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Abstract

There has been strong recent interest in high resolution techniques for reliably resolv-
ing closely-spaced sources and estimating their directions. The performance of can-
didate techniques has, until recently, been assessed empirically in most publications.
Several recent contributions have facilitated analytical performance assessment for
scenarios with a single unknown direction parameter for each source (1-D). However,
many practical geolocation applications require estimating multiple position-location
parameters for each source (e.g. azimuth, elevation and possibly range). This thesis
generalizes many of the 1-D results to scenarios with multiple parameters (multi-D).

The main results of the thesis are analytical expressions, valid for closely spaced
sources in multi-D scenarios, for the eigenstructure of the data covariance matrix, for
the singular value decomposition of its matrix factor, for the Cramér Rao lower bound
on directional variance, and for detection and resolution thresholds. The expressions
make explicit the impact of scenario parameters such as maximum source separation,
source configuration, source powers and correlations, and sensor array geometry.

The multi-D results herein in some ways parallel the prior 1-D results, but also
differ in interesting and significant ways. For a given number of closely-spaced sources,
we find for multi-D scenarios, in relation to 1-D scenarios, that 1) the direction finding
(DF) problem is much better conditioned, 2) the Cramér Rao variance lower bounds
are much lower, and 3) the source detection and resolution problems are easier.

The thesis provides an analytical framework for the direction finding problem in
multi-D scenarios, which should facilitate the assessment of candidate DF techniques,
help quantify the numerical-accuracy and hardware-alignment issues associated with
implementing high-resolution techniques, facilitate beamformer design and provide
insight helpful to the development of improved DF algorithms for multi-D scenarios.

Thesis Supervisor: Harry B. Lee
Title: Atlantic Aerospace Electronics Corporation

Thesis Supervisor: Alan V. Oppenheim
Title: Professor, Department of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Determining the direction of propagating signals incident upon a sensor array, in
the challenging case when the separation between signal sources is small, has been
a topic of strong interest over the last two decades. Numerous High Resolution di-
rection finding techniques have been proposed with the purpose of reliably resolving
closely-spaced sources and estimating their directions [1]-[5]. The performance of the
candidate techniques in terms of bias, variance, detection and resolution thresholds
has, until recently, been assessed only empirically [4], [6]-[8]. Such empirical assess-
ment is not entirely satisfactory since it is scenario dependent and does not provide
insight into fundamental performance limitations.

Several recent contributions have facilitated analytical performance assessment
for closely-spaced sources, and made explicit the impact upon performance of sce-
nario parameters such as sensor array geometry, source configuration, source powers
and correlations, and maximum source separation dw. Available analytical results
for closely-spaced sources include estimator bias and variance expressions for spe-
cific direction finding (DF) algorithms [9], [10], Cramér Rao bound expressions for
the minimum directional variance attainable with any unbiased algorithm [11], eigen-
structure expressions for the data covariance matrix that is central to DF algorithms
[12], and expressions for the detection and resolution thresholds [13]. These analyt-
ical formulations have generally been obtained for scenarios with a single unknown

direction parameter for each source (1-D scenarios). Many practical direction finding
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applications involve two or more unknown direction parameters for each source (e.g.
azimuth, elevation, and in some applications also range). Corresponding analytical
results for multi-D scenarios are not currently available.

The purpose of this thesis is to generalize many of the analytical results recently
developed for 1-D direction finding scenarios to multi-D scenarios. Thesis results for
closely-spaced sources in multi-D include expressions for the eigenstructure of the
data covariance matrix, for the Cramér Rao lower bound on directional variance, and
for the detection and resolution thresholds. The multi-D results developéd herein
in some ways parallel the prior 1-D results, but also differ from the 1-D results in
interesting and significant ways. For a given number of closely-spaced sources, we
find for multi-D scenarios, in relation to 1-D scenarios, that 1) the DF _problem is
much better conditioned, 2) the Cramér Rao variance lower bounds are much lower,

and 3) the source detection and resolution problems are easier.

1.1 Recent Developments in Spatial Spectrum Es-

timation

Many of the techniques proposed for estimating the direction of closely-spaced sources
were originally proposed for estimating the frequency spectrum of time series. Since
sampling of a function in time is analogous to sampling of a function in space, es-
timating the frequency of sinusoids in noise is similar to estimating the direction of
plane waves in noise. It is at times convenient to represent the unknown plane wave
direction as a spatial frequency w for 1-D scenarios, or as spatial frequency vector & for
multi-D scenarios. The following discussion reviews recent developments in spectrum
estimation in the context of estimating spatial frequency vector & [7], [8].

In a typical direction finding scenario, an array of sensors observes signals prop-
agating from a number of sources. The sensor array is characterized by the hgene'r‘ic
arrival vector d(&), which is the ideal (noise-free) array response to a unit amplitude,
zero phase signal with spatial frequency &. It is assumed that @(&J) is known for all

&. The function d(&) sometimes is called the array manifold.
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The sensor array data typically consists of N snapshot vectors §(t), where the it
element y;(t) denotes the output of the i** sensor at sampling time ¢, with¢ = 1,--- N.
The data is assumed to be a linear combination of generic arrival vectors for each of
the sources present, scaled by the respective signal amplitude, with additive noise.

Specifically, the data model addressed in this thesis is of the form

M

y(t) = _Z;&'(G)'j)wj(t) +€(1) (1.1)
i=

where & - - - Gp denote the (unknown) source spatial frequencies for each of M sources
present, z;() denotes the complex amplitude of the jt* source, and €(t) is a vector of
additive, uncorrelated white noise (e.g. sensor noise). The (spatial) frequency estima-
tion problem is to identify the &;, --+ &y from the snapshot vectors (1), --- F(INV)

and the known array manifold d@(&).
To obtain the benefits of averaging, most practical spectral estimation algorithms
average outer products of the snapshot vectors to compute a sample data covariance
matriz R. For large data sets (as N — o0), the sample data covariance matrix

converges with probability one to the asymptotic data covariance matriz R. That is

R N
B2 %t};i(t)ﬁ(t)" (1.2)
R = E{Ft)7(t)"} (1.3)
and
dim R =R (1.4)

To obtain spatial frequency estimates, the sample data covariance R is transformed to
generate a non-negative spectrum function S(&). The domain of this function is the
set of a,ll-possible spatial frequencies &; the values of & at spectr.um peaks (maxima)
are interpreted as estimates of source spatial frequencies. |

Table 1.1 lists the spectrum functions S(&) used by a number of popular algo-

15



Spectral Estimation Algorithm Spectrum Function

Conventional Beamscan Scps(@) =

constant

Maximum Entropy Method SmMeM(@) = " _— (ii ) "2
a(@ ~1)first column

a(@)a(@)
i(@) B13(3)

Maximum Likelihood Method Smim(@) =

; d(@)ha(@) —
MUSIC S w) = E—
wusic(®) = 3T EnEh a@)
. , d(@) ()
MinNorm SMinNorm(@) = i
Minors () @(@)h ExtirEY 3(d)
En = columns of Ey are selected (noise-space) eigenvectors of R
f = selected to minimize the norm of £*E*Ent

subject to first element of Ent being equal to 1

Table 1.1: Spectrum Functions of Representative Spectrum Estimation Techniques

rithms. In each case, the algorithm operates on the covariance matrix R with the
generic arrival vector @(&) to generate the spectral value for direction &.

The Conventional Beamscan (CBS) method is the classic direction finding algo-
rithm and actually provides the best possible estimate of the spatial frequency & of
a single source received in the presence of (spatially) white noise [7]. Unfortunately,
the CBS method is not optimal in the presence of multiple sources, and breaks down
completely if two or more sources are closely-spaced.

The CBS method is analogous to classical time-series matched-filtering, (and also

16



analogous to Fourier spectral analysis of time series). The value of spectrum S¢ps(&)
is large when the vector @(&) equals one signal component d@(&;) (i.e. when & equals
the spatial frequency vector of one of the sources). For a scenario with a single source
at & and spatially white noise, the value of & at the peak of the Scps(&) spectrum is
an optimum, unbiased estimator of @ . For large data sets (R — R), the peak of the
Scps(@) spectrum is exactly at &;. The width of the Scps(&) peak is independent
of the data set size N; the width as measured between the 3 dB attenuation points
is commonly designated as the Rayleigh beamwidth.

For scenarios with more than one source, the Sgps(&) spectrum consists of the
sum of individual spectra of each of the sources. As a consequence, the spectral peak
frequencies in scenarios with multiple sources may not have means equal to-the source
locations &;, not even as R— R; thus the CBS estimator is biased. Furthermore if
two sources are spaced closer than one Rayleigh beamwidth, the Scps(&) spectrum
typically exhibits only one peak (in the vicinity of the two source spatial frequencies).
Therefore the CBS method typically does not resolve sources separated by less that
one Rayleigh beamwidth.

A large number of DF techniques has been developed in the past two decades
to overcome the resolution limitations of Conventional Beamscan. These so-called
High Resolution techniques can resolve sources with spacing less than the Rayleigh
beamwidth given favorable conditions (e.g. large data set (N — o0), high signal-to-
noise ratio (SNR), accurate array calibration, etc.)

Early High Resolution DF techniques were based upon classical methods of spec-
trum estimation, but made no use of any information about the underlying propa-
gating signal process. Representative early High Resolution techniques include Max-
imum Entropy Method (MEM) attributed to Burg [1] and the Maximum Likelihood
Method (MLM) technique attributed to Capon [2] with spectrum functions Sprenm (&)
and Sypm(&) as in Table 1.1. Under favorable conditions, these spectral estimators
resolve sources within a Rayleigh beamwidth, but the direction estimates (the spec-

tral peak locations) obtained with these methods typically are biased even for large

data sets (as B — R).
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Over the last decade a new class of High Resolution techniques has been in-
troduced, including MinNorm [3], [4], MUSIC [5] and related Eigenvector techniques
based upon the eigenanalysis of the covariance matrix R. For large data sets (E — R),
subject to data model assumptions, MinNorm and MUSIC provide asymptotically un-
biased estimates of the source spatial frequencies regardless of signal-to-noise ratios
and frequency separation of the sources.

In contrast to classical spectral methods, eigenvector techniques assume (require)
that the direction finding scenario consist of spatially discrete signal sources, that
the number of sources be less than the number of sensors, and that the noise be
uncorrelated and white (or pre-whitened). Under these conditions, the covariance
matrices R, R can be decomposed into orthogonal “signal” and “noise” vector sub-
spaces. Eigenvector direction finding techniques exploit the property that the generic
arrival vectors @(&,),- -+, @(@pm) for each of the sources lie within the “signal” vector
subspace of the asymptotic covariance matrix R, and therefore are perpendicular to
the corresponding “noise” vector subspace. The denominators of the spectrum func-
tions Syusic(@) and SuminNorm(&) in Table 1.1 involve the projection of @(&) onto
vectors in the noise subspace of R. Whenever @ equals a source spatial frequency, the
denominator tends to zero as R — R, and therefore the spectrum functions peaks are

asymptotically unbiased estimators of source spatial frequency.

1.2 Closely-Spaced Sources

The performance of High Resolution direction finding techniques is roughly compa-
rable when sources are well separated. Performance differences become evident in
the stressful case when sources are closely-spaced. Therefore the ability of a High
Resolution technique to resolve closely-spaced sources, and to accurately estimate
their parameters, has become a standard test in the literature of the “power” of the
technique.

The spatial spectra of the Maximum Entropy and of the Maximum Likelihood

estimation algorithms depend upon the inverse of sample covariance matrix R; the
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spectra of the so-called eigenvector techniques such as MinNorm and MUSIC depend
upon selected eigenvectors of R. (See Table 1.1). Therefore the performance of these
algorithms depends strongly on the eigenstructure of matrix B. Under the data model
assumptions, the sample covariance matrix R converges with probability one for large

data sets (as N — o0) to the asymptotic form
R = Rs+d’ (1.5)

where matrix term Rg reflects the spatial covariance contribution due to the incident
signals, and 0?1 reflects the additive, uncorrelated and spatially white sensor noise.
For closely spaced sources, signal covariance matrix Rs is ill-conditioned with the

result that direction estimates are very sensitive to hardware errors and finite data
sets.

Analytical expressions for the eigenstructure of the sample covariance matrix ﬁ,
if available, would facilitate the analysis of the statistical properties of the directional
spectra of Table 1.1, and hence facilitate performance analysis of the candidate DF
algorithms for closely-spaced sources. The eigenstructure of the sample covariance
matrix R can be expressed in terms of the eigenstructure of the asymptotic covariance
matrix R using classical perturbation theory results [9], [19]. Thus the eigenstructure
of R can be determined if the eigenstructure of R is available. The eigenstructure of
R is straightforwardly related to that of the signal component Rs of (1.5). Thus the
eigenstructure problem for closely-spaced sources is essentially that of identifying the
eigenstructure of asymptotic signal covariance component Rgs.

Direct analytical expressions for the eigenvalues and eigenvectors of Rs are not
available for general scenarios with more than 1 or 2 sources, due to the difficulty
in explicitly solving the polynomial characteristic equation of order greater than 2.
Thus, until receqtly, assessment of High Resolution estimator performance in terms
of bias, variance and resolution threshold has been largely empirical [4], [6], [7]. Such

empirical assessments leave unanswered important design questions; specifically they

e are scenario dependent,
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e do not establish fundamental performance limitations.

A recent contribution by Lee [12] developed an approach that facilitates analytical
identification of the eigenstructure of Rs for closely spaced sources in scenarios with
a single unknown direction parameter for each source (1-D scenarios). The results
are summarized in the next section.

Another useful tool for performance analysis is the Cramér Rao (CR) bound. The
CR bound provides a lower bound upon the variance achievable by any unbiased
estimator [20]. Therefore the CR bound is commonly used as a yardstick to measure
the directional accuracy of candidate DF algorithms. Analytical expressions for the
CR bound applicable to DF scenarios, if available, would indicate whether existing
High Resolution techniques are near-optimum, and potentially lead to newtechniques
which remedy any identified shortcomings.

Development of analytical results for the covariance matrix eigenstructtire and the
CR bound for closely-spaced sources has been a recent focus of interest [9]-[14]. The

work reported thus far has been for 1-D scenarios. The results are summarized below.

1.3 Available Analytical Results (1-D)

An important early contribution by Kaveh and Barabell [9] analyzed the statistical
properties of the MUSIC and MinNorm algorithms. Using a first order approximation
of the MUSIC spectral bias, the authors determine an expression for the minimum
(threshold) signal-to-noise ratio (SNR) at which MUSIC is able to reliably resolve two
closely-spaced equal-power uncorrelated sources observed by a uniform linear array.

Lee and Wengrovitz [10], [14] extended these results to arbitrary arrays, to beam-
space pre-processing, and to two (possibly) correlated sources of (possibly) unequal
powers. The authors also identified the beamforming pre-processor which minimizes
the MUSIC resolution threshold.

Lee [12] derived explicit expressions for the eigenstructure of asymptotic signal co-
variance Rg in (1.5) for the problem of M closely-spaced sources in 1-D scenarios. The

author showed that for closely-spaced sources, the eigenstructure of Rs decomposes
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so that eigenvalues and eigenvectors can be determined by straightforward linear al-
gebra operations, without eigenanalysis. Specifically, if the number of sources M is
less than the number of sensors, and if we denote the maximum source separation
as 6w, the ordered non-zero eigenvalues of Rg as A\;(6w) > --- > Ay(éw), and the

associated eigenvectors as €;(éw), i = 1,--- M, then example results of [12] are

1) Non-zero eigenvalues \;(éw) of Rg converge as §w — 0 to limiting eigenvalues

Xi6w?(=1) where ); are positive constants and i = 1,--- M.

2) Eigenvectors €;(6w) of Rs converge as éw — 0 to constant vectors €;, cor-
responding to the generic arrival vector d(w) and its derivatives, suitably or-

thonormalized.

3) Limiting condition number of R;s is —)‘&-&0'2(”1 -,

M

4) Remarkably, the quantities ); and €; are calculable via linear algebra operations;

solving a characteristic equation is not required.

Thus for closely spaced sources in 1-D, the eigenanalysis of Rs decomposes completely
into explicit expressions for each eigenvalue and eigenvector.

Lee and Li [13] addressed the problem of detecting the number of sources in a
cluster of M closely-spaced sources. Using the foregoing eigenvalue results, they
argued that the SNR threshold £p at which so-called Normal Algorithms can reliably
estimate the number of sources in 1-D scenarios is proportional to fw=2(M-1)_ That
is

Kp

€p = Sw2(M-1)

(1.6)

where Kp is a suitable constant.

Lee [11] extended general results on the CR bound due to Stoica and Nehorai [15]
to the case of closely-spaced sources. Explicit formulae for the CR lower bound on the
variance of unbiased (1-D) spatial frequency estimates were derived for closely-spaced

sources. The variance bound on the spatial frequency estimate &; for the j** source
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was found to be

1 b;

Verldi} 2§ R, sorer

S + O(uw2 M=+ (1.7)

for small frequency separation éw, where N denotes the data set size, SNR; the
signal-to-noise ratio for the j** source, M the number of sources, and b; is a suitable
constant that depends upon the other scenario parameters of sensor array geometry,
source configuration, source powers and correlations. Lee used these results to argue
that the SNR resolution threshold £ for any unbiased estimator in 1-D scenarios is

proportional to & 6w=2M. That is

Kr

€r = N . fw2M

(1.8)

where Kp is a suitable constant.

Results of the form (1.6)-(1.8) are quite useful in that they make explicit the
dependence of performance metrics £p, Var{®;} and £g upon the source separation
factor dw. For example, Eq. (1.8) indicates for a 1-D scenario with M = 3 sources
that reducing éw by a factor of 10 increases the resolution threshold SNR by 60 dB

for any sensor array and relative source configuration.

1.4 Thesis Objective

The purpose of this thesis is to generalize many of the foregoing results for 1-D
direction finding scenarios to multi-D scenarios. The two principal issues addressed
in the thesis are 1) the eigenstructure of the asymptotic signal covariance matrix
Rg, and 2) the Cramér Rao bound on spectral estimate variance, for closely-spaced
sources in multi-D. Major results include the following.

Building upon the work of Lee [12] for 1-D scenarios, analytical expressions are de-
veloped that facilitate identification of Rs eigenstructure for M closely-spaced sources

in multi-D scenarios. The approach used herein differs from that used by Lee for 1-D
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scenarios [12] in that covariance matrix Rg is factored as
Rs = BB* (1.9)

where rectangular matrix B has Taylor series in source separation parameter éw. The
thesis identifies explicit expressions for the small éw Singular Value Decomposition
(SVD) of the rectangular matrix B, building upon classical eigenstructure results
of Kato [17] and Coderch, Willsky, Sastry, and Castanon [18]. The eigenstructure
of Rs for small éw then follows immediately from (1.9). The SVD results are not
only important enabling tools for the multi-D eigenstructure problem, but also may
themselves constitute important results for other applications.

The properties of Rs eigenstructure for multi-D scenarios identified herein often
parallel those for 1-D scenarios, but also diverge in interesting and significant ways.
Example thesis results for non-degenerate multi-D scenarios with M closely-spaced

sources are

1) Non-zero eigenvalues X;(6w) of Rs converge as éw — 0 to limiting eigenvalues
Ai 6w where ); are positive constants, and k; € {0,--m},foralli=1,---M
and with m < M — 1. Typically there are multiple limiting eigenvalues propor-
tional to §w?* for each k = 0,---m; the group of limiting eigenvalues propor-

tional to éw?* is designated as the k** eigenvalue shell.

2) Eigenvectors €;(6w) of Rs associated with each eigenvalue shell converge as
6w — 0 to constant limiting subspaces spanned by the generic arrival vector

and its partial derivatives, suitably orthonormalized.

3) Limiting condition number of Rg is /\—1&0'2’". Thus parameter m determines
M
condition number sensitivity to maximum source spacing éw.

4) Eigenvalues of Rg that exhibit the behavior \;6w?* as §w — 0, have as multipli-
ers ); the non-zero eigenvalues of a constant low-rank matrix Ry . Furthermore

as dw — 0, the associated eigenvectors of Rs span the column space of Rapo.
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Matrix Rk is independent of éw, and is straightforwardly calculable via linear

algebra operations.

Thus in multi-D, the eigenanalysis of Rs decomposes into a sequence of much
simpler shell problems; the k** shell problem involves eigenanalysis of the constant
low-rank matrix Rzro. Nevertheless, eigenanalysis is not required to determine the
span of limiting eigenvectors associated with each Ry g, nor to determine conditioning
sensitivity parameter m. For 1-D scenarios, k; =¢—1, m = M — 1 and matrices Ry
have rank 1, whereupon thesis results simplify to those of {12]. For non-degenerate
multi-D scenarios, typically m < M — 1, and thus Rs conditioning for small éw is
much improved relative to 1-D settings.

A major contribution of the thesis is to identify simple explicit expressions for the
matrices R0 for typical multi-D direction finding scenarios.

The eigenvzﬂue results are used to extend the 1-D SNR detection threshold results
of Lee and Li [13]. Based upon classical eigenstructure perturbation theory, the thesis
argues that the minimum SNR at which any eigenvalue based detection algorithm can
reliably estimate the number of sources in multi-D scenarios is proportional to fw=2™.
It is further argued that the minimum data set size N for reliable detection in multi-D

scenarios is proportional to éw=*™. That is

K7
1 \2
ND o (I{D) (1-11)

(SNR)? - buwim

for large N and small éw, where £p denotes the SNR detection threshold, Np the
data set size N detection threshold, and K7, is a suitable constant. Since typically
m < M — 1, we conclude from (1.6) and (1.10) that for small éw, the detection
threshold SNR typically is much smaller (more favorable) in multi-D than in 1-D
scenarios.

The second part of the thesis extends the general results on the CR bound in multi-
D due to Yau and Bresler [16], to develop CR bound expressions for closely-spaced

sources in multi-D which parallel those of Lee [11] in 1-D scenarios. For unbiased
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estimators in typical multi-D scenarios, the variance bound on &;;, the i** component
of spatial frequency vector @; for the j* source, is shown to satisfy

1 b,'j

510>
Va,r{wu} = N. SNRJ Sw2x-1

y + O(Sw~2x-1+1)y (1.12)

for small frequency separation dw, where N denotes the data set size, SNR; the
signal-to-noise ratio for the j** source, x € {m,m + 1} depends only on the number
of sources M and scenario dimensionality. The constants b;; depend upon the other
scenario parameters of sensor array geometry, source configuration, source powers
and correlations. Significantly the value of x in typical multi-D scenarios is less the
number of sources M; therefore for a given number of sources, the CR variance bound
typically is much smaller (more favorable) in multi-D than in 1-D scenarios.
Building upon the results of Lee in [11], the thesis uses the multi-D CR bound
results to argue that the minimum SNR at which any unbiased estimator can reliably
resolve M sources in multi-D scenarios is proportional to §w=2X. It is further argued
that the minimum data set size IV for reliable detection in multi-D scenarios is also

proportional to §w~2X. That is

K,

Ep ~ N b (1.13)
Np ~ —FB (1.14)

SNR - dw?x

for large N and small w, where Er denotes the SNR resolution threshold, Mg the
data set size N resolution threshold, and K}, is a suitable constant. Since typically
X < M, we conclude from (1.8) and (1.13) that for small éw, the resolution threshold
SNR typically is much smaller (more favorable) in multi-D than in 1-D scenarios.
Thesis analysis is facilitated by identification of structural conditions character-
istic of a large class of DF scenarios, designated herein as non-degenerate. For such
scenarios, the eigenstructure conditioninvg parameter m, and the CR bound param-
eter x, are as small as possible for the given number of sources M. For degenerate

scenarios the direction estimation problem typically becomes more difficult; that is,
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the numerical conditioning of Rs typically degrades, the CR bound on directional
variance typically increases, and the detection and resolution thresholds typically
increase. Analysis leads to identification of sufficient conditions for non-degenerate
scenarios, and identification of practically important sensor geometries and source

configurations that result in degenerate scenarios.

1.5 Organization

The thesis is organized as follows.

The problem addressed in this thesis is detailed in Chapter 2, including the data
model assumptions and notation conventions, the classical perturbation theory re-
lation between R and R, and the prior CR bound expressions for 1-D and multi-D
scenarios. The thesis analysis approach is introduced, as well as the example DF
scenarios that are used in numerical simulations throughout the chapters to illustrate
theoretical results.

Prior results on the eigenstructure of perturbed matrices are reviewed in Chapter
3, including the eigenstructure of Rg identified by Lee [12] for closely-spaced sources
in 1-D scenarios, and the eigenstructure results of Kato [17] and Coderch et al. [18]
for any perturbed Hermitian matrix.

New results on the singular value decomposition (SVD) of perturbed rectangular
matrices are derived in Chapter 4, which extend the eigenstructure results of [17],
[18]. A particularly simple formulation for the small perturbation SVD structure is
developed for non-degenerate matrices that satisfy side conditions typically present
in DF scenarios.

In Chapter 5, the eigenstructure of Rs for closely-spaced sources is identified
from the SVD structure of its factor B. A reasonably complete characterization of
the eigenstructure of Rg for small source separations is obtained for nbn—degenerate
scenarios, including the limiting eigenvalues, the limiting eigenvectors, the limiting
numerical conditioning and the limiting span of Rg.

The eigenstructure results are applied in Chapter 6 to identify the minimum
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(threshold) SNR and data set size N necessary for reliable estimation (detection)
of the number of sources M by any algorithm based upon consideration of the sample
eigenvalues of R.

The eigenstructure of Rg for degenerate scenarios is addressed in Chapter 7. Ex-
pressions are developed that facilitate eigenstructure identification for two classes of
practically important degenerate scenarios, which arise from degenerate sensor array
geometry or degenerate source configuration.

Chapter 8 lays the foundation for CR bound analysis by reviewing the avail-
able CR bound expressions, and relating them to the MUSIC null spectrum. The
thesis approach to CR bound analysis is introduced, and sufficient conditions for
non-degenerate CR bounds are defined.

Explicit expressions for CR bounds on spatial frequency variance in multi-D sce-
narios are derived in Chapter 9, and illustrative examples are presented.

The CR bound results are applied in Chapter 10 to identify the minimum (thresh-
old) SNR and data set set size N necessary for reliable resolution of closely spaced-
sources by any unbiased direction estimation algorithm.

A discussion of thesis results is presented in Chapter 11.
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Chapter 2

Problem Addressed

In order to lay the foundation for the forthcoming analysis, this chapter introduces
a motivating direction finding problem in Section 2.1, the data model assumptions
and notation conventions in Section 2.2, the classical perturbation theory relation
between the eigenstructure of sample and asymptotic covariance matrices Rand Rin
Section 2.3, and the available CR bound expressions for 1-D and multi-D DF scenarios
in Section 2.4. The thesis analysis approach for closely-spaced sources is presented
in Section 2.5. Section 2.6 introduces example scenarios that are used in numerical

simulations throughout the thesis to illustrate theoretical results.

2.1 The Direction Finding Problem

In a typical direction finding (DF) scenario, an array of sensors observes signals
propagating from one or more spatially discrete sources. The problem of interest is to
determine the spatial location, or direction, of the sources by comparing the signals
observed at the collection of sensors with array calibration data.

A DF scenario is designated as one-dimensional (1-D) if only one unknown real
scalar direction parameter is to be determined for each source. An example 1-D DF
scenario is illustrated in Figure 2-1; a uniform linear array of three sensors observes

signals from a single source. To simplify discussion of the example scenario, we make

the following assumptions:
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Source: 4

Sensors: 1 2 3

Figure 2-1: Example 1-D Direction Finding Scenario

far-field source: the source-to-sensor distances are assumed to be large relative to
the sensor-to-sensor spacing, (or equivalently, that the propagating signal con-

sists of plane waves),

monochromatic source: the transmitted signal is a sinusoid at a single, constant

temporal frequency f,

identical omni-directional sensors: the complex gain response of each of the sen-

sors is unity in all directions.

The direction finding problem is to estimate the off-broadside direction of arrival
angle 6.

The key feature of propagating signals that can be exploited in direction finding is
that the signal waveform emitted by a source is received at a sensor with a propagation
delay that depends upon the source-to-sensor distance. In Figure 2-1, the source
signal received at sensor 2 is delayed relative to that received at sensor 3 and advanced
relative to that received at sensor 1 (since sensor 3 is closer and sensor 1 is farther from
the source than sensor 2). Under the far-field assumption, the incremental source-to-
sensor distance in Figure 2-1 between sensors 2 and 3, and between sensors 1 and 2,
is essentially d'sin(6), where d is inter-sensor spacing and 6 is the off-broadside angle.

For a given uniform sensor spacing d and uniform propagation speed in the medium
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¢, the signal at sensor 2 is delayed (advanced) relative to that at sensor 3 (sensor 1)
by a time ét, where
dsi
st = 2sn(0) (2.1)

c

Under the monochromatic source a.ssumption,'signal delay results in signal phase
shift. In the example scenario of Figure 2-1, if z(t) denotes the noise-free source
signal as might (ideally) be received at sensor 2 at time ¢, then z(¢)-e/2"%* denotes the
(phase-advanced) noise-free signaI received at sensor 3 at time ¢ (assuming identical
omni-directional sensors, and negligible magnitude attenuation between sensors for a
far-field source).

In reality, the source signals cannot be received noise-free. If ¢(t) denotes the
additive noise at the i** sensor at time ¢, and y;(t) the source signal as received at the
it* sensor with additive sensor noise, then for a far-field, monochromatic source and
identical omni-directional sensors in Figure 2-1, the received signals can be modeled

as

vi(t) = z(t)- e 4 (t)
y2(t) = z(t) + eft)
y3(t) = z(t)-ejd'“’-{—eg(t) (2.2)

where d is the intersensor distance, and w denotes the quantity

= 2 Gn(e) O (23)

Cc

Due to the appearance of w in the complex phasors in (2.2), w is commonly designated
as the spatial frequency of the source in 1-D scenarios. For constant source temporal
frequency f, and constant, uniform propagation speed ¢, w in (2.3) depends only on
the direction of arrival angle 8 of the source. Therefore, the direction finding problem
is often alternately stated as the problem of estimating spatial frequency w.

A direction finding scenario in which there are two or more unknown direction
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Source: *

Sensors:

Figure 2-2: Example Multi-D Direction Finding Scenario

parameters for each source is designated as multi-dimensional (multi-D). An example
two-dimensional (2-D) scenario is illustrated in Figure 2-1; a triangular array of three
sensors observes a single far-field signal source. The sensor coordinates in the sensor
plane are (dy,0), (0,0) and (0,d;). The source direction is measured by two parame-
ters: § measures azimuth angle in the sensor plane from the 7; axis, and ¢ measures
.elevation angle from the 73, 7; plane. The problem here is to estimate the two angular
direction parameters of azimuth @ and elevation ¢ for the far-field source.

If we assume in Figure 2-2 that the source is far-field and monochromatic, and
that the sensors are identical, unit gain in all directions (isotropic) and that noise is
additive, then analogously to equations (2.2) for 1-D, the received signals in Figure

2-2 can be modeled as

yi(t) = z(t)- 4 +e(t)
y2(t) z(t) + e2(t)
ya(t) = z(t)- edhv | es(t) (2.4)
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where at time ¢, z(t) is the noise-free signal at sensor 2, €;(t) is the additive noise
at the i** sensor, and y;(t) is the signal at the i** sensor with additive noise. The

parameters w, and w, denote the quantities

w = &rc—cos(O)cos(d))
w = &'cisin(o)cos(qs) (2.5)

where f is the (monochromatic) source temporal frequency, c is the (uniform) prop-
agation speed in the medium, @ is source azimuth angle, and ¢ is source elevation
angle. Due to the appearance of w;, w, in the complex phasors in (2.4), w; is des-
ignated as the spdtial frequency component along the 7; axis, and w, as the spatial
frequency component along the %, axis. For convenience, the scalar spatial frequency

components are collected into a single real spatial frequency vector &. That is,

-

o = [wl,wg]t (2.6)

For constant source temporal frequency f, and constant propagation speed ¢, & de-
pends only on the direction of arrival angles 6 and ¢ of the source. Therefore, the
multi-D direction finding problem is often alternately stated as the problem of esti-

mating spatial frequency vector @.

To compactly represent the data model (2.4), it is convenient to adopt the vector

notation

Jt) = a@)(t)+Et) (2.7)

where z(t) is the noise-free signal at a reference sensor at time ¢, and

gt) = [0, y2(2),ys(t)]f

. . . t
i@) = [eJdlwl’ 1, e.rdzwz]

E(t) = [e(?), et), es(t)) (2.8)
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The data vector #(t) is commonly designated the vector snapshot of sensor out-
puts at time £. The vector @(&) is a function of spatial frequency vector &, but is
independent of the transmitted signal z(t). Thus @(&) represents the generic array
response to a unit amplitude signal arriving with spatial frequency vector &, and is

commonly designated the generic arrival vector for spatial frequency &.

2.2 Data Model

The data model addressed in this thesis is the narrowband source model, which gen-
eralizes the example data model (2.7) of the previous section to multiple sources, and
relaxes the simplifying assumptions of far-field, monochromatic sources and identical,
isotropic sensors. |

In a multi-D direction finding scenario with D unknown real scalar spatial fre-
quencies wy, + -+, wp to be determined for each source, it is convenient to collect the

scalar parameters into a real spatial frequency vector @. That is
S = [wi,-wp] (2.9)

In a multi-D scenario with M sources, we assume that source directions are spec-
ified by parameter vectors &;,---&p. The &y,--- Dy are to be estimated from ob-
servation data across an array of W sensors. The observed data consists of N vector

snapshots of the assumed form
¥it) = A-Zt)+€() t=1,---N (2.10)

At sample index ¢, ¥(t) is a noisy (complex) W element observed data vector, Z(t) is
an M element vector of source complex amplitudes, and €(t) is a W element vector
of additive complex noise. A is a constant matrix having special form

A = [d(&), - a(dm)] (W x M) (2.11)
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where d@(&) is the generic arrival vector for signals with spatial frequency &. Typically
the i** element of vector @(d) reflects the magnitude and phase observed at the i**
sensor in response to a unit amplitude signal with spatial frequency &@.

In the data model (2.10), (2.11) the sources need not be monochromatic, but
are assumed to be narrowband with a center frequency f. Specifically, it is assumed
that the coherence length of the source modulating waveform is much larger than
the maximum sensor-to-sensor separation. Under the narrowband assumption signal
delay is essentially equivalent to complex phase shift.

The data model (2.10), (2.11) also supports generic arrival vectors d@(&) for sources
that are not far-field, and for sensors that are not identical and that do not have
isotropic response. Nevertheless to simplify the discussion, scenarios with far-field
sources and identical, isotropic sensors will be used in all examples in this thesis.
The followiﬁg example illustrates the structure of the generic arrival vector @(&) for

a simple 2-D scenario used repeatedly in thesis examples.

Example 2.1 : Consider a 2-D direction estimation problem consisting of a planar
array of identical unit-gain, isotropic sensors observing signals from a cluster of
far-field sources. The data model for this scenario takes the form (2.10), (2.11).

The generic arrival vector for a planar array of W unit gain isotropic sensors is
oy ol Pt ot o =t - t
d@) = [e”l“’, enY . e”W“’} (2.12)

where 7; = [ry;,r9]" is the location of the i** sensor in sensor plane, and & is

the projection of the source direction onto the sensor plane defined as

P 2r f cos f cos ¢ (2.13)

¢ | sinfcos¢

where 0 measures azimuth angle in the sensor plane from the 7; axis, and ¢

measures elevation angle from the 71, 7; plane as illustrated in Figure 2-2.
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2.2.1 Assumptions

The vectors @(@), Z(t) and €(¢) in data model (2.10), (2.11) are assumed to satisfy

the following conditions:

Al. the number W of sensors is greater than the number M of sources, i.e. W > M,
A2. matrix A is a W x M matrix of the form (2.11), with columns @(&,), - - - @(&ar).
A3. matrix A has linearly independent columns, provided &; # &; for ¢ # j.

A4. the elements of @(&) are bounded and possess partial derivatives of all orders
with respect to the elements of &, within a convex region of & space that includes

all source spatial frequency vectors &y, ---, Jar.
Z(t):

X1. the sequence of source amplitude vectors Z(t),t = 1--- N is fixed for all realiza-

tions of the data sequence (%),

X2. the sample source amplitude cross-power matrix

e

if(t):&'(t)h (M x M) (2.14)

t=1

P
is Hermitian positive definite.

X3. for large data sets (as N — 00), P converges with probability one to the asymp-

totic source amplitude cross-power matrix
P = E{#Zt)#t)} (M x M) (2.15)

which also is Hermitian positive definite.
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€(t):

E1. the noise vector €(t) varies randomly across the ensemble of data vectors §(t).
Specifically, the &(¢) for t = 1--- N, are samples of a zero-mean complex Gaus-

sian random process with

E{e@)e(s)} = {;—1 ::

E{e®)E(s)'} = 0 (2.16)

Following [15], [11], we designate the data model defined by (2.10), (2.11) and
the assumptions X1-X3, E1 as the conditional model. The unconditional model (or
stochastic model) differs from the foregoing in that assumptions X1-X3 are replaced
by assumptions that allow Z(t) also to vary randomly across the ensemble of data

vectors [15].

2.2.2 Notation

We use the following conventional notation:

(-)}  transpose,

(*)* complex conjugate,

(\)*  Hermitian transpose (conjugate transpose),

()™! conventional inverse,

()*  pseudo inverse,

|-] -matrix determinant,

-] 2-norm,

I,xq g X qidentity matrix,

l,xqg P X q matrix of ones,
A® B Schur-Hadamard product (See Appendix A),
AQ® B Kronecker product (See Appendix A),
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~

z unbiased estimate of parameter z,
E{} Expectation,

Cov{}  matrix E{(% - #)(% - #)"},

A>B A — B is positive definite,

A>B A — B is non-negative definite,

“is defined to be”,

A = O(e?) the elements of A are of order ¢€?,

g

A =o(€e?) the elements of A are of order €2, ¢ > p,

XCY the elements in set X are contained in set Y.

Projection matrices play a fundamental role in our results. To simplify the dis-

cussion, we introduce the following additional notation.

Qrz)
Qizn

Pz
Py

2.3

2 zz¢+ projection matrix onto the column space of Z,

= ZMZM* = Z*Z projection matrix onto the row space of Z,

= Qiz projection matrix onto the column nullspace of Z,
£ 7- Qrzm projection matrix onto the row nullspace of Z.

Eigenstructure of R

To obtain the benefits of averaging, many practical direction finding algorithms com-

pute the sample data covariance matriz

N
Z_: F() g ()" (W x W) (2.17)

For the assumed data vector (2.10), with assumptions X1-X3, E1, the sample co-

variance matrix R converges as N — oo with probability one to the asymptotic data

covariance matriz

R 2 E{ft)i®)*} = Rs+o%I (W x W) (2.18)
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where R is the asymptotic signal (noise-free) covariance matriz

Rs £ ApA* (W x W) (2.19)

with matrices A, P as in (2.11), (2.15). It follows from (2.19) and assumption X3
that Rg is Hermitian non-negative definite.

The data covariance matrices R, R play a fundamental role in direction finding.
Many- direction finding techniques generate a non-negative spectrum function from
the sample data covariance matrix R (recall Table 1.1). The values of & at the peaks
of the spectrum function are taken to be estimates of the source spatial frequency
vectors. The spectrum functions for High Resolution algorithms typically depend
upon the inverse of R, or upon selected eigenvectors of R. Therefore, the performance
of direction finding techniques in terms of bias, variance, detection and resolution
thresholds depends critically upon the eigenstructure of R, or of the corresponding
asymptotic matrix R, for large data set size N.

