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Abstract
There has been strong recent interest in high resolution techniques for reliably resolv-
ing closely-spaced sources and estimating their directions. The performance of can-
didate techniques has, until recently, been assessed empirically in most publications.
Several recent contributions have facilitated analytical performance assessment for
scenarios with a single unknown direction parameter for each source (1-D). However,
many practical geolocation applications require estimating multiple position-location
parameters for each source (e.g. azimuth, elevation and possibly range). This thesis
generalizes many of the 1-D results to scenarios with multiple parameters (multi-D).

The main results of the thesis are analytical expressions, valid for closely spaced
sources in multi-D scenarios, for the eigenstructure of the data covariance matrix, for
the singular value decomposition of its matrix factor, for the Cramer Rao lower bound
on directional variance, and for detection and resolution thresholds. The expressions
make explicit the impact of scenario parameters such as maximum source separation,
source configuration, source powers and correlations, and sensor array geometry.

The multi-D results herein in some ways parallel the prior 1-D results, but also
differ in interesting and significant ways. For a given number of closely-spaced sources,
we find for multi-D scenarios, in relation to 1-D scenarios, that 1) the direction finding
(DF) problem is much better conditioned, 2) the Cramer Rao variance lower bounds
are much lower, and 3) the source detection and resolution problems are easier.

The thesis provides an analytical framework for the direction finding problem in
multi-D scenarios, which should facilitate the assessment of candidate DF techniques,
help quantify the numerical-accuracy and hardware-alignment issues associated with
implementing high-resolution techniques, facilitate beamformer design and provide
insight helpful to the development of improved DF algorithms for multi-D scenarios.

Thesis Supervisor: Harry B. Lee
Title: Atlantic Aerospace Electronics Corporation

Thesis Supervisor: Alan V. Oppenheim
Title: Professor, Department of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Determining the direction of propagating signals incident upon a sensor array, in

the challenging case when the separation between signal sources is small, has been

a topic of strong interest over the last two decades. Numerous High Resolution di-

rection finding techniques have been proposed with the purpose of reliably resolving

closely-spaced sources and estimating their directions [1]-[5]. The performance of the

candidate techniques in terms of bias, variance, detection and resolution thresholds

has, until recently, been assessed only empirically [4], [6]-[8]. Such empirical assess-

ment is not entirely satisfactory since it is scenario dependent and does not provide

insight into fundamental performance limitations.

Several recent contributions have facilitated analytical performance assessment

for closely-spaced sources, and made explicit the impact upon performance of sce-

nario parameters such as sensor array geometry, source configuration, source powers

and correlations, and maximum source separation 6w. Available analytical results

for closely-spaced sources include estimator bias and variance expressions for spe-

cific direction finding (DF) algorithms [9], [10], Cramer Rao bound expressions for

the minimum directional variance attainable with any unbiased algorithm [11], eigen-

structure expressions for the data covariance matrix that is central to DF algorithms

[12], and expressions for the detection and resolution thresholds [13]. These analyt-

ical formulations have generally been obtained for scenarios with a single unknown

direction parameter for each source (1-D scenarios). Many practical direction finding
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applications involve two or more unknown direction parameters for each source (e.g.

azimuth, elevation, and in some applications also range). Corresponding analytical

results for multi-D scenarios are not currently available.

The purpose of this thesis is to generalize many of the analytical results recently

developed for 1-D direction finding scenarios to multi-D scenarios. Thesis results for

closely-spaced sources in multi-D include expressions for the eigenstructure of the

data covariance matrix, for the Cramer Rao lower bound on directional variance, and

for the detection and resolution thresholds. The multi-D results developed herein

in some ways parallel the prior 1-D results, but also differ from the 1-D results in

interesting and significant ways. For a given number of closely-spaced sources, we

find for multi-D scenarios, in relation to 1-D scenarios, that 1) the DFproblem is

much better conditioned, 2) the Cramer Rao variance lower bounds are much lower,

and 3) the source detection and resolution problems are easier.

1.1 Recent Developments in Spatial Spectrum Es-

timation

Many of the techniques proposed for estimating the direction of closely-spaced sources

were originally proposed for estimating the frequency spectrum of time series. Since

sampling of a function in time is analogous to sampling of a function in space, es-

timating the frequency of sinusoids in noise is similar to estimating the direction of

plane waves in noise. It is at times convenient to represent the unknown plane wave

direction as a spatial frequency w for 1-D scenarios, or as spatial frequency vector W for

multi-D scenarios. The following discussion reviews recent developments in spectrum

estimation in the context of estimating spatial frequency vector W [7], [8].

In a typical direction finding scenario, an array of sensors observes signals prop-

agating from a number of sources. The sensor array is characterized by the generic

arrival vector a(wf), which is the ideal (noise-free) array response to a unit amplitude,

zero phase signal with spatial frequency W. It is assumed that a(w) is known for all

W. The function a(w) sometimes is called the array manifold.

14



The sensor array data typically consists of N snapshot vectors y(t), where the ith

element yi(t) denotes the output of the ith sensor at sampling time t, with t = 1, . .. N.

The data is assumed to be a linear combination of generic arrival vectors for each of

the sources present, scaled by the respective signal amplitude, with additive noise.

Specifically, the data model addressed in this thesis is of the form

M

9(t) = Z (j)xj(t) + (t) (1.1)
j=1

where L ... WM denote the (unknown) source spatial frequencies for each of M sources

present, xj(t) denotes the complex amplitude of the jth source, and ~t) is a vector of

additive, uncorrelated white noise (e.g. sensor noise). The (spatial) frequency estima-

tion problem is to identify the w, ... wM from the snapshot vectors y(1), -.- y7(N)

and the known array manifold a(S).

To obtain the benefits of averaging, most practical spectral estimation algorithms

average outer products of the snapshot vectors to compute a sample data covariance

matrix R. For large data sets (as N -, oo), the sample data covariance matrix

converges with probability one to the asymptotic data covariance matrix R. That is

1N
R -= Ny~.(t)y(t) a (1.2)

t=1

R E{yt)y(t)") (1.3)

and

lim R = R (14)
N-boo

To obtain spatial frequency estimates, the sample data covariance R is transformed to

generate a non-negative spectrum function S(W). The domain of this function is the

set of all possible spatial frequencies W; the values of w at spectrum peaks (maxima)

are interpreted as estimates of source spatial frequencies.

Table 1.1 lists the spectrum functions S(w) used by a number of popular algo-

15



--- h ( -)
Conventional Beamscan SCBS(W ) a()h

constant
Maximum Entropy Method SMEM(') =

Maximum Likelihood Method SMLM(W) =

MUSIC SMUSI(cW) a(w)h E

MinNorm SMinNorm( ()awNa('-

EN = columns of EN are selected (noise-space) eigenvectors of R
t = selected to minimize the norm of tVhEhENt

subject to first element of ENt being equal to 1

Table 1.1: Spectrum Functions of Representative Spectrum Estimation Techniques

rithms. In each case, the algorithm operates on the covariance matrix R with the

generic arrival vector a(w) to generate the spectral value for direction w.

The Conventional Beamscan (CBS) method is the classic direction finding algo-

rithm and actually provides the best possible estimate of the spatial frequency W of

a single source received in the presence of (spatially) white noise [7]. Unfortunately,

the CBS method is not optimal in the presence of multiple sources, and breaks down

completely if two or more sources are closely-spaced.

The CBS method is analogous to classical time-series matched-filtering, (and also

16
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analogous to Fourier spectral analysis of time series). The value of spectrum SCBS(6W)

is large when the vector a(w) equals one signal component a(0j) (i.e. when W equals

the spatial frequency vector of one of the sources). For a scenario with a single source

at Wl and spatially white noise, the value of w at the peak of the SCBS(W) spectrum is

an optimum, unbiased estimator of w1. For large data sets (R -. R), the peak of the

ScBs( ) spectrum is exactly at W1. The width of the SCBS(W) peak is independent

of the data set size N; the width as measured between the 3 dB attenuation points

is commonly designated as the Rayleigh beamwidth.

For scenarios with more than one source, the SCBS(') spectrum consists of the

sum of individual spectra of each of the sources. As a consequence, the spectral peak

frequencies in scenarios with multiple sources may not have means equal to-the source

locations -j, not even as R -, R; thus the CBS estimator is biased. Furthermore if

two sources are spaced closer than one Rayleigh beamwidth, the SCBs(W) spectrum

typically exhibits only one peak (in the vicinity of the two source spatial frequencies).

Therefore the CBS method typically does not resolve sources separated by less that

one Rayleigh beamwidth.

A large number of DF techniques has been developed in the past two decades

to overcome the resolution limitations of Conventional Beamscan. These so-called

High Resolution techniques can resolve sources with spacing less than the Rayleigh

beamwidth given favorable conditions (e.g. large data set (N -+ oo), high signal-to-

noise ratio (SNR), accurate array calibration, etc.)

Early High Resolution DF techniques were based upon classical methods of spec-

trum estimation, but made no use of any information about the underlying propa-

gating signal process. Representative early High Resolution techniques include Max-

imum Entropy Method (MEM) attributed to Burg [1] and the Maximum Likelihood

Method (MLM) technique attributed to Capon [2] with spectrum functions. SMEM(W)

and SMLM(W) as in Table 1.1. Under favorable conditions, these spectral estimators

resolve sources within a Rayleigh beamwidth, but the direction estimates (the spec-

tral peak locations) obtained with these methods typically are biased even for large

data sets (as R -- R).
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Over the last decade a new class of High Resolution techniques has been in-

troduced, including MinNorm [3], [4], MUSIC [5] and related Eigenvector techniques

based upon the eigenanalysis of the covariance matrix R. For large data sets (R -, R),

subject to data model assumptions, MinNorm and MUSIC provide asymptotically un-

biased estimates of the source spatial frequencies regardless of signal-to-noise ratios

and frequency separation of the sources.

In contrast to classical spectral methods, eigenvector techniques assume (require)

that the direction finding scenario consist of spatially discrete signal sources, that

the number of sources be less than the number of sensors, and that the noise be

uncorrelated and white (or pre-whitened). Under these conditions, the covariance

matrices R, R can be decomposed into orthogonal "signal" and "noise" vector sub-

spaces. Eigenvector direction finding techniques exploit the property that the generic

arrival vectors a(wl), ... , a(wM) for each of the sources lie within the "signal" vector

subspace of the asymptotic covariance matrix R, and therefore are perpendicular to

the corresponding "noise" vector subspace. The denominators of the spectrum func-

tions SMUvsc(W) and SMinNorm(w) in Table 1.1 involve the projection of a(S) onto

vectors in the noise subspace of R. Whenever wc equals a source spatial frequency, the

denominator tends to zero as R - R, and therefore the spectrum functions peaks are

asymptotically unbiased estimators of source spatial frequency.

1.2 Closely-Spaced Sources

The performance of High Resolution direction finding techniques is roughly compa-

rable when sources are well separated. Performance differences become evident in

the stressful case when sources are closely-spaced. Therefore the ability of a High

Resolution technique to resolve closely-spaced sources, and to accurately estimate

their parameters, has become a standard test in the literature of the "power" of the

technique.

The spatial spectra of the Maximum Entropy and of the Maximum Likelihood

estimation algorithms depend upon the inverse of sample covariance matrix R; the

18



spectra of the so-called eigenvector techniques such as MinNorm and MUSIC depend

upon selected eigenvectors of R. (See Table 1.1). Therefore the performance of these

algorithms depends strongly on the eigenstructure of matrix R. Under the data model

assumptions, the sample covariance matrix R converges with probability one for large

data sets (as N -- oo) to the asymptotic form

R = Rs+a2 I (1.5)

where matrix term Rs reflects the spatial covariance contribution due to the incident

signals, and a2I reflects the additive, uncorrelated and spatially white sensor noise.

For closely spaced sources, signal covariance matrix Rs is ill-conditioned with the

result that direction estimates are very sensitive to hardware errors and finite data

sets.

Analytical expressions for the eigenstructure of the sample covariance matrix R,

if available, would facilitate the analysis of the statistical properties of the directional

spectra of Table 1.1, and hence facilitate performance analysis of the candidate DF

algorithms for closely-spaced sources. The eigenstructure of the sample covariance

matrix R can be expressed in terms of the eigenstructure of the asymptotic covariance

matrix R using classical perturbation theory results [9], [19]. Thus the eigenstructure

of R can be determined if the eigenstructure of R is available. The eigenstructure of

R is straightforwardly related to that of the signal component Rs of (1.5). Thus the

eigenstructure problem for closely-spaced sources is essentially that of identifying the

eigenstructure of asymptotic signal covariance component Rs.

Direct analytical expressions for the eigenvalues and eigenvectors of Rs are not

available for general scenarios with more than 1 or 2 sources, due to the difficulty

in explicitly solving the polynomial characteristic equation of order greater than 2.

Thus, until recently, assessment of High Resolution estimator performance in terms

of bias, variance and resolution threshold has been largely empirical [4], [6], [7]. Such

empirical assessments leave unanswered important design questions; specifically they

* are scenario dependent,
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* do not establish fundamental performance limitations.

A recent contribution by Lee [12] developed an approach that facilitates analytical

identification of the eigenstructure of Rs for closely spaced sources in scenarios with

a single unknown direction parameter for each source (1-D scenarios). The results

are summarized in the next section.

Another useful tool for performance analysis is the Cramer ao (CR) bound. The

CR bound provides a lower bound upon the variance achievable by any unbiased

estimator [20]. Therefore the CR bound is commonly used as a yardstick to measure

the directional accuracy of candidate DF algorithms. Analytical expressions for the

CR bound applicable to DF scenarios, if available, would indicate whether existing

High Resolution techniques are near-optimum, and potentially lead to new-techniques

which remedy any identified shortcomings.

Development of analytical results for the covariance matrix eigenstructure and the

CR bound for closely-spaced sources has been a recent focus of interest [9]-[14]. The

work reported thus far has been for 1-D scenarios. The results are summarized below.

1.3 Available Analytical Results (1-D)

An important early contribution by Kaveh and Barabell [9] analyzed the statistical

properties of the MUSIC and MinNorm algorithms. Using a first order approximation

of the MUSIC spectral bias, the authors determine an expression for the minimum

(threshold) signal-to-noise ratio (SNR) at which MUSIC is able to reliably resolve two

closely-spaced equal-power uncorrelated sources observed by a uniform linear array.

Lee and Wengrovitz [10], [14] extended these results to arbitrary arrays, to beam-

space pre-processing, and to two (possibly) correlated sources of (possibly) unequal

powers. The authors also identified the beamforming pre-processor which minimizes

the MUSIC resolution threshold.

Lee [12] derived explicit expressions for the eigenstructure of asymptotic signal co-

variance Rs in (1.5) for the problem of M closely-spaced sources in 1-D scenarios. The

author showed that for closely-spaced sources, the eigenstructure of Rs decomposes
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so that eigenvalues and eigenvectors can be determined by straightforward linear al-

gebra operations, without eigenanalysis. Specifically, if the number of sources M is

less than the number of sensors, and if we denote the maximum source separation

as w, the ordered non-zero eigenvalues of Rs as Al(6w) > ... > AM(6w), and the

associated eigenvectors as e'i(6w), i = 1,... M, then example results of [12] are

1) Non-zero eigenvalues Ai(&w) of Rs converge as w -- 0 to limiting eigenvalues

Ai6w2 (i- l ), where Ai are positive constants and i = 1, ... M.

2) Eigenvectors e'i(6w) of Rs converge as w -- 0 to constant vectors e, cor-

responding to the generic arrival vector a(w) and its derivatives, suitably or-

thonormalized.

3) Limiting condition number of Rs is l Sw- 2(M-1)
AM

4) Remarkably, the quantities A; and e are calculable via linear algebra operations;

solving a characteristic equation is not required.

Thus for closely spaced sources in 1-D, the eigenanalysis of Rs decomposes completely

into explicit expressions for each eigenvalue and eigenvector.

Lee and Li [13] addressed the problem of detecting the number of sources in a

cluster of M closely-spaced sources. Using the foregoing eigenvalue results, they

argued that the SNR threshold ED at which so-called Normal Algorithms can reliably

estimate the number of sources in 1-D scenarios is proportional to 6w-2(M- 1). That

is

ED w2(M1) (1.6)

where KD is a suitable constant.

Lee [11] extended general results on the CR bound due to Stoica and Nehorai [15]

to the case of closely-spaced sources. Explicit formulae for the CR lower bound on the

variance of unbiased (1-D) spatial frequency estimates were derived for closely-spaced

sources. The variance bound on the spatial frequency estimate 6wj for the jth source
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was found to be

Var } N. SNR 62(MI1 + O(6W-2(M - 1)+1) (1.7)

for small frequency separation w, where N denotes the data set size, SNRj the

signal-to-noise ratio for the jth source, M the number of sources, and b is a suitable

constant that depends upon the other scenario parameters of sensor array geometry,

source configuration, source powers and correlations. Lee used these results to argue

that the SNR resolution threshold R for any unbiased estimator in 1-D scenarios is

proportional to Ik6w- 2M. That is

ER N KR2M (1.8)N.6W2M

where KR is a suitable constant.

Results of the form (1.6)-(1.8) are quite useful in that they make explicit the

dependence of performance metrics ED, Var{(j) and oR upon the source separation

factor 5w. For example, Eq. (1.8) indicates for a 1-D scenario with M = 3 sources

that reducing w by a factor of 10 increases the resolution threshold SNR by 60 dB

for any sensor array and relative source configuration.

1.4 Thesis Objective

The purpose of this thesis is to generalize many of the foregoing results for 1-D

direction finding scenarios to multi-D scenarios. The two principal issues addressed

in the thesis are 1) the eigenstructure of the asymptotic signal covariance matrix

Rs, and 2) the Cramer Rao bound on spectral estimate variance, for closely-spaced

sources in multi-D. Major results include the following.

Building upon the work of Lee [12] for 1-D scenarios, analytical expressions are de-

veloped that facilitate identification of Rs eigenstructure for M closely-spaced sources

in multi-D scenarios. The approach used herein differs from that used by Lee for 1-D
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scenarios [12] in that covariance matrix Rs is factored as

Rs = BBh (1.9)

where rectangular matrix B has Taylor series in source separation parameter 6w. The

thesis identifies explicit expressions for the small 6w Singular Value Decomposition

(SVD) of the rectangular matrix B, building upon classical eigenstructure results

of Kato [17] and Coderch, Willsky, Sastry, and Castanon [18]. The eigenstructure

of Rs for small w then follows immediately from (1.9). The SVD results are not

only important enabling tools for the multi-D eigenstructure problem, but also may

themselves constitute important results for other applications.

The properties of Rs eigenstructure for multi-D scenarios identified herein often

parallel those for 1-D scenarios, but also diverge in interesting and significant ways.

Example thesis results for non-degenerate multi-D scenarios with M closely-spaced

sources are

1) Non-zero eigenvalues Ai(6w) of Rs converge as w -, 0 to limiting eigenvalues

Ai 6w2ki, where Ai are positive constants, and ki E {0,. -m}, for all i = 1, ... M

and with m < M - 1. Typically there are multiple limiting eigenvalues propor-

tional to w2k for each k = 0,.. m; the group of limiting eigenvalues propor-

tional to 6w2k is designated as the kth eigenvalue shell.

2) Eigenvectors e'i(w) of Rs associated with each eigenvalue shell converge as

6w -- 0 to constant limiting subspaces spanned by the generic arrival vector

and its partial derivatives, suitably orthonormalized.

313) Limiting condition number of Rs is A 6w- 2m. Thus parameter m determines
AM

condition number sensitivity to maximum source spacing w.

4) Eigenvalues of Rs that exhibit the behavior AiSw2 k as w --} O, have as multipli-

ers Ai the non-zero eigenvalues of a constant low-rank matrix R2k,0. Furthermore

as w -. 0, the associated eigenvectors of Rs span the column space of R2k,0.
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Matrix R2k,o is independent of 6w, and is straightforwardly calculable via linear

algebra operations.

Thus in multi-D, the eigenanalysis of Rs decomposes into a sequence of much

simpler shell problems; the kth shell problem involves eigenanalysis of the constant

low-rank matrix R2k,o. Nevertheless, eigenanalysis is not required to determine the

span of limiting eigenvectors associated with each R2k,o, nor to determine conditioning

sensitivity parameter m. For 1-D scenarios, ki = i - 1, m = M- 1 and matrices R2k,0

have rank 1, whereupon thesis results simplify to those of [12]. For non-degenerate

multi-D scenarios, typically m < M - 1, and thus Rs conditioning for small 6w is

much improved relative to 1-D settings.

A major contribution of the thesis is to identify simple explicit expressions for the

matrices R2k,o for typical multi-D direction finding scenarios.

The eigenvalue results are used to extend the 1-D SNR detection threshold results

of Lee and Li [13]. Based upon classical eigenstructure perturbation theory, the thesis

argues that the minimum SNR at which any eigenvalue based detection algorithm can

reliably estimate the number of sources in multi-D scenarios is proportional to bw- 2m.

It is further argued that the minimum data set size N for reliable detection in multi-D

scenarios is proportional to Sw- 4m. That is

ED - D (1.10)
VN ,6w2m

Al - (KI)f (1.11)

(SNR) 2 .· 6w 4m

for large N and small 6w, where £D denotes the SNR detection threshold, D the

data set size N detection threshold, and KD is a suitable constant. Since typically

m < M - 1, we conclude from (1.6) and (1.10) that for small w, the detection

threshold SNR typically is much smaller (more favorable) in multi-D than in 1-D

scenarios.

The second part of the thesis extends the general results on the CR bound in multi-

D due to Yau and Bresler [16], to develop CR bound expressions for closely-spaced

sources in multi-D which parallel those of Lee [11] in 1-D scenarios. For unbiased
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estimators in typical multi-D scenarios, the variance bound on Coij, the i th component

of spatial frequency vector cj for the jth source, is shown to satisfy

1 b
Var{iji} > N SNR s

2(x ) + O(6w- 2 (x-l)+l) (1.12)

for small frequency separation w, where N denotes the data set size, SNRj the

signal-to-noise ratio for the jth source, X E {m, m + 1} depends only on the number

of sources M and scenario dimensionality. The constants bij depend upon the other

scenario parameters of sensor array geometry, source configuration, source powers

and correlations. Significantly the value of X in typical multi-D scenarios is less the

number of sources M; therefore for a given number of sources, the CR variance bound

typically is much smaller (more favorable) in multi-D than in 1-D scenarios.

Building upon the results of Lee in [11], the thesis uses the multi-D CR bound

results to argue that the minimum SNR at which any unbiased estimator can reliably

resolve M sources in multi-D scenarios is proportional to 5w -2X. It is further argued

that the minimum data set size N for reliable detection in multi-D scenarios is also

proportional to SW- 2X. That is

ER f R 2x (1.13)N.SW2 x

JR IFR (1.14)
SNR SW 2X

for large N and small w, where gR denotes the SNR resolution threshold, ANR the

data set size N resolution threshold, and I is a suitable constant. Since typically

X < M, we conclude from (1.8) and (1.13) that for small Sw, the resolution threshold

SNR typically is much smaller (more favorable) in multi-D than in 1-D scenarios.

Thesis analysis is facilitated by identification of structural conditions character-

istic of a large class of DF scenarios, designated herein as non-degenerate. For such

scenarios, the eigenstructure conditioning parameter m, and the CR bound param-

eter X, are as small as possible for the given number of sources M. For degenerate

scenarios the direction estimation problem typically becomes more difficult; that is,
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the numerical conditioning of Rs typically degrades, the CR bound on directional

variance typically increases, and the detection and resolution thresholds typically

increase. Analysis leads to identification of sufficient conditions for non-degenerate

scenarios, and identification of practically important sensor geometries and source

configurations that result in degenerate scenarios.

1.5 Organization

The thesis is organized as follows.

The problem addressed in this thesis is detailed in Chapter 2, including the data

model assumptions and notation conventions, the classical perturbation theory re-

lation between iR and R, and the prior CR bound expressions for 1-D and multi-D

scenarios. The thesis analysis approach is introduced, as well as the example DF

scenarios that are used in numerical simulations throughout the chapters to illustrate

theoretical results.

Prior results on the eigenstructure of perturbed matrices are reviewed in Chapter

3, including the eigenstructure of Rs identified by Lee [12] for closely-spaced sources

in 1-D scenarios, and the eigenstructure results of Kato [17] and Coderch et al. [18]

for any perturbed Hermitian matrix.

New results on the singular value decomposition (SVD) of perturbed rectangular

matrices are derived in Chapter 4, which extend the eigenstructure results of [17],

[18]. A particularly simple formulation for the small perturbation SVD structure is

developed for non-degenerate matrices that satisfy side conditions typically present

in DF scenarios.

In Chapter 5, the eigenstructure of Rs for closely-spaced sources is identified

from the SVD structure of its factor B. A reasonably complete characterization of

the eigenstructure of Rs for small source separations is obtained for non-degenerate

scenarios, including the limiting eigenvalues, the limiting eigenvectors, the limiting

numerical conditioning and the limiting span of Rs.

