite <=20 % Full->no load
if OUTno==i, param(2)=1.80625;
elseif OUTno==2, param(3)=(8.6/0.0180626/8)*.01; end
if dE==, para(3)=para(3)+2; end % E rises at +/cyc in no load

elseif ite>20 % No->full load
if OUTno==i, param(2)=0.0180625;
elseif OUTno==2, param(3)=8.6/0.0180625/8; end
end

para(l0)=(ite-1)*T; % Start at the beginning of a cycle
para(li)=para(10)+1.I*T;% Simulate for a cycle
[t,x,m,s,ttxxmmss,nvl]=srctrans(xO,para,parsm);
[el,e2,vp]=evp(t,x,m,s,para,nvl);
for ii=l:length(tt) % Check for the end of the cycle
if abs(tt(ii)-ite*T) < para(8)
break
end
end
if ii==l
disp('Warning: the precise switching may not have been found.');
end
xO=xx(:,ii); % Reset starting point for next cycle
for jj=length(t):-1:1 % Find the length of the current cycle
if t(jj)<=ite*T
break
end

end

if ite==, initstate=O; end
[dp,state]=fbctrl(t,nvl,nvlnom,initstate,CTRno);
initstate=state(:,jj); % Reset controller initial condition for next cycle
para(4)=nvl(jj); % Reset initial nvl for next cycle
tDT(ite)=t(jj); % Save sampled points
dpDT(ite)=dp(jj)+(O.91/263)(para(3(p(3)-Enom); % Disturbance feedforward
nvlDT(ite)=nvl(jj);

. Nonlinear control rule:
if (dpDT(ite)>phinom) XI (nvlDT(ite)>nvlnom+1 .4)
disp('Control saturation, phi is set to 0');
dpDT(ite)=phinom;
elseif (dpDT(ite)<phinom-180) XI (nvlDT(ite)<nvlnom-1 .4)
disp('Control saturation. phi is set to 180');
dpDT(ite)=phinom-180;
end
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para(7)=-(phinom-dpDT(ite))*pi/180;
disp(dpDT);

if ite==l X put the whole thing together
ta=t(i:jj); a=x(:,l:jj);
ma=m(1:jj); sa=s(l:jj);
ela=el(i:jj); e2a=e2(1:jj);
vpa=vp(l:jj); va=nvl(l:jj);
dpa=dp(l:jj);
else
ta=[ta t(l:jj)]; xa=[xa x(:,l:jj)];
ma=[ma m(l:jj)]; sa=[sa s(1:jj)];
ela=[ela el(l:jj)]; e2a=[e2a e2(1i:jj)];
vpa=[vpa vp(l:jj)]; va=[va nvl(i:jj)];
dpa=[dpa dp(i:jj)];
end

%. plsrc(ta,xa,vpa,ela,e2a,ma,sa,ta(1),ta(length(ta)),3,0,0);
clg; V. Draw a few graphs
ff=round(ite/2);
subplot(2il); plot(dilute(ta,ff),dilute(va,ff),'w',tDT,nvlDT,'ow');
grid; xlabel('t'); ylabel('nVL');
subplot(212); plot(dilute(ta,ff),dilute(dpa,ff),'w',tDT,dpDT,'ow');
grid; xlabel('t'); ylabel('d phi');
!delete plotvl.met
meta plotvl
end

diary off

simstr. m
% SRC Simulation program, simstr.m
% System with feeback controller, Start-up simulation
% Specify output model in param
V Specify feedback controller in fbctrl()
Z Specify initial value of nVL in para
% Written 12/11/93, Terrence Ho
. Modified 12/93

clear;
clg;
!delete str.d
diary str.d

CTRno=3;
OUTno=l;
CYCno=60;
phinom=115.626;
Enom=250;
nvlinit=0.1;
dE=i;
Einit=300;
xO=[00;0;];

%

X.7.7
7
.
7%
.
X.
Y.

set feedback controller, final design is 3
v=o; R//C=l; I//C=2;
set number of cycles to be simulated
phinom is the duty ratio in degrees
set Enom
set initial nVL
specify if there is drooping in E
set initial E
zero initial state