From assumptions A1-A3 and X3, matrix Rs of (2.19) has M non-zero eigenval-
ues; therefore the eigenvalues and eigenvectors of R in (2.18) can be partitioned
as follows. Let Ay > X3 > --- > Xy and €& ---éy denote respectively the M
largest eigenvalues of R, and the corresponding (signal-space) eigenvectors. Let
Am+1 = -+ = Aw = 02 and €y - -+ Ew denote respectively the remaining eigenval-
ues and corresponding (noise-space) eigenvectors. Finally let £ denote the complete

matrix of eigenvectors

— A — —
E = [Es, En
AN = = A [ =
Es = [61 e eM] ) EN = [eM.H e ew] (2.20)
The corresponding eigenstructure of the sample covariance matrix R is denoted
using modifier ~ in place of 7, and can be similarly partitioned. Thus let A, > Xy >

cee > :\M and ?1 . .E‘M denote respectively the M largest eigenvalues of I:?, and the

corresponding (signal-space) eigenvectors. Let XM+1 > ... > Aw and E'M.H - Bw
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denote respectively the remaining eigenvalues and corresponding (noise-space) eigen-

vectors. Finally let E denote the complete matrix of eigenvectors

Es, En] (2.21)

Bs=[a..3u] , En% [Bwa...ow| (2.22)

To quantify performance of candidate DF algorithms, it is desirable to have avail-
able a model of the eigenstructure of the sample data covariance matrix E. The
sample quantities can be expressed as the sum of the asymptotic values and random

perturbations as follows
X,‘ = /_\,' + p; (223)

=1---W and

~

€ = a+17, (2.24)

for 2 = 1--- M, where the signal space eigenvalues are assumed to be distinct.

If the eigenstructure of the asymptotic covariance matrix R is available, then clas-
sical statistical results provide expressions for the mean and variance of the eigenvalue
and eigenvector sampling errors g; and 7;, in terms of the asymptotic eigenvalues );
and eigenvectors €. Drawing upon results of [9] for the eigenvalues and eigenvectors
of the sample covariance matrix Rofa complex Gaussian process, the asymptotic

(large N) first and second order statistics of y; and 7; are

E{w} = o(1/N) (2.25)

Elui} = 365 + ol/N) (2.26)

(i} = ——Aﬁz HERR (2.27)
k;éi
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- = X 4 = =
E{f:d}} = NZ ke + o(1/N) (2.28)

= ¢ = )?
k i
E{W:’?;} = N(S\, __J'Xj)zeJet(l ij) + O(I/N) (229)

where §;; is the Kronecker delta and o(1/N) denotes terms of order 1/N? with ¢ > 1.
If the eigenvalues ); and €; of R were available, then the statistical properties of
the eigenstructure of R could be ascertained from the classical perturbation results
(2.25)-(2.29).

For the data model addressed, we recall from (2.18) that matrix R takes the form

R = Rs+a?l (2.30)

where Rgs reflects the covariance contribution of the M source signals, and o2 is the
variance of the additive noise. Due to the uncorrelated and white structure of the
noise component of R, the eigenstructure of R is simply obtained from that of Rs. The
eigenvalues of R are those of Rs incremented by the constant o%. The signal-space
eigenvectors of R (columns of Es in (2.20)) associated with the i** largest eigenvalue
of R are the eigenvectors of Rs associated with the :** largest non-zero eigenvalue of
Rs. The noise-space eigenvectors of R (columns of Ey) are the eigenvectors of Rg
associated with the zero eigenvalue of Rgs.

Therefore, identification of the eigenstructure of Rs is a fundamental enabling step
for obtaining analytical expressions for the performance of candidate direction finding
algorithms for closely-spaced sources. Reference [12] introduced simple expressions
for the eigenstructure of Rs for closely-spaced sources in 1-D scenarios. A major
result of this thesis is to derive analogous simple formulations for the eigenstructure

of Rs applicable to multi-D scenarios.
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2.4 Cramér Rao Bounds

The Cramér-Rao (CR) lower bound on the variance of unbiased direction estimates
provides a useful benchmark for assessing estimation accuracy of direction finding
algorithms [15]. The CR bound also can provide insight into the performance impact
of individual scenario parameters such as sensor array geometry, source configuration,
source powers and correlations [11].

Evaluation of the CR bound generally requires inverting the applicable Fisher
Information matrix F of dimension equal to the number of unknown (real and imag-
inary) model parameters. In the Conditional signal model specified by Assumptions
X1-X2 and E1, the unknown parameters are not only the source spatial frequency
vectors @y, - - - ,Wp of interest, but also the noise variance o? and the complex signal
amplitude vector sequence £(1),- - Z(N). These latter unknowns are essentially nui-
sance parameters for the DF problem, which enlarge 7 and make direct calculation
of F~! exceedingly cumbersome.

The CR bound of present interest is that on the covariance of the spatial frequency
vectors. This bound is given by a submatrix of F~1. Since only a submatrix of !
is required, it is useful for both analytical and numerical work to have available an
explicit formulation for the applicable submatrix of F~1. Such formulations have
been developed by Stoica and Nehorai for 1-D scenarios [15], and extended by Yau
and Bresler to multi-D scenarios [16].

For 1-D scenarios, the CR bound on sa,ihple frequency covariances takes the form

el(6-a)(a-6)'} > B, 2.31)
{(@-a)(@-9) <

where A > B means that the matrix A — B is non-negative definite, and

= [wy,wa, - - ,wM]t (2.32)

£ (51,50, ,0m] (2.33)

on

&; denotes an unbiased estimate of the spatial frequency w; for the j** source (j =
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1--- M). The matrix Bc is

Be = %{Rc [H@ﬁT]}" (2.34)
where
H £ D[I-A(A*A)7 A" D | (2.35)
D £ [dw),d(wn), - dlwm)] (2.36)
dw;) = %%’lmj (2.37)

Vector @(w) is the generic arrival vector for (scalar) spatial frequency w, matrix A
is the source arrival matrix (2.11) and P is the sample source amplitude covariance
matrix (2.14). The result (2.31), (2.34) is valid for 1-D scenarios under the conditional
signal model assumptions X1-X3 and E1. The result is due to Stoica and Nehorai
[15].

For multi-D scenarios, the CR bound applicable to the parameter vectors & - - - @ar

also takes the form (2.31), this time with

0 2 fwn-wprewie - wonl' (2.38)
Q£ [@11- - @p1 -+ @rng -+ Dpm]' (2.39)
&;; denotes an unbiased estimate of i** element of &;, 1 = 1---D,j = 1--- M).

Compact expressions for Be in multi-D scenarios, again under the conditional signal
model assumptions X1-X38 and E1, have been identified by Yau and Bresler [16].
The detailed expression of [16] for Be in multi-D is given in Section 8.2.3.

A shortcoming of the B¢ expressions of [15] and [16] is that the dependence of
B¢ upon the scenario parameters such as sensor array geometry, source configuration,
source powers and correlations remains implicit. For the case of closely-spaced sources
in 1-D direction finding scenarios, simple explicit expressions have been developed by

Lee [11] in terms of the maximum source separation éw and the foregoing scenario
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parameters. These expressions provide great insight into the dependence of the CR
bound upon scenario elements, and facilitate derivation of fundamental performance
metrics such as the minimum (threshold) SNR at which closely-spaced sources are
resolvable. At present no analogous results for Multi-D scenarios are available in
the literature. The second major result of this thesis is to derive analogous explicit

expressions for Bg for closely-spaced sources in multi-D scenarios.

2.5 Analysis Approach

The main results of this thesis are obtained by identifying the eigenstructure of Rg,
and identifying expressions for the CR bound Bg, as source spacing becomes small.
Extending the approach of [11], [12] for 1-D scenarios, we express the spatial frequency

vector for the j** source as
&; = o+ bw-q; (2.40)

j=1,---M, where & is a nearby fixed reference vector, éw is a variable real scale

factor, and
G = lajr-+aos] (2.41)

is a normalized offset vector with constant real elements. The §; are normalized so
that dw equals the maximum separation ||&; —&;|| between pairs of vectors &, - - - Das.

That is,
bw = max||d; — &l (2.42)
It

The analysis strategy is to examine the structure of Rs and of the Cramér Rao
bound B¢ as scaling factor éw — 0, while the §; are held constant. The leverage in
the representation (2.40) is that it replaces the M variable spatial vectors &@; -+ &pm

by a single variable scalar parameter éw, thereby greatly simplifying analysis. The
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condition éw — 0 corresponds to the coalescing of all source parameter vectors to
the reference vector &o, while the relative (normalized) source configuration remains

unchanged.

Example 2.2 : To illustrate the analysis strategy, consider the 2-D problem of
estimating a 2-element spatial frequency vector &; = [wz;,wy;]* for each source
( = 1,2,3) in a cluster of 3 far-field sources in the triangular configuration
illustrated in Figure 2-3A. To implement the analysis approach, we express
each source spatial frequency vector as in (2.40). We define a reference vector
o in the vicinity of the source spatial frequency vectors, a scalar parameter éw

to be the maximum source separation, which in Figure 2-3A is
bw = ||& — G| - (2.43)

and finally define normalized offset vectors ¢1, ¢, ¢5 to satisfy (2.40). The
normalized source configuration are illustrated in Figure 2-3B. As éw — 0, the
actual source configuration in Figure 2-3A coalesces to the reference direction

Wo, but the normalized configuration in Figure 2-3B remains fixed.

2.5.1 Factoring Matrix Rgs

For the data model addressed, we recall from (2.19) that matrix Rs is Hermitian

positive definite and takes the form
Rs & APA" (W x W) (2.44)

with matrices A, P as in (2.11), (2.15). It is helpful in our analysis to express Rs as

an outer product of matrix factors B. That is

Rs = BB" (2.45)
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A. Actual Source Configuration B. Normalized Source Configuration

Figure 2-3: Actual and Normalized Source Configurations for a 2-D DF Scenario

where

I

B £ Al (W x M) (2.46)

and II is a square full-rank factor of P such that
P = In* (2.47)

A non-unique decomposition (2.47) exists since P is Hermitian positive definite by
assumption X2. With the representation (2.40), B is a function of the variable scale
factor dw, the reference frequency &y, the normalized offset vectors §; -+ g and the
constant matrix P. Our interest is to identify the limiting eigenstructure of (2.45) as
bw — 0.

The thesis approach to eigenanalysis of Rg is to first identify the limiting form of
the SVD of matrix B as éw — 0. The limiting SVD of B is simplified by structural
conditions satisfied by B for typical direction finding scenarios. Once expressions
for the limiting SVD of B are identified, the limiting eigenstructure of Rgs follows
straightforwardly from (2.45).
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2.5.2 Taylor Series Representations

Taylor series representations are central to our analysis of the closely-spaced source
problem. To facilitate identification of the small éw structure of covariance matrix
Rs and of CR bound B¢ in subsequent chapters, this section constructs the Taylor
series of the generic arrival vector @(&), and of the associated matrix A of (2.11) and
matrix B of (2.46).

Following our analysis approach of (2.40), we express the spatial frequency vector

@ as

where &y is the reference vector, éw is the scaling factor that satisfies (2.42), and ¢'is
a normalized spatial frequency vector. To explicitly denote dependence on the terms
of (2.48), we express the Taylor series of the generic arrival vector @(&d) about the

reference vector &y as

i@ = Y 6A, 7@ (2.49)

p=0

where the columns of A, are the p™* order spatial derivatives of d(&) at Jp with respect

to the elements of & = [w;,ws, - - -wp]?. That is,

A [PFa@) &a@)  dG)

A =2
P ) —_ b) )
0wt 7 Qw1 Owsy ouwh F=do

(W x 7p) (2.50)

where 7, is the number of p** order spatial derivatives. Vector 4,(¢) is A, x 1 and
depends only on the normalized direction offset vector §. The A, and 7,(3) are
constant with dw; Ap is typically complex, while 4,(¢) is always real.

To illustrate (2.49), consider a 2-D application with & = [w,,w,]*, and ¢ = [gz, )"
The p =0,1,2,3 terms in (2.49) are

Ay = [@(@o)]
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Ay = [@MO(@), 30N (&)

Ay = [@G), d(G), 3°7(Go)
Ao = [3O0Go), @), 30A(Go), 309(a0)] (2.51)

with arrival vector partial derivatives denoted as

[3p=+pua‘(u3 )Lz‘ (2.52) |

Ows* Ouwl?

>

g (P=py) (Fo)
For 2-D Taylor series, the number of p** order partial derivatives is
n, = p+1 (2.53)

(ie. o =1, M =2, iz = 3, iz = 4,--). The associated vectors that depend on ¢

are
- -
-3
. g;/6
qﬁ.‘/2 2
- - qz - — q,-,,-qy/2
Y(q) =[1], () = s F2(D) = qugy |> F(D) = \ (2.54)
% 219 99y /2
q
! | ¢/6 |
The general expression for 4,(§) for 2-D scenarios is
- A - t
(9 = [Co,p(IL’, c1,p45 1‘1;» ) cp.Pq:] (2.55)

where

A p 1

i=0,---p, and the first factor of (2.56) is the binomial coefficient.
Expressions analogous to (2.51) and (2.54) can be written for Taylor series of any

dimensionality.
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The Taylor series of the generic signal vector at each of the source spatial frequen-
cies &y, -+ Wy is simply (2.49) with corresponding Gy, - --gy. Therefore the Taylor

series for matrix A in (2.11) follows directly from (2.49):

A = [@(&),- - d(@m)]
> 6wPA,T, (2.57)

=0

where matrix A, is as in (2.50), and T', is a constant real i, X M matrix of the form

T, 2 [7(q), - ¥o(du)] (2.58)

For 2-D scenarios, with §; = [gzj, q;]

o = [1, 1]
Fl _ qz1, e q:M
| Qv1s qyM |
a4 /2, -+ @u/2
FZ = 9z19y1, °°* GzMqyM
@2 e Pul? |
s quls
2 2. ... g? 2
I, = 9z191/2, @2 paym/ (2.59)
0195/2 0 M@/
/6, - @3y/6

The matrix factor B of Rs is defined in (2.46) in terms of matrix A and constant
matrix II. Since matrix A has Taylor series (2.57), it follows that matrix B also has

Taylor series of the form

B=All= ) 6wPA,T,II (W x M) (2.60)

p=0
with A, as in (2.50), T, as in (2.58) and II as in (2.47).
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2.5.3 Sufficient Conditions for Non-Degenerate Scenarios

Analysis in this thesis is simplified by identification of structural conditions satisfied
in typical (i.e. non-degenerate) DF scenarios. This section defines these conditions.
Recall from (2.57) that for closely spaced sources, matrix A has a Taylor series of

the form

A = fawrzipr,, (W x M) (2.61)
=0
where A, is a constant W x fi, matrix as in (2.50), and T, is a constant &, x M
matrix as in (2.58). The number 7, is the number of p** order partial derivatives of
the generic arrival vector function @(&) with respect to the elements of &.

Reference to (2.51) shows that Ag has rank of unity, and successive A, have small
and increasing ranks. As a consequence, successive terms of (2.61) are of low and
slowly increasing rank, and a number of such terms typically must be included in a
partial sum to obtain a full-rank approximation of A. To characterize the minimum

number of such terms we define integer parameter m as follows:

Definition of m: Integer m is the smallest number such the partial Taylor sum

formed by the successive terms p = 0, - - - m of (2.61) has full rank.

Provided Conditions C1-C8 (detailed subsequently) are satisfied, m is determined
by the relationship

m~1 m
Yo, < M <Y 7y (2.62)

p=0 p=0

If Conditions C1-C3 are not all satisfied, m may not be determined by (2.62); in
such cases, alternate determining relations are defined in Chapter 7.

Conditions C1-C3 sufficient for (2.62) to determine m are the following:

C1. The generic arrival vector @(&) and its partial derivatives at & = o up to
order m — 1 with respect to the elements of & are linearly independent. That

is, matrices A, have full rank #, for p = 0---m — 1, and the columns of A,
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are linearly independent from the vector space spanned by the columns of the

sequence Ao, R A,,_.l for p=1---m — 1. Specifically,

Rank{A,} = o
Rank{P[Ao,---A,_,]Ap} = n, forp=1---m—1 (2.63)

where Pz is the notation for the projection onto the nullspace of the columns

of Z as defined in Section 2.2.2.

C2. The matrices I', have full rank 7, for p = 0.--m — 1, and the rows of T,
are linearly independent from the space spanned by the rows of the sequence

Toy--+y,T'p—q for p=1.--m — 1. Specifically

Rank{I‘o} = ﬁo
Ra,nk{I‘,,P[ps,...p:_I]} = fip forp=1.--m—1 (2.64)

where Bz is the notation for the projection onto the nullspace of the rows of

Z as defined in Section 2.2.2.

C3. For p = m, the component of the product A,,T',, which has columns orthogonal

to those of the sequence Ao, - - - , Am—1 and has rows orthogonal to those of the

sequence g, --,T',,_; has sufficient rank to complete the rank of A. That is,
. m~-1
Ra,nk{P[Ao‘,_,Am_ll AmFm P[F(';""'F?n—ll} = M -_ E 'f_lp (2.65)
p=0

Conditions C1-C2 are central the simplified SVD analysis of matrix A. Condition
C3 is sufficient to guarantee that m determined by (2.62) is such that the partial
Taylor series consisting of terms of order p = 0 through p = m, does in fact have full
rank M.

Condition C1 depends upon the array geometry and sensor directional response,
and is independent of source configuration or source powers and correlations. Condi-

tion C2 depends only upon the normalized source coordinates §; (j = 1--- M). Thus
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C2 depends only upon normalized source configuration, and is independent of the
array geometry, sensor directional response, or source powers and correlations.

Note that Conditions C1-C3 assume (require) that matrix A have more columns
than rows (W > M), and that matrix A be full rank (= M). These pre-requisites are
satisfied under thesis Assumptions A1-A3.

Thesis analysis of the eigenstructure of Rs and of the CR bound B¢ for closely
spaced sources exploits Conditions C1, C2 and C3. Additional Conditions are de-
fined in Chapter 8 to facilitate CR bound analysis; these additional conditions are
simply Conditions C1-C3 applied to a augmented matrix which includes matrix A
and additional columns.

For convenience, scenarios which satisfy Conditions C1, C2 and C3, are des-
ignated as non-degenerate scenarios. Examples show that Conditions C1-C3 are
satisfied for typical DF scenarios.

Furthermore, scenarios which satisfy only one of Conditions C1 or C2, are desig-
nated as partially degenerate scenarios. Partially degenerate scenarios are of second-
order interest in DF applications, and are addressed in the thesis primarily to contrast
with non-degenerate scenarios. Completely degenerate scenarios for which none of the
conditions are satisfied are of third-order interest in DF applications, and hence are
not addressed in this thesis.

Example scenarios are presented in the next section to illustrate non-degenerate

and partially degenerate scenarios.

2.6 Example Direction Finding Scenarios

We introduce three example direction finding scenarios which will be used in numerical
simulations to illustrate thesis results. All three examples build upon the 2-D scenario
of Example 2.1 which addressed a planar array of identical, unit-gain isotropic sensors
observing a cluster of far-field sources. Example 2.3 is a non-degenerate scenario for
which Conditions C1-C3 are satisfied. Examples 2.4 and 2.5 are partially degenerate

scenarios which respectively satisfy Condition C1 or C2.
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Each example involves a planar array of W = 16 unit-gain, isotropic sensors, and
M = 6 far-field sources clustered near to the array broadside.

The generic arrival vector takes the form
Y, g Y
Q@) = [0, &9, ..., e"W“’] (2.66)

where 7; = [rz,ryi]t is the location of the ith sensor in sensor plane. The reference

parameter vector & is taken to be at array broadside (elevation angle ¢ = 90°). From

(2.13) we have
G = [0, O]t (2.67)

Matrices Ao, Al, A, and Aj; of (2.51) then are

1 Tz1 Tyl 7':-1 Tz1T r:l
A = , Ai=7 , Az = —1
1 TeWw Tyw riw TeWTyw Tzw
7'21 7'3:1 LN Trl"31 7'31
Ag=—j-| : : : (2.68)

3 2 2 3
Tew TawTyW TzWTyw  Tyw
The three example scenarios are defined as follows.

Example 2.3 : For this example, the array and source geometries are as follows.

Array: Sensors in a sparse grid per Figure 2-4A,

Sources: Sources clustered around broadside in a “double chevron” configura-

tion per Figure 2-5A.

It can be verified that the columns of Ao, A;, A;, and A3 in (2.68) are all linearly
independent for this sensor array. Similarly, the rows of Ty, I';, I'; given by
(2.59) with M = 6 are all linearly independent for this source configuration.

Thus the partial Taylor sum of A with terms p = 0,1,2 is full rank M = 6,
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and thus m = 2. Consequently, Conditions C1, C2, C3 are all satisfied with

m = 2; this is an example of a non-degenerate scenario.

Example 2.4 : For this example, the array and source geometries are as follows.

Array: Sensors in a sparse grid per Figure 2-4A,

Sources: Sources clustered around broadside in a circular configuration per

Figure 2-5B.

The sensor array is unchanged from Example 2.3, hence the columns of Ao, Ay,
A,, As are again all linearly independent. The rows of I'g, I';, and T'; are given
by (2.59) with M = 6. It is clear from the figure that the rows of I'y, I'y, and I’y
are not linearly independent for this source configuration since the normalized

source parameters satisfy the circle equation
@i+ = ¢ (2.69)

wtih constant ¢ for all j = 1.-- M, and the rows of I'y and I'; are linearly
dependent. The additional I'; term is required to fully span the row space of
matrix A. In this example the partial Taylor sum of A with terms p =0,1,2 is
not full rank, but the sum over p = 0,1,2, 3 is full rank M = 6, and thus m = 3.
Consequently, Condition C1 is satisfied, but Conditions C2, C3 are not. This
is an example of a partially degenerate scenario which satisfies Condition C1

only. We designate the scenario as source configuration degenerate.

Example 2.5 : For this example, the array and source geometries are as follows.

Array: Sensors in a circular geometry per Figure 2-4B,
Sources: Sources clustered around broadside in a “double chevron” configura-

tion per Figure 2-5A.

The source configuration is unchanged from Example 2.3, hence the rows of I'g,

I'1, and T'; are all linearly independent. For this sensor array, the columns of
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Ao, Al and Ag are not linearly independent since the sensor location parameters

satisfy the circle equation
ratry = ¢ (2.70)

with constant ¢ for all s = 1--- W, and the columns of Ao and Az are linearly
dependent. The additional A3 term is required to fully span the column space
of matrix A. In this example the partial Taylor sum of A with terms p =0,1,2
is again not full rank, but the sum over p = 0,1,2,3 is full rank M = 6, and
thus m = 3. Consequently, Condition C2 is satisfied, but Conditions C1, C3
are not. This is an example of a partially degenerate scenario which satisfies

Condition C2 only. We designate the scenario as array geometry degenerate.
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Chapter 3

Prior Results on Eigenstructure of

Perturbed Matrices

This chapter reviews prior results on eigenstructure of perturbed matrices which are
relevant to identifying the eigenstructure of asymptotic signal covariance matrix Rs
for closely-spaced sources in multi-D direction finding scenarios. For the data model

addressed, matrix Rg is Hermitian of the form
Rs = APA* W x W (3.1)

where A is the matrix (2.11) of generic arrival vectors for each of the sources, P is the
Hermitian positive definite asymptotic source amplitude cross-power matrix (2.15),
and W denotes the number of sensors.

Recently published work by Lee [12] has shown that for closely spaced sources
in 1-D direction finding scenarios, the limiting eigenstructure of Rg, as source sep-
aration éw — 0, can be determined simply without eigenanalysis. For example, for
a typical 1-D scenario with M sources and fewer sources than sensors (M < W),
each of the M non-zero limiting eigenvalues of Rg is shown to be proportional to a
different power of §w?, from 6w® to §w?™~1). The proportionality constant for each
limiting eigenvalue is determined by straightforward linear algebra operations. The

corresponding limiting eigenvectors are shown to be the generic signal vector and its
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spatial derivatives in the source cluster direction, suitably orthonormalized. Thus
the eigendecomposition of Rs for closely spaced sources in 1-D scenarios is reduced
to simple linear algebra operations. In addition, the dependence of eigenvalues and
eigenvectors of Rgs on scenario parameters such as maximum source spacing éw is
made explicit. Unfortunately, the approach used to derive the results of [12] exploits
simplifications unique to 1-D scenarios, and thus extension of the approach to multi-D
scenarios is not readily apparent.

Fundamental results regarding the eigenvalues and eigenvectors of square matrices
with Taylor series in any small perturbation factor ¢ have been developed by Kato
[17], and extended by Coderch, Willsky, Sastry, and Castanon [18]. The authors
show that the limiting (as ¢ — 0) eigenvalues and the span of the corresponding
eigenvectors can be identified by eigenanalysis of a sequence of low rank, constant
matrices, designated as limiting eigenmatrices herein. In principle, this approach is
applicable to identifying the eigenstructure of R for closely spaced sources in multi-D
scenarios, with the identification € = éw. Unfortunately, in order to determine the
limiting eigenmatrices for the general eigenstructure problem addressed in [17], [18],
the authors derive expressions which are implicit and quite complex (compared to
the intuitively simple 1-D Rg eigenstructure results of [12]). The complexity of these
results typically precludes an explicit analytical identification of the number of limit-
ing eigenvalues proportional to each power of éw, or of the span of the corresponding
eigenvectors.

The thesis objective with regard to the eigenstructure of Rg is to obtain simple
and explicit multi-D results, analogous to the 1-D results of [12], which make explicit
the dependence of Rg eigenstructure on scenario parameters in multi-D direction
finding scenarios. This chapter reviews the prior eigenstructure results of [12], and
of [17], [18]. Chapters 4-7 build upon these prior results to derive simple expressions

for the eigenstructure of Rg in multi-D scenarios.
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3.1 Eigenstructure of Rg in 1-D [12]

The eigenstructure of a number of common covariance matrices has been identified by
Lee [12] for M closely spaced signals with scalar frequency parameters. The limiting
eigenstructures, as signal spacing 6w — 0, are remarkably simple. The results of [12]
applicable to covariance matrix Rs in 1-D direction finding scenarios are outlined
below.

Reference [12] considers square matrices of the form

2

R APA* (W x W) (3.2)

where P is a constant M x M Hermitian positive definite matrix, A- is of the form
(2.11), satisfies assumptions A1-A4, and Conditions C1-C3 with m = M — 1. The

signal frequencies are represented by scalar frequency parameters w; - - - wps as follows:
w;j = wp+ gjdw (3.3)

J=1---M. Here wy denotes a fixed reference frequency, the g; are normalized offsets
such that ¢; < g2 < ---qum with ¢ = —1/2 and qp = +1/2, and dw is a variable scale
parameter corresponding to the separation of the extreme frequencies. The paper
analyzed the eigenstructure of (3.2) as the multiplier w — 0. Representation (3.3)
facilitates analysis of the eigenstructure of R; since the problem is reduced to one
with a single variable parameter éw. The condition w — 0 corresponds to coalescing
the signal frequencies about the reference frequency wo.

Reference [12] identifies explicit expressions for the eigenstructure of R; in terms
of the coefficients of the Taylor series of A. Following the notation in Section 2.5.2,

matrix A has a Taylor series in éw about wg of the form

A = ) buPA, (3.4)

=0

59



where

A, = AT, (3.5)
with
. d? a(w
A, = —%-(p—)w_w (3.6)
I, = lat/p), - die/PY] (3.7)

for p=0,1:--, where @(w) is the generic arrival vector function of w, and ¢1, --- qum
are the normalized frequency offsets in (3.3).

The R, eigenstructure results of [12] are as follows:

E1. The non-zero ordered eigenvalues A (6w) > Ag(dw) > -+ = Ap(6w) of matrix
(3.2) are asymptotically (as éw — 0) proportional to non-negative even integer

powers of éw. That is

) Ai(bw) _
SBI_’“,O{ )\i.ng(e-l)'} =1 (3.8)

t=1,--- M, where J; is the positive constant

[pg,...pg»]"p[pg,...pg” | |[Ao.--A,-]"[Ao-~-A.-]

Ai =

: 3.9
(Ao Aia]" [Ao-++ Aia )

I‘(’,‘,---I‘?_l]hP [[‘g,...rh 1]

where A, and T, are the factors (3.6), (3.7) of Taylor series matrix coefficients
A, in (3.5). P is the asymptotic source amplitude cross-power matrix (2.15).

Notation | - | represents matrix determinant. (See Equations (3), (71) of [12]).

E2. The corresponding eigenvectors €;(6w), €2(dw),- - - €p(6w) of matrix (3.2) have

the limiting form
6}51—1}0 e;(&u) = €; (3.10)
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where the €; are constant vectors corresponding to the generic arrival vector

d(w) and its derivatives, suitably orthonormalized. Specifically,

€ = coAo

& = aPudi A i=1---M (3.11)

where ¢; are normalizing constants so that €"'€; = 1, and Pz) denotes the column

nullspace projection defined in Section 2.2.2. (See Equations (4), (54) of [12]).

Remarkably the quantities A; and €; in (3.9) and (3.11) are calculated via linear
algebra operations; eigenanalysis and the associated polynomial rooting are not re-
quired. The identified eigenstructure, together with classical perturbation techniques,
provides a powerful tool for analyzing the performance of High Resolution techniques
in 1-D scenarios.

Unfortunately, the simple results E1 and E2 apply only to 1-D scenarios. For
multi-D scenarios, matrices A; have more than one column and I’; have more than

one row. It is not immediately clear how to extend the analysis to multi-D scenarios.

3.2 Eigenstructure of Arbitrary Hermitian Per-

turbed Matrices [17], [18]

Fundamental results regarding the perturbation of linear operators have been de-
veloped by Kato [17] including results for eigenvalues and eigenvectors of perturbed
square matrices. The eigenvalue perturbation results of [17] have been simplified by
Coderch et al. [18]. Results of [17], [18] relevant to analysis in this thesis are outlined

below.

Reference [18] considers a square matrix Ag(€) with Taylor series about € = 0

Ao(e) = i €’ Aop (3.12)

p=0
where Ao, are known constant matrices, independent of variable parameter e. For
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present purposes, we consider the results applicable to Hermitian matrices Ao(€), (for
which Ag(€)* = Ao(€)), which form a sub-class of the more general matrices addressed
in [17], [18].

The analysis in [17], [18] derives the following result:

R1. For any Hermitian Ag(e) with Taylor series in €, each non-zero eigenvalue A;(¢€)

is asymptotically (as € — 0) proportional to a non-negative integer power of €.

That is,

lim{ A‘(e)} =1 (3.13)

e—0 Ai . Ck"

for suitable constants A; and k; € {0,1---}, for all ¢ = 1,---, rank{Ao(€)}.
(See text following Eq (4.10) of [18]).

For convenience, we designate the ;¥ as limz'tingb eigenvalues of Ag(e). Limiting
eigenvalues of Ag(e) proportional to € (i.e. constant) as ¢ — 0 can be identified
directly from (3.12) as the constant non-zero eigenvalues of leading Taylor series term
Ao p.

To characterize the remaining limiting eigenvalues of Ag(e), the development in
[17], [18] recursively defines a sequence of constant Hermitian matrices Axp and es-

tablishes the results:

R2. The non-zero eigenvalues of Aip are the constants A; in limiting eigenvalues of

Aq(e) of the form ); €*. (See Part 3 of Proposition 4.4 of [18]).

R3. The column space of Axp is spanned by the limiting eigenvectors of Ag(€) asso-

ciated with the group of limiting eigenvalues proportional to €¢* as e — 0. (See

Section 4.1, Chapter II of [17]).
The essence of these results is that:

e cigenvalues of Ag(¢€) that tend to non-zero constants as € — 0, have as limiting
values the non-zero eigenvalues of Agp. The corresponding limiting eigenvectors

of Ao(€) are the principal eigenvectors of Agp [assuming distinct eigenvalues],
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e eigenvalues of Ag(e€) that exhibit the behavior \;e! as ¢ — 0, have as multipliers
Ai the non-zero eigenvalues of A;o. The corresponding limiting eigenvectors of

Ao(€) are the principal eigenvectors of A; o [assuming distinct eigenvalues],

e etc.

Accordingly, if the Ao were readily available, straightforward analysis of the low-
rank constant Ao would reveal the limiting eigenvalues and the limiting span of the
eigenvectors of Ag(e), [or the limiting eigenvectors of Ag(€) directly, assuming distinct
eigenvalues]. For convenience, we designate the Ay as the limiting eigenmatrices of
Ao(e).

Unfortunately for many matrices Ao(e), the expressions for the Agp in terms of
the constant matrices Ao, which appear in the Taylor series (3.12) are quite complex.
Reference [17] derives very complicated, recursive formulations using function theory
that identify the limiting eigenmatrices Ay for all £ > 0. Reference [18] builds upon
the results of [17] to derive the following simplified recursive expressions for Axg for

k =10,1,2,3, in terms of the matrix coefficients Ag,, in the Taylor series of a Hermitian

matrix Ag(e):

AOO = AO,O

Ao = PAo1 P
Ao = PP (Ao,z — Ao At oAO,l) P
Azp = PBPPR (Ao,s — Ao AGpAv2 — Ao2AfoAos
+ Ao,lAg,vo,lAg,vo.l — Ao2(PoAo 1 Po)t Aoy
+ Ao2(PoAo1 Po)* Ao At pAor + AviATpAca(PoAoiPo)t Aoy

— Ao AZpAo1(PoAos Po)t A1 Af oAy PoPrPy (3.14)

(Proposition 4.12 of 18], with a sign correction). The Ao, are the known matrix

coeflicients of Taylor series (3.12), while the P, defined recursively as

np

P. & I-AeAf, (3.15)
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are projections onto the null space of the limiting eigenmatrices. The definition of
Apo used in [17], [18] and an outline of the derivation of expressions (3.14) is presented
in Appendix B.

Although the foregoing results theoretically characterize the limiting eigenstruc-
ture of Hermitian Ag(e), they do not provide much insight into the limiting eigen-
structure. For example, reference to the expression for Asp in (3.14) reveals little

about:

¢ the rank of Az, and, therefore, the number of eigenvalues of Ag(€) which satisfy

(3.13) with &; = 3.
o the vector space spanned by the corresponding eigenvectors.

Furthermore, even the simplified expressions (3.14) for Axo rapidly become com-
plicated as k increases. Expressions for k > 3 are not provided in References [17],
[18] and are extremely laborious to derive from the recursive approach of Reference
[17]. Finally, it is not immediately clear how to simplify these expressions to obtain
the simple Rs eigenstructure of [12] for 1-D direction finding scenarios.

A major result of this thesis is the identification of very simple expressions for
limiting eigenmatrices Ay o whenever Ag(€) satisfies conditions which are characteristic
of Rs in typical multi-D direction finding scenarios (specifically Conditions C1, C2
and C3 of Chapter 2). The multi-D expressions derived herein extend the simple,

explicit expressions obtained for 1-D by Lee in [12] to multi-D DF scenarios.
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Chapter 4

SVD of Perturbed Matrices

The limiting eigenstructure results of References [17], [18] apply to square Hermitian
matrices Ao(€) with Taylor series in e. This chapter develops analogous results for
the SVD structure of rectangular matrices By(e) with Taylor series in ¢, including
non-Hermitian or non-diagonalizable square matrices. The SVD results developed in
this chapter facilitate identification of the limiting eigenstructure of asymptotic signal
covariance matrix Rs. They also may have use in other applications.

Recall from Section 2.5.1 that Rg can be factored as
Rs = BB* (W x W) (4.1)
in terms of rectangular matrix B with Taylor series

B = i&w”Bp (W x M) (4.2)

p=0
where dw is a scalar measure of the maximum angular separation between the sources,
and the Taylor series matrix coefficients B, are identified in (2.60). If the SVD of
B can be identified, then the eigenstructure of Rgs follows immediately from (4.1).
From (4.1) and the definition of the SVD, the non-zero eigenvalues of Rg are the
squares of the non-zero singular values of B, and the eigenvectors of Rg are the

corresponding left singular vectors (defined subsequently) of B. Thus identification of
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the limiting SVD of rectangular matrix B is an important enabling step for identifying
the eigenstructure of covariance Rgs.
To parallel the notation of the eigenstructure analysis of [18], this chapter assumes

that the matrix of interest is By(e) and can be expressed as a Taylor series

o0
Bo(e) £ S ¢ By, (W x M) (4.3)
p=0
where By, are known constant matrices, independent of variable parameter e.
Any rectangular matrix possesses a singular value decomposition (SVD) [21, Ap-

pendix A]. For matrix By(€), the SVD takes the form
Bo(€) = U(e)Z(e) V(e)* (W x M) (4.4)

where the columns of W x W unitary matrix U(e) are orthonormal eigenvectors of
By(€)Bo(€)*, the columns of M x M unitary matrix V(¢) are orthonormal eigenvectors
of By(€)*By(e), and the only non-zero entries of the W x M matrix X(e) are the
singular values on the main diagonal, defined as positive square roots of nonzero
eigenvalues of By(€)Bo(€)*. For convenience, this thesis refers to the columns of U(e)
as the left singular vectors and to the columns of V'(¢) as the right singular vectors of
Bo(e).

Analysis in this chapter identifies the limiting singular values and corresponding
singular vectors of By(e) as € — 0. The results represent an extension of Kato-
Coderch eigenstructure results to the SVD problem. Side conditions are identified
which enormously simplify the SVD results; these conditions are satisfied in typical
direction finding scenarios. The SVD results not only provide a convenient tool for
the Rs eigenstructure problem, but may also themselves constitute important results
for other applications.

The development in this chapter begins in Section 4.1 with the identification of
simplifying side conditions. Section 4.2 specializes the prior eigenstructure results of
[17], [18] to the Hermitian matrices that arise in the SVD of By(€), namely the inner

and outer products of matrices Bg(€) with Taylor series in €. These specialized results,
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together with the prior limiting eigenstructure results of [17], [18], form the basis for
analysis of the limiting SVD of By(e) in Section 4.3. Section 4.4 develops an enabling
property that characterizes the limiting SVD of any matrix By(€) with Taylor series
in €. Section 4.5 then exploits this characterization to develop remarkably simple
expressions for the limiting SVD of matrices By(¢) that satisfy all the identified side
conditions. Section 4.6 similarly develops somewhat more complicated expressions for
the limiting SVD of matrices By(¢€) that satisfy some, but not all side conditions. The
SVD results are summarized in Section 4.7, and illustrative examples are presented

in Section 4.8.

4.1 Simplifying Conditions

This section defines side conditions which greatly simplify the SVD analysis. The

side conditions generalize Conditions C1-C38 of Section 2.5.3 to an arbitrary matrix
Bo(ﬁ).

As a first step, we denote the rank of By(¢) for small, but non-zero € as
R £ Rank{B(e)} (4.5)

We recall that By(e) has Taylor series (4.3). To characterize the minimum number
of terms of (4.3) required for a partial Taylor sum to have rank R, we define integer

parameter m as follows:

Definition of 7n: Integer /m is the smallest number such the partial Taylor sum

formed by the successive terms p = 0, - - - 7 of (4.3) has full rank.

Provided Conditions I-III (detailed subsequently) are satisfied, 1 is determined by
the relationship '
A—1 m
> Rank{B;,} < R < ) Rank{Bg,} (4.6)
p=0 p=0

where By, are the matrix coefficients of the Taylor series (4.3). If Conditions I-III
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are not all satisfied, /& may not be determined by (4.6); in such cases, alternate
determining relations are defined Section 4.6.