The eigenstructure results are applied in Chapter 6 to identify the minimum
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(threshold) SNR and data set size N necessary for reliable estimation (detection)

of the number of sources M by any algorithm based upon consideration of the sample

eigenvalues of R.

The eigenstructure of Rs for degenerate scenarios is addressed in Chapter 7. Ex-

pressions are developed that facilitate eigenstructure identification for two classes of

practically important degenerate scenarios, which arise from degenerate sensor array

geometry or degenerate source configuration.

Chapter 8 lays the foundation for CR bound analysis by reviewing the avail-

able CR bound expressions, and relating them to the MUSIC null spectrum. The

thesis approach to CR bound analysis is introduced, and sufficient conditions for

non-degenerate CR bounds are defined.

Explicit expressions for CR bounds on spatial frequency variance in multi-D sce-

narios are derived in Chapter 9, and illustrative examples are presented.

The CR bound results are applied in Chapter 10 to identify the minimum (thresh-

old) SNR and data set set size N necessary for reliable resolution of closely spaced

sources by any unbiased direction estimation algorithm.

A discussion of thesis results is presented in Chapter 11.
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Chapter 2

Problem Addressed

In order to lay the foundation for the forthcoming analysis, this chapter introduces

a motivating direction finding problem in Section 2.1, the data model assumptions

and notation conventions in Section 2.2, the classical perturbation theory relation

between the eigenstructure of sample and asymptotic covariance matrices R and R in

Section 2.3, and the available CR bound expressions for 1-D and multi-D DF scenarios

in Section 2.4. The thesis analysis approach for closely-spaced sources is presented

in Section 2.5. Section 2.6 introduces example scenarios that are used in numerical

simulations throughout the thesis to illustrate theoretical results.

2.1 The Direction Finding Problem

In a typical direction finding (DF) scenario, an array of sensors observes signals

propagating from one or more spatially discrete sources. The problem of interest is to

determine the spatial location, or direction, of the sources by comparing the signals

observed at the collection of sensors with array calibration data.

A DF scenario is designated as one-dimensional (1-D) if only one unknown real

scalar direction parameter is to be determined for each source. An example 1-D DF

scenario is illustrated in Figure 2-1; a uniform linear array of three sensors observes

signals from a single source. To simplify discussion of the example scenario, we make

the following assumptions:
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d sin(O)

Sensors: 1 2 3

Figure 2-1: Example 1-D Direction Finding Scenario

far-field source: the source-to-sensor distances are assumed to be large relative to

the sensor-to-sensor spacing, (or equivalently, that the propagating signal con-

sists of plane waves),

monochromatic source: the transmitted signal is a sinusoid at a single, constant

temporal frequency f,

identical omni-directional sensors: the complex gain response of each of the sen-

sors is unity in all directions.

The direction finding problem is to estimate the off-broadside direction of arrival

angle 0.

The key feature of propagating signals that can be exploited in direction finding is

that the signal waveform emitted by a source is received at a sensor with a propagation

delay that depends upon the source-to-sensor distance. In Figure 2-1, the source

signal received at sensor 2 is delayed relative to that received at sensor 3 and advanced

relative to that received at sensor 1 (since sensor 3 is closer and sensor 1 is farther from

the source than sensor 2). Under the far-field assumption, the incremental source-to-

sensor distance in Figure 2-1 between sensors 2 and 3, and between sensors 1 and 2,

is essentially dsin(O), where d is inter-sensor spacing and 0 is the off-broadside angle.

For a given uniform sensor spacing d and uniform propagation speed in the medium
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c, the signal at sensor 2 is delayed (advanced) relative to that at sensor 3 (sensor 1)

by a time Et, where

t = dsin() (2.1)
c

Under the monochromatic source assumption, signal delay results in signal phase

shift. In the example scenario of Figure 2-1, if x(t) denotes the noise-free source

signal as might (ideally) be received at sensor 2 at time t, then x(t) ej2fa6 t denotes the

(phase-advanced) noise-free signal received at sensor 3 at time t (assuming identical

omni-directional sensors, and negligible magnitude attenuation between sensors for a

far-field source).

In reality, the source signals cannot be received noise-free. If ei(t) denotes the

additive noise at the ith sensor at time t, and yi(t) the source signal as received at the

ith sensor with additive sensor noise, then for a far-field, monochromatic source and

identical omni-directional sensors in Figure 2-1, the received signals can be modeled

as

yl(t) = x(t) . e- jd' w + el(t)

Y2(t) = (t) + 62(t)

y3(t) = x(t) . ejdw + 63(t) (2.2)

where d is the intersensor distance, and w denotes the quantity

2irf
w = sin(O) (2.3)

Due to the appearance of w in the complex phasors in (2.2), w is commonly designated

as the spatial frequency of the source in 1-D scenarios. For constant source temporal

frequency f, and constant, uniform propagation speed c, w in (2.3) depends only on

the direction of arrival angle 0 of the source. Therefore, the direction finding problem

is often alternately stated as the problem of estimating spatial frequency w.

A direction finding scenario in which there are two or more unknown direction
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Figure 2-2: Example Multi-D Direction Finding Scenario

parameters for each source is designated as multi-dimensional (multi-D). An example

two-dimensional (2-D) scenario is illustrated in Figure 2-1; a triangular array of three

sensors observes a single far-field signal source. The sensor coordinates in the sensor

plane are (d1, 0), (0, 0) and (0, d2). The source direction is measured by two parame-

ters: 0 measures azimuth angle in the sensor plane from the il axis, and measures

elevation angle from the 'l, $2 plane. The problem here is to estimate the two angular

direction parameters of azimuth 0 and elevation for the far-field source.

If we assume in Figure 2-2 that the source is far-field and monochromatic, and

that the sensors are identical, unit gain in all directions (isotropic) and that noise is

additive, then analogously to equations (2.2) for 1-D, the received signals in Figure

2-2 can be modeled as

yl(t) = x(t) eidlwl + el(t)

y2 (t) = x(t) + {2(t)

y3 (t) = x(t) . e d22 + e3(t) (2.4)
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where at time t, x(t) is the noise-free signal at sensor 2, i(t) is the additive noise

at the ith sensor, and y(t) is the signal at the ith sensor with additive noise. The

parameters w1 and w2 denote the quantities

2irf= 2r cos()cos()

w2 = f sin(O) cos(d) (2.5)

where f is the (monochromatic) source temporal frequency, c is the (uniform) prop-

agation speed in the medium, is source azimuth angle, and is source elevation

angle. Due to the appearance of wl, w2 in the complex phasors in (2.4), wl is des-

ignated as the spatial frequency component along the ij axis, and w2 as the spatial

frequency component along the ?2 axis. For convenience, the scalar spatial frequency

components are collected into a single real spatial frequency vector W. That is,

W = [w1 ,w 2]
t (2.6)

For constant source temporal frequency f, and constant propagation speed c, cW de-

pends only on the direction of arrival angles 0 and of the source. Therefore, the

multi-D direction finding problem is often alternately stated as the problem of esti-

mating spatial frequency vector w.

To compactly represent the data model (2.4), it is convenient to adopt the vector

notation

y(t) = a(X)(t) + (t) (2.7)

where x(t) is the noise-free signal at a reference sensor at time t, and

07(t) = [yl(t),y 2(t),y 3(t)]t

a(w) = [eid,, 1, ed22]t

C(t) = [EI(t), 62(t), 3(t)] t (2.8)
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The data vector y7(t) is commonly designated the vector snapshot of sensor out-

puts at time t. The vector a(w) is a function of spatial frequency vector W, but is

independent of the transmitted signal x(t). Thus a(w) represents the generic array

response to a unit amplitude signal arriving with spatial frequency vector a, and is

commonly designated the generic arrival vector for spatial frequency w.

2.2 Data Model

The data model addressed in this thesis is the narrowband source model, which gen-

eralizes the example data model (2.7) of the previous section to multiple sources, and

relaxes the simplifying assumptions of far-field, monochromatic sources and identical,

isotropic sensors.

In a multi-D direction finding scenario with D unknown real scalar spatial fre-

quencies wl, ... , wD to be determined for each source, it is convenient to collect the

scalar parameters into a real spatial frequency vector W. That is

W = [w1, ]t (2.9)

In a multi-D scenario with M sources, we assume that source directions are spec-

ified by parameter vectors W1, 'M. The l,- -WM are to be estimated from ob-

servation data across an array of W sensors. The observed data consists of N vector

snapshots of the assumed form

y(t) = A (t) + (t) t = 1,... N (2.10)

At sample index t, y(t) is a noisy (complex) V element observed data vector, x(t) is

an M element vector of source complex amplitudes, and 6e(t) is a W element vector

of additive complex noise. A is a constant matrix having special form

A = [a(1),' a(0M)] (W x M) (2.11)
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where d(w) is the generic arrival vector for signals with spatial frequency W. Typically

the ith element of vector a(w) reflects the magnitude and phase observed at the ith

sensor in response to a unit amplitude signal with spatial frequency w.

In the data model (2.10), (2.11) the sources need not be monochromatic, but

are assumed to be narrowband with a center frequency f. Specifically, it is assumed

that the coherence length of the source modulating waveform is much larger than

the maximum sensor-to-sensor separation. Under the narrowband assumption signal

delay is essentially equivalent to complex phase shift.

The data model (2.10), (2.11) also supports generic arrival vectors a(w) for sources

that are not far-field, and for sensors that are not identical and that do not have

isotropic response. Nevertheless to simplify the discussion, scenarios with far-field

sources and identical, isotropic sensors will be used in all examples in this thesis.

The following example illustrates the structure of the generic arrival vector a(w) for

a simple 2-D scenario used repeatedly in thesis examples.

Example 2.1 : Consider a 2-D direction estimation problem consisting of a planar

array of identical unit-gain, isotropic sensors observing signals from a cluster of

far-field sources. The data model for this scenario takes the form (2.10), (2.11).

The generic arrival vector for a planar array of W unit gain isotropic sensors is

a() = [ej t (7, e2,- ej w ] (2.12)

where r = [rii, r 2 i]t is the location of the ith sensor in sensor plane, and is

the projection of the source direction onto the sensor plane defined as

= 2f cos cos X 1 (2.13)
C sinc 0 os J

where 0 measures azimuth angle in the sensor plane from the ; axis, and +

measures elevation angle from the i1, 2 plane as illustrated in Figure 2-2.
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2.2.1 Assumptions

The vectors a(S), x(t) and (t) in data model (2.10), (2.11) are assumed to satisfy

the following conditions:

a(w):

Al. the number W of sensors is greater than the number M of sources, i.e. W > M,

A2. matrix A is a W x M matrix of the form (2.11), with columns (w), a(wM).

A3. matrix A has linearly independent columns, provided Wi 0 Wj for i j.

A4. the elements of a(w) are bounded and possess partial derivatives of all orders

with respect to the elements of W, within a convex region of w space that includes

all source spatial frequency vectors wl, '", WM.

s(t):

X1. the sequence of source amplitude vectors x(t), t = 1 ... N is fixed for all realiza-

tions of the data sequence y(t),

X2. the sample source amplitude cross-power matrix

N
P - Z-(t)F(t)h (M x M) (2.14)

t=l

is Hermitian positive definite.

X3. for large data sets (as N - oo), P converges with probability one to the asymp-

totic source amplitude cross-power matrix

P = E {(t)F(t)h) (M x M) (2.15)

which also is Hermitian positive definite.
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e (t):

El. the noise vector e(t) varies randomly across the ensemble of data vectors !(t).

Specifically, the e(t) for t = 1 ... N, are samples of a zero-mean complex Gaus-

sian random process with

E {(t)g(s)h = t t s

E {f(t)(s)t} = 0 (2.16)

Following [15], [11], we designate the data model defined by (2.10), (2.11) and

the assumptions X1-X3, El as the conditional model. The unconditional model (or

stochastic model) differs from theforegoing in that assumptions X1-X3 are replaced

by assumptions that allow x(t) also to vary randomly across the ensemble of data

vectors [15].

2.2.2 Notation

We use the following conventional notation:

(.)t transpose,

(.)* complex conjugate,

(_)h Hermitian transpose (conjugate transpose),

(.)- conventional inverse,

(.)+ pseudo inverse,

.I [-matrix determinant,

I1 II 2-norm,

Iqxq q x q identity matrix,

lpxq p x q matrix of ones,

A G B Schur-Hadamard product (See Appendix A),

A 0 B Kronecker product (See Appendix A),
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unbiased estimate of parameter z,

Expectation,

matrix E{(?tk- )( - ) h}

A- B is positive definite,

A- B is non-negative definite,

"is defined to be",

the elements of A are of order eP,

the elements of A are of order eq, q > p,

the elements in set X are contained in set Y.

Projection matrices play a fundamental role in our results. To simplify the dis-

cussion, we introduce the following additional notation.

projection

= Z+ Z projection

projection

projection

matrix

matrix

matrix

matrix

onto the column space of Z,

onto the row space of Z,

onto the column nullspace of Z,

onto the row nullspace of Z.

2.3 Eigenstructure of R

To obtain the benefits of averaging, many practical direction finding algorithms com-

pute the sample data covariance matrix

Z y E(t)y(t)
t=1

(W x W) (2.17)

For the assumed data vector (2.10), with assumptions Xl-X3, El, the sample co-

variance matrix R converges as N -- oo with probability one to the asymptotic data

covariance matrix

R E (t)(t)h} = Rs + 2aI (W x W) (2.18)
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where Rs is the asymptotic signal (noise-free) covariance matrix

Rs APA h (W x W) (2.19)

with matrices A, P as in (2.11), (2.15). It follows from (2.19) and assumption X3

that Rs is Hermitian non-negative definite.

The data covariance matrices R, R play a fundamental role in direction finding.

Many direction finding techniques generate a non-negative spectrum function from

the sample data covariance matrix R (recall Table 1.1). The values of Wc at the peaks

of the spectrum function are taken to be estimates of the source spatial frequency

vectors. The spectrum functions for High Resolution algorithms typically depend

upon the inverse of R, or upon selected eigenvectors of R. Therefore, the performance

of direction finding techniques in terms of bias, variance, detection and resolution

thresholds depends critically upon the eigenstructure of R, or of the corresponding

asymptotic matrix R, for large data set size N.

From assumptions A1-A3 and X3, matrix Rs of (2.19) has M non-zero eigenval-

ues; therefore the eigenvalues and eigenvectors of R in (2.18) can be partitioned

as follows. Let A1 > A2 > ... > AM and l M ... e denote respectively the M

largest eigenvalues of R, and the corresponding (signal-space) eigenvectors. Let

AM+ = = AW = a2 and M+l ... eW denote respectively the remaining eigenval-

ues and corresponding (noise-space) eigenvectors. Finally let E denote the complete

matrix of eigenvectors

E [S, EN]

E A [ RNl -[em+l *... ew] (2.20)

The corresponding eigenstructure of the sample covariance matrix R is denoted

using modifier ^ in place of -, and can be similarly partitioned. Thus let A1 > 2 >

· " > AM and e ... eM denote respectively the M largest eigenvalues of R, and the

corresponding (signal-space) eigenvectors. Let AM+1 >_ ... Aw and eM+l ..* ew
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denote respectively the remaining eigenvalues and corresponding (noise-space) eigen-

vectors. Finally let E denote the complete matrix of eigenvectors

E [S EN] (2.21)

E ^ [ eMJ , EN = [eM+ . .ew] (2.22)

To quantify performance of candidate DF algorithms, it is desirable to have avail-

able a model of the eigenstructure of the sample data covariance matrix R. The

sample quantities can be expressed as the sum of the asymptotic values and random

perturbations as follows

Ai = Ai + i (2.23)

i = 1..W and

ei = ei + i (2.24)

for i = 1 ... M, where the signal space eigenvalues are assumed to be distinct.

If the eigenstructure of the asymptotic covariance matrix R is available, then clas-

sical statistical results provide expressions for the mean and variance of the eigenvalue

and eigenvector sampling errors pi and i-, in terms of the asymptotic eigenvalues i

and eigenvectors ei. Drawing upon results of [9] for the eigenvalues and eigenvectors

of the sample covariance matrix R of a complex Gaussian process, the asymptotic

(large N) first and second order statistics of pi and 7i- are

E{ly} = o(1/N) (2.25)

E{ilj} = ij + o(1/N) (2.26)

E{Qi} = (-2 e + o(l/N) (2.27)
ki
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El jih} =Xi W Xk + o(N) (2.28)
Z, (Xi - k)2ekek ij + o(l/N)
k9i

E{(,~} = N(Abj )2 j(- ij) + o(1/N) (2.29)

where 6 ij is the Kronecker delta and o(1/N) denotes terms of order 1/N q with q > 1.

If the eigenvalues Ai and ei of R were available, then the statistical properties of

the eigenstructure of R could be ascertained from the classical perturbation results

(2.25)-(2.29).

For the data model addressed, we recall from (2.18) that matrix R takes the form

R = Rs + a2I (2.30)

where Rs reflects the covariance contribution of the M source signals, and a2 is the

variance of the additive noise. Due to the uncorrelated and white structure of the

noise component of R, the eigenstructure of R is simply obtained from that of Rs. The

eigenvalues of R are those of Rs incremented by the constant a2. The signal-space

eigenvectors of R (columns of Es in (2.20)) associated with the ith largest eigenvalue

of R are the eigenvectors of Rs associated with the ith largest non-zero eigenvalue of

Rs. The noise-space eigenvectors of R (columns of EN) are the eigenvectors of Rs

associated with the zero eigenvalue of Rs.

Therefore, identification of the eigenstructure of Rs is a fundamental enabling step

for obtaining analytical expressions for the performance of candidate direction finding

algorithms for closely-spaced sources. Reference [12] introduced simple expressions

for the eigenstructure of Rs for closely-spaced sources in 1-D scenarios. A major

result of this thesis is to derive analogous simple formulations for the eigenstructure

of Rs applicable to multi-D scenarios.
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2.4 Cramer Rao Bounds

The Cramer-Rao (CR) lower bound on the variance of unbiased direction estimates

provides a useful benchmark for assessing estimation accuracy of direction finding

algorithms [15]. The CR bound also can provide insight into the performance impact

of individual scenario parameters such as sensor array geometry, source configuration,

source powers and correlations [11].

Evaluation of the CR bound generally requires inverting the applicable Fisher

Information matrix F of dimension equal to the number of unknown (real and imag-

inary) model parameters. In the Conditional signal model specified by Assumptions

X1-X2 and El, the unknown parameters are not only the source spatial frequency

vectors wl, - ,wM of interest, but also the noise variance a2 and the complex signal

amplitude vector sequence x(1),... (N). These latter unknowns are essentially nui-

sance parameters for the DF problem, which enlarge F and make direct calculation

of F-l exceedingly cumbersome.

The CR bound of present interest is that on the covariance of the spatial frequency

vectors. This bound is given by a submatrix of F'-1 . Since only a submatrix of F-'

is required, it is useful for both analytical and numerical work to have available an

explicit formulation for the applicable submatrix of F- 1. Such formulations have

been developed by Stoica and Nehorai for 1-D scenarios [15], and extended by Yau

and Bresler to multi-D scenarios [16].

For 1-D scenarios, the CR bound on sample frequency covariances takes the form

E >{ (Q f (- ) ·> Bc (2.31)

where A > B means that the matrix A - B is non-negative definite, and

[Wi,W 2 ,- ' ,WM] (2.32)

[dn1, wa u a2, e o , M] (2.33)

wi denotes an unbiased estimate of the spatial frequency wj for the jth source (j =
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1... M). The matrix B is

Bc = 2{Re [H ) PT (2.34)

where

H Dh [I- A(AhA)-'A] D (2.35)

[d(ml , dwM)] (2.36)

D ),dwdwj) A dw(w) |(2.37)

Vector a'(w) is the generic arrival vector for (scalar) spatial frequency w, matrix A

is the source arrival matrix (2.11) and P is the sample source amplitude covariance

matrix (2.14). The result (2.31), (2.34) is valid for 1-D scenarios under the conditional

signal model assumptions X1-X3 and El. The result is due to Stoica and Nehorai

[15].

For multi-D scenarios, the CR bound applicable to the parameter vectors w .. M

also takes the form (2.31), this time with

= [W 1 ... WD1 ... W1M ... WDM] (2.38)

=_ [wJ11...l 1...61M ... DMi (2.39)

wji denotes an unbiased estimate of ith element of w, (i = 1 .. ,j = 1 ... M).

Compact expressions for BC in multi-D scenarios, again under the conditional signal

model assumptions X1-X3 and El, have been identified by Yau and Bresler [16].

The detailed expression of [16] for BC in multi-D is given in Section 8.2.3.

A shortcoming of the Bc expressions of [15] and [16] is that the dependence of

BC upon the scenario parameters such as sensor array geometry, source configuration,

source powers and correlations remains implicit. For the case of closely-spaced sources

in 1-D direction finding scenarios, simple explicit expressions have been developed by

Lee [11] in terms of the maximum source separation w and the foregoing scenario
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parameters. These expressions provide great insight into the dependence of the CR

bound upon scenario elements, and facilitate derivation of fundamental performance

metrics such as the minimum (threshold) SNR at which closely-spaced sources are

resolvable. At present no analogous results for Multi-D scenarios are available in

the literature. The second major result of this thesis is to derive analogous explicit

expressions for Be for closely-spaced sources in multi-D scenarios.

2.5 Analysis Approach

The main results of this thesis are obtained by identifying the eigenstructure of Rs,

and identifying expressions for the CR bound Be, as source spacing becomes small.

Extending the approach of [11], [12] for 1-D scenarios, we express the spatial frequency

vector for the jth source as

Wj = Wo+w .q (2.40)

j = 1, ... M, where -0 is a nearby fixed reference vector, w is a variable real scale

factor, and

q = [qli,' * qj] t (2.41)

is a normalized offset vector with constant real elements. The qj are normalized so

that Sw equals the maximum separation IIW -Wi 1I between pairs of vectors WL, WM.

That is,

Sw = max lwj -w-ill (2.42)

The analysis strategy is to examine the structure of Rs and of the Cramer Rao

bound Be as scaling factor 6w - 0, while the qi are held constant. The leverage in

the representation (2.40) is that it replaces the M variable spatial vectors Wl ... W-M

by a single variable scalar parameter Sw, thereby greatly simplifying analysis. The
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condition w - 0 corresponds to the coalescing of all source parameter vectors to

the reference vector 0o, while the relative (normalized) source configuration remains

unchanged.

Example 2.2 : To illustrate the analysis strategy, consider the 2-D problem of

estimating a 2-element spatial frequency vector -j = [wj, wyj]t for each source

(j = 1,2,3) in a cluster of 3 far-field sources in the triangular configuration

illustrated in Figure 2-3A. To implement the analysis approach, we express

each source spatial frequency vector as in (2.40). We define a reference vector

WO in the vicinity of the source spatial frequency vectors, a scalar parameter bw

to be the maximum source separation, which in Figure 2-3A is

6w = Ii - W3ll (2.43)

and finally define normalized offset vectors q, q, q to satisfy (2.40). The

normalized source configuration are illustrated in Figure 2-3B. As w - 0, the

actual source configuration in Figure 2-3A coalesces to the reference direction

Wc, but the normalized configuration in Figure 2-3B remains fixed.

2.5.1 Factoring Matrix Rs

For the data model addressed, we recall from (2.19) that matrix Rs is Hermitian

positive definite and takes the form

Rs APAh (W x W) (2.44)

with matrices A, P as in (2.11), (2.15). It is helpful in our analysis to express Rs as

an outer product of matrix factors B. That is

Rs = BBh (2.45)
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Figure 2-3: Actual and Normalized Source Configurations for a 2-D DF Scenario

where

B A Al (W x M) (2.46)

and II is a square full-rank factor of P such that

P = H1 Ilh (2.47)

A non-unique decomposition (2.47) exists since P is Hermitian positive definite by

assumption X2. With the representation (2.40), B is a function of the variable scale

factor Sw, the reference frequency w, the normalized offset vectors q- . .. qM and the

constant matrix P. Our interest is to identify the limiting eigenstructure of (2.45) as

w -* 0.

The thesis approach to eigenanalysis of Rs is to first identify the limiting form of

the SVD of matrix B as w -, 0. The limiting SVD of B is simplified by structural

conditions satisfied by B for typical direction finding scenarios. Once expressions

for the limiting SVD of B are identified, the limiting eigenstructure of Rs follows

straightforwardly from (2.45).
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2.5.2 Taylor Series Representations

Taylor series representations are central to our analysis of the closely-spaced source

problem. To facilitate identification of the small w structure of covariance matrix

Rs and of CR bound Bc in subsequent chapters, this section constructs the Taylor

series of the generic arrival vector a(w), and of the associated matrix A of (2.11) and

matrix B of (2.46).

Following our analysis approach of (2.40), we express the spatial frequency vector

w as

W= wO + q (2.48)

where -o is the reference vector, bw is the scaling factor that satisfies (2.42), and q' is

a normalized spatial frequency vector. To explicitly denote dependence on the terms

of (2.48), we express the Taylor series of the generic arrival vector a(w) about the

reference vector Jo as

00

a(w) = Z 6wPAp· P(q) (2.49)
p=o

where the columns of Ap are the pth order spatial derivatives of a(w) at wc0 with respect

to the elements of W = [wl1, 2 ,.. wo]t . That is,

AP = awl l zS aX3 w'=w (W x nP) (2.50)

where np is the number of pth order spatial derivatives. Vector -yp(q) is np x 1 and

depends only on the normalized direction offset vector q. The A and (q- are

constant with Sw; Av is typically complex, while '(qj is always real.

