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Abstract
A theory of second order reactions involving off-resonant intermediate states which contain
virtual neutrons is studied. These reactions, so called neutron transfer reactions, have
the potential to explain some of the anomalous effects observed in Pons-Fleischmann cells,
namely excess heat and production of 4He. A brief introduction to the various transfer
operators and different reaction mechanisms is presented. The notion that a neutron can
hop from one nucleus to another through second order coupling with continuum states raises
the possibility of new reactions, as proposed by P. L. Hagelstein. This thesis studies issues
related to the possible delocalization of virtual neutrons. We have focused on near-resonant
exchange scattering of virtual neutrons and have made progress in the computation of the
self-energy associated with this process.
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Chapter 1

Introduction

Pons and Fleischmann's claim of observation of heat generation of nuclear origin in

electrolysis experiments in 1989 took the scientific community by surprise1 . From the

outset, the claim was met with hostility and much skepticism. Critics have persistently

maintained that the experimental reports were products of poorly designed experiments

and that the observed effects were tarnished by poor signal to noise ratios. Criticisms,

which in many cases have proven to be true, deepened in the early months following Pons

and Fleischmann's claim because most laboratories failed to reproduce the effect.

The past several years however have seen a number of serious reports of observation of

anomalies in metal deuteride systems2. Rather thah going into details of each experimental

group's findings and techniques, we shall simply list some of the most significant observations

claimed by these studies.

1. Excess heat production is the most significant claimed effect3. Many palladium elec-

'M. Fleischmann and S. Pons, "Electronically Induced Nuclear Fusion of Deuterium", J. Electroanal.
Chem., 261, 301 (1989).
S. Pons and M. Fleischmann, Calorimetric Measurements of the Palladium/Deuterium System: Fact and
Fiction", Fusion Technol., 17, 669 (1990).
S. Pons and M. Fleischmann, "Calorimetry of the Palladium-Deuterium System", Proc. of the First Annual
Conference on Cold Fusion, p. 1, Salt Lake City, Utah, March 28-31, 1990.
S. Pons and M. Fleischmann, "Calorimetric Measurements on Palladium Based Cathodes Polarized in Heavy
Water", presented at the Second Conference on Cold Fusion, Como, Italy, June 29-July 4, 1991.

2 See reports in the Third Annual Conference on Cold Fusion, ICCF3 Conference Proc., Nagoya, Japan,
October 1992 and in the Fourth Annual Conference on Cold Fusion, ICCF4 Conference Proc., Lahaina,
Hawaii, December 1993.

3M. McKubre, R. Rocha-Filho, S. Smedley, F. Tanzella, S. Crouch-Baker, T. Passel and J. Santucci,
"Isothermal Flow Calorimetric Investigations of the D/Pd System", lroc. Second Annual Cold Fusion Con-
ference, Como, Italy, July 1991.
M. Fleischmann and S. Pons, Proc. Third International Conference on Cold Fusion Ed. H. Ikegami, Uni-
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trolysis experiments carried out in a basic (LiOD) heavy water electrolyte report

excess energy production, with some laboratories claiming energy generation in ex-

cess of 50 MJ/mole (or 500 eV/atom) of Pd4. No exothermic reaction of chemical

nature is capable of producing heat of such magnitude. If these claims prove to be

true, then it must be concluded that a reaction of nuclear origin is taking place.

2. Anomalous emissions of neutrons in electrolytic and gas-loaded metal deuterides have

been reported 5.

3. Additionally, there have been claims of excess tritium productions (unaccompanied by

neutron emission) as well as fast charged particles and anomalous gamma emissions7 .

4. 4He production has been claimed8, though further confirmation of this phenomenon

by independent experimental studies is warranted. 4He production is of particular

significance because it is believed by some to be the leading candidate for a signal

that dd-fusion in some form is indeed occurring.

These and other reports have attempted to address much of the criticism surrounding

the "cold fusion" phenomenon, yet many questions are left unanswered. For instance, if the

conjecture of deuteron fusion in the cells were correct, then the dominant reaction should

follow one of these pathways:

d+d , n+ 3He , (1.1)

d+d - p+t . (1.2)

versal Academy Press, Tokyo (1993).
M. Fleischmann and S. Pons, Physics Letters A, 176 118 (1993).

4M. McKubre, S. Crouch-Baker, A. M. Riley, S. I. Smedley and F. L. Tanzella, Proc. Third International
Conference on Cold Fusion Ed. H. Ikegami, Universal Academy Press, Tokyo (1993).

5H. O. Menlove, Proc. First Annual Cold Fusion Conference, Salt Lake City, March 1990; page 250.
ST. Claytor, "Tritium Generation in Pd-Si Systems", presented at the Conference on Anomalous Nuclear

Effects in Deuterium/Solid Systems, BYU, Oct. 1990.
7A. B. Karabut, Y. R. Kucherov, I. B. Savatimova, Physics Letters A 170 265 (1992).
8M. Miles, B. Bush and D. Stilwell, "Calorimetric Principles and Problems in Measurements of Excess

Power During Pd - D2 0 Electrolysis", to be published in the Journal of Physical Chemistry E, Feb. 17,
(1994).
M. Miles and B. Bush, "Heat and Helium Measurements in Deuterated Palladium", Fourth Annual Confer-
ence on Cold Fusion, ICCF4 Conference Proc., Lahaina, Hawaii, December 1993.
D. Gozzi et. al. and S. Frullani et. al, "Helium-4 Quantitative Measurements in the Gas Phase of Cold Fu-
sion Electrochemical Cells", Fourth Annual Conference on Cold Fusion, ICCF4 Conference Proc., Lahaina,
Hawaii, December 1993.
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The levels of both neutron and tritium production observed in the experiments, however, are

incommensurate with the excess heat production. Some have suggested that 4He production

may be the dominant pathway, yet how this could possibly be the case remains unknown.

Ultimately, the major problem of "fusion" theories lies in their inability to account, either

qualitatively or quantitatively, for the mechanism of the reactions responsible for the claimed

anomalies. Consequently, an effort has been undertaken toward developing alternative

theories which propose to explain many of the observed effects in Pons-Fleischmann cells

and to provide details of the reaction mechanisms.

1.1 "Cold Fusion", A Misnomer

In response to the deficiencies mentioned of theories pretending to explain the Pons-

Fleischmann effect that are based on nuclear fusion, it is our conviction that the name

"cold fusion", which the field acquired from early speculations, is a misnomer. A new

search for the mechanism responsible for the excess heat generation and other anomalous

observations is thus warranted.

1.2 Neutron Transfer Reactions

In developing a new theory to seek to explain the Pons-Fleischmann effect, several issues

must be addressed. The following is a list of some of the leading constraints or prerequisites

which the present model faced.

1. As mentioned above, fusion theories have problems overcoming the Coulomb bar-

rier. In order to circumvent this problem it has been proposed that the reactions

within the cells involve the transfer of a neutral particle. The candidate in this case

is the neutron. The charge neutrality of the neutron allows it, potentially, to be

absorbed/emitted from acceptor/donor lattice sites without having to overcome an

overwhelming Coulomb barrier. A typical proposed neutron transfer reaction (shown

in Fig. 1-1) would involve transfer from a donor nucleus such as deuterium to an

acceptor nucleus, such as 2H, 6Li, 10B and Pd isotopes, as well as others.

2. The two-step reactions should proceed through a virtual intermediate state. The

reaction pathway involving on-shell real neutrons would naturally suffer significant

6



Figure 1-1: Two-step virtual neutron transfer reaction from a donor to an acceptor nucleus.

loss of neutrons, requiring some mechanism within the theory to continually supply

these neutrons9. By demanding that the neutrons be virtual in nature this problem

is avoided altogether. In addition, with transfer reactions involving real neutrons, one

expects primary and secondary capture gammas to be present. So far, the reported

levels of gammas in Pons-Fleischmann cells are incommensurate with the levels of

energy generation. Finally, for real neutrons, there exists the physical handicap of

having to overcome the binding energy of the donor nucleus (2.225 MeV for the

deuteron). Once again, neutrons undergoing transfer reactions through virtual in-

termediate states escape this limitation, since it may be possible for the continuum

neutron states to be driven off-resonance in the intermediate stage of a two-step re-

action. This situation is analogous in some ways to Raman scattering where, instead

of a neutron, the laser driven transition involves an electron passing through a virtual

intermediate state.

3. The transfer of nuclear energy to the lattice is proposed to occur through frequency

shifting of the lattice normal phonon modes. This process is inherently highly nonlin-

ear, which may require a non-perturbative approach to the problem.

4. The original proposal assumed that the transitions were driven by the long wavelength

electric or magnetic field. It has been found, more recently, that the strong interaction

between the neutrons and the nuclei occupying the lattice sites is responsible for the

proposed neutron transfer reactions, (see chapters 4 and 7).

9P. L. Hagelstein, "Coherent and Semi-Coherent Neutron Transfer Reactions IV: Two-Step Reactions
and Virtual Neutrons", MIT, submitted to Fusion Tech., November, (1992).

"See chapter 3.
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The assumptions and preconditions listed above have guided the proposed neutron trans-

fer theory, and at the same time have helped to overcome many of the barriers that stood

in the way of a "contradiction-free" theory to explain the Pons-Fleischmann anomalies.

This work undertakes the dual task of, firstly, reviewing the fundamental concepts de-

veloped by P. L. Hagelstein in his effort to develop a theory of neutron transfer reactionsl,

to which end chapters 2, 3 and 4 are dedicated; and, secondly, deriving a Green's func-

tion solution to the problem of the virtual neutron in the presence of a lattice. In chapter

5, the Green's function formulation of the virtual neutron problem is presented and the

total system Hamiltonian developed, leading to the sixth and seventh chapters where the

Hartree-Fock approximation scheme is adopted to derive approximations useful to study

the virtual neutron Green's function.

In striving toward presenting as complete a picture as possible of the new theory to ex-

plain the Pons-Fleishmann phenomenon, and since this effort was initiated by P. L. Hagel-

stein a few years before my joining the project, this work, naturally, contains much material

that is a review. The original research which constitutes the thesis is presented in chapters

5, 6 and much of chapter 7. The essential new result is contained in the formal deriva-

tion of the one-phonon contribution to the proper self-energy of the neutron/lattice system

(see Eq. (7.44)). This result was used to derive an expression for the many-body Green's

function. Additionally, the proper self-energy expression was used to estimate the neutron

transfer reaction rate for the case of electromagnetic interaction as well as that of the strong

interaction.

1 lP.L. Hagelstein, "Coherent and Semi-Coherent Neutron Transfer Reactions I: The Interaction Hamilto-
nian", Fusion Tech. 22, 172-180, (1992).
P.L. Hagelstein, "Coherent and Semi-Coherent Neutron Transfer Reactions II: Transition Operators", sub-
initted to Fusion Tech., (1992).
P.L. Hagelstein, "Coherent and Semi-Coherent Neutron Transfer Reactions III: Phonon Generation", Fusion
Tech., May 1993.
P.L. Hagelstein, "Coherent and Semi-Coherent Neutron Transfer Reactions IV: Two Step Reactions and
Virtual Neutrons", submitted to Fusion Tech. November (1992).
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Chapter 2

Neutron Transfer Reactions

The original proposal by P.L. Hagelstein for neutron transfer reactions involved single-

step first order reactions whereby coherent transfer of energy to and from the lattice occurred

with each neutron capture or ionization reactions. The analysis is facilitated by the use

of second quantized field operators for the neutrons and the donor and acceptor nuclei. In

the case of neutrons, one may define the field operators ,n(r) and 4t (r) in the following

manner:

'in(r)= Ad bS ,n,,k`nk(r) , (2.1)
an k

t (·t (2.2)'n(r) = bnt,x,kn,,k(r) ' (2.2)
an k

where n,ank and bt ,k are Schrodinger picture single neutron annihilation and creation

operators, Pn,a.,k(r) and , n,k(r) are spatial wavefunctions, and an represents the neu-

tron spin quantum number.