V. C; L; E; nVL; freq,dc; phi; ph2; err; dt; tlower; tupper; compression
para=[.2e-6; le-6; Einit; nvlinit; 2*pi*276e3; 0; -pi*115.625/180; le-li;

0.005e-6; 0; 20e-6; 1 ];
%. CL, RL, ILn, nvlcase
param=[0.O01; 0.0180626; 8.5/0.0180625/8; 8; OUTno];

freq=para(S);
T=2*pi/freq;

nvlnombeg=nvlinit;
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for ite=i:CYCno
if dE==1, para(3)=para(3)-1; end % Drooping in E at -V/cycle

para(10)=(ite-i)*T; % Start at the beginning of a cycle
para(ii)=para(lO)+ .l*T;% Simulate for a cycle
[t,x,m,s,tt,xx,mm,ss,nvl]=srctrans(xO,para,param);
for ii=l:length(tt) % Check for the end of the cycle
if abs(tt(ii)-ite*T) < para(8)
break

end
end
if ii==i
disp('Warning: the precise switching may not have been found.');

end
xO=xx(:,ii); % Reset starting point for next cycle
for jj=length(t):-i:l X Find the length of the current cycle
if t(jj)<=ite*T
break

end
end

X Soft start
dnvlnom=2.27/(jj-1); % nvlnom rises at 2.27/cycle to nominal
nvn vlmnoeln vnobeg:ndnvnom:nvlombeg+dnlnom*(length(nvl) -);
for ii=l :length(nvlnom)
if nvlnom(ii)>8.S*8
nvlnom(ii)=8.S*8;

end
end
nvlnombeg=nvlnom(jj);

if ite==l, initstate=O; end
Edp,state]=fbctrl(t,nvl,nvlnom,initstatt,CTRno);
initstate=state(:,jj); Reset controller initial condition for next cycle
para(4)=nvl(jj); % Reset nvl for next cycle
tDT(ite)=t(jj); X Save sampled points
dpDT(ite)=dp(jj)+(0.91/2.53)*(para(3)-Enom); Disturbance feedforward
nvlDT(ite)=nvl(jj);

%X onlinear control rule:
if dpDT(ite)>phinom I (nvlDT(ite)>nvlnom+1.4)
disp('Control saturation. phi is set to 0');
dpDT(ite)=phinom;

elseif dpDT(ite)<phinom-180 I (nvlDT(ite)<nvlnom-1.4)
disp('Control saturation. phi is set to 180');
dpDT(ite)=phinom-180;

end
para(7)=-(phinom-dpDT(ite))*pi/180;
disp(dpDT);

if ite==i . put the whole thing together
ta=t(1:jj); xa=x(:,l:jj);
va=nvl(l:jj); dpa=dp(i:jj);
else
ta=[ta t(i:jj)]; xa=[xa x(:,i:jj)];
va=[va nvl(l:jj)]; dpa=[dpa dp(l:jj)];

end

clg; % Draw a few graphs
ff=round(ite/2);
subplot(211); plot(dilute(ta,ff),dilute(va,ff),'w',tDT,nvlDT,'ow');
grid; xlabel('t'); ylabel('nVL');
subplot(212); plot(dilute(ta,ff),dilute(dpa,ff),'w',tDT,dpDT,'ow');
grid; xlabel('t'); ylabel('d phi');
!delete plotstr.met
meta plotstr

end

diary off
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A.4 Other Programs

spiralml. m
% spiralml.m
% Draws the spiral for M1
. For matlab4
Y. Written, 11/22/93 Terrence Ho

clear;
clg;

C=.2e-6;
L= e-6;
E=250;
v=l/sqrt (L*C);
el=E;
e2=E;
vp=8.5*8;

x0=[90; 40; 60];

t=linspace(0,Se-6,200);
for i=l:length(t);
Phil=[1 0 0; 0 cos(w*t(i)) -sqrt(C/L)*sin(w*t(i));