To illustrate (2.49), consider a 2-D application with w = [w,, wy] t, and q` = [q., qy]t .

The p = 0, 1,2, 3 terms in (2.49) are

Ao = [a(wo)]
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A1 = [a (,O)(wo), a(0 )( o)]

A2 = [a(2o)(o), a('1 )(o), a(O2)(o)]

A3 [=a(3'0)(o), a(2,1)(-o), (1,2)(-o), (0,3)( o)]

with arrival vector partial derivatives denoted as

- (PxP,) ( 0)
- [8P +P ( )

(2.52)

For 2-D Taylor series, the number of pth order partial derivatives is

n = p+ 1 (2.53)

(i.e. no = 1, i = 2, n2 = 3, n3 = 4,...). The associated vectors that depend on q

are

0o(q) = [1],

The general expression for -p(q for 2-D scenarios is

where

A ,P 1

Ci'P= i P-
i P.

i = 0,. ..p, and the first factor of (2.56) is the binomial coefficient.

Expressions analogous to (2.51) and (2.54) can be written for Taylor series of any

dimensionality.
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The Taylor series of the generic signal vector at each of the source spatial frequen-

cies W-1,-- -M is simply (2.49) with corresponding q,"q'M. Therefore the Taylor

series for matrix A in (2.11) follows directly from (2.49):

A = [a((),'"(* a(M)]
00

w= E5wPAprp (2.57)
p=O

where matrix Ap is as in (2.50), and Fp is a constant real np x M matrix of the form

(2.58)

For 2-D scenarios, with qj = [qxj, qvj]t

[1, ... 1]

[ ql, ]QsM
qy1 , qyM

qzl/2, q2M/2

qx, qyl, ,. qxMqyM

q~y /2, * q qM/2
q /6, * q3M/6

ql q1yl /2, ... qxMqyM/2

qxl q21/2, * qxMqy2M/2

q3 /6, ** q3M/6

The matrix factor B of Rs

matrix II. Since matrix A has

Taylor series of the form

B = AII =

is defined in (2.46) in terms of matrix A and constant

Taylor series (2.57), it follows that matrix B also has

00

E 6LwPAprpl
p=o

(W x M) (2.60)

with Ap as in (2.50), rp as in (2.58) and II as in (2.47).
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2.5.3 Sufficient Conditions for Non-Degenerate Scenarios

Analysis in this thesis is simplified by identification of structural conditions satisfied

in typical (i.e. non-degenerate) DF scenarios. This section defines these conditions.

Recall from (2.57) that for closely spaced sources, matrix A has a Taylor series of

the form

00

A = E5WPAprp (W x M) (2.61)
P=O

where Ap is a constant W x np matrix as in (2.50), and rp is a constant fip x M

matrix as in (2.58). The number pi, is the number of pth order partial derivatives of

the generic arrival vector function (w) with respect to the elements of cV.

Reference to (2.51) shows that Ao has rank of unity, and successive Ap have small

and increasing ranks. As a consequence, successive terms of (2.61) are of low and

slowly increasing rank, and a number of such terms typically must be included in a

partial sum to obtain a full-rank approximation of A. To characterize the minimum

number of such terms we define integer parameter m as follows:

Definition of m: Integer m is the smallest number such the partial Taylor sum

formed by the successive terms p = 0, ... m of (2.61) has full rank.

Provided Conditions C1-C3 (detailed subsequently) are satisfied, m is determined

by the relationship

m-1 m

a np < M < Ep (2.62)
p=O p=o

If Conditions C1-C3 are not all satisfied, m may not be determined by (2.62); in

such cases, alternate determining relations are defined in Chapter 7.

Conditions C1-C3 sufficient for (2.62) to determine m are the following:

C1. The generic arrival vector a(w) and its partial derivatives at = 0 up to

order m - 1 with respect to the elements of W are linearly independent. That

is, matrices A, have full rank np for p = 0... m - 1, and the columns of AP
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are linearly independent from the vector space spanned by the columns of the

sequence A, ... , A,,p1 for p = 1 ... m - 1. Specifically,

Rank{Ao} = no

Rank{P[A,...A,_,]Ap} = p for p = 1 ... m - 1 (2.63)

where P[z] is the notation for the projection onto the nullspace of the columns

of Z as defined in Section 2.2.2.

C2. The matrices rp have full rank pi, for p = 0.. m - 1, and the rows of rp

are linearly independent from the space spanned by the rows of the sequence

Fo, '. . rpl for p = 1 ... m - 1. Specifically

Rank{ro} = o

Rank{FpP[rh...rh_l]} = p for p = 1 ... m- 1 (2.64)

where P[zh] is the notation for the projection onto the nullspace of the rows of

Z as defined in Section 2.2.2.

C3. For p = m, the component of the product AmFm which has columns orthogonal

to those of the sequence Ao,.. , Ami_ and has rows orthogonal to those of the

sequence oF0 ,, ,rm-i has sufficient rank to complete the rank of A. That is,

m-1
Rank{P[Ao,...im_] Amrm Ptrh,...rh} = M - ip (2.65)

p=O

Conditions C1-C2 are central the simplified SVD analysis of matrix A. Condition

C3 is sufficient to guarantee that m determined by (2.62) is such that the partial

Taylor series consisting of terms of order p = 0 through p = m, does in fact have full

rank M.

Condition C1 depends upon the array geometry and sensor directional response,

and is independent of source configuration or source powers and correlations. Condi-

tion C2 depends only upon the normalized source coordinates qj (j = 1 ... M). Thus
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C2 depends only upon normalized source configuration, and is independent of the

array geometry, sensor directional response, or source powers and correlations.

Note that Conditions C1-C3 assume (require) that matrix A have more columns

than rows (W > M), and that matrix A be full rank (= M). These pre-requisites are

satisfied under thesis Assumptions A1-A3.

Thesis analysis of the eigenstructure of Rs and of the CR bound BC for closely

spaced sources exploits Conditions C1, C2 and C3. Additional Conditions are de-

fined in Chapter 8 to facilitate CR bound analysis; these additional conditions are

simply Conditions C1-C3 applied to a augmented matrix which includes matrix A

and additional columns.

For convenience, scenarios which satisfy Conditions C1, C2 and C3, are des-

ignated as non-degenerate scenarios. Examples show that Conditions C1-C3 are

satisfied for typical DF scenarios.

Furthermore, scenarios which satisfy only one of Conditions C1 or C2, are desig-

nated as partially degenerate scenarios. Partially degenerate scenarios are of second-

order interest in DF applications, and are addressed in the thesis primarily to contrast

with non-degenerate scenarios. Completely degenerate scenarios for which none of the

conditions are satisfied are of third-order interest in DF applications, and hence are

not addressed in this thesis.

Example scenarios are presented in the next section to illustrate non-degenerate

and partially degenerate scenarios.

2.6 Example Direction Finding Scenarios

We introduce three example direction finding scenarios which will be used in numerical

simulations to illustrate thesis results. All three examples build upon the 2-D scenario

of Example 2.1 which addressed a planar array of identical, unit-gain isotropic sensors

observing a cluster of far-field sources. Example 2.3 is a non-degenerate scenario for

which Conditions C1-C3 are satisfied. Examples 2.4 and 2.5 are partially degenerate

scenarios which respectively satisfy Condition C1 or C2.
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Each example involves a planar array of W = 16 unit-gain, isotropic sensors, and

M = 6 far-field sources clustered near to the array broadside.

The generic arrival vector takes the form

a(w) = [ej; e , ej .. , ijiw] (2.66)

where ri = [rxi, ryi]t is the location of the ith sensor in sensor plane. The reference

parameter vector wo is taken to be at array broadside (elevation angle b = 90°). From

(2.13) we have

co = [0, 0]t (2.67)

Matrices Ao, Al, A 2 and A3 of (2.51) then are

, 1yl * ..2 .12

1 rlw row r 2W rxwr111 ro

2 2

r3l r2lr r r 2 r3

A 3 = - * .. . (2.68)

r3W r2wryw rxwrw r3w

The three example scenarios are defined as follows.

Example 2.3 : For this example, the array and source geometries are as follows.

Array: Sensors in a sparse grid per Figure 2-4A,

Sources: Sources clustered around broadside in a "double chevron" configura-

tion per Figure 2-5A.

It can be verified that the columns of Ao, A1, A2, and A3 in (2.68) are all linearly

independent for this sensor array. Similarly, the rows of ro, rl, F2 given by

(2.59) with M = 6 are all linearly independent for this source configuration.

Thus the partial Taylor sum of A with terms p = 0, 1,2 is full rank M = 6,
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and thus m = 2. Consequently, Conditions C1, C2, C3 are all satisfied with

m = 2; this is an example of a non-degenerate scenario.

Example 2.4 : For this example, the array and source geometries are as follows.

Array: Sensors in a sparse grid per Figure 2-4A,

Sources: Sources clustered around broadside in a circular configuration per

Figure 2-5B.

The sensor array is unchanged from Example 2.3, hence the columns of Ao, Al,

A 2, A 3 are again all linearly independent. The rows of ro, F1, and r 2 are given

by (2.59) with M = 6. It is clear from the figure that the rows of To, F1 , and r2

are not linearly independent for this source configuration since the normalized

source parameters satisfy the circle equation

qj + q = c (2.69)

wtih constant c for all j = 1 ... M, and the rows of ro and r2 are linearly

dependent. The additional r3 term is required to fully span the row space of

matrix A. In this example the partial Taylor sum of A with terms p = 0, 1, 2 is

not full rank, but the sum over p = 0, 1,2, 3 is full rank M = 6, and thus m = 3.

Consequently, Condition C1 is satisfied, but Conditions C2, C3 are not. This

is an example of a partially degenerate scenario which satisfies Condition C1

only. We designate the scenario as source configuration degenerate.

Example 2.5 : For this example, the array and source geometries are as follows.

Array: Sensors in a circular geometry per Figure 2-4B,

Sources: Sources clustered around broadside in a "double chevron" configura-

tion per Figure 2-5A.

The source configuration is unchanged from Example 2.3, hence the rows of 0o,

I'l, and r 2 are all linearly independent. For this sensor array, the columns of
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Ao, Al and A 2 are not linearly independent since the sensor location parameters

satisfy the circle equation

2 2 -=dr2i + ri = (2.70)

with constant c' for all i = 1 ... W, and the columns of Ao and A2 are linearly

dependent. The additional A3 term is required to fully span the column space

of matrix A. In this example the partial Taylor sum of A with terms p = 0, 1,2

is again not full rank, but the sum over p = 0,1, 2, 3 is full rank M = 6, and

thus m = 3. Consequently, Condition C2 is satisfied, but Conditions C1, C3

are not. This is an example of a partially degenerate scenario which satisfies

Condition C2 only. We designate the scenario as array geometry degenerate.
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Chapter 3

Prior Results on Eigenstructure of

Perturbed Matrices

This chapter reviews prior results on eigenstructure of perturbed matrices which are

relevant to identifying the eigenstructure of asymptotic signal covariance matrix Rs

for closely-spaced sources in multi-D direction finding scenarios. For the data model

addressed, matrix Rs is Hermitian of the form

Rs = APAh WxW (3.1)

where A is the matrix (2.11) of generic arrival vectors for each of the sources, P is the

Hermitian positive definite asymptotic source amplitude cross-power matrix (2.15),

and W denotes the number of sensors.

Recently published work by Lee [12] has shown that for closely spaced sources

in 1-D direction finding scenarios, the limiting eigenstructure of Rs, as source sep-

aration w - 0, can be determined simply without eigenanalysis. For example, for

a typical 1-D scenario with M sources and fewer sources than sensors (M < W),

each of the M non-zero limiting eigenvalues of Rs is shown to be proportional to a

different power of Sw2 , from w° to w 2(M - 1). The proportionality constant for each

limiting eigenvalue is determined by straightforward linear algebra operations. The

corresponding limiting eigenvectors are shown to be the generic signal vector and its
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spatial derivatives in the source cluster direction, suitably orthonormalized. Thus

the eigendecomposition of Rs for closely spaced sources in 1-D scenarios is reduced

to simple linear algebra operations. In addition, the dependence of eigenvalues and

eigenvectors of Rs on scenario parameters such as maximum source spacing w is

made explicit. Unfortunately, the approach used to derive the results of [12] exploits

simplifications unique to 1-D scenarios, and thus extension of the approach to multi-D

scenarios is not readily apparent.

Fundamental results regarding the eigenvalues and eigenvectors of square matrices

with Taylor series in any small perturbation factor E have been developed by Kato

[17], and extended by Coderch, Willsky, Sastry, and Castanon [18]. The authors

show that the limiting (as -+ 0) eigenvalues and the span of the corresponding

eigenvectors can be identified by eigenanalysis of a sequence of low rank, constant

matrices, designated as limiting eigenmatrices herein. In principle, this approach is

applicable to identifying the eigenstructure of Rs for closely spaced sources in multi-D

scenarios, with the identification e = Sw. Unfortunately, in order to determine the

limiting eigenmatrices for the general eigenstructure problem addressed in [17], [18],

the authors derive expressions which are implicit and quite complex (compared to

the intuitively simple 1-D Rs eigenstructure results of [12]). The complexity of these

results typically precludes an explicit analytical identification of the number of limit-

ing eigenvalues proportional to each power of w, or of the span of the corresponding

eigenvectors.

The thesis objective with regard to the eigenstructure of Rs is to obtain simple

and explicit multi-D results, analogous to the 1-D results of [12], which make explicit

the dependence of Rs eigenstructure on scenario parameters in multi-D direction

finding scenarios. This chapter reviews the prior eigenstructure results of [12], and

of [17], [18]. Chapters 4-7 build upon these prior results to derive simple expressions

for the eigenstructure of Rs in multi-D scenarios.
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3.1 Eigenstructure of Rs in 1-D [12]

The eigenstructure of a number of common covariance matrices has been identified by

Lee [12] for M closely spaced signals with scalar frequency parameters. The limiting

eigenstructures, as signal spacing bw -- 0, are remarkably simple. The results of [12]

applicable to covariance matrix Rs in 1-D direction finding scenarios are outlined

below.

Reference [12] considers square matrices of the form

R1 - APAh (W x W) (3.2)

where P is a constant M x M Hermitian positive definite matrix, A is of the form

(2.11), satisfies assumptions A1-A4, and Conditions C1-C3 with m = M - 1. The

signal frequencies are represented by scalar frequency parameters w1 ... WM as follows:

Wi = wo + qjw (3.3)

j = 1 ... M. Here w0 denotes a fixed reference frequency, the qj are normalized offsets

such that ql < q2 < ... qM with ql = -1/2 and qM = +1/2, and w is a variable scale

parameter corresponding to the separation of the extreme frequencies. The paper

analyzed the eigenstructure of (3.2) as the multiplier 8 - 0. Representation (3.3)

facilitates analysis of the eigenstructure of R1 since the problem is reduced to one

with a single variable parameter w. The condition w -, 0 corresponds to coalescing

the signal frequencies about the reference frequency wo.

Reference [12] identifies explicit expressions for the eigenstructure of R1 in terms

of the coefficients of the Taylor series of A. Following the notation in Section 2.5.2,

matrix A has a Taylor series in w about w of the form

00

A = MSwPAp (3.4)
p=O
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where

A = Aprp (3.5)

with

Ap d (w) (3.6)
dW. w=wo

rp = [q/plp!, . .. qm/p!] (3.7)

for p = 0, 1 -... , where (w) is the generic arrival vector function of w, and ql, ' - qM

are the normalized frequency offsets in (3.3).

The R1 eigenstructure results of [12] are as follows:

El. The non-zero ordered eigenvalues AI(w) > A2(Sw) > ... > AM(6w) of matrix

(3.2) are asymptotically (as 6w - 0) proportional to non-negative even integer

powers of Sw. That is

lim{ Ai 6w2(-l) } = 1 (3.8)

i = 1,... M, where Ai is the positive constant

| [r,.. r4] P [rh. rh] [Ao... Ai]h [Ao . . Ai]

|, _ [rno, ~r l [r o r, ,~l]| I[Ao0 Ai-, ] [Ao .. Ai -]|

where Ap and rp are the factors (3.6), (3.7) of Taylor series matrix coefficients

Ap in (3.5). P is the asymptotic source amplitude cross-power matrix (2.15).

Notation · I represents matrix determinant. (See Equations (3), (71) of [12]).

E2. The corresponding eigenvectors e1(6w), e~(6),... eM(w) of matrix (3.2) have

the limiting form

lim 4e(6w) = ei (3.10)
6w-O
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where the ei are constant vectors corresponding to the generic arrival vector

a(w) and its derivatives, suitably orthonormalized. Specifically,

e~ = coAo

e = ciP[Ao ...Ai-l]A i = 1... M (3.11)

where ci are normalizing constants so that eei = 1, and P[z] denotes the column

nullspace projection defined in Section 2.2.2. (See Equations (4), (54) of [12]).

Remarkably the quantities Ai and e'i in (3.9) and (3.11) are calculated via linear

algebra operations; eigenanalysis and the associated polynomial rooting are not re-

quired. The identified eigenstructure, together with classical perturbation techniques,

provides a powerful tool for analyzing the performance of High Resolution techniques

in 1-D scenarios.

Unfortunately, the simple results El and E2 apply only to 1-D scenarios. For

multi-D scenarios, matrices Ai have more than one column and ri have more than

one row. It is not immediately clear how to extend the analysis to multi-D scenarios.

3.2 Eigenstructure of Arbitrary Hermitian Per-

turbed Matrices [17], [18]

Fundamental results regarding the perturbation of linear operators have been de-

veloped by Kato [17] including results for eigenvalues and eigenvectors of perturbed

square matrices. The eigenvalue perturbation results of [17] have been simplified by

Coderch et al. [18]. Results of [17], [18] relevant to analysis in this thesis are outlined

below.

Reference [18] considers a square matrix Ao(E) with Taylor series about e = 0

00

Ao(e) = E PAO,p (3.12)
p=O

where Ao,p are known constant matrices, independent of variable parameter . For
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present purposes, we consider the results applicable to Hermitian matrices Ao(e), (for

which Ao(e)h = Ao()), which form a sub-class of the more general matrices addressed

in [17], [18].

The analysis in [17], [18] derives the following result:

R1. For any Hermitian Ao(e) with Taylor series in c, each non-zero eigenvalue Ai(e)

is asymptotically (as e - 0) proportional to a non-negative integer power of e.

That is,

lim i() 1 (3.13)

for suitable constants Ai and k E {0,1 ... }, for all i = 1, -. , rank{Ao(c)}.

(See text following Eq (4.10) of [18]).

For convenience, we designate the Aick' as limiting eigenvalues of Ao(e). Limiting

eigenvalues of Ao(e) proportional to co (i.e. constant) as e - 0 can be identified

directly from (3.12) as the constant non-zero eigenvalues of leading Taylor series term

Ao,o0 .

To characterize the remaining limiting eigenvalues of Ao(), the development in

[17], [18] recursively defines a sequence of constant Hermitian matrices Ak,o and es-

tablishes the results:

R2. The non-zero eigenvalues of Ak,o are the constants Ai in limiting eigenvalues of

Ao(c) of the form Ai ck . (See Part 3 of Proposition 4.4 of [18]).

R3. The column space of Ak,o is spanned by the limiting eigenvectors of Ao(e) asso-

ciated with the group of limiting eigenvalues proportional to k as e - 0. (See

Section 4.1, Chapter II of [17]).

The essence of these results is that:

* eigenvalues of Ao(e) that tend to non-zero constants as -, 0, have as limiting

values the non-zero eigenvalues of Ao,o. The corresponding limiting eigenvectors

of Ao(c) are the principal eigenvectors of Ao,o [assuming distinct eigenvalues],
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* eigenvalues of Ao(e) that exhibit the behavior Aie1 as - O, have as multipliers

Ai the non-zero eigenvalues of Al,o. The corresponding limiting eigenvectors of

Ao(e) are the principal eigenvectors of Al,o [assuming distinct eigenvalues],

* etc.

Accordingly, if the Ak,o were readily available, straightforward analysis of the low-

rank constant Ak,o would reveal the limiting eigenvalues and the limiting span of the

eigenvectors of Ao(e), [or the limiting eigenvectors of Ao(e) directly, assuming distinct

eigenvalues]. For convenience, we designate the Ak,o as the limiting eigenmatrices of

Ao(e).

Unfortunately for many matrices Ao(e), the expressions for the Ak,o in terms of

the constant matrices Ao,, which appear in the Taylor series (3.12) are quite complex.

Reference [17] derives very complicated, recursive formulations using function theory

that identify the limiting eigenmatrices Ak,o for all k > 0. Reference [18] builds upon

the results of [17] to derive the following simplified recursive expressions for Ak,o for

k = 0, 1, 2, 3, in terms of the matrix coefficients Ao,p in the Taylor series of a Hermitian

matrix Ao(e):

Aoo = Ao,o

Al,o = PoAo,lPo

A2,0 = PIPo (Ao, - A,Ao+oAo,) POP
A3 ,0 = P2P1PO (A0, 3 - A 0, 2 2Ao-

A,o = P2P- PoAo,AoAo, - Ao,Ao+oAol

+ Ao,1 +Ao,AA+ 0 Ao,1 Ao,2(PoAo,1P o )+Ao, 2

+ Ao,2(PoAo,lPo)+Ao,l AOAo,l + Ao, A+,oAo,l (PoAo,lPo)+Ao,2

-Ao,lA+oAo,l(PoAo,lPo)+AolAo+oAo,) PoP P2 (3.14)

(Proposition 4.12 of [18], with a sign correction). The Ao, are the known matrix

coefficients of Taylor series (3.12), while the Pk, defined recursively as

Pk - I- Ak,oA+o (3.15)
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are projections onto the null space of the limiting eigenmatrices. The definition of

Ak,o used in [17], [18] and an outline of the derivation of expressions (3.14) is presented

in Appendix B.

Although the foregoing results theoretically characterize the limiting eigenstruc-

ture of Hermitian Ao(), they do not provide much insight into the limiting eigen-

structure. For example, reference to the expression for A3,0 in (3.14) reveals little

about:

* the rank of A3,0, and, therefore, the number of eigenvalues of Ao(e) which satisfy

(3.13) with ki = 3.

* the vector space spanned by the corresponding eigenvectors.

Furthermore, even the simplified expressions (3.14) for Ak,o rapidly become com-

plicated as k increases. Expressions for k > 3 are not provided in References [17],

[18] and are extremely laborious to derive from the recursive approach of Reference

[17]. Finally, it is not immediately clear how to simplify these expressions to obtain

the simple Rs eigenstructure of [12] for 1-D direction finding scenarios.

A major result of this thesis is the identification of very simple expressions for

limiting eigenmatrices Ak,o whenever Ao(e) satisfies conditions which are characteristic

of Rs in typical multi-D direction finding scenarios (specifically Conditions C1, C2

and C3 of Chapter 2). The multi-D expressions derived herein extend the simple,

explicit expressions obtained for 1-D by Lee in [12] to multi-D DF scenarios.
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Chapter 4

SVD of Perturbed Matrices

The limiting eigenstructure results of References [17], [18] apply to square Hermitian

matrices Ao(e) with Taylor series in e. This chapter develops analogous results for

the SVD structure of rectangular matrices Bo(e) with Taylor series in , including

non-Hermitian or non-diagonalizable square matrices. The SVD results developed in

this chapter facilitate identification of the limiting eigenstructure of asymptotic signal

covariance matrix Rs. They also may have use in other applications.

Recall from Section 2.5.1 that Rs can be factored as

Rs = BBh (W x W) (4.1)

in terms of rectangular matrix B with Taylor series

oo

B = E SwPBp (W x M) (4.2)
P=O

where 5w is a scalar measure of the maximum angular separation between the sources,

and the Taylor series matrix coefficients Bp are identified in (2.60). If the SVD of

B can be identified, then the eigenstructure of Rs follows immediately from (4.1).

From (4.1) and the definition of the SVD, the non-zero eigenvalues of Rs are the

squares of the non-zero singular values of B, and the eigenvectors of Rs are the

corresponding left singular vectors (defined subsequently) of B. Thus identification of
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the limiting SVD of rectangular matrix B is an important enabling step for identifying

the eigenstructure of covariance Rs.

To parallel the notation of the eigenstructure analysis of [18], this chapter assumes

that the matrix of interest is Bo(e) and can be expressed as a Taylor series

Bo(e) _ E CPBo,p (W x M) (4.3)
p=o

where Bo,p are known constant- matrices, independent of variable parameter .