In the case of nuclei, the following field operators are defined:

Px(rl,.,rN) = Z bX,ax(i)x,x(r, -R, ...rN -r ) , (2.3)
i ax

(r, ...,rN) = E b,(i),ax(r* - R, ., - ) , (2.4)
i ax

1 This chapter is a review of the following articles:
P.L. Hagelstein, "Coherent and Semi-Coherent Neutron Transfer Reactions I: The Interaction Hamiltonian",
Fusion Tech. 22, 172-180, (1992),
P.L. Hagelstein, "Coherent and Semi-Coherent Neutron Transfer Reactions II: Transition Operators", sub-
mitted to Fusion Tech., (1992),
P.L. Hagelstein, "Coherent and Semi-Coherent Neutron Transfer Reactions III: Phonon Generation", Fusion
Tech., May 1993
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where Ri is the time-dependent center of mass position operator at site i. Operators

'x(r,..., rN) and t (rl,..., rN) destroy and annihilate respectively nucleon X at lattice

site i.

With the field operators defined, the evaluation of the interaction Hamiltonian for neu-

tron capture and emission in a lattice may proceed. The process involves a free neutron

being captured by nucleus Y (of nuclear mass N - 1) forming nucleus X (atomic mass N)

and vice versa. In the case of a magnetic dipole transition, the interaction Hamiltonian is

given by the following expression:

B = J[3rl...Zd3rN[4t(rl..rrN-1)Att(r)] jB(ri)] x(r 1,...,rN)

t+ fd3r...fd3vrNC(ri 1...rN) [ Zj B(rj)]

X [Z(r ... rN-1) A 4i(rn)] * (2.5)

Substituting in the expressions for the field operators derived earlier yields the following

expression for the interaction Hamiltonian:

Hu.B = Z ZC E EE bn,a,kby,ay,(i)bX,ax,(i)UYn:X (i)
i a ax ay k

+ Z E E x x,(i)bn,an,kYgay,(i) XY*y'c(i) . (2.6)
i a ax ay k

The U(i)'s are called magnetic dipole potential operators and are defined by the following

relations:

,y·Xana(i) J = ... d3rl...d3r [Iray(rl -iYi ...,rNl- T)A ,,,(N)]

[- j*B(rj)] Ix.x(rj, -Xi,...,rN- iX) , (2.7)

UXY,n ,( = [UY,aX(i)]t . (2.8)

At this point it is of interest to apply these results to a study of the effects on the

lineshape of the lattice. Afterall, any macroscopic energy that may be exchanged between

10



the nucleons and the lattice should manifest itself in a shift in the lattice lineshape. For-

tunately, in this regard, the work of Lamb may be used for reference2 . In his study of

resonant neutron capture processes in a lattice, Lamb arrived at the following expression

for the lineshape:

W(E) ({a})i({p}leikpR I l{a})12 (2.9)
[E - Eo - AE(a,,)]2 + (hr)2 '

where a and 3 refer to lattice phonon states, g({a}) and g({()) are the probability functions

that the lattice is in state a or 3 respectively, E is the energy of the emitted gamma, Eo is the

resonance energy and, finally, hr is the homogeneous linewidth. The I({(3}leikR Ila})12

term which appears in the numerator represents the gamma emission recoil matrix element.

In order to adapt Lamb's results to the study of non-resonant neutron capture in a lattice,

recoil term in Eq. (2.9) should be replaced by the magnetic dipole transition operators lT(i)

shown in Eq. (2.7). The emission lineshape for the case of non-resonant neutron capture is

thus given by:

W(E) a})l(}l(i)la})l (210)
a [E - o - AE(a,3)]2 + 4(hr)2

The expression for U(i) in Eq. (2.7) may be approximated by the product of a primary

recoil term, ei(k,-k) ' ., a Duschinsky operator, e- iSD, and a free-space matrix element

(ayanl -- Blax );3

NO(i) (ayan - . Blax)ei(kp-k") ie-i SD . (2.11)

The Duschinsky operator (named after Duschinsky4 who studied electronic transitions in

polyatomic molecules) accounts for differences in modes between initial and final phonon

states. We thus end up with the following simplified form for the lineshape of non-resonant

2W. E. Lamb, "Capture of Neutrons by Atoms in a Crystal", Phys. Rev. 55, 190 (1939).
3For a more detailed discussion of the Duschinsky effect and a more exact treatment of U(i) refer to

the article by P.L. Hagelstein, "Coherent and Semi-Coherent Neutron Transfer Reactions II: Transition
Operators", submitted to Fuaion Tech., (1992).

4 F. Duschinsky, "Zur Deutung der Elekronenspektren mehratomiger Lolekule I. Uber das Franck-Condon-
Prinzip", Acta Physicochimica U.R.S.S 7, 551 (1937).
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neutron capture processes:

W(E)- z z g({a}) ({}lei(kp-kn)se-iSD I{a})12 (2.12)
[E- Eo - E - AE(a, p)]2 + (h) 2 (2.12)

Analysis has shown that the primary recoil term alone is incapable of mediating macro-

scopic energy transfer to or from the lattice. For example, in a thermal lattice phonon

generation due to gamma recoil is well understood, yet the total energy transfer is on the

atomic scale. Transfering a large number of phonons in succession is preempted by an

exponentially decaying phonon mode occupation function (f [H] 2n); and transferring

the energy via a nonperturbative process requires that the acceptor nucleon in the lattice

have a relative kinetic energy on the order of MeV, which is certainly highly improbable.

-We are thus forced to look at the Duschinsky term as the primary means for the mediation

of large energy transfer.

In general, the Duschinsky operator translates and rotates phonon modes. It has the

property:

e -'SD, (q) - (A q + b) . (2.13)

In the case of neutron capture reactions, the appropriate Duschinsky operator only rotates,

and therefore is given by

e-iSD (q) _= (A -q) . (2.14)

Before evaluating the matrix elements of the Duschinsky operator, an expression for

the rotation matrix A must be determined. This is achieved by expressing the initial state

lattice mode, q), in terms of the final state lattice mode qf). The initial and final lattice

center of mass positions are given by

Rj = Ri + U )(j)q(i) (2.15)
m

Rj = R° f + u)(j)qf) , (2.16)
m

where u are displacement vectors, m is the phonon mode index and j is the phonon index.

12



qn) can be expressed in terms of q(f) through the relation

( = E [V)(j)]T . u)(j)q()(j) + [Vi)(j)] (R °f - R°'i) , (2.17)
j mt j

where R°oi and R 9'f are the initial and final equilibrium lattice position vectors respectively.

vm(j) is related to the displacement vector um(j) through the following identity:

EY T U, ( j Um() = mt, * (2.18)

Using the above equation, together with the orthonormality property of the displacement

vectors

EMjU (j) Um(j)= M6m,mI' (2.19)
3

where M is the "mass" assigned to the phonon modes, one arrives at the following expression

relating the adjoint vectors to the displacement vectors:

VM(W) = M.UM(i) * (2.20)

The expression for the Duschinsky rotation matrix follows from Eqs. (2.17) and (2.20),

AmZ,m, [Al],,m = [v()(j)]T u) (j) + ( -i) - 1 [vm)(0)]T u()(0) , (2.21)

where we have defined j = 0 to be the lattice site where neutron transfer occurred.

At this point the matrix elements of the Duschinsky operator, Mfi, may be determined.

These are defined by the relation

Mf i IF(q)e-iSD'i(q)d3q , (2.22)

where i is given by

i -= F(q,p)[O] (2.23)

F(q, p) is a function of creation and annihilation operators, and I[0] is the phonon ground

13



state. Defining f(q,p) as

f(q, p)e- i$D -e- iSDF(q, p) , (2.24)

results in the following expression for Mfi:

Mfi = J q)f(q)f(q, p)l(q)d3q l(q)eisD [O]d3q (2.25)

The first integral in the above equation represents phonons being created. This effect is

expected to be weak because of the limitations on the number of phonons one may "squeeze"

in a given mode and for other factors discussed earlier in this chapter. It is in the second

integral where most of the energy transfer mediation is expected to occur. The integral itself

displays the Duschinsky operator's ability to exchange initial phonons with final phonons

of different energies.

In conclusion, it has been demonstrated that the Duschinsky transformation is indeed

capable of mediating significant transfer of energy (of order MeV) between microscopic nu-

clei and a macroscopic lattice during neutron transfer reactions. The Duschinsky operator's

capacity to shift the energy of a highly excited phonon is key to the success of the model.

Nevertheless, certain conditions still need to be satisfied before the Duschinsky transfor-

mation could take effect. Most important is the requirement that the lattice contain a

significant amount of impurities. The presence of an impurity band near the frequency of

the localized mode is paramount, since it allows a large number of modes to jump the gap

between the D modes and the T continuum modes during a neutron transfer reaction5. The

model fails however to account for reactions involving neutron ionization reactions. The

original speculation by P.L. Hagelstein was that the lattice itself provided the energy needed

to ionize the neutron. It was found that the sign of the energy transfer in this model pro-

hibits lattice-induced neutron ionization. Consequently, further development of the neutron

transfer theory focused on second order processes involving virtual intermediate neutrons.

It is worth mentioning that, very recently, new mechanisms have been found that can

lead to lattice-induced neutron ionization. The advent of these mechanisms, however, does

'For a detailed look at the conditions on the lattice, and why ground state and thermal lattices are
excluded in the model, refer to the article by P.L. Hagelstein, "Coherent and Semi-Coherent Neutron Transfer
Reactions III: Phonor Generation", Fusion Tech., May 1993.
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not alter the many advantages of working with second order theories involving virtual

neutrons.
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Chapter 3

Two-Step Reactions and Virtual

Neutrons

3.1 Two-Step Second Order Reactions

Two types of second order reactions exist. The first type involves processes whereby a

neutron is captured onto a lattice first, followed by an ionization reaction. Second order

reactions of this nature involve intermediate states that are driven off-resonance, or in

other words, the reaction channel involves the transfer of virtual neutrons. The alternative

of course involves real neutrons with the ionization reaction taking place first followed by a

neutron capture reaction. The former channel is more promising, mainly because it allows

us the freedom of dictating high reaction rates without having to account for the supply

of neutrons. Second order reactions involving virtual intermediate states are hardly a new

field in physics; among their many applications is Raman spectroscopy shown schematically

in Fig. 3-1.