0 sqrt(L/C)*sin(w*t(i)) cos(w*t(i))];
Psii=[t(i)*(el-E-vp)/L; sqrt(C/L)*sin(v*t(i))*(-e2+E-vp);

(1-cos(w*t(i)))*(-e2+E-vp)];
x( ,i)=Phil*x0+Psil;
end

plot3(x(l,:),x(2,:) ,x(3,:),'w');
xlabel('il'); ylabel('i2'); zlabel('vc');
view(37.5,30); grid;

hold on
for i=l:length(t)
if x(l,i)+x(2,i)>0 & x(l,i)>x(2,i) & x(3,i)>0 & x(3,i)<E
plot3(x(l,i),x(2,i),x(3,i),'ow');
end

end
hold. off

print spiralmi

spiralm3. m
%. spiralm3.m
/ Draws the spiral for H3
. For matlab4
, Written, 11/22/93 Terrence Ho

clear;
clg;

C=.2e-6;
L= le-6;
E=250;
w=l/sqrt(L*C);
ei=0;
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e2=E;
vp=8.5*8;

x0=[90; 40; -60];
t=linspace (0, e-6,200);
for i=1:length(t);
Phi3= [cos (*t(i)) 0 -sqrt(C/L)*sin(w*t(i));
0 1 0; sqrt(L/C)*sin(v*t(i)) 0 cos(v*t(i))];

Psi3= [sqrt(C/L)*sin(v*t(i))* (el-E-vp); t(i)*(-e2+E-vp)/L;
(1i-cos(w*t(i)))*(ei-E-vp)];

x (:,i)=Phi3*xO+Psi3;
e:nd

plot3(x(1,:) ,x(2,: ) ,x(3, :),'');
xlabel('il'); ylabel('i2'); zlabel('vc');
view(37.5,30); grid;

hold on
for i=i:length(t)
if x(l,i)+x(2,i)>O & x(l,i)>x(2,i) & x(3,i)<0 & x(3,i)>-E
plot3(x(1,i) ,x(2,i),x(3,i), 'ow');
end
end
hold off

print spiralm3
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Appendix B

Sampled-Data Model
Computation and Results

B.1 Source Codes and Results in Maple
> with(linalg):
> EE:=250:
> L:=1.*10^(-6):
> C:=.2*10'(-6):
> nVL:=8.6*8:
> w:=l/sqrt(L*C):
> wO:=l/sqrt(2*L*C):

> freq:=276000:
> .6/freq:
> phase:=1ii.625:

> TO:=O:
> xTO:-matrix(3,1,[46.8379,46.8379,179.9731]);

C 46.8379 ]
C ]

xTO:= C 46.8379 ]
[ ]
[ 179.9731 ]

> phil:=t->matrix([1, 0],[0 , cos(w*t), -sqrt(C/L)*sin(w*t)],
> [0, sqrt(L/C)*sin(w*t), cos(w*t)]]):
> psil:=(t,el,e2,vp) ->matrix(3,1,[(1e-EE-vp)*t/L,
> sqrt(C/L)*sin(w*t)*(-e2+EE-vp), (-cos(w*t))*(-e2+EE-vp)):
> fl:=(t,xinit,el,e2,vp)->add(multiply(phil(t),xinit),psil(t,el,e2,vp)):
> f1(t,xTO,EE,EE,nVL):
> T1:=fsolve(row(fl(t,xTO,EE,EE,nVL) ,i)[i+row(lf(t,xTO,EE,EE,zVL),2)[13
> =0,t,O..O.5/freq);

-6
Ti := .2823239921*10

> xTI:=fI(TI,xTO,EE,EE,nVL);

[ 27.63986864 ]
C 

xT1 := -27.63986864 1
C ]
[ 193.9919675 ]

> T2:=(1/freq)*(180-phase)/360;

-6
T2 := .6502526253*10

> xT2:=fI(T2-T1,xTl,EE,EE,-nVL);
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[ 62.66900880 ]
E ]

xT2 := [ -60.10239478 ]
]