Any rectangular matrix possesses a singular value decomposition (SVD) [21, Ap-

pendix A]. For matrix Bo(c), the SVD takes the form

Bo(E) = U(e) E(e) V(e)h (W x M) (4.4)

where the columns of W x W unitary matrix U(e) are orthonormal eigenvectors of

Bo(e)Bo(e)h, the columns of M x M unitary matrix V(e) are orthonormal eigenvectors

of Bo(e)hBo(e), and the only non-zero entries of the W x M matrix E(e) are the

singular values on the main diagonal, defined as positive square roots of nonzero

eigenvalues of Bo(e)Bo(e)h. For convenience, this thesis refers to the columns of U(e)

as the left singular vectors and to the columns of V(E) as the right singular vectors of

Bo(e).

Analysis in this chapter identifies the limiting singular values and corresponding

singular vectors of Bo(e) as e - 0. The results represent an extension of Kato-

Coderch eigenstructure results to the SVD problem. Side conditions are identified

which enormously simplify the SVD results; these conditions are satisfied in typical

direction finding scenarios. The SVD results not only provide a convenient tool for

the Rs eigenstructure problem, but may also themselves constitute important results

for other applications.

The development in this chapter begins in Section 4.1 with the identification of

simplifying side conditions. Section 4.2 specializes the prior eigenstructure results of

[17], [18] to the Hermitian matrices that arise in the SVD of Bo(e), namely the inner

and outer products of matrices Bo(e) with Taylor series in c. These specialized results,
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together with the prior limiting eigenstructure results of [17], [18], form the basis for

analysis of the limiting SVD of Bo(e) in Section 4.3. Section 4.4 develops an enabling

property that characterizes the limiting SVD of any matrix Bo(e) with Taylor series

in . Section 4.5 then exploits this characterization to develop remarkably simple

expressions for the limiting SVD of matrices Bo(e) that satisfy all the identified side

conditions. Section 4.6 similarly develops somewhat more complicated expressions for

the limiting SVD of matrices Bo(e) that satisfy some, but not all side conditions. The

SVD results are summarized in Section 4.7, and illustrative examples are presented

in Section 4.8.

4.1 Simplifying Conditions

This section defines side conditions which greatly simplify the SVD analysis. The

side conditions generalize Conditions C1-C3 of Section 2.5.3 to an arbitrary matrix

Bo(e).

As a first step, we denote the rank of Bo(e) for small, but non-zero e as

7R - Rank {Bo(E)} (4.5)

We recall that Bo(e) has Taylor series (4.3). To characterize the minimum number

of terms of (4.3) required for a partial Taylor sum to have rank 7, we define integer

parameter mn as follows:

Definition of i: Integer f is the smallest number such the partial Taylor sum

formed by the successive terms p = 0,... h of (4.3) has full rank.

Provided Conditions I-III (detailed subsequently) are satisfied, fi is determined by

the relationship

m-1 m

E Rank {Bo,p} < 71 < E Rank {Bo,p} (4.6)
p=O p=O

where Bo,p are the matrix coefficients of the Taylor series (4.3). If Conditions I-III
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are not all satisfied, i may not be determined by (4.6); in such cases, alternate

determining relations are defined Section 4.6.

For convenience, we denote

Cp-l

Rp-1

A

A

[Bo,o, · ·' Bo,p-1]

l[BO, 0, -' o_1

(4.7)

(4.8)

to respectively aggregate the columns and rows of the Taylor series matrix coefficient

sequence Bo,o, * B,pl.

Conditions I-III sufficient for (4.6) to determine ih are the following:

I. Rank{P[cp_,]Bo,,} = Rank{Bo,p} for p= 1, .. f - 1

II. Rank{Bo,p P[R_,1]} = Rank{Bo,p} for p = 1, . r -1
rm-1

III. Rank{P[c,_1]Bo,, P[R_-,l} = T?- y] Rank{Bo,p}
p=o

(4.9)

(4.10)

(4.11)

where matrix P[cp-l] denotes the projection away from the vector space spanned by

the columns of the Taylor series matrix coefficient sequence Bo,o, · - Bo,p-1, namely

P[c_,] I - [Bo,o, Bol, .- Bo,p-l] [Bo,o, Bo,1, ... Bo,p-_]+ (4.12)

for p > 1. Similarly P[Rp-,] denotes the projection away from the vector space spanned

by the rows of the sequence B 0,0 , · · Bo,p_1, namely

P[R-1] - I-

= I-

[Bo0,o B0,1 ,
+

Bo,o

Bop

Bo,p-1

_* BP] [BOO, B0, 1 ... Op- ] +

Bo,o

Bo ,1

Bo,p-_1

(4.13)

for p 1.
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We interpret Condition I-III as follows.

* Condition I specifies that the column space of Taylor series matrix coefficient

Bo,p is linearly independent from those of prior coefficients Bo,. Bo,p-1, for

p = 0 *. *i - 1.

* Similarly, Condition II specifies that the row space of Bo,p is linearly independent

from those of B0o,, 0 , Bo0 ,p 1, for p = O... ff - 1.

* Finally, Condition III specifies that the component of Taylor series matrix coeffi-

cient Bo,1 which has orthogonal columns and rows from those of prior coefficients

B0 ,o, - Bo, 1-l, has sufficient rank to complete the span of Bo(e).

Conditions I and II are central to the simplified SVD analysis. Condition III is

sufficient to guarantee that mn determined by (4.6) is such that the partial Taylor

series of Bo(e) consisting of terms of order p = 0 through p = , does in fact have

rank R. We will find that whenever Conditions I, II and III are satisfied, the limiting

SVD of Bo(e) as - 0 is entirely determined by the terms of (4.3) from Bo,o to Bo,,m;

subsequent terms only add higher order effects.

Note that Conditions I-III do not place any restriction on the size or rank of Bo(e).

Specifically, Conditions I-III may be satisfied by arbitrarily sized matrices Bo(e) (i.e.

M < W, M = W or M > W), with partial rank or full rank (i.e. ZR < min{M, W}).

We designate matrices Bo(e) that satisfy Conditions I-III as non-degenerate ma-

trices. We designate matrices Bo(e) that satisfy only one of Conditions I or II as

partially degenerate matrices.

Analysis in the next sections develops a partial characterization of the limiting

SVD of any matrix Bo(e) for small . Section 4.4 then identifies a simple and explicit

characterization of the limiting SVD of non-degenerate Bo(e). Section 4.5 further

identifies a more complicated characterization of the limiting SVD of partially degen-

erate Bo(e).
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4.2 Specialization of Prior Eigenstructure Results

The point of departure of our SVD analysis are the prior results of [17], [18] for the

limiting eigenstructure of Hermitian matrices Ao(e). Since the SVD of Bo(e) is de-

fined in terms of the eigendecomposition of Bo(E)Bo(e)h and Bo(E)hBo(e), this section

specializes the results of [17], [18] for Hermitian Ao(e) which are products of matrices

Bo(e) with Taylor series in e. Specifically, we examine the limiting eigenstructure of

matrices Ao(e) that satisfy

Condition IV. Matrices Ao(e) are the outer product

Ao(e) = Bo(e)Bo()h (W x W) (4.14)

of rectangular matrix Bo(E) with Taylor series

00

Bo(e) = E Bop (W x M) (4.15)
p=o

where Bo,p are constant low-rank rectangular matrices, independent of e. Clearly

Ao(e) is Hermitian and has a Taylor series in e.

Matrices Ao() that satisfy Condition IV are outer products of matrices Bo(e), and

the Bo(e) have Taylor series in e. The first result derived characterizes eigenvalues of

such Ao(e) more precisely than prior result R1 of Section 3.2.

Lemma 4.1 : If matrix Ao(e) satisfies Condition IV, then each non-zero eigenvalue

Ai(c) of Ao(e) is asymptotically (as e -+ 0) proportional to non-negative even

powers of e. That is,

lim { xi *2k } = 1 (4.16)

for suitable constants Ai and ki E {0, 1 ... }, for all i = 1,..., Rank{Ao(e)}.

Proof: See Appendix C.
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It follows from Lemma 4.1 and result R2 that for Ao(c) which satisfy Condition

IV, the odd-order limiting eigenmatrices satisfy

A2k+1,0 = 0 (4.17)

for k= 0,1....

In addition, for Ao(e) that satisfy Condition IV, the even-order limiting eigenma-

trices A2k,o can be characterized by:

Lemma 4.2 : If matrix Ao(e) satisfies Condition IV, then each even-order limiting

eigenmatrix A2k,o can be expressed as

A2k, = Bk,OB o (4.18)

with a suitable matrix Bk,o for each k = 0, 1...

Proof: Matrix A can be expressed as an outer product of a suitable matrix B if and

only if matrix A is Hermitian and has non-negative eigenvalues [21]. Therefore

any matrix Ao() that satisfies Condition IV has non-negative eigenvalues for

any , and specifically the limiting eigenvalues of Ao(c) are non-negative. It

follows from result R2 that the even-ordered limiting eigenmatrices A2k,O also

have non-negative eigenvalues. Since limiting eigenmatrices of Hermitian Ao(e)

are by construction also Hermitian, A2k,o can be expressed as in (4.18) as the

outer product of a suitable matrix Bk,o.

It can be straightforwardly verified that expressions (3.14) derived in [18] satisfy

(4.17), (4.18) whenever Ao(c) satisfies Condition IV.

Note that Lemma 4.2 provides only the form of the limiting eigenmatrix matrices

of Bo(E)Bo(E)h. The structure of the matrix factors Bk,o is not defined, and the Bk,o

that satisfy (4.18) are not unique. In the following section, we define a structure for

matrices Bk,o that not only satisfy (4.18), and also characterize the limiting SVD of

Bo(E).
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Relations (4.17) and (4.18) together outline the structure of all limiting eigenma-

trices Ak,o (k = 0,1 ... ) whenever Ao(e) satisfies Condition IV. Since by definition the

SVD of Bo(E) depends on the eigenstructure of Hermitian matrices Bo(e)Bo(e)h and

Bo(c)hBo(e) that satisfy Condition IV, the results of Lemmas 4.1 and 4.2 together

with the prior limiting eigenstructure results [17], [18] form the basis of our analysis

of the limiting SVD of Bo(e) in the next section.

4.3 Limiting Singular Matrices of Bo(E)

This section further characterizes the constant matrices Bk,o, and shows that the

limiting SVD of Bo(c) as --+ 0 can be characterized in terms of the SVDs of the

Bk,o. The Bk,o matrices play a role for Bo(E) analogous to that played by the constant

matrices Ak,o in characterizing the eigenstructure of Ao(e) as - 0. (Recall Section

3.2). The Bk,o are therefore designated the limiting singular matrices of Bo(e).

4.3.1 Definition of Bk,0

As a first step, we characterize the singular values of Bo(E) as e -+ 0 by the result:

S1. For any Bo(e) with Taylor series in , each non-zero singular value ai(e) is asymp-

totically (as c - 0) proportional to non-negative integer powers of c. That is,

lim ( -k = 1 (4.19)
¢- i . ki

for suitable constants ai and ki E {0, 1 .. .}, for all i = 1,..-, Rank(Bo(e)}.

Proof: By definition, the singular values of Bo(e) are the square roots of the eigenval-

ues of a corresponding square matrix Ao(e) = Bo(e)Bo()h that satisfies Condi-

tion IV. Proof of the result is immediate from Lemma 4.1, with ai = V/X.

Result S1 is the SVD analog of the prior eigenvalue result R1. For convenience,

we designate aifki as a limiting singular value of Bo(e). Furthermore, we designate

the group of limiting singular values proportional to k as the kth limiting singular
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value shell. The limiting singular values of Bo(e) in shell k = 0 (i.e. constant as

e -+ 0) can be identified directly from Taylor series (4.15) as the constant non-zero

singular values of the leading term B0,o.

To identify the remaining limiting singular values, we exploit result S1 to group

the singular values of Bo(e) according to the power of E of the limiting singular value.

We express the matrix E(c) in (4.4) as

E(E) = EZ k(6) (4.20)
k=O

where the only non-zero entries of Ek() are on the main diagonal, and are the singular

values of Bo() proportional to k as e -, 0. Thus if the it h main diagonal element of

E((e) is proportional to Eki as e -- 0, then it is equal to the ith main diagonal element

of Eki(e) and furthermore the i h main diagonal element of all other Ek(e), k t ki, is

zero. Since Bo(e) has rank 7, there can be at most 1? non-trivial terms in the sum

(4.20); im denotes the index of the last non-trivial term in (4.20). By construction,

E Rank{Ek(e)} = Rank{Bo(e)} = Z (4.21)
k=O

The SVD (4.4) of Bo(e) can then be expressed as the series

Bo(=) U() ) V()

= E ekBk(E) (4.22)
k=O

where

Bk(e) - U(e) 4kk(c)V(e)h (4.23)

are low-rank matrices whose column, row spaces are respectively spanned by the

columns of U(e), V(e) associated with the non-zero entries of Ek(e).

The expansion of Bo(e) in series (4.22) differs from Taylor series (4.15) in that
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1. Eq. (4.22) represents Bo(E) as a finite sum, whereas the Taylor series typically

involves an infinite number of terms.

2. The matrix coefficients Bk(E) typically are non-constant with , aggregating

many of the Taylor series components.

3. The column spaces of Bk(E), Bj(e), with k j, are orthogonal, since they

consist of non-overlapping column sets of unitary matrix U(e).

4. The row spaces of Bk(), Bj(E), with k 0 j, are similarly orthogonal.

The question arises as to the behavior of the matrix coefficients Bk(c) as e 0;

specifically, do the Bk(c) converge to constant matrices as e -- 0?

A preliminary observation is that the matrices (4.23) do not "blow up" as e -40

since (4.19) shows that the factor (1/ek)Zk(e) -, k as -. 0, where Sk is a constant

diagonal matrix, and the columns of U(e) and V(E) have unit norm.

To further address the convergence question, we note that the Bk(e) are by con-

struction related to the eigenstructure of the products Bo(e)Bo(e)h and Bo(e)hBo(E)

by the properties

P1. The eigenvalues of Bo(e)Bo(e)h (or equivalently of Bo(e)hBo(e)) proportional to

e2k as --+ 0, are equal to the squares of the non-zero singular values of Bk(e),

multiplied by e2 k.

P2. The associated eigenvectors of Bo(e)Bo()h span the column space of Bk(e).

P3. The associated eigenvectors of Bo(e)Bo(e) span the row space of Bk(e).

Therefore the small properties of matrix coefficients Bk(e) can be inferred from

the eigenstructure properties identified in [17], [18]. Specifically, Appendix D shows

that the matrices Bk(e) have Taylor series in . That is

Lemma 4.3 : If Bo(e) has Taylor series in , then matrices Bk(e) also have Taylor

series in .
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Thus, non-withstanding the denominator factor in (4.23), matrices Bo(e) have lim-

iting values as c - 0.

We now define the limiting singular matrices Bk,o:

Definition of Bk,o: Limiting singular matrix Bk,o is the order °O (or constant) Taylor

series term of Bk(e). That is

Bk,o - lim Bk () (4.24)

k = 0, 1, * .

The Bk,o exist since Bk(e) has a Taylor series in per Lemma 4.3.

The Bk,o defined above satisfy expression (4.18) for the limiting eigenmatrices of

Bo(e)Bo(E)h, since by definition of the SVD,

1. The non-zero eigenvalues of Bk,oBho are the constants Ai in the limiting eigen-

values of Bo(e)Bo(e)h of the form Ai 2k. (From property P1 as - 0, and

(4.24)).

2. The column space of Bk,oBk,0 is spanned by limiting eigenvectors of Bo(e)Bo(e)h

associated with the group of limiting eigenvalues proportional to 2k as E - 0.

(From property P2 as E - 0, and (4.24)).

Therefore Bk,oBho satisfies properties R2, R3, and can be used as in (4.18) to de-

termine the limiting eigenstructure of Bo(e)Bo(e)h.

In the next section, we show that the Bk,o can also be used to determine the

limiting SVD of Bo(e).

4.3.2 Limiting SVD of Bo(e) Determined by the Bk,o

As a next step in relating the SVDs of Bo(e) and of Bk,o, we note the following Bk,o

properties:

S2. The non-zero singular values of Bk,o are the constants oi in limiting singular

values of Bo(e) of the form i k.
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S3. The column, row spaces of Bk,o are respectively spanned by the left, right sin-

gular vectors of Bo(e) associated with the group of limiting singular values

proportional to k as e -- 0.

(Both properties follow from construction (4.23) of Bk(c) in terms of the SVD of

Bo(e), and by definition (4.24) of Bk,o as the limiting value of Bk(e)).

Accordingly, if one could readily determine the Bk,o from the matrix coefficients

Bo,p of the Taylor series (4.3) for Bo(e), then straightforward analysis of the (low-rank

constant) Bk,o would reveal the limiting singular values and the limiting span of the

associated vectors of Bo().

Analysis so far has shown that limiting singular matrices Bk,o exist for any Bo(E)

with Taylor series in . Moreover, the SVD's of the Bk,o specify the limiting structure

of Bo(E) as c - 0. However we have not shown how to determine the Bk,o from

the Taylor series matrix coefficients Bo,p. Expressions for Bk,o in terms of Bo,p are

developed in the following sections.

4.4 Partial Identification of the Bk,o

This section derives a property which partially identifies the limiting singular matrix

Bk,o in terms of the Taylor series matrix coefficients B,p. Section 4.5 exploits this

property together with Conditions I-III to derive simple explicit formulae for the Bk,o

in terms of the Taylor series coefficients Bo,k of non-degenerate Bo(e). Section 4.6

also uses this property together with either one of Conditions I or II to identify more

complex formulae for Bk,o of partially degenerate Bo(e).

The property of interest is:

Lemma 4.4 : For any Bo(E) with Taylor series in , limiting singular matrices Bk,o

have the recursive structure

Bo,o k = 0

Bk,o = P[BoolBO,1PBho] k = 1 (4.25)

P[Boo,-...Bkl,o] (Bo,k + Fk-1) P[B ...BIO] k = 2, .., , t ~~~~~0, 0 '" -lO
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where Bo,k is the matrix coefficient of the kth order term in the Taylor series

of Bo(E), and P[Boo,...Bk-,l, Pr[BhO..Bh O] respectively denote projections onto

the column, row nullspace of limiting singular matrix sequence Bo,o, · · Bk-l,o.

That is

P[B,o,...Bk-,o ] A I -[Bo,o,' , Bk- 1,0][BO,O, *, Bk-1,0]+ (4.26)=0BB ,h 10[B B0,0 k-,
Bo,o Bo,o= I1 . . (4.27)

Bk-l,o Bk-l,o

Matrix Fk-l (k = 2,-..) is a suitable rectangular matrix with properties:

a) the column space of Fk-l is contained in that of Taylor series matrix coeffi-

cient sequence Bol, " ' Bo,k-1.

b) the row space of Fk_- is contained in that of Taylor series matrix coefficient

sequence Bo,l,- · · Bo,k-l,

Proof: See Appendix E.

To illustrate the form of Fk_l that satisfies properties a) and b) of Lemma 4.4, we

may write

Bo,,

Fk-1 = [BO,l-,Bo,kl] Gk- 1 (4.28)

Bo,k-I

for k = 2,. ., where Gk_1 is an appropriate matrix. Note that the matrices B1,o which

appear in (4.26) and (4.27) are the matrices which we seek to identify whereas matrices

Bo,l which appear in (4.28) are the known matrix coefficients of the Taylor series. In

general, Bi,o 0 Bo,1 so that the projection matrices P[sBO,,...Bk_1O] and P[Bho ... Bh_ odo

not necessarily annihilate Fk_1.
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The SVD result (4.25) can be compared with the eigenstructure result (3.14) of

Reference [18] for Ao(e), by imposing the requirement

Bo(e) = Ao(e) = Hermitian (4.29)

which cause the SVD and eigendecomposition to coincide. In this case, the matrices

(3.14) take the form (4.25) with

F1 = - Ao,lA+oAo,l

F2 = -Ao,Ao+,oAo,2 - Ao,2A+oAo,

+ Ao,lAo+Ao,,A o, - Ao,2(PoAo,lPo)+Ao, 2

+ Ao,2(PoAo,jPo)+ Ao
9 A Ao A, + Ao,lAoA, 1 (PoAo,1 Po)+Ao,2

-Ao,iA+,oAo,I(PoAo,Po)+Ao,A+,oAo,i

[Ao,l , Ao, 2] G2 Ao,' (4.30)
Ao, 2

with

[A+oAoA+o- A+oAo,1 (PAo, 1Po)+Ao.1 0A] [-A+, + AO+oAo,(PoAo,1P )+]

[-+o,o + (PoAo,lPo)+Ao,lA+o] -(PoAo,Po)+ 
(4.31)

Note that Lemma 4.4 characterizes the limiting singular matrix Bk,o as orthogonal

to Bj,o, for k Z j, and explicitly identifies one component associated with Taylor series

matrix coefficient Bo,k. This is sufficient to explicitly identify the first two limiting

matrices Bo,o and B1,o. Lemma 4.4 does not however fully identify the Bk,o for k > 1

since the structure of Gk-l in (4.28) is not specified.

Lemma 4.4 is important since it characterizes Bk,o for any matrix Bo(e), and for

any k = 0, 1,.. . The following section shows that in the non-degenerate case when

Bo(e) satisfies Conditions I-III, the lemma is sufficient to identify a simple explicit

expression for all the Bk,o.
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4.5 Explicit Bk,o Expressions for Non-Degenerate

Bo(e)

This section specializes the Bk,o characterization of the previous section to matrices

B o() that satisfy Conditions I-III. For such non-degenerate matrices, remarkably

simple and explicit Bk,o expressions are derived.

The first two limiting singular matrices Bo,0 , and B1,0 were explicitly identified

in Lemma 4.4. Under the simplifying conditions, the explicit identification can be

extended to Bk,o, k > 1, as follows.

Theorem 4.1 : If Bo(e) has a Taylor series in , and satisfies Conditions I and II,

then

1) P[BO,,.Bk.I,O] P[Ck-1] (4.32)

2) PaO -B, , P[RjB_]] (4.33)

3) Bk,o = P[ck_,lBo,kP[Rk-l] (4.34)

for k = 1- ... , where Ck-l and Rk-l are as defined in (4.7) and (4.8) in terms

of the Taylor series coefficients Bo,0,' Bo,k-1.

Proof: The proof is by induction.

Obviously (4.32), (4.33) are satisfied for k = 1. Reference to (4.25) shows that

(4.34) also is satisfied for k = 1.

To complete the induction we show that if (4.32)-(4.34) hold for k = j, then

(4.32)-(4.34) hold for k = j + 1. Thus we assume

1) PEBo,o,...Bj-po = P[Cj-1] (4.35)

2) P[B, .:---Bj_0 ] P[=Rj_] (4.36)

3) Bj,o = P[Cj_]BO,jP[Rj_,] (4.37)
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and show

1)

2)

3)

PBOO ...B,lO] = P[Cj]

P[B, ,"-BB = P0Rj]

Bj+,o = P[C,]BjP[RJ]

(4.38)

(4.39)

(4.40)

for 1 < < h- 1.

The first projection matrix of interest is

P[Bo,o, ..Bj-l,o, Bj,o] = P[Cj,, (Fcj_]Bo,jPRj_l])]

= P[Cjl-, (Bo,jtRj_])] (4.41)

It follows from Condition II of (4.10) that

Column Space{BojP[Rji-1} = Column Space{Boj} (4.42)

for j < rh- 1. Therefore

P[Cj,-, (Bo,jrRj_,1)] = P[Cj-,, Bo, = P[C] (4.43)

Substitution of (4.43) into (4.41) establishes (4.38).

A parallel argument using Condition I of (4.9) in the place of (4.10) establishes

(4.39).

Finally use of (4.38), (4.39) in (4.25) establishes (4.40).

Theorem 4.1 presents a remarkably simple characterization of the limiting singular

matrices Bk,o whenever Bo(e) satisfies both Conditions I and II. Specifically,

* The vector spaces spanned by the columns, rows of limiting singular matrix

sequence Bo,o, Bk-l,o are equal to those spanned by the columns, rows of

Taylor series matrix coefficient sequence Bo,0 , BO,k-l.
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* The limiting singular matrix Bk,o is simply the component of the kth order Taylor

series matrix coefficient Bo,k that is orthogonal to the vector spaces spanned by

rows and columns of Taylor series matrix coefficients of lower order.

The rank and span properties of the limiting SVD of non-degenerate Bo(e) can be

easily inferred from Theorem 4.1, as shown below.

4.5.1 Rank of Bk,o for Non-Degenerate Bo(E)

For non-degenerate Bo(e), we use Theorem 4.1 to show that the rank of limiting

singular matrix Bk,o is simply equal to that of Taylor series matrix coefficient Bo,k,

for k = O ... - 1, but not necessarily for k = h. Specifically,

Lemma 4.5 : If Bo(e) has a Taylor series in c, and satisfies Conditions I and II,

then

Rank{Bko} = Rank{Bo,k} k = 0,... - 1 (4.44)

Rank{P[cm_l]BoAP[R,,.]} k =m

Proof: From (4.25) of Lemma 4.4, the result is trivial for k = 0.

For k > 0, from (4.34) of Theorem 4.1, we have

Rank{Bk,o} = Rank{P[ck,_lBo,kP[Rk-,} (4.45)

for k = 1, -..-f. Relation (4.9) of Condition I states that pre-multiplication of

Bo,k by PCkl-,] does not affect rank for k = 1,... - -1. Similarly, relation (4.10)

of Condition II states that post-multiplication of Bo,k by P[Rk_,] does not affect

rank for k = i, ... z - 1. Hence (4.45) simplifies to (4.44) whenever Conditions

I and II are both satisfied.