We shall follow the standard approach to two-step mechanismsl. Consider an initial

state, before any reaction has taken place, consisting of a donor nucleus, an acceptor nucleus

and a lattice in its ground state. Let this initial state be denoted by the Hamiltonian Ho

1This chapter is a summary of the article by P.L. Hagelstein, "Coherent and Semi-Coherent Neutron
Transfer Reactions IV: Two-Step Reactions and Virtual Neutrons", submitted to Fusion Tech. November
(:1992).
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Figure 3-1: Two-step Raman process involving a virtual intermediate state. A laser which
is mismatched to a transition frequency drives electrons from a ground state to a virtual
intermediate state. The subsequent transition to a stable final state is driven by another
laser.

and the wavefunction To. The intermediate state consists of a donor which has donated,

a free neutron, an acceptor nucleus and a highly excited lattice. It is represented by the

Hamiltonian H1 and the wavefunction 'P1. Finally, there is the final state which includes

a donor nucleus which has donated, an acceptor nucleus which has accepted and a highly

excited lattice; Hamiltonian H2 and wavefunction 2 denote the final state. Transitions

between the three states are governed by the following coupled Schrodinger equations:

ihAtPo = Ho ll , (3.1)

iht' 1 = Hlq'l + HloP0o + H12'P2 , (3.2)Ot

ihdt'2 = H2'2 + H21'1 · (3.3)

We wish to solve the above three equations with the ultimate goal being to derive an

expression for the spatial dependence of the virtual neutron wavefunction, ?,(rn). Once an

expression for on(rn) is found, we can determine the range of the virtual neutrons, which

is key to the success of the model.

One method of solving the coupled Schrodinger equations is to first eliminate 1. Before

doing that however, a few assumptions must be made.

1. The difference between initial and final state energies is small, so we may set E 0 , E 2.

17
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2. The energy of the intermediate state, E1, is higher than the initial state energy, Eo,

by an order of MeV's.

3. The transition Hamiltonians (Hn,, n, m = 0, 1, 2) are time-independent.

Consequently, the intermediate state will be driven off-resonance with energy Eo; or in other

words
iEtB0~l"~e- . (3.4)

Substituting this into Eq. (3.2) leads to the result

(Eo- Hl)l = Ho10 o + H12 2

=* 11 = (Eo- H1 )-'Hlolo + (Eo - H1)-H1 2P 2 . (3.5)

The above expression for P1, when substituted into Eqs. (3.1) and (3.3), yields the following

identities:

ihti'o = [Ho + Hol(Eo - Hl)-'Ho]'o + Hol(Eo - Hl)-H 29 2 , (3.6)
a

ih t1 2 = [H2 + H21 (Eo - H1)-lH1 2 ]'2 + H21 (Eo - Hl)-1Hlo'o . (3.7)

3.2 Virtual Neutrons

Next we turn our attention toward deriving the spatial dependence of the virtual neutron

wavefunction, O,,(r). To do that, we first look at a toy model. Consider the problem of a

deuteron embedded in a lattice and surrounded by a static magnetic field. Let 'P0 be the

probability amplitude of the state consisting of a deuteron in a lattice; and let T1 be the

probability amplitude of the state consisting of a proton in a lattice plus a free neutron. We

may approximate 'Qo as a product of the neutron wavefunction and the proton wavefunction.

As a result we have the following relations:

'oaJpatial = OD , (3.8)

'Plspatia = bn0 X p , (3.9)
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where

3

p(rp) e- 2 (3.10)

D \4 OD \4 _lr,+r12 _ Q -r.j2

OD(rp, r) = ) 2 e 2 (3.11)

Substituting the above four equalities into the Schrodinger equation for the neutron wave-

function

(AE - H)n. = (1p- '. BIOD) , (3.12)

results in the following equation, which is the generating formula for the neutron wavefunc-

tion:

3

4ci 4 (a2[4apD ] (AE- H)O,(r.) = (1S, 0- BS, M) [ P2 I e 2 (3.13)

AE is the off-resonant neutron energy, which in this case is equal to the binding energy of
3

the deuteron (AE = -2.225 MeV), and VN is a constant given by VN = (D). 2

The next task involves the examination of the formula in Eq. (3.13) in the context of

various systems. The two systems to be studied are the free space model and the perfect

crystal model.

In the free space case Eq. (3.13) simplifies to

h2 V2 3 _]_

2M + AE k.(r.) = (S, 0 . B S, Ms) [ 2 2 . (3.14)

Since IAEI is expected to be far greater than the kinetic energy of the neutron, the latter

may be dropped out of equation. The approximate solution to the neutron wavefunction is

thus given by

(S,OI-/.1BI 3S,Ms) 34aD (_v+aD)17,2

Ab() [ ax VVe 2 (3.15)

A more exact solution to the neutron wavefunction may be reached by solving the Green's

function equation

[2V2 + AE] G(r,,r') = 63(rn- r) , (3.16)2 2M,,n
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and using the result for G(rn, r ) in the total ,n solution given by

3

.(rn) = (1S,0Il- -BIaSMs) [ P2 D| ]d3 r G(r,r )e2-( + . (3.17)

As it turns out, Eq. (3.16) has an exact solution2,

1 2Me v B
G(rn, r') =-.e h" V 1 *(3.18)

The decaying exponential in the above expression for G(rn, r') gives us a measure of the

distance the neutron is able to travel. This distance is of the order (2MIl) 2, which for

JAE = 2.225MeV evaluates to roughly 3.05 fin. Clearly this is far too small a distance to

be of any use to us and we must seek other models.

The perfect lattice model is an obvious alternative to the free space model just discussed3 .

The presence of the lattice adds a periodic potential, V(r), to the system Hamiltonian. Eq.

(3.16) thus mutates into the following form:

[2V + AE - V(r) G(r, r') = 6 3](r - r') (3.19)

One may construct the Green's function from a superposition of the eigenfunctions, (k, r),

of the Hamiltonian H = - V(r) to obtain

G(r r) = -d3k (k,r)qb*(k,r') (3.20)
G(r, r') = - 2 I 3 (3.20)(2r)3 IEI + E(k)

Using this result, one may define the difference Green's function as such:

AG(r,r') = - d3k (k , r)- *(k, r') o(k, r)-(k, r')l (3.21)
(2r)3 L AE + E(k) - E - Eo(k)]

where qo(k, r) is the eigensolution of the unperturbed Hamiltonian (V(r) = 0), and Eo(k)

is its associated eigenvalue. To obtain some idea on the long range part of the neutron

wave-function, the difference Green's function should be evaluated in the context of Bragg

scattering. Bragg scattering, afterall, is potentially the strongest interaction that may occur

2P.L. Hagelstein, "Coherent and Semi-Coherent Neutron Transfer Reactions IV: Two-Step Reactions and
Virtual Neutrons", submitted to Fusion Tech. November (1992).

3Note that henceforth the subscript n on the position coordinate for the neutron will be dropped.
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between the neutron and the lattice4

The first order contribution to the integrand in Eq. (3.21) is given by

1 f d3k
LAG(r,r') = - f- d [(k,r)*(k,r') - 0o(k,r)ko(k,r')] , (3.22)JAE(J (27r)3

which evaluates to zero. The second order contribution is nonzero and is given by:

AG(r, r') = - AEi2 f '' [E(k)O(k, r)*(k, r') - Eo(k)0o0(k, r)Q(k, r')] (3.23)

Bragg theory tells that the integrand in Eq. (3.23) becomes significant in the region where

kl12 [IK - k 2 , (3.24)

where K is the reciprocal lattice vector. Now, let K point along the z-axis, and separate

d3 k into one component that is parallel to K (call that k) and two components which

are normal to K (kl's). Along the two directions normal to K the neutron is essentially

confined, and thus any contribution to the integrand in Eq. (3.23) coming from the kl's

may be ignored. Eq. (3.23) therefore simplifies to

^AG(r, r')-- = , l 2(r (r')l) dkll [E(k)u(k, r)u*(k, r') - Eo(k)uo(k, r)u*(k, r')]
K (kI

(3.25)

where

o (k, r) - ei(k.+kYy)uo(k,r), (3.26)

O(k,r) _ ei(k*z+ky)u(k,r) (3.27)

Next u(k, r) is expressed as

u(k,r) = ckeikr + Ck Kei(k-K)r (3.28)

and a solution for the expansion coefficients Ck and ckK sought by solving the following

'For further details on Bragg neutron states and the perturbative evaluation of the integral in Eq. (3.21)
refer to the article by P.L. Hagelstein, "Coherent and Semi-Coherent Neutron Transfer Reactions IV: Two-
Step Reactions and Virtual Neutrons", submitted to Fusion Tech. November (1992).
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two eigenvalue equations and normalization condition:

2M ck + V-KCk-K = E(k)ck , (3.29)2M,

VKck + h2 ck = E(k)ck-K (3.30)2ME
ICk12 + ICk_K12 = 1 . (3.31)

After some manipulations 5 one ends up with the following expression for the long range

component of AG:

AG(r,r')= -62 (r IKI~K -) VKI sin[2K. (r - r')] fi(~KK (r - r'))

+ - Vke 2 + VKe- 2 f2(KK * (r - r')). (3.32)

(K is a dimensionless parameter defined as

2MnIVKI
K = h 2 (3.33)

and fi and f2 are auxiliary functions defined by

f1(t) j 1(t) - Ll(t)] (3.34)

f 2 (t) = 1- [II(t)- Ll(t)] (3.35)
2

where I(t) and L (t) are modified first order Bessel and Struve functions respectively. Fig.

3-2 above illustrates the two functions6. The result in Eq. (3.32) demonstrates that the

presence of the lattice does indeed alter the spatial component of the neutron wavefunction,

.n,, inducing a long range contribution on the order of microns. To see that, consider the

characteristic length which may be extracted from the formula in Eq. (3.32):

hi2 1KI 2 1

L 2Mn IKIIKI (3.36)

5For details see article by P.L. Hagelstein, "Coherent and Semi-Coherent Neutron Transfer Reactions IV:
Two-Step Reactions and Virtual Neutrons", submitted to Fusion Tech. November (1992).

6M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover Publications, Inc., New
York (1972).
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Figure 3-2: Auxiliary functions f and f2.

IKI is given by

IK = r , (3.37)
a

where a is the interstitial distance in the lattice, which in the case of palladium is roughly

4A. Following an order of magnitude argument we deduce that the term C.OTI ~ 105 ,

resulting in a value for the neutron delocalization length, L, of (105 a ), or a few microns.

For the moment it seems as though the problem of the virtual neutron's localization has

been resolved. With a potential to travel distances of a few microns, the neutrons can easily

maneuver from site to site across the lattice, undergoing capture and ionization reactions.

This picture, though convenient, is sadly misguided, namely because we have yet to address

the issue of the probability that a virtual neutron attaining such a degree of delocalization.

To do that, we turn our attention to second order gamma emissions. Since they are a

product of the capture of neutrons onto lattice sites, second order gamma production rates

are an ideal indicator of the neutron transfer reaction rates.

The total probability that the neutron is delocalized is given by

P=Z PK,K' , (3.38)
K K'
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PK,K' = /[A&(K)(r)]*A/(K')(r)d3r

(2)3 [(1S, 0IiBj3, MS) s) I VK

X L IAEI I AE

(Cip + aD) ] (e /io (f2(z) + f2())d . (3.39)

Once again, an order of magnitude argument leads to the following approximation:

PKK [.B]| V K v) VKI}

[1012] i110-1412 (10-9) 10-5} = 10-66 . (3.40)

Consequently, despite the presence. of considerable delocalization in the virtual neutron

wavefunction, it has been determined that the associated neutron transfer reaction rate is

negligible, roughly of the order of 10- 59 or 10-6°sec- 1 per deuteron in the lattice. Av-

enues for the possible enhancement of the transfer reaction rate must therefore be sought.