For convenience, we denote

>

Cpr
R,

[Boyo, * - - Bop-1] (4.7)
[Bbo,-- Bh,| (4.8)

[

‘to respectively aggregate the columns and rows of the Taylor series matrix coefficient
sequence Bo,o, e BO,p—l-

Conditions I-1II sufficient for (4.6) to determine 7 are the following:

I Rank{Pg,_,}Bop} = Rank{Bo,} forp=1,---m—1 (4.9)

II. Rank{Bo, Pir,_,)} = Rank{By,} forp=1,---m—1 (4.10)
1

I11. Rank{Pg,,_,}Bosi Plrs_1} = R — D Rank{Bo,} (4.11)
p=0

where matrix P¢,_,) denotes the projection away from the vector space spanned by

the columns of the Taylor series matrix coefficient sequence Bpg, - - - Bpp-1, namely
A
Pe,.1 = I—1[Bog, Boa, -+ Bop-1][Boos Boa, - - Bop-1]* (4.12)

for p > 1. Similarly Pg,_,; denotes the projection away from the vector space spanned

by the rows of the sequence By, - - - Bop-1, namely

g [ +
Br,_,) = 1- _Bg,o, Bg,l’ T 'B(’)‘,p-I] [B(')L,o, Bg,n T Bg,p—l]
_ 44 -
Boo Boo |
B, B,
= I —_— ?'1 (.)’1 (4'13)
| Bo,p—l J L Bo,p—l .

for p > 1.
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We interpret Condition I-III as follows.

¢ Condition I specifies that the column space of Taylor series matrix coefficient
By, is linearly independent from those of prior coefficients By, - - - Bop-1, for

p=0---1n—1.

¢ Similarly, Condition II specifies that the row space of By, is linearly independent

from those of Byg, - Byp-1,for p=0---m — 1.

¢ Finally, Condition III specifies that the component of Taylor series matrix coeffi-
cient By s which has orthogonal columns and rows from those of prior coefficients

By, - - Bo 71, has sufficient rank to complete the span of By(e).

Conditions I and II are central to the simplified SVD analysis. Condition III is
sufficient to guarantee that /m determined by (4.6) is such that the partial Taylor
series of By(e) consisting of terms of order p = 0 through p = 7, does in fact have
rank R. We will find that whenever Conditions I, IT and III are satisfied, the limiting
SVD of By(€) as € — 0 is entirely determined by the terms of (4.3) from By to Bosm;
subsequent terms only add higher order effects.

Note that Conditions I-III do not place any restriction on the size or rank of By(e).
Specifically, Conditions I-III may be satisfied by arbitrarily sized matrices Bo(€) (i.e.
M<W,M =W or M > W), with partial rank or full rank (i.e. R < min{M, W}).

We designate matrices Bo(e€) that satisfy Conditions I-III as non-degenerate ma-
trices. We designate matrices Bo(€) that satisfy only one of Conditions I or II as
partially degenerate matrices.

Analysis in the next sections develops a partial characterization of the limiting
SVD of any matrix By(e) for small e. Section 4.4 then identifies a simple and explicit
characterization of the limiting SVD of non-degenerate By(e). Section 4.5 further

identifies a more complicated characterization of the limiting SVD of partially degen-

erate By(e).
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4.2 Specialization of Prior Eigenstructure Results

The point of departure of our SVD analysis are the prior results of [17], [18] for the
limiting eigenstructure of Hermitian matrices Ag(e). Since the SVD of By(e) is de-
fined in terms of the eigendecomposition of By(€)By(€)* and By(€)* Bo(e), this section
specializes the results of [17], [18] for Hermitian Ag(€) which are products of matrices
Bo(€) with Taylor series in e. Specifically, we examine the limiting eigenstructure of

matrices Ag(e) that satisfy

Condition IV. Matrices Ag(¢€) are the outer product
Ao(f) = Bo(C)Bo(G)h (W X W) (4.14)
of rectangular matrix By(€) with Taylor series

Bo(e) = z CpBo'p (W X M) (415)
) p=0
where By, are constant low-rank rectangular matrices, independent of €. Clearly

Ao(e) is Hermitian and has a Taylor series in e.

Matrices Ag(€) that satisfy Condition IV are outer products of matrices Bo(€), and
the Bo(€) have Taylor series in €. The first result derived characterizes eigenvalues of

such Ap(€) more precisely than prior result R1 of Section 3.2.

Lemma 4.1 : If matrix Ag(¢) satisfies Condition IV, then each non-zero eigenvalue
Xi(€) of Ag(e) is asymptotically (as € — 0) proportional to non-negative even

powers of €. That is,

) Xi(e) _
ll—r»%{/\; : 6%_} =1 (4.16)
for suitable constants ); and k; € {0,1---}, for all : =1,---, Rank{Ao(€)}.

Proof: See Appendix C.
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It follows from Lemma 4.1 and result R2 that for Ag(€) which satisfy Condition

IV, the odd-order limiting eigenmatrices satisfy
Agky10 = 0 (4.17)

for k=0,1---.
In addition, for Ag(¢) that satisfy Condition IV, the even-order limiting eigenma-

trices Ak can be characterized by:

Lemma 4.2 : If matrix Ag(e) satisfies Condition IV, then each even-order limiting

eigenmatrix Agro can be expressed as
Azk,o = Bk’QB{:,O (418)
with a suitable matrix By for each k¥ = 0,1---.

Proof: Matrix A can be expressed as an outer product of a suitable matrix B if and
only if matrix A is Hermitian and has non-negative eigenvalues [21]. Therefore
any matrix Ao(€) that satisfies Condition IV has non-negative eigenvalues for
any €, and specifically the limiting eigenvalues of Ag(€) are non-negative. It
follows from result R2 that the even-ordered limiting eigenmatrices Az o also
have non-negative eigenvalues. Since limiting eigenmatrices of Hermitian Aq(e)
are by construction also Hermitian, A5z can be expressed as in (4.18) as the

outer product of a suitable matrix By.

It can be straightforwardly verified that expressions (3.14) derived in [18] satisfy
(4.17), (4.18) whenever Ao(¢) satisfies Condition IV.

Note that Lemma 4.2 provides only the form of the limiting eigenmatrix matrices
of By(e)Bo(e)". The structure of the matrix factors By is not defined, and the By o
that satisfy (4.18) are not unique. In the following section, we define a structure for

matrices B o that not only satisfy (4.18), and also characterize the limiting SVD of
Bo(é).
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Relations (4.17) and (4.18) together outline the structure of all limiting eigenma-
trices Ao (k =0,1---) whenever Ay(e) satisfies Condition IV. Since by definition the
SVD of By(e) depends on the eigenstructure of Hermitian matrices Bo(€)Bo(e)* and
Bo(€)*By(€) that satisfy Condition IV, the results of Lemmas 4.1 and 4.2 together
with the prior limiting eigenstructure results [17], [18] form the basis of our analysis

of the limiting SVD of By(¢€) in the next section.

4.3 Limiting Singular Matrices of By(e)

This section further characterizes the constant matrices Byg, and shows that the
limiting SVD of By(€) as € — 0 can be characterized in terms of the SVDs of the
Bio. The By matrices play a role for Bg(€) analogous to that played by the constant
matrices Ago in characterizing the eigenstructure of Ag(€) as € — 0. (Recall Section

3.2). The By are therefore designated the limiting singular matrices of Bo(e).

4.3.1 Definition of By

As a first step, we characterize the singular values of By(¢€) as € — 0 by the result:

S1. For any By(€) with Taylor series in €, each non-zero singular value o;(€) is asymp-

totically (as € — 0) proportional to non-negative integer powers of e. That is,

lim{ "‘.(CZ‘,} =1 (4.19)

for suitable constants o; and k; € {0,1.--}, for all i = 1,-- -, Rank{Bo(¢)}.

Proof: By definition, the singular values of By(¢€) are the square roots of the eigenval-
ues of a corresponding square matrix Ag(€) = Bo(€)Bo(e)* that satisfies Condi-

tion IV. Proof of the result is immediate from Lemma 4.1, with o; = V/\;.

Result S1 is the SVD analog of the prior eigenvalue result R1. For convenience,
we designate o;€* as a limiting singular value of Bo(€). Furthermore, we designate

the group of limiting singular values proportional to € as the kt* limiting singular
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value shell. The limiting singular values of By(e) in shell £ = 0 (i.e. constant as
€ — 0) can be identified directly from Taylor series (4.15) as the constant non-zero
singular values of the leading term By .

To identify the remaining limiting singular values, we exploit result S1 to group
the singular values of By(€) according to the power of € of the limiting singular value.

We express the matrix X(e) in (4.4) as

S(e) = iz:k(e) (420

k=0

where the only non-zero entries of £x(¢) are on the main diagonal, and are the singular
values of By(¢€) proportional to € as € — 0. Thus if the i** main diagonal element of
¥(e) is proportional to € as € — 0, then it is equal to the i** main diagonal element
of Xj;(€) and furthermore the :** main diagonal element of all other X (¢), k # ki, is
zero. Since By(€) has rank R, there can be at most R non-trivial terms in the sum

(4.20); m denotes the index of the last non-trivial term in (4.20). By construction,
> Rank{Zi(e)} = Rank{By(e)} = R (4.21)
k=0

The SVD (4.4) of By(€) can then be expressed as the series

B9 = U0 (£200) V(!

k=0

= i " Bi(e) (4.22)
k=0

where

Bi(e) 2 U(e)e—lkzk(e)V(e)h (4.23)

are low-rank matrices whose column, row spaces are respectively spanned by the
columns of U(e), V(e) associated with the non-zero entries of Ty (e).

"The expansion of By(e) in series (4.22) differs from Taylor series (4.15) in that
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1. Eq. (4.22) represents By(e) as a finite sum, whereas the Taylor series typically

involves an infinite number of terms.

2. The matrix coefficients By(e) typically are non-constant with e, aggregating

many of the Taylor series components.

3. The column spaces of Bi(e), Bj;(e), with k # j, are orthogonal, since they

consist of non-overlapping column sets of unitary matrix Uf(e).
4. The row spaces of By(e), B;(€), with k # j, are similarly orthogonal.

The question arises as to the behavior of the matrix coefficients By(e) as € — 0;
specifically, do the By(e) converge to constant matrices as € — 07

A preliminary observation is that the matrices (4.23) do not “blow up” as € — 0
since (4.19) shows that the factor (1/€*)Z,(e) — i as € — 0, where is a constant
diagonal matrix, and the columns of U(e€) and V(€) have unit norm.

To further address the convergence question, we note that the Bk(e) are by con-
struction related to the eigenstructure of the products By(e)Bo(e)* and Bo(e)” Bo(e)

by the properties

P1. The eigenvalues of By(€)Bo(e)* (or equivalently of Bo(e)*By(e)) proportional to

2k

€** as ¢ — 0, are equal to the squares of the non-zero singular values of Bk(e),

multiplied by €%*.
P2. The associated eigenvectors of By(€)Bo(€)* span the column space of By ().
P3. The associated eigenvectors of Bo(€)*Bo(e) span the row space of By(e)-

Therefore the small € properties of matrix coefficients By(e) can be inferred from
the eigenstructure properties identified in [17], [18]. Specifically, Appendix D shows

that the matrices By (e) have Taylor series in e. That is

Lemma 4.3 : If By(e) has Taylor series in ¢, then matrices Bi(e) also have Taylor

series in e.
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Thus, non-withstanding the denominator factor € in (4.23), matrices By(e) have lim-
iting values as € — 0.

We now define the limiting singular matrices By o:

Definition of Byo: Limiting singular matrix By is the order € (or constant) Taylor

series term of By(e). That is
A .2
Bro = lx_rg Bi(¢) (4.24)

k=01,

The By exist since By (e) has a Taylor series in € per Lemma 4.3.
The By, defined above satisfy expression (4.18) for the limiting eigenmatrices of

Ba(€)Bo(€)*, since by definition of the SVD,

1. The non-zero eigenvalues of Bk,oB,’:'o are the constants ); in the limiting eigen-
values of Bo(e)Bo(e)? of the form ); €**. (From property P1 as ¢ — 0, and
(4.24)).

2. The column space of Bk,oB,’:,o is spanned by limiting eigenvectors of By(€)Bo(e)"
associated with the group of limiting eigenvalues proportional to €%* as € — 0.

(From property P2 as € — 0, and (4.24)).

Therefore BB}, satisfies properties R2, R3, and can be used as in (4.18) to de-
termine the limiting eigenstructure of By(€)Bo(€)".

In the next section, we show that the Bjg can also be used to determine the

limiting SVD of By(e).

4.3.2 Limiting SVD of By(¢) Determined by the B

As a next step in relating the SVDs of Bgy(¢) and of By, we note the following By o

properties:

S2. The non-zero singular values of By are the constants o; in limiting singular

values of By(e) of the form o; €*.
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S3. The column, row spaces of Big are respectively spanned by the left, right sin-
gular vectors of By(e) associated with the group of limiting singular values

proportional to ¢* as € — 0.

(Both properties follow from construction (4.23) of Bi(e) in terms of the SVD of
By(€), and by definition (4.24) of By as the limiting value of By(e)).

Accordingly, if one could readily determine the By from the matrix coefficients
By, of the Taylor series (4.3) for By(€), then straightforward analysis of the (low-rank
constant) By would reveal the limiting singular values and the limiting span of the
associated vectors of By(e).

Analysis so far has shown that limiting singular matrices By exist for any By(e)
with Taylor series in e. Moreover, the SVD’s of the By ¢ specify the limiting structure
of Bo(€) as € — 0. However we have not shown how to determine the Bip from
the Taylor series matrix coefficients By, Expressions for By in terms of Bo, are

developed in the following sections.

4.4 Partial Identification of the By

This section derives a property which partially identifies the limiting singular matrix
Bip in terms of the Taylor series matrix coefficients By,. Section 4.5 exploits this
property together with Conditions I-III to derive simple explicit formulae for the By
in terms of the Taylor series coefficients By of non-degenerate Bg(€). Section 4.6
also uses this property together with either one of Conditions I or II to identify more
complex formulae for By of partially degenerate By(e).

The property of interest is:

Lemma 4.4 : For any By(e€) with Taylor series in ¢, limiting singular matrices By o

have the recursive structure

BO,O k =0

Bk,O = P[Bo,o]BOJP[Bg'O] k=1 (425)
P[BO,O,"‘BI:—I,O] (Bo,k + Fk-l) P[B{,"o,---B,':

_1_01
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where By is the matrix coefficient of the k** order term in the Taylor series
of By(€), and Pig,,..B,_; o) P, ,.-BE_ ] respectively denote projections onto

the column, row nullspace of limiting singular matrix sequence By, - - * Bi_1,0-

That is
P[Bo,o,'"Bk—l,o] é I—- [BO,O’ Tt Bk—l,O] [BD,Oa Tty Bk—1,0]+ (426)
A
P[Bg,o'"'Bl':—l.o] = I- [Bg,o’ T Bl?—l,o] [Bg,01 tte ,B£_1'0]+
+
BD,O BO (4]

)

Il
—~
|

(4.27)

Bi-1,0 By-1,0
Matrix Fi_; (k =2,---) is a suitable rectangular matrix with properties:

a) the column space of Fj_; is contained in that of Ta,ylbr series matrix coeffi-

cient sequence By, Bok-1.

b) the row space of F_; is contained in that of Taylor series matrix coefficient

sequence By, - Bo k-1,
Proof: See Appendix E.

To illustrate the form of F)_; that satisfies properties a) and b) of Lemma 4.4, we

may write

By,
Froi = [Boa, - Bog-1] Gr-1 : (4.28)
Bo -1

for k = 2, - -, where G-, is an appropriate matrix. Note that the matrices B;o which
appear in (4.26) and (4.27) are the matrices which we seek to identify whereas matrices
By, which appear in (4.28) are the known matrix coefficients of the Taylor series. In
general, B o # By, so that the projection matrices Pg,,,..B,_, ;] and 13[35.’0’_,,3’:‘._1’0] do

not necessarily annihilate Fy_;.
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The SVD result (4.25) can be compared with the eigenstructure result (3.14) of
Reference [18] for Ao(€), by imposing the requirement

Bo(e) = Ao(¢) = Hermitian (4.29)

which cause the SVD and eigendecomposition to coincide. In this case, the matrices

(3.14) take the form (4.25) with

F = —Ao,1A0+,vo,1

F - Ao,lAg,voﬂ - AOJAS-.OAOJ

+ Ao,lA(tvo,lABL,vo,l — Ao2(PoAo1Po)t Ao
+ Ao,2(Po Ao Po)t Ao AfpAva + AoaAdoAoi(PoAoiPo)t Aoy
— Ao A Ao (PoAo, P 0)* Ao Ao Ao

AO,I

= [Ao1, Ao Ga (4.30)

0,2

with

_ [AdoA01A%0 — AfoAo1(PoAoiPo)t AvaASy] [—Ado + AdoAca(PoAoFPo)*)

Gy =
[—A&o + (P0A0,1P0)+A0,1A3:o] —(PoAo 1 Po)*
(4.31)

Note that Lemma 4.4 characterizes the limiting singular matrix By as orthogonal
to B; g, for k # j, and explicitly identifies one component associated with Taylor series
matrix coefficient By . This is sufficient to explicitly identify the first two limiting
matrices Byp and Byp. Lemma 4.4 does not however fully identify the By for £ > 1
since the structure of Gx_1 in (4.28) is not specified.

Lemma 4.4 is important since it characterizes Byg for any matrix By(e), and for
any k = 0,1,---. The following section shows that in the non-degenerate case when
By(€) satisfies Conditions I-III, the lemma is sufficient to identify a simple explicit

expression for all the By .
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4.5 Explicit By Expressions for Non-Degenerate
By(e€)

This section specializes the By g characterization of the previous section to matrices
Bo(€) that satisfy Conditions I-IIl. For such non-degenerate matrices, remarkably
simple and explicit By expressions are derived. |

The first two limiting singular matrices Bo,, and By, were explicitly identified
in Lemma 4.4. Under the simplifying conditions, the explicit identification can be

extended to Bygg, k > 1, as follows.

Theorem 4.1 : If By(e) has a Taylor series in ¢, and satisfies Conditions I and II,

then
1) P[Bo,o »Bg_10] = P[Ck__l] (4.32)
2) P[B(')',o »"'B;':_],o] = P[Rk—ll (433)
3) Bro = Pe,_1BoxPr._y) (4.34)

for k =1---m, where Ci-y and Ry, are as defined in (4.7) and (4.8) in terms
of the Taylor series coefficients By, - - - B k-1-
Proof: The proof is by induction.

Obviously (4.32), (4.33) are satisfied for £ = 1. Reference to (4.25) shows that
(4.34) also is satisfied for k& = 1.

To complete the induction we show that if (4.32)-(4.34) hold for k = j, then
(4.32)-(4.34) hold for £ = j + 1. Thus we assume

1) P[Bo,or'-Bj-1,o] = P[C,-..l] (4.35)
2) Pyt = Prial (4.36)
3) Bjo = P[Cj-llBOij[Rj—ll (437)
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a,nd show

1) P[Bo.o,---Bj,o] = P[le (4.38)
2) Pgp,..8%) = P (4.39)
3) Bjt10 = Pg,)Bo,iFr)) (4.40)

for1 <j<rn—1l.

The first projection matrix of interest is

PBoo, Bj10.Bio) = Heja, (Pc;_41Bo.i Ar,_, )]

Ho;, (Bo,;Ar;_y1)] (4.41)

It follows from Condition II of (4.10) that
Column Space{B,,;jPr,_;;} = Column Space{By,;} (4.42)

for 7 < m — 1. Therefore

P[Cj"I ’ (Boxj[)lﬂj_ﬂ)] = 'P[Cj—lv BO,j] = 'P[CJ] (4'43)

Substitution of (4.43) into (4.41) establishes (4.38).

A parallel argument using Condition I of (4.9) in the place of (4.10) establishes
(4.39).

Finally use of (4.38), (4.39) in (4.25) establishes (4.40).

Theorem 4.1 presents a remarkably simple characterization of the limiting singular

matrices By whenever By(e) satisfies both Conditions I and II. Specifically,

o The vector spaces spanned by the columns, rows of limiting singular matrix
sequence Bpg,- - Bk-10 are equal to those spanned by the columns, rows of

Taylor series matrix coefficient sequence By, - - - Bok-1.
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o The limiting singular matrix By o is simply the component of the k** order Taylor
series matrix coefficient By that is orthogonal to the vector spaces spanned by

rows and columns of Taylor series matrix coefficients of lower order.

The rank and span properties of the limiting SVD of non-degenerate Bo(e) can be

easily inferred from Theorem 4.1, as shown below.

4.5.1 Rank of B for Non-Degenerate By(e)

For non-degenerate Bg(e), we use Theorem 4.1 to show that the rank of limiting
singular matrix Bjo is simply equal to that of Taylor series matrix coeflicient By,

for k= 0--.7 — 1, but not necessarily for k¥ = . Specifically,

Lemma 4.5 : If By(e) has a Taylor series in"¢, and satisfies Conditions I and II,

then
Rank{B, k=0,---m—-1
Rank{Bio} = ank{ Bo.} (4.44)
Rank{f)[cm_l]Bo’ﬁzP[Rﬁ'_ll} k=m
Proof: From (4.25) of Lemma 4.4, the result is trivial for £ = 0.
For k > 0, from (4.34) of Theorem 4.1, we have
Rank{B:o} = Rank{Pc,_,1BorPr._,} (4.45)

for k =1,.--m. Relation (4.9) of Condition I states that pre-multiplication of
Box by Pic,_,) does not affect rank for £ = 1, .- - /a—1. Similarly, relation (4.10)
of Condition II states that post-multiplication of By by Pjg,_,) does not affect

rank for k = 1,-- -7 — 1. Hence (4.45) simplifies to (4.44) whenever Conditions
I and II are both satisfied.

For convenience we denote as nj the number of limiting singular values of By(e)

proportional to €*. From result S2, n; is equal to the rank of limiting singular matrix
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By o. Thus we define
ne 2 Rank{Bio} (4.46)

Using Lemma 4.5 we identify nj to be the rank of Taylor series matrix coefficient
By, for k = 0---7h — 1, subject to Conditions I and II. Condition III specifies the

rank of By 0, hence also n;. Therefore we have

Corollary- 4.1 : If Bo(e) has a Taylor series in ¢, and satisfies all Conditions I-III,
then the number n; of limiting singular values of By(€) proportional to €* equals
the rank of the k** order Taylor series matrix coefficient By x, for k = 0, -- m—1.
Furthermore the sum of nj from k = 0 to k = 71 equals the rank R of By(e).

Specifically
nr = Rank{Box} fork=0,---m—1 (4.47)
and

> nr = Rank{By(¢)} = R (4.48)

=0
It follows from (4.48) and (4.21) that Byo = 0 for £ > . Therefore for non-
degenerate matrices Bo(e) with Conditions I-III all satisfied, Theorem 4.1 identifies
explicit expressions for the limiting singular matrices By, - - Bin,0 that characterize

the entire limiting SVD of By(e).

4.5.2 Limiting Singular Vectors for Non-Degenerate By(e)

We now identify the vector spaces spanned by the singular vectors of Bo(¢). From
result S3, the column, row spaces of limiting singular matrices By g respectively define
the span of the left, right singular vectors of By(€) associated with the group of limiting
singular values proportional to €*. The column, row spaces of By for non-degenerate

By(¢€) are identified in terms of Taylor series coefficients By, as follows:
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Lemma 4.6 : If By(e) has a Taylor series in ¢, and satisfies Conditions I and II,

then

a) Column Space{Bxo} =

Column Space{Bo} k=0
Column Space{Pc,_,;Box} k=1,---a~1 (449)
Column Space{Pc,,_,)Bo,i Piris-11} k=m
b) Row Space{Bio} =
Row Space{Box} k=0
Row Space{BoxPir,_,1} k=1,---m—1 (4.50)
Row Space{Pc,,_,)Bo,nPlrs_11} k=m

Proof: We begin with proof of Assertion a). From Lemma 4.4 and Theorem 4.1 we

have

Column Space{Bo,} k=0 (4.51)

Column Space{Bo} =
Column Space{Pgc,_,}BoxPr._j} k=1,---m

Condition II states that the rank of By is unaffected by post-multiplication
by Pg,_j, for k = 1,---7 — 1. It follows that the rank of P, _,;Bo is also
unaffected by post-multiplication by Rg,_,j, for ¥ = 1,---/ — 1. Therefore

the span of the columns of P¢,_,;Bo is not reduced by post-multiplication by

Pig,_,], and we have
Column Space{P[Ck—ﬂBoka[Rk—ll} = Column Space{P[ck_,]Bo,k} (4.52)

for k=1.--m — 1. Use of (4.52) in (4.51) gives (4.49).

Proof of Assertion b) is analogous, using Theorem 4.1 and Condition I to identify

the row space of Bj.

The span of the singular vectors of By(e€) associated with limiting singular values

proportional to €* is easy to identify whenever By(e) satisfies Conditions I and II.
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Specifically from result S3 and Lemma 4.6 we have

Corollary 4.2 : If By(e) has a Taylor series in ¢, and satisfies Conditions I and II,
then

a) the limiting left singular vectors of By(e€) associated with limiting singular
values proportional to €* span the column space of
i) Bpo for k=0,
ii) Pc,_jBox fork=1,---m -1,
iii) P, _y1BosPirs_yy for k =m.
b) the limiting right singular vectors of By(¢€) associated with limiting singular
values proportional to €* span the row space
i) Bog for k=0,
ii) BoxPr,_,) fork=1,---m—1,

iii) Picy_1)BomPRn-y for k =m.

Thus whenever Bg(¢) satisfies Conditions I and II, the space of the limiting singular
vectors associated with limiting singular values proportional to €* is easily identified
from the column, row spaces of Taylor series matrix coefficient Bgx suitably orthog-
onalized with respect to the vector spaces spanned by prior Taylor series matrix
coefficients Bgo, Boi,* - , Bok-1.

The entire limiting column and row spaces of By(¢) are, from result S3, the spaces
spanned by all the columns and rows, respectively, of all non-trivial limiting singular
matrices Bop,-- - Bmo. Extending the nullspace projection results of Theorem 4.1,

we obtain

Lemma 4.7 : If By(e) has a Taylor series in ¢, and all three Conditions I-III are

satisfied, then

1) PgyorBagl = Py (4.53)

where
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Bo = [Boo, s Bosu-1, (BomPirs_y)| (4.54)

2) P[Bg,of"Br":;,o] = P[ﬁo] (4'55)
where
Bo = [Blo,  Bhay (BeaPoay)| — (4.56)

Proof: From (4.32)-(4.34) of Theorem 4.1, with k =

BByoBim-10] = Floml (4.57)
PgpyeBlhy o) = Pra (4.58)
Bso = BPosm_1BomPRm-) (4.59)

The first projection matrix of interest is

PBoo,Bin-10,Baol = HPlon-s, (Pic,s_11Bo,m AR 1)1

= Pcu, (BomRnr,_,)] (4.60)
which is (4.53).

The second projection matrix is

Bh — P[R

P[Bg,o""Bh ﬁ1,0]

h—1,0"

m—11 (ARg_1B8 5 Ficg,_11)]

= P[Rﬁ,__l, (B(;l.ﬁxplcﬁl_ll)] (461)

which is (4.55).
Note that the post factors Pr,_,) and P¢,,_,in (4.54) and (4.56) limit the ranks
of matrices By and ?0 to R.

Thus the limiting projections onto the null-space of the columns and rows of By(e)

are remarkably easy to express. From result S3 and Lemma 4.7, we obtain:
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Corollary 4.3 : If By(e€) has a Taylor series in ¢, and satisfies all Conditions I-III,

then
2) liy Pigo(o) = lim (1 - Bo(e)Bo(e)*) = Py (4.62)
b) lim Rpy(gn = lim (7 — Bo(e)* Bo(e)) = Pg, (4.63)

where By, By are defined in (4.54), (4.56).

Theorem 4.1 and Corollaries 4.1-4.3 are important tools for analysis of the limiting
structure of perturbed rectangular matrices. As will be seen in Chapter 8, application
of Corollary 4.3 is a key enabling step for identifying the CR bound for multi-D DF

scenarios with closely spaced sources.

4.5.3 Specialization to Eigenstructure of Non-Degenerate

Hermitian By(e)

The above SVD results can be compared with the eigenstructure result (3.14) derived

in Reference [18] for Ag(€), by imposing the requirement
Bo(e) = Ap(e) = Hermitian (4.64)

which cause the SVD and eigendecomposition to coincide, and by assuming that
Conditions I and II are satisfied by the Taylor series coefficients Ag o, Ao,1, Ao,2, .A°-3
of Ao(e).

In this case, products of the projection matrices P; defined in (3.15) take the form

(4.32) with

Py = Ba,,
POPI = P[Ao'o,AoJ] = PIPO
P0P1P2 = IJ[AO'O’ Ao, Ao,z] = P2P1Po (465)
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and therefore the expressions (3.14) reduce to

Aop = Aop

Aip = P[Ao,o]AOJP[Ao,ol

A2,0 = P[Ao,o ’ AO,I]A0|2P[A0,0 ’ AU,I]

A3,0 = P[Ao.o, Ao, Ao,z]A0.3P[Ao.o ) Ao,1, Ao,2] (466)

which is consistent with result (4.34) of Theorem 4.1. The rank and span properties

of Ap(e€) follow from Corollaries 4.1-4.3.

4.6 By Expressions for Partially Degenerate By(e)

This section identifies expressions for the limiting singular matrices By applicable
to matrices Bo(e) which satisfy only one of Conditions I or II. In such cases, the
identified Bip expressions are more complex than in the non-degenerate case, but
nonetheless generalize the SVD results of Section 4.5 to partially degenerate matrices
Bo(e).

We recall that 7 is defined as the minimum number such that the partial sum
of terms p = 0---7 of the Taylor series terms of By(€) has rank equal to R, the
rank of By(€). For degenerate scenarios for which Conditions I-III are not all satisfied
parameter 7 is not necessarily given by (4.6). For partially degenerate scenarios, we

identify m as follows:

Condition I satisfied: Provided Conditions I and IIIr (detailed subsequently) are

satisfied, M = 7h,, where m, is defined by

o,my

Rank {[Blo, -+ ,Bba ]} < R < Rank{[Bl,, --- ,Bi. |} (467)

Condition II satisfied: Provided Conditions II and IIlc (detailed subsequently) are
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satisfied, m = ., where . is defined by

Rank {[Bog, **+ ,Bos.-1]} < R < Rank{[Boo, ‘- ,Bom.} (4.68)

Conditions I and II as defined in (4.9), (4.10) are central to the simplified SVD
analysis of partially degenerate matrices. Conditions IIlr, Illc are modified versions

of Condition III defined as follows.

IIr. Rank{Pc,,_,1Bos Pra} = R~ Rank{[Bl, -+ ,Bls |} (4.69)
IIc.  Rank{Pg,_Bos PRra_} = R—Rank{[Boo, --- ,Bosm.-1]} (4.70)

Condition IIIr or IIlc is sufficient to guarantee that i determined by (4.67) or (4.68)
is such that the partial Taylor series consisting of terms of order p = 0 through p = m,
does in fact have rank R. We will find that whenever Conditions I and IIIr, or II and
Illc are satisfied, the limiting SVD of By(€) as € — 0 is entirely determined by the
terms of (4.3) from By to Bg; subsequent terms only add higher order effects.

To identify By expressions for partially degenerate By(¢), the point of departure
is again the partial identification of the Bxg of Lemma 4.4. The first two limit-
ing singular matrices Bog and By were explicitly identified in Lemma 4.4. Under

simplifying Condition II, identification can be extended to Big, k > 1, as follows.

Theorem 4.2 : If By(e) has a Taylor series in ¢, and Condition II is satisfied, then

1) BByo,Bxorol = Beioi (4.71)
2) Ppp,-Br_ 0 = Br,_y | (4.72)
where

i1 = [Blor (BoaPaw) -+ (BixaPowa)]  (473)
3) Bro = P[Ck;I]BO,kP[R (4.74)

k1]

for k = 1--- ., where Ci_; is as defined in (4.7) in terms of the Taylor series

coeflicient sequence By, - - -, By x-1.
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Proof: The proof is by induction. The proof parallels that of Theorem 4.1 up to
(4.42), with R;_, R; replaced by R;_,, R; in (4.36)-(4.41).

Equation (4.42) is replaced by
Column Space{Bo,;Fr;_,j} = Column Space{Bo,} (4.75)

for j = 1,---mm.—1. This relationship does not follow immediately from Condi-
tion II of (4.10), but is implied by it and can be supported as follows. Reference
to (4.73) shows that

Column Space{R}_;} € Column Space{R;_1} (4.76)
so that
Column Spa,ce{P[R;._l]} 2 Column Space{Pr;_,} (4.77)
Therefore

Column Space{Bo,;Fr;_1} 2 Column Space{Bo,;Pr;, .}

Column Space{By,;} (4.78)

the last line following from (4.42). But
Column Space{Bo,;Fr;_j} & Column Space{Bo,;} (4.79)

Eq. (4.75) follows from (4.78) and (4.79), and enables simplification of the
counterpart of Eq. (4.41) to the counterpart of Eq. (4.43), which establishes
(47 fork=34+1,k=1,---m..

The matrix R’_, (in place of R;_,) results from the fact that the simplifying step
parallel to Eq. (4.39) is no longer possible, which leads to (4.72) for k = j + 1.

Finally use of (4.71) for k = j + 1 in (4.25) establishes (4.74) for k =j+1.
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Theorem 4.2 expresses the limiting singular matrices By g explicitly in terms of
the Taylor series terms Bop, and their column aggregates C,, when Condition II is
satisfied. The expressions are more complicated than the expressions obtained for
non-degenerate scenarios in Theorem 4.1, due to the structure of R}_, in (4.73).

Nonetheless we have the following characterization whenever Condition II is sat-

isfied.

e The vector space spanned by the columns of limiting singular matrix sequence
By, Bx-1p is equal to that spanned by the columns of Taylor series matrix

coefficient sequence By, - - By 1.

¢ The limiting singular matrix By is the component of the £** order Taylor series
matrix coefficient By that is orthogonal to the vector space spanned by the
columns, and by the subspace defined by R},_; of that spanned by the rows, of

Taylor series matrix coefficients of lower order.

for k=0---m.. (From (4.71)-(4.74) of Theorem 4.2).

It is straightforwardly verified that Theorem 4.2 identifies explicit expressions for
the limiting singular matrices By, - - - By, that characterize the entire limiting SVD
of By(e), if Conditions II and IIlc are satisfied.

Clearly, a result parallel to Theorem 4.2 is available when Condition I is satisfied.

That is

Theorem 4.3 : If By(e) has a Taylor series in ¢, and Condition I is satisfied, then

1) PBoo,-Bisol = Py (4.80)

where

Cici = [Boo, (BoaPgy) - (Box-1Pn,_y)]  (4.81)

2) Pg» = Pn,_, (4.82)

h
0,0""Bk—1,0]

3) Bio = PBcy_1BoxPRr,_, (4.83)

for k =1---7,, where Ry_, is as defined in (4.8) in terms of the Taylor series

coefficients By, - - - Bo k1.
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Proof: The proof parallels that of Theorem 4.2.

Theorem 4.3 expresses the limiting singular matrices Bjp explicitly in terms of
the Taylor series terms By, and their column aggregates C}, when Condition I is
satisfied. The expressions are again more complicated than the expressions obtained
for non-degenerate scenarios in Theorem 4.1, due to the structure of C}_, in (4.81).

Nonetheless we have the following characterization whenever Condition I is satis-

fied.

e The vector space spanned by the rows of limiting singular matrix sequence
By, -+ Bk-1p 1is equal to that spanned by the rows of Taylor series matrix

coefficient sequence By, - -+ Bg k1.

o The limiting singular matrix By is the component of the k** order Taylor series
matrix coeflicient By that is orthogonal to the vector space spanned by the
rows, and by the subspace defined by C},_, of that spanned by the columns, of

Taylor series matrix coefficients of lower order.

for k=0.--7m,. (From (4.80)-(4.83) of Theorem 4.3).

It is straightforwardly verified that Theorem 4.3 identifies explicit expressions for
the limiting singular matrices By, - - - By, that characterize the entire limiting SVD
of By(¢), if Conditions I and IIIr are satisfied.

In the non-degenerate case, Corollary 4.1 explicitly identified the number n; of
limiting singular values in each singular value shell of By(e). We now develop bounding

relations for n; applicable to partially degenerate matrices By(e).

Corollary 4.4 : If Bo(e) satisfies either set of Conditions I and IIIr, or II and IIlc,
then the number n of limiting singular values of By(€) proportional to € is less

than or equal to the rank of the k™ order Taylor series matrix coefficient By .

That is
ny = Rank{Byp} k=0
nr < Rank{Boy} k=1,---m (4.84)
ng = 0 k>m
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where ™ = 1, defined in (4.67) if Condition I is satisfied and 7 = 7, defined

in (4.68) if Condition II is satisfied.

Proof: The result for k£ = 0 is trivial for k¥ = 0, is immediate for £k = 1-- - from the
applicable Theorem 4.2 or 4.3 since the rank of a product is at most the rank

of any of its factors, and for ¥ > 1 follows from Condition IIIr or Illc.

For partially degenerate matrices Bo(e), Corollary 4.4 shows that the rank of
Taylor series matrix coefficient By provides an upper bound on the number n; of
limiting singular values of By(e) proportional to €¥ as ¢ — 0. Reference to Corollary
4.1 shows that the bound is satisfied with equality for £k = 0-.-7 — 1 for non-

degenerate matrices By(e).

4.7 Summary of SVD Results

Thesis results so far have identified the following properties of By(¢€) for small e:

Shell Structure: The non-zero singular values of Bg(€e) can be grouped according
to their e dependence into sets, or shells. Singular values in the k** shell are
proportional to ¢* as e — 0. Thus singular value energy decreases rapidly with
shell number k. For non-degenerate matrices all the non-zero singular values

are in shells £ = 0, - - - 71, where 1 satisfies (4.6).

Shell Size: For non-degenerate matrices By(¢€), the number of singular values in the
k* shell is equal the rank of the k™ order Taylor series term of By(€), except

for the last shell.

Shell Problems: The SVD of By(e) can be decomposed into a set of shell problems,
consisting of the SVD of constant low-rank matrices Byo. For non-degenerate
Bo(€), B is the component of the k** order Taylor series term of Bo(€) which
is orthogonal to the column and row spaces spanned by the 0 to (k — 1) order

Taylor series terms. Specifically By is given by (4.32)-(4.34).
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Limiting Singular Values: Limiting singular values of Bg(e) converge to the non-

zero singular values of By scaled by €*.

Limiting Singular Vectors: The left (right) singular vectors associated with limit-
ing singular values of By(¢) proportional to €* converge as € — 0 to the column

(row) space of Byp.

Degenerate Cases: In degenerate cases, the k** shell (k = 0---7 — 1) may have
fewer singular values than the rank of the corresponding Taylor series term, i.e.
shells may be not full. Conditions I-III are sufficient to prevent degeneracy.
Expressions for limiting singular matrices By o have been identified for partially
degenerate By(e) which satisfy only one set of Conditions I and IIlIr, or IT and
Ilc.

The foregoing SVD properties provide a reasonably complete characterization of
the SVD of By(e) for small e. The SVD results are applied to identify the limiting
eigenstructure of covariance matrix Rs in the following Chapters. The above results

may also be useful in other applications.

4.8 SVD Examples

To illustrate the accuracy of the foregoing limiting SVD theoretical expressions, we
compare the predicted limiting and exact singular values and vectors for the rect-
angular matrix factor B of Rg for the 2-D direction finding scenarios of Examples
2.3-2.5 of Section 2.6.

Each example involves a planar array of W = 16 unit-gain, isotropic sensors, and
M = 6 far-field sources clustered near to the array broadside.

We assume that the sources are uncorrelated and have equal powers. Total source
power is taken to be unity, so that the éross-power matrixis P=1/M - I.