For convenience we denote as nk the number of limiting singular values of Bo(E)

proportional to Ek. From result S2, nk is equal to the rank of limiting singular matrix
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Bk,o. Thus we define

nk = Rank{Bk,o} (4.46)

Using Lemma 4.5 we identify nk to be the rank of Taylor series matrix coefficient

Bo,k, for k = ... - 1, subject to Conditions I and II. Condition III specifies the

rank of Bh,o, hence also na. Therefore we have

Corollary 4.1 : If Bo(e) has a Taylor series in , and satisfies all Conditions I-III,

then the number nk of limiting singular values of Bo(e) proportional to Ek equals

the rank of the kth order Taylor series matrix coefficient Bo,k, for k = 0,... , -* 1.

Furthermore the sum of nk from k = 0 to k = mfL equals the rank R of Bo(e).

Specifically

nk = Rank{Bo,k} for k = 0,.- . - 1 (4.47)

and

Enk = Rank{Bo(e)} = 1 (4.48)
k=O

It follows from (4.48) and (4.21) that Bk,o = 0 for k > h. Therefore for non-

degenerate matrices Bo(e) with Conditions I-III all satisfied, Theorem 4.1 identifies

explicit expressions for the limiting singular matrices Bo,o, ' B,,o that characterize

the entire limiting SVD of Bo(e).

4.5.2 Limiting Singular Vectors for Non-Degenerate Bo(E)

We now identify the vector spaces spanned by the singular vectors of Bo(c). From

result S3, the column, row spaces of limiting singular matrices Bk,o respectively define

the span of the left, right singular vectors of Bo(e) associated with the group of limiting

singular values proportional to ek. The column, row spaces of Bk,o for non-degenerate

Bo(e) are identified in terms of Taylor series coefficients Bo,p as follows:
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Lemma 4.6: If Bo(e) has a Taylor series in c, and satisfies Conditions I and II,

then

a) Column Space{Bk,o} =

Column Space{Bo,k}

Column Space{P[ck_l]Bo,k}

Column Space{P[c_, lBo,mP[Rn 1] }

b) Row Space{Bk,o} =

Row Space{Bo,k}

Row Space{Bo,kP[Rkl_,}

Row Space{P[c_- 1]Bo,mP[R,_] }

Proof: We begin with proof of Assertion a). From Lemma

have

Column Space{Bk,o} = {

k = 

k= 1, *h-1 (4.49)

k = m

k = 

k= 1,--- -1 (4.50)

k = mfi

4.4 and Theorem 4.1 we

Column Space{Bo,k} k = 0
(4.51)

Column Space{P[ck_,lBokPak._.l} k = 1,. m .rh

Condition II states that the rank of Bo,k is unaffected by post-multiplication

by PRkdl, for k = 1,- - - 1. It follows that the rank of P[c,_,lBo,k is also

unaffected by post-multiplication by PRk_,], for k = 1,... h - 1. Therefore

the span of the columns of P[ck_,]Bo,k is not reduced by post-multiplication by

P[Rk_,l, and we have

Column SpaceP[ck_l]Bo,kP[Rkl } = Column Space{ P[ck_]Bo,k} (4.52)

for k = 1... i - 1. Use of (4.52) in (4.51) gives (4.49).

Proof of Assertion b) is analogous, using Theorem 4.1 and Condition I to identify

the row space of Bk,o.

The span of the singular vectors of Bo(e) associated with limiting singular values

proportional to Ek is easy to identify whenever Bo(E) satisfies Conditions I and II.
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Specifically from result S3 and Lemma 4.6 we have

Corollary 4.2 : If Bo(e) has a Taylor series in , and satisfies Conditions I and II,

then

a) the limiting left singular vectors of Bo() associated with limiting singular

values proportional to Ek span the column space of

i) Bo,o for k = 0,

ii) P[c,_,l]Bok for k = 1,... - 1,

iii) P 1_,]Bo,,mP[R _,] for k = rh.

b) the limiting right singular vectors of Bo(e) associated with limiting singular

values proportional to Ek span the row space

i) Bo,o for k = 0,

ii) Bo,kP[Rkl] for k = 1,... - 1,

iii) P[c,-_]IBo,,P[R_,] for k = ri.

Thus whenever Bo(c) satisfies Conditions I and II, the space of the limiting singular

vectors associated with limiting singular values proportional to Ck is easily identified

from the column, row spaces of Taylor series matrix coefficient Bo,k suitably orthog-

onalized with respect to the vector spaces spanned by prior Taylor series matrix

coefficients B0o, Bo,1,--- , Bo,k-l.

The entire limiting column and row spaces of Bo(E) are, from result S3, the spaces

spanned by all the columns and rows, respectively, of all non-trivial limiting singular

matrices B0,o,- * B,,o . Extending the nullspace projection results of Theorem 4.1,

we obtain

Lemma 4.7: If Bo(e) has a Taylor series in , and all three Conditions I-II are

satisfied, then

1) PBOO,Bmo .BO] PB o] (4.53)

where
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Bo = [Bo,o , B,Bo,_. , (Bo, P[Rm-l)]

2) P[Bho ... Bh- = P[Bo

where

Bo = [Bo . B,-1 (Bo, P[cC,l])]

Proof: From (4.32)-(4.34) of Theorem 4.1, with k = m

P[Bo,o,...Bf-_1 ,o] = P[C-_l]

P[B ho.Bh ,0 = P[Rm,]

(4.54)

(4.55)

(4.56)

(4.57)

(4.58)

(4.59)B,,o = P[ci-, ] Bo,7fP[Ri-l ]

The first projection matrix of interest is

= PCi[-l, (P[c_1Bo,PnP[R_1I])]

= P[c-1, (Bo,iFR,1 1)] (4.60)

which is (4.53).

The second projection matrix is

P= Rm_-, (P[Rn _,Pc,)]
= P[R-i, (BhP[c 1 J)] (4.61)

which is (4.55).

Note that the post factors P[R,-] and P[c,_,] in (4.54) and (4.56) limit the ranks

of matrices Bo and Bo to R.

Thus the limiting projections onto the null-space of the columns and rows of Bo(c)

are remarkably easy to express. From result S3 and Lemma 4.7, we obtain:
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Corollary 4.3: If Bo(e) has a Taylor series in , and satisfies all Conditions I-III,

then

a) limP[Bo()] = lim (I - Bo(E)Bo(c)+ ) = PBo1 (4.62)

b) limP[Bs(,)h] = liM (I - Bo(c)+Bo(e)) = (4.63)

where Bo, Bo are defined in (4.54), (4.56).

Theorem 4.1 and Corollaries 4.1-4.3 are important tools for analysis of the limiting

structure of perturbed rectangular matrices. As will be seen in Chapter 8, application

of Corollary 4.3 is a key enabling step for identifying the CR bound for multi-D DF

scenarios with closely spaced sources.

4.5.3 Specialization to Eigenstructure of Non-Degenerate

Hermitian Bo(E)

The above SVD results can be compared with the eigenstructure result (3.14) derived

in Reference [18] for Ao(), by imposing the requirement

Bo(E) = Ao(e) = Hermitian (4.64)

which cause the SVD and eigendecomposition to coincide, and by assuming that

Conditions I and II are satisfied by the Taylor series coefficients A0,o, Ao,, Ao,2, Ao,3

of Ao(c).

In this case, products of the projection matrices Pj defined in (3.15) take the form

(4.32) with

Po = P[Ao,o]

PO P1 = P[Ao,Ao,] = P1Po

Po PP 2 = P[AO,O ,AO ,1AO,2 ] = P2P1 Po (4.65)
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and therefore the expressions (3.14) reduce to

Ao,o = Ao,o

Al,o = P[Aoo]A,o1P[Ao,o]

A 2 ,0 = P[Ao,o, AO,1]AO,2P[A, 0 , Ao,1 ]

A 3 , 0 = P[Ao,o, Ao,, A 0 ,2 ]AO,3P[AO, o , Ao,1 , Ao,2 ] (4.66)

which is consistent with result (4.34) of Theorem 4.1. The rank and span properties

of Ao(e) follow from Corollaries 4.1-4.3.

4.6 Bk,o Expressions for Partially Degenerate Bo(c)

This section identifies expressions for the limiting singular matrices Bk,o applicable

to matrices Bo(e) which satisfy only one of Conditions I or II. In such cases, the

identified Bk,o expressions are more complex than in the non-degenerate case, but

nonetheless generalize the SVD results of Section 4.5 to partially degenerate matrices

Bo(e).

We recall that i'n is defined as the minimum number such that the partial sum

of terms p = 0... i - of the Taylor series terms of Bo(e) has rank equal to 1?, the

rank of Bo(e). For degenerate scenarios for which Conditions I-III are not all satisfied

parameter fi is not necessarily given by (4.6). For partially degenerate scenarios, we

identify i-h as follows:

Condition I satisfied: Provided Conditions I and IIIr (detailed subsequently) are

satisfied, i = rn,, where mir is defined by

Rank {[B , I *Bo,_jj } < 1 < Rank [Bo, *, ' BoI)] (4.67)

Condition II satisfied: Provided Conditions II and IIIc (detailed subsequently) are
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satisfied, n- = h0c, where ci, is defined by

Rank {[Bo,o, -. , Bo,a,-l]} < R < Rank {[Bo,o, ... ,Bo,sJ} (4.68)

Conditions I and II as defined in (4.9), (4.10) are central to the simplified SVD

analysis of partially degenerate matrices. Conditions IIIr, IIIc are modified versions

of Condition III defined as follows.

IIIr. Rank{P[c,_]Bo,, PR&_,]} = T - Rank [BhO, Boh,7 .]} (4.69)

IIIc. Rank{P[c&_,]Bo,m P[R_]} = R - Rank {[Bo,o, ... , Bo,,--1 ]} (4.70)

Condition IIIr or IIIc is sufficient to guarantee that mn determined by (4.67) or (4.68)

is such that the partial Taylor series consisting of terms of order p = 0 through p = mh?

does in fact have rank 7R. We will find that whenever Conditions I and IIIr, or II and

IIIc are satisfied, the limiting SVD of Bo(e) as - 0 is entirely determined by the

terms of (4.3) from Bo,o to Bo,&; subsequent terms only add higher order effects.

To identify Bk,o expressions for partially degenerate Bo(e), the point of departure

is again the partial identification of the Bk,o of Lemma 4.4. The first two limit-

ing singular matrices Bo,o and B1,o were explicitly identified in Lemma 4.4. Under

simplifying Condition II, identification can be extended to Bk,o, k > 1, as follows.

Theorem 4.2 : If Bo(E) has a Taylor series in c, and Condition II is satisfied, then

1) P[Bo,.--Bk-1,0 = P[Ck-l] (4.71)

2) P,...Bo 0hl O] [Rk 1] (4.72)

where

k- = [Bo,o (BolP[co]). (Bo,klP[c_2])] (4.73)

3) Bk,o = P[Ckl]Bo,kP[R_] (4.74)

for k = 1 ... r, where Ck-l is as defined in (4.7) in terms of the Taylor series

coefficient sequence Boo, " , Bo,k-l.
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Proof: The proof is by induction. The proof parallels that of Theorem 4.1 up to

(4.42), with Rj-1, Rj replaced by Rj_-, Rj in (4.36)-(4.41).

Equation (4.42) is replaced by

Column Space{BojP[R_l] } = Column Space{Boj } (4.75)

for j = 1, . - -, - 1. This relationship does not follow immediately from Condi-

tion II of (4.10), but is implied by it and can be supported as follows. Reference

to (4.73) shows that

Column Space{Rj_1 } C Column Space{Rj_l} (4.76)

so that

Column Space{P[R 1]J} D Column Space{PtRi_]} (4.77)

Therefore

Column Space{Bo,jP[R_l]} D Column Space{Bo,jP[R_,]}

= Column Space{Boj}

the last line following from (4.42). But

Column Space{BojP[R_1]} C Column Space{Bo,j} (4.79)

Eq. (4.75) follows from (4.78) and (4.79), and enables simplification of the

counterpart of Eq. (4.41) to the counterpart of Eq. (4.43), which establishes

(4.71) for k =j + 1, k = 1, . .

The matrix Rj_l (in place of Rj_-) results from the fact that the simplifying step

parallel to Eq. (4.39) is no longer possible, which leads to (4.72) for k = j + 1.

Finally use of (4.71) for k = j + 1 in (4.25) establishes (4.74) for k = j + 1.
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Theorem 4.2 expresses the limiting singular matrices Bk,o explicitly in terms of

the Taylor series terms Bo,p, and their column aggregates Cp, when Condition II is

satisfied. The expressions are more complicated than the expressions obtained for

non-degenerate scenarios in Theorem 4.1, due to the structure of Rk- 1 in (4.73).

Nonetheless we have the following characterization whenever Condition II is sat-

isfied.

* The vector space spanned by the columns of limiting singular matrix sequence

Bo,o, * * Bk-l,o is equal to that spanned by the columns of Taylor series matrix

coefficient sequence B 0o, ,. . BO,k-,.

* The limiting singular matrix Bk,o is the component of the kth order Taylor series

matrix coefficient Bo,k that is orthogonal to the vector space spanned by the

columns, and by the subspace defined by R'_ 1l of that spanned by the rows, of

Taylor series matrix coefficients of lower order.

for k = O ... c. (From (4.71)-(4.74) of Theorem 4.2).

It is straightforwardly verified that Theorem 4.2 identifies explicit expressions for

the limiting singular matrices B0,0, · · · Bo,,T that characterize the entire limiting SVD

of Bo0(), if Conditions II and IIIc are satisfied.

Clearly, a result parallel to Theorem 4.2 is available when Condition I is satisfied.

That is

Theorem 4.3 : If Bo(e) has a Taylor series in , and Condition I is satisfied, then

1) P[BOO,...Bk -,--10] = PC- 1] (4.80)

where

C'-l = [Bo, (Boo (B,,P[]) ... (Bok-lP[Rk_2 ])] (4.81)

2) P[Boh,o... Bh = P[Rk-1] (4.82)

3) Bk,o = P[Cl_,]Bo,kP[Rk_l] (4.83)

for k = 1... fi, where Rk-1l is as defined in (4.8) in terms of the Taylor series

coefficients Bo,o, Bo,k-1.
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Proof: The proof parallels that of Theorem 4.2.

Theorem 4.3 expresses the limiting singular matrices Bk,o explicitly in terms of

the Taylor series terms B0,p, and their column aggregates C, when Condition I is

satisfied. The expressions are again more complicated than the expressions obtained

for non-degenerate scenarios in Theorem 4.1, due to the structure of Ck_l in (4.81).

Nonetheless we have the following characterization whenever Condition I is satis-

fied.

* The vector space spanned by the rows of limiting singular matrix sequence

Bo,o, - Bk-l,o is equal to that spanned by the rows of Taylor series matrix

coefficient sequence Bo,o, ' " Bo,k-1.

* The limiting singular matrix Bk,o is the component of the kth order Taylor series

matrix coefficient B,k that is orthogonal to the vector space spanned by the

rows, and by the subspace defined by Ck_1 of that spanned by the columns, of

Taylor series matrix coefficients of lower order.

for k = 0 ... rr. (From (4.80)-(4.83) of Theorem 4.3).

It is straightforwardly verified that Theorem 4.3 identifies explicit expressions for

the limiting singular matrices B 0o,, · · · Bo0 ,r that characterize the entire limiting SVD

of Bo(e), if Conditions I and IIIr are satisfied.

In the non-degenerate case, Corollary 4.1 explicitly identified the number nk of

limiting singular values in each singular value shell of Bo(e). We now develop bounding

relations for nk applicable to partially degenerate matrices Bo(e).

Corollary 4.4 : If Bo(e) satisfies either set of Conditions I and IIIr, or II and IIIc,

then the number nk of limiting singular values of Bo(e) proportional to Ek is less

than or equal to the rank of the kth order Taylor series matrix coefficient Bo,k-

That is

nk = Rank{Bo,o} k = 0

nk < Rank{Bo,k} k = 1, - m (4.84)

nk = 0 k > 
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where h = ffi, defined in (4.67) if Condition I is satisfied and h = mth defined

in (4.68) if Condition II is satisfied.

Proof: The result for k = 0 is trivial for k = 0, is immediate for k = 1 ... i from the

applicable Theorem 4.2 or 4.3 since the rank of a product is at most the rank

of any of its factors, and for k > h follows from Condition IIIr or IIIc.

For partially degenerate matrices Bo0 (), Corollary 4.4 shows that the rank of

Taylor series matrix coefficient Bo,k provides an upper bound on the number nk of

limiting singular values of Bo(e) proportional to k as e - 0. Reference to Corollary

4.1 shows that the bound is satisfied with equality for k = ... t - 1 for non-

degenerate matrices B0 (e).

4.7 Summary of SVD Results

Thesis results so far have identified the following properties of Bo(e) for small c:

Shell Structure: The non-zero singular values of Bo(e) can be grouped according

to their E dependence into sets, or shells. Singular values in the kth shell are

proportional to k as -+ 0. Thus singular value energy decreases rapidly with

shell number k. For non-degenerate matrices all the non-zero singular values

are in shells k = O,... i, where ri satisfies (4.6).

Shell Size: For non-degenerate matrices Bo(e), the number of singular values in the

kth shell is equal the rank of the kth order Taylor series term of Bo(e), except

for the last shell.

Shell Problems: The SVD of Bo(e) can be decomposed into a set of shell problems,

consisting of the SVD of constant low-rank matrices Bk,o- For non-degenerate

Bo(e), Bk,o is the component of the kth order Taylor series term of Bo() which

is orthogonal to the column and row spaces spanned by the 0 to (k - 1)th order

Taylor series terms. Specifically Bk,o is given by (4.32)-(4.34).
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Limiting Singular Values: Limiting singular values of Bo(E) converge to the non-

zero singular values of Bk,o scaled by Ek.

Limiting Singular Vectors: The left (right) singular vectors associated with limit-

ing singular values of Bo(c) proportional to k converge as - 0 to the column

(row) space of Bk,o.

Degenerate Cases: In degenerate cases, the kth shell (k = 0... i r- 1) may have

fewer singular values than the rank of the corresponding Taylor series term, i.e.

shells may be not full. Conditions I-III are sufficient to prevent degeneracy.

Expressions for limiting singular matrices Bk,o have been identified for partially

degenerate Bo(c) which satisfy only one set of Conditions I and IIIr, or II and

IIIc.

The foregoing SVD properties provide a reasonably complete characterization of

the SVD of Bo(e) for small e. The SVD results are applied to identify the limiting

eigenstructure of covariance matrix Rs in the following Chapters. The above results

may also be useful in other applications.

4.8 SVD Examples

To illustrate the accuracy of the foregoing limiting SVD theoretical expressions, we

compare the predicted limiting and exact singular values and vectors for the rect-

angular matrix factor B of Rs for the 2-D direction finding scenarios of Examples

2.3-2.5 of Section 2.6.

Each example involves a planar array of W = 16 unit-gain, isotropic sensors, and

M = 6 far-field sources clustered near to the array broadside.

We assume that the sources are uncorrelated and have equal powers. Total source

power is taken to be unity, so that the cross-power matrix is P = 1/M I.

The matrix factor B of Rs in such scenarios is of the form (2.46), that is

B = AH
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= A (4.85)

since H = 1/VM I for M uncorrelated and equal power sources with unity total

power, where A is the matrix of source generic arrival vectors. The Taylor series of

(4.85) is

B = 5w0 ArP (4.86)

where the Ap and rp applicable to the example scenarios are of the form (2.68) and

(2.59) with M = 6. It is straightforwardly verified for matrix B of (4.86) that

* Condition C1 is sufficient for B to satisfy Condition I

* Condition C2 is sufficient for B to satisfy Condition II

* Conditions C1-C3 are sufficient for B to satisfy Conditions I-III

with f = m.

The limiting and exact SVD for the three example scenarios of Examples 2.3-2.5

are compared numerically in the following.

Example 4.1 : For this example, the array and source geometries are defined as

in Example 2.3. That is,

Array: Sensors in a sparse grid per Figure 2-4A,

Sources: Sources clustered around broadside in a "double chevron" configura-

tion per Figure 2-5A.

As shown in Example 2.3, this scenario satisfies Conditions C1-C3 with m = 2.

Consequently, matrix B of (4.86) satisfies Conditions I-III with mh = 2, and the

limiting singular matrices of B may be determined using Theorem 4.1.

Figure 4-1 shows the singular values of B for a range of emitter separations w.

Solid curves depict the exact singular values; dashed lines depict the limiting
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behavior predicted by our analysis. The horizontal scale denotes spatial fre-

quency separation Sw normalized by the array beamwidth BW, so that unity

on the horizontal scale of the graph corresponds to maximum source separation

of one beamwidth (i.e. w/BW= 1). The vertical scale denotes the singular

values.

Clearly the limiting expressions capture the essence of the singular values for

source separations of less than one beamwidth. As predicted, the limiting singu-

lar values are grouped into singular value shells as w - 0, with no = 1 having

slope of 0 dB/decade, n1 = 2 having slope of 10 dB/decade (i.e. proportional

to w), and n2 = 3 having slope of 20 dB/decade (i.e. proportional to 6w2). In

this non-degenerate scenario, the first three singular value shells are full.

Thus the theoretical expressions accurately predict the singular values of B for

small source separations w for this non-degenerate scenario.

To assess the accuracy of the predicted span of singular vectors, Figure 4-2

shows, for a range of emitter separations w, the magnitude of the component

of each principal left singular vector ui(Sw) of B that is outside the column space

of the predicted limiting subspace (i.e. the column space of the corresponding

Bk,o)- Specifically, the curves depict the vector norms

Cti = IP[BkO]Uii(W)JJ (4.87)

for i = 1,... M, where Pl[BkO] denotes the projection onto the column nullspace

of Bk,o, and ufi(w) is the left singular vector of B associated with singular value

oi(Sw) proportional to wk as w -- 0. Since ui(Sw) is predicted to converge to

the column space of Bk,o, we expect ai --+ 0 as Sw - 0.

The horizontal scale in Figure 4-2 again denotes spatial frequency separation

Sw normalized to the array beamwidth BW. The vertical scale denotes the ai

for i = 1 .. 6, corresponding to the principal singular values. Clearly, ai - 0

as Sw -- 0; thus the column space of limiting singular matrix Bk,o accurately

describes the span of the left singular vectors for small w.
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We now consider two partially degenerate examples.

Example 4.2 : For this example, the array and source geometries are defined as

in Example 2.4. That is,

Array: Sensors in a sparse grid per Figure 2-4A,

Sources: Sources clustered around broadside in a circular configuration per

Figure 2-5B.

As shown in Example 2.4, this scenario satisfies Condition C1 with m = 3.

It can straightforwardly be shown that matrix B of (4.86) satisfies Conditions

I and IIIr with miT = 3, and thus the limiting singular matrices of B may be

determined using Theorem 4.3.

Figure 4-3 again shows the singular values of B for a range of emitter sepa-

rations 6w. Solid curves depict the exact singular values; dashed lines depict

the limiting behavior predicted by our analysis. The horizontal scale denotes

spatial frequency separation w normalized by the array beamwidth BW, so

that unity on the horizontal scale of the graph corresponds to maximum source

separation of one beamwidth (i.e. Sw/BW= 1). The vertical scale denotes the

singular values.

Clearly the limiting expressions again capture the essence of the singular values

for source separations of less than one beamwidth. The limiting singular values

are again grouped into singular value shells as 6w -- 0, this time with no = 1

having slope of 0 dB/decade, nl = 2 having slope of 10 dB/decade (note that in

this scenario the two singular values are exactly equal for all So), n2 = 2 having

slope of 20 dB/decade, n3 = 1 having slope of 30 dB/decade. Thus the k = 2

shell is not full for this partially degenerate scenario, and there is one singular

value in the k = 3 shell.

Thus the theoretical expressions accurately predict the singular values of B for

small source separations w for this partially degenerate scenario, for which

matrix B satisfies Conditions I and IIIr.
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Example 4.3 : For this example, the array and source geometries are defined as

in Example 2.5. That is,

Array: Sensors in a circular geometry per Figure 2-4B,

Sources: Sources clustered around broadside in a "double chevron" configura-

tion per Figure 2-5A.

As shown in Example 2.5, this scenario satisfies Condition C2 with m = 3.

It can straightforwardly be shown that matrix B of (4.86) satisfies Conditions

II and IIIc with mz = 3, and thus the limiting singular matrices of B may be

determined using Theorem 4.2.

Figure 4-4 again shows the singular values of B for a range of emitter sepa-

rations w. Solid curves depict the exact singular values; dashed lines depict

the limiting behavior predicted by our analysis. The horizontal scale denotes

spatial frequency separation w normalized by the array beamwidth BW, so

that unity on the horizontal scale of the graph corresponds to maximum source

separation of one beamwidth (i.e. w/BW= 1). The vertical scale denotes the

singular values.