Resonance exchange scattering is proposed as the most suitable candidate for the task.
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Chapter 4

Resonance Exchange Scattering

Thus far it has been determined that while it is possible to impart a significant degree

of delocalization to the virtual neutron, the total probability of such a delocalization occur-

ring remains prohibitively small. It seems unlikely that any fine tuning of the parameters

which introduced into the calculations could solve the problem. Fundamental surgical al-

terations to the theory are in order, requiring the introduction of new physical phenomena.

Clearly the obvious route is to look for some form of resonance effect. Specifically, the

situation where a virtual neutron, which had originated from a certain nucleus, is subse-

quently absorbed by another nucleus identical to the original donor nucleus shall be studied.

The proposed process, first introduced by P. L. Hagelstein l, is given the title of resonance

exchange scattering.

Consider the coupled equations

a
ihat o = HO'o + Holl (4.1)

ihati l = Hlql + Hloo (4.2)

describing resonant capture and re-emission of a virtual neutron onto a nucleus. These

equations bear resemblance to the coupled Schrodinger equations derived at the end of

section 3.1 (see Eqs. (3.6) and (3.7)), with the exception that the interaction Hamiltonian,

H10, now includes the resonant case where a neutron emitted by a deuteron is subsequently

captured onto a proton. The Hamiltonian H1 may be expressed as a sum of the self-energy

'See sections 7, 8 and 9 of the article by P. L. Hagelstein, "Coherent and Semi-Coherent Neutron Transfer
Reactions IV: Two-Step Reactions and Virtual Neutrons", submitted to Fuaion Tech. November (1992).
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term, H1, and an exchange potential as such:

H = H1 + Hio(Eo - Ho)-'Hoi . (4.3)

If we are looking at a truly resonant capture, then the term E0 - Ho will vanish leaving an

infinite term in the expansion of the Hamiltonian. To circumvent this problem a slightly off-

resonance case will be studied, whereby E 0 -Ho will be replaced by a small energy parameter

6E. With this in mind, we turn our attention to the Green's function. The incorporation of

the resonance phenomenon in the theory simply adds an exchange operator, W(r), to the

Green's function equation defined in Eq. (3.19). The new Green's function now satisfies

the relation

2V2+ +AE- V(r) - W(r) G(r, ro) = 6(r - ro) (4.4)

where W(r) is given by2

W(rn)O(r.) (p(i)(rp)l - . BI('(rp, rn)) ('I)(r, r' )I- . Bl)(r;)n(r' ))
i

(4.5)

Our goal is to demonstrate that the addition of this exchange operator will lead to an

acceleration of the virtual neutron transfer reaction rate. In order to achieve that, we must

first choose an appropriate form for the proton and deuteron wavefunctions, ,p(rp) and

D (rp, rn).

The parameterization of p(rp) and Do(rp, rn) for the case of localized neutrons was

addressed in section 3.2 (see Eqs. (3.10) and (3.11)). Substituting these relations into Eq.

(4.5) above results in

()n(n) |(So - B3S, Ms)| [4 aPaD] 2 N

(x aP+)I-R'I2 ( (p+a )IrO-R 4.6)
x J~e 2 dEr0e-

22 On(ro) (4-6)
i

It is immediately obvious that in this form W(r) leads to no enhancement of the reaction

2P.L. Hagelstein, "Coherent and Semi-Coherent Neutron Transfer Reactions IV: Two-Step Reactions and
Virtual Neutrons", submitted to Fusion Tech. November (1992).
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rate. To appreciate that, operate with W(r) on a plane wave to obtain

W(r)eikr = E Wk-K,kei(k-K) , (4.7)
K

where Wk-K,k is given by3

Wk..Kk = ZI'SOIi.BIJSSMs)I 2 16aaD1 VN
Ms I. (a~aD)2 Vceii 6EWk-Kk = 0JS,-1-Bl'S,MS) >[ 6

Jkl2 kIkKj'
x e +a e ~a"p+c) E'e iK ' ,i (4.8)

i

Vce,, being the volume of the lattice unit cell. Consequently, the analysis presented in the

case of Bragg scattering in section 3.2 applies here, with the only difference being that

instead of a simple periodic potential VK, there exists an additional periodic term Wk-K,k.

The reaction rate, therefore, looks something like

rT [p'.Bl2 Wk-K,k 2VN 1W-K...Kk1 1
AEJ XAE (V =J r

1021 X 10- 71 = 10-5 0sec- . (4.9)

It seems, once again, that we are faced with very mow reaction rates. However there

is an avenue that could salvage the model. So far, we have proposed the electromagnetic

interaction to be the predominant force in the coupling between the virtual neutrons and

lattice nuclei. The matrix element of the electromagnetic force we have been studying

(which appears as p · B in the above formula) is of order magnitude 10-6 eV or so. If

we switch to a picture where the principle interaction between neutrons and the lattice is

strong in nature, then situation becomes quite different. This would mean, of course, that

protons and deuterons no longer play a role in the transfer mechanism. Larger nuclei, like

tritium, Pd and Li isotopes and others will now couple strongly to the virtual neutrons.

The strength of the strong force (which is sometimes referred to as the nuclear force since

it is responsible for the binding of the nucleus) is measured by looking at the strong coupling

between nucleons and various mesons. More specifically, it is believed that the strong

3P. L. Hagelstein, "Coherent and Semi-Coherent Neutron Transfer Reactions IV: Two-Step Reactions
and Virtual Neutrons", submitted to Fusion Tech. November (1992).
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interaction between two nucleons arises through the exchange of virtual mesons. Since

these virtual particles have mass, there is a minimum amount by which energy conservation

must be violated during the exchange process; AE > m,c 2 where m, is the mass of the

pion, which is the lightest known meson4 :

ml+c2 = 139.576 ± 0.011 MeV (4.10)

moc 2 = 134.972 ± 0.012 MeV (4.11)

An upper limit on the range of the strong interaction may be obtained from m,:

h 13Ar < 1.4x 10-3 cm . (4.12)m,c

Of importance to us here is the actual strength of the strong force. Theoretical models

predict the OPEP (One Pion Exchange Potential) to be of the form5

V. = [ 3) , h * ) [(al * °B2) + ,1 + Or + (2 ) 121 r , (4.13)

where f is the isospin operator and S12 is the tensor force operator,

1
S12 = ' ) [3(& *'r/)(2- () 1 2)?] - (4.14)

Of course, r is the distance separating the interacting nucleons and X is the strong coupling

constant, which, for the pion exchange, is given by

g2

K = 0.081 (4.15)

Thus we conclude that the matrix element of the strong force V. which is proposed to replace

the .* B term in Eq. (4.9) and in the formula for Wk-K,k in Eq. (4.8), has magnitude

on the order of a few keV or so. With this in mind, we recalculate the neutron transfer

4A. deShalit and H. Feshbach, "Theoretical Nuclear Physics I: Nuclear Structure", John Wiley and Sons,
Inc., 1974; pages 11 - 18.

5 A. deShalit and H. Feshbach, "Theoretical Nuclear Physics I: Nuclear Structure", John Wiley and Sons,
Inc... 1974; Eqs. (3.5)-(3.7).
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reaction rate to obtain

V :' k-Kk VN Wk K,k I

021E 10+ = 1022 - (4.16)
N 1021 10+1 =10 22 eC-1 . (4.16)

This reaction rate is enormous, which leads us to believe that the transfer mechanism in

and of itself does not hinder the progress of the heat producing reactions. The bottle-neck,

as it were, lies somewhere else. We shall see in the coming sections that it is the limitation

on the number of phonons that may participate in the neutron exchange reactions which

slows down the process.

The remaining chapters are dedicated toward constructing a more formal approach to

the neutron/lattice coupling problem in the presence of the W(r, exchange term in the

Hamiltonian. Our aim is to devise an appropriate approximation scheme that would allow us

to derive an expression for the neutron Green's function associated with the near-resonance

exchange term in the Hamiltonian. Once an estimate for the Green's function is found, the

associated transfer reaction rate may be determined. The scheme which shall be adopted

is based on infinite order Brillouin-Wigner perturbation theory. It will be used to derive an

estimate for the self-energy, and subsequently the Green's function.
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Chapter 5

Hamiltonian for the Coupled

System

In this chapter we turn our attention toward constructing the Green's function and

Hamiltonian representing the virtual neutron in a lattice system.

The analysis is facilitated by the use of second quantized field operators for the neutrons

and the donor and acceptor nuclei introduced in chapter 2 (see Eqs. (2.1) - (2.4)). In the

case of neutrons, we defined the field operators n,(r) and 4t (r) in the following manner:

n(r) = bn,an,ktn,.,k(r) ,
an k

t () Z bn,kf,,ink(r) 
a, k

where, as a reminder, bn,c.,k and bn k are Schrodinger picture single neutron annihilation

and creation operators, O.n,-,k(r) and *,.nk(r) are Fock space wavefunctions, and an

represents the neutron spin quantum number.

In the case of nuclei, we defined the following field operators:

4 x(rl,...,rN) = EEbx,,x(i)kXx(r-i ...9,rN- )I
i ax

i ax

where R- is the time-dependent center of mass position operator at site i. Operators

i(r,...,rN) and [(rl, ... ,rN)]t destroy and annihilate nucleon X at lattice site i re-
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spectively.

A formal expression for the many-body Green's function in terms of the neutron and

donor and acceptor nuclear field operators follows immediately;

Gn(r, r, ..., r; r', r, ..., r) =-i(,0 [t,(r, ..., r)q(r) (r, . , ~-~)]
I I Ax ['b(r, ...,r N_1)4't(r')4D(rl,...,rV)] I0o) (5.1)

In formulating the full system Hamiltonian, H, we shall adopt three classifications:

Hnuclei, which includes the contributions of all the donor and acceptor nuclei in the lattice;

Hnetron,, representing the contributions of the neutrons to the total energy and Hphonons

depicting the phonon contribution to the total energy. Hneutrons includes a kinetic energy

term [Hn]K.E., a potential energy term depicting the presence of the lattice, which we shall

call [Hn]Brgg since Bragg scattering is the strongest conventional interaction between the

neutron and the lattice, and finally a magnetic dipole transition term, H-,.B, containing

the Duschinsky operator responsible for mediating the energy transfer in the cells. It is

this magnetic dipole term which interests us most. More specifically we shall pay special

attention to the resonance exchange term which results from a second order expansion of

the magnetic dipole term.

Hnucii is simply the sum of the energy deficits for the neutron transitions over all

participating donor and acceptor nuclei. Therefore, by inspection, Hnucei is given by

H,,cei = E J d3rl...drN(hwD)4t (rl,...,rN)4D(rl,...,rN)
D

+ Z d3r...d3rN(D)4t,(rl,...,rN)4D'(r,...I,rN)

A

+ J d3rl .... d3rN-l(hA) 4 t(r,...rNl)1A(r1,...,_rN) (5.2)
A'

To illustrate some of these transition energy gaps or deficits, consider as an example the

palladium electrolysis experiments in which heat production is observed. The conjecture

is that the excess energy is produced from d(7, n)p coupled with 104Pd(n, 7)l0 5 Pd and

l0 5 Pd(n, 7)1 06Pd reactions, as illustrated in Fig. 5-1. The associated energy transfers for

these reactions are 2.225 MeV, -7.09 MeV and -9.56 MeV respectively.
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p

Figure 5-1: Feynman-like diagram for coherent coupled d(7, n)p and ° 05 Pd(n, 7) 0 6Pd re-
actions.