The matrix factor B of Rs in such scenarios is of the form (2.46), that is

B = All
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1
= A (4.85)

since Il = 1/v/M - I for M uncorrelated and equal power sources with unity total

power, where A is the matrix of source generic arrival vectors. The Taylor series of
(4.85) is

B = \/—%Zawp,&,r,, (4.86)

p=0

where the A, and T, applicable to the example scenarios are of the form (2.68) and

(2.59) with M = 6. 1t is straightforwardly verified for matrix B of (4.86) that
e Condition C1 is sufficient for B to satisfy Condition I
¢ Condition C2 is sufficient for B to satisfy Condition II

e Conditions C1-C3 are sufficient for B to satisfy Conditions I-III

with m = m.
The limiting and exact SVD for the three example scenarios of Examples 2.3-2.5

are compared numerically in the following.

Example 4.1 : For this example, the array and source geometries are defined as
~ in Example 2.3. That is,
Array: Sensors in a sparse grid per Figure 2-4A,
Sources: Sources clustered around broadside in a “double chevron” configura-

tion per Figure 2-5A.

As shown in Example 2.3, this scenario satisfies Conditions C1-C3 with m = 2.
Consequently, matrix B of (4.86) satisfies Conditions I-III with 7o = 2, and the

limiting singular matrices of B may be determined using Theorem 4.1.

Figure 4-1 shows the singular values of B for a range of emitter separations éw.

Solid curves depict the exact singular values; dashed lines depict the limiting
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behavior predicted by our analysis. The horizontal scale denotes spatial fre-
quency separation éw normalized by the array beamwidth BW, so that unity
on the horizontal scale of the graph corresponds to maximum source separation
of one beamwidth (i.e. éw/BW= 1). The vertical scale denotes the singular

values.

Clearly the limiting expressions capture the essence of the singular values for
source separations of less than one beamwidth. As predicted, the limiting singu-
lar values are grouped into singular value shells as §w — 0, with no = 1 having
slope of 0 dB/decade, n; = 2 having slope of 10 dB/decade (i.e. proportional
to éw), and n; = 3 having slope of 20 dB/decade (i.e. proportional to éw?). In

this non-degenerate scenario, the first three singular value shells are full.

Thus the theoretical expressions accurately predict the singular values of B for

small source separations éw for this non-degenerate scenario.

To assess the accuracy of the predicted span of singular vectors, Figure 4-2
shows, for a range of emitter separations éw, the magnitude of the component
of each principal left singular vector @;(éw) of B that is outside the column space
of the predicted limiting subspace (i.e. the column space of the corresponding

Bip). Specifically, the curves depict the vector norms
a = |Pp,qi(sw) (4.87)

for:=1,--- M, where Pip, ) denotes the projection onto the column nullspace
of By, and @;(éw) is the left singular vector of B associated with singular value
oi(éw) proportional to w* as éw — 0. Since #@;(6w) is predicted to converge to

the column space of B, we expect a; — 0 as éw — 0.

The horizontal scale in Figure 4-2 again denotes spatial frequency separation
dw normalized to the array beamwidth BW. The vertical scale denotes the q;
for i = 1-.-6, corresponding to the principal singular values. Clearly, a; — 0
as 6w — 0; thus the column space of limiting singular matrix By accurately

describes the span of the left singular vectors for small dw.
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We now consider two partially degenerate examples.

Example 4.2 : For this example, the array and source geometries are defined as

in Example 2.4. That is,

Array: Sensors in a sparse grid per Figure 2-4A,

Sources: Sources clustered around broadside in a circular configuration per

Figure 2-5B.

As shown in Example 2.4, this scenario satisfies Condition C1 with m = 3.
It can straightforwardly be shown that matrix B of (4.86) satisfies Conditions
I and IIIr with /2 = 3, and thus the limiting singular matrices of B may be

determined using Theorem 4.3.

Figure 4-3 again shows the singular values of B for a range of emitter sepa-
rations éw. Solid curves depict the exact singular values; dashed lines depict
the limiting behavior predicted by our analysis. The horizontal scale denotes
spatial frequency separation éw normalized by the array beamwidth BW, so
that unity on the horizontal scale of the graph corresponds to maximum source
separation of one beamwidth (i.e. Sw/BW= 1). The vertical scale denotes the

singular values.

Clearly the limiting expressions again capture the essence of the singular values
for source separations of less than one beamwidth. The limiting singuiar values
are again grouped into singular value shells as éw — 0, this time with ng = 1
having slope of 0 dB/decade, n; = 2 having slope of 10 dB/decade (note that in
this scenario the two singular values are exactly equal for all §w), ny = 2 having
slope of 20 dB/decade, nz = 1 having slope of 30 dB/decade. Thus the k = 2

shell is not full for this partially degenerate scenario, and there is one singular

value in the k£ = 3 shell.

Thus the theoretical expressions accurately predict the singular values of B for
small source separations éw for this partially degenerate scenario, for which

matrix B satisfies Conditions I and IIIr.
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Example 4.3 : For this example, the array and source geometries are defined as

in Example 2.5. That is,

Array: Sensors in a circular geometry per Figure 2-4B,

Sources: Sources clustered around broadside in a “double chevron” configura-

tion per Figure 2-5A.

As shown in Example 2.5, this scenario satisfies Condition C2 with m = 3.
It can straightforwardly be shown that matrix B of (4.86) satisfies Conditions
IT and IlIc with /= = 3, and thus the limiting singular matrices of B may be

determined using Theorem 4.2.

Figure 4-4 again shows the singular values of B for a range of emitter sepa-
rations éw. Solid curves depict the exact singular values; dashed lines depict
the limiting behavior predicted by our analysis. The horizontal scale denotes
spatial frequency separation dw normalized by the array beamwidth BW, so
that unity on the horizontal scale of the graph corresponds to maximum source
separation of one beamwidth (i.e. éw/BW= 1). The vertical scale denotes the

singular values.

Clearly the limiting expressions again capture the essence of the singular values
for source separations of less than one beamwidth. The limiting singular values
are again grouped into singular value shells as 6w — 0, this time with no = 1
having slope of 0 dB/decade, n; = 2 having slope of 10 dB/decade, n, = 2
having slope of 20 dB/decade, nz = 1 having slope of 30 dB/decade. Thus the
k = 2 shell is not full for this partially degenerate scenario, and there is one

singular value in the k£ = 3 shell.

Thus the theoretical expressions accurately predict the singular values of B for
small source separations éw for this partially degenerate scenario, for which

matrix B satisfies Conditions II and Illc.
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Chapter 5

Eigenstructure of Rg for

Non-Degenerate Scenarios

This chapter identifies the limiting eigenstructure of the asymptotic signal covariance
matrix Rg for closely spaced sources in non-degenerate multi-D direction finding
scenarios. The analysis exploits results of Chapter 4 to first identify the limiting
SVD of matrix factor B of Rg given by (2.46); the limiting eigenstructure of Rs then
follows immediately from the SVD of its factor B.

Recall from Section 2.5.1 that Rs can be factored as

Rs = BB" (5.1)
where B is a rectangular matrix with Taylor series (2.60) of the form

B= f: w? AT, 11 (5.2)

p=0
Parameter éw is a scalar measure of the maximum spatial frequency separation be-
tween the sources, Ap consists of the p** order partial derivatives of the generic arrival
vector @(&) as in (2.50), I, depends on the normalized source spatial frequency offset
vectors gy, -+, qum as in (2.58) and II results from the factorization of source cross-

power matrix P in (2.47).
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This chapter shows that under the non-degenerate scenario Conditions C1, C2,
and C3 defined in Section 2.5.3, matrix B is a non-degenerate matriz. That is, matrix

B satisfies Conditions I, II and III of Chapter 4 applicable to matrix By(¢) of the form

By(e) = i €’ By, (5.3)
p=0
with the identifications
Bo(¢) = B
e = dw
By, = A, (5.4)

Accordingly, the limiting SVD of matrix B for non-degenerate scenarios can be iden-
tified using the results of Chapter 4 for non-degenerate scenarios.

The limiting eigenstructure of matrix Rg formed as the outer product of matrix B
in (5.1) then follows immediately from the limiting SVD of B. By construction of the
SVD, the non-zero eigenvalues of Rg are the squares of the non-zero singular values
of B, and the corresponding eigenvectors of Rs are the corresponding left singular
vectors of B.

Based upon the limiting eigenstructure of Rgs, this chapter presents a reasonably
complete characterization of Rg for closely spaced sources. We find that the lim-
iting eigenvalues of Rs are divided into groups proportional to powers of éw?, for
convenience designated as eigenvalue shells. The complete eigenstructure problem
decomposes into a sequence of shell problems; in multi-D scenarios, a low-rank eige-
nanalysis is required to identify the limiting eigenvalues and associated eigenvectors
in each shell. In 1-D scenarios, the shell problems involve a rank one eigenanalysis,
and hence can be solved explicitly as was done by Lee in [12].

Interestingly, a number of useful properties of Rs in multi-D scenarios can be
identified without performing the eigenanalyses required to solve the shell problems.

For example, the dependence of the numerical conditioning of Rs upon source spac-
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ing parameter dw can be explicitly determined from the number of sources M and
scenario dimensionality. As another example, the limiting vector space spanned by
the columns of Rs (the signal-space), or its complement (the noise-space), can be
explicitly determined from the partial derivatives of the generic signal vector @(&)
and from the source configuration.

The chapter is organized as follows. Section 5.1 shows that the non-degenerate
scenario Conditions C1-C3 are sufficient for matrix B to satisfy Conditions I-I1I, and
hence identifies the limiting SVD of B from the results of Chapter 4. Section 5.2 then
identifies the limiting eigenstructure of Rs and related properties for non-degenerate

scenarios. An illustrative numerical example is presented in Section 5.3.

5.1 Limiting SVD of Factor B of Rs for Non-

Degenerate Scenarios

This section identifies the limiting SVD of matrix B for non-degenerate scenarios that

satisfy Conditions C1, C2 and C38. To do so, we first show that Conditions C1, C2

and C3 are sufficient for matrix B to satisfy Conditions I, IT and III of Chapter 4.
The sufficient Conditions C1-C3 for non-degenerate scenarios, defined in Section

2.5.3 are restated here:

C1. Rank{/ig} = 7o forp=0
Rank{P[Ao,---A,,_l] A,,} = fi, Cforp=1,---m—-1 (5.5)
C2. Rank{To} = 7o forp=0
Rank{T, Pr,,..r,_,1} = 7 forp=1,---m—-1 (5.6)
Cs. Rank{ Py . .1 AmD'm Pro,rmy} = M — mz_j: i (5.7)
p=

where 71, is the number of p** order partial derivatives of @() with respect to the

elements of &, and M is the number of sources. If Conditions C1-C83 are all satisfied,

103



then parameter m is given by

m—1 m
Yoa, <M < ) n, (5.8)
p=0 p=0

The sufficient Conditions I-III for non-degenerate matrices By(¢€) defined in Chap-

ter 4 are also restated here:

I Rank{Pyc,_,1Bop} = Rank{Bo,} forp=1,---m—-1 (5.9)

II. Rank{Bop Pr,_,;;} = Rank{Bo;} forp=1,---m—1 (5.10)
-1

1L Rank{Pic,,_;Bosm Prn_s} = R— 3 Rank{Bo,} (5.11)
_ =

Matrices By, are the matrix coefficients of the Taylor series for By(e) in (5.3), and
Cp-1, Rp—1 respectively aggregate the columns and rows of Boo - - Bop-1 as defined

in (4.7), (4.8). If Conditions I-III are all satisfied, then parameter i is given by
=1 1 '
E Rank {Bo'p} <R <L Z Rank {Bo'p} (5.12)

p=0 p=0

where R denotes the rank of By(€) for small, but non-zero e.

Given the identification
Bop = AT, (5.13)

the rank and span properties of Taylor series coefficient matrix By, under Conditions

C1, C2 and C3 can be identified as follows:

Lemma 5.1 : For By, as in (5.13), we have
a) If Condition C1 is satisfied, then
Rank{Bos,} = Rank{T,} forp=0---m—1 (5.14)

and

P[Rp] = P[(I‘on)h'...([‘pn)h] for b= 0---m-—1 (5.15)

104



b) If Condition C2 is satisfied, then

Rank{B,,} = Rank{A,} forp=0---m—1  (5.16)
and

Po,) = P4, forp=0---m—-1  (5.17)

c) If all Conditions C1, C2 and C3 are satisfied, then

Rank{Bgy,} = @, forp=0---m—1 (5.18)
and
m-—1
Rank{l)[cm_I]Bo,mP[Rm_I]} = M- Z ﬁp (519)
p=0

Proof: See Appendix G.

The results of Lemma 5.1 imply the following relationship between Conditions

C1, C2 and C3 and Conditions I, IT and III.

Lemma 5.2 : For By, as in (5.13), if Conditions C1, C2 and C3 are all satisfied,
then so are Conditions I, IT and III with

M o= m (5.20)

where 7 is defined by (5.12), and m is defined by (5.8).

Proof: 1t follows straightforwardly from the results of Lemma 5.1 that Conditions

C1, C2 and C3 with m in (5.8) are sufficient for Conditions I, IT and III with
f in (5.12).

Consequently, the limiting SVD of B can be identified for non-degenerate scenarios .

using the results of Chapter 4, as follows.

Theorem 5.1 : If B has a Taylor series in §w of the form (5.2), and Conditions
C1, C2 and C3 are all satisfied, then the limiting singular matrices By of B
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are of the form

AqTo k=0
Bio =\ (Pg,ipyyAr) (Tl Prompr,qramp) £ = 1,-m (5.21)
0 k>m

Proof: From the result of Lemma 5.2, Theorem 4.1 is applicable to matrix B. The
result (5.21) is immediate from Theorem 4.1, using the identifications (5.13),
and (5.15), (5.17) of Lemma 5.1. The result Bxg = 0 for k¥ > m follows from
Corollary 4.1.

Theorem 5.1 presents a remarkably simple characterization of the limiting sin-
gular matrices Big of matrix B under Conditions C1-C3 (i.e. for non-degenerate
scenarios). The k** order limiting singular matrix By g is simply the product of two
factors. The first factor is A minus its projection onto the space spanned by the
columns of Ao, “ee Ak_l. The second factor is I'xIT minus its projection onto the space
spanned by the rows of [oll, - - Iy II.

Results S1, S2 and S3 of Section 4.2 characterize the limiting SVD of B in terms
of the SVD of limiting matrices By . Specifically, the SVD of limiting singular matrix
By identifies the limiting SVD structure of the k** singular value shell of B as follows:

1. the non-zero singular values of By are the constants o; in limiting singular

values of B of the form o;6w*, and

2. the associated left, right singular vectors of B respectively span the column,

row spaces of Byy.

The number of singular values of B in each singular value shell is simply identified

using Corollary 4.1 as follows:

Corollary 5.1 : If B has a Taylor series in éw of the form (5.2), and Conditions C1,
C2 and C3 are all satisfied, then the number n; of limiting singular values of

B proportional to §w* is equal to the number ;. of k** order partial derivatives
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of @(&) with respect to the elements of &, for k =0, -+-m — 1. Furthermore the

sum of n; from k = 0 to k = m equals M. Specifically

g k=0,---m—1

m-1
M= 7 k=m

p=0

(5.22)

Proof: Immediate from Corollary 4.1, with appropriate identifications from Lemmas

5.1 and 5.2.

The span of the limiting singular vectors associated with each singular value shell

is simply identified from Corollary 4.2 as follows:

Corollary 5.2 : If B has a Taylor series in éw of the form (5.2), and Conditions
C1, C2 and C3 are all satisfied, then

a) the limiting left singular vectors of B associated with limiting singular

values proportional to éw* span the column space of
i) Ao for k=0,

ii) P[Ao,-.-Ak_l]Ak fork=1,---m—1,

i) Pl ...dg n_yjAmDmIL Promyp (r_ymy) for k = m.

b) the limiting right singular vectors of B associated with limiting singular

values proportional to éw* span the row space of
i) ToIl for k =0,
i) Tell Promyr,ryp_ymy for k=1,---m —1,
i) P, ... dg n_y]AmTm I Pyromyh (r_ymyny for k = m,

Proof: Immediate from Corollary 4.2, with appropriate identifications from Lemmas

5.1 and 5.2.

The limiting projections onto the null-space of the columns and rows of B are

remarkably easy to express. Paralleling Corollary 4.3, we obtain:
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Corollary 5.3 : If B has a Taylor series in éw of the form (5.2), and Conditions
C1, C2 and C3 are all satisfied, then

a) lim By = lim (I-BB*) = Pp (5.23)
where
— A . . . .
B = [AO, coey Amot, (AmFmH‘P[(Fol'I)",--~(Fm_1H)"])] (524)
b Jim Py = Jim,(1-5°B) = Py (529
where
b A .
B £ [(TolDt,-- (Cmca TP, (AmTmID* Py 4, _p)] (5:26)

Proof: Immediate from Corollary 4.3, with appropriate identifications from Lemmas

5.1 and 5.2.

The limiting SVD properties of matrix B identified in Theorem 5.1 and associated
Corollaries 5.1-5.3 are applied in the next section to identify the limiting eigenstruc-

ture properties of covariance matrix Rs for non-degenerate scenarios.

5.2 Limiting Eigenstructure of Rs for Non-Dege-
nerate Scenarios

The eigenstructure of Rs formed as the outer product of factor matrix B as in (5.1)
is entirely determined by the SVD of B. Specifically, the non-zero eigenvalues of Rs
are the squares of the non-zero singular values of B, and the corresponding eigenvec-
tors of Rs are the corresponding left singular vectors of B. Therefore the limiting
eigenstructure of Rs can be determined directly from the limiting SVD of matrix B
identified in Section 5.1.

Alternately, the limiting eigenstructure of Rg can be determined by identifying the
limiting eigenmatrices of Rs. By construction of the SVD, the limiting eigenmatrices
of Rs are simply the outer products of the limiting singular matrices of B. We

denote as Ry the limiting eigenmatrices of Rg corresponding to limiting eigenvalues
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proportional to 6w?*; hence
g h
Raro = BioBg, (5.27)

where Bjo are the limiting singular matrices of B corresponding to the limiting
singular values proportional to §w*. Note that, consistent with Lemma 4.1, there are
no eigenvalues of Rg proportional to odd powers of éw.

Using the results of Theorem 5.1, we express Rak o directly in terms of the factors

A,,, T, and II of the Taylor series coefficients of B. That is,

Theorem 5.2 : If Rs is formed as the outer product of matrix B with Taylor series
in éw of the form (5.2), and Conditions C1, C2 and C3 are all satisfied, then

the limiting eigenmatrices Rj; o of Rg are of the form

[ Ao ToI TI*TE Ab k=0

R2ko g J (P[Ao,...AP_X]/ik) (I‘kH})[(r‘on)h,;..([‘k_lr[)h])

- (Pirommyr (oI TE) (AR Py oa, ) k=1,---m
L 0 k>m

Proof: Immediate from (5.27) and Theorem 5.1.

Theorem 5.2 presents a remarkably simple characterization of the limiting eigen-
- matrices of Rg for non-degenerate scenarios. The limiting eigenmatrices are decom-
posed into factors which consist of A minus its projection onto the space spanned by
the columns of Ay, - - - Ax_1, and of I':II minus its projection onto the space spanned
by the rows of I'oIl, .- T'y_{II.

Note that Theorem 5.2 takes the following particularly simple form for 1-D sce-

narios.

Ruo = afrpiat (5.29)
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where

A k=0

% = { 0 A (5.30)
Pliy,.4,_ Ak k=1,---m

- H"I‘" k= 0

P = 0 (5.31)
P[(I‘ol'[)h,...([‘k_ln)hlﬂhrﬁ k=1,---m

These results are identical to those of Lee [12] cited in Section 3.1. Specifically Rax 0
in (5.29) has unity rank, hence only one eigenvalue of Rs is proportional to sw?*,
as per result E1 of Section 3.1. The principal eigenvector of Rgrp is equal to the
suitably normalized vector @y, as per result E2 of Section 3.1. Finally, the principal

eigenvalue 7 of Ry is equal to
n = (aa)-(F"B) (5.32)

which can be shown, using well-known determinant properties [21], to be equal to the
limiting eigenvalue expression (3.9) identified in [12].

Thus for 1-D scenarios the results of Theorem 5.2 reduce to those of Lee [12].

5.2.1 Limiting Rs Eigenstructure Properties for Non-Dege-

nerate Scenarios

Results R1, R2 and R3 of Section 3.1 characterize the limiting eigenstructure of Rs
in terms of the limiting eigenmatrices Rk 0. Specifically, the eigenstructure of Rax o

identifies the limiting eigenstructure of the k** eigenvalue shell of Rgs as follows:

1. the non-zero eigenvalues of Ry are the constants ); in limiting eigenvalues of

Rg of the form \;6w?*, and
2. the associated eigenvectors of Rg span the column space of R .

The number of eigenvalues in each eigenvalue shell is simply identified using Corol-

lary 5.1 as follows:
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Corollary 5.4 : If matrix Rg is formed as the outer product of matrix B with
Taylor series in éw of the form (5.2), and Conditions C1, C2 and C3 are all
satisfied, then the number n; of limiting eigenvalues of Rs proportional to dw?*
is equal to the number 71, of k* order partial derivatives of @() with respect to
the elements of &, for k = 0,---m — 1; furthermore, the sum of n; from k£ = 0

to k = m equals M. Specifically

Tk k=0,---m-—1
— m-1 5.33
" M= @, k=m (533)
p=0

Proof: Immediate from Corollary 5.1, since the limiting eigenvalues of Rs propor-
tional to éw? are simply the squares of the limiting singular values of B propor-

tional to dw.

The span of the limiting eigenvectors associated with each eigenvalue shell is

simply identified from Corollary 5.2 as follows:

Corollary 5.5 : If matrix Rg is formed as the outer product of matrix B with
Taylor series in 6w of the form (5.2), and Conditions C1, C2 and C3 are all
satisfied, then the limiting eigenvectors of Rs associated with limiting eigenval-

ues proportional to §w?* span the column space of

i) Ay for k=0,
ii) Py, Ak fork=1,---m—1,

iii) P[Ao’,_.,io'm_llAmI‘mH P[(FoH)",---(Fm_lﬂ)h] for k = m.

Proof: Immediate from Corollary 5.2a) since the eigenvectors of Rg are simply the

left singular vectors of B..

The limiting projection onto the nullspace of Rs is also easily identified from

Corollary 5.3 as follows.
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Corollary 5.6 : If matrix Rs is formed as the outer product of matrix B with
Taylor series in éw of the form (5.2),.and Conditions C1, C2 and C3 are all
satisfied, then

Jim Pry = Pg (5.34)
where B is defined in (5.24).

Proof: Immediate from Corollary 5.3a) since the column space of Rg is equal to the

column space of B.

The numerical conditioning of a matrix is typically characterized by the condition

number p defined as

A A(dw)
Y

(5.35)

where eigenvalues are ordered as A{(dw) > --- > Ap(bw) # 0. As éw — 0, the

condition number p of Rs can be characterized as follows.

Corollary 5.7 : If matrix Rs is formed as the outer product of matrix B with

Taylor series in éw of the form (5.2), and Conditions C1, C2 and C3 are all
satisfied, then

: p
Jim, {A_} -1 (5.36)
A Swm

where )\, is the largest eigenvalue of Rpp, and Apr is the smallest non-zero

eigenvalue of Rjp 0.

Proof: Immediate from result R1, R2 and Theorem 5.2.

Corollary 5.7 shows that p is proportional to w™?™ as éw — 0. Hence m can be

interpreted as a numerical conditioning parameter.
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We recall from (5.8) that parameter m satisfies

m-1 m
Sy < M <3 (5.37)

p=0 p=0

where M is the number of sources, and i, > 1. Clearly for two or more sources
(M > 2), we have m > 1 so that p — 0 as éw — 0. Moreover, the larger the m the
faster p — 0. This circumstance reflects the fact that factor A which appears in Rs
as defined in (2.44), approaches unit rank as éw — 0.

In multi-D DF scenarios i, > 1 for all p > 0, and therefore parameter m satisfies
m < M-1 (5.38)

In 1-D scenarios n, = 1 for all p, and therefore m = M —1. Consequently, for a given
number M of sources, matriz conditioning parameter m is smaller in multi-D than

in 1-D scenarios.

5.2.2 Summary of Rs Eigenstructure Results

Thesis results so far have identified the following Rs eigenstructure properties for

closely-spaced sources whenever Conditions C1, C2 and C3 are all satisfied:

Shell Structure: The non-zero eigenvalues of Rs can be grouped according to their
dw dependence into sets, or shells. Eigenvalues in the k** shell, k = 0, .- - m, are

proportional to §w? as éw — 0. Thus eigenvalue energy decreases rapidly with

shell number k.

Shell Size: In non-degenerate cases, the number of eigenvalues in the kt* shell equals
the number 7, of k** order partial derivatives in the Taylor series, except for the
last shell, which may not be full. For 1-D scenarios, there is only one eigenvalue

per shell, A; = 1, as noted in [12].

Shell Problems: The eigenanalysis of Rs can be decomposed into a set of shell

problems, consisting of the eigenanalyses of a set of m + 1 constant low-rank
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matrices Rk o specified by (5.28). For 1-D scenarios, each shell problem consists
of an eigenanalysis of a rank 1 matrix, hence solving a characteristic equation

is not required, as noted in [12].

Limiting Eigenvalues: Limiting eigenvalues of Rs converge to the non-zero eigen-

values of Ry ¢ scaled by w?.

Limiting Eigenvectors: The eigenvectors associated with limiting eigenvalues of
Rgs proportional to éw?* converge as éw — 0 to the column space of Rjio which,
except for the last shell, is the space spanned by k** order spatial derivatives
of the generic signal vector, suitably orthogonalized from spatial derivatives of

lower order.

Condition Number: Limiting condition number p of Rs is proportional to fw=2™,
and m < M — 1 for non-degenerate multi-D scenarios. For 1-D, m = M — 1.
Thus for a given number of sources, Rs is typically better conditioned in multi-D

than in 1-D settings.

Degenerate Cases: In degenerate cases the shells are not full. Conditions C1, C2
and C3 are sufficient to prevent degeneracy, and are related to sensor array

geometry and source configuration (See Chapter 7).

The foregoing Rs eigenstructure properties provide a reasonably complete charac-
terization of the eigenstructure of Rg for closely-spaced sources, which we expect will
facilitate the performance analysis of candidate DF techniques in multi-D scenarios.

Analysis of specific techniques is not pursued in this thesis.

5.3 Example Non-Degenerate Rs Eigenstructure

To illustrate the accuracy of the foregoing limiting eigenstructure theoretical expres-
sions, we compare the predicted limiting and exact eigenvalues and eigenvectors for
matrix Rs for the non-degenerate 2-D direction finding scenario of Example 2.3 of

Section 2.6.
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The example involves a planar array of W = 16 unit-gain, isotropic sensors, and
M = 6 far-field sources clustered near to the array broadside.
We assume that the sources are correlated and equal power. Total source power

is taken to be unity. Specifically, the source cross-power matrix P is taken to be

1 pa - Pt
* 1 .
p=ym.| P2 P2 (5.39)
| (P527) - ph 1
The matrix factor B of Rs in such scenarios is of the form (2.46)
B = Al (5.40)

where II is taken to be the Cholesky factor of the cross-power matrix P, and A is the

matrix of source generic arrival vectors. The Taylor series of B is

B = Y éwPA,T,I (5.41)

p=0

where the A, and T', applicable to the example scenarios are of the form (2.68) and
(2.59) with M = 6.
The limiting and exact eigenvalues and eigenvectors of Rs for this scenario are

compared numerically in the following.

Example 5.1 : For this example, the array and source geometries are defined as

in Example 2.3. That is,

Array: Sensors in a sparse grid per Figure 2-4A,

Sources: Sources clustered around broadside in a “double chevron” configura-

tion per Figure 2-5A.

As shown in Example 2.3, this scenario satisfies Conditions C1-C3 with m = 2.
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Consequently, the limiting eigenmatrices Rato of Rs may be determined using

Theorem 5.2.

Figure 5-1 shows the eigenvalues of Rg for a range of emitter separations éw.
Solid curves depict the exact eigenvalues; dashed lines depict the limiting be-
havior predicted by our analysis. The horizontal scale denotes spatial frequency
separation éw normalized by the array beamwidth BW, so that unity on the
horizontal scale of the graph corresponds to maximum source separation of one

beamwidth (i.e. w/BW=1). The vertical scale denotes the eigenvalues.

Clearly the limiting expressions capture the essence of the eigenvalues for source
separations of less than one beamwidth. As predicted, the limiting eigenvalues
are grouped into eigenvalue shells as éw — 0, with no = 1 having slope of 0
dB/decade, n; = 2 having slope of 20 dB/decade (i.e. proportional to éw?),
and n; = 3 having slope of 40 dB/decade (i.e. proportional to éw*). In this

non-degenerate scenario, the first three eigenvalue shells are full.

Thus the theoretical expressions accurately predict the eigenvalues of Rg for

small source separations éw for this non-degenerate scenario.

To assess the accuracy of the predicted span of eigenvectors, Figure 5-2 shows,
for a range of emitter separations éw, the magnitude of the component of the
principal eigenvectors €;(éw) of Rgs that is outside the column space of the
predicted limiting subspace (i.e. the column space of the corresponding R ).

Specifically, the curves depict the vector norms

= “ P[PMo-"Ak_:]’i"]a(éw)u (5.42)

for i =1,--- M, where P[P[A x] denotes the projection onto the column

0 Ag_1
nullspace of R per Corollary 5.5, and €;(6w) is the eigenvector of Rs asso-
ciated with eigenvalue );(6w) proportional to éw* as éw — 0. Since €;(éw) is

predicted to converge to the column space of Ry, we expect a; — 0 as éw — 0.
The horizontal scale in Figure 5-2 again denotes spatial frequency separation
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dw normalized to the array beamwidth BW. The vertical scale denotes the o;
for ¢ = 1--.6, corresponding to the principal eigenvalues. Clearly, o; — 0
as bw — 0; thus the column space of limiting eigenmatrix Raro accurately

describes the span of the eigenvectors for small éw.
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Chapter 6

Detection Thresholds

A fundamental problem in DF applications is to determine the number of sources;
indeed many eigenvector-based DF algorithms such as MUSIC and MinNorm require
a priori knowledge of the source number for proper operation.

Accordingly a set of algorithms have been developed the objective of which is
to correctly detect or estimate the source number M. These algorithms are called
detection algorithms. Example algorithms are Akaike Information Criteria (AIC)
[22], and Minimum Descriptive Length (MDL) [23].

One useful performance measure for a detection algorithm is the signal-to-noise
ratio (SNR) threshold €p at which the algorithm can reliably estimate source number
for a given source-array configuration, and a given number N of data snapshots. An
alternative performance measure is the data set size N threshold AMp at which the
algorithm can reliably estimate source number for a given source-array configuration,
and a given SNR. These threshold values also can be regarded respectively as the
minimum SNR and N at which “one can see” the full eigenstructure of the spatial
covariance matrix R.

An obvious approach to detection is to examine the eigenvalues of a sample covari-
ance matrix, and to attempt separation of the sample eigenvalues into signal-space and-
noise-space eigenvalues (in the sense of MUSIC). If successful, one takes the number
of signal-space eigenvalues to be the estimate of source number M. This approach

can be implemented by introducing a metric that effectively separates eigenvalues
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into groups, and counts the number of signal space eigenvalues. Indeed both AIC
and MDL employ (differing) metrics of this type.

This chapter draws upon the limiting eigenstructure results of Chapter 5 to elu-
cidate the (SNR) threshold £p and the data set size threshold AMp at which, based
upon the consideration of sample eigenvalues, one can reliably detect M closely spaced
sources in non-degenerate multi-D scenarios. The threshold expressions to be derived
assume asymptotic conditions (i.e. large N or SNR) so that classical perturbation

formulae apply to the eigenvalues of the sample covariance matrix R. The results are:

o = Kb g o
1 K 2
Np «~ <? + S_NDﬁ . 6w'2’") (6.2)
for large N, and
Kb \* o im

for sufficiently small dw, where éw is the maximum source separation parameter, m is
the Rs conditioning parameter defined in (2.62), and K}, and f are constants defined
in Section 6.4.

The result (6.1) extends results of Lee and Li [13] which analyzed the SNR de-
tection threshold &p for closely spaced sources in 1-D scenarios. The authors argued
that £p at which so-called Normal Algorithms can reliably estimate the number of

sources in 1-D scenarios is proportional to §w=2M-1, That is
E&p ~ Kp-bw 2M-D (6.4)

where Kp is constant with éw.
Since parameter m < M — 1 for typical multi-D scenarios, comparison of (6.4)
and (6.1) leads to the conclusion that for small éw, the SNR detection threshold is

typically much smaller (more favorable) in multi-D than in 1-D scenarios.
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The analysis approach in this chapter is to use classical eigenstructure pertur-
bation formulas and the asymptotic eigenvalues identified in Chapter 5 to formulate
statistical models for the eigenvalues of the sample correlation matrix R for M closely
spaced sources in multi-D. It is then argued that any detection algorithm based upon
consideration of sample eigenvalues can succeed with useful probability only if the
difference between the mean of the smallest signal-space eigenvalue and the mean
of the noise-space eigenvalues is substantially greater than the standard deviation of
each. First order identification of the threshold SNR and N values required to satisfy
the above condition result in expressions (6.1)-(6.3).

The chapter is organized as follows. The eigenvalue approach to detecting the
number of sources is reviewed in Section 6.1. Section 6.2 then reviews the prior re-
sults of [13]. Section 6.3 postulates necessary conditions for successful sample eigen-
value based detection, and Sections 6.4, 6.5 develop the expressions (6.1)-(6.3) for
the detection threshold SNR and N. Section 6.6 summarizes the detection threshold

results.

6.1 Eigenvalue-Based Detection Algorithms

The problem addressed is that of determining which of the eigenvalues of the sample
covariance matrix R include a signal component, and which eigenvalues are noise-only.
Recall from Section 2.3 that under the data model assumptions, the sample covari-

ance matrix R converges for large N with probability one to the asymptotic covariance

matrix R of the form

R = Rs+o’l Wx W (6.5)

where Rg is the signal covariance matrix of rank M < W, and o?] is the additive
white noise component.
Following the previously used notation,

> ... > Ay denote the ordered eigenvalues of R,
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X > ---> Aw denote the ordered eigenvalues of R,
M(6w) = -+ 2 Am(6w) denote the ordered non-zero eigenvalues of Rg,

A1 > -+ > Aydw?™  denote the ordered non-zero limiting eigenvalues of Rs.

It follows from (6.5) that the eigenvalues of asymptotic covariance matrices R and

Rg are related by

.?41
il

Ai(6w) + o? fori=1.--M

.‘>4|
I

o’ fori=M---W (6.6)

Thus the eigenvalues of R can be divided into two groups: the “signal-space eigen-
values” A\; > .-+ > Ay which are larger than o2, and the “noise-space eigenvalues”
A = --- = Aw which are equal to o2. Therefore the detection problem would be
easy if the asymptotic matrix R were available; one could simply identify the number

of sources as the largest M for which
Am # o (6.7)

The asymptotic covariance matrix is not available in practice, since only the sam-
ple covariance matrix R can be computed using a finite number N of snapshots. How-
ever, for asymptotic conditions (i.e. large SNR and/or N), R closely approximates
R. Under these conditions, the eigenvalues of R can be related to those of R using
the perturbation model of Section 2.3. Specifically, the sample eigenvalues i can be
expressed as the sum of the asymptotic eigenvalues A; and random perturbations y;

as follows

>;\\,' = A;-{-p; (6.8)

For asymptotic conditions, and with Gaussian statistical assumptions, the first and

second order statistics of y; are available from classical perturbation theory, and show
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that

B{w} = ol/N) (6.9)
E{ups} = o8 +o(L/N) (6.10)

where N is data set size, §;; is the Kronecker delta and o(1/N) denotes terms of order
1/N? with ¢ > 1 [9].

For detection algorithms which estimate source number based upon considera-
tion of the sample eigenvalues, the fundamental problem is to decide whether the
perturbed eigenvalue ); includes a signal and noise component A(éw) + o2, or only
the noise component 2. The critical issue is to reliably detect that the asymptotic
eigenvalue )y is larger than Apryq, as in (6.7), based upon the observation of the

sample eigenvalues Aps, Apr4-

6.2 Prior Detection Threshold Results

Lee and Li [13] previously have derived expressions for the SNR detection threshold
Ep of so-called Normal Detection Algorithms for 1-D scenarios. The approach and
results of [13] are summarized below.

The authors define detection algorithms as Normal if the dominant term of the
probability . that the algorithm incorrectly estimates the number M of sources
depends only upon the number of sources M, the number of sensors W, the data set
size N and the ratio

= () (6.11)

o2

where Apr(6w) is the smallest non-zero eigenvalue of Rs, and o2 is the noise power. -
Specifically, 7. does not depend upon the other non-zero eigenvalues A (bw),-- -,
Am-1(6w) of Rs. Additionally, 7. for Normal algorithms is assumed to decrease
monotonically with increasing pp. The authors argue that it is reasonable to as-

sume that any eigenvalue-based detection algorithm is normal, and show that two
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popular detection algorithms, the Akaike Information Criteria [22] and the Minimum
Descriptive Length [23] algorithms indeed are both normal.

The authors exploit the 1-D eigenvalue results of Lee [12] to show that the smallest
eigenvalue of Rs for closely spaced sources is proportional to §w*M-1), That is, as

éw — 0 for 1-D scenarios,
Iv(bw) = Appbu®M-1) (6.12)

where Aps is constant with dw. Using (6.12) in (6.11), the authors argue that SNR
threshold £p at which Normal Algorithms can reliably estimate the number of sources

in 1-D scenarios is proportional to éw=2M-1), That is

Kp

€p = Sw2(M-1)

(6.13)
where Kp is a positive quantity dependent upon the specific detection algorithm, the
source spacing and covariances, the sensor array and the number N of snapshots.
The authors of [13] do not address the corresponding data set size detection thresh-
old Np. In the following, we extend the results of [13] using classical perturbation
theory to identify the expressions for both the detection thresholds £p and Np, for

non-degenerate multi-D scenarios.

6.3 “Necessary Conditions” for Reliable Detec-
tion

To obtain detection threshold expressions for both SNR and N, we first formulate
statistical models for the sample eigenvalues Xi. It is then argued that any eigenvalue-
based detection algorithm can succeed only if the difference between the mean of
the smallest signal-space eigenvalue and the mean of the noise-space eigenvalues is
substantially greater than the standard deviation of each. The SNR and N values

required to satisfy the above condition result are deemed to be the detection threshold
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values.
A first order statistical model of the eigenvalues of R can be obtained from the per-

turbation model (6.8) and the classical perturbation statistical models (6.9), (6.10).
Specifically, we obtain

E{X} = Xi + o(1/N) (6.14)
Cov.{\};} = %?6;,-+0(1/N) (6.15)
Std. Dev.{};} = —:\L+O(I/N) (6.16)

vN

We assume that to detect that there are M sources present, any eigenvalue based
detection algorithm needs to detect that the sample eigenvalues Am and XM+1 have
unequal asymptotic values. If the standard deviations of the sample eigenvalues M
and XM+1 are small relative to the difference between their means, then there is a
basis for seeking an algorithm for reliably detecting that there are M sources present.
On the other hand, if the standard deviations of Anr and XM+1 exceeds the difference
between their means, then it is unlikely that there exists any algorithm that can detect
the number of sources with high probability. Accordingly, one strongly suspects that
a necessary condition for the existence of an algorithm capable of detecting M closely

spaced sources with high probability is that
Std. Dev.{Am} < f-[E{fM} - E{Ams1}] (6.17)
and
Std. Dev.{Ays1} < f-[E{Am} — E{Aps1}] (6.18)

where f is a suitable fraction (e.g. f =1/8).
For large N, substitution of the statistical model (6.14), (6.16) in (6.17) and (6.18)
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gives to first order
Ant S
N < f [)‘M —)‘M+1]
and

AM 41

IN < f- P\M “/_\M+1]

(6.19)

(6.20)

for large N. Note that Ay — 5\M+1 is the smallest eigenvalue Ap(éw) of Rg, which was

elucidated in Chapter 5. Accordingly the results of Chapter 5 together with (6.19)

and (6.20) enable us to make useful statements about the detection thresholds £p

and Np.