[ 108.4017109 ]
> T3:=fsolve(row(fl(t-T2,xT2,0,EE,-nVL),3)[1]=O,t,T2..O./freq);

-5
T3 := .1007077400*10

> xT3:=fl(T3-T2,xT2,0,EE,-nVL);

[ -12.28311840 ]
C ]
[ -54.89962189 ]

xT3 := [ ]
[ -6 J
[ -.10*10 ]

> phi3:=t->matrix([[cos(w*t),O,-sqrt(C/L)*sin(w*t)],[O,l,0],
> Esqrt(L/C)*sin(w*t),O,cos(v*t)]]):
> psi3:=(t,el,e2,vp)->matrix(3,1,Csqrt(C/L)*sin(w*t)*(el-EE-vp),
> (-e2+EE-vp)*t/L,(1-cos(w*t))*(el-EE-vp)]):
> f3:=(t,xinit,el,e2,vp)->add(multiply(phi3(t),xinit),psi3(t,ele2,vp)):
> f3(t,xT3,0,EE,-nVL):
> T4:=fsolve(rov(f3(t-T3T3, 0,EE,-nVL) ,1) [1

> =row(f3(t-T3,xT3,0,EE,-nVL),2)[],t,T3..0.5/freq);

-5
T4 := .1184746130*10

> xT4:=f3(T4-T3,xT3,0,EE,-nVL);

[ -42.81811628 ]
C ]

xT4 := [ -42.81811625 ]
C ]
[ -24.80133736 ]

> wO:=l/sqrt(2*L*C):
> phiO:=t->matrix([[O,cos(wO*t),-sqrt(C/(2*L))*sin(wO*)],[O,cos(wO*t),
> -sqrt(C/(2*L))*sin(wO*t)],[O, sqrt(2*L/C)*sin(wO*t),cos(wO*t)]]):

> psiO:=(t,el,e2,vp)->matrix(3,1,[sqrt(C/(2*L))*sin(wO*t)*(el-e2-2*vp),
> sqrt(C/(2*L))*sin(wO*t)*(el-e2-2*vp), (1-cos(vO*t))*(el-e2-2*vp)3):

> fO:=(t,xinit,el,e2,vp)->add(multiply(phiO(t),xinit),psiO(t,ele2,vp)):
> TS:=.5/freq;

-6
TS := .1818181818*10

> xTS:=fO(TS-T4,xT4,0,EE,-nVL);

[ -46.83786937 ]
£ ]

xT5 := [ -46.83786937 ]
£ ]
[ -179.9731167 ]

> phi2:=t->matrix([[C, 0, 0 , cos(w*t), -sqrt(C/L)*sin(w*t)],

> [0, sqrt(L/C)*sin(w*t), cos(v*t)]]):
> psi2:=(t,el,e2,vp) ->matrix(3,1,[(el-vp)*t/L,
> sqrt(C/L)*sin(w*t)*(-e2-vp), (1-cos(w*t))*(-e2-vp)]):
> f2:=(t,xinit,ei,e2,vp)->add(multiply(phi2(t),xinit),psi2(tele2,vp)):
> f2(t,xTS,0,0,-nVL):
> T6:=fsolve(ro(f2(t-TS,xTS,0,O,-nVL),)[E]+row(f2(t-TS,xT,0,O,-nVL),2)[E1
> =O,t,TS..(1/freq));

-5
T6 := .2100505629*10

> xT6:=f2(Ti,xTS,0,0,-nVL);

[ -27.63983791 ]
C ]
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xT6 := E 27.63989768 ]
]

[ -193.9919406 ]
> T7:=(1/freq)*(180-phase)/360+(.6/freq);

-5
T7 := .2468434343*10

> xT7:=f2(T7-T6,xT6,O,O,nVL);

[ -52.66899046 ]
[ ]

xT7 := [ 60.10241309 ]
[ ]
[ -108.4016906 ]