As far as the terms contributing to HneutronJ are concerned, [Hn]K.E. and [Hn]Bragg

may be readily expressed in terms of the neutron field operator. [Hn]K.E. represents the

non-interacting part of the Hamiltonian, or in other words, it is the energy contribution by

the neutrons in the free space model. In free space, the neutron eigenfunctions are plane

waves (n - eik r) with eigenvalues k, Mn being the mass of the neutron. It follows

that [Hn]K.E. is given by

[Hn]K.E. = Zd3 rn(r) ( 2 i (r) . (5.3)
an1 ~ \n /

[Hn]B,agg may be defined as follows:

[Hn]Bragg = J: d3r4()(r)V(r4(r) , (5.4)
an

where V(r) is simply the periodic lattice potential.

The case of the magnetic dipole transition potential was visited in chapter 2. Our

calculations led us to the following expression for the interaction Hamiltonian (see Eqs.

(2.5)-(2.8)):

H-.B = Z Z b kbt a (i)bD,aD(i)Dn',n" D (i)
I tn,k DaDI D

i a D aD k

+ A Z AIA(n,Qan,kAa()AIA,n (i)
an aAA k

Finally, there is the phonon contribution to the total energy. In the strictest sense, if
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we wanted to take into account changes in the lattice caused by the interactions with the

neutrons, then we would have to define Hamiltonian of the form

2
Hphonon = E + E ij , (5.5)

i <jj

where i is the phonon "mass" operator and Vij is the exchange potential. In this case di-

agonalizing the Hamiltonian is not trivial, if at all possible. However, since lattice variations

are not taken into account in our calculation of the proper self-energy (see chapter 6) and

later on when we take phonon averages (see chapter 7), then the harmonic approximation

is valid. Therefore we may assume Hph, to be of the form

Hphonona = hw,(k) (atak, 8 + 2)= E (k) (.(k) + (5.6)
k,S k,s

where at and ak,a are phonon creation and annihilation operators respectivelyl. In ad-

dition, the magnetic dipole transition term itself includes phonon operators r representing

lattice phonon-neutron interaction.

Summing up all these terms yields the following expression for the aggregate virtual

neutron/lattice system Harniltonian:

Htotal = Z Jfd3r...d3rN(hWD)ItD(r,..rN)iD(r,...,rN)
D

+ E|d3r, ...d3rN(WD)'It, (ri,., rN)iD'I(r,..., rN)
D'

+ E fd3rl.d3rN-l(hA)itA(rl...,rN-1)AA(rl,...,rN-1)
A

-+ AE | d3rl..d3rN-l(tuA)4t (r1, r N-1)..., rN-(rl,..., l)

+ /drt(r) . ( 2 )( ,n(r)

+ EJ d3rt (r)V(r)%n(r)
an

+ E hw,(k) t(ak,. +)
k,s

1A detailed discussion on the theory of harmonic crystals, including the definitions of the phonon creation
and annihilation operators in terms of the polarization vector e,(k) and frequency w.(k) (see Eqs. (7.30)
and (7.31)), is provided in chapter 7.
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E E E E S bsn,,,k D,aD i ,aD (UD,n,D (i)
i an a D D, k

+ E E E E S AaA(i)bn,an,kbA,aA(i) IAA (i) (5.7)
an aA CA k

34



Chapter 6

Hartree-Fock and the Proper

Self-Energy

In order to tackle the Green's function problem, we must choose an appropriate ap-

proximation scheme. A perturbative approach is always a viable option, however we have

chosen to abandon the standard order by order perturbation calculation in favor of infinite

order perturbation expansion. Hartree Fock theory is an example of such a scheme. The

next few pages will be dedicated to the introduction and development of the principles of

Hartree theory which concern us most in our calculations.

The Hartree-Fock approximation method is based on the assumption that one may sim-

plify a given many-body problem by dividing it into a set of single-body particle equations.

Alternatively, one may treat the individual particles as moving in single-particle potentials

representing the mean interaction with all the other particles in the system1.

The analysis of Hartree theory benefits from the use of Feynman diagrams and the

concept of the self-energy. Consider then the proper self-energy term *(x, z') for a single

particle. To first-order, the contributions to *(z, z') are precisely the terms which appear

in the first order expansion of the many-body Green's function G(1)(z, x') and is displayed

in diagrammatic form in Fig. 6-12.

Using this definition we may derive an expression for the full proper self-energy by

1Alexander L. Fetter and John Dirk Walecka, Quantum Theory of Many-Particle Systems, McGraw-Hill,
Inc.. New York, (1971).

2 Fig. 6-1 is a reproduction of Fig. 10.1, Alexander L. Fetter and John Dirk Walecka, Quantum Theory
of Many-Particle Systems, McGraw-Hill, Inc., New York, (1971).
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Figure 6-1: Lowest order proper self-energy il)(, zx').

t t t

1' 1

+I~ ...tb
t t

Figure 6-2: Fu expansion for *(, ) in artree-Fock approximation.

Figure 6-2: Full expansion for E*(x, x') in Hartree-Fock approximation.
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1 '=14

Figure 6-3: Iterative definition of E*(z, z') in Hartree-Fock approximation.

+4 I. +4

I I

Proper self-energy

Figure 6-4: Dyson's equation for G in Hartree-Fock approximation.

inserting higher and higher orders of Z*(z, z') into the lowest order diagram in the figure.

The result is shown in Fig. 6-23. The expansion may be recast in iterative form in the

manner displayed in Figs. 6-3(a) and 6-3(b)4. Combining the two diagrams in Fig. 6-3

yields the general form for Dyson's equation in the Hartree-Fock scheme, shown in Fig.

6-4 5 .

Having defined Dyson's equation in the context of Hartree's theory, we are now in

position to address the problem of the virtual neutron in a lattice. The total system

Hamiltonian is given Eq. (5.7). The first seven terms in the expansion for Htotal we choose

to combine here to form what is called the noninteracting potential, Ho. Therefore Ho is

3Fig 7-2 is a reproduction of Fig. 10.2, Alexander L. Fetter and John Dirk Walecka, Quantum Theory of
Many-Particle Systems, McGraw-Hill, Inc., New York, (1971).

4Fig. 6-3 is a reproduction of Figs. 10.3 and 10.4, Alexander L. Fetter and John Dirk Walecka, Quantum
Theory of Many-Particle Systems, McGraw-Hill, Inc., New York, (1971).

Fig 6-4 is a reproduction of Fig. 10.5, Alexander L. Fetter and John Dirk Walecka, Quantum Theory of
Many-Particle Systems, McGraw-Hill, Inc., New York, (1971).
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given by

Ho = af d3rl...d3rN(hWD)Ctb(rl...rN)'D(rl...rN)
D

+ DDI

+ d3r...d3rN(hA) (rl...rN)4A(rl...rN)
A

+ EEd3r...d3rN(hwAI)Vt (rl...rN)AI(rl...rN)
A'

d+ ZJd3r ft (r) [2 +V(r)] Fn(r) + Z hw.(k) (t, 8ak,. + 2 (6.1)
a [ 2M, k 2

Bear in mind that there is an implicit summation over the lattice index i in the definition

of the phonon operators (see Eqs. (7.30) and (7.31)). The interacting Hamiltonian, H1,

includes the last two terms in Eq. (5.7), which, using the approximation stated in Eq.

(2.11), may be rewritten in the following form:

H1 = E E E E (ana -- p Bad)b ,an ,k4,aP,(i)bdad(i)eikRie- isD
i an ap ad k

+ ZZ ZE Z Y(ad , a - lan aP)bdd(j)nanlklbpap(j)e-ikl'ieiP§(6.2)

j a,, ad, k'

I have introduced a slight change in indices in the above equation, by replacing the generic

indices for donors and acceptors (D, D' and A, A') in Eq. (5.7) with specific indices for the

deuterons and protons (d, d' and p, p).

Turning our attention to the Green's function for a moment, G(z, x') is given by Dyson's

equation 6,

G(z, z') = G°(z, ) + f d4xd4xG°(x, zl),*(l, x)G(z,z') . (6.3)

We need develop a scheme that would allow us to deduce a form for the proper self-energy

without having to solve for G(z,z') first. In order to do that, define 4jo(r) to be the

eigenfunction solution to the non-interacting Hamiltonian Ho given in Eq. (6.1), with

6Alexander L. Fetter and John Dirk Walecka, Quantum Theory of Many-Particle Systems, McGraw-Hill.
Inc., New York, (1971); page 123 Eq. (10.3)
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corresponding eigenenergies E°;

_Ho j [- 2 + V(r)l Oj(r) = Ebj(r) . (6.4)
o,() - + oo2M 

Similarly, let qj(r) to be the eigenfunction solution to the full Hamiltonian. The equation

for O°(r) which corresponds to Eq. (6.4) is 7

Ej5[(r) [ 2M,2n +V(r)] j(r) + d3r'h*(r,r')j(r') . (6.5)

Eq. (6.5) may be redefined in the frequency domain by performing a Fourier transform.

The result is that

h2V2Ejoj(k) = 2M qj(k) + V(k) ® j(k) + h E *(kk')j(k '(k) , (6.6)

where ® implies convolution. The above two equations will play a very important role in the

ensuing calculations as they will be used in identifying the part which constitutes the proper

self-energy operator of the neutron/lattice system in the Brillouin-Wigner approximation

scheme.

This completes the formalism of Hartree-Fock's approach to the many-body problem.

The challenge now is to be able to derive an expression for the proper self-energy term in

Eq. (6.6) and thus obtain a solution for the Green's function. The Hamiltonian for the zero

neutron and single neutron Fock space may be approximated as follows:

H = + (6.7)
0 Ho H1 0 (6.7)

According to Brillouin-Wigner theory the Hamiltonian in Eq. (6.7) has eigenfunction solu-

tions of the form

:( ) (o) D( ) (6.8)
where iPo is the eigenfunction of the non-interacting Hamiltonian Ho, 0 contains no free

7Alexander L. Fetter and John Dirk Walecka, Quantum Theory of Many-Particle Systems, McGraw-Hill,
Inc., New York, (1971); page 125 Eq. (10.17)

39



neutrons, 1 contains a single free neutron and Q is given by

(6.9)

Solving for I1 yields

[E - Ho -H[E-Ho]-l'(l - Io)(4ol)Hi] '11) = H1io) (6.10)

Substituting the expansion for H1 in Eq. (6.2) into Eq. (6.10) leads to the following result:

(E - Ho)l'Tl) - E E E E E (anapl - L Bad)
i',i" k',k" a,,a,C ait,api adf,,ad"

x [E - Ho]-l(l - Io)( 4ol)(<idl- - Blan,,,, ap,)

x [paI (")dt,, (i")bn,a ,,,k,"e -ik" Ri e, ,i, (i")]

= x E Z (L, apI - -Bad)
i k an a ad

x ['po.(i)bdd(i)btnnkeik-ie D(i)10 ) .