6.4 SNR Detection Threshold £, for Asymptotic

Domain

Since the eigenvalues are ordered, Ay > Apry1, (6.20) is necessarily satisfied if (6.19)

is satisfied. Therefore we focus on condition (6.19), and substitute expressions (6.6)

for the asymptotic eigenvalues to obtain

A (bw) + o2

N < fAm(bw)

or with rearrangement,

0.2

N < f-)\M(‘Sw)[l_f.l\/]_v‘]

which for large fv/N (e.g. N > 64 for f = 1/8) is equivalent to

02

ﬁ < f‘/\M(&‘))
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Thus (6.23) is a first order approximation (for large N) of the postulated necessary
conditions (6.17), (6.18) for the detection of M sources.
To define the SNR detection threshold, we extend the approach used in [13]. We

represent the source amplitude correlation matrix P as follows

where P, is a constant matrix the eigenvalues of which sum to unity, and p is a
variable scale factor. Note that representation (6.24) retains the correlations between
the source powers. We define the signal SNR to be the ratio of the scale factor p to

the noise power o2. That is
SNR = p/o? (6.25)

We deem satisfactory detection performance to be possible whenever condition
(6.23) is satisfied. We define the detection threshold power to be the smallest value

Pmin Of p for which (6.23) is satisfied for a fixed N, and define the detection threshold
SNR to be

gD = pmi'n./o'2 (626)

Analogously, we define the data set size detection threshold Np to be the smallest
value of N for which (6.23) is satisfied for a fixed power factor p.

Analysis in Chapter 5 has identified the eigenvalues ;(éw) of Rs for closely spaced
sources in non-degenerate multi-D scenarios. Specifically for small éw, the smallest

eigenvalue of Rs was shown to be
A(bw) =~ p- Ay ™ (6.27)

where parameter m satisfies (2.62) and Ay is a positive quantity calculable from Pj,

the normalized source configuration vectors qj - - - @i, and the generic arrival vector
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@(&) and its spatial derivatives of up to m* order. Specifically A is the smallest non-
zero eigenvalue of the limiting eigenmatrix Rym o of the form described by Theorem
5.2, with the identification P = F,.

Substitution of (6.25) and (6.27) in (6.23) and re-arrangement gives

1

SNR-VN >
I DV

. o m (6.28)

Identification of the SNR detection threshold gives

I(b —2m
where
, 1
Ko = 55 (6.30)

6.5 Data Set Size Detection Threshold N for

Asymptotic Domain

Rearrangement of (6.21) gives

vN > HH:\—A%] (6.31)

Substitution of (6.25) and (6.27) in (6.31), followed by squaring and use of (6.30)
shows that

1 ! 2
N > L
= 7 [1+AM- SNR wm]

1 Ky 17
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for small éw. It follows from (6.32) that the minimum data set size Ap is given by

+

F " SNR fw?m (6.33)

, 2
Ny o [1 K} ]

The following approximations to Np follow from (6.33) for the conditions noted:

If (M- SNR 6w?™) > 1 (6.34)
1 2
Np = F[H,\M. SNR 5w2m] (6:35)
If (M- SNR &™) < 1 (6.36)
Np =~ K T (6.37)
~ |SNR éw?m

Since Ap is independent of éw, condition (6.36) is satisfied for sufficiently small éw
for any given scenario geometry and SNR. Hence the data set size threshold takes the

simple form (6.37) for fixed SNR and sufficiently small éw.

6.6 Summary

The threshold expressions (6.29), (6.33), (6.35) and (6.37) are important since they
provide explicit expressions for the minimum SNR and data set size N required to
satisfy the “necessary condition” (6.23) for detection using any detection algorithm.
The threshold expressions can be used to generate model detection curves for any
given scenario, since the constant K}, can be calculated explicitly given the array
geometry, sensor directional response, source configuration and source correlations.
The threshold expressions (6.29), (6.33) (6.35) and (6.37) also clarify the trade-
off between SNR, N and maximum source spacing éw required to maintain source
detection performance. For example, if noise power is doubled in a given scenario
with dw small enough to satisfy (6.36), then the size of the data set must increase by
a factor of 4 to maintain detection performance. If, on the other hand, the maximum
source spacing 6w satisfies (6.36) and is decreased by a factor of 2 in a 2-D non-

degenerate scenario with M = 6 sources (with m = 2), then to maintain detection

129



performance with a fixed data set size N, the SNR must increase by a factor of
2% = 16. Alternately if the SNR remains fixed, then the data set size N must increase
by a factor of 28 = 256!!! Thus the detection threshold data set size Np is very
sensitive to the maximum source spacing in the asymptotic domain.

By way of comparison, if the maximum source spacing éw is decreased by a factor
of 2 in a 1-D scenario with M = 6 sources, then to maintain detection performance
with a fixed data set size N the SNR must increase by a factor of 21° = 1024 !!! For
small éw and a given number of sources M, the detection thresholds are typically

much smaller (more favorable) in multi-D than in 1-D scenarios.
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Chapter 7

Eigenstructure of Rg for Partially

Degenerate Scenarios

Analysis in Chapter 5 applied the non-degenerate SVD results of Chapter 4 to derive
simple, explicit expressions for the limiting eigenmatrices that characterize the eigen-
structure of covariance matrices Rs for small éw in scenarios for which Conditions
C1-C3 are all satisfied. An important characteristic of the identified eigenstructure is
that eigenvalue shells 0--- m — 1 are full, and shell m contains a number of additional
eigenvalue results sufficient to account for the rank M of Rg.

This chapter uses the partially degenerate SVD results of Chapter 4 to derive
somewhat more complicated expressions for the limiting eigenmatrices of Rg appli-
cable to partially degenerate scenarios for which only one of Conditions C1 or C2
are satisfied. Supporting analysis shows that satisfaction of only one of these condi-
tions can produce situations in which one or more eigenvalue shells 0---m — 1 have
vacancies.

Recall from Section 2.5.1 that Rg can be factored as

Rs = BB" (7.1)
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where B is a rectangular matrix with Taylor series (2.60) of the form

B= fj P A,T,IT (7.2)
p=0
Parameter dw is a scalar measure of the maximum spatial frequency separation be-
tween the sources, A,, consists of the p** order partial derivatives of the generic arrival
vector @(&) as in (2.50), ', depends on the normalized source spatial frequency vec-
tors qi,- -+, qum as in (2.58) and II results from the factorization of source cross-power
matrix P in (2.47).

This chapter shows that for partially degenerate scenarios matrices B are par-
tially degenerate. Specifically, that Condition C1 is sufficient for matrix B to satisfy
Condition I, and that Condition C2 is sufficient for matrix B to satisfy for Condition
II. Conditions I and II are defined in Chapter 4 in terms of matrix Bo(e) of the form

Bo(e) = f:Bo,pep (7.3)

p=0

To characterize the limiting singular matrices of the factor B of Rs, we make the

identifications

Bo(C) = B
€ = bw
Bo, = A, (7.4)

Accordingly, the limiting SVD of B is identified using the expressions of Theorems
4.2 and 4.3 for the limiting singular matrices of partially degenerate matrices. The
limiting eigenstructure of Rs then follows immediately from the limiting SVD of B.

A geometrical interpretation for scenario degeneracy is introduced, which relates
Condition C1 to array geometry, and Condition C2 to source configuration. For
example, in a 2-D DF scenario scenario with a planar array of isotropic sensors and
M = 6 far-field sources clustered near array broadside, Condition C1 is violated if

all the sensors lie on a conic section curve (e.g. a circular sensor array). Similarly,
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Condition C2 is violated if all the sources lie on a conic section curve in spatial
frequency (e.g. circular source configuration).

The chapter is organized as follows. Section 7.1 identifies the limiting SVD of B if
only one of Conditions C1 or 02 are satisfied. Section 7.2 then identifies the limiting
eigenstructure of Rg for such partially degenerate scenarios. Section 7.3 introduces
a geometrical interpretation of Conditions C1, C2 in terms of array geometry and
source configuration. Section 7.4 presents numerical simulations that illustrate the

limiting eigenstructure of Rg in partially degenerate scenarios.

7.1 Limiting SVD of B for Partially Degenerate

Scenarios

In this section, we characterize the limiting SVD of the factor matrix B of Rs for
degenerate scenarios that satisfy only one of Conditions C1, or C2.

Recall from Section 2.5.3 the non-degenerate scenario Conditions C1, C2:

C1. Rank{Ao} = fig forp=0

Rank{P[;io,---A,,_l] A} = @, forp=1,---m—1 (7.5)
C2. Rank{T'e} = ny forp=0

Rank{T, Pro,rps]} = My forp=1,---m—1  (7.6)

where 71, is the number of p™ order partial derivatives of @) with respect to the
elements of &, and M is the number of sources.

Recall from Section 2.5.3 that integer parameter m is defined as the smallest num-
ber of successive leading terms of the Taylor series (2.61) of matrix A that must be
included in a partial sum for the partial sum to have full rank. For degenerate scenar-
ios for which Conditions C1-C3 are not all satiéﬁed para.me‘ter m is not necessarily

given by (2.62). For partially degenerate scenarios, we identify m as follows:

C1 satisfied: Provided Conditions C1 and C3r (detailed subsequently) are satisfied
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m = mr, where mr satisfies

Rank {[T#, -+ ,Tfme_ny]} < M < Rank{[T%, --- ,T% ]} (1.7)

C2 satisfied: Provided Conditions C2 and C3, (detailed subsequently) are satisfied

m = mj, where m  satisfies

Rank{[Ao, -+ ,Apms-]} <M < Rank{[do, -+ ,Am;|} (7.8)

Conditions C1 and C2 are central to the simplified SVD analysis of partially
degenerate matrices B. Conditions C3r, C3; are modified versions of Condition C3

defined as follows.

C3r:  Rank{P, ... AnTm Pra.rn 1} =R~ Rank {[Th, - Tt _y]} (7.9)

C3;:  Rank{P .. . Anlm Pra..on_j} =R~ Rank {[Ao, -+ , Am;_1] }(7.10)

m—l

Conditions C3p or C3; are sufficient to guarantee that m determined by (7.7) or (7.8)
is such that the partial Taylor series of matrix A consisting of terms of order p = 0
through p = m, does in fact have rank M. We will find that whenever Conditions C1
and C3r, or C2 and C3 are satisfied, the limiting SVD of B as éw — 0 is entirely
determined by the p = 0- - - m terms of (7.2); subsequent terms only add higher order
effects.

Next recall from Chapter 4 the Conditions I, II, IIIr and IIlc defined for matrices
By(e).

I Rank{P,_,)Bop} = Rank{Bo,} forp=1,---m—-1 (7.11)
II. Rank{Bo, Pr,_,}} = Rank{Bo,} forp=1,---h—1 (7.12)
Illr.  Rank{Pq,_,;Bos PR} = R—Rank{[Bl,, --- ,Bh. 4|} (7.13)

IIlc. Rank{P[Cﬁ,_I]Bo,,;, P[R,-,.-;]} = R — Rank {[Bo,o, ety Bo.ﬁlc—ll} (714)
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Matrices By, are the matrix coefficients of the Taylor series for By(¢) in (7.3), and
Cp-1, R,-1 respectively aggregate the columns and rows of Bgg--- Bop_1 as defined
in (4.7), (4.8).

Recall from Chapter 4 that integer parameter 7 is defined as the smallest number
of successive leading terms of the Taylor series (7.3) of matrix Boy(e) that must be
included in a partial sum for the partial sum to have rank equal to that of By(¢). For
degenerate scenarios for which Conditions I-III are not all satisfied parameter m is
not necessarily given by (4.6). |

To relate the non-degenerate scenario Conditions C1, C2 to the non-degenerate
matrix Conditions I, II, and identify the associated parameter  for partially degen-

erate cases, we develop the following result.

Lemma 7.1 : If B and By(€) have Taylor series as in (7.2) and (7.3), and given
identifications (7.4) then

a) if Conditions C1 and C3r are satisfied with m = mr, then so are Condi-

tions I and IIIr with /» = mr,

b) if Condition C2 and C3, are satisfied with m = m, then so are Condi-

tions II and Illc with = m.
where mr and m are respectively defined by relations (7.7) and (7.8).
Proof: See Appendix H.

Consequently, the limiting singular matrices of matrix B for the two types of

degenerate scenarios addressed can be identified using Theorems 4.2 or 4.3, as follows.

Theorem 7.1 : If B has Taylor series in éw of the form (7.2), and Conditions C1
and C3r are satisfied, then

1) ‘P[Bo,o.'"Bk_j,o] = P[Cllcl—ll k = 0 sesmr (7.15)

where

C,:I_l - [AOFQH, (A1F1HP[([‘0[I)I;]), L (Ak—lFk—lHP[(I‘OH)",---(F;,_ZH)"])] (7.16)
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2) l)[B(,)‘,o.--.B,','_l,o] = P[(Fol'l)'l,..-(l‘,‘_lrl)h] k= 0.-- mr (7.17)
AqToll k=0

K Bro = o (7.18)
(P[Cg—llAk) (FkHP[(Fon)h,...(r‘k_ln)h]) k=1,---mr

Proof: From the result of Lemma 7.1, Theorem 4.3 is applicable to B with m =
mr when Conditions C1 and C3r are satisfied. The results (7.15)-(7.18) are
immediate from Theorem 4.3, using (7.4) and identification (5.15) of Lemma
5.1.

Theorem 7.2 : If B has Taylor series in éw of the form (7.2), and Conditions C2
and C3, are satisfied, then

1) P(BO,Oo"'Bk—l,O] = P[AD,...Ak_,] k=0.--my (7.19)
2) P[Bg.O""Bl':-m] = P[Ri'_;] k=0--- my (7.20)
where
{1 = [(AoToID)", (AsTaID)*Pagy), -+ ((AkcrTeca I Pidy,..4, )] (7:21)
Aololl k=0
3) Bio = { e . (7.22)
(P[A0|"‘Ak—1]Ak) (FkHP[RL’_I]) k= 1,--- m4

Proof: From the result of Lemma 7.1, Theorem 4.2 is applicable to B with m = m
when Conditions C2 and C3 satisfied. The results (7.19)-(7.22) are immediate
from Theorem 4.2, using (7.4) and identification (5.17) of Lemma 5.1.

Theorems 7.1, 7.2 express the By explicitly in terms of factor matrices Ay, T,
and II of the Taylor series of B. The expressions are more complicated than those
obtained for non-degenerate scenarios in Theorem 5.1, due to the structure of C” in
(7.16) or of R” in (7.21). Nevertheless, with mr and m 4 respectively defined in (7.7)
and (7.8), Theorems 7.1, 7.2 identify all the non-trivial By.

The expressions for the limiting singular matrices of B identified above are applied

in the next section to identify expressions for the limiting eigenmatrices of Rs.
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7.2 Limiting Eigenstructure of Rgs for Partially

Degenerate Scenarios

This section characterizes the limiting eigenstructure of Rgs for partially degenerate
scenarios by identifying expressions for the limiting eigenmatrices of Rs.

By construction of the SVD, the limiting eigenmatrices of Rg are simply the outer
products of the limiting singular matrices of B. Hence the limiting eigenmatrices Rar o

of Rs corresponding to limiting eigenvalues proportional to §w?* are
a h
R2k,0 = BkvoBk,D (7-23)

where By are the limiting singular matrices of B corresponding to the limiting
singular values proportional to éw*.
The limiting eigenmatrices Ryro of Rs can be straightforwardly identified for the

two types of partially degenerate scenarios addressed as follows.

Theorem 7.3 : If Rg is formed as the outer product of matrix B with Taylor series

in éw of the form (7.2), and Conditions C1 and C3r are satisfied, then

[ ATl II*T: Ah k=0
(Pioz_,1Ak) (TkILPr,myh .0y )

« (Prommy - (rumymp I*TR) (AfPicr_)) k=1,---mr
| 0 k> mp

>

Raro

(7.24)

where C}_; is as defined in (7.16).

Proof: Immediate from (7.23) and Theorem 7.1.

Theorem 7.4 : If Rg is formed as the outer product of matrix B with Taylor series
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in éw of the form (7.2), and Conditions C2 and C3 are satisfied, then

[ AoToIl ITT} Al .
(l)[A.o,'"/ik_l]A'k) (Fknl)[RZ_l])

. (P[R;:—zlnhrt) (A;:P[Ao,...,ik_l]) k =1,---my
0 k> my

>

Rako

’

(7.25)

\

where R]_, is as defined in (7.21).

Proof: Immediate from (7.23) and Theorem 7.2.

Theorems 7.3, 7.4, express the Ry explicitly in terms of factor matrices A,,, | A
and II of the Taylor series of B. The expressions are more complicated than those
obtained for non-degenerate scenarios in Theorem 5.2, due to the structure of C” in
(7.16) or of R” in (7.21).

In the non-degenerate case, Corollary 5.4 explicitly identified the number n; of
limiting eigenvalues in each eigenvalue shell of Rs. We now develop a bounding

relation for n; applicable to partially degenerate scenarios.

Corollary 7.1 : If Rg is formed as the outer product of matrix B with Taylor series
in éw of the form (7.2), and either set of Conditions C1 and C3r or C2 and
C3 is satisfied, then the number n; of limiting eigenvalues of Rg proportional
to 8w? is less than or equal to the number 7 of k** order partial derivatives of
d(&) with réspect to the elements of &, for k = 0,---m. That is,
ng = Ty k=0

(7.26)
ny < Nk k=1,---m

where m = mr if Conditions C1 and C3r are satisfied, and m = m if Condi-

tions C2 and C3 are satisfied.

Proof: Immediate from the applicable Theorem 7.3 or Theorem 7.4, since Ay is at.

most rank 7x, and the rank of a product is at most the rank of any of its factors.
For partially degenerate scenarios Corollary 7.1 shows that 7x provides an upper
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bound on the number n;, of limiting eigenvalues of Rs proportional to §w?* as §w — 0.
We note from Corollary 5.4 that the bound is satisfied with equalityfor k =0---m—1

in non-degenerate scenarios.

7.3 Geometric Interpretation of Degeneracy

To help clarify the two types of partially degenerate scenarios, this section provides a
physical interpretation for Conditions C1 and C2 in terms of sensor array geometry
and source configuration, respectively, in the context of a 2-D scenario with a planar
array of isotropic sensors and far-field sources clustered near array broadside.

Conditions C1 and C2 are respectively defined in terms of matrices A, and T',. For
a 2-D scenario with a planar array of isotropic sensors and far-field sources clustered
at array broadside, the applicable forms of /ip, I', for p = 0,1,2 are restated here
from (2.68), (2.59):

o For 2-D scenarios where 7; = [ry;, ]! is the location of the ¢** sensor in sensor
plane, and the reference parameter vector &y is taken to be at array broadside

o = [0, 0]%, we have
1 Tz1 Ty1 T:I Tz1Ty1 1‘32/1

2
1 TzW  Tyw Tow TaWTyw T;‘;w

e For 2-D scenarios, with §; = (g}, gy;]°

To = [1, 1]
o e o ]
| v15 qyM |
&/ o /2 ]
Iy = 9z19y1, *°° QzMIyM (7.28)
/2 2
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Consider Condition C1 with m = 3. The linear independence of the columns of

Ao, A; and A, required by Condition C1 implies that
0 = [Ao, A1 Aja (7.29)

is satisfied only iff & = 0.
Now suppose that there exists a @ # 0 that satisfies (7.29), and hence that Con-
dition C1 is not satisfied for p = 0,1,2. In that case, the i** row of (7.29) is of the

form
— . : 2 2
0 = a1+ 7-aersi+J - Qaryi — a7y, — QsTgiTyi — Q6T

yi

= f(7) (7.30)

where f(7;) denotes a suitable 2nd order polynomial function of the elements of 7;.
Eq. (7.29) can only be satisfied with & # 0 if Eq. (7.30) is satisfied for each 7y - - - Fy
for some @ # 0. Therefore Condition C1 is violated for p = 0,1,2 if the sensor
coordinates 7 - - - Fw all satisfy a (non-trivial) second order polynomial function (i.e.
conic section equation). In terms of the geometry the sensor array, Condition C1
is violated for p = 0,1,2 if all the sensors are located on a conic section curve (i.e.
circle, ellipse, parabola, hyperbola, line).

A parallel argument shows that Condition C1 is violated for p = 0,1 if the sensor
coordinates 7 - - - Ty all satisfy a first order polynomial function (i.e. the sensors are

co-linear). Extension of the argument to arbitrary m gives:

Geometric Interpretation of Violation of Condition C1: For ‘a 2-D scenario
with a planar array of isotropic sensors, and far-field sources near array broad-
side, Condition C1 is violated for p = 0---m — 1 if the sensors are located on

a curve described by a (m — 1)* order polynomial equation.

An analogous argument applied to the source configuration establishes that Con-
dition C2 is violated for p = 0, 1,2 if all the source spatial frequency offset vectors

¢i, - @u are located on a conic section curve (i.e. lie on a circle, ellipse, parabola,
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hyperbola, line). Similarly, a co-linear source configuration violates Condition C2 for

p = 0,1. Extending to arbitrary m, we have

Geometric Interpretation of Violation of Condition C2: In 2-D scenarios,
Condition C2 is violated for p = 0---m — 1 if the sources are located on a
curve described by a (m — 1)** order polynomial equation in spatial frequency

space.

Illustrative examples of scenarios with circular source configurations, and with

circular sensor arrays, are presented in the next section.

7.4 Example Partially Degenerate Rg Eigenstruc-

tures

To illustrate the accuracy of the foregoing limiting eigenstructure theoretical expres-
sions for partially degenerate scenarios, we compare the predicted limiting and exact
eigenvalues for matrix Rs for the two partially degenerate 2-D direction finding sce-
narios of Examples 2.4 and 2.5 of Section 2.6.

The examples involve a planar array of W = 16 unit-gain, isotropic sensors, and
M = 6 far-field sources clustered near to the array broadside.

We assume that the sources are correlated and have equal powers. Total source
power is taken to be unity. Specifically, the source cross-power matrix P is taken to
be (5.39). The matrix factor B of Rs in such scenarios is of the form (5.40), with
Taylor series of the form (5.41).

The limiting and exact eigenvalues of Rs for two partially degenerate scenarios

are compared numerically in the following.

Example 7.1 : For this example, the array and source geometries are defined as

in Example 2.4. That is,

Array: Sensors in a sparse grid per Figure 2-4A,
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Sources: Sources clustered around broadside in a circular configuration per

Figure 2-5B.

As shown in Example 2.4, this scenario satisfies Conditions C1 and C3r with
m = mr = 3. Consequently, the limiting eigenmatrices of Rs may be deter-

mined using Theorem 7.3.

Figure 7-1 shows the eigenvalues of Rs for a range of emitter separations éw.
Solid curves depict the exact eigenvalues; dashed lines depict the limiting be-
havior predicted by our analysis. The horizontal scale denotes spatial frequency
separation éw normalized by the array beamwidth BW, so that unity on the
horizontal scale of the graph corresponds to maximum source separation of one

beamwidth (i.e. w/BW=1). The vertical scale denotes the eigenvalues.

Clearly the limiting expressions again capture the essence of the eigenvalues
for source separations of less than one beamwidth. The limiting eigenvalues
are grouped into eigenvalue shells as dw — 0, with ng = 1 having slope of 0
dB/decade, n; = 2 having slope of 20 dB/decade, n, = 2 having slope of 40
dB/decade, n3 = 1 having slope of 60 dB/decade. Thus the k£ = 2 shell is not
full for this partially degenerate scenario, and there is one eigenvalue in the

k = 3 shell.

The theoretical expressions accurately predict the eigenvalues of Rg for small
source separations dw for this partially degenerate scenario which satisfies Con-

ditions C1 and C3p.

Example 7.2 : For this example, the array and source geometries are defined as
in Example 2.5. That is,
Array: Sensors in a circular geometry per Figure 2-4B,

Sources: Sources clustered around broadside in a “double chevron” configura-

tion per Figure 2-5A.

As shown in Example 2.5, this scenario satisfies Conditions C2 and C3,, with
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m = m = 3. Consequently the limiting eigenmatrices of Rs may be determined

using Theorem 7.4.

Figure 7-2 again shows the eigenvalues of Rg for a range of emitter separations
Sw. Solid curves depict the exact eigenvalues; dashed lines depict the limiting
behavior predicted by our analysis. The horizontal scale denotes spatial fre-
quency separation dw normalized by the array beamwidth BW, so that unity
on the horizontal scale of the graph corresponds to maximum source separation

of one beamwidth (i.e. éw/BW= 1). The vertical scale denotes the eigenvalues.

Clearly the limiting expressions again capture the essence of the eigenvalues for
source separations of less than one beamwidth. The limiting eigenvalues are
again grouped into eigenvalue shells as éw — 0, with no = 1 having slope of
0 dB/decade, n; = 2 having slope of 20 dB/decade, n; = 2 having slope of
40 dB/decade, nz = 1 having slope of 60 dB/decade. Thus the £ = 2 shell is

not full for this partially degenerate scenario, and there is one eigenvalue in the
k = 3 shell.

The theoretical expressions again accurately predict the eigenvalues of Rs for
small source separations éw for this partially degenerate scenario which satisfies

Conditions C2 and C3,.
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Chapter 8

Cramér-Rao Bounds: Background

The Cramér-Rao (CR) lower bound on the variance of unbiased parameter estimates
is a commonly used yardstick for assessing the estimation accuracy of direction finding
algorithms [15]. The CR bound is of interest since it is not algorithm specific, but
rather characterizes the optimum performance of any unbiased algorithm. The CR
bound can also provide insight into the individual impact of scenario parameters such
as sensor array geometry, source powers and correlations, source configuration, and
maximum source spacing. Such insight has been developed by Lee [11] for closely-
spaced sources in 1-D scenarios. The thesis results pertaining to CR bounds develop
analogous insight for closely-spaced sources in multi-D scenarios.

This chapter lays a foundation for the subsequent CR bound analysis, and is orga-
nized as follows. Section 8.1 reviews the data model assumptions, and introduces the
assumptions required for finite CR bounds. Section 8.2 summarizes prior CR bound
expressions which serve as the point of departure for our analysis. Section 8.3 clarifies
the CR bound expressions by reference to the MUSIC null spectrum. Section 8.4 re-
views the analysis approach for closely-spaced sources in multi-D. Section 8.5 details
conditions which simplify the multi-D CR bound analysis, and defines three cases
with distinct CR bound structure. Illustrative examples of each case for scenarios

that satisfy the simplifying conditions are presented in Section 8.6.
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8.1 Data Model ‘

Recall from Section 2.2 that the data model of interest is
§it) = AZ(t)+e() t=1,---N (8.1)
where
A £ [@(G),&@), - &) . (8.2)

d(&) is a generic arrival vector for signals with spatial frequency &, Z(t) is a vector
of signal complex amplitudes and €(¢) is a vector of additive noise signals the #**
sampling index. For 1-D DF problems, & = w is a scalar. For multi-D DF problems,
& is a vector of spatial frequency parameters which are related by transformation
to the source direction parameters (ex. azimuth, elevation, (2-D) and possibly also
range (3-D)).

The vectors @(&), Z(t) and €(¢) in data model (8.1), (8.2) are assumed to satisfy
assumptions A1-A4, X1-X3 and E1 of Section 2.2.1. The data model (8.1), (8.2)
with the foregoing assumptions corresponds to the Conditional Model [15], [11] for
which the sequence #(1), Z(2),--- Z(N) of source signal vectors is fixed (frozen),
whereas the additive noise vector €(t) varies randomly over the ensemble of sample
values.

Two additional assumptions used in our CR bound analysis are

A5. the number of sensors exceeds the number of sources by at least the scenario

dimensionality D

W > M+D (8.3)

A6. the D first order partial derivatives of @(i) with respect to the elements of &,
at each source direction & = &;, (j = 1:-- M) are linearly independent from

the source arrival vectors @(&), « - - @(Dar).
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Our analysis will show that Assumption A6 is required for the existence of finite
CR bounds; Assumption A5 is an enabling condition for A68. For 1-D scenarios, A5

simplifies to the well known relation
W > M+1 (8.4)

which states that the number of sensors is greater than the number of sources.

8.2 Referenced CR Bound Expressions

The point of departure of our CR bound analysis are compact expressions for the
submatrix of the inverse Fisher Information matrix applicable to the spatial frequency
parameters (See discussion in Section 2.4). Such compact expressions have been
developed by Stoica and Nehorai for 1-D scenarios [15], and served as the basis for
the development by Lee [11] of simple explicit CR bound expressions for the case of
closely-spaced sources in 1-D scenarios.

The compact expressions developed by Stoica and Nehorai have been extended to
multi-D scenarios by Yau and Bresler [16]. The latter results serve as the basis of our

analysis of closely-spaced sources in multi-D scenarios. The referenced expressions of

(15], [11] and [16] are summarized below.

8.2.1 Compact Expression for CR Bound in 1-D Frequency
[15]

For 1-D scenarios, the CR bound on sample frequency covariances takes the form [15],

E{(ﬁ—ﬁ) (ﬁ—ﬁ)h} > Bc (8.5)

where

ko]l
>

= [wl7w27"',wM]t (8.6)
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Q 2 (51,09, 0m) (8.7)

and &; denotes an unbiased estimate of w; ( = 1--+- M). Bc is the M x M submatrix
of the inverse Fisher Information matrix corresponding to the elements of Q.

Stoica and Nehorai [15] have shown that this submatrix can be expressed as follows
B = L {Re[H O Jﬁt]}'1 (8.8)
2N '

where © denotes the Hadamard element-by-element matrix product, and

H & D'I-A(A*A)AY D (8.9)
D = [d{w),d{ws), - d{wwm)] (8.10)
= a d
(w) = S-dw) - (8.11)
B 2 Ly amau (8.12)

t=1

The formulation (8.8)-(8.12) is very useful for both analytical and numerical work
in that it bypasses the tedious calculation associated with calculating and inverting
the (large) Fisher Information Matrix. However, a shortcoming to the formulation
(8.8) is that the dependence of B¢ upon scenario parameters such as array geometry,

source configuration, and source powers and correlations remains implicit.

8.2.2 Limiting Form of B; for M Signals Closely-Spaced in
1-D [11]

A recent paper by Lee [11] analyzed the bound (8.8) for the case of M signals closely-
spaced in 1-D frequency. The signal frequencies were represented by scalar frequency

parameters wy - - -wys as follows:

w; = wo+ qjbw (8.13)
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j =1---M. Here wp denotes a fixed reference frequency, the g; are normalized offsets
such that ¢; < g2 < ---qa with ¢g = —1/2 and qpr = +1/2, and éw is a variable scale
parameter corresponding to the separation of the extreme frequencies. The paper
analyzed the bound (8.8) as the multiplier 6w — 0. Representation (8.13) facilitates
analysis of the bound (8.8) since the problem is reduced to one with a single variable
parameter éw. The condition éw — 0 corresponds to coalescing the signal frequencies
about the reference frequency wy.

The approach of [11] is to identify the dominant term of H for small éw as follows

2(M-1) ] .
H = -(ﬁ“(’j)‘—l—!)z—e}:la'M)\I:pr+o{(5w)2("-l)+l} (8.14)
where

e 2 [1- AGARA) 1AM @ 00(w) (8.15)
A 2 [aw),a®, ..., a0 (8.16)
a® 2 %a(w) ] (8.17)
¥ £ Diag.[¥/(ar), ¥ (), ¥'(am)] (8.18)

M
¥(e) 2 Tla-a) (8.19)

=1

’ A d"wb(‘I)

¥(g) = d (8.20)
U 2 aat (8.21)
i 2 [1,1,---1] (8.22)

Eq. (8.14) is then substituted into (8.8) to obtain the following first order represen-

tation of Be for small 6w,

Bg = (8w)M K + O {(bw)2M-141} (8.23)
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where

2 2 . ~y1=1 .
K‘ = Z %!) a,{t,leM‘I’-l [Re {P}] Ly (8.24)

The result (8.23), (8.24) is quite useful in that it is applicable to a broad range of
scenarios, and it makes explicit tradeoffs among scenario parameters such as frequency
separations, signal powers and correlations, and the sampling grid. Specifically these

quantities are represented in (8.23), (8.24) as follows

frequency separations <= %'(g;) - (6w)M?
: ~71-1
signal powers and correlations <= [Re {P}]

sampling grid <= IIEM"2

Thus, for example, it is immediately clear from (8.23) for any one-dimensional scenario
that redﬁcing the frequency separation factor éw by a factor of 10 in a M = 3 signal
scenario requires that the source powers be increased by 2(M —1)-10dB = 40dB for an
unbiased estimator to maintain the same frequency standard deviation. By requiring
the standard deviation of frequency estimates to be smaller than the separation of
adjacent frequencies, it also was argued that the threshold Signal-to-Noise ratio €g
at which an unbiased estimator can resolve M signals closely-spaced in 1-D frequency

satisfies
Er ~ Kpg/(N - 6u™™) (8.25)

where N is sample size and Kp is a (positive) function of relative frequency separa-

tions, signal powers and covariances and array geometry. See [11].
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8.2.3 Compact Expression for CR Bound in Multi-D [16]

Yau and Bresler [16] have extended the result (8.8)-(8.12) to multi-D scenarios with

parameter vectors & - - - @p. For the multi-D case,

>

[wu rrWpy WMt ‘-UDM]‘ (8-26)

on 2

A [@B11-@py - Bras - - Doy (8.27)

@;; denotes an unbiased estimate of i** element of &;, (: = 1---D,j =1:--M). In

the multi-D case, Bo is an MD x MD matrix with the compact form [16],

2
_ 9 5t117!
Bo = ov {Re[H © PL]} (8.28)
with
H £ D'[I-A(A*A) A" D (8.29)
D £ [D(@), - D(@wm)| (8.30)
N/~ A [ 6 - — a -y =
b@) 2 [ma@) i@ (8.31)
L (?):d';]
ﬁ+ é ﬁ®1DxD
Ipxp P11 -+ loxp-Pm
= : : (MD x MD) (8.32)
| loxp -Pim -+ loxp - Pum

where p;; is the ¢, j®* scalar element of the sample cross power matrix P of (8.12), ®
denotes Kronecker product, and 1pxp denotes the D x D matrix of ones.

The thesis objective with respect to the CR bounds is to derive expressions for Bg
for closely-spaced sources in multi-D scenarios which are analogous to those of Lee
[11] for 1-D scenarios. Specifically, we would like to explicitly identify the dependence
of B¢ upon scenario parameters such as maximum spatial frequency separation éw,

source configuration, source powers and correlations, and array geometry.
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8.2.4 2-D DF Example

To illustrate the structure of the CR bound expressions (8.28)-(8.32) for a multi-D DF

scenario, consider an example two-dimensional D = 2 scenario with M = 3 sources.

The spatial frequency vector has two elements & = [w;,w,]. The DF problem is to

estimate the spatial frequency vector for each of the three sources, namely &, ,&;, @3.

Let p;; denote the 7, j* element of sample source amplitude covariance matrix P,

for i = 1,2,3 and j = 1,2,3. The expanded and transposed matrix ﬁi then takes

the form

Pu pu Pu Pn P Pa
Pn pu Pa Pn Pa1 Par
50 | P2 P12 P2 Pn P Pxn
P2 D2 P2 D22 P32 P32

513 D13 D23 P23 Pas D33

Lﬁla P13 D23 D23 P33 Pa3 i

and matrix By takes the form

Pi1-Zu Ppa-Ziz Parc Zis
Bec = = |Req p12-Za1 Doz Zaz Paz- Za3
D13 Z31 P23 Zsz D3z Zas

where

Zi; = D(Q,)h[l—A(AhA)—lAh]D(L;,)

(8.33)

-1

(8.34)

2% 2 (8.35)

8.3 Relationship to the MUSIC Null Spectrum

The formulation (8.28) for the multi-D CR bound on Cov{{l} can be clarified by

reference to the MUSIC null spectrum.

The null spectrum A(&) for the MUSIC algorithm for an arbitrary direction @ is
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defined as follows:

(@)* [I — A(4*4)~1 AR &(@)
lla(@)|1?

A@) 2 2 (8.36)
where A denotes the matrix (8.2) of source arrival vectors. This scalar function has
the useful property that it equals zero whenever & coincides with a source spatial
frequency &;. The MUSIC algorithm uses this property as a basis for estimating
source directions. The spectrum function Syusic(@) of Table 1.1 is asymptotically
equal to the inverse of the null spectrum A(&), for large data set size N. Thus
the values of spatial frequency at the maxima of the spectrum function, used as the
MUSIC estimates of source spatial frequencies, are asymptotically equal to the values
of spatial frequency at the minima of the null spectrum. '

Straightforward differentiation of (8.36) shows that the Hessian matrix H; of A(&)

- -t .
at w = wj 18

2 - Re{D(@;) [I - A(4*A)14*] D(@;)}
la@;)I?

H; (8.37)

Thus the real part of the block of H corresponding to the j** source in (8.28) simply
is equal to ||@(&;)||?H;/2.
Additionally, the block of B! corresponding the j** source is

_ N - pj; - ||a@(@;)1I
1 _ i i _
(B3Y),; = . ; (8.38)
where subscript [j; denotes the j* block of D x D elements along the main diagonal,
and pj; denotes the sample power of the j** source.

For uncorrelated sources, matrix P is diagonal, hence matrices 13+ and B¢ are
block diagonal. Therefore from (8.38), the block of B¢ corresponding the j** source
is
2

Z H! (8.39)

Br),..
Bolin = N5, GG ©
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For correlated sources, a lower limit on the (Bc)(j; can be established as follows.

From the identity for the inverse of any partitioned matrix Z,

(27),, 2 (2] (8.40)

Use of (8.40) with Z = Bg!, and (8.38) gives

2

z ;! (8.41)

Be)ig 2 5. &l
(Bo)ya N - pj; - la(e;)||1? 7

We note from (8.39) and (8.41) that for given source powers, the Cramér-Rao variance
bound for correlated sources is lower bounded by the CR bound for uncorrelated
sources.

It is well known that the Hessian describes the curvature of a quadratic surface.
Eqgs. (8.38), (8.41) indicate that the CR bound can be expected to be favorable for the
i** element of &; corresponding to a large i** diagonal element of H; or, equivalently,
corresponding to large curvature of the spectrum A (&) along the i** spatial frequency
coordinate. Similarly the CR bound can be expected to be unfavorable for the I**
element of & corresponding to a small curvature of the spectrum A(&) along the It

coordinate.

8.4 Analysis Approach

The main CR bound results of this thesis are obtained by identifying explicit expres-
sions for the multi-D CR bound (8.28) for the case of M signals closely-spaced in
multi-dimensional frequency. The analysis approach is an extension to multi-D of the
approach used by Lee [11] for 1-D scenarios.

As introduced in Section 2.5, our approach is to express the spatial frequency

vector for the j** source as

B; = Fo+§ow (8.42)

154



j =1---M, where & denotes the fixed reference frequency vector, ¢; the normalized
vector offsets such that max ll@; — @;]| = 1, and éw the variable scale parameter corre-
sponding to the sepa.ra,tiorylJ of the extreme frequency vectors. Paralleling the approach
of [11], we analyze the bound (8.28) as the multiplier 6w — 0. Representation (8.42)
facilitates analysis of the bound (8.28) since the problem is reduced to one with a
single variable parameter éw. The condition §w — 0 corresponds to coalescing the
signal frequencies about the reference frequency vector &.