>) phl:=matrix(E[[, 0, O0],[, cos(w*(tl-tO)), -sqrt(C/L)*sin(v*(tl-tO))],
> [O, sqrt(L/C)*sin(w*(tI-tO)), cos(w*(tl-tO))]]):
> psl:=matrix(3,1,[(-nVL)*(tl-tO)/L, sqrt(C/L)*sin(*(tl-tO))*(-nVL),
> (1-cos(v*(tl-tO)))*(-nVL)]):

>) xl:=add(multiply(phi, [iO,i20,vcO]),psl):
> ph2:--=matrix([[, O0, [0,CO cos(w*(t2-tl)), -sqrt(C/L)*sin(v*(t2-tl))],
> [0, sqrt(L/C)*sin(g*(t2-tl)), cos(*(t2-ti))]]):
> ps2:=matrix(3,1,[(nVL)*(t2-tl)/L, sqrt(C/L)*sin(w*(t2-ti))*(nVL),
> (1-cos(w*(t2-tl)))*(nVL)]):

> x2:=add(multiply(ph2,xl),ps2):

> ph3:-matrix([[I, O, O],[0, cos(w*(t3-t2)), -sqrt(C/L)*sin(w*(t3-t2))],
> [0, sqrt(L/C)*sin(w*(t3-t2)), cos(w*(t3-t2))]]):
> ps3:-matrix(3,1,[(-EE+nVL)*(t3-t2)/L, sqrt(C/L)*sin(v*(t3-t2))*(nVL),
> (1-cos (* (t3-t2)))*(nVL)):
> 8x3:=add(multiply(ph3,x2),ps3): * use this line for the 1st point
> x3:=add(multiply(ph3,[ilO,i20,vcO]),ps3): * use this line for the 2nd pt
> ph4:--matrix( [cos(*(t4-t3)),O,-sqrt(C/L)*sin(w*(t4-t3))], [0,1,0],
> [sqrt(L/C)*sin(w*(t4-t3)),0,cos(w*(t4-t3))]]):

>, ps4:=matrix(3,1, [sqrt(C/L)*sin(w*(t4-t3))*(-EE+nVL), (nVL)*(t4-t3)/L,
: (1-cos(w*(t4-t3)))*(-EE+nVL)]):

> x4:=add(multiply(ph4,x3),ps4):

:, ph6:-matrix([O,cos(wO*(tS-t4)),-sqrt(C/(2*L))*sin(vO*(t6-t4))],
t [O,cos(vO*(tS-t4)),-sqrt(C/(2*L))*sin(wO*(t-t4))],
> CO, sqrt(2*L/C)*sin(wO*(t-t4)),cos(wO*(t6-t4))]]):
> ps:--matrix(3,1,[sqrt(C/(2*L))*sin(wO*(t6-t4))*(-EE+2*nVL),sqrt(C/(2*L))

> *sin(wO*(t6-t4))*(-EE+2*nVL), (1-cos(vO*(tS-t4)))*(-EE+2*nVL)]):
> x6:=add(multiply(ph6,x4),ps6):

> ph6:--matrix([[C, 0, O 0],[O, cos(w*(t6-t6)), -sqrt(C/L)*sin(w*(t6-t6))],
> [0, sqrt(L/C)*sin(e*(t6-t6)), cos(w*(t6-tS))]]):
> ps6:--matrix(3,1, [(nVL)*(t6-tS)/L, sqrt(C/L)*sin(v*(t6-t6))*(nVL),
> (1-cos(w*(t6-t6)))*(nVL)]):

> x6:=add(multiply(ph,x6),ps6):
> ph7:--matrix([[, O, O], [0CO, cos(w*(t7-t6)), -sqrt(C/L)*sin(u*(t7-t6))],
> [0, sqrt(L/C)*sin(w*(t7-t6)), cos(w*(t7-t6))]]):
> ps7:=matrix(3,1, (-nVL)*(t7-t)/L, sqrt(C/L)*sin(v*(t7-t6))*(-nVL),
> (1-cos(v*(t7-t6)))*(-nVL)]):

> x7:=add(multiply(ph7,x6) ,ps7):