In order to work with the above equation, we need a relation between state I1,) and

state o). This may be achieved by assuming the following form for IT1):

(6.12)) E E Ez E [ ,ap(i)bdad(i). n(k)V' keAe-i§D(i)] do)
i k an a ad

where I have used the shorthand

V,.B = (n, Cpl- -~. Bld)

On(k) is the neutron wavefunction. The statement in Eq. (6.12) is obtained from an

approximate first order perturbation expansion of IP1 ) in terms of Io), according to

AEI') - H1[E - Ho]-'HlI 1j) = Hjlio)
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) l>= [E- Hi[E- Ho]-'H- 1 I 0o)

= (AE)-'Hllo) + (AE)-2H1 [E - Ho]-1H1iHJ1o) + ...

Eq. (6.12) is an approximation motivated by the observation that the lowest order

expansion of I i1) is proportional to H1l o). The approximation itself is one that says that

the system is weakly interacting, and that the free neutrons are given the freedom to scatter.

Neutron "holes" are taken to be unperturbed, which is why no weighting function in index

i appears in the approximation. The combination of Eqs. (6.12) and Eq. (6.11) produces

the following equality:

V-..B1O ) b= ,a,(i)d,,(i)bn,..,ke-ik l ieiSD(i)(E- Ho)

i k,i ',i 0 kl,ki",k.t anl,c ,a cll ,,r ap i ,ap i, ap d t ad,, d,adl

X pa(i)bda(i)bnCankke i ei3D(i)bn,a k,

X [bfpa,(i')bdad,(i')b t ,,keik.Ri e- iD(i )]

x [E - Ho]-'(1 - I1o)(<ol)

x [bp,a,,, (i )bd,a,(' in,a e-ik"'"e (i

bpa l (ifI)bdwtdll (i .)On(kl

x bt a,,eikke i"''e- iSD(i' )Q1 ) . (6.13)

Consider now the first term on the right hand side of Eq. (6.13). It may be rewritten as

6(E - Ho)lIl) = [(E - Ho)O + [, (E - Ho)]] II'1) , (6.14)

where 6 is an abbreviation for the operator bp,ap(i)ad(i)e-ikRieiD(i). But in the neu-

tron problem, (E - Ho)6 is expected to be dominant over the commutator term, since the

energy scale of the former is of the order of MeV's (AE = - 2.225 MeV for the deuteron),

whereas the latter is of atomic scale energy (of the order of a few eV's). Thus we may replace

bp,ap(i)abt ed(i)e-ikLieiD (i)(E-Ho) in Eq. (6.13) with (AE-Hn)bp, ,,,(i)btad(i)e-ikRieiSD (),
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where H, is the neutron energy. The result is given by

V,.B I o) = (E - H.)I4o)O.(k)

E E E E E IV12.B
i',i".,i"m kk", lr a nla n, papt , ap" ct dad ,adm

x ps,,(i)ad(i),,nk~e-k' iei; (i)

x [E - Ho]-'(1 - Io)(ol)

X [bpapll)dd,,i ll ')inake-ik"ti' ei D (i )]

X bta,,(i ')bd,,,,,( i'), , (k )
x b ik e . (e- "')s1

Multiply both sides of the above equation by (0ol to obtain

(101 vo.-Bo) (=01(aE - Hn)ljo).(k)

< (o0 E r Z E E IV. 1B
i t ,i ',i ' kik"l,kr "' ,,ar ,oar , ap ,aplap1m ad,adad

x ,bpap(i),d(i)bna,.ke-~ eiSD (i)

X[Pa ,(i)bdad (i)ba ,ik eik'.Ri, e -iS(i')]

x [E - Ho]-l(1- o)(ol)

X[pal(i" )Od,aa,, (iL)n,an,,kl,e ,i e3D

X bpa, .(i)b,ad ll 6 (k')

xbt a,,,e ik" ' Ri e-iD(i")l O)

Compare Eq. (6.16) above with Eq. (6.6). If we neglect the term on left hand side

of Eq. (6.16), and remembering to sum over the i, ap and ad indices, the two equations

become virtually identical. Consequently, we arrive an expression for the proper self-energy

operator, Z*(k, k"'):

S*(k') = C i ,i ,i kk ,k 7,d ' "I,,°tl,%",~m al,(,m B 1
xi~ ll kkl(kA o,i a apapliapIll adadg, aCS ad(i)

x (- ok-k.p, (i)b ,a)b,, k -i k eiD (i)
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x [ ,% ,, eik'.Rie-iSD(i')

x [E - Ho]-'(1 - I1o)(ol)

X [ba" (i)a ,e - k "(i" e3 )]

x ipmapZ L la bt ei"ek Rim e-iSD("")I'o). (6.17)

Consider the second and third lines of Eq. (6.17). A neutron of momentum k' and spin

can is created out of the vacuum state Ito) in the third line, and another, of momentum

k and spin an annihilated in line two. This scenario may hold only if the two momenta

and spins are equal, or, in other words, if the very same neutron which was created out of

the vacuum is subsequently destroyed. The same argument applies to the neutron which is

created and destroyed in the fifth and sixth lines of the equation. Consequently, Eq. (6.17)

simplifies to

*(k, k'") z C C IjV.B
i,i~,iA,im,1 ap,aph,ap,aprml adadl ,a dadil H

x ('olbpa1(i)bta(i)e-ik'Rte is D( i)

[bt a(i)bda.,(i')eik'R' e - i$D (i ') ]

x [E - Ho]-l(l - I1o)(4ol)

x bp,a (i"'bi dt a,, (ir)eik l.,l eD(i )]

X ,,,,, (im)bdad" (im")eik'"... e-i3D (i'f) l1o ) (6.18)

We can expand the expression in Eq. (6.18) by splitting the Q operator. Furthermore,

for the sake of simplifying the notation I will use the symbol ({,} as a shorthand for

=, z,,,,l,=,,. The final result is given by

Z * (k, k) = E E E 1 (aB 12

{i} I-P { d}hl i

X ( [bpa,(i)t, a (i)e-ikReiSD(i)]

[;a , (i .d, (i)eik1'i,e-iD(il) [E-H]-
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x p , (i)bd,ad,,, (i`)e kR,e - is0 i
1
" ) l o)

{i} {ap} {ad}

x (l [p,ap(i)dtad(i)e-ik kiei§D(i)]

x [bt, ,(i')bd, a,(i)eik i'e-iSD (i')] Io )(PoI[E- Ho]-l Ito)

x (o [bpap (i")btoa,, (i")e - ik " '*RI,,eiD(i)]

X [pa,,, , ),d,ad,,j, (il")e ik"'Ril,,, e-isD(i')] o) , (6.19)

where we recall that V,..B is a shorthand for

IV,.B 1= (a,,,ap,I -l-. B ad')(ad,,l -/ . Bl a,,, ap,,) . (6.20)

Thus we have an explicit form for the proper self-energy for the neutron-lattice coupling.

Note that the terms appearing in the expression for the proper self-energy in Eq. (6.19) are

of the form (olc21 o) - (ol6lo)2.
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Chapter 7

Phonon Averaged Green's

Function Solution

So far we have put off the explicit evaluation of phonon averages. In this chapter we seek

to understand the role which the phonons play in the theory; this will be done, primarily, by

focusing on the techniques of phonon averaging. Our calculations will lead to expressions for

the zero, one and two-phonon contributions to the the proper self-energy expression derived

in Eq. (6.19). The results will show that the zero phonon piece vanishes while the single

and higher order phonon averages do contribute to the proper self-energy of the system.

The interpretation of these results fits well with the proposed neutron transfer theory.

Consider first the vanishing 0-phonon piece of the proper self-energy. The absence of

phonon exchange means that there is no avenue for the virtual neutrons to scatter once they

are created. This translates into a situation whereby the neutrons and the "holes" created

in the lattice are always paired, since without phonon exchange, the neutron and "hole"

will have matching momenta. This is equivalent to the free neutron being localized around

the neutron "hole". The presence of phonon exchange allows the neutrons to scatter off

the lattice. Once phonon exchange occurs the momentum of the free neutrons acquires a

component different than that of the holes and hence the pairing of free neutrons with the

"holes" is broken. This, ultimately, is the basic mechanism proposed for delocalization of

the virtual neutrons.

Another positive result which we obtained concerned the temperature dependence of the

phonon averaged proper self-energy. We would expect the single and higher order phonon
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piece of the self-energy to increase with temperature. An estimate for the temperature

dependence of the 2-phonon contribution to the proper self-energy was found to be of the

form

et,.(q)/krBT
S* (T) _(2)T (eh.(q)/kBT - 1)2

where w,(q) is the frequency of the normal mode of polarization s and wave-vector q.

7.1 Review of Phonon Averaging Techniques

In this section we would like to review some of the standard results of phonon averaging

theory1. This material is intended to provide the reader with a brief review and will act as

the background to the ensuing calculation of the zero and one phonon contributions to the

proper self-energy.

Consider the problem of a neutron scattered by a crystal. We assume that the only

degrees of freedom available to the crystal is motion of the ions about their equilibrium

lattice positions. The composite neutron-ion system is described as follows:

1 ir.p
'i = Op(r)§I = e Pi .(.1)

! -= p,(r)f = e a f , (7.2)

p2
Ei = Ei + - , (7.3)

ef = Ef + (P- (7.4)

where i (f) and ei (f) are the initial (final) state and energy of the neutron-ion system,

and p and p' are the incoming and outgoing momenta of the neutron.

The probability per unit time, P, for the neutron to scatter from p to p' is given

by Fermi's Golden Rule which, to lowest order in perturbation expansion, leads to the

1Neil W. Ashcroft and N. David Mermin, Solid State Physics, W.B. Saunders Co., 1976.
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expression

P = E 6(Ef - Ei)l(<iIVf)2 . (7.5)
f

V is the neutron-ion interaction potential given by

V = v(j - R) = V E vkek Ri-R] (7.6)
3 k,j

vk may be assumed constant (that is independent of k) because of its limited range (typically

nuclear dimensions), thus simplifying the expression for V to

= 2h 2a Eeik.[(j.R ] (7.7)
MV k,j

Substituting this result into the equation for P gives

(2irh) 3 - E+il k' R°j I'k (7.8)p = (M V)2 E5(Ef - E + )(e (7.8)

where
(p) 2 p2

2M, 2M,

and

hk-p'- p . (7.10)

From the relationship between P and the scattering cross-section, d we obtain the

following relation for a given initial state i:

do p Na2

ddE p h. Si(k,w) , (7.11)
dd-dE p ,k

Si(q, w) being the dynamical crystal structure which is given by2

S.(k, ) = 6( h + w)() ile{ij°e 'l (7.12)
f

At this point we assume the lattice to be in thermal equilibrium to begin with. We

thus average the cross-section for a given state i over a Maxwell-Boltzmann distribution of

2Neil W. Ashcroft and N. David Mermin, Solid State Physics, W.B. Saunders Co., 1976.
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equilibrium states. This means that Si(q, w) will be replaced by its thermal average3

S(k, w)= EN ek( ,i - we k ,)eiku() i (7.13)

where

(()) = e ' ('l i) (7.14)
Ee e BT

We now impose yet another condition that the crystal be harmonic, or in other words,

that the position of any ion in the lattice at time t be a linear function of the positions and

momenta of the other ions at time t = 0. This assumption allows us to use the identity

((eAeB)) = e (( '2 +/ 2+ 2A' ) ) (7.15)

for A and / linear in creation and annihilation operators. Applying this identity to the

integrand in Eq. (7.13) yields the relation

(eik u ( lR )e - ik u ( R j) = ei--(([k'u(R,)] 2))- i(([k.u(Rj)]2 ))+(((k.u (R)][k. u (Ri)]))} . (716)

But with the harmonic condition we have

(([k. u(R°,)]2)) = (([k u(Rj)] 2 )) = (([k u(R0)]2)) . (7.17)= · = ,(Rj)]>>. (7.17)

The quantity (([k. u(R0)]2)) is defined to be the Debye- Waller parameter, WD. Thus the

expression for S(k, w) becomes4

S(k,w) = e-w D t e-k ( ([ k u (R )][k.u(Rj)])) (7.18)

where e-WD is known as the Debye- Waller factor. Expanding the exponential in the inte-

grand of the above equation in a Taylor series we obtain/~mJ(LIY)= e~W~/ -ik- oo u l °)l_ )1[kS (k, w) = e-WD tetEikB I ((([k u(R°)u[k*u(Rj)]))) . (7-19)2w j m=O

3Neil W. Ashcroft and N. David Mermin, Solid State Physics, W.B. Saunders Co., 1976.
4Neil W. Ashcroft and N. David Mermin, Solid State Physics, W.B. Saunders Co., 1976.
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The m'th term in the above expansion corresponds to the contribution of the m-phonon

process to the total cross-section.