Taylor series representations are central to our CR bound analyéis. We recall from
Section 2.5.2 that the generic arrival vector @(&) has a Taylor series about éw = 0 of

the form

i@) = SePAG@  (Wx1) (8.43)

p=0
where the columns of A, are the p™* order spatial derivatives of @(&) at @,

s [Pa@) i@ o)

A
P ’ - ’ ’
aw{’ awl 1 aW2 aw%

(W x 7ip) (8.44)
=y
where 71, is the number of p** order spatial derivatives. Vector 4,(§) is @i, x 1, real,
constant with éw and depends only on the normalized direction offset vector §. For

2-D applications with ¢ = [gz, ¢,]* the vectors ¥,(§) are

- ;
) qz/6
. 9z/2 20,/2
- — T —- - q:cq
W@ =01, M@= » D= qa |» BD=| | (845)
% 2/2 929,/2
’ | /6 ]

Vector ¥,(¢) has the general form (2.55) for 2-D scenarios. Expressions analogous to
(8.44), (8.45) can be written for Taylor series of any dimensionality.
The CR bound Bg is expressed in (8.28)-(8.32) in terms of matrices A and D(&J;).
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It follows from (8.43) that matrix A in (8.2) has Taylor series of the form

A = [@(é),- - d(dm)]
= Y SwPA,T, (8.46)

p=0

with matrix A, as in (8.44), and T, is a constant real fip X M matrix of the form

T, £ [F(@), - 3o(dn)] (8.47)

A Taylor series characterization of D(&;) is likewise straightforwardly identified
from the Taylor series (8.43) of (&). As defined in (8.31), each column J:‘(l:;j) of

D(&;) is a partial derivative of the generic arrival vector d(&) at w;, hence
- 0 1|0
i - . — -y - — -— —_— - f - 8.4
@) = |pmao) - [itan+ 60 T

since & = &p + éwq. Hence from (8.31) and (8.48) we obtain

D@;) = Y 6w AL, (d) (8.49)
p=0
where
SN2y A 0%(9) 07(q) 97(9)
FP(qJ) - aql ’ aq2 ’ ) aqv =t (850)

and A,, 7,(q) are as in (8.44), (8.45). Note that I'(g;) = 0 since 7o(¢) = 1, and that
the A, and I',(q;) are constant with 8w, so that (8.49) is a Taylor series in 6w.
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8.5 Sufficient Conditions for Non-Degenerate CR

Bounds

The CR bound analysis presented in Chapter 9 is simplified by identification of struc-
tural conditions satisfied in many DF scenarios; we refer to such scenarios as charac-
terized by non-degenerate CR bounds.

Analysis will show that the behavior of the CR bound for small éw depends
fundamentally upon the interaction between the columns of matrix A and of the
matrix D(@;) of first spatial derivatives of d(w) at &;, for each j = 1..- M. For

convenience, we define the augmented matrices
Z £ [ow-D@), 4] W x (M + D) (8.51)

for j = 1.+ M, which aggregate the columns of D(&;), scaled by 6w, and the columns
of A. We note that =; has full rank M + D by Assumption A6.
Since the constituent matrices have Taylor series (8.49) and (8.46), each Z; also

has Taylor series of the form

Zio= ) 6wPA () (8.52)

=0

where A, is as in (8.44) and
- A . - —
(&) £ [09(@) » Ty fip X (M + D) (8.53)

with [',(g;) as in (8.50) and T, as in (8.47).

The sufficient conditions for non-degenerate CR bounds are simply stated as:

Scenarios with non-degenerate CR bounds are scenarios which satisfy Condi-
tions C1-C3 that specify a non-degenerate matrix A, and additional scenario
Conditions CR1-CR2 (detailed subsequently) that specify non-degenerate aug-

mented matrices =;, for j =0--- M.
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The sufficient conditions C1-C3 are restated here from Section 2.5.3:

C1. Rank{A,} = o forp=0
Rank{Py, .4 14} = 7 forp=1,---m—1 (8.54)
C2. Rank{Ts} = 7o forp=0
Rank{T, P[[‘g,,__’l":_ll} = fip forp=1,---m—-1 (8.55)
. m—1
Cs3. Ra.l’lk{P[A'o’___Am_I] AmI‘m P[[‘g,,,,,p),:l_’]} = M- Z ﬁp (856)
p=0

where M is the number of sources and m is the minimum number such that the sum
of terms p = 0- - - m of the Taylor series of matrix A is full rank. If Conditions C1-C3

are all satisfied, then m is determined by

m-1 m
Yon, <M < Yo, (8.57)
p=0 p=0

We define the additional scenario conditions analogously, using the component

matrices of the Taylor series (8.52) for augmented matrices:

CR1. Rank{Ao} = fio forp=0
Rank{P, .4 _Ap}' = A,  forp=1,---x —1(8.58)
CR2. Forj=1---M, Rank{T4(q;)} = o forp=10
Rank{T',(g;) By @)t _y@m} = oo forp=1,---x—1(8.59)
CR3. Forj=1---M,
-1
Rank{P, ...q,_,) AxT5(&) Py, oy} = M+D = XZ 7, (8.60)

p=0
where M +D is the number of columns in augmented matrix =;, and x is the minimum
number such that the sum of terms p = 0--- x of Taylor series (8.52) of matrix Z is

full rank. If Conditions CR1-CR3 are satisfied, then x is determined by

x-1 X
don, <M+D < Y my (8.61)
p=0 =0
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8.5.1 Definition of Cases I, IT and III

Subsequent analysis will show that the small §w behavior of the CR bound in multi-D

scenarios depends fundamentally upon a parameter v, defined as
A m
v = Y n,—-M (8.62)
p=0

Referring to definition (8.57) of m, we see that v reflects the number by which M
can be augmented without changing the value of m. We designate v as the number
of “vacancies” the m* SVD shell of matrix A. Parameter » depends only upon the
number M of sources, and the dimensionality D of the scenario, which determines
the values of 7.

Referring to definition (8.61) of x, we see that x is simply the value of m if M is

augmented by D. Thus we relate x to the number of vacancies by

m v>2D
X = (8.63)
m+1 v<D

For convenience, we define three distinct cases based upon the value of vacancy

parameter v:

Case I. (v = 0) In this “full shell” case there are no vacancies in the m® shell, and

x=m+1.

Case II. (v > D) In this case there are at least D vacancies in the m** shell, hence

X =m.

Case IIL. (0 < v < D) In this case there are some, but fewer than D, vacancies in

the m* shell, hence x = m + 1.

Subsequent analysis will be simplified by separate consideration of each Case.
Examples in the following section illustrate the three Cases I, II and III, and show
that the CR bound simplifying Conditions C1-C3, and CR1-CRS3, are satisfied for

typical direction finding scenarios.
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8.6 Example Scenarios for CR Bounds

This section introduces the direction finding scenarios which will be used in numerical
simulations to illustrate CR bound thesis results. The four scenarios are derived
from the non-degenerate scenario of Example 2.3. The scenarios differ only in the
number M of sources present, and illustrate the occurrence of Cases I, II and III for
M =3,4,5,6.

Each example involves a planar array of W = 16 unit-gain, isotropic sensors, and
far-field sources clustered near to the array broadside.

We recall from (2.68) that for this scenario the matrices Ao, Al, A, and Aj; are

1 Tz1 Ty rf  rarp  Th
Ao= ,Al—] ,A2=—1
1 Taw TyWw raw  TaWTyw r?,w
S Thtn rﬂrgl 7'31
Ag=—j-| : : : (8.64)

3 2 2 3
Tew TewTyW TzWTyw Tyw

From (2.59), we recall for this scenario that

Po = [11 T 1]
r, = Iats o deM
L qy1, e QM |
a/2, - 4im/2
112 = dz19y1, *°° q=MqyM
i qzl/za q;M/2 i
- )
/6, -+ @u/6
2 2 ... g2 2
T, = qzl(Iyl/ ’ qa:quM/ (865)
qzlq:l /2, s szsz/z
q31/6’ o s e qu/6
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Therefore the partial derivative matrices I',(q;) in (8.50) take the form

To(@;) = [0 ’ 0]
. [ 1 .0
Pl(‘lj) =
0 , 1
qzj ’ 0
La(d5) = | a5 4
i 0 ’ q‘.llj i
2
. 9oiQyi » 95;/2
Pa(gy) = | .7 d (8.66)
/2, 4z
| 0 9 q:]/z i

The four example scenarios differ in the number M of sources which are active
out of the 6 sources in the “double chevron” source configuration of Figure 8-1. The

scenarios are defined as follows:

Example 8.1 : For this example M = 3 and the array and source geometries are

as follows.

Array: Sensors in a sparse grid per Figure 2-4A,

Sources: Sources SC1, SC2, SC3 clustered around broadside in a triangular

configuration per Figure 8-1.

Per Example 2.3, the columns of Ao, A, Aj, Az in (8.64) are all linearly inde-
pendent for this sensor array. It can be verified that the rows of [y, [y, given
by (8.65) with M = 3 are all linearly independent for this source configuration.
Thus the partial Taylor sum of A with terms p = 0,1 has full rank M = 3, and
thus m = 1. Consequently, Conditions C1-C3 are all satisfied with m = 1.

Similarly, the rows of I'y(qj), I'(;) given by (8.53) with (8.65) and (8.66) are
all linearly independent for this source configuration, and I'y(g;), I'i(¢;) and

I'5(q;) have M + D = 5 linearly independent rows. Thus the partial Taylor sum
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Example 8.2

as follows.

Example 8.3

as follows.

SC4

A

of = with terms p =

X
3

'SC2 SC6

A. Double Chevron

Figure 8-1: Normalized Source Configuration for CR Bound Simulations

0,1,2 has full rank M = 5, and thus x = 2. Consequently,
Conditions CR1-CRS3 are all satisfied with x = 2.

Since v = 0, this is an example of a Case I scenario with non-degenerate CR

: For this example M = 4 and the array and source geometries are

Array: Sensors in a sparse grid per Figure 2-4A,

Sources: Sources SC1, SC2, SC3, SC4 clustered around broadside as in Figure

Paralleling the arguments of Example 8.1, Conditions C1-C3 are all satisfied
with m = 2, and Conditions CR1-CR3 are all satisfied with x =2 and v = 2.

This is an example of a Case II scenario with non-degenerate CR bounds.

: For this example M = 5 and the array and source geometries are

162



Array: Sensors in a sparse grid per Figure 2-4A,
Sources: Sources SC1, SC2, SC3, SC4, SC5 clustered around broadside as in
Figure 8-1.

Paralleling the arguments of Example 8.1, Conditions C1-C3 are all satisfied
with m = 2, and Conditions CR1-CRS3 are all satisfied with y =3 and v = 1.

This is an example of a Case III scenario with non-degenerate CR bounds.

Example 8.4 : For this example M = 6 and the array and source geometries are

as follows.

Array: Sensors in a sparse grid per Figure 2-4A,

Sources: Sources SC1-SC6 clustered around broadside as in Figure 8-1.

Paralleling the arguments of Example 8.1, Conditions C1-C38 are all satisfied
with m = 3, and Conditions CR1-CR3 are all satisfied with y =4 and v = 0.

This is another example of a Case I scenario with non-degenerate CR bounds.
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Chapter 9

Cramér-Rao Bounds: New

Multi-D Results

The principal results of this chapter are simple expressions for the multi-D CR bound
(8.28), valid for the case of M closely spaced sources. The expressions make ex-
plicit the individual contributions of scenario parameters such as maximum source
separation éw, source configuration, source powers and correlations, and sensor array
geometry. These results can be regarded as extensions of those of Lee [11] to the
multi-D case.

It is shown for typical multi-D scenarios that the expression for Bg for small §w

is
Bo = (8w) VK, + 0 (6w~2x-1141) (9.1)

where x is the integer that satisfies (8.61) for scenarios which satisfy Conditions C1-
C3 and CR1-CR3, and matrix K, is identified in Section 9.4. The parameter x
determines the sensitivity of the bound to the maximum source spacing éw for closely
spaced sources. Matrix K, is constant with éw and depends upon the normalized
source configuration, the array geometry and cross-power matrix P. Expressions for
K are identified in the following sections for each Case I, II and III defined in Section

8.5, with the general properties listed in Table 9.1.
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Table 9.1: Properties of (9.1) for Cases I-III

Case X Rank{K,}
I m+1 full
II m full
III m+1 partial

The corresponding bound on the variance of &;;, the estimate of the i** component

of the j** source parameter vector &;, is identified to be

1 b"j + O(6W—2(X—l)+l) (92)

Va.r {le} Z N - SNRJ 5w2(x_1)

for small w, where SNR; denotes the signal-to-noise ratio for the j* source, é,nd bi;
is constant with 6w and is identified in Section 9.4.1. In the case that K, is not full
rank (Case III), we identify “preferred” coordinate directions for which the leading
term of (9.2) vanishes, and show that along those coordinates Var {&;;} has the more
favorable (smaller) §w=%x-?) dependence for small éw.

In order to identify the small dw behavior of Bg, we begin with the prior expres-
sions (8.28)-(8.32). Since the matrix P, in (8.28) is constant, the w dependence of
B¢ has its origins in the éw dependence of the matrix H. Thus this chapter first
identifies the (distinct) small éw expressions for H in each Case I, II and III. These
expressions are then transformed into small éw expressions for B;', and finally for
Be.

The chapter is organized as follows. Section 9.1 identifies explicit small éw ex-
pressions for matrix H in each Case I, II and III for scenarios that satisfy the non-
degenerate conditions C1-C3 and CR1-CR3. Section 9.2 then develops explicit
small §w expressions that identify B;! in each of the three cases. Finally Section 9.3
derives small éw expressions for B¢ in each of the three cases. A summary of CR
bound results is presented in Section 9.4, including expressions (9.1) and (9.2), and a
characterization of the CR bound along preferred frequency coordinates. Illustrative

simulation examples are presented in Section 9.5.
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9.1 Small 6w Behavior of H

The 6w dependence of B¢ has its origins in the dw dependence of matrix H. To

clarify the 6w dependence of H, we rewrite (8.29) as follows

H = Z(w)*Z(bw) (9.3)

where
Z(6w) = [I-A(A*A)AH [D@), -+, D(@wm)] (9.4)

with
Dw;) & [5‘3)—15(@),---%5(5)]&% (9.5)

The factor [I - A(AhA)"lAh] is a projection matrix onto columns of W x M
matrix A, and hence 1) has constant non-zero rank W — M for all éw # 0 from
Assumptions A1, A3, and 2) has unity non-zero eigenvalues for all dw. Therefore,
[I - A(AhA)'lA"] does not approach zero as éw — 0. Similarly the typical column
di(@;) of D(@;) approaches the constant vector d;(@) as 6w — 0. However, numerical
examples show that the product (9.4) is such that Z(éw) — 0 as éw — 0. Conse-
quently, the essential properties of Z(éw) and, therefore of H, for éw — 0 derive from
the interaction of the factors [I ~ A(AhA)’lAh] and D(&;).

To clarify the small 6w behavior of H, it is desirable to obtain appropriate
small dw characterizations of [I - A(AhA)"lAh] and D(&;), and then of the product
[I - A(AhA)‘lAh] D(&;). Such characterizations are developed below.
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9.1.1 Small 6w Behavior of [I — A(A*A)~14%|
Subject to Conditions C1-C3, prior thesis results show that

[I-A(4* ) 4* = [1-[do, -+, Amet, AnTmPry.on_]]
 [Aoy <+, Amety AnTmPry,rn_g] "] + O(6)
= [I- AA*| + O(bw) (9.6)

(see Corollary 5.3a with the specialization Il = I), where A, and T', are as in (8.44)
and (8.47), and where we define

e

A [4o, -1 Amr, AnT] (9.7)

A + _ _
= FmP[F:)'»"'vF','n-:] (FmP[rg,...,r";l_l]) N X Ny (9-8)

I
The second equality in (9.6) is a consequence of the equality of the column spaces of
AumP[pg,...,pgn_I] and of AmrmP[[‘g,...,[‘":‘_l](FmP[r‘g'...,[";'_l])-l--

For convenience, we define

o4y = zk: ip (9.9)
p=0
As a consequence of Condition C1, all the column spaces of submatrices /io, .

Ap_y of A are linearly independent, and make a rank contribution of fifg,..m—1} to
(9.7). As a consequence of Condition C3, the final matrix AT, contributes ad-
ditional independent columns to complete the column space of A. The role of the
post-factor T}, of A in (9.7) is to select a subspace of that defined by the columns
of Am to produce the result

Rank{A4} = M (9.10)

As a consequence of Condition C2, the columns of matrices T%,---,T%_, are

linearly independent, and thus the (M x M) nullspace projection Frs .p» 1 has
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M — ngo,..m-13. Since P[pg,...,pgn _,] appears as a factor in (9.8), T, can have rank at
most M —fifq,..m—1). As argued above, Ame must have rank at least M —i{g,..n—1}-

Therefore it must be that
Rank{T,} = M - n{0,-m-1} (9.11)

From (9.8) it is clear that T, is defined by ¢1, - - -, gar and, therefore, by the relative
geometry of the sources. We note specifically that projection T, is independent of

dw or of the sensor array geometry.

9.1.2 Small Sw Behavior of [I — A(A4"4)~14% D(&;)

The small w behavior of D(;) is described by the Taylor series (8.49), for conve-

nience restated here,

D@;) = Y 6w A T,(g)) W x D (9.12)

p=0

where I',(g;) is defined in (8.50).

It is evident that the pre-factor [I — A(A"A)~1A"] in (9.4) acts to annihilate all
components of the columns of D(&;) which lie in the subspace defined by the columns
of A; the residual matrix then specifies the behavior of Z(éw) and, therefore, of H.

Therefore it is desirable to decompose D(Lb'j) as
D(@) = AB+ F(&;) (9.13)

where matrix f specifies a linear interpolation of the columns of A, and matrix F(&;)

is the interpolation residual. Pre-multiplication of (9.13) by [I - A(A"A)‘IA"] shows
that |

[1— A(A*A)14%] D(@;) = [ - A(A*A)™ A%) F(@;) (9.14)

regardless of the choice of matrix 8. Representation (9.13) facilitates analysis if matrix
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B is selected to clarify the small éw properties of the product [I - A(A"A)'IA"] F(&;).
It is convenient to express the residual matrix F(J;) in terms of the augmented

matrix Z; defined in (8.51). Specifically

F(@) = D(@;)— AB

= = oD@y, A
—dwp
_ 1= | 9.15
= o i I (9.15)
—bwp

. Since matrix =; has Taylor series (8.52) in 6w, the residual matrix '(J;) has series

expansion in éw of the form

B&) = 3614, [T() r,,][ I ] WxD  (9.16)
=0 b

Note that decomposition (9.16) may or may not be a Taylor series, depending on how
B depends on éw.

As 6w — 0, reference to (9.6) shows that the dominant term of [I - A(A"A)‘lAh]
in (9.14) acts to annihilate the components of the columns of F'(@;) which lie in the
subspace defined by the columns of A. Reference to (9.16) shows that indeed the
p=0---m — 1 series terms of F (&;) are entirely contained in the space spanned by
the columns of A, as are the components of the p = m series term that are spanned
by the columns of ApT,. Consequently, it is desirable to select matrix 8 so that
the dominant components of the residual matrix F(@;) for small éw are linearly
independent from the (doomed for small éw) components which lie in the column
space of A.

To obtain a residual with a linearly independent dominant term, we select 8 to

annihilate entirely the p = 0,---m — 1 terms of (9.16), and also annihilate the Ame
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component of the p = m term. Specifically, a “desirable” B would satisfy

Po@) , To [ I }

: : —dwp
Pm-1(@) » T
| Tl'n(d5) 5 Tl |
= f(q;-),r][ I ] (9.17)

—éwp
where we define the shorthand

To |

=
i

fi{o,.m} X M (9.18)
1-|m—1

L TmI‘m -

Fo(d)

np

I(¢) L ffo-m} X D (9.19)
Fm—l (q )

| Tnlm(@) |

As a consequence of Conditions C2 and C3, matrix I" has full column rank M. The

projection onto the columns of T' is of the form

Iy A0, 0
ITt = ‘°""m-”(;‘ (©rrm=1) . (9.20)

since the projection identified in (9.20) is a pre-factor of I in (9.18) and, from (9.11),
is of rank M equal to that of T.

Therefore we select a “desirable” f to be

B & 6w lTHI(G) (9.21)
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Straightforward substitution with use of (9.20) shows that (9.21) satisfies (9.17).
Substitution of (9.21) in (9.16) results in

(@) = i_‘;aw"-b«ip 0@, [ g
—I+H(G)

= 3 6w A ,(g)) (9.22)

p=m

where we define the short.hand

U () = [00(), T 1 (9.23)
~T*HI(G;)

Note that ¥,(g;) is real, and constant with 6w, so that (9.22) is a Taylor series in éw.
From (9.17), we see that

b,(g5) = 0 p=0,---m~1 (9.24)
Tn¥n(f;) = 0 (9.25)

To clarify further analysis of the product [I - A(AhA)“lAh] F(&;) and conse-
quently, of matrix H, for the small éw, the following subsections address each Case

I, II, and III individually.

9.1.3 Small éw Expressions for H in Case I

As defined in Section 8.5, Case I is the “full-shell” case for which there are no vacancies

in the m®™ shell (v = 0), that is
fiformy = M . (9.26)

We consider scenarios with non-degenerate CR bounds for which conditions C1-C3

and CR1-CR3 are satisfied.
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Reference to (9.26), (9.8) and (9.11) shows that in Case I, projection T}, has full

rank and hence
Tn = 1 (9.27)

Therefore the columns of matrix A in (9.7) spa,n the entire column space of A,

Specifically, we have
A= 4 (9.28)
where
A& [Ao, A1, -\ Ancay An (9.29)
Furthermore, use of (9.27) in (9.25) shows that for Case I
V(@) = 0 (9.30)

Therefore the p = m term of Taylor series (9.22) of F(@;) is zero for Case I, as are
the p=10---m — 1 terms from (9.24). Thus the leading (possibly) non-zero term of
(9.22) is identified as

F(GJ) = 6wm/im+1\i’m+1((7j) + O(ﬁw’""’l) (9.31)
Substitution of (9.31), (9.6) and (9.28) in (9.14) gives

[ - A(A*4)™ A% D(@))

[ — A(A"A)71 AY) Fr(3;)
= {[1- AA*] + O(6w)} {6w™ Ams1 W mia (§5) + O(6w™+) }
= 5w'"8m+1 ¢’m+l(6j) -+ 0(&0'"“) » (932)
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where we define the constant matrix

2

Emit [1- AA*] Apia (9.33)

and from (9.23) we have

‘i’m+1(ffj) é [f‘m+1(¢i‘j), Pm+1] I | (9-34)
—I+1(g)

(Note that I't may be specialized to I'"! for Case I, since reference to (9.18) and
(9.26) shows that I is square, and full rank subject to Conditions C2, C3.

Equation (9.32) together with (9.33) and (9.34), identify the dominant term of
[I— A(A*4)~1 A*] D(&;) for small 6w in Case L.

The question arises as to whether the identified dominant term of (9.32) consti-
tutes a complete first order representation of the entire span of (9.32). For scenarios
with non-degenerate CR bounds, the leading term of (9.32) is indeed full rank, as
shown by the following result.

Lemma 9.1 : In Case I with v = 0, if Conditions C1-C3 and CR1-CR3 are
satisfied, then the leading term of (9.32) has full column rank. That is

Rank {Ems1¥mir(3)} = D (9.35)

forj=1---M.
Proof: See Appendix I.

Therefore subject to Conditions C1-C8, CR1-CR3, a complete first order charac-
terization of the product [I — A(AhA)’lAh] D(&;) for Case I is given by (9.32) with
(9.33) and (9.34).

Substitution of (9.32) in (9.4) gives

Z(6w) = 6u™Emia [Tmaa(@), - Tma (@) + O(B™)  (9.36)
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and then (9.3) yields
H = 6w2”‘H2(m+1) + (9(5w2m+1) . (937)

where

. - . - h . - . -
Ha(my1) = [‘I’m+1(q1),---\1’m+1(qm)] Ers1Em1 [‘I’m+1(<I1),""I’m+1(<IM)] (9.38)

Egs. (9.37), (9.38), with (9.33), (9.34), characterize the small éw behavior of H
for Case I in scenarios with non-degenerate CR bounds. Note that Hj(m41) may not
be full rank. Nevertheless, analysis in Section 9.2 will show that Hjm41) and the
result of Lemma 9.1 are sufficient to identify a full rank first order representation of

Bg! for small éw in Case .

9.1.4 Small 6w Expressions for H in Case I1

Next we address Case II of Section 8.5 for which there are at least D vacancies in the

m' shell (v > D), that is
fifo...m} = M+D (9.39)

We again consider scenarios with non-degenerate CR bounds, for which conditions

C1-C3 and CR1-CR3 are satisfied.
Reference to (9.39), (9.8) and (9.11) shows that in Case II, projection T}, has

only partial rank. Therefore columns of matrix A may not span the entire column
space of A,. Consequently, unlike Case I, it is possible that the dominant term of
[I - A(AhA)‘lAh] in (9.14) does not entirely annihilate the p = m term of F'(J;) in
(9.22).

Directly from (9.22) we identify the (possibly) non-zero leading term as

F(@) = 6w An¥a(q;) + O(bw™) (9.40)
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Substitution of (9.40) and (9.6) in (9.14) gives

[1- A(A*A) A* D@;) = [1- A4"A)4Y F(@;)
{[1- 44%] + O(6w)} {6 Anim() + O(6™) }
= 5wm-la,,,\if,,.(¢y,-) + O(8uw™) | (9.41)

where we define the constant matrix
En £ [I-AA*] A, (9.42)
and from (9.23) we have
Un(@) & [[w(@),Tu|[ 1 (9-43)
[ ~T*1(g) }

Equation (9.41) together with (9.42) and (9.43) identify a candidate dominant
term of [I - A(A"A)‘IA"] D(&;) for small 6w in Case II.
The identified term of (9.41) is non-zero, and in fact is full rank, for Case II

scenarios with non-degenerate CR bounds, as shown by the following result.

Lemma 9.2 : In Case Il with v > D, if Conditions C1-C3 and CR1-CR3 are
satisfied, then the leading term of (9.41) has full column rank. That is,

Rank {€,¥n(g)} = D (9.44)
fory=1.--M.
Proof: See Appendix J..
Therefore subject to Conditions C1-C3, CR1-CR3, a complete first order charac-

terization of the product [I - A(AhA)"lAh] D(&;) for Case II is given by (9.41) with
(9.42) and (9.43).

176



Substitution of (9.41) in (9.4) gives
Z(6w) = 6™ Em [Um(@), - Um(u)] + O(6w™) (9.45)
and then (9.3) yields
H = 6™ VH,, + O(6uXm-1+1) (9.46)
where
T - - -— h h o — T -
Hyn = [Un(@), Un(@)] ELER [Im(@)s- - Um(@)] (9.47)

Eqgs. (9.46), (9.47), with (9.42), (9.43), characterize the small éw behavior of H
for Case II in scenarios with non-degenerate CR bounds. Again note that H,, may
not be full rank, but that analysis will show that H,, and the result of Lemma 9.2

are sufficient to identify a full rank first order representation of Bg' for small éw in

Case II.

9.1.5 Small 6w Expressions for H in Case III

Finally we consider Case III, for which there are some, but fewer than D, vacancies

in the m* shell (0 < v < D), that is

fiom) < M+D (9.48)

We again consider scenarios with non-degenerate CR bounds, for which conditions
C1-C3 and CR1-CRS3 are satisfied.

Reference to (9.48), (9.8) and (9.11) shows that in Case III, as in Case II, projec-
tion T}, has only partial rank. Therefore columns of matrix A may not span the entire
column space of Ap. Consequently, as in Case II, it is possible that the dominant

term of [I - A(AhA)"lA"] in (9.14) does not entirely annihilate the p = m term of
F(3;) in (9.22).
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Directly from (9.22) we identify the (possibly) non-zero leading term as
F(@) = 6™ Ap¥Un(d;) + O(6w™) (9.49)
Substitution of (9.49) and (9.6) in (9.14) gives
[1- A(A"A).“A"] D@;) = [I- A(A*A)4Y F(@))

= {[I- AA*] + O(bw)} {6w™ 1 A () + O(6™)}
= W™ Un(d;) + O(6w™) (9.50)

where €,,, ¥,,(§;) are as in (9.42), (9.43).

Case III differs from Case I and II in that the identified term of (9.50) is not
full rank D. Specifically €,,¥,,(;) is non-zero, but has only partial rank v (v < D)
for Case III scenarios for which Conditions C1-C3 and CR1-CR3 are satisfied, as
shown by the following. |

Lemma 9.3 : In Case III with 0 < v < D, if Conditions C1-C3 and CR1-CR3

are satisfied, then
Rank {€,¥(qj)} = Rank{€n} = Rank{¥.(3)} = v (9.51)
for j =1--.- M, with the property

6;€m = \I’m(q-;)\pm(q‘])-‘- (952)

Proof: See Appendix K.

Consideration of only the single leading term of (9.22) is thus insufficient to iden-
tify a full rank first order representation of [I - A(AhA);lAh] D(&;) in Case IIL.
Accordingly, from (9.22) we identify two leading terms as
F@) = 8w™ ' Ap¥n(q) + 60™ Ams1 T (§) + O(6w™1)  (9.53)
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Substitution of (9.53) in (9.14) gives

[1- A(APA) 7 AY D@) = 6™ 'Em(bw)Tm(d))
+é6w™ [I - A(AhA)'lAh] Ams1¥mi1 ()
+O(s™) (9.54)

where making use of (9.52) we define

En(bw) £ [I- A(A*A)AY) AU (3)Um ()
= [I- A(4* Ay 4] AnEfEm
= Em+O(bw) (9.55)

Since €,, is a factor of €,,(éw), the rank of €,,(éw) is at most that of £,,. For small
8w, the rank of £,,(6w) is at least that of its leading term €, since the O(éw) term
cannot reduce the rank of the constant term for sufficiently small éw. It follows that

for sufficiently small éw,
Rank{€,(éw)} = Rank{€,} (9.56)

To facilitate analysis, we rearrange expression (9.54) to be the sum of orthogonal
projections onto the column space, and column nullspace, of the leading term factor

Em(bw). That is, we express (9.54) as

[1— A(A"4)7 4] D(&;)
= (Em(8w)Em(6w)t + [I = Em(w)Em(bw)*])

(8™ E m (80) U () + 8™ [T — A(APA) TV AY] A Urmia (35) + O(6™))
= 60 Zn () + 6™ Zinsa (5) (9.57)
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where we define

Zn(@) = Em(bw)Em(bw)t [Em(80)Un(F) + O(6w)] (9.58)
Znr(@) & [ - Em(60)En(6w)?] |

- |[1 - A(A*A) 1 AY) A T (@) + O(6w)] (9.59)
Noting from (9.55) and (9.56) that
Em(bw)Em(bw)t = EnEF + O(bw) (9.60)
and that

[I-€nel] [1 - AA*| A
= {[1-44*] - [1- 44*) dn ([1 - 44*) )"} A
= [1-AA*| A
= Epmp (9.61)

we identify the dominant terms of (9.58), (9.59) for small éw as

Zn(@5) = Em¥nm(d) + O(bw) (9.62)
Zmi1(§) = Emt1¥mia(d) + O(bw) (9.63)

From Lemma 9.3, the dominant term of Z,,,({;) satisfies
Rank{En¥m(d)} = v (9.64)

for all j =1...- M, and therefore that the rank of Zm((j}) is at least v for sufficiently
small w. From (9.56) and (9.51), we see that the rank of factor €, (6w) of Z,(g;) in
(9.58) is v. Therefore it must be that

Rank{Z.(§;)} = v (9.65)
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for sufficiently small éw, and all j =1.-- M.
Substitution of (9.54) in (9.4) yields

Z(bw) = 6w™  Zp + 6™ Zpmpn (9.66)
where
Im & |Zn(@), + Z(@n)]
= Em(bw)Em(6w)* {Em(6w) [Fm(q), -+ Um(Gr)] + O(6w) } (9.67)
Imir = [Zmsa(@)s -+ Zmar (dnr)]

[T~ Em(6w)Em(8w)*]
Al - AW )T AN A [T (@), T (3h0)] + O(6w) } (9.68)

Finally, substitution of (9.66) in (9.3) and use of the orthogonality of the columns

of Z,, and Z,n 4 gives
H = 6w™ Y H,,(6w) 4 6w?™ Hym1)(6w) (9.69)

where

~

Hyn(bw) = Z'Z,

m

Hyims1)(bw) = Z~1l:;+1Z~m+1 (9.70)

and for small éw

Hyn(6w) = [Fn(@), - Umldr)] E4Em [Em(@)s - Fmldinn)]
+ O(bw) (9.71)
Hymin(8w) = [Tmya (@), - ‘i’m+1(§M)}h€fn+1€m+1 [¥maa(@)s - Tmaa(@nr)]
+ O(6w) (9.72)

with Em, Urn(J;) as in (9.42), (9.43), and &,yy, ¥nsa (§;) as in (9.33), (9.34).
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Egs. (9.69)-(9.72) characterize the small éw behavior of H for Case III in scenarios
with non-degenerate CR bounds. We note that by suitably specializing Eqs. (9.69)-
(9.72), we can obtain Eqgs. (9.37), (9.38) for Case I and Eqgs. (9.46), (9.47) for Case
II. Analysis in the subsequent Sections shows that Egs. (9.69)-(9.72), together with
the rank properties (9.64) and (9.65), are sufficient to identify a complete small éw

representation of Bg in Case III.

9.2 Small éw Behavior of B51

This section exploits the representations of H developed in Section 9.1 to identify
small éw representations for the inverse of the CR bound matrix B¢ for each Case I,
IT and III. The B! expressions serve as the basis for identifying expressions for Bg
in Section 9.3.

Reference to (8.28) shows that

2N

Bs' = — ‘Re{H 0 Pt} (9.73)
where from (9.3)
H = Z(bw)*Z(bw) (9.74)
and
Z(6w) = [I- A(A*A)AM [D(@), -+, D(@m)] (9.75)

For each Case I, II and III, the small dw behavior of H has been identified respec-
tively in (9.37), (9.46) and (9.69), and that of [I — A(A*A)7 A% D(@)) (j =1--- M)
respectively in (9.32), (9.41) and (9.54).

To identify a complete small w representation of Bg! suitable for computation
Bg, it is desirable to identify the contribution to the rank of B5! of series terms of

[I - A(AhA)‘lAh] D(J;) of either full or partial rank. To this end, we develop the
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following two enabling results.

Lemma 9.4 : Let G be a MD x MD matrix of the form

G

Re{([®1, - , ®m]"[®1, --- , Bu]) © PL} (9.76)

If ®; has full rank (= D) for j = 1--- M, and P is Hermitian positive definite,

then G is Hermitian positive definite. That is
Rank{G} = MD (9.77)

Proof: See Appendix L.

If each ® ; bas only partial rank, we obtain the following parallel result.

Lemma 9.5 : Let
G = Re{([@, -+, ®u]*[®1, -+, ®m]) @ Pi} (9.78)

If ®; has partial rank r (< D) foreach j =1--- M, and P is Hermitian positive

definite, then G is Hermitian non-negative definite with
Rank{G} = M-r (9.79)

Proof: See Appendix M.

The following sections identify a complete first order representation of B! for

each of Cases I, II and III.

9.2.1 Small éw Behavior of B;! in Case 1

Substitution of (9.37) in (9.73) gives

oN R
B3' = wm?ﬁ - Re{Hym41) © PL} + O(8?™ 1)

= 5w2m‘2—0_]7VG2(m+1) + O(5w2m+l) (9.80)
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where we define

>

Re {H2(m+1) ® ﬁi}
= Re { ([‘i’m+1(q‘1),. . ‘i’m+1(fi'M)]h Emi1
* Emp [‘i’mﬂ(‘fl),' . ‘i’m+1(‘fM)]) © 131} (9.81)

G2(m+1)

where use is made of (9.38) to expand Hj(m41). Use of the block constant property
of P, and of the real property of Ui(q;) (j =1, -+ M), results in

Goymin)y = W Re{(ll, -+, I"E" 1 €mnill, -+, 1) O PL} ¥y (9.82)
where we define the real, constant, block diagonal matrix
¥pnys 2 Block Diag. {¥mia (@), - Pmsr(@a)} (9.83)

To further simplify (9.82), the Hadamard product ® with the enlarged matrix
P_i may be replaced by the Kronecker product ® with the non-enlarged cross-power

matrix P!, with the result
Gamsr) = Wy Re[P' @ER  Emp] Ui (9.84)
-Matrix Gy(m41) is Hermitian positive definite with
Rank{Gam+1n} = M-D (9.85)
as seen by application of Lemma 9.4 to (9.81) with identifications

G = G2(m+1)
& = Emnp1Tmi1(dn) (9.86)

and use of the full rank (= D) property of €41 U,ms1(gy) in Case I identified in

Lemma 9.1.
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Therefore, the identified leading term of (9.80) is a complete small 6w representa-

tion of B! for Case L.

9.2.2 Small éw Behavior of B;' in Case II

Identification of the behavior of B;! for Case II parallels that of Section 9.2.1 for
Case I. For Case II, substitution of (9.46) in (9.73) gives

B3' = 6™V .Re{H, ® Pi} + 0(5w2(m-1>+1)

—5 Gom + O(8uwHm-1+1) (9.87)

Using (9.47) to expand Hj,,, and by rearrangement parallel to that of (9.81)-(9.84),

we define

sz Re{Hzm © 13_:_}

= U Re[P'@ELEL| Fn (9.88)

with the real, constant, block diagonal matrix
¥, = Block Diag. {¥n(@), -+ ¥m(qu)} (9.89)
Matrix G2y, is Hermitian positive definite with
Rank{Gsn} = M-D (9.90)
as seen by application of Lemma 9.4 with identifications

G = G2m
O = EnUn(d) (9.91)

and use of the full rank (= D) property of €,,¥,,(g) in Case II identified in Lemma
9.2.
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Therefore, the identified leading term of (9.87) is a complete small éw representa-

tion of Bg! for Case ILI.

9.2.3 Small éw Behavior of B;! in Case III

Identification of the small éw behavior of Bg' for Case III scenarios is complicated
by the éw dependence of the small éw representation of H in (9.69).
Substitution of (9.69) in (9.73) gives

Bg! = $wim- 1)2N Re { (Ham(6w) + 6w Ho(m1)(6w)) © P}

= 6w 2(m-1>2 =+ [Gam(60) + 662 Giapman) (6)] (9.92)

where using (9.70) we define

Gam(6w) £ Re{Hym(bw)® P}
= Re{(ZL2.) 0 P} (9.93)
Gamin(6w) £ Re{Hagmn(6w) © Py }
= Re{(Z",1Zmn) © Pi} (9.94)

For small éw, we identify the dominant terms of (9.93), (9.94) by a development
parallel to that of (9.84), (9.88) to be

sz((sw) = G2m+(9(5w) (995)
Gz(m+1)(6W) = Gz(m+1)+0(6W) (9.96)

where Gap, is as in (9.88) and Gy(m41) is as in (9.84).
Matrix Gam(éw) and its leading constant term Gin are Hermitian non-negative
with equal but partial rank Mv for small éw in Case III, with
Rank{Gom(6w)} = Rank{Gin} = M-» (9.97)
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for small éw, as seen by application of Lemma 9.5 first with identifications

G = Gaym(bw)

~

0 = Zm(d) (9.98)

and use of the rank v property of Z,(g;) for small 6w identified in (9.65), and then

with identifications

G = G2m
o, = EaVi(F) (9.99)

and use of the rank v property of €,,¥4(;) identified in Lemma 9.3.