> # Run the following for the 1st pt
> Jfx:=jacobian(col(x6,1), ilO,i20,vcO]):
> Jft:=jacobian(col(x6,1), tO,tl,t2,t3,t4,t6]):
> Jfp:=jacobian(col(xS,1) ,phas]):
> c:=[tO, xl[1,1]+x[2,1], t2-(1/freq)*(180-phas)/360, x3[3,1],
> x411,1]-x4[2,1], t6-.6/freq]:
> Jcx:=jacobian(c,[ilO,i20,vcO]):

> Jct:=jacobian(c,[tO,tl,t2,t3,t4,t6]):

> Jcp:=jacobian(c, [phas]):

> Jfxeval:=evalf(subs(tO=TO,tl=TI,t2=T2,t3=T3,t4=T4,t6=T6,ilO=xTO[,J],
> i20=xTO[2,1],vcO=xTO[3,1],phas=phase,evalm(Jfx))):

> Jfteval:=evalf(subs(tO=TO,tI=T1,t2=T2,t3=T3,t4=T4,ts=T6,ilO=xTO[1,1],

> i20=xTO[2,1],vcO=xTO 3,1],phas=phase,evalm(Jft))):
> Jfpeval:=evalf(subs(tO=TO,tl=TI,t2=T2,t3=T3,t4T4,tS=T6,ilO=xTO[1,1],
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> i20=xTO[2,1],vcO=xTO[3,1],phas=phase,evalm(Jfp))):

>) Jcxeval:=evalf(subs(tO=TO,tl=T,t2T2,t3=T3,t4=T4,t=TS,ilO=xTO[1,1],
> i20=xTO[2,1],vcO=xTO[3,1],phas=phase,evalm(Jcz))):

> Jcteval:=evalf(subs(tO=TO,tl=T,t2=T2,t3=T3,t4=T4,tS=TS,ilO=xTO[1,1],
> i20=xTO£2,1],vcO=xTO[3,1],phas=phase,evalm(Jct))):

> Jcpeval:=evalf(subs(tO=TO,tl=Tl,t2=T2,t3=T3,t4=T4,tS=TS,iIO=xTO[1,1],
> i20=xTO[2,1],vcO=xTO[3,1],phas=phase,evalm(Jcp))):

> Fhalf:=evalm(Jfxeval-Jfteval&*inverse(Jcteval)&*Jcxeval);

C .0763320988 -.2362395912 -.06784070852 
t ]

Fhalf := .0763320988 -.2362395912 -.06784070852 ]
C ]
[ .9686111164 -1.320938402 -.3086748679 ]

> Ghalf:=evalm(Jfpeval-Jftevalt*inverso(Jcteval)&*Jcpeval);

[ -.04661961303 
[ ]

Ghalf := -.04561961303 ]
[ )
C -4.278781491 ]

> Fone:--multiply(Fhalf,Fhal);

[ -.07791055486 .1273898777 .03178895933 ]
]

Fone := -.077910556486 .1273898777 .03178895933 ]
[ ]
[ -.3258565553 .4909977646 .1191890908 ]

> Gone:=add(multiply(Fhalf,Ghalf),-Ghalf);

[ .3431900989 1
C ]

Gone = .3431900989 ]
C ]
C 5.615611399 ]

> eigenvals(Fone);

-10
.1647365088, .003931904912, .8190465*10

> dxO:-=matrix(3,1,[1,1,0]):

> dhalf:=multiply(Fhalf,dxO);

> done:=multiply(Fone,dxO);

> # Run the following for the 2nd pt
> Jfx:=jacobian(col(x7,1),[ilO,i20,vcO]):

> Jft:=jacobian(col(x7,1),[t2,t3,t4,tS,t6,t7J):

> Jfp:=jacobian(col(x7,1), phas]):
> c:=[t2-(1/freq)*(180-phas)/360, x3[3,1], 4C[1,1]-s4[2,1],
> tS-.6/freq, 6[l,1]+x6[2,1], t7-((1/freq)*(180-phas)/360+.S/freq)]:
> Jcx:=jacobian(c,[ilO,i20,vcO]):
> Jct:=jacobian(c,[t2,t3,t4,tS,t6,t7]):
> Jcp: =jacobian(c, [phas]):