7.2 Zero-Phonon Contribution to E*(k,k')

We now examine the 0-phonon piece of the self-energy. In Eq. (6.19), we found an

approximation to the proper self-energy, Z*(k, k'), for the neutron/lattice system. For the

purposes of the present discussion the quantity E - Ho may be replaced by E, a small

parameter representing the energy difference between the unperturbed and full Hamiltonian.

This assumption, of course, is only valid for 0-phonon exchange. Moreover, we would like

to make use of the expansion

eik - = eIRek .- ) (7.20)

where I have defined R to be the equilibrium position of the ion at site i.

In order to calculate *o)(k, k"') we must first determine the 0-phonon contribution to

S(k,w). This is achieved by setting m = 0 in Eq. (7.19) and evaluating the integral. The

result is

S(o)(k,w) = e-WD6(w)N E 6 k,K
K

d da= dE ddE= e-WD(Na)2 E6k,K,
jdE K

(7.21)

where K is the reciprocal lattice vector. Knowing this, we may now evaluate *o )(k, k"')

which is given by

:()(k,k') = Z V-
{i} {a} {Q'd}

x (mol [,,(i);l,(i)e- I e-WD (k )]

x [, ,(i')bda,,(i)eik'oewD (k)]

x[,,,,, t a_(i,)e-ik"-Ro,,e-WD(k"')

X [, ,(i"') , (i"')e-ik"'R° ,e-WD (kill)] o

{ E, . E VB
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(o [,ctp.,(& d(i)eoik ie-WD (k)]

X [., (i')bd,cl (i')eik'R, ew (k)] io)

X (l0 [bp,a,,(i")bi, ad(i")e - ik R e-WD(kl)]

X [,.,,(i'a, (i")eik"' , (i)eikR°, eWD (ki")] IO) (7.22)

where we defined 6E = E - Ho above.

Consider the first term on the right hand side of Eq. (7.22).

operator ck as

= b,(i)bd,ad(i)e ik ReWD(k)
i

where, for the sake of simplicity, I have suppressed the ap and

may now be expressed in the following simplified form:

Define the fermionic "hole"

(7.23)

ad indices in Ck. Eq. (7.22)

E E IVB )] , (7.24)

k [( ~:,:6.ko)t. - (0' akal'toXi-lek6k t .r,,,o)] , (7.24)

But for fermionic hole operators

(o kckckt 4 ck t ...lo) t (olekktl o)(okolek,,,Ect 1,, o)

This corresponds to the physical statement that the neutron "hole" of momentum k, which

is created and destroyed by the ekct pair of operators, is independent of the neutron "hole"

of momentum k"'. In this approximation the two terms on the right hand side of the Eq.

(7.24) are approximately equal, which means that Ei0)(k, k"') ~ 0. We have thus argued

that the O-phonon contribution to the proper self-energy is projected out due to the presence

of the Q factor in the theory of Brillouin-Wigner. This result agrees with our expectations,

since where no phonons are exchanged neutrons do not scatter and hence are completely

localized about the lattice sites where they were created. In order to find the non-local part

of the picture we must seek higher-order phonon contributions to the proper self-energy.
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7.3 Review of One-Phonon Exchange

Before computing E(l)(k, k') we choose to review some standard results on one-phonon

averaging techniques5 . The 1-phonon contribution to the dynamical crystal structure,

S(k, w), is given by the following expression:

S)(k ,)= eWD J dt eiwt -ik (([k u(R°)][k u(Rj)])) * (7.25)

We need to evaluate the quantity (([k. u(R)][k. u(Rj)])). To do that we must refer to the

quantum theory of harmonic crystals. The Hamiltonian for harmonic crystals is given by

1 1
HHarm = E 2P(Rj) + 2 E u,(Rj)Vm,(Rj - Rj,)uL(Rj,) . (7.26)

j 33'

Recall that in the case of a single or one-dimensional harmonic oscillator, the Hamilto-

nian, H, is given by

H p2 + 1 q2 , (7.27)
2m 2

which is often redefined in terms of raising and lowering operators, azt and &, as such:

la = + i 2m, (7.28)

a- 2= / q - 2mw X (7.29)

-H w t (ata+ 1w) = f ) (7.30)

The procedure for harmonic crystals is very similar. Let w,(q) and E,(q) be the frequency

and polarization vector respectively for the normal modes of polarization s and wave-vector

q. In analogy to the one-dimensional oscillator, we define

aqJ = eqRE(q) [ Mw,(q) + I ( (R3j)] (7.31)

5Neil W. Ashcroft and N. David Mermin, Solid State Physics, W.B. Saunders Co., 1976.
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which is the phonon annihilation operator, and

EMWj(q) -j)

2h u( )
(7.32)

- 2h Mu(q)

which is the phonon creation operator. aq,o and 4aq,, satisfy the commutation relations

[aq,, at ,,,]

[aq,o, aql,,]I

= 6 q,q6, 6 8 '

= [a,,aq,,,] = o

(7.33)

(7.34)

Provided that the assumption of a lattice of "infinite" extent is valid, eqs. (7.31) and (7.32)

may be inverted to yield

1

1

.V q,

/ Mw ( ) a. + at q,) E(q)eiq Rj2Mw,(q)

hMw (aq)
2 al.

- at ) E,(q)ei q RJ

HH,,rm may now be expressed in terms of aq,o and atq, simply as

HHarm =E itw,(q) (at,.aq,.
q,s

Q,
q,S

hw.(q) ((q) +

Using Eqs. (7.34) and (7.35) above and the identities,

aq, (t) = e- i(q)tZq ,

eiw.(q)t,&t

= n,(q)6 qql,,, ,

= [1 + n.(q)] 6 qqI,6,,

= ((aq,saqI,sI)) = 0

we thus find that

S(l)(k, w) = e- WD 2Mw (q)[k .e(q)] 2 {[1 + n,(q)]6(w + w,(q)) + n,(q)6(w - w.(q))}

(7.38)
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u(Rj)

P(Rj)

(7.35)

(7.36)

1
2)

(7.37)

I

( (a qt,,* laq,.))
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As a result the 1-phonon contribution to the cross-section is given by6:

dE = Ne-WDp a2 M 1 [ke° (q)]2{[1+n °(q)]6(w+w,(q))+n °(q)6(w-w(q))} dadE P' 2Mw5(q)
(7.39)

which is a series of sharp delta-functions at the allowed final neutron energies, modulated

by the Debye-Waller factor and scaled by the quantity [k E,(q)] 2. This quantity contains

information on the polarization vectors of the phonons involved in the reactions.

7.4 One-Phonon Contribution to E*(k,k')

We now examine the 1-phonon piece of the proper self-energy, which is made up of four

terms representing the four combinations in which a single phonon may be created and

subsequently destroyed. ,l)(k, k"'), in the case of a perfect crystal, is given by

V-B 12

{i} {a,} {ad} q,'

X (ol [bp,a(i)da(i)e ikRe-WD(k)]

X [ia(pRioi�(i) + a i,(Bl eWD (k)

x (h[k * 'e (q)]2 no(q)

x [eiq'(Ri°,, - R °) + eiq-(R°,, +R°i ) e-iq(Ri,,+R9) + -iq(R ° -R°)]

x [bp,pll(i )bdaIid " ik "' R° (k. " )1

X [Lpa,% ;( adjl,(i t)e ik "'- I ao), (7.40)

where n,(q) is the phonon expectation of operator f,(q). Note that the Q factor vanishes

from the formula. The reason for this is that the creation of phonons alters the vacuum

state I[0o). Note that the phonon momentum shows up explicitly in the above equation, in

conjunction with the free neutron momentum.

We can deduce a rough estimate for the temperature dependence of Z*l)(k, k'") in the

6 Neil W. Ashcroft and N. David Mermin, Solid State Physica, W.B. Saunders Co., 1976.
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case of a thermal lattice by using

1n.(q) = , ehw.(q)1kjjT - 1 (7.41)

where I have assumed a Bose-Einstein distribution. Substituting the above approximation

into Eq. (7.40) yields

Z(1)(k, k'")
{i} ap) (aad} qs 

(\ [·p,a '(i)t ,ad(i)e -ik-ReWD (k)

X [,a(ij)bd,ad,,(i)e ,ieD()

x (h[k.E.(q)]2 1 1

2M ,,(q) /[ etw,(q)/kBT _-1

x [eiq((R"°,,,-°) i( + qu(o,+R,) + e-iq.(Ro+R) + eq a o)]

[X Lp,ap. ( d, [) ,, (i"t)e-ik"'.?ie-WD(k"')]

X [1a, ,,(i"')bd,.,L, (i."')eik"'R' e-WD(k"')] Io) . (7.42)

We may obtain an estimate on the magnitude of E(l)(k, k"') by substituting in typical

values for the quantities appearing in the above formula. The result is

|VPBI i( 1) )ND
(40) 10 -9 10510 = 4 x 10-VAeV

106 (4(0) (10-9) = 4 XL= I 10-'eV 

7.5 Two-Phonon Contribution- to *(k,k')

As the name suggests, 2-phonon exchange involves the creation and subsequent annihi-

lation of two phonons. There are two possible ways this could happen: the two phonons

could both be produced at a single site and subsequently absorbed at another; or the two

phonons may be born at different sites and then absorbed elsewhere. In all, there should be

twelve terms in the expansion for 2-phonon piece of the proper self-energy. For the purpose

of the present calculation, we choose to consider the one term where phonon q' is produced

at site i"' and subsequently absorbed at site i, while phonon q is created at site i", later to
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be absorbed at site i'. Eit2)(k, k"') for that term is given by

h 2 ,, I 12

{i} a,} {ad}) qq',,'s

x~ (ol [p(i)bd(i)k.e-i,, WD(k)]

X [b,a,, bdc(i")bt,a ,(iL) ,eWD(k)

([(k + k.).. (q)][(k + k..) -Es(q)] '( n.,(q') - n.(q)
h I [w. (ql) - w.(q)I

x[eiq(R,-Rci )e,,iq-(R)e-R )