Clearly the limiting expressions again capture the essence of the singular values

for source separations of less than one beamwidth. The limiting singular values

are again grouped into singular value shells as 6w - 0, this time with no = 1

having slope of 0 dB/decade, n = 2 having slope of 10 dB/decade, n2 = 2

having slope of 20 dB/decade, n3 = 1 having slope of 30 dB/decade. Thus the

k = 2 shell is not full for this partially degenerate scenario, and there is one

singular value in the k = 3 shell.

Thus the theoretical expressions accurately predict the singular values of B for

small source separations w for this partially degenerate scenario, for which

matrix B satisfies Conditions II and IIIc.
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Chapter 5

Eigenstructure of RS for

Non-Degenerate Scenarios

This chapter identifies the limiting eigenstructure of the asymptotic signal covariance

matrix Rs for closely spaced sources in non-degenerate multi-D direction finding

scenarios. The analysis exploits results of Chapter 4 to first identify the limiting

SVD of matrix factor B of Rs given by (2.46); the limiting eigenstructure of Rs then

follows immediately from the SVD of its factor B.

Recall from Section 2.5.1 that Rs can be factored as

Rs = BBh (5.1)

where B is a rectangular matrix with Taylor series (2.60) of the form

00

B = E wAprpnI (5.2)
p=o

Parameter Sw is a scalar measure of the maximum spatial frequency separation be-

tween the sources, Ap consists of the pth order partial derivatives of the generic arrival

vector a(w) as in (2.50), 'p depends on the normalized source spatial frequency offset

vectors q-1, , qM7 as in (2.58) and II results from the factorization of source cross-

power matrix P in (2.47).

101



This chapter shows that under the non-degenerate scenario Conditions C1, C2,

and C3 defined in Section 2.5.3, matrix B is a non-degenerate matrix. That is, matrix

B satisfies Conditions I, II and III of Chapter 4 applicable to matrix Bo(e) of the form

Bo(c) = E EPBo,p (5.3)
p=o

with the identifications

Bo() = B

e = Sw

Bo,p = Aprn (5.4)

Accordingly, the limiting SVD of matrix B for non-degenerate scenarios can be iden-

tified using the results of Chapter 4 for non-degenerate scenarios.

The limiting eigenstructure of matrix Rs formed as the outer product of matrix B

in (5.1) then follows immediately from the limiting SVD of B. By construction of the

SVD, the non-zero eigenvalues of Rs are the squares of the non-zero singular values

of B, and the corresponding eigenvectors of Rs are the corresponding left singular

vectors of B.

Based upon the limiting eigenstructure of Rs, this chapter presents a reasonably

complete characterization of Rs for closely spaced sources. We find that the lim-

iting eigenvalues of Rs are divided into groups proportional to powers of Sw2, for

convenience designated as eigenvalue shells. The complete eigenstructure problem

decomposes into a sequence of shell problems; in multi-D scenarios, a low-rank eige-

nanalysis is required to identify the limiting eigenvalues and associated eigenvectors

in each shell. In 1-D scenarios, the shell problems involve a rank one eigenanalysis,

and hence can be solved explicitly as was done by Lee in [12].

Interestingly, a number of useful properties of Rs in multi-D scenarios can be

identified without performing the eigenanalyses required to solve the shell problems.

For example, the dependence of the numerical conditioning of Rs upon source spac-
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ing parameter w can be explicitly determined from the number of sources M and

scenario dimensionality. As another example, the limiting vector space spanned by

the columns of Rs (the signal-space), or its complement (the noise-space), can be

explicitly determined from the partial derivatives of the generic signal vector a(w)

and from the source configuration.

The chapter is organized as follows. Section 5.1 shows that the non-degenerate

scenario Conditions C1-C3 are sufficient for matrix B to satisfy Conditions I-III, and

hence identifies the limiting SVD of B from the results of Chapter 4. Section 5.2 then

identifies the limiting eigenstructure of Rs and related properties for non-degenerate

scenarios. An illustrative numerical example is presented in Section 5.3.

5.1 Limiting SVD of Factor B of Rs for Non-

Degenerate Scenarios

This section identifies the limiting SVD of matrix B for non-degenerate scenarios that

satisfy Conditions C1, C2 and C3. To do so, we first show that Conditions C1, C2

and C3 are sufficient for matrix B to satisfy Conditions I, II and III of Chapter 4.

The sufficient Conditions C1-C3 for non-degenerate scenarios, defined in Section

2.5.3 are restated here:

C1. Rank{Ao} = no for p = 0

Rank{P[A0,...Ap_1 Ap} = hp for p = 1, .. m - 1 (5.5)

C2. Rank{ro} = o for p = 0

Rank{rp Pro,...,r_l]} = p for p = 1,... m - 1 (5.6)
mn-1

C3. Rank{P[Ao, ... Amrm P[ro,...,r,_,]} = M- Z np (5.7)
p=O

where pii is the number of pth order partial derivatives of a(w) with respect to the

elements of W, and M is the number of sources. If Conditions C1-C3 are all satisfied,
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then parameter m is given by

m-1 m
, < M < mpi,

p=o p=o
(5.8)

The sufficient Conditions I-III for non-degenerate matrices Bo(c) defined in Chap-

ter 4 are also restated here:

Rank{P[cp_,]Bo,p} = Rank{Bo,p} for p = 1,... - 1 (5.9)

Rank{Bo,p P[Rp_1]} = Rank{Bo,p} for p= 1,- * i- 1 (5.10)
-- 1

Rank{P[c,-]Bo,, P[R-1]} = R - Rank{Bo,p} (5.11)
p=O

Matrices Bo,p are the matrix coefficients of the Taylor series for Bo(e) in (5.3), and

Cp_1, Rp-1 respectively aggregate the columns and rows of Bo,o ... B o ,p-_ as defined

in (4.7), (4.8). If Conditions I-III are all satisfied, then parameter fit is given by

mh-1

ERank {Bo,p} <
p=O

where R7 denotes the rank of Bo(E) for

Given the identification

7 < E Rank {Bo,p}
p=o

small, but non-zero e.

Bo,p = AprpII

the rank and span properties of Taylor series coefficient matrix Bo,p under Conditions

C1, C2 and C3 can be identified as follows:

Lemma 5.1 : For Bo,p as in (5.13), we have

a) If Condition C1 is satisfied, then

Rank{Bo,p} = Rank{rp} for p=O .. m- 1

and

for p=O ..m- 1

I.

II.

III.

(5.12)

(5.13)

P[Rp] = P[(ron)h,...(rpn)]

(5.14)
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b) If Condition C2 is satisfied, then

Rank{Bo,p}

qc]

= Rank{,,}

= P[Ao...Ap]

for p = 0 .*. m - 1

for p = 0O .m - 1

c) If all Conditions C1, C2 and C3 are satisfied, then

Rank{Bo,,p}

and

RankP[cm._l]Bo,mP[Rm_l] }

= np forp=0... m -1

m-1
= M-E np

p=o

Proof: See Appendix G.

The results of Lemma 5.1 imply the following relationship between Conditions

C1, C2 and C3 and Conditions I, II and III.

Lemma 5.2: For Bo,p as in (5.13), if Conditions C1, C2 and C3 are all satisfied,

then so are Conditions I, II and III with

m= m (5.20)

where h is defined by (5.12), and m is defined by (5.8).

Proof: It follows straightforwardly from the results of Lemma 5.1 that Conditions

C1, C2 and C3 with m in (5.8) are sufficient for Conditions I, II and III with

h in (5.12).

Consequently, the limiting SVD of B can be identified for non-degenerate scenarios

using the results of Chapter 4, as follows.

5.1 : If B has a Taylor series in 6w of the form (5.2), and Conditions

C1, C2 and C3 are all satisfied, then the limiting singular matrices Bk,o of B
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(5.18)
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are of the form

Aoro k = 0

Bko = (P[Ao...Ak_,l]Ak) (rkH P[(ron)h,...(rk .,n)h]) k = 1,... m (5.21)

0 k>m

Proof: From the result of Lemma 5.2, Theorem 4.1 is applicable to matrix B. The

result (5.21) is immediate from Theorem 4.1, using the identifications (5.13),

and (5.15), (5.17) of Lemma 5.1. The result Bk, = 0 for k > m follows from

Corollary 4.1.

Theorem 5.1 presents a remarkably simple characterization of the limiting sin-

gular matrices Bk,o of matrix B under Conditions C1-C3 (i.e. for non-degenerate

scenarios). The kth order limiting singular matrix Bk,o is simply the product of two

factors. The first factor is Ak minus its projection onto the space spanned by the

columns of Ao., · · Ak-1. The second factor is rkI minus its projection onto the space

spanned by the rows of roii, .- .rk-.

Results S1, S2 and S3 of Section 4.2 characterize the limiting SVD of B in terms

of the SVD of limiting matrices Bk,o. Specifically, the SVD of limiting singular matrix

Bk,o identifies the limiting SVD structure of the kth singular value shell of B as follows:

1. the non-zero singular values of Bk,O are the constants ai in limiting singular

values of B of the form aibwk, and

2. the associated left, right singular vectors of B respectively span the column,

row spaces of Bk,O.

The number of singular values of B in each singular value shell is simply identified

using Corollary 4.1 as follows:

Corollary 5.1 : If B has a Taylor series in w of the form (5.2), and Conditions C1,

C2 and C3 are all satisfied, then the number nk of limiting singular values of

B proportional to 6wk is equal to the number nk of kth order partial derivatives
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of a(w) with respect to the elements of w, for k = 0, .. m - 1. Furthermore the

sum of nk from k = 0 to k = m equals M. Specifically

ik k = O, ... m -1
nk = m-1 (5.22)

M-E np k =m
p=o

Proof: Immediate from Corollary 4.1, with appropriate identifications from Lemmas

5.1 and 5.2.

The span of the limiting singular vectors associated with each singular value shell

is simply identified from Corollary 4.2 as follows:

Corollary 5.2 : If B has a Taylor series in w of the form (5.2), and Conditions

C1, C2 and C3 are all satisfied, then

a) the limiting left singular vectors of B associated with limiting singular

values proportional to wk span the column space of

i) Ao for k = 0,

ii) P[Ao,...A_liAk for k = 1,... m- 1,

iii) P[Ao .A.,rm-],AmPmIi P[(rOn)h,...(rm,_n)h] for k = m.

b) the limiting right singular vectors of B associated with limiting singular

values proportional to Swk span the row space of

i) roII for k = 0,

ii) rkI P[(ron)h,...(r_,n)h] for k = 1,... m - 1,

iii) P[Ao,...Ao,m_Amrmn P[(ron)h, ...(r_-ln)h] for k = m.

Proof: Immediate from Corollary 4.2, with appropriate identifications from Lemmas

5.1 and 5.2.

The limiting projections onto the null-space of the columns and rows of B are

remarkably easy to express. Paralleling Corollary 4.3, we obtain:
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Corollary 5.3: If B has a Taylor series in 6w of the form (5.2), and Conditions

C1, C2 and C3 are all satisfied, then

a) lim P[B] = Ul m (I- BB+) P] (5.23)

where

B - [Ao, , Am-1_, (AmrIP[(ron)h,...(rm._n)h])] (5.24)

b) lim PBh] = lim (I- B+B) = PB] (5.25)

where

B [(ron), ..(r_,n), ((Amrm) P[Ao,.A_l])] (5.26)

Proof: Immediate from Corollary 4.3, with appropriate identifications from Lemmas

5.1 and 5.2.

The limiting SVD properties of matrix B identified in Theorem 5.1 and associated

Corollaries 5.1-5.3 are applied in the next section to identify the limiting eigenstruc-

ture properties of covariance matrix Rs for non-degenerate scenarios.

5.2 Limiting Eigenstructure of Rs for Non-Dege-

nerate Scenarios

The eigenstructure of Rs formed as the outer product of factor matrix B as in (5.1)

is entirely determined by the SVD of B. Specifically, the non-zero eigenvalues of Rs

are the squares of the non-zero singular values of B, and the corresponding eigenvec-

tors of Rs are the corresponding left singular vectors of B. Therefore the limiting

eigenstructure of Rs can be determined directly from the limiting SVD of matrix B

identified in Section 5.1.

Alternately, the limiting eigenstructure of Rs can be determined by identifying the

limiting eigenmatrices of Rs. By construction of the SVD, the limiting eigenmatrices

of Rs are simply the outer products of the limiting singular matrices of B. We

denote as R2k,o the limiting eigenmatrices of Rs corresponding to limiting eigenvalues
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proportional to w2k; hence

R2k,o A Bk,oBo (5.27)

where Bk,o are the limiting singular matrices of B corresponding to the limiting

singular values proportional to w k. Note that, consistent with Lemma 4.1, there are

no eigenvalues of Rs proportional to odd powers of 6w.

Using the results of Theorem 5.1, we express R2k,0 directly in terms of the factors

A,, rp and II of the Taylor series coefficients of B. That is,

Theorem 5.2 : If Rs is formed as the outer product of matrix B with Taylor series

in 6w of the form (5.2), and Conditions C1, C2 and C3 are all satisfied, then

the limiting eigenmatrices R2 k,0 of Rs are of the form

Ao ro THrohh Ah k =O

R2ko a (P[i,"...jA-k) (rkIPt)(rhn)h.(r-l) (5.28)R2k,O - Ilh (5.28)
(P(ron)h,...(rk_,n)h] r (AkP[A0,...Ap_]) k = 1,...

0 k>m

Proof: Immediate from (5.27) and Theorem 5.1.

Theorem 5.2 presents a remarkably simple characterization of the limiting eigen-

matrices of Rs for non-degenerate scenarios. The limiting eigenmatrices are decom-

posed into factors which consist of Ak minus its projection onto the space spanned by

the columns of Ao0, · Ak-1, and of rkIl minus its projection onto the space spanned

by the rows of ro,..- rk-1II.

Note that Theorem 5.2 takes the following particularly simple form for 1-D sce-

narios.

R2k,0 = tXkPkP kak (5.29)
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where

Ao k=0
ak f= . (5.30)

P[Ao,...A,_l]A k k = ,.. m

_ nhrh k =O
Pk = o (5.31)

P[(ro),...(rn)h.(rkn)h]H k k = 1, m

These results are identical to those of Lee [12] cited in Section 3.1. Specifically R2k,o

in (5.29) has unity rank, hence only one eigenvalue of Rs is proportional to 6W2k,

as per result El of Section 3.1. The principal eigenvector of R2k,o is equal to the

suitably normalized vector ak, as per result E2 of Section 3.1. Finally, the principal

eigenvalue r of R2k,o is equal to

= (h'). (h/) (5.32)

which can be shown, using well-known determinant properties [21], to be equal to the

limiting eigenvalue expression (3.9) identified in [121.

Thus for 1-D scenarios the results of Theorem 5.2 reduce to those of Lee [12].

5.2.1 Limiting Rs Eigenstructure Properties for Non-Dege-

nerate Scenarios

Results R1, R2 and R3 of Section 3.1 characterize the limiting eigenstructure of Rs

in terms of the limiting eigenmatrices R2k,0. Specifically, the eigenstructure of R2k,0

identifies the limiting eigenstructure of the kth eigenvalue shell of Rs as follows:

1. the non-zero eigenvalues of R2k,o are the constants Ai in limiting eigenvalues of

Rs of the form Ai6w2k, and

2. the associated eigenvectors of Rs span the column space of R2k,0o

The number of eigenvalues in each eigenvalue shell is simply identified using Corol-

lary 5.1 as follows:
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Corollary 5.4 : If matrix Rs is formed as the outer product of matrix B with

Taylor series in w of the form (5.2), and Conditions C1, C2 and C3 are all

satisfied, then the number nk of limiting eigenvalues of Rs proportional to Sw2k

is equal to the number nk of kth order partial derivatives of a(w) with respect to

the elements of W, for k = 0,... m - 1; furthermore, the sum of nk from k = 0

to k = m equals M. Specifically

[ nk k = O. ... -1
nk =m- (5.33)

M- np k=m

Proof: Immediate from Corollary 5.1, since the limiting eigenvalues of Rs propor-

tional to &w2 are simply the squares of the limiting singular values of B propor-

tional to Sw.

The span of the limiting eigenvectors associated with each eigenvalue shell is

simply identified from Corollary 5.2 as follows:

Corollary 5.5 : If matrix Rs is formed as the outer product of matrix B with

Taylor series in w of the form (5.2), and Conditions C1, C2 and C3 are all

satisfied, then the limiting eigenvectors of Rs associated with limiting eigenval-

ues proportional to w2k span the column space of

i) Ao for k = O,

ii) P[Ao,...Ak_l]Ak for k = 1, m- m 1,

iii) P[Ao..Ao.l]AmmII P[(ron)h,...(r_,n)h] for k = m.

Proof: Immediate from Corollary 5.2a) since the eigenvectors of Rs are simply the

left singular vectors of B.

The limiting projection onto the nullspace of Rs is also easily identified from

Corollary 5.3 as follows.
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Corollary 5.6 : If matrix Rs is formed as the outer product of matrix B with

Taylor series in w of the form (5.2), and Conditions C1, C2 and C3 are all

satisfied, then

lim PRS] = P[B] (5.34)
6w--+O

where B is defined in (5.24).

Proof: Immediate from Corollary 5.3a) since the column space of Rs is equal to the

column space of B.

The numerical conditioning of a matrix is typically characterized by the condition

number p defined as

= AM(w) (5.35)

where eigenvalues are ordered as Al(6w) > ... > AM(6w) $ 0. As 6w - 0, the

condition number p of Rs can be characterized as follows.

Corollary 5.7: If matrix Rs is formed as the outer product of matrix B with

Taylor series in Sw of the form (5.2), and Conditions C1, C2 and C3 are all

satisfied, then

lim = 1 (5.36)
X1 

w-·O AM ~6
2

rm

where A1 is the largest eigenvalue of R0 ,0, and AM is the smallest non-zero

eigenvalue of R2m,

Proof: Immediate from result R1, R2 and Theorem 5.2.

Corollary 5.7 shows that p is proportional to 6w-2m as 6w -- 0. Hence m can be

interpreted as a numerical conditioning parameter.
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We recall from (5.8) that parameter m satisfies

m-1 m
, n < M < fi, (5.37)

p=O p=o

where M is the number of sources, and ip > 1. Clearly for two or more sources

(M > 2), we have m > 1 so that p - 0 as 5w -+ 0. Moreover, the larger the m the

faster p -- 0. This circumstance reflects the fact that factor A which appears in Rs

as defined in (2.44), approaches unit rank as Sw - 0.

In multi-D DF scenarios ip > 1 for all p > 0, and therefore parameter m satisfies

m < M-1 (5.38)

In 1-D scenarios np = 1 for all p, and therefore m = M -1. Consequently, for a given

number M of sources, matrix conditioning parameter m is smaller in multi-D than

in 1-D scenarios.

5.2.2 Summary of Rs Eigenstructure Results

Thesis results so far have identified the following Rs eigenstructure properties for

closely-spaced sources whenever Conditions C1, C2 and C3 are all satisfied:

Shell Structure: The non-zero eigenvalues of Rs can be grouped according to their

6w dependence into sets, or shells. Eigenvalues in the kth shell, k = 0,. m, are

proportional to w2k as 5w - 0. Thus eigenvalue energy decreases rapidly with

shell number k.

Shell Size: In non-degenerate cases, the number of eigenvalues in the kth shell equals

the number ik of kth order partial derivatives in the Taylor series, except for the

last shell, which may not be full. For 1-D scenarios, there is only one eigenvalue

per shell, fk = 1, as noted in [12].

Shell Problems: The eigenanalysis of Rs can be decomposed into a set of shell

problems, consisting of the eigenanalyses of a set of m + 1 constant low-rank
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matrices R2k,0 specified by (5.28). For 1-D scenarios, each shell problem consists

of an eigenanalysis of a rank 1 matrix, hence solving a characteristic equation

is not required, as noted in [12].

Limiting Eigenvalues: Limiting eigenvalues of Rs converge to the non-zero eigen-

values of R2k,0 scaled by bw2k.

Limiting Eigenvectors: The eigenvectors associated with limiting eigenvalues of

Rs proportional to &w2k converge as 6w -, 0 to the column space of R2k,o which,

except for the last shell, is the space spanned by kth order spatial derivatives

of the generic signal vector, suitably orthogonalized from spatial derivatives of

lower order.

Condition Number: Limiting condition number p of Rs is proportional to bw - 2m,

and m < M- 1 for non-degenerate multi-D scenarios. For 1-D, m = M - 1.

Thus for a given number of sources, Rs is typically better conditioned in multi-D

than in 1-D settings.

Degenerate Cases: In degenerate cases the shells are not full. Conditions C1, C2

and C3 are sufficient to prevent degeneracy, and are related to sensor array

geometry and source configuration (See Chapter 7).

The foregoing Rs eigenstructure properties provide a reasonably complete charac-

terization of the eigenstructure of Rs for closely-spaced sources, which we expect will

facilitate the performance analysis of candidate DF techniques in multi-D scenarios.

Analysis of specific techniques is not pursued in this thesis.

5.3 Example Non-Degenerate Rs Eigenstructure

To illustrate the accuracy of the foregoing limiting eigenstructure theoretical expres-

sions, we compare the predicted limiting and exact eigenvalues and eigenvectors for

matrix Rs for the non-degenerate 2-D direction finding scenario of Example 2.3 of

Section 2.6.
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The example involves a planar array of W = 16 unit-gain, isotropic sensors, and

M = 6 far-field sources clustered near to the array broadside.

We assume that the sources are correlated and equal power. Total source power

is taken to be unity. Specifically, the source cross-power matrix P is taken to be

P= 1/M.

1 P12 ... P12

P12 1 P12

.)* .- pT2 1 

(5.39)

with P12 = 0.4 + jO.6.

The matrix factor B of Rs in such scenarios is of the form (2.46)

B = AHI (5.40)

where H is taken to be the Cholesky factor of the cross-power matrix P, and A is the

matrix of source generic arrival vectors. The Taylor series of B is

00

B = ESwPAprpI (5.41)
p=O

where the Ap and rp applicable to the example scenarios are of the form (2.68) and

(2.59) with M = 6.

The limiting and exact eigenvalues and eigenvectors of Rs for this scenario are

compared numerically in the following.

Example 5.1 : For this example, the array and source geometries are defined as

in Example 2.3. That is,

Array: Sensors in a sparse grid per Figure 2-4A,

Sources: Sources clustered around broadside in a "double chevron" configura-

tion per Figure 2-5A.

As shown in Example 2.3, this scenario satisfies Conditions C1-C3 with m = 2.
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Consequently, the limiting eigenmatrices R2k,0 of Rs may be determined using

Theorem 5.2.

Figure 5-1 shows the eigenvalues of Rs for a range of emitter separations 6w.

Solid curves depict the exact eigenvalues; dashed lines depict the limiting be-

havior predicted by our analysis. The horizontal scale denotes spatial frequency

separation 6w normalized by the array beamwidth BW, so that unity on the

horizontal scale of the graph corresponds to maximum source separation of one

beamwidth (i.e. 6w/BW= 1). The vertical scale denotes the eigenvalues.

Clearly the limiting expressions capture the essence of the eigenvalues for source

separations of less than one beamwidth. As predicted, the limiting eigenvalues

are grouped into eigenvalue shells as w -, 0, with no = 1 having slope of 0

dB/decade, n = 2 having slope of 20 dB/decade (i.e. proportional to w2),

and n2 = 3 having slope of 40 dB/decade (i.e. proportional to 6W4). In this

non-degenerate scenario, the first three eigenvalue shells are full.

Thus the theoretical expressions accurately predict the eigenvalues of Rs for

small source separations 6w for this non-degenerate scenario.

To assess the accuracy of the predicted span of eigenvectors, Figure 5-2 shows,

for a range of emitter separations w, the magnitude of the component of the

principal eigenvectors ei(6w) of Rs that is outside the column space of the

predicted limiting subspace (i.e. the column space of the corresponding R2k,o0)

Specifically, the curves depict the vector norms

a'= P[AO...A k] ,Ai(bw) (5.42)

for i = 1, * * M, where PIP[.. 1 Ak] denotes the projection onto the column

nullspace of R2k,o per Corollary 5.5, and ei(6w) is the eigenvector of Rs asso-

ciated with eigenvalue A(5w) proportional to 6wk as w - . Since ei(6w) is

predicted to converge to the column space of R2k,O, we expect aci -- 0 as 6w --. 0.

The horizontal scale in Figure 5-2 again denotes spatial frequency separation
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Sw normalized to the array beamwidth BW. The vertical scale denotes the ai

for i = 1 ... 6, corresponding to the principal eigenvalues. Clearly, ai 0

as w -- 0; thus the column space of limiting eigenmatrix R2k,o accurately

describes the span of the eigenvectors for small Sw.

117



01 ! ! ! !

100~~ ~~~~~~~~~~~~~~~~~ ........... ,~~~~~~~~~~~~~~~~~~~
. . . : . . ,' ' " . : :.

1 0 ....................... ................ ..... 

1- , - :

~~10-1 ~ ~~ ; e........... :..-·.................. .............. .......... . 7
1 0 -2 .... ................................: ...... ....... ...... ....

.w 10-3

10-4

1 f%- .