> Jfxeval:=evalf(subs(t2=T2,t3=T3,t4=T4,tS=TS,t6=T6,t7=T7,ilO=xT2[1,1],

> i20=xT2[2,1],vcO=xT2[3,1],phas=phase,evalm(Jfx))):

> Jfteval:=evalf(subs(t2=T2,t3=T3,t4=T4,ts=TS,t6=T6,t7=T7,ilO=xT2[1,1],

> i20=xT2[2,1],vcO=xT2[3,1],phas=phase,evalm(Jft))):

> Jfpe evalf(subs(t2=T2,t3=T3,t4=T4,tS=TS,t6=T6,t7=T7,ilO=xT21,1],
> i20=xT2[2,1],vcO=xT2[3,1],phas=phase,evalm(Jfp))):

> Jcxeval:=evalf(subs(t2=T2,t3=T34=T4,tS=T,t6=T6,7=T7,ilO=xT21,1],
> i20z=xT2[2,1,vcO=xT2[3,1],phas=phase,evalm(Jcx))):
> Jcteval:=evalf(subs(t2=T2,t3 4=4=T4,t=T,t6=T6,t7=T7,ilO=T21,1],
> i20=xT2[2,1],vcO=xT2[3,1],phas=phase,evalm(Jct))):
> Jcpeval:=evalf(subs(t2=T2,t3=T3,t4=T4,tS=T6,tS=T6,t7=T7,i10=T2[1,1],

> i20=xT2[2,1],vcO=xT2[3,1],phas=phase,evalm(Jcp))):

> Fhalf:=evalm(Jfxeval-Jftevalt*inverse(Jcteval)t*Jcxeval);
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E .1889237341 .1328452276 -.0755168445
[

Fhalf := [ -.6342670110 -.4121407126 .1938912609
[
E .5175962941 .3857968536 -.2453654538

> Ghalf:=evalm(Jfpeval-Jfteval&*inverse(Jcteval)&*Jcpeval);

I

Ghalf := 

:> Fone:=multiply(Fhalf,Fhalf);> Fone:--multiply(Fhal:E,Fhal:);

.5145699196 ]

.3375702649 ]
-

-3.399657235 1

[ -.08765440699 -.05878747131

Fone := [ .2419365639 .1604032600
[
[ -.2739122422 -.1849036128

> Gone:=add(multiply(Fhalf,Ghalf),-Ghalf);

.03001982925

-.07958685641

.09591960546

[ -.1157794648 
[ ]

Gone := [ -1.462235253 1
[ 1
[ 4.630388701 ]

> eigenvals(Fone);

-9
.1647365509, .003931907972, -.316*10

B.2 Simulation Results from simsyq.m
Simulation from E=>O: States at transition points at time

1.Oe-06 *

0.0282
0.0650
0.1007
0.1185
0.1818
0.2100
0.2468
0.2825
0.3003
0.3636
0.3919

from initial state
46.8208 46.8208

are
27.6354
52.6356
-12.2764
-42.8453
-46.8321
-27.6407
-52.6122
12.3085
42.8487
46,8208
27.6354

-27.6354
-60.1382
-54.9412
-42.8453
-46.8321
27.6407
60.1308
54.9333
42.848'7

46.8208
-27.6354

180.0880

194.0877
108.4185

0
-24.8411
-180.0560
-194.0647
-108.4204

0
24.8332
180.0886
194.0882
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Transition matrix and
0.0600 0.0319
0.1660 0.1195

eigenvalues at E=>O:

0.0041
0.1654

Transition
-0.0872
0.2427
-0.2715

matrix and
-0.0677
0.1592
-0.1804

eigenvalues at 0=>-E:
0.0299
-0.0793
0.0954

0.1626 0.0000 0.0048
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Appendix C

Representative Trajectories in
Various Operating Modes

For more discussion on steady-state operating modes, see Chapter 6.
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