X [btp,%p.(i)bt a(i")e'k"R°,e-wD (k)]

X [,,,(i.. ,adl(i ')elll Of $e-wD(k'l)] 1o) (7.43)

For a thermal lattice, the quantity 4n,",(k,)n((k)) may be approximated as follows:

n,,(q') - n.(q) On e t (q)/kBT

h [W, (q') - w.(q)] OE kBT (e"w(q)/kT - 1)2

where, once again,

approximation into

* )(k, k"')

I have assumed a Bose-Einstein distribution. Substituting the above

Eq. (7.43) yields

i2M )} {p} {a} qq ,, hN

x (.ol [bp(i)bLt, d(i)e-k.e - WD(k )]

X [p,a,(i)bd,d,,(i)eik'ewD (k)]

X -[k -E(q)] 2[k"'. E, (q)]2 et-(q)/kBT

W (q)w.,(q') J kBT (ewa(q)/kBT _ 1)2 )

x [eiq (R.,,,- R ) + e-iq-(R°, - R° )]

X [bp,aP,,(i)bt ia,,(i.ik'"Rl e-WD (k")]

X [,a,,(i ')bdd,,,,(i)eikl e-WD(k"')] lo . (7.45)

Of course, even though the above expression was derived and is expressed in terms of

proton and deuteron creation and annihilation operators, it applies to any donor-acceptor
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pair. E 2)(k, k"') in its more general form is thus given by

(,2)(k, k'" )
h 92 V 12

{i) {aA} {aD} q,q',s,'

X (Sol [A,A(i)b',aD(i)e ikRe -WD(k)]

x [a (i)bD ,, ,(i)e ikReWD(k)

V 7(q) w,i(q) k kET (ehw.(q)/kBT - 1)2)

x [e'q,(R,,, -R) + e-i(R,, -Ro,)]

X " .~a~wf (i')b (i)eik'.R,,, e-WD (kill) ) (7.46)

A similar order of magnitude argument to the one presented at the end of the last section

may be used to obtain a rough estimate of the size of the 2-phonon piece. The result is

2 /v 2V;.B 1kT) () NDNDI

[ 106 ] (40)2 (10-9)2 10110 = 1.6 x 10 3eV

7.6 The Green's Function Solution

The fact that we were able to reach an estimate for the proper self-energy for 0, 1 and

2-phonon exchange without having to undertake lengthy calculations is due largely to the

universality of the method we have adopted for phonon averaging. Deriving an expression

for the Green's function is now reduced to a simple substitution into Dyson's equation;

1
G(k, k'") =

[GO(k, k"')]-' - Z*(k, k,') (7.47)

Thus we have accomplished what we had set out to do originally, namely to derive an

expression for the Green's function which approximates the virtual neutron's interaction

with the lattice. Notice the inherent splitting in the above equation of the local part of G,

represented in the unperturbed Green's function G, from the nonlocal part, generated by

the exchange scattering term represented by the proper self-energy E*. This splitting of
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local and nonlocal part in the Green's function would naturally appear in the solution to

the free neutron wavefunction.

7.7 Reaction Rates

In this we shall briefly examine the reaction rate for the neutron transfers which the

2-phonon self-energy average generates. The result will show that, in the case where the

interaction between the neutron and the nucleus occupying the lattice site is predominantly

due to the strongforce, the reaction rate is enormous. This means that the proposed neutron

transfer does not inhibit or slow down the processes within the Pons-Fleischmann cells in

any way. As it turns out, it is the limitation on the number of phonons occupying a given

.mode and mediating the reaction which acts as the principle bottle-neck to the process.

We may obtain an estimate for the neutron transfer reaction rate simply by applying

Fermi's Golden Rule just as we did on previous occasions in chapters 3 and 4 (see Eqs. (3.40)

and (4.16)). The only difference now is that E*, which represents the near-resonance ex-

change scattering in the problem, replaces the Bragg scattering term, VK and the exchange

term,, Wk-K,k, in the formulas for rtot in Eqs. (3.40) and (4.16) respectively.

We shall be examining the reaction rates generated by the 2-phonon averaged proper

self-energy, since 2-phonon exchange interests us most in the theory. Using the expression

for F'2 )(k, k"') in Eq. (7.46) we arrive at the following estimate for the total reaction rate:

r N D [A]E | (E (V) { (k, ,,) }rPd
AB AE VA 2M,

-ND(NA) 3 (AE) 4 ]VA (kET)3 (e3A/kBT 1)6 8)

Once again, as in Eq. (3.40), we plug in typical values for the quantities which appear in

the above formula only to find that

r (1016) 1024' ) (104)5) [1]24 1 (40)-3(25)3 }= 2 x 1 7 sec- . (7.49)

Clearly this rate is far too small. It amounts to, essentially, 2 x 10- 4 8 transfer reactions per

second per donor in the lattice!

There is a way out of this predicament, however, and that is if we consider the dominant
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interaction between the neutron and the nuclei in the lattice to be strong in nature, just

as we did in the latter part of chapter 47. This requires that the participating donor and

acceptor nuclei to be larger than the simple deuteron and proton, since these are incapable of

interacting strongly with the free neutrons. Tritium, Pd and Li isotopes etc. are all possible

candidates for the transfer reactions. As discussed in chapter 4, V,.B is now replaced by Vs

(which is of order 107 or 108 larger) in the above formula. The reaction rate now becomes

r TND(NAE)4 VA (kT)3 (e3A/lkT _ 1)6
3 1024 4kET)3 (e~/k1~ -A/)

91024_ 1 = 2 x 104 5 seC- (7.50)(106) 2l (105 (1024 [lo (40)-3(25)3 2

which is enormous.

The free neutron transfer reaction rates may also be calculated using perturbation theory

(see discussion following Eq. (6.12)). This calculation was carried out by P. L. Hagelstein,

who arrived at the following expression for r:

r = (h 3) ('I 2 i[E - Ho]L1VVI'o)I p(Ef) , (7.51)

where p(Ef) is the density of states, and V corresponds to H1 in my notation. Estimates

for the reaction rates derived from the above formula were

r = ) Ip-.BI2Id.E- [ ° ND9g(T)AE 4 6E3 VA] 4 NA -p

t 1016 [10-6] [10-9]4 [1015]3 10
[5 x 1061]4 [3 x 10-2]3 [1.5 x 108]2

= 5 x 10-29 sec- 1 , (7.52)

which compares favorably with the figure obtained in Eq. (7.49). A similar estimate for

the rate in the case of the strong interaction from perturbation theory gave

( 2X A I Vs(Pd) 1 2 1 Vs(Li) 16 V AI NANA ND

h / AE 46E3 LVAJ Vph

1016 [10318 1[ 0 -9] 4 [10153 1021
[7 X 106] 4 [3 X 10-2]3 [5 X 1066]

7See discussion on the strong interaction in chapter 4
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= 7x 104 3sec-1 , (7.53)

which, once again, agrees with the result we obtained in Eq. (7.50). The agreement between

the two sets of results lends more credibility to the theory.

Thus we have argued that the underlying neutron transfer mechanism may hold up

numerically. We had determined early on (see chapter 3) that the Duschinsky matriz in-

troduced into the formalism was capable of mediating macroscopic energy transfer. With

the reaction rate just estimated, we have demonstrated that the mechanism in and of itself

does not inhibit the processes observed in the Pons-Fleischmann cells. The bottleneck is in

the generation of phonon modes with high occupation.
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Chapter 8

Summary and Conclusion

Pons and Fleischmann first claimed the observation of heat generation of nuclear origin

in an electrolysis experiment in 1989. Early speculations focused on the possibility of low-

temperature deuteron-deuteron fusion to explain the various reported anomalies. These

theories however fail to account for the mechanism that would allow for the overwhelming

Coulomb barrier to be overcome. An alternative theory based on second order reactions

involving off-resonant intermediate states which contain virtual neutrons was proposed. The

theory was pioneered by P. L. Hagelsteinl.

The present work began with a brief survey of the framework upon which Hagelstein's

initial effort was built. The main features of the theory were:

1. The reactions involved the transfer of a neutral particle, namely the neutron, thus

circumventing the problem of the Coulomb barrier.

2. Frequency shifting of a large number of phonons proved capable of mediating signifi-

cant transfer of energy (of order MeV) between microscopic nuclei and a macroscopic

lattice through use of the Duschinsky operator.

3. Because the theory required that the neutrons involved in the reactions be virtual in

nature, a method had to be conceived in order to show that a significant amount of

delocalization may be induced to these particles.

The original research presented in this work was aimed at verifying that neutron de-

localization was in fact present. It was found that, by introducing a resonance exchange

1See references for articles by P. L. Hagelstein at the end of chapter 1.
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scheme into the theory, the neutrons could potentially achieve a range of a few microns. In

order to insure that a sufficient number of these neutrons reach this degree of delocaliza-

tion, we undertook the task of solving approximately for the Green's function of the full

system Hamiltonian. Ultimately, an expression for the Green's function was obtained in

terms of the self-energy which we had solved for explicitly in the one-phonon approximation

scheme. Using the expression for the 1-phonon averaged proper self-energy, a reaction rate

for the neutron transfer reactions was calculated for the case of electromagnetic interaction

potential and the strong interaction potential. It was found that, in the instance where

the interaction between the neutrons and the nuclei in the lattice was strong, the transfer

reaction rate was enormous (of order 1025 reactions per second per donor in the lattice). For

the magnetic dipole transition potential, on the other hand, the reaction rate was extremely

low (of order 10- 4 7 per second per deuteron in the lattice). Clearly, the focus of the theory

must revolve around the strong interaction.

8.1 Summary of Original Results

1. The full system Hamiltonian, Htotal, was expressed in terms of second quantized field

operators for the neutrons and the donor and acceptor nuclei occupying the lattice

sites (see Eq. (5.6)).

2. A formal expression for the many-body Green's function of the neutron/lattice system

was obtained (see Eq. (5.1)).

3. We succeeded in extracting an approximation for the proper self-energy operator,

Z*(k, k'), using infinite order Brillouin-Wigner perturbation theory, originally pro-

posed by P.L. Hagelstein, (see Eq. (6.19)).

4. We looked at 0, 1 and 2-phonon averages for the proper self-energy of the system (see

Eqs. (7.24), (7.42) and (7.46)) and saw that the 0-phonon piece vanished.

5. Using the result obtained for E*(k',k") and Dyson's formula (see Eq. (7.47)), we

arrived at a final expression for the exact many-body Green's function.

6. Finally, we succeeded in obtaining a rough estimate for the total neutron transfer

reaction rate using the result obtained for i*2)(k',k"'). This, in effect, is the key
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result of the thesis, especially as a comparison of the reaction rates derived from the

proper self-energy with those obtained from a perturbation expansion show remarkable

agreement (see Eqs. (7.49) and (7.51), and Eqs. (7.50) and (7.52)). These results show

that, while the reaction rate is negligible for electromagnetic interactions between the

neutron and nuclei in the lattice (of order 10-48 per second per deuteron in the lattice),

in the case of strong interactions, the reaction rate is enormous (I 1024 per second

per donor). We should not be alarmed that the rate is so large because all that it

means is that the resonance exchange mechanism does not hinder the progress of the

neutron transfers. The bottle-neck lies in the limited number of phonons mediating

the reactions.
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