1 U-J: .. ... ... .... ., ... ...... ... .... ... .... ... .. ... .. ... .... .... .. ... ...... .... .... .. .... ..

10-6 I I I I i
10-1 100 bw/BW 101

Figure 5-1: Limiting Eigenvalues for Non-Degenerate Scenario
101
101 .. .. . ... . ....

:...... . ...... .... : . . . .... . .

Cei 

1 0 -2 ................... ......

. . .. ... ...... ....

1 0-6

10-1 10° Sw/BW 10 l

Figure 5-2: Convergence of Eigen-vectors for Non-Degenerate Scenario

118

·. -..-.. -. ............................................................ ....................................................... .... ........._
:z : :

· . ... . . . . .

"!"" . ..... ................................................................................... .......... 
· . .. . . . . .

:J . :i 
. . ... . . . . .

J . : 



Chapter 6

Detection Thresholds

A fundamental problem in DF applications is to determine the number of sources;

indeed many eigenvector-based DF algorithms such as MUSIC and MinNorm require

a priori knowledge of the source number for proper operation.

Accordingly a set of algorithms have been developed the objective of which is

to correctly detect or estimate the source number M. These algorithms are called

detection algorithms. Example algorithms are Akaike Information Criteria (AIC)

[22], and Minimum Descriptive Length (MDL) [23].

One useful performance measure for a detection algorithm is the signal-to-noise

ratio (SNR) threshold ED at which the algorithm can reliably estimate source number

for a given source-array configuration, and a given number N of data snapshots. An

alternative performance measure is the data set size N threshold NVD at which the

algorithm can reliably estimate source number for a given source-array configuration,

and a given SNR. These threshold values also can be regarded respectively as the

minimum SNR and N at which "one can see" the full eigenstructure of the spatial

covariance matrix R.

An obvious approach to detection is to examine the eigenvalues of a sample covari-

ance matrix, and to attempt separation of the sample eigenvalues into signal-space and

noise-space eigenvalues (in the sense of MUSIC). If successful, one takes the number

of signal-space eigenvalues to be the estimate of source number M. This approach

can be implemented by introducing a metric that effectively separates eigenvalues
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into groups, and counts the number of signal space eigenvalues. Indeed both AIC

and MDL employ (differing) metrics of this type.

This chapter draws upon the limiting eigenstructure results of Chapter 5 to elu-

cidate the (SNR) threshold ED and the data set size threshold ArD at which, based

upon the consideration of sample eigenvalues, one can reliably detect M closely spaced

sources in non-degenerate multi-D scenarios. The threshold expressions to be derived

assume asymptotic conditions (i.e. large N or SNR) so that classical perturbation

formulae apply to the eigenvalues of the sample covariance matrix R. The results are:

ECD - If 6 W 2m (6.1)

D ( f SNR 6 - m (6.2)

for large N, and

XN (1 ( )r·D4 m (6.3)

for sufficiently small Sw, where w is the maximum source separation parameter, m is

the Rs coioditioning parameter defined in (2.62), and IKD and f are constants defined

in Section 6.4.

The result (6.1) extends results of Lee and Li [13] which analyzed the SNR de-

tection threshold ED for closely spaced sources in 1-D scenarios. The authors argued

that ED at which so-called Normal Algorithms can reliably estimate the number of

sources in 1-D scenarios is proportional to 6w- 2(M- 1). That is

ED - KD . W- 2(M- 1) (6.4)

where KD is constant with 6w.

Since parameter m < M- 1 for typical multi-D scenarios, comparison of (6.4)

and (6.1) leads to the conclusion that for small Sw, the SNR detection threshold is

typically much smaller (more favorable) in multi-D than in 1-D scenarios.
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The analysis approach in this chapter is to use classical eigenstructure pertur-

bation formulas and the asymptotic eigenvalues identified in Chapter 5 to formulate

statistical models for the eigenvalues of the sample correlation matrix R for M closely

spaced sources in multi-D. It is then argued that any detection algorithm based upon

consideration of sample eigenvalues can succeed with useful probability only if the

difference between the mean of the smallest signal-space eigenvalue and the mean

of the noise-space eigenvalues is substantially greater than the standard deviation of

each. First order identification of the threshold SNR and N values required to satisfy

the above condition result in expressions (6.1)-(6.3).

The chapter is organized as follows. The eigenvalue approach to detecting the

number of sources is reviewed in Section 6.1. Section 6.2 then reviews the prior re-

sults of [13]. Section 6.3 postulates necessary conditions for successful sample eigen-

value based detection, and Sections 6.4, 6.5 develop the expressions (6.1)-(6.3) for

the detection threshold SNR and N. Section 6.6 summarizes the detection threshold

results.

6.1 Eigenvalue-Based Detection Algorithms

The problem addressed is that of determining which of the eigenvalues of the sample

covariance matrix R include a signal component, and which eigenvalues are noise-only.

Recall from Section 2.3 that under the data model assumptions, the sample covari-

ance matrix R converges for large N with probability one to the asymptotic covariance

matrix R of the form

R = Rs +a2I W x W (6.5)

where Rs is the signal covariance matrix of rank M < W, and Co2I is the additive

white noise component.

Following the previously used notation,

AX1 > > Aw denote the ordered eigenvalues of R,
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Al > ... > Aw denote the ordered eigenvalues of R,

Al(6w) > ... > AM(6w) denote the ordered non-zero eigenvalues of Rs,

A1 > ... AM6w2m denote the ordered non-zero limiting eigenvalues of Rs.

It follows from (6.5) that the eigenvalues of asymptotic covariance matrices R and

Rs are related by

Ai = Ai(6w) + a2 for i = 1 ... M

Xi = a2 for i = M...W (6.6)

Thus the eigenvalues of R can be divided into two groups: the "signal-space eigen-

values" Al > ... > AM which are larger than a2 , and the "noise-space eigenvalues"

AM = '- = Aw which are equal to a2. Therefore the detection problem would be

easy if the asymptotic matrix R were available; one could simply identify the number

of sources as the largest M for which

AM ,2 (6.7)

The asymptotic covariance matrix is not available in practice, since only the sam-

ple covariance matrix R can be computed using a finite number N of snapshots. How-

ever, for asymptotic conditions (i.e. large SNR and/or N), R closely approximates

R. Under these conditions, the eigenvalues of R can be related to those of R using

the perturbation model of Section 2.3. Specifically, the sample eigenvalues Ai can be

expressed as the sum of the asymptotic eigenvalues Ai and random perturbations i

as follows

Ai = A +i (6.8)

For asymptotic conditions, and with Gaussian statistical assumptions, the first and

second order statistics of pl are available from classical perturbation theory, and show
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that

E{,i} = o(1/N) (6.9)

E{spip = ij + o(1lN) (6.10)

where N is data set size, 6ij is the Kronecker delta and o(1/N) denotes terms of order

1/Nq with q > 1 [9].

For detection algorithms which estimate source number based upon considera-

tion of the sample eigenvalues, the fundamental problem is to decide whether the

perturbed eigenvalue Ai includes a signal and noise component A(6w) + a2 , or only

the noise component U2. The critical issue is to reliably detect that the asymptotic

eigenvalue AM is larger than AM+1, as in (6.7), based upon the observation of the

sample eigenvalues AM, AM+1.

6.2 Prior Detection Threshold Results

Lee and Li [13] previously have derived expressions for the SNR detection threshold

ED of so-called Normal Detection Algorithms for 1-D scenarios. The approach and

results of [13] are summarized below.

The authors define detection algorithms as Normal if the dominant term of the

probability that the algorithm incorrectly estimates the number M of sources

depends only upon the number of sources M, the number of sensors W, the data set

size N and the ratio

AM(bw)
PD = 2 (6.11)

where AM(Sw) is the smallest non-zero eigenvalue of Rs, and 2 is the noise power.

Specifically, re does not depend upon the other non-zero eigenvalues Al(6w),--,

AM-1(Sw) of Rs. Additionally, re for Normal algorithms is assumed to decrease

monotonically with increasing PD. The authors argue that it is reasonable to as-

sume that any eigenvalue-based detection algorithm is normal, and show that two
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popular detection algorithms, the Akaike Information Criteria [22] and the Minimum

Descriptive Length [23] algorithms indeed are both normal.

The authors exploit the 1-D eigenvalue results of Lee [12] to show that the smallest

eigenvalue of Rs for closely spaced sources is proportional to 6w2(M-1). That is, as

8w - 0 for 1-D scenarios,

AM(6w) _~ AMW2(M-1) (6.12)

where AM is constant with w. Using (6.12) in (6.11), the authors argue that SNR

threshold ED at which Normal Algorithms can reliably estimate the number of sources

in 1-D scenarios is proportional to w- 2(M-1). That is

ED - KD (6.13)
6w2(M1)

where KD is a positive quantity dependent upon the specific detection algorithm, the

source spacing and covariances, the sensor array and the number N of snapshots.

The authors of [13] do not address the corresponding data set size detection thresh-

old /D. In the following, we extend the results of [13] using classical perturbation

theory to identify the expressions for both the detection thresholds E£D and ArD, for

non-degenerate multi-D scenarios.

6.3 "Necessary Conditions" for Reliable Detec-

tion

To obtain detection threshold expressions for both SNR and N, we first formulate

statistical models for the sample eigenvalues Ai. It is then argued that any eigenvalue-

based detection algorithm can succeed only if the difference between the mean of

the smallest signal-space eigenvalue and the mean of the noise-space eigenvalues is

substantially greater than the standard deviation of each. The SNR and N values

required to satisfy the above condition result are deemed to be the detection threshold
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values.

A first order statistical model of the eigenvalues of R can be obtained from the per-

turbation model (6.8) and the classical perturbation statistical models (6.9), (6.10).

Specifically, we obtain

E({i = Ai + o(1/N) (6.14)

Cov.{AijA} = -Nii + o(1/N) (6.15)

Std. Dev.{A} = X+ o(l/N) (6.16)

We assume that to detect that there are M sources present, any eigenvalue based

detection algorithm needs to detect that the sample eigenvalues AM and AM+1 have

unequal asymptotic values. If the standard deviations of the sample eigenvalues AM

and AM+1 are small relative to the difference between their means, then there is a

basis for seeking an algorithm for reliably detecting that there are M sources present.

On the other hand, if the standard deviations of AM and AM+1 exceeds the difference

between their means, then it is unlikely that there exists any algorithm that can detect

the number of sources with high probability. Accordingly, one strongly suspects that

a necessary condition for the existence of an algorithm capable of detecting M closely

spaced sources with high probability is that

Std. Dev.{AM} < f. [E{AM} - E{AM+}] (6.17)

and

Std. Dev.{AM+l} < f. [E{ )M} - E{XAM+}] (6.18)

where f is a suitable fraction (e.g. f = 1/8).

For large N, substitution of the statistical model (6.14), (6.16) in (6.17) and (6.18)
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gives to first order

AM
< f [M - AM+1] (6.19)

and

AM+I < f. [M - AM+ (6.20)
VN

for large N. Note that AM - AM+1 is the smallest eigenvalue AM(6w) of Rs, which was

elucidated in Chapter 5. Accordingly the results of Chapter 5 together with (6.19)

and (6.20) enable us to make useful statements about the detection thresholds E£D

and JND.

6.4 SNR Detection Threshold D for Asymptotic

Domain

Since the eigenvalues are ordered, AM > AM+, (6.20) is necessarily satisfied if (6.19)

is satisfied. Therefore we focus on condition (6.19), and substitute expressions (6.6)

for the asymptotic eigenvalues to obtain

M(S6) + r 
-2

AM() + < f AXM(w) (6.21)

or with rearrangement,

0 1

_/ < f Am(6w) l f .l (6.22)

which for large f (e.g. N > 64 for f = 1/8) is equivalent to

-2
N < f. AM(w) (6.23)

vW -
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Thus (6.23) is a first order approximation (for large N) of the postulated necessary

conditions (6.17), (6.18) for the detection of M sources.

To define the SNR detection threshold, we extend the approach used in [13]. We

represent the source amplitude correlation matrix P as follows

P = pPo (6.24)

where Po is a constant matrix the eigenvalues of which sum to unity, and p is a

variable scale factor. Note that representation (6.24) retains the correlations between

the source powers. We define the signal SNR to be the ratio of the scale factor p to

the noise power a2 . That is

SNR = pla2 (6.25)

We deem satisfactory detection performance to be possible whenever condition

(6.23) is satisfied. We define the detection threshold power to be the smallest value

p,mi of p for which (6.23) is satisfied for a fixed N, and define the detection threshold

SNR to be

ED = Pmin/ C 2 (6.26)

Analogously, we define the data set size detection threshold ND to be the smallest

value of N for which (6.23) is satisfied for a fixed power factor p.

Analysis in Chapter 5 has identified the eigenvalues Ai(6w) of Rs for closely spaced

sources in non-degenerate multi-D scenarios. Specifically for small w, the smallest

eigenvalue of Rs was shown to be

AM(W) p. AM W2m (6.27)

where parameter m satisfies (2.62) and AM is a positive quantity calculable from Po,

the normalized source configuration vectors q ... q, and the generic arrival vector
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a(w) and its spatial derivatives of up to mth order. Specifically AM is the smallest non-

zero eigenvalue of the limiting eigenmatrix R2m,0 of the form described by Theorem

5.2, with the identification P = Po.

Substitution of (6.25) and (6.27) in (6.23) and re-arrangement gives

SNR- VN 1 .6-2m (6.28)
f AM

Identification of the SNR detection threshold gives

ED > KD >w- 2m (6.29)

where

1
,K 1 'AM (6.30)

6.5 Data Set Size Detection Threshold A/D for

Asymptotic Domain

Rearrangement of (6.21) gives

- 7[1 AM( - ) (6.31)

Substitution of (6.25) and (6.27) in (6.31), followed by squaring and use of (6.30)

shows that

N r 1[f2 + AM. SNR W2m]

+ SNRIfD 2 (6.32)f SRL2-
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for small Sw. It follows from (6.32) that the minimum data set size tND is given by

D w 2+ SNR 2 m (6.33)

The following approximations to AJD follow from (6.33) for the conditions noted:

If (AM. SNR Sw2m) > 1 (6.34)

AND " SNR 1w2m] (6.35)

If (AM. SNR w2 m) << 1 (6.36)

ND [S IfD (6.37)

Since AM is independent of &w, condition (6.36) is satisfied for sufficiently small w

for any given scenario geometry and SNR. Hence the data set size threshold takes the

simple form (6.37) for fixed SNR and sufficiently small w.

6.6 Summary

The threshold expressions (6.29), (6.33), (6.35) and (6.37) are important since they

provide explicit expressions for the minimum SNR and data set size N required to

satisfy the "necessary condition" (6.23) for detection using any detection algorithm.

The threshold expressions can be used to generate model detection curves for any

given scenario, since the constant K' can be calculated explicitly given the array

geometry, sensor directional response, source configuration and source correlations.

The threshold expressions (6.29), (6.33) (6.35) and (6.37) also clarify the trade-

off between SNR, N and maximum source spacing w required to maintain source

detection performance. For example, if noise power is doubled in a given scenario

with Sw small enough to satisfy (6.36), then the size of the data set must increase by

a factor of 4 to maintain detection performance. If, on the other hand, the maximum

source spacing w satisfies (6.36) and is decreased by a factor of 2 in a 2-D non-

degenerate scenario with M = 6 sources (with m = 2), then to maintain detection
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performance with a fixed data set size N, the SNR must increase by a factor of

24 = 16. Alternately if the SNR remains fixed, then the data set size N must increase

by a factor of 28 = 256!!! Thus the detection threshold data set size ND is very

sensitive to the maximum source spacing in the asymptotic domain.

By way of comparison, if the maximum source spacing Sw is decreased by a factor

of 2 in a 1-D scenario with M = 6 sources, then to maintain detection performance

with a fixed data set size N the SNR must increase by a factor of 210 = 1024 !!! For

small w and a given number of sources M, the detection thresholds are typically

much smaller (more favorable) in multi-D than in 1-D scenarios.
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Chapter 7

Eigenstructure of RS for Partially

Degenerate Scenarios

Analysis in Chapter 5 applied the non-degenerate SVD results of Chapter 4 to derive

simple, explicit expressions for the limiting eigenmatrices that characterize the eigen-

structure of covariance matrices Rs for small Sw in scenarios for which Conditions

C1-C3 are all satisfied. An important characteristic of the identified eigenstructure is

that eigenvalue shells O ... m - 1 are full, and shell m contains a number of additional

eigenvalue results sufficient to account for the rank M of Rs.

This chapter uses the partially degenerate SVD results of Chapter 4 to derive

somewhat more complicated expressions for the limiting eigenmatrices of Rs appli-

cable to partially degenerate scenarios for which only one of Conditions C1 or C2

are satisfied. Supporting analysis shows that satisfaction of only one of these condi-

tions can produce situations in which one or more eigenvalue shells 0... m - 1 have

vacancies.

Recall from Section 2.5.1 that Rs can be factored as

Rs = BBh (7.1)
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where B is a rectangular matrix with Taylor series (2.60) of the form

00

B =E wPAprPH (7.2)
p=O

Parameter 6w is a scalar measure of the maximum spatial frequency separation be-

tween the sources, A, consists of the pth order partial derivatives of the generic arrival

vector a(cw) as in (2.50), rp depends on the normalized source spatial frequency vec-

tors q, ... , q'M as in (2.58) and II results from the factorization of source cross-power

matrix P in (2.47).

This chapter shows that for partially degenerate scenarios matrices B are par-

tially degenerate. Specifically, that Condition C1 is sufficient for matrix B to satisfy

Condition I, and that Condition C2 is sufficient for matrix B to satisfy for Condition

II. Conditions I and II are defined in Chapter 4 in terms of matrix Bo(e) of the form

oo

Bo(e) = E Bo,pe (7.3)
p=O

To characterize the limiting singular matrices of the factor B of Rs, we make the

identifications

Bo() = B

e = 6w

B0 ,p = Apr (7.4)

Accordingly, the limiting SVD of B is identified using the expressions of Theorems

4.2 and 4.3 for the limiting singular matrices of partially degenerate matrices. The

limiting eigenstructure of Rs then follows immediately from the limiting SVD of B.

A geometrical interpretation for scenario degeneracy is introduced, which relates

Condition C1 to array geometry, and Condition C2 to source configuration. For

example, in a 2-D DF scenario scenario with a planar array of isotropic sensors and

M = 6 far-field sources clustered near array broadside, Condition C1 is violated if

all the sensors lie on a conic section curve (e.g. a circular sensor array). Similarly,
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Condition C2 is violated if all the sources lie on a conic section curve in spatial

frequency (e.g. circular source configuration).

The chapter is organized as follows. Section 7.1 identifies the limiting SVD of B if

only one of Conditions C1 or C2 are satisfied. Section 7.2 then identifies the limiting

eigenstructure of Rs for such partially degenerate scenarios. Section 7.3 introduces

a geometrical interpretation of Conditions C1, C2 in terms of array geometry and

source configuration. Section 7.4 presents numerical simulations that illustrate the

limiting eigenstructure of Rs in partially degenerate scenarios.

7.1 Limiting SVD of B for Partially Degenerate

Scenarios

In this section, we characterize the limiting SVD of the factor matrix B of Rs for

degenerate scenarios that satisfy only one of Conditions C1, or C2.

Recall from Section 2.5.3 the non-degenerate scenario Conditions C1, C2:

C1. Rank{Ao} = no for p = O

Rank{P[Ao, Ap_] Ap} = p for p = 1,.. m- 1 (7.5)

C2. Rank{ro} = o for p = O

Rank{r r = nP for p = 1, ... m - 1 (7.6)

where np, is the number of pth order partial derivatives of a(w) with respect to the

elements of Wc, and M is the number of sources.

Recall from Section 2.5.3 that integer parameter m is defined as the smallest num-

ber of successive leading terms of the Taylor series (2.61) of matrix A that must be

included in a partial sum for the partial sum to have full rank. For degenerate scenar-

ios for which Conditions C1-C3 are not all satisfied parameter m is not necessarily

given by (2.62). For partially degenerate scenarios, we identify m as follows:

C1 satisfied: Provided Conditions C1 and C3 r (detailed subsequently) are satisfied
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m = mr, where mr satisfies

Rank {[ro * r -.(mr)]} < M < Rank{[r, * ,rh r]} (7.7)

C2 satisfied: Provided Conditions C2 and C3 A (detailed subsequently). are satisfied

m = mA, where mA satisfies

Rank { [Ao, , A(,ImA-)]} < M < Rank{ [Ao, ,A,,m } (7.8)

Conditions C1 and C2 are central to the simplified SVD analysis of partially

degenerate matrices B. Conditions C3r, C3 A are modified versions of Condition C3

defined as follows.

C3r: Rank{P[Ao ...Am_] Am,r P[ro...r_,] = - Rank {[ro . , rr-l)] } (7.9)

C3A: Rank{P[A,-...Aml ]Amrm Prh -.. - l = - Rank {[Ao, 'Am ,Ajm l] }(7.10)

Conditions C3r or C3A are sufficient to guarantee that m determined by (7.7) or (7.8)

is such that the partial Taylor series of matrix A consisting of terms of order p = 0

through p = m, does in fact have rank M. We will find that whenever Conditions C1

and C3r, or C2 and C3 A are satisfied, the limiting SVD of B as Sw - 0 is entirely

determined by the p = 0 ... m terms of (7.2); subsequent terms only add higher order

effects.

Next recall from Chapter 4 the Conditions I, II, IIIr and IIIc defined for matrices

Bo(E).

I. Rank{P[cpf]Bo,p} = Rank{Bo,p} for p = 1, ---- 1 (7.11)

II. Rank{Bo,p P[RP_]} = Rank{Bo,p} for p = 1, ... - 1 (7.12)

IIIr. Rank{P[c,_l]Bo,. P[fRm1]} = - Rank {[B,0, BO },-j]} (7.13)

IIIc. Rank{P[c,_]Bo, P[RI_,]} = R- Rank {[Boo, o , Bo,-l]} (7.14)
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Matrices Bo,p are the matrix coefficients of the Taylor series for Bo(e) in (7.3), and

Cp-1, Rp-1 respectively aggregate the columns and rows of Bo,o ... Bo,p,, as defined

in (4.7), (4.8).

Recall from Chapter 4 that integer parameter fn is defined as the smallest number

of successive leading terms of the Taylor series (7.3) of matrix Bo(c) that must be

included in a partial sum for the partial sum to have rank equal to that of Bo(e). For

degenerate scenarios for which Conditions I-III are not all satisfied parameter r is

not necessarily given by (4.6).

To relate the non-degenerate scenario Conditions C1, C2 to the non-degenerate

matrix Conditions I, II, and identify the associated parameter fi for partially degen-

erate cases, we develop the following result.

Lemma 7.1 : If B and Bo() have Taylor series as in (7.2) and (7.3), and given

identifications (7.4) then

a) if Conditions C1 and C3r are satisfied with m = mr, then so are Condi-

tions I and IIIr with n = mr,

b) if Condition C2 and C3 A are satisfied with m = mA, then so are Condi-

tions II and IIIc with fi = mA.

where mr and mA are respectively defined by relations (7.7) and (7.8).

Proof: See Appendix H.

Consequently, the limiting singular matrices of matrix B for the two types of

degenerate scenarios addressed can be identified using Theorems 4.2 or 4.3, as follows.

Theorem 7.1 : If B has Taylor series in w of the form (7.2), and Conditions C1

and C3r are satisfied, then

1) PBO,o,---Bk_.,o] = Pfcl] k = 0... mr (7.15)

where

Ck-, = [Aoron, (AlrlP[(r, )h]), ... (Ak-lrk-IIP[(ron)h,...(rk-2n)h])] (7.16)
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3) Bk,o

= P[(ron)h,...(rkln)h] k = 0-.. mr (7.17)

ororIp k= 0 (7.18)

(P[CL,_lAk) (rknP[(ron)h,...(rk_ln)h]) k = 1,... mr

Proof: From the result of Lemma 7.1, Theorem 4.3 is applicable to B with =

mr when Conditions C1 and C3 r are satisfied. The results (7.15)-(7.18) are

immediate from Theorem 4.3, using (7.4) and identification (5.15) of Lemma

5.1.

Theorem 7.2 : If B has Taylor series in 6w of the form (7.2), and Conditions C2

and C3A are satisfied, then

1) P[Bo ,---Bk-l,o] =

2) P[Bh, ...B- 1,0 ]-

where

k-, = [(A

3)

k = O...mA

k=O... mA

P[Ao,...Ak_1

P[k-~I

0or]O)h, ((AllH)hP[ . 1), ... ((Ak-lrk-1 )h P[Ao,... Ak_2 )]

Bk, Aoron k = 

Bk,o = (P[Ao,...Ak_]Ak) (rknHPR_,]) k = 1,... m A

(7.19)

(7.20)

(7.21)

(7.22)

Proof: From the result of Lemma 7.1, Theorem 4.2 is applicable to B with = m A

when Conditions C2 and C3A satisfied. The results (7.19)-(7.22) are immediate

from Theorem 4.2, using (7.4) and identification (5.17) of Lemma 5.1.