Finally, matrix B;' is Hermitian positive definite with
Rank{B;'} = M-D (9.100)

for small éw in scenarios with non-degenerate CR bounds, as seen by application of

Lemma 9.4 with identifications

G = sz(6w)+6w2G2(m+1)(6w)
O = Zn(d) + 6w Zma(F)
= [1- A(a*4) 4% D(@)) (9.101)

since [I — A(AhA)‘lA"] D(&;) is full rank (= D) by the linear independence assump-
tion A6 of Chapter 8.

The small éw representation of B5' in (9.92)-(9.96), together with foregoing rank
properties, are sufficient to identify a complete small dw representation of B¢ for Case

I11, as shown in the next section.
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9.3 Expressions for Beo

This section transforms the small éw expressions for B;' identified in the previous

section for each Case I, II and III into small éw expressions for Bg.

To elucidate the inverse of B5', we make use of the following inverse and pseudo-

inverse properties.

PI1.

PI2.

Let matrix X (éw) be of the form
X(bw) = Xo+ O(bw)
where
Rank{X(éw)} = Rank{Xo}
for sufficiently small éw. It is well known [21] that
X(bw)t = XF+ O(bw)
and if X is full rank then (9.104) specializes to

X(6w)™' = X5+ O(bw)

(9.102)

(9.103)

(9.104)

(9.105)

Let X(éw) be Hermitian non-negative definite and of the form (9.102), with

rank property (9.103), but not full rank. Let G(éw) be Hermitian positive

definite (thus full rank) of the form

G(bw) = X(bw) + 6w?Y (Sw)

where Y (6w) is Hermitian non-negative definite of the form

Y(6w) = Yo+ O(bw)
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It is shown in Appendix N that the inverse of G(éw) in (9.106) is of the form

G(6w)™! = fwPW(bw)*
+ [I = W(bw)*Y (6w)] X(8w)* [T - Y (Sw)W (6w)*]

+ O(6u?) (9.108)

where
W(6w) = P[X(gw)]Y(tsw)P[X(gw)] (9.109)
Px@oy = I—-X(w)X(bw)* (9.110)

The foregoing inverse properties are applied in the following to identify the small

éw behavior of B¢ in each Case I, I and III.

9.3.1 Small éw Behavior of B in Case 1
We rearrange the Case I expression (9.80) for Bz to the form
B3 = 6wt [?gaz(mﬂ) +0(5") (9.111)

where Ga(m+1) is the constant matrix (9.84), full rank by (9.85). Clearly the bracketed
expression in (9.111) is of the form (9.102), and satisfies rank property (9.103) with
full rank. Accordingly, the inverse of the bracketed expression in (9.111) is of the
form (9.105), and the inverse of (9.111) is

Be

2
6™ o Gy + O(8w™+1)
0.2

2N

= bwm

[0, 1 Re {P* @ €L, 1 Emia } Fmnr] T + O(6w72m41) (9.112)

where use is made of expansion (9.84) of Gy(m41)- Expression (9.112) provides a

complete first order representation of Bg for Case I for small éw, since the dominant

term is full rank.
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9.3.2 Small éw Behavior of B; in Case II

A parallel argument elucidates the behavior of B for Case II. We rearrange expression

(9.87) for Bg! for Case II to the form
B3! = fwm-D) [—-sz + 0(&&)] (9.113)

where G, is the constant matrix (9.88), full rank by (9.90). Clearly the bracketed
expression in (9.113) is of the form (9.102), and satisfies rank property (9.103) with
full rank. Accordingly, the inverse of (9.113) is

Be = 6w—2(m-1) G-l + O(aw—2(m-—l)+1)

= 5w—2(m-‘) [\I!‘ Re{P'®€ELEN} \1:,,,] + O(bw™2m=D+1)  (9.114)

where use is made of expansion (9.88) of Gzn. Expression (9.114) provides a complete

first order representation of B¢ for Case II for small éw, since the dominant term is

full rank.

9.3.3 Small éw Behavior of B; in Case III

The structure of B¢ for small éw is complicated in Case III by the non-full rank
nature of the leading term of B;'. We recall expression (9.92) for B;! for Case III
to be

B&-I — 5w2(m—1)2N

[Gam(6w) + 6w Gogms1) (6w)] (9.115)
where Gom(6w), G2(m+1)(6w) are the matrices (9.93), (9.94) non-constant with éw.
Clearly the bracketed expression of (9.115) is of the form (9.106) and is Hermitian
positive definite by (9.100). The term Gapm(6w) as in (9.95) is of the form (9.102), is
Hermitian non-negative definite and satisfies rank property (9.103) with partial rank
Mv from (9.97).

Accordingly, the inverse of the bracketed expression in (9.115) is of the form
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(9.108) and therefore

B = & —-2(m-—1) 02 [5 —2W 6 +
c = w -2_ﬁ w ( w)
+ [I = W(6w)* Gamin)(6w)] Gam(6w)* [I = Gopminy(6w) W (6w)*]

+ O(6?)] (9.116)

where
W(bw) = Pem(s)Goim+1)(6w) PiGsm(sw)] (9.117)
By = I — Gam(8w)Gam(bw)* (9.118)

To identify the dominant term of (9.116) for small §w, we note from (9.95), (9.97),
and (9.104) that

Gom(bw) = Gam + O(bw)
Com(bw)t = Gi, +O(bw) (9.119)

and therefore
P = I— GG, + O(éw) (9.120)

From (9.88) ¥ is the leading term of Gam. By construction (9.89) and Lemma
9.3, ¥,, has the same rank Mv as Gam, hence the projection onto the column space

of Gan 1s simply
GomGE, = W () = ¥, (9.121)
Using (9.121), we simplify (9.120) to

Py = 1=} ¥m +O(6w)
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Substitution of (9.122), (9.96) and (9.88) in (9.117) identifies the constant domi-

nant term of W(éw) for small éw as
W(éw) = Py U Re{P' @ €L Emp} Umi Py )+ O(bw)  (9.123)
Using the block diagonal and real properties of ¥,y and Pge |, we express

P[‘i,:n]\].[‘anRe {ﬁt ® 6’,;+15m+1} ‘i’m+1P[\i::,‘]

‘ ) . h
= Re { [\Ilm+1 (Q1)P[¢m(d'])t], E) ‘I’m+l((1M)P[\iJm(q'M)‘]] 8’7;14'1
Emtr [Um1 (@) Py o> Umi (@) Ppy] ) (9124)

and therefore
Rank{P[‘i,:n]\ilanRe {ﬁt ® Efn+1€m+1} Ui Py} = M(D—v) (9.125)
as seen by application of Lemma 9.5 with identifications

G = P[@:n]\i’:n+lRe{j5t®81':1+18m+1}\ilm+lp[\il£,,]
q)J = €m+1\i;m+1(q})P[‘i’m(ﬂ'j)'] ) (9.126)

and use of the following result:

Lemma 9.6 : In Case III with 0 < v < D, if Conditions C1-C3 and CR1-CR3

are satisfied, then
Rank {€ms1¥ms1(§) Pgnzyq) = D—v (9.127)
fory=1.--M.
Proof: See Appendix O.

Since the factor Pg,,,(s.)) of W(6w) in (9.117) also has rank M(D — v) by (9.97),
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it follows from (9.125) that
Rank{W(éw)} = M(D-v) (9.128)

for sufficiently small éw.
. Reference to (9.125) and (9.128) shows that W (éw) satisfies rank property (9.103)
with rank M(D — v) and therefore the pseudo-inverse is of the form (9.104), namely

. ~ . +
W(bw)* = [P[\i‘:,,]‘l’:nﬂRe {Pt ® 6:1+16m+1} ‘I’m+1P[\i:§"]] + O(6w) (9.129)
Substitution in (9.116) shows that the dominant term of Be for small éw is

o? . ~ . + —om
Bo = 8w [Py Wi Re (P @ EniEmia } Imin gy + O(6w™>™H)
(9.130)

In contrast to Cases I and II, the dominant term in expression (9.130) of B¢ for
Case III is not full rank. Specifically, the leading term of (9.130) which identifies
the components of Bc with a éw™2™ dependence for small dw, is shown in (9.125)
to have only partial rank M(D — v). A complete small éw representation of Bc is
provided by (9.116), which identifies additional components of B¢ with a (more fa-
vorable) §w~=2m*2 dependence for small w. The effect of these additional components

is addressed in Section 9.4.2.

9.4 Summary of Results

The expressions (9.112), (9.114), and (9.130) for Be for small §w can be compactly

expressed as follows

Be = 6w MxVK 4 O(bw2x-DH) (9.131)
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where parameter x defined in (8.61) takes the values

m Case 11
X = (9.132)
m+1 Cases I and III
and the constant matrix K, is defined as
¢, & 2 to ek Pe 1)
K & oo (Buy gUiRe [P @he,] 0, Pu ) (9.133)
where
I C I and II
Py | = L e (9.134)
x=1 I—-V+¥,, Caselll

The general expression (9.133) for K, can be specialized for each of the cases as

follows
;—N (\I’m+1Re [P ® Emii€ m+1] ‘I’m+1) - Case |
Ky = { & (¥.Re[Pr@ELEL| ¥ ) Case IT (9.135)
a_N (P[\Il' ]‘I’m+1Re [P ® Em+18m+l] \I’m+1p[q,: )+ Case III

for k = m,m + 1, with

Em = [I-AAH] An | (9.136)
Empy = [I—AAH] Anp (9.137)
A = [Ao, Ay, o, Anoy, AnTh (9.138)

A = [Ao, Ay, ) Ano, An (9.139)
¥, = Block Diag. {¥U,(d1), ¥p(@), - Tp(@u)} p=m,m+1 (9.140)

We interpret the terms in (9.136)-(9.140) as follows. Matrix &€, consists of the m®
order spatial derivatives of @(&J) at &y, less their projection onto the limiting column

space of A as 6w — 0. Similarly, matrix €,,4, consists of the (m + 1)** order spatial
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derivatives of @() at dy, less their projection onto the column space spanned by all
the spatial derivatives of lower order. Note that the matrix €,,41 specializes to the
vector €y used in the 1-D small §w CR bound expressions (8.14)-(8.24) previously
developed by Lee [11].

To interpret ¥,(q;), we express (9.23) as

‘i’p(ij) = i‘p(‘fj)-rpr‘{—f‘(‘ij)
90 0n " B (9.141)

a=3;
with vector function

B(@) = [%(@) - T,I* ()] (9.142)
where the vector §(§) is defined as

o(q)
() = (9.143)
'-)”m—l (‘D
| T |

The vector function z/;;,((j’) has zeros at each of the normalized source directions ¢ = gj,

j=1---M, since ¥(g;) is simply the j** column I so that
I'"5(g;) = 4; (9.144)

where #; is a vector of zeros except for element j which is 1.

Thus the j** matrix element ¥, (g;) along the diagonal of W, consists of the partial
derivatives with respect to the elements of § of vector function 1/—;,,(@') at the zero
crossing ¢ = §;. Note that the block diagonal matrix \il,, generalizes to multi-D
the diagonal matrix ¥ used in the 1-D small & CR bound expressions (8.14)-(8.24)
previously developed by Lee [11]; recall that the j** scalar diagonal element ¥’(q;) of
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¥ is the derivative of scalar polynomial ¥(q) at the zero crossing ¢ = ¢;.
Given the above interpretations, we obtain the following insight on the small éw
behavior of the CR bound. The bound B¢ will have a small norm (i.e. be favorable)

if

1. the x™ order partial derivatives of the generic arrival vector @(&) are well-
separated from the vector space spanned by the partial derivatives of lower

order (i.e. €, has large norm), and

2. the scalar functions that make up the vector function t;x((j') have steep slope at

the zero-crossings § = §j. (i.e. W, (g;) has large norm)

9.4.1 CR Bound on Var(@;;)

The corresponding bound on the variance of &;;, the estimate of the i** component
of the j* source parameter vector &;, is by definition given by the diagonal entries
of B¢. For small éw, we have from (9.131)

1 bij

Va'r{‘:’ij} 2 (BC)II = N-SNRj5w2(X"1

y+ O(6w™ 21+ (9.145)
where [ = D(j — 1) + ¢ and

A 1 . | . +
D(j-1)+:,D(j—-1)+¢

SNR; denotes the signal-to-noise ratio for the j** source,
. = (P 2 9.147
SNR; = (P), / o (9.147)
and p denotes the matrix of (complex) signal correlation coefficients

p = P51/2I’51’551/2
Pp = diag[(P),(P)a,+ - (P)um] (9.148)
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The result (9.145), (9.146) is quite useful in that it makes explicit tradeoffs among
scenario parameters such as frequency separations, signal powers and correlations, and
the sampling grid. Specifically these quantities are represented in (9.145), (9.146) as

follows

frequency separations <= ‘i’x(q,-), \i’x-l(q_j), (5w)—2(x—1)
signal powers and correlations <= p, SNR;

sampling grid <= €&,

Thus, for example, it is immediately clear from (9.131) for a 2-dimensional scenario
with non-degenerate CR bounds, that reducing the frequency separation factor éw by
a factor of 10 in a M = 3, (x = 2) signal scenario requires that the source powers be
increased by 2(x — 1) - 10dB = 20dB for an unbiased estimator to maintain the same
frequency standard deviation. Note that the same conditions require a 40dB SNR

increase in 1-D scenarios.

9.4.2 CR Bound in Preferred Directions

Expression (9.131) showed that for Case III scenarios the dominant term of B¢ for
small éw is 6w 2x-VK, ; with x = m + 1. Matrix K,, was found in (9.125) to
have only partial rank (= M(D — v)) for Case III scenarios for which 0 < v < D.
Consequently, in Case III scenarios, there exist coordinate directions for which the
coefficient b;; of the w™?™ term of the variance bound (9.145) vanishes, and for
which the small éw CR bound is more favorable (smaller). This section identifies the
preferred directions and the dominant term of the CR bound in those directions.

In order to identify the CR bound in preferred directions, we note from (9.116),
(9.117) that

a?

Q[G2m(6w)]BCQ[G2m(Sw)] = 6‘0‘2(711—1)21\’

[Gam(bw)* + O(6u?)]  (9.149)
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where projection

QiGsm(u)] = Gam(8w)Gam(6w)* (9.150)

is orthogonal to W(éw).

Therefore the dominant term of (9.149) for small 6w is identified using (9.119),
(9.88) to be

2
o
QGom (61 BcQ(Gom(sw)] = 5w'2('"'1)2—1\7 G + O(6u")]
2
_ —2(m-1) 7" [t St h w1t
= 6w SN [#.Re{P' @ €LER} V]
4 O(bw™Hm-1+1) (9.151)

Furthermore,

Qieamtw)) = Gom (sz)+ + O(éw)
= ¥, + O(bw)
= Qg+ O(bw) (9.152)

where use is made of (9.121). Since ¥,, has block diagonal structure, it follows that

the

Preferred Coordinate Directions at the j** source for small 6w are specified

by coordinate vectors ip that lie in the row space of ¥,,(;).

The CR bound along preferred coordinate for small éw is proportional to fw?(™-1) =
6w*x=2) from (9.149).
A geometric interpretation of preferred coordinate directions in terms of emitter

_configuration can be derived straightforwardly for 2-D scenarios. The results are

Geometric Interpretation of Preferred Directions in 2-D: For small §w, the
preferred directions are normal to the unique (x — 1) order polynomial curve

specified by the M source locations ¢, - - - ¢um.
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Two simple examples of Case III scenarios are

1. M = 2 source 2-D scenario for which the preferred direction is normal to line

between through the two source locations specified by §;, §>-

2. M = 5 source 2-D scenario with non-degenerate CR bounds for which the
preferred directions are normal to the unique conic section curve specified by

the i, - - Gs.

The latter example is illustrated in the simulation examples in the following section.

The practical effect of preferred directions in Case III is that for these types of
multi-D scenarios, the resolution ability of any unbiased DF algorithm is likely to be
much more severely challenged in certain spectral directions than in others. In a 2-D
example with M = 5 sources in a circular configuration, it is likely to be much more
difficult to accurately estimate the tangential than the radial spectral parameter of
each source. Note that preferred directions do not arise in 1-D scenarios, for which

there is only one spectral coordinate.

9.5 CR Bound Examples

To illustrate the accuracy of the foregoing limiting theoretical expressions for direc-
tional CR bounds as éw — 0, we compare the small éw representations to the exact
CR bounds for the 2-D direction finding scenarios of Examples 8.1-8.4.

Each example involves a planar array of W = 16 unit-gain, isotropic sensors, and
far-field sources clustered near to the array broadside.

We assume that the sources are correlated and equal power. The source cross-
correlation matrix p is taken to be of the form (5.39).

The exact CR bounds computed using (8.28) are compared to the asymptotic
values for small éw predicted by the result (9.131) of our analysis in the following

numerical examples.

Example 9.1 : For this example M = 3 and the array and source geometries are

as follows.
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Array: Sensors in a sparse grid per Figure 2-4A,

Sources: Sources SC1, SC2, SC3 clustered around broadside in a triangular

configuration per Figure 8-1.

As shown in Example 8.1, this is a Case I scenario with non-degenerate CR
bounds. Consequently the directional variance CR bounds for small w may be

determined using (9.145).

Figure 9-1 shows the values of the CR bounds for parameter estimates along
the = and y spectral frequency axes for one of the sources, specifically SC1 in
Figure 8-1. The solid curves depict the exact CR bounds; the dashed lines
depict the asymptotic behavior predicted by Eq. (9.145). The horizontal scale
denotes spatial frequency separation dw normalized by the array beamwidth
BW, so that unity on the horizontal scale of the graph corresponds to maximum
source separation of one beamwidth. The vertical scale depicts the value of the

normalized bound

N -SNR, - (Bc), (9.153)

where (Bc),, is as in (9.145).

Clearly the simplified asymptotic expressions capture the essence of the bounds
for emitter separation less than one beamwidth. As predicted, the CR bounds
exhibit a §w=? behavior for small w, with a slope of 20 dB/decade. Thus the
theoretical expressions accurately predict the CR bounds for small separations

bw for this Case I scenario with non-degenerate CR bounds.

Example 9.2 : For this example M = 4 and the array and source geometries are

as follows.

Array: Sensors in a sparse grid per Figure 2-4A,

Sources: Sources SC1, SC2, SC3, SC4 clustered around broadside as in Figure
8-1.
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0
T = (M4+D)xM (J.17)
P[[‘g,...'r?n_l]

The columns of T are by construction linearly independent, and form a rank D

subspace of the nullspace of the columns of I'y(g;)", --+ T _,(q;)"*, since T satisfies
[ . . - I
I:‘O(qj)v FO I
- s Fl(i)’ Fl —lTNy =
[T6(@)"s -+ Tna (@) ¥ = R B RN ()
| l:‘m—l(é,'i), Fm—l b

=0 (J.18)

since the rows of Iy, (p = 0---m — 1) are equal to rows of I'.
The columns of T’ are by construction linearly independent from those of T and

also lie in the nullspace of the columns of Th(g;)*, --- T'._,(q;)"*, since Y satisfies

FD((E')) FO

0
[To(@)t, - Th_y (@) T = Prp,..rh ] }

i f‘m—l(q-‘j)7 I-‘m—l |
=0 (J.19)

As a consequence of Conditions C2, the 7{0..m—1} columns of Th,... T _, arelinearly

independent, and thus

Rank {Y'} = Rank{Pps.r» | = M —iifg.m- (J.20)

Thus the columns of T and Y’ together span the rank M 4+ D — 7{0..m-1} column
nullspace of I'y(g;)", --- T _,(q;)", that is

Py @y = [T, T, 1T (J.21)
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+ Rank {Q[P[ A, ’Ame]Fm( )})[I‘I(qJ)h’ ,I‘in(qj)"]} (J].Q)

since Rank{X + Y} = Rank{X}+ Rank{Y} for matrices X,Y with orthogonal col-

umn spaces.

Using definition (J.6) of T}, we note that

Rank {P[Ao,---Am_llAme}

. . +
= Rank {P[AO,---Am_llAmFmP[FS‘"“'F'A—J (F P[Fo, - _1]) }
= Rank {P[,io,...A,,,_l]AmFmP[F(’;r",Ff'n-xl}

= M - T-l{o...m_l} (Jl?))

since removal of the post-factor Y+ does not change the rank of the product XYY+

for any X, Y, and the last equality follows from (J.8). Consequently, the rank of

Q[P[A A AmTm] is M — fifo..m—1}, and the second term in (J.12) is at most M —
0, Am—1

N{0..m—-1}. Rearrangement of (J.12) yields

Rank {&‘ml“:n(q‘j) P[ré(,;j)h'..,'p‘n_l((;j)h]} > (M+D- ﬁ{o...m_l}) - (M - 'ﬁ{o...m_l})
= D (J.14)

As a consequence of Condition CR2, all the n{g...;n—1} columns of o (g, -
I _1(g;)" are linearly independent, and thus the post-factor projection in (J.14) has

rank
Rank { Py g, rr,ygm) = (M +D) = figoem (J.15)

Now consider matrices

T:[ ! } (M +D) x D (3.16)
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Proof: For scenarios with non-degenerate CR bounds, reference to Condition C3

shows that
Rank{Py;, 4. Amlm Prarn 1} = M = fioum-1) (J.8)
and reference to Condition CR3 with x = m for Case II shows that
Rank{P, ..4._,] AmTn(@) Prorr, @) = M+D—Apum-1y  (J.9)
for j=1-.-- M, where
) = [0o(@), T (J.10)

We now show that (J.1) can be inferred from (J.8) and (J.9). Specifically, we
decompose the matrix product in (J.9) into the sum of the matrix product in (J.1),
and an orthogonal term of rank M — fi(o...m—13, as follows.

First we rearrange the pre-factor projection matrix in (J.9) to be the sum

. . . . +
'P[Aor“/im—l] = I- AO’ Tty Am—la] [AO) Y Am—lw]
- P[Aoy"'/im-J]Ame_ .P[Ao,...Am_I]Ame
+ .P[,io,...,im_]]Ame_ P[AOV...Am_l]Ame‘

= 1= [Ao, -+, Amcty AnTn] [Aos -+ Aoty AnTa]”
+

+ .P[A.o,-../im—l]Ame _P[AOy"'Am—ﬂAme_

= [1- A&+ Q. i) (J-11)

where Q[ i T is the projection onto the column space of Plig,4 1]z‘ime.
m-—1 ’ me-

P . .
[Ag,--A
The two terms in (J.11) have orthogonal column spaces, since the columns of matrix

P[Ao,~-~/im-1]Ame are contained in the space spanned by the columns of A.

Substitution of (J.11) in (J.9), and use of (J.2) gives

M + D — T_l{g...m_l} = Rank {Eml‘:n((j;) P[F;,(i,)";--ﬂ,,(q‘,)"]}
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Appendix J

Proof of Lemma 9.2

This appendix establishes the result:

Lemma 9.2: In Case II with v > D, if Conditions C1-C3 and CR1-CR3 are
satisfied, then

for j=1--- M, where

Fm—l

- Tmrm -

Rank {€.¥n(3)} = D (J.1)
Em = [I-AA*|An J.2)
A = (Ao, -y Ancr, AnTo] (3.3)

Un(@) = [[m(@), T I (J.4)
1)
To(§)
f40,.m} X M, F((i‘) = o . i{0,-.m} X D (J.5)
Pm—l(q)
| Tnlm(7) |
+
To = TwPrp.rs_) (TmPicg,rs_y1) (3.6)
v = 'ﬁ{o,...m}—M > D J.7)
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where the last equality follows from (1.7).

Now consider matrix

T = [ I ] (M +D) xD (L15)
—T-1I(g5)

with D linearly independent columns and the property

[F@), ] T = [[(@), r][ I } =0 (L.16)
—I-11(g))

Hence the columns of T form a complete spanning set for the rank D nullspace of the

columns of (I.12). Thus we express nullspace projection (I1.13) as
P[F{)(‘I'j)hy"‘vrin(@)h] = TT+ (117)
Substitution of (I.17) into (I.11) gives

D Rank{€n1 [7pa (G5) YT}

= Rank{Emss Ty () T} (118)

since removal of the post-factor Y+ does not change the rank of the product XYY+

for any X, Y. From (I.4), (I1.9) and (I.15) we note that

Umia(§;) = Toppr(@) T (L.19)

Assertion (I.1) of the lemma is established by substitution of (1.19) in (I.18).
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Proof: For scenarios with non-degenerate CR bounds, reference to Condition CR3

with x = m 4+ 1 in Case I shows that

Rank {P[fio.---fim] Ami1T1(85) P[r{,(q‘,-)h,.--,r;,,(.r,-)h]} = M+ D —fo,.m}
- D (L8)

for all j = 1--- M, where the last equality follows from (1.7), and
o) = [0o(d), T (L9)
We now show that (I.1) follows directly from (I.8). From (I.3) we note that
Plg,im = I—AA* (1.10)
Substitution in (L.8), and use of (1.2) gives
Rank {€n 41D (§) Pryiah,rn@} = D (L11)
From (1.5), (I.6) and (I.9) we note that
[Ta(@)*, - Tn@)] = [2(@) . 1] (M +D) X ig.my ~ (L12)
Thus the post-factor in (I.11) can be expressed as
Prygperna = 1= [@), 1 [0@), T] (M +D)x (M +D) (113)

As a consequence of Condition CR2, the fifg..m} columns of (I.12) are linearly
independent, and thus the projection (I.13) onto the nullspace of the columns of

(I.12) has rank

Rank{P[pa(‘mh_...,p;n(qj)h]} = (M +D) — ﬁ{o...m} = D (1.14)
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Appendix I

Proof of Lemma 9.1

This appendix establishes the result:

Lemma 9.1: In Case I with » = 0, if Conditions C1-C3 and CR1-CR3 are satis-

fied, then

Rank {€ns1¥mi1 ()} = D (1.1)

for y =1--- M, where
€m+1 = [] - AA+] Am+1 (12)
A = [Ao, Tty Am—la Am] (13)
Vi1(§) = [Fmsr(@) D] I (L4)

~I1T(g;)
I‘() ] FO(q-‘)
r=| ° Aoy XM, T@) = | . | Apem xD (L5)
Fm—l I1m—1(‘1)
| Tl | | Tl (q) |

T = I (1.6)
v = T_l{()’...m} -M =0 (17)



242



for p=0---m — 1. Pre-multiplication by A,, of the matrices in (H.8) does not affect

the equality, and hence we have
Rank{A,,FPHP[BS.'O',,_’B&F_I]} = Rank{A,l,II} (H.9)
or equivalently
Ra'nk{BO.pP[Bg,O,---,Bg’P_l]} = Rank{Bo,} (H.10)

forp=0---m—1. Expression (H.10) corresponds to the definition (4.10) of Condition
II but over the range of Taylor series terms p = 0,---m — 1.

To make expression (H.10) equivalent to the definition (4.10) of Condition II, we
need to show that m = m. We recall that 1 is defined as the minimum number such
that a partial sum of p = 0--- m Taylor series terms of By(e) has rank equal to that
of Bo(e). Similarly, m is defined as the minimum number such that a partial sum of
p = 0---m Taylor series terms of matrix A has full rank. Under identifications (7.4),
we have By(e) = AIl, where II is a square full rank matrix which does not affect the
rank or linear dependence properties of the Taylor series terms, and thus it must be

that m = m. To complete Assertion b) we note that
Moo= my (H.11)

since m = m  under Condition C2.

The proof of Assertion a) is analogous.
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First we establish Assertion b) as follows. By construction I', has i, rows, and

hence Condition C2 implies that I', has full row rank for p = 0.--m — 1. Therefore
Rank{I‘pP[pg,...pg_I]} = Rank{T,} forp=1---m—1 (H.3)

which in turn implies that the rows of ', are linearly independent of the rows of
[y---Tp-1. Since Il is a square full rank matrix, it follows that the rows of I',II are

also linearly independent of the rows of (IolIl) - - - (I',—1II). That is
Ra]’lk{PPH.P[([‘OH)h,...(r‘p_In)h]} = Rank{FpH} for P = l1---m—1 (H4)

We note that

QUremp,(TprMP] 2 QUudolomp (dpsTpsp] = Qg8 (H5)

where By, is of the form (7.4), since pre-multiplication by A, can only reduce the

row space of I',II. Therefore

Arom,(peamp] < Fppo Bl ) (H.6)

0,p—

Substitution of (H.6) in (H.4) gives

Ra.nk{FpHP[B B&p_]]} 2 Rank{FpHP[(ron)h,---(r,,_,n)h]} = Rank{I‘pH} (H7)

k...
0,0

for p=0---m — 1, which must be satisfied with equality since the rank of a product

is at most the rank of any of its factors. Therefore

Rank{T,IIPgs g 1} = Rank{I,[} (H.8)

0,p—1
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Appendix H

Proof of Lemma 7.1

This appendix shows that if B and By(€) have Taylor series as in (7.2) and (7.3), and
given identifications (7.4), then

a) if Conditions C1 and C3r are satisfied with m = mr, then so are Conditions I

and IIIr with ™ = mr,

b) if Conditions C2 and C3 are satisfied with m = m, then so are Conditions

IT and Illc with 7 = m .

where mr and m are respectively defined By relations (7.7) and (7.8).

By definition in Section 2.5.3, Conditions C1, C2 state that

Cl. Rank{A;} = o for p =0

Rank{P, ..i,_ A} = 7ip forp=1,---m—1 (H.1)
C2. Rank{I'c} = fio forp=0

Rank{T, Aro,..r,s]} = B forp=1,---m—1  (H2)

where m = mr as defined by (7.7) if Condition C1 is satisfied, and m = m, as

defined by (7.8) if Condition C2 is satisfied.
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Using (G.25) in (G.24), we find that it must be that

Rank {P[/io,u-,/im_ﬂAmFm HP[(I‘OH)",---,(Fm_ll'I)"]}}
= Rank{Py, .. i _ AnTmPrs.on_1} (G.26)

It follows from (G.23), (G.26) and Condition C3 that

m~1

Rank{P[cm__I]Bo,mP[Rm_I]} = M- 2 ’f—lp (G27)

p=0

which establishes Assertion (G.7) of the lemma.
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Pihq, -4, (G.22)

for p=10---m — 1, which proves Assertion (G.5) of the lemma.

To prove Assertion (G.7), we use (G.1), (G.21), (G.22), to obtain
Ra,nk{P[Cm__I]Bo'mP[Rm_ll} = Ra,nk{P[Aoy,,,'Am_l]AmFmHP[(Fon)h,...,(Fm_ln)h]} (G.23)

We then consider the identity

au EIR

[oll

Rank ¢ ‘ )
j | |

| Pig,.. iy Am D LP(omy, o (Cmamyrt} ] )

4 T )

oIl

= Rank{ ' 3
| A 0

= Rank] : s

= Rank T ' \ (G.24)
I‘m—l

| Plio,dmy)AmTm Py orn 1 1)

\

where use is made of property (G.8). Also from property (G.8), we have

Toll Ty
Rank : = Rank : (G.25)

Fm—IH I‘m——l
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- Block Diag. {(Ag)+, .. (Ag)"}}
= Rank {[(ToI)*, -, (T,1)"]} (G.18)

for p=0---m — 1. Similarly if Condition C2 is satisfied, then using (G.16), (G.8),
and (G.12) we obtain

Rank {C,} = Rank{[Ao,--A,]
- Block Diag. {(Toll), - -+, (T,II)}}
= Rank {[Ao, -~ 4,]
. Block Diag. {(T'oII), -+, (T,I)}
- Block Diag. { (Toll)*, -+, (T,I)*}}
= Rank {[Ao, - A,]} (G.19)

forp=0---m—1.
Eqgs (G.18) and (G.19) enable us to prove Assertions (G.3), (G.5) and (G.7) as

follows. By definition,
Pg = 1-27% (G.20)
Thus we apply property (G.9) with (G.17) and (G.18) to obtain

P[Rp] = I- [Bg,O') o Bg,p][Bg,Ov e Bg,p]+
= 1 —[(Toll)*,- -, (T,I)"][(ToI)", - - -, (T, 1"

.P[(r‘on)h'...,(l"pn)h] (G.?l)

for p=0---m — 1, which proves Assertion (G.3) of the lemma.
Similarly, we apply property (G.9) with (G.16) and (G.19) to obtain

Pec,) = I—[Boo,: Boy)[Boo," " Bop|*
= J- {Ao,~'-Ap][Ao,---Ap]+
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forp=0---m—1.
To prove Assertion (G.4), we use (G.1), (G.8), (G.10) and (G.12) to obtain

Rank{B,,} = Rank{A,l,II}
= Rank{A,l,IIII*}
= Rank{A4,T,}
= Rank{A,T,T}}
= Rank{A4,} (G.14)

forp=0---m—1.
To prove Assertion (G.6), we use (G.8) and (G.11) in (G.14) to obtain

Rank{Bo,} = Rank{A4,}
= Rank{A:Ap}
= Rank{]ﬁpxﬁp}
= 7, (G.15)

forp=0---m-—1.

To show the remaining assertions, we use the identification (G.1) to express

C, = [Boo, -+ Bop] = [Ao, --- Ap] Block Diag. {(ToIl), ---, (F,I)} (G.16)
R, = [Bg,, -+~ By,] = [(Toll)", ---, (T5I)"] Block Diag-{fié‘,---/iﬁ} (G.17)

If Condition C1 is satisfied, then using (G.17), (G.8), and (G.11) we obtain

Rank {R,} = Rank{[(Toll)",---,(I,0)"]
. Block Diag. { A, -+ Af}}
= Rank {[(ToIl)", -, (T,11)"]
. Block Diag. { A%,--- A%}
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and
m-=1

Rank{P[c,,._,]Bo,mP[Rm_,]} = M- E ny (G.7)

p=0

The proof makes use of the following well-known pseudo-inverse properties [21]
Rank{XY} = Rank{X*XY} = Rank{XYY?} (G.8)
and
XY(XY)t = XXt if Rank{XY} = Rank{X} (G.9)

applicable to any suitably sized matrices X, Y.

Since matrix II is square full rank by construction,
nnt = 1 (G.10)
If C1 is satisfied, then Ap has full column rank, and therefore
Aty = T, (G.11)
for p=10---m — 1. If C2 is satisfied, then T, has full row rank, and therefore
LIy = Inxs, (G.12)

forp=0-.--m—1.
To prove Assertion (G.2), we use (G.1), (G.8), (G.10) and (G.11) to obtain

Rank{B,,} = Rank{A,l,II}
= Rank{A}A,T,IIIT*}
= Rank{T,} (G.13)
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Appendix G

Proof of Lemma 5.1

This appendix shows that for By, defined as
Bop, = Apl,I

we have the following results

a) If Condition C1 is satisfied, then

Rank{B,,} = Rank{T,}

and

Pr,) = Fromp,-(r,m
b) If Condition C2 is satisfied, then

Rank{B,,} = Rank{A,}
and

P[Cp] = P[Ao s+ Ap]

forp=0---m-1

forp=0---m-1

forp=0---m-—1

forp=0---m—1

c) If all Conditions C1, C2 and C3 are satisfied, then

Rank{Bo,p} = 7Ny

233

forp=0---m-1

(G.1)

(G.2)

(G.3)

(G.4)

(G.5)

(G.6)



Matrices Bj(e), j = 0,1-- -, have Taylor series by Lemma 4.3; by definition (4.24),
Bjp is the constant term of Taylor series of Bj(€). Therefore, the row nullspace

projection P[éo(e)h,mé.-_,(e)h] also has Taylor series of the form

P[Bo(c)",---é,'..g(e)"] = P [Bg,o,---B,!‘_ml'*'Zf]Wj (F.5)

321

where the constant term P[Bé‘or"B"_l J is the projection onto the row nullspace of
By, -+ Bi_10, and W; denotes the constant matrix coefficient of the j** order term.

For small ¢, we identify the dominant term of (F.4) as follows:

Bo(€) Py -Bia (o)) = ¢ Bi(e) + O(e™)

= €Bjp+ O(et) (F.6)
Therefore we can express B; as
.1
B,‘,o = il_{% zﬁ,(é) (F7)
where
A
Bi(e) = BO(C)P[B.,(c)h,.-.B.-_,(c)h] (F.8)

Matrix B;(¢) has a Taylor series since the factor matrices Bo(€) and Pao ey -Bis (M
have Taylor series. To produce the constant result for B; demanded by Lemma 4.3,
non-withstanding the division by ¢ in (F.7), all Taylor series terms of B;(¢) of order
e, for j < i, must equal zero. Additionally, B;p must be equal the order ¢ term of
Bi(€), which is the sum of products of order ¢/, j = 0---% terms of Taylor series of

By(€) and of order €7 terms of Taylor series of Pigoteh,-Bi_s(en- That is

i-1
Bip = Bo,ipyg;go,...19!:_1 JT Z By ;Wi—; (F.9)
. o=
Assertion (F.1) of the lemma follows from (F.9), with X; = W;_;. Assertion (F.2) fol-

lows from a parallel argument involving pre-multiplication of By(¢) by Blio(e),Bis (o))"



Appendix F

Proof of Lemma E.1

This appendix establishes the following result:
Lemma E.1: If By(¢) has Taylor series in ¢, then the limiting singular matrix B;
of By(¢€) satisfies the relationships

i—1

By = BO’iP[Bé',ov"'B."_l JT > Bo ;X (F.1)
X —~
and
i—1
Bi,O = P[Bo.o,-"B.‘-Lo]BUJ‘ + Z YJ'BO»j (F2)
=0

for any i = 1,2, -, where X; and Yj are appropriate square matrices.

We begin with the proof of Assertion (F.1) of the lemma. Recall from (4.22) that

Bo(e) = Y € Bi(e) (F.3)

i>0

where the row (and column) spaces of B;(e), Bj(€) are orthogonal for ¢ # j. Using

the row space orthogonality, we write

BO(C)P[Bo(e)h,..-B,-_',(c)h] = ijéj(f) (F.4)

i%i
where P, (»....5,_, (v denotes projection onto the row nullspace of Bo(€), -~ Bi_1(e).
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where Z; are appropriate matrices. It follows from (E.13) and result (E.2) of Lemma
E.l for 1 = 1,---k — 1 that the column space of Fi_; is contained within that of
Boo, Bo1,-**, Boj-1. Pre-multiplication of (E.13) by Pg,,,..B,_; o] sShows that

k-1
])[BD,O:“'Bk-—l,O]Fk_l = P[BO,Ov"'Bk—l,O][P[BO,O»“'Bk—],0](2 BOJXJ')]
=0

= Fe (E.14)

since Pip, ,,..B,_; o] 18 idempotent. Therefore the columns of Fi_, are in the nullspace

of Bpp, and the column space of Fj_; satisfies the stricter condition

a) the column space of Fj_; is contained in that of Taylor series matrix coefficient

sequence By, Bok-1.
Similarly we find that from (E.12) and (E.11) that

k-1
Fiow = (2. Y;Bos)Pgp, .8

i=0

(E.15)

h
k—l,O]

and

k-1
Fe1Py opp_ = (32 YiBos)Psy,,-8r_, 1 PiBs,B2_, o)

—1,0] ,
=0

= Fi, (E.16)

It follows from (E.15), result (E.3) of Lemma E.1 for = 1,--- k — 1 and finally from
(E.16) that

b) the row space of Fi_; is contained in that of Taylor series matrix coefficient

sequence By, Bok-1.

To this point we have established (E.12), and that Fi_; has properties a) and b)
of Lemma 4.4. To complete proof of (E.1), we observe from (E.14) and (E.16) that

BBoo B ol Fx1Pgs oph ) = Fra (E.17)

Use of (E.17) in (E.12) establishes representation (E.1) of B¢ for k£ > 1.
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To prove (E.1) for k£ > 1, we begin with expression (E.2) for i = k
k-1
Bio = BO,kP[Bgo,---B,':__l JT1 Z Bo; X; (E.8)
: ol T

Pre-multiplication both sides by Pg, ,,...5,_, ] ives

k-1
BBy o, Bl Bro = P[Bo.o,---Bk-l,o]BO-kP[B{)"o,---B,’:_l_O] + P[BO,On"'Bk—l,O}(Z Bo,i X;)
J=0

(E.9)
Simplification of (E.9) using (E.4) gives
k=1
Bro = P[Bo,o,---Bk_l,o]BO,kP[B(',‘O.---B,’:_, J + P[BO,Ov“'Bk—l,O](Z Bo,ij) (E.lO)
' ' =0

A parallel argument involving post-multiplication of (E.3) by Pgs ..Br_ ) and
subsequent simplification using (E.5) gives

k-1

Bro = Pog-BioyolBorPisy,mr, 1+ (3 YiBoi)Age,mr y (E11)
i=0

The remainder of the appendix reconciles the two expressions (E.10) and (E.11)

to derive result (E.1) for £ > 1. Defining

Bio = PByg,Bi_y0)Boklip

’

"Bl}:-l,o] + Fk—l (E12)

ho .
0,0

we find from (E.10) that

k-1
Feq = P[BO,Dv"'Bk—l,O](Z Bo,; X;)

j=0

k-1
= (I =[Boo, s Bie10l[Bog, -, Bi-10*) (3 Bo,; X;)
o

k=1 k-1
= > Bo;X; =Y BioZi (E.13)
7=0 1=0

o
Q)
<



The lemma is satisfied trivially for & = 0.
To establish (E.1) for k¥ > 1, we first show that the columns, rows of B;o are
contained in the vector spaces spanned respectively by the columns, rows of the

Taylor series term sequence By, - - - Bo;. Specifically, we have

Lemma E.1 : If By(e) has Taylor series in ¢, then

i—1
Bip = BO,iP[Bg_O.‘-.B{'_l JT Z By,; X; (E.2)
o=
and
i-1
Bio = PByo,Bi_yo)Bok + D Y;Bo, (E.3)
=0

for any ¢ =1, -, where X; and Y; are appropriate square matrices.
Proof: See Appendix F.

Next, we observe that since the columns (and rows) of By are by construction

orthogonal to those of By, - - Bi_1,, it follows that By has the two properties

P[Bo,or"Bk-l,o]Bk,O = Bip (E4)

'

Bk’OP[Bé',ov"'BL'_l,o] = Bipo (E.5)

We make use of Lemma E.1 and properties (E.4), (E.5), to establish (E.1) for
k > 1 as follows.

For k = 1, we begin with expression (E.2) for i = 1
Bip = BOJP[B&O] + BooXo (E.6)
Pre-multiplication of both sides by P, gives
BBy B = PiBo o) Boa Ppy ) (E.7)

since the columns of By are in the nullspace of Pig,,). Simplification of (E.7) using

(E.4) establishes (E.1) for k = 1.
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Appendix E

Proof of Lemma 4.4

This appendix establishes the following result:

Lemma 4.4: For any By(e) with Taylor series in ¢, limiting singular matrices By g

have the recursive structure

Boo k=0
Bk,o = P[Bo,o]BOJP[B(',"O] k=1 (El)
P[BO,OV"‘Bk—l,O] (BO,k + Fk—l) P[Bg,o,---B

h
k—l,O]

where By is the matrix coefficient of the k** order term in the Taylor series
of By(e), and Pig,,,..B,_; o> P[Bé‘,ov"‘Bi’_l,o] defined in (4.26), (4.27), respectively,
denote projections onto the column, row nullspace of limiting singular matrix
sequence Byg,- -+ Br_10. Matrix Fi_; is a suitable rectangular matrix factor

with properties:
a) the column space of Fj_; is contained in that of Taylor series matrix coef-
ficient sequence By, - - - Bok-1-

b) the row space of Fj_; is contained in that of Taylor series matrix coefficient

sequence By, - By k-1,



matrix as € — 0; therefore the singular values of By (e) are proportional to ¢® as € — 0.
It follows that ! = 0, and that By (e) has a series in non-negative integer powers of ¢

with constant matrix coefficients, hence a Taylor series in e.

]
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Appendix D
Proof of Lemma 4.3

This appendix establishes that if By(e) has Taylor series in ¢, then the matrices By (e)

also have Taylor series in e.

Since column spaces of Bk(e), Bj(e) are orthogonal for k # j, we express Bk(e) as

. 1
< \i#k
where Pz denotes the projection onto the nullspace of the columns of Bj(e).

The columns of U(e) in (4.23) that span Bj(e) are by definition eigenvectors of

Bo(€)Bo(€)" associated with limiting eigenvalues proportional to €. Thus we have
P[Bj(e)] = Py(e) (D.2)

where P,;(¢) is an eigenprojection matrix as defined in (B.4), with Taylor series (B.8)
in e. Since By(e) has Taylor series (4.3), Bi(e) is expressed in (D.1) as a product
of several Taylor series scaled by €%, hence as a series in integer powers of €, with
minimum power [ > —k, and with constant matrix coefficients.

We now show that the power series of Bi(¢) has no terms with negative powers
of € (i.e. that the minimum power of € is | = 0). As € — 0, the largest singular value
of Bi(e) must be proportional to €. The definition (4.23) of By(€) also identifies

the SVD of By(e) for all e. From result S1, % Zk(€) converges to a constant diagonal
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Substitution of (C.10) in (C.8) gives a more precise version of result (C.4), namely
Par(€)Azi(e) = O(€) (C.11)

Use of (C.11) in definition (B.3) of matrix Azt41(€) shows that
1
Agrya(€) = ‘6‘P2k(5)A2k(5)
= O(e) (C.12)

As € — 0, (C.12) converges to (C.2) which concludes proof of the lemma.



Since Py is the leading term of the Taylor series (B.8) of Pa(e€), and Az is the
leading term of the Taylor series (B.7) of Aa(e), it follows from (C.3) that

Pa()Aule) = O(9 (C4)
Use of property (B.6) gives
Pu(An(©) = Pu()Aau()Par(e (€3
Use of definition (B.3) of Ag(e) in (C.5) gives
P()Ask(€) = = Por(e) Paes(€) Aneca (0] Por() ()

Repeated applications of steps (C.5), (C.6) result in

P (€)Aak(e) = Z%ng(e)ng_l(e) -« Po(€)Ao(€) Po(€) - - - Pag—1(€) Pax(€) (C.7)

Since Ao(e€) that satisfies Condition IV is the outer product (4.14) of Bo(€), we re-
arrange (C.7) as
1
Pas(€) Aze(€) = (5 Par(€) Ps-a(e) -+ Po€) Bo(o))

1 h
(ZPulOPsa(@) - Po()Bo(e)) (C:8)

It follows from (C.4) and the product form of Py (€)Asx(€) in (C.8) that

Cl—kPQk(e)ng_l(e) Py ()Bole) = O(?) (C.9)

Since By(€) has Taylor series (4.15) in €, and Pj(e) j = 0,---2k have Taylor series

(B.8), their product in (C.9) must be a series in integral powers of e. It follows from

(C.9) that we must have

%ng(e)ng_l(e) - Po()Bole) = O(e) (C.10)
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Appendix C

Proof of Lemma 4.1

This appendix establishes the following result:

Lemma 4.1: If matrix Ag(e) satisfies Condition IV of Chapter 4, then each non-
zero eigenvalue \;(€) of Ag(e) is asymptotically (as € — 0) proportional to

non-negative even powers of €. That is,

: Ai(e)
ll—r»rf}{/\,-.eue} =1 (C'l)

for suitable constants \; and k; € {0,1---}, for all i =1, - -, rank{Ao(€)}.

Whenever Ao(e) satisfies Condition IV, Ag(e€) is Hermitian and has Taylor series
in e. Hence result R1 states that the limiting eigenvalues of Ag(e€) are proportional
to non-negative integer powers of €. Thus to prove the lemma it is sufficient to show
that there are no limiting eigenvalues of Ag(€) proportional to odd powers of ¢, or

equivalently by result R2, that the odd order limiting eigenmatrices Aggy1,0 satisfy
Aggkr1o = 0 (C.2)

for all £ > 0.
To show (C.2), we observe from the definition (3.15) of Py in terms of Asko that

PyrAgko = (I—Azk,oA?_fk,o) Agko = 0 (C.3)
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(See Eq. (2.23) of [18]). In the limit as ¢ — 0, Ak(e) converges to limiting eigen-
matrix Axo. Therefore eigenprojection Pi(c) defined by (B.4) converges to limiting
eigenprojection Py defined in (3.15) in terms of limiting eigenmatrices.

Note that the characterization (B.2)-(B.8) of the limiting eigenmatrices Ao as
limiting forms of matrices Ax(e) does not specify the Agp in terms of the (known)
matrix coeflicients Ag, in the Taylor series (B.1) for Ao(e).

To relate the Agg to the Agp, Reference [17] derives recursive and very complicated
expressions in terms of the leading eigenprojection term Pi_; and of the Taylor series
terms of Ax_1(€) (Eq. (2.18) in Chapter II of [17]). In reference [18], the authors
simplify the recursive expressions in [17] to identify the expressions (3.14) for the
limiting eigenmatrices Ay in terms of the known Taylor series terms of Ag(e).

As evident from (3.14), this approach results in increasingly complex expressions
for A p as k increases; extension of the approach to A4 g reveals that it involves dozens

of terms.
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Pi_1(e)Ar_1(€ Pr_1(€)--- Py(e)Ap
a k()ek()z k()ek() (¢) E>1 (B.3)

Ai(e)

where matrices Pi(¢), designated eigenprojections, are defined analytically in terms of
a contour integral in [17], [18]. (See Eq. (2.22) of [18]). A geometrical interpretation
of matrix Py(e) for Hermitian Ag(e) is as a projection onto the space spanned by the
eigenvectors associated with the eigenvalues of Ai(¢) that are zero when € = 0. Thus,

a convenient definition of Py(€) for Hermitian Ag(e) is

>

Pk(ﬁ)
Qx(€)

I — Qle) (B.4)
{Ek(f)},\;emc:o {Ek(ﬁ)}i;&oh:o (B.5)

I

for k =0,1---, where Ei(¢) denotes a complete matrix of eigenvectors of Ag(e), and
operator { }, 40| =0 Selects the subset of eigenvectors associated with eigenvalues that

remain non-zero when € = 0.

By definition (B.4), (B.5) of Pi(€), we have the property
Pk(G)Ak(ﬁ) = Pk(é)Ak(E)Pk(C) (B6)

for k =0,1--.. Repeated use of property (B.6) in definition (B.3) shows for Hermitian
matrices Ag(e) that matrices Ax(€) are also Hermitian.

References [17], [18] show that matrices Ai(e) exist (i.e. remain finite) as € — 0,
non-withstanding the denominator factor € in (B.3). (See Theorem 6.38 Chapter II
of [17]). It is further shown that matrices Ax(¢) and eigenprojections Py (¢) depend

on ¢ via Taylor series

Ak(e) = Ak,o + Z epAk,p (B.7)

p=1

where Ay are the limiting eigenmatrices (See Eq.(4.5) of [18]), and

Pile) = P+ Z €’ Prp (B.8)

p=1
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Appendix B
Definition of 4; ( in [17], [18]

This appendix states the definition of the limiting eigenmatrices Ay presented in
References [17], [18] and outlines the approach used therein to derive expressions
(3.14). The prior results restated in this appendix are used in subsequent appendices
to derive the thesis SVD results.

Reference [18] considers a Hermitian matrix Ag(e) with Taylor series about € = 0

[o0]

Ao(e) =D Ao, (B.1)

p=0

where Ag, are known constant matrices, independent of variable parameter e.
The essence of the approach of [17], [18] is to define the constant limiting eigen-

matrices A as

Aro £ lim Ax(e) (B.2)
for k = 0,1,---, where the Ai(¢) are a sequence of matrices non-constant with e

whose eigenstructure is related to that of Ag(e). The Ax(¢) are defined recursively

from matrix Ao(e) as

Ao(e)

>
F 2
e
p S
N
)
—_
™
SN

Aq(e)
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Appendix A

Additional Notation

This appendix provides additional notation detail, to explicitly define the Hadamard

and Kronecker products.

Hadamard Product:

The Hadamard product of the I x J matrices A and B is defined as the I x J matrix

ajibin  aigbi2

az21ba1  azabse

I

AOB

{ anbn  anbn

B

aygbg

ag5bay

arsbry |

(A1)

where a;;, b;; respectively denote the 7, j* elements of A, B. The Hadamard product

of matrices A and B is simply the element-by-element product of A and B.

K ronecke_r Product:

The Kronecker product of the I x J matrix A and the K x L matrix B is defined as

the IK x JL matrix

auB auB
0,21B GQQB

e

A®B

| anB enB
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The multi-D results developed herein in some ways parallel the prior 1-D results,
but also differ from the 1-D results in interesting and significant ways. For example,
for a given number of sources, we find multi-D scenarios are typically much less
sensitive to small source separation §w than 1-D scenarios. Specifically, for typical
multi-D scenarios with closely spaced sources 1) matrix Rg is much better conditioned,
2) the CR directional variance bounds are much lower, and 3) the resolution' and
detection thresholds are much more favorable than in 1-D scenarios.

Thesis analysis shows that for typical DF scenarios the eigendecomposition of Rs,
and the SVD of its rectangular factor matrix B (or A), decompose for small éw to a
series of simpler shell problems, involving decomposition of low rank matrices which
are constant with éw. Furthermore, the numerical conditioning and the span of Rs
can be determined by simple linear algebra without the need for eigendecomposition
or polynomial rooting.

The thesis identifies side conditions that greatly simplify prior results on eigen-
structure of perturbed Hermitian matrices of [17], [18]. These side conditions typically
are present in DF scenarios. Analysis also develops new results for the SVD of per-
turbed rectangular matrices, which not only facilitate the eigendecomposition of Rs
for closely spaced sources, but may also have use in other applications.

The thesis results show that the direction finding problem imposes challenging
requirements on practical systems intended to provide unbiased frequency estimates
of closely spaced sources. For example, reducing by a factor of 10 the maximum
separation éw of M = 6 sources in a typical 2-D scenario (with m = 2 and x =
3) requires increasing the SNR by 2m - 10dB = 40dB to maintain constant source
detection performance, or increasing the SNR by 2y - 10dB = 60dB to maintain
constant source resolution performance.

The thesis provides an analytical framework for the direction finding problem in
multi-D scenarios, which should facilitate the performance analyses of candidate DF
techniques, help quantify the numerical-accuracy and hardware-alignment issues as-
sociated with implementing high-resolution techniques, facilitate beamformer design

and provide insight helpful for development of improved DF algorithms in multi-D

scenarios.
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Chapter 11

Conclusions

The objective of this thesis has been to clarify the multi-dimensional geolocation
problem for closely-spaced sources. The principal results are explicit analytical ex-
pressions in terms of maximum source separation éw, source configuration, source

powers and correlations, and sensor array geometry, that elucidate the following:

o The eigenstructure of covariance matrix Rg that is central to many High Res-
olution direction finding (DF) algorithms, for closely-spaced sources in non-

degenerate and partially degenerate multi-D scenarios (Chapters 5, 7).

e The Cramér Rao (CR) lower bound on the directional variance of any unbi-
ased DF algorithm, for closely-spaced sources in multi-D scenarios with non-

degenerate CR bounds (Chapter 9).

e The detection threshold SNR and data set size N at which the number M of
closely spaced sources can reliably be determined in typical multi-D scenarios

by any eigenvalue based detection algorithm (Chapter 6).

o The resolution threshold SNR and data set size N at which M closely-spaced
sources can reliably be resolved in typical multi-D scenarios by any unbiased

DF algorithm (Chapter 10).

These results generalize to multi-D the analytical results recently developed for 1-D
scenarios [11)-[13]. These results should be useful in identifying fundamental perfor-

mance limitations and opportunities for multi-dimensional geolocation.
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Similarly, identification of the data set size resolution threshold gives

Kp . _a

10.3 Summary

The threshold expressions (10.14) and (10.15) are important since they provide ex-
plicit expressions for the minimum SNR and ‘data set size N required to satisfy the
“necessary condition” (10.5) for resolution of M closely spaced sources using any
unbiased spectral estimation algorithm. The threshold expressions can be used to
generate model resolution curves for any given scenario, since the constant Kf can
be calculated explicitly given the array geometry, sensor directional response, source
configuration and source correlations.

The threshold expressions (10.14) and (10.15) also clarify the trade-off between
SNR, N and maximum source spacing w required to maintain resolution performance
in multi-D scenarios. For example, if noise power is doubled in a given scenario,
then the size of the data set must increase by a factor of 2 to maintain resolution
performance. If on the other hand, the maximum source spacing éw is decreased by
a factor of 2 in a 2-D scenario with non-degenerate CR bounds and M = 6 sources
(with x = 3), then to maintain resolution performance with a fixed data set size N,
the SNR must increase by a factor of 26 = 64. Alternately if éw is halved while the
SNR remains fixed, then the data set size N must increase by a factor of 26 = 64.

By way of comparison, if the maximum source spacing 6w is decreased by a factor
of 2 in a 1-D scenario with M = 6 sources, then to maintain resolution performance
with a fixed data set size N (or fixed SNR), the SNR (or N) must increase by a
factor of 2'2 = 4096!!! For small éw and a given number of sources M, the resolu-

tion thresholds are typically much smaller (more favorable) in multi-D than in 1-D

scenarios.
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Analogously, we define the data set size resolution threshold My to be the smallest
value of N for which (10.5) is satisfied for a fixed power factor p.
To elucidate the necessary conditions for resolution, we square (10.5) and substi-

tute expression (9.131) to obtain

—a(x—1) O - ~ - + e
T ([P[¢;_11‘1’§<Re [P o ele,] ‘I’XP[@;_J] )u < -6 - minl|g; — Gl

(10.9)
for small éw. Rearrangement of (10.9) and use of (10.6) gives the equivalent condition

SNR-N > Kp,; bw ™ (10.10)

J

where we define

1

2, = 2
2f7 - min [|g; — gi|

KL.. 2 Pi WiRe{Ploere V¥ Pe ) (10.11
R = s UiRe { B3 © ELEx} Py ”( 11)

where | = D(5 — 1) + 1.
We note that an equivalent condition for (10.10) to be satisfied for all j =1--- M,

¢ =1---D is the condition
SNR-N > Kpdw (10.12)
where we define
K = rr}gx{[&';%’i’j} (10.13)

Thus we deem satisfactory resolution performance to be possible whenever condition
(10.12) is satisfied.
Identification of the SNR resolution threshold gives
Ky

ER 2 TV—&,()_2X (1014)
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is that

\/(Bc)” < fbw; (10.5)

foralli=1---D,j=1---M, withl=D(j —1)+1 and where f is a suitable fraction
(e.g. f=1/8).

Note that the structure of the CR bound (Bc¢)u was elucidated in Chapter 9.
Accordingly the results of Chapter 9 together with (10.5) enable us to make useful

statements about the resolution thresholds £ and Ng.

10.2 Resolution Thresholds £ and N5

To define the resolution thresholds, we extend the approach used in [13], as in Chapter

6. We represent the source amplitude correlation matrix P as follows

~

P = ph (10.6)

where Py is a constant matrix the eigenvalues of which sum to unity, and p is a
variable scale factor. Note that representation (10.6) retains the correlations between

the source powers. We define the signal SNR to be the ratio of the scale factor p to

the noise power o2. That is

SNR = p/o? (10.7)

We deem satisfactory resolution performance to be possible whenever condition
(10.5) is satisfied for all 4,7, (i.e. for all signals and for all coordinate directions).
We define the resolution threshold power to be the smallest value ppi, of p for which

(10.5) is satisfied for a fixed N, and define the resolution threshold SNR to be

gR = pmin/o'z (108)
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array geometry, normalized source configuration, source powers and correlations.
Since parameter x < M for typical multi-D scenarios, comparison of (10.1) and
(10.2) leads to the conclusion that for small éw, the resolution thresholds are typically
much smaller (more favorable) in multi-D than in 1-D scenarios.
The chapter is organized as follows. Section 10.1 postulates a necessary condition
for successful resolution of closely-spaced sources. Section 10.2 then develops the
expressions (10.2) and (10.3) for the resolution threshold SNR and N. Section 10.3

summarizes the resolution threshold results.

10.1 “Necessary Conditions” for Reliable Reso-

Iution

To obtain resolution threshold expressions for both SNR and N, we follow the argu-
ment of Lee [11] that any unbiased estimator can successfully resolve M closely spaced
sources only if the standard deviation of the directional estimates is substantially less
than the minimum spacing between any two sources. The SNR and N values required
to satisfy the above condition result are deemed to be the resolution threshold values.

Thus, consider M closely-spaced signals, and define éw; to denote the minimum

spacing between the j** and any other source. That is
fui = bwmin|lg; — Gl (104
k#j

where @y, - - - gu are the normalized spectral frequency offsets. If the root CR bounds
\/('TC); for all coordinate directions at the j** source (I = D(j—1)+t andi=1---D)
are small compared to éw; for each source j = 1--- M, then there is a basis for seeking
an unbiased estimator for resolving the signals. On the other hand, if one or more of
the \/(_BE are large compared to the associated éw;, then it is unlikely that there
exists an unbiased estimator which can resolve the signals with high probability.
Accordingly, one strongly suspects that a necessary condition for the existence of an

unbiased estimator capable of resolving M closely spaced sources with high probability
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minimum SNR and N at which “one can see” each of the M sources present.

Prior work by Stoica and Nehorai [15] for the 1-D MUSIC algorithm, and by Lee
[11] for any unbiased 1-D DF spectral estimation algorithm, has used the CR bound
on directional estimate variance to elucidate the dependence on scenario parameters
of the SNR resolution threshold £g, and of the data set size threshold Mg. Specifically,
Lee has argued that any unbiased estimator can successfully resolve M closely spaced
sources only if the standard deviation of the directional estimates is substantially less
than the minimum spacing between any two sources. The CR bound provides a lower
bound on the standard deviation of any unbiased estimator, and thus can be used to
elucidate the form of the resolution thresholds £g and Ay for any unbiased estimation
algorithm.

Lee in [11] identified expressions for the CR bound for closely-spaced sources
in 1-D scenarios, and used the results to characterize the SNR resolution threshold
&R for closely spaced sources in 1-D scenarios. The author argued that the &g at
which unbiased spectral estimation algorithms can reliably resolve M sources in 1-D

scenarios is proportional to dw™?M_ That is

Kr

gn.’! N

bw™M (10.1)

where KR is constant with éw.

This chapter extends the result (10.1) of [11] to multi-D scenarios. Drawing upon
the CR bound expressions for multi-D scenarios derived in Chapter 9, we characterize
the (SNR) threshold £g and the data set size threshold Ny for M closely spaced

sources in multi-D scenarios with non-degenerate CR bounds. The results are:

1

Er ~ %-5w—2x (10.2)
K}

Np ~ §N—’;-{.5w-2x (10.3)

where éw is the maximum source separation parameter, y is the parameter defined in

(8.61), and K}, is a constant defined in Section 10.1, that depends only upon sensor

208



Chapter 10

Resolution Thresholds

An important aspect of Direction Finding (DF) algorithm performance is the ability to
identify distinct direction estimates for each of M closely-spaced sources; if successful,
the algorithm is said to have resolved the sources. For DF estimators based upon the
peaks of a spectrum function S(&), a necessary condition for reliable resolution of M
closely spaced sources is the appearance, with high probability, of M distinct peaks
in the spectrum function in the vicinity of the sources.

Note that the ability of an algorithm to resolve M sources is different from the
ability to determine (detect) the number of sources; indeed many eigenvector-based
DF algorithms such as MUSIC and MinNorm require a-priori knowledge of the source
number for proper operation. In practice, the number of sources M is typically ob-
tained from side information, or is estimated using detection algorithms. Example
detection algorithms are Akaike Information Criteria (AIC) [22], and Minimum De-
scriptive Length (MDL) [23]. For the purposes of the discussion of resolving ability,
we assume that the number M is known or has been correctly estimated.

One useful measure of the “resolving power” of a DF algorithm is the signal-to-
noise ratio (SNR) threshold £ at which the algorithm can reliably resolve M sources
for a given source-array configuration, and a given number N of data snapshots. An
alternative performance measure is the data set size N threshold Nr at which the
algorithm can reliably resolve the M sources for a given source-array configuration,

and a given SNR. These threshold values also can be regarded respectively as the
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normalized bound (9.153).

Clearly the simplified asymptotic expressions again capture the essence of the
bounds for emitter separation less than one beamwidth. As predicted, the CR
bounds exhibit a §w~* behavior for small éw, with a slope of 40 dB/decade.
Thus the theoretical expressions accurately predict the CR bounds for small

separations éw for this Case I scenario with non-degenerate CR bounds.
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depict the asymptotic behavior predicted by Eq. (9.145). The horizontal scale
denotes spatial frequency separation éw normalized by the array beamwidth
BW, so that unity on the horizontal scale of the graph corresponds to maximum
source separation of one beamwidth. The vertical scale depicts the value of the

normalized bound (9.153).

Clearly the simplified asymptotic expressions again capture the essence of the
bounds for emitter separation less than one beamwidth. Note that the 5 sensors
lie on an ellipse centered at coordinate origin. As predicted, the CR bounds
exhibit a preferred éw=2 behavior for small éw, with a slope of 20 dB/decade,
along the preferred direction normal to the ellipse curve (y-axis), and exhibit a
dw=* behavior, with a slope of 40 dB/decade, along the tangential direction (z-
axis). Thus the theoretical expressions again accurately predict the CR bounds
for small separations dw for this Case III scenario with non-degenerate CR

bounds.

Example 9.4 : For this example M = 6 and the array and source geometries are

as follows.

Array: Sensors in a sparse grid per Figure 2-4A,

Sources: Sources SC1-SC6 clustered around broadside as in Figure 8-1.

As shown in Example 8.4, this is a Case I scenario with non-degenerate CR
bounds. Consequently the directional variance CR bounds for small dw may be

determined using (9.145).

Figure 9-4 shows the values of the CR bounds for parameter estimates along
the z and y spectral frequency axes for one of the sources, specifically SC1 in
Figure 8-1. The solid curves depict the exact CR bounds; the dashed lines
depict the asymptotic behavior predicted by Eq. (9.145). The horizontal scale
denotes spatial frequency separation éw normalized by the array beamwidth
BW, so that unity on the horizontal scale of the graph corresponds to maximum

source separation of one beamwidth. The vertical scale depicts the value of the
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As shown in Example 8.2, this is a Case II scenario with non-degenerate CR
bounds. Consequently the directional variance CR bounds for small éw may be

determined using (9.145).

Figure 9-2 shows the values of the CR bounds for parameter estimates along
the z and y spectral frequency axes for one of the sources, specifically SC1 in
Figure 8-1. The solid curves depict the exact CR bounds; the dashed lines
depict the asymptotic behavior predicted by Eq. (9.145). The horizontal scale
denotes spatial frequéncy separation éw normalized by the array beamwidth
BW, so that unity on the horizontal scale of the graph corresponds to maximum

source separation of one beamwidth. The vertical scale depicts the value of the

normalized bound (9.153).

Clearly the simplified asymptotic expressions again capture the essence of the
bounds for emitter separation less than one beamwidth. As predicted, the CR
bounds exhibit a éw=2 behavior for small éw, with a slope of 20 dB/decade.
Thus the theoretical expressions again accurately predict the CR bounds for

small separations éw for this Case II scenario with non-degenerate CR bounds.

Example 9.3 : For this example M = 5 and the array and source geometries are

as follows.

Array: Sensors in a sparse grid per Figure 2-4A,

Sources: Sources SC1, SC2, SC3, SC4, SC5 clustered around broadside as in
Figure 8-1.

As shown in Example 8.3, this is a Case III scenario with non-degenerate CR
bounds. Consequently the directional variance CR bounds for small éw may be

determined using (9.145).

Figure 9-3 shows the values of the CR bounds for parameter estimates along
the z and y spectral frequency axes for one of the sources, specifically SC1 in

Figure 8-1. The solid curves depict the exact CR bounds; the dashed lines

201



Substitution of (J.21) into (J.14) gives
D < Rank{€,T.(3) [T, Y][Y, Y]*} = Rank{€,.TL() [T, Y]} (J.22)

since removal of the post-factor Y+ does not change the rank of the product XYY+
for any X, Y.
From (J.17) we note that

En T (3) Y [1— AA*] Aplm Ppn.on )

= 0 (J.23)

since AmFm .I)[l"g'_,,r?n_l] is in the column space of A, and is annihilated by [I - /—111"‘].
Therefore we simplify (J.22) to

D < Rank{€,.T.,(q) T} (J.24)

Since the last factor in (J.24) has only D columns, (J.24) must be satisfied with
equality. From (J.4), (J.10) and (J.16) we note that

V(@) = Th(@)TY (J.25)

Assertion (J.1) of the lemma is established by substitution of (J.25) in (J.24) satisfied
with equality.
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Appendix K

Proof of Lemma 9.3

This appendix establishes the result:

Lemma 9.3: In Case III with 0 < v < D, if Conditions C1-C3 and CR1-CR3 are
satisfied, then

Rank {€n¥m(3;)} = Rank{€m} = Rank{¥.(3)} =» (K1)

fory=1--- M, and also

ErEn = Vn(f)Un(@)* (K-2)
where |
Em = |[I—-AA*| An (K.3)
A = [Ao, -+, Apoy, AT (K.4)
V(@) = [Tm(@), Tl I (K.5)
~T'1(g;)

Fo [ 1:‘0((?) -
r=| " | fgmxM, 1@ =]|."° Aoy X D (K.6)

Fm—l Fm—l(q‘)

| Tl | | Tl (§) |

+

Tm = FmP[[‘,',‘,---l"',:,_,] (P"‘P[l‘f,‘r--f‘?,._d) (K7)
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v = no,.m}— M <D (KS)
Proof: For scenarios with non-degenerate CR bounds, reference to Condition C3
shows that

Ra‘nk{P[/io,---Amq] AnT P[l-\g,.,_,pl’»n_l]} = M —f.m-1) (K.9)
and reference to Condition CR2 for p = x —1 and x = m + 1 for Case III shows that
Rank{ P, .dp-s) AmLm (&) By, Ty @} = i (K.10)

for j=1..-- M, where
@) = [I9(@), T (K.11)

We first show that (K.1) can be inferred from (K.9) and (K.10). Specifically, a
development parallel to that of (J.11)-(J.25) in Appendix J gives

Rank{€m ¥m(d)} > v (K.12)
Recall from (9.25) that
Tm¥m(q)) = 0 (K.13)
and from (9.11) that
Rank{Tn} = M —ffo.m-1} (K.14)

Thus the column nullspace of ¥,,(q;) is at least of rank M — fifo...m—1}, and the

maximum rank of ¥,,(g;) is

Rank{¥mn(§)} < #im— (M —figo.m}) = ¥ (K.15)
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Similarly, we note that
EnTm = [[—AA*| AnTrn = 0 (K.16)

since ATy is contained in the column space of A. By argument parallel to (K.14)-

(K.15), the maximum rank of €,, is
Rank{€n} < v (K.17)

Assertion (K.1) follows from (K.12) and (K.15), (K.17).
To show assertion (K.2), we note from (K.13), (K.16) and (K.14) that

(I = Tn)¥n(F) = ¥n(d) (K.18)
En(I-T,) = En (K.19)
Rank{(I - Tn)} < fim — (M —0g0,.m}) = v (K.20)

Since (I —Ty,) is a prefactor of ¥(;) in (K.18), and a post factor of €., in (K.19), and
the rank of (I — T,) equals that of \Il((j:,) and of €,, by Assertion (K.1) and (K.19),

it must be that (I —T},) spans the column space of ¥,,(g;) and the row space of E,.
That is,

I-Tn = €LEm = V(@) Um(d)* (K.21)

which establishes Assertion (K.2).
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Appendix L

Proof of Lemmma 9.4

This appendix establishes the result:
Lemma 9.4: Let G be a MD x MD matrix of the form

G = Re{([®1, -+, ®ul*[®1, -+ , Om]) O PL} (L.1)

If ®; has full rank (= D) for j =1.-- M, and P is Hermitian positive definite,
then G is Hermitian positive definite. That is

Rank{G} = MD (L.2)

Since P is positive definite, it can be decomposed as

P = M+
= BE L RE Rl (L.3)
where
H = [7?1, 7—!"2, 7?M] (L4)

is non-singular.
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Since G is real, to show that G is positive definite it suffices to show that
F'GT > 0 (L.5)

for all real ¥’ # 0. Thus let ¥ be real, and partition ¥ into D x 1 subvectors as follows

-

U
7 = (L.6)
UM
Formation of the product #*G¥ using (L.3) and (L.6), and simplification gives
M
7o = Y[l (L.7)
i=1
where
i = Y& (L-8)
t=1---M, and
Y = [#, - §um] (L.9)
g; = ®;U; (L.10)
forj=1.---M.
It follows from (L.7), (L.8) that
FGF > 0 (L.11)
with equality iff
@ = YR = 0 (L.12)
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for i =1--- M, or equivalently iff

YII = 0 (L.13)
Since II is non-singular, this requires
Y=0 (L.14)
or equivalently
g = @4 = 0 (L.15)

for all 7 = 1--- M. But since ®; have full rank by hypothesis, condition (L.12)

requires

7 = 0 (L.16)

for j = 1--- M. Therefore (L.11) is satisfied with equality iff ¥ = 0. It follows that

G is positive definite.

The Hermitian property of G is trivially verified by inspection of (L.1).
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Appendix M

Proof of Lemma 9.5

This appendix establishes the result:

Lemma 9.5: Let

G = Re{([@1, -~ , ®n]*[01, -+ , Ou]) o Pt} (M.1)

If ®; has partial rank r (< D) foreach j =1--- M, and P is Hermitian positive

definite, then G is Hermitian non-negative definite with

Rank{G} = M .r (M.2)

The result (M.2) can be extracted from the proof of Lemma 9.4 as follows. Specif-
ically, the requirement (L.15) is

85 = 0 (M.3)

forall j =1--- M. If ®; has partial rank r, then there exist D—r linearly independent
real ¥ # 0 which satisfy (M.3). Additionally there exist M(D—r) linearly independent

real ¥ # 0 for which (L.11) is satisfied with equality. It follows that G has rank
deficiency of M(D — r), or has rank

Rank{G} = MD-M(D-r) = M-r (M.4)
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where MD is the dimension of G.
The Hermitian property of G is trivially verified by inspection of (M.1).
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Appendix N

Proof of Property PI2

This appendix derives the result:

PI2. Let
G(bw) = X(6w) + bw* Y (bw) (L x L) (N.1)

where X (dw), Y (éw) are non-negative Hermitian matrices having Taylor series

valid in the neighborhood of w = 0. Assume that

1) X(éw) has constant rank R for sufficiently small éw, including éw = 0,

and

2) the matrix G(éw) has full rank for sufficiently small éw.

Then for small éw,

G(6w)™t = SwPW(bw)* + [I = W(8w)*Y (6w)] X(w)* [T — Y (8w) W (8w)*]

+ O{6w?} (N.2)

where
W(éw) = P[X(&w)]y(éw)P[X(:Sw)] (N3)
P[X((Sw)] = I—X((SL«J)X((S&))-'- (N4)
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Proof: This appendix uses the shorthands G, X, Y and W for G(éw), X(éw),

Y (éw) and W (éw).
As a first step, let the eigendecomposition of X be denoted

X = EAE!

(N.5)

where A is an R x R diagonal matrix of positive eigenvalues, E; is a L x R matrix of

corresponding eigenvectors, and both E; and A depend upon éw and have a Taylor

series in dw.

Consider the matrix

®© = E'GE

where F is a unitary matrix of the form

E = [Ela E?]

then

G = EO'E*

Partition © in (N.6) conformally with £ in (N.7) as follows

O G2
621 6‘22

with

(")11 = A+6w2E1hYE1 , @12 = 5w2E{‘YE2
0, = 6EMYE, , Oy = 6wW!EMYE,

(N.6)

(N.7)

(N.8)

(N.10)

Sub-matrix ©;; is R x R and has full rank since A is full rank R and the rank of

©11 is not reduced by the O(w?) additive term, for sufficiently small éw. Sub-matrix
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O is (L —R) x (L — R) and likewise has full rank as follows. By construction, the

rank of ©,; equals that of the component of the column space of Hermitian matrix Y

that is orthogonal to the column space of X. Since by assumption matrix G is full for

sufficiently small éw, and column space of Y must have a component of rank L — R

that is orthogonal to the column space of X.

Straightforward calculation shows that

@—l —

Substitution of (N.11) in (N.8) and use of (N.7) gives
Gl = Tu+T+Ta+Tn

where

Ty = Ei [0y - 010500 Ef
Ty = —Ei [0 - 01205/ 0n] 01,05 E}
Tn = —E; [0 — 0,070y 0,07 B!
Ty, = B[0n-0n0;10:y]  E}

Substitution of (N.10) in (N.13) and simplification gives

Tu = E[A™'+O{6w?}] B}
= X'+ O{6w?}

T, = —E[A'+ O{6w?}| E}Y E, [EQ‘YEQ]'1 E;
= —XTYW?* 4+ 0{6w?}

Tn = B [E}YE, +0{60?)] " EAYE: [A™ + Of6w?)] B}
= —W'YXT + 0{6w?)}
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[@11 - @12@{21921] - - [@11 — 91292_21@21] - 0,203,
- [@22 — @21@1—11912]—1 0207} [922 - 921@1_11@12]—1

(N.11)

(N.12)

(N.13)

(N.14)

(N.15)

(N.16)



Ty = 6w B, |ENYE, - 6’E}YE, A~ + O{6u?) E}YE,| ™ E}
= 607 (B3 E) T [1- 6 (BAY E) T BV By [A + O(8?)]

EMYE, (E}YE) 2] o (EbYE) ™ B}

-1/2

= 607E, (EAYE,) 14 6w (ERY B) ™ BEY By [A + Of6?)]
EMNE, (EbE) 4 0{5w4}] (EbvE) ™ B!

= SwTIWt + WHY XYW + O{6w?} (N.17)

Substitution of (N.14)-(N.17) into (N.12), and rearrangement gives (N.2).



Appendix O

Proof of Lemma 9.6

This appendix establishes the result:

Lemma 9.6: In Case III with 0 < v < D, if Conditions C1-C3 and CR1-CR3 are
satisfied, then

Rank {€pmp1 Ums1(8) Py, iz} = D—v (0.1)

for small éw and for j =1--- M, where

Emn = [I—AA*]| App (0.2)
A = [Ao, -, Apoy, An (0.3)
V(@) = ['m(@) T i (0.4)
{—F-lf(q‘])}
Urr(@) = [Pua(@) s Tmna] [ 1 } (0.5)
l—F"l‘(q?)
Lo | [ To(q)
r=| | dgemxM, @ =|." iy0emy X D (0.6)
| - Im-1(q)
| Tl | | 7T (q) |
To = TuPryrn_y (CnPrgom_)  (O)
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v = fg,.m}—M < D (0.8)

Proof: For scenarios with non-degenerate CR bounds, reference to Condition CR3

for Case III with x = m + 1 shows that

Ra'nk{P[Ao,---Am] Am+1I‘:n+1(<7j) P[ra(q‘j)h,...,[‘;"(q*j)h]} = M+ 7D-—1y,.m)
= D -V (0.9)

where the last equality follows from (O.8).
We now show that (0.1) follows directly from (0.9). From (0O.3) we note that

Plo.in = I—AAY (0.10)
Substitution in (0.9), and use of (0.2) gives
Rank {€m1Thn41(8) Pryapyte-rm@n) = D=V (0.11)
Further rearrangement shows that
Rank {€m41 T 1 (35) Py, = Rank {Ems1¥ms1(8) Ponigy1} (0-12)

Assertion (0.1) of the lemma is established by substitution of (0.12) in (O.11).
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