Theorems 7.1, 7.2 express the Bk,o explicitly in terms of factor matrices Ap, rp

and II of the Taylor series of B. The expressions are more complicated than those

obtained for non-degenerate scenarios in Theorem 5.1, due to the structure of C" in

(7.16) or of R" in (7.21). Nevertheless, with mr and m A respectively defined in (7.7)

and (7.8), Theorems 7.1, 7.2 identify all the non-trivial Bk,o.

The expressions for the limiting singular matrices of B identified above are applied

in the next section to identify expressions for the limiting eigenmatrices of Rs.
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7.2 Limiting Eigenstructure of Rs for Partially

Degenerate Scenarios

This section characterizes the limiting eigenstructure of Rs for partially degenerate

scenarios by identifying expressions for the limiting eigenmatrices of Rs.

By construction of the SVD, the limiting eigenmatrices of Rs are simply the outer

products of the limiting singular matrices of B. Hence the limiting eigenmatrices R2k,o

of Rs corresponding to limiting eigenvalues proportional to 6w2k are

R2k,o A Bk,oB,o (7.23)

where Bk,o are the limiting singular matrices of B corresponding to the limiting

singular values proportional to wk.

The limiting eigenmatrices R2k,0 of Rs can be straightforwardly identified for the

two types of partially degenerate scenarios addressed as follows.

Theorem 7.3 : If Rs is formed as the outer product of matrix B with Taylor series

in 8w of the form (7.2), and Conditions C1 and C3r are satisfied, then

Aoron0 F nphrhAh

(Picl Ak) (rknP[(r0n)rh... (r,_ n)h]

(P(ron)h,..(rk_,n)h n rk) (APk [CL,])

k = 

k= 1,... mr

k > mr

where C_ is as defined in (7.16).

Proof: Immediate from (7.23) and Theorem 7.1.

Theorem 7.4 : If Rs is formed as the outer product of matrix B with Taylor series
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in w of the form (7.2), and Conditions C2 and C3A are satisfied, then

AoroI InhrhAh k = 0

R2kO (Fo,.A l]Ak) (kfP[R 1]) (7.25)
(P[R_] hr ) (AP[Ao,..Ak1]) k = 1, 7mA

0 k > mA

where RZ'_1 is as defined in (7.21).

Proof: Immediate from (7.23) and Theorem 7.2.

Theorems 7.3, 7.4, express the R2k,o explicitly in terms of factor matrices Ap, rp
and II of the Taylor series of B. The expressions are more complicated than those

obtained for non-degenerate scenarios in Theorem 5.2, due to the structure of C" in

(7.16) or of R" in (7.21).

In the non-degenerate case, Corollary 5.4 explicitly identified the number nk of

limiting eigenvalues in each eigenvalue shell of Rs. We now develop a bounding

relation for nk applicable to partially degenerate scenarios.

Corollary 7.1 : If Rs is formed as the outer product of matrix B with Taylor series

in w of the form (7.2), and either set of Conditions C1 and C3 r or C2 and

C3 A is satisfied, then the number nk of limiting eigenvalues of Rs proportional

to Sw2k is less than or equal to the number nk of kth order partial derivatives of

a() with respect to the elements of cw, for k = 0,... m. That is,

no = k (7.26)
(7.26)

nk < nk k=l, ...

where m = mr if Conditions C1 and C3r are satisfied, and m = mA if Condi-

tions C2 and C3A are satisfied.

Proof: Immediate from the applicable Theorem 7.3 or Theorem 7.4, since Ak is at

most rank nk, and the rank of a product is at most the rank of any of its factors.

For partially degenerate scenarios Corollary 7.1 shows that nk provides an upper
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bound on the number nk of limiting eigenvalues of Rs proportional to w2k as 6w - 0.

We note from Corollary 5.4 that the bound is satisfied with equality for k = ... m-1

in non-degenerate scenarios.

7.3 Geometric Interpretation of Degeneracy

To help clarify the two types of partially degenerate scenarios, this section provides a

physical interpretation for Conditions C1 and C2 in terms of sensor array geometry

and source configuration, respectively, in the context of a 2-D scenario with a planar

array of isotropic sensors and far-field sources clustered near array broadside.

Conditions C1 and C2 are respectively defined in terms of matrices Ap and rp. For

a 2-D scenario with a planar array of isotropic sensors and far-field sources clustered

at array broadside, the applicable forms of Ap, rp for p = 0, 1,2 are restated here

from (2.68), (2.59):

* For 2-D scenarios where

plane, and the reference

WO = [0, O]t , we have

ri = [ri, ryi]t is the location of the ith sensor in sensor

parameter vector 0 is taken to be at array broadside

I rl ryl1

AO=' , A =j-' * ' ,

1 rxw ryW

2r1

2
rXW

A2 =-1.

rxwryw

2
ryl

2
ryW

(7.27)

* For 2-D scenarios, with qj = [q2j, qj]t

ro = [1,

qyl,

qx 1/2,

r2 = qxlqyl,

... qxM
... qyM

*** q M/2

-' qzMqyM

... 2M/2
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Consider Condition C1 with m = 3. The linear independence of the columns of

Ao, Al and A2 required by Condition C1 implies that

= [Ao, A,, A 2] a (7.29)

is satisfied only iff a = 0.

Now suppose that there exists a ci # 0 that satisfies (7.29), and hence that Con-

dition C1 is not satisfied for p = 0,1,2. In that case, the ith row of (7.29) is of the

form

r 2 2= 1 + j a2rxi + j a3ryi - a4ri - asrxiryi - 6r2i

= f(ri) (7.30)

where f(rj) denotes a suitable 2nd order polynomial function of the elements of r.

Eq. (7.29) can only be satisfied with a- 0 0 if Eq. (7.30) is satisfied for each r-i ... rw

for some 0. Therefore Condition C1 is violated for p = 0, 1,2 if the sensor

coordinates r1 ... rw all satisfy a (non-trivial) second order polynomial function (i.e.

conic section equation). In terms of the geometry the sensor array, Condition C1

is violated for p = 0, 1,2 if all the sensors are located on a conic section curve (i.e.

circle, ellipse, parabola, hyperbola, line).

A parallel argument shows that Condition C1 is violated for p = 0, 1 if the sensor

coordinates rF1 ... rw all satisfy a first order polynomial function (i.e. the sensors are

co-linear). Extension of the argument to arbitrary m gives:

Geometric Interpretation of Violation of Condition C1: For a 2-D scenario

with a planar array of isotropic sensors, and far-field sources near array broad-

side, Condition C1 is violated for p = 0... m - 1 if the sensors are located on

a curve described by a (m- 1)th order polynomial equation.

An analogous argument applied to the source configuration establishes that Con-

dition C2 is violated for p = 0, 1, 2 if all the source spatial frequency offset vectors

q-, "' *qM are located on a conic section curve (i.e. lie on a circle, ellipse, parabola,
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hyperbola, line). Similarly, a co-linear source configuration violates Condition C2 for

p = 0,1. Extending to arbitrary m, we have

Geometric Interpretation of Violation of Condition C2: In 2-D scenarios,

Condition C2 is violated for p = 0... m - 1 if the sources are located on a

curve described by a (m - 1)th order polynomial equation in spatial frequency

space.

Illustrative examples of scenarios with circular source configurations, and with

circular sensor arrays, are presented in the next section.

7.4 Example Partially Degenerate Rs Eigenstruc-

tures

To illustrate the accuracy of the foregoing limiting eigenstructure theoretical expres-

sions for partially degenerate scenarios, we compare the predicted limiting and exact

eigenvalues for matrix Rs for the two partially degenerate 2-D direction finding sce-

narios of Examples 2.4 and 2.5 of Section 2.6.

The examples involve a planar array of W = 16 unit-gain, isotropic sensors, and

M = 6 far-field sources clustered near to the array broadside.

We assume that the sources are correlated and have equal powers. Total source

power is taken to be unity. Specifically, the source cross-power matrix P is taken to

be (5.39). The matrix factor B of Rs in such scenarios is of the form (5.40), with

Taylor series of the form (5.41).

The limiting and exact eigenvalues of Rs for two partially degenerate scenarios

are compared numerically in the following.

Example 7.1 : For this example, the array and source geometries are defined as

in Example 2.4. That is,

Array: Sensors in a sparse grid per Figure 2-4A,
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Sources: Sources clustered around broadside in a circular configuration per

Figure 2-5B.

As shown in Example 2.4, this scenario satisfies Conditions C1 and C3r with

m = mr = 3. Consequently, the limiting eigenmatrices of Rs may be deter-

mined using Theorem 7.3.

Figure 7-1 shows the eigenvalues of Rs for a range of emitter separations w.

Solid curves depict the exact eigenvalues; dashed lines depict the limiting be-

havior predicted by our analysis. The horizontal scale denotes spatial frequency

separation w normalized by the array beamwidth BW, so that unity on the

horizontal scale of the graph corresponds to maximum source separation of one

beamwidth (i.e. &w/BW= 1). The vertical scale denotes the eigenvalues.

Clearly the limiting expressions again capture the essence of the eigenvalues

for source separations of less than one beamwidth. The limiting eigenvalues

are grouped into eigenvalue shells as 6w - 0, with no = 1 having slope of 0

dB/decade, n = 2 having slope of 20 dB/decade, n2 = 2 having slope of 40

dB/decade, n3 = 1 having slope of 60 dB/decade. Thus the k = 2 shell is not

full for this partially degenerate scenario, and there is one eigenvalue in the

k = 3 shell.

The theoretical expressions accurately predict the eigenvalues of Rs for small

source separations 6w for this partially degenerate scenario which satisfies Con-

ditions C1 and C3r.

Example 7.2 : For this example, the array and source geometries are defined as

in Example 2.5. That is,

Array: Sensors in a circular geometry per Figure 2-4B,

Sources: Sources clustered around broadside in a "double chevron" configura-

tion per Figure 2-5A.

As shown in Example 2.5, this scenario satisfies Conditions C2 and C3A, with
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m = mA = 3. Consequently the limiting eigenmatrices of Rs may be determined

using Theorem 7.4.

Figure 7-2 again shows the eigenvalues of Rs for a range of emitter separations

Sw. Solid curves depict the exact eigenvalues; dashed lines depict the limiting

behavior predicted by our analysis. The horizontal scale denotes spatial fre-

quency separation w normalized by the array beamwidth BW, so that unity

on the horizontal scale of the graph corresponds to maximum source separation

of one beamwidth (i.e. w/BW= 1). The vertical scale denotes the eigenvalues.

Clearly the limiting expressions again capture the essence of the eigenvalues for

source separations of less than one beamwidth. The limiting eigenvalues are

again grouped into eigenvalue shells as 6w - 0, with no = 1 having slope of

0 dB/decade, nl = 2 having slope of 20 dB/decade, n2 = 2 having slope of

40 dB/decade, n3 = 1 having slope of 60 dB/decade. Thus the k = 2 shell is

not full for this partially degenerate scenario, and there is one eigenvalue in the

k = 3 shell.

The theoretical expressions again accurately predict the eigenvalues of Rs for

small source separations Sw for this partially degenerate scenario which satisfies

Conditions C2 and C3 A.
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Figure 7-2: Limiting Eigenvalues for Partially Degenerate Scenario; C2 Satisfied
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Chapter 8

Cramer-Rao Bounds: Background

The Cramer-Rao (CR) lower bound on the variance of unbiased parameter estimates

is a commonly used yardstick for assessing the estimation accuracy of direction finding

algorithms [15]. The CR bound is of interest since it is not algorithm specific, but

rather characterizes the optimum performance of any unbiased algorithm. The CR

bound can also provide insight into the individual impact of scenario parameters such

as sensor array geometry, source powers and correlations, source configuration, and

maximum source spacing. Such insight has been developed by Lee [11] for closely-

spaced sources in 1-D scenarios. The thesis results pertaining to CR bounds develop

analogous insight for closely-spaced sources in multi-D scenarios.

This chapter lays a foundation for the subsequent CR bound analysis, and is orga-

nized as follows. Section 8.1 reviews the data model assumptions, and introduces the

assumptions required for finite CR bounds. Section 8.2 summarizes prior CR bound

expressions which serve as the point of departure for our analysis. Section 8.3 clarifies

the CR bound expressions by reference to the MUSIC null spectrum. Section 8.4 re-

views the analysis approach for closely-spaced sources in multi-D. Section 8.5 details

conditions which simplify the multi-D CR bound analysis, and defines three cases

with distinct CR bound structure. Illustrative examples of each case for scenarios

that satisfy the simplifying conditions are presented in Section 8.6.
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8.1 Data Model

Recall from Section 2.2 that the data model of interest is

y(t) = Ax(t) + (t) t = 1, .. N (8.1)

where

A - [ad(w),(WP 2 ),. · a(wM)I (8.2)

a(w) is a generic arrival vector for signals with spatial frequency W, (t) is a vector

of signal complex amplitudes and (t) is a vector of additive noise signals the tth

sampling index. For 1-D DF problems, W = w is a scalar. For multi-D DF problems,

w- is a vector of spatial frequency parameters which are related by transformation

to the source direction parameters (ex. azimuth, elevation, .(2-D) and possibly also

range (3-D)).

The vectors a(cw), (t) and (t) in data model (8.1), (8.2) are assumed to satisfy

assumptions A1-A4, Xl-X3 and El of Section 2.2.1. The data model (8.1), (8.2)

with the foregoing assumptions corresponds to the Conditional Model [15], [11] for

which the sequence (1), (2),... (N) of source signal vectors is fixed (frozen),

whereas the additive noise vector t) varies randomly over the ensemble of sample

values.

Two additional assumptions used in our CR bound analysis are

A5. the number of sensors exceeds the number of sources by at least the scenario

dimensionality V

W > M +D (8.3)

A6. the D first order partial derivatives of a(cw) with respect to the elements of ,

at each source direction W3 = cj, (j = 1 ... M) are linearly independent from

the source arrival vectors a(wl), a(3M).
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Our analysis will show that Assumption A6 is required for the existence of finite

CR bounds; Assumption A5 is an enabling condition for A6. For 1-D scenarios, A5

simplifies to the well known relation

W > M+1 (8.4)

which states that the number of sensors is greater than the number of sources.

8.2 Referenced CR Bound Expressions

The point of departure of our CR bound analysis are compact expressions for the

submatrix of the inverse Fisher Information matrix applicable to the spatial frequency

parameters (See discussion in Section 2.4). Such compact expressions have been

developed by Stoica and Nehorai for 1-D scenarios [15], and served as the basis for

the development by Lee [11] of simple explicit CR bound expressions for the case of

closely-spaced sources in 1-D scenarios.

The compact expressions developed by Stoica and Nehorai have been extended to

multi-D scenarios by Yau and Bresler [16]. The latter results serve as the basis of our

analysis of closely-spaced sources in multi-D scenarios. The referenced expressions of

[15], [11] and [16] are summarized below.

8.2.1 Compact Expression for CR Bound in 1-D Frequency

[15]

For 1-D scenarios, the CR bound on sample frequency covariances takes the form [15],

E (~Qf- -Q} > B (8.5)

where

Q [1o,c2,. ,cWM]t (8.6)
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1 [w,,W2,* ,wMI (8.7)

and i denotes an unbiased estimate of wj (j=1 ... M). Bc is the M x M submatrix

of the inverse Fisher Information matrix corresponding to the elements of O.

Stoica and Nehorai [15] have shown that this submatrix can be expressed as follows

Bc = 2 {Re [ H P} (8.8)

where ) denotes the Hadamard element-by-element matrix product, and

H Dh [I- A(AhA)-'Ah] D (8.9)

D - [d(wl), d(), d(M)] (8.10)

d(wj) - d a(w) (8.11)
W=wj

P 1N(t)x(t h (8.12)
t=l

The formulation (8.8)-(8.12) is very useful for both analytical and numerical work

in that it bypasses the tedious calculation associated with calculating and inverting

the (large) Fisher Information Matrix. However, a shortcoming to the formulation

(8.8) is that the dependence of Bc upon scenario parameters such as array geometry,

source configuration, and source powers and correlations remains implicit.

8.2.2 Limiting Form of BC for M Signals Closely-Spaced in

1-D [11]

A recent paper by Lee [11] analyzed the bound (8.8) for the case of M signals closely-

spaced in 1-D frequency. The signal frequencies were represented by scalar frequency

parameters wl ... WM as follows:

W = wo+qjSw (8.13)
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j = 1 ... M. Here wo denotes a fixed reference frequency, the qj are normalized offsets

such that ql < q2 < ... qM with ql = -1/2 and qM = +1/2, and 6w is a variable scale

parameter corresponding to the separation of the extreme frequencies. The paper

analyzed the bound (8.8) as the multiplier bw -- 0. Representation (8.13) facilitates

analysis of the bound (8.8) since the problem is reduced to one with a single variable

parameter 5w. The condition sw -, 0 corresponds to coalescing the signal frequencies

about the reference frequency w0.

The approach of [11] is to identify the dominant term of H for small Sw as follows

H - (SW)2 (M- M) 'O UV + 0 {(S6)2(n-1)+1 } (8.14)

where

eM I [I A(AhA)-lh a(M)(w) (8.15)

iA - [a(wo), () *-- ,(M.-1)] (8.16)

a )(k) d a (8.17)
w=wo

I - Diag. ['(ql), '(q), (q2). '(qM)] (8.18)
M

+(q) H(q - q) (8.19)
1=1

0,(q) A d+(q) (8.20)dq

U fUU t (8.21)

U- [ll, -l]t (8.22)

Eq. (8.14) is then substituted into (8.8) to obtain the following first order represen-

tation of Bc for small 6w,

Bc = (6w)-2(M-') + 0 {(6w) - 2(M- )+1} (8.23)
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where

K 2 (M!) 1 - [Re {}] (8.24)
2N h ZE

The result (8.23), (8.24) is quite useful in that it is applicable to a broad range of

scenarios, and it makes explicit tradeoffs among scenario parameters such as frequency

separations, signal powers and correlations, and the sampling grid. Specifically these

quantities are represented in (8.23), (8.24) as follows

frequency separations = '(q) . (Sw)M-

signal powers and correlations i [Re{P}] -

sampling grid 1= l 'M112

Thus, for example, it is immediately clear from (8.23) for any one-dimensional scenario

that reducing the frequency separation factor w by a factor of 10 in a M = 3 signal

scenario requires that the source powers be increased by 2(M-1). 1OdB = 40dB for an

unbiased estimator to maintain the same frequency standard deviation. By requiring

the standard deviation of frequency estimates to be smaller than the separation of

adjacent frequencies, it also was argued that the threshold Signal-to-Noise ratio £R

at which an unbiased estimator can resolve M signals closely-spaced in 1-D frequency

satisfies

ER IKRI(N.W2M) (8.25)

where N is sample size and IKR is a (positive) function of relative frequency separa-

tions, signal powers and covariances and array geometry. See [11].
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8.2.3 Compact Expression for CR Bound in Multi-D [16]

Yau and Bresler [16] have extended the result (8.8)-(8.12) to multi-D scenarios with

parameter vectors c, ... WM. For the multi-D case,

- AIt[W***D1 **W1M**WDM] t

= [ll * * *. l .**WM ' * * M]t

(8.26)

(8.27)

Wjij denotes an unbiased estimate of ith element of j, (i = 1 ... D,j = 1 ... M). In

the multi-D case, Bc is an MD x MD matrix with the compact form [16],

(8.28)

with

H Dh [I - A(AhA)-lAh] D

D () -WM)]

a K 8 -

V= lVXV I

1DvxV PiM · . 1DVx V PM1

(MD x MD)

where ipij is the i,j th scalar element of the sample cross power matrix P of (8.12), 0

denotes Kronecker product, and lvxv denotes the D x D matrix of ones.

The thesis objective with respect to the CR bounds is to derive expressions for Bc

for closely-spaced sources in multi-D scenarios which are analogous to those of Lee

[11] for 1-D scenarios. Specifically, we would like to explicitly identify the dependence

of Bc upon scenario parameters such as maximum spatial frequency separation 6S,

source configuration, source powers and correlations, and array geometry.
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8.2.4 2-D DF Example

To illustrate the structure of the CR bound expressions (8.28)-(8.32) for a multi-D DF

scenario, consider an example two-dimensional V = 2 scenario with M = 3 sources.

The spatial frequency vector has two elements = [wv,wy]. The DF problem is to

estimate the spatial frequency vector for each of the three sources, namely wl, W'2, w3.

Let pij denote the i, jth element of sample source amplitude covariance matrix P,

for i = 1,2,3 and j = 1,2,3. The expanded and transposed matrix P+ then takes

the form

P =a~ 

Pll P11 P21 P21 P31 P31

P11 Pll P21 p21 P31 P31

P12 P12 P22 P22 P32 P32

P12 P12 P22 P22 P32 p32

P13 P13 P23 P23 P33 P33

P13 P13 P23 P23 P33 P33

(8.33)

and matrix Bc takes the form

p11 Z11 P21 Z12 P31' Z13

Bc 2NRe P2 Z2 1 22 Z22 P32 Z23 (8.34)

P13 Z3 1 P23 Z3 2 33 Z33

where

Zij = D(wi)h[I- A(AhA)- Ah D( ) 2 x 2 (8.35)

8.3 Relationship to the MUSIC Null Spectrum

The formulation (8.28) for the multi-D CR bound on Cov{Q} can be clarified by

reference to the MUSIC null spectrum.

The null spectrum A(W) for the MUSIC algorithm for an arbitrary direction is
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defined as follows:

a(W)h [I - A(AhA)-'Ah] a() (8.36)(8.36)
I1d(c3)112

where A denotes the matrix (8.2) of source arrival vectors. This scalar function has

the useful property that it equals zero whenever coincides with a source spatial

frequency 3j. The MUSIC algorithm uses this property as a basis for estimating

source directions. The spectrum function SMusIc(w) of Table 1.1 is asymptotically

equal to the inverse of the null spectrum A(w), for large data set size N. Thus

the values of spatial frequency at the maxima of the spectrum function, used as the

MUSIC estimates of source spatial frequencies, are asymptotically equal to the values

of spatial frequency at the minima of the null spectrum.

Straightforward differentiation of (8.36) shows that the Hessian matrix 1j of A(w)

at W = wL is

2 Re {D()h [ - A(AhA)-lAh] D(w)} (8.37)

1ii((j)112

Thus the real part of the block of H corresponding to the jth source in (8.28) simply

is equal to lla(wij)11 2 /2.

Additionally, the block of BC1 corresponding the jth source is

B1 = ^ I2 . (8.38)

where subscript ij] denotes the jth block of D x Z) elements along the main diagonal,

and pjj denotes the sample power of the jth source.

For uncorrelated sources, matrix P is diagonal, hence matrices P+ and Bc are

block diagonal. Therefore from (8.38), the block of Bc corresponding the jth source

is

=2
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For correlated sources, a lower limit on the (Bc)[j] can be established as follows.

From the identity for the inverse of any partitioned matrix Z,

(Z-) ] > [zi (8.40)

Use of (8.40) with Z = Bl', and (8.38) gives

-2

(Bc)-Jn > N. pjj Ila(wj)ll2 (

We note from (8.39) and (8.41) that for given source powers, the Cramer-Rao variance

bound for correlated sources is lower bounded by the CR bound for uncorrelated

sources.

It is well known that the Hessian describes the curvature of a quadratic surface.

Eqs. (8.38), (8.41) indicate that the CR bound can be expected to be favorable for the

ith element of &wj corresponding to a large ith diagonal element of 7-j or, equivalently,

corresponding to large curvature of the spectrum A(w) along the ih spatial frequency

coordinate. Similarly the CR bound can be expected to be unfavorable for the Ith

element of w corresponding to a small curvature of the spectrum A(w) along the lh"

coordinate.

8.4 Analysis Approach

The main CR bound results of this thesis are obtained by identifying explicit expres-

sions for the multi-D CR bound (8.28) for the case of M signals closely-spaced in

multi-dimensional frequency. The analysis approach is an extension to multi-D of the

approach used by Lee [11] for 1-D scenarios.

As introduced in Section 2.5, our approach is to express the spatial frequency

vector for the jth source as

Wj = wo + qUw (8.42)
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j = 1 .. M, where -0 denotes the fixed reference frequency vector, the normalized

vector offsets such that max flqi-- - [ = 1, and w the variable scale parameter corre-
.,,

sponding to the separation of the extreme frequency vectors. Paralleling the approach

of [11], we analyze the bound (8.28) as the multiplier 6w -, 0. Representation (8.42)

facilitates analysis of the bound (8.28) since the problem is reduced to one with a

single variable parameter w. The condition w -, 0 corresponds to coalescing the

signal frequencies about the reference frequency vector c0.

Taylor series representations are central to our CR bound analysis. We recall from

Section 2.5.2 that the generic arrival vector a(w) has a Taylor series about 6w = 0 of

the form

oo

a(w) = , 6wPAp-p(q) (W x 1) (8.43)
P=O

where the columns of Ap are the pth order spatial derivatives of a(w) at 0 ,

AP [P() dP (P ) 8Pa~()] (W x nip) (8.44)

where ip is the number of pth order spatial derivatives. Vector -(q) is nip x 1, real,

constant with w and depends only on the normalized direction offset vector q. For

2-D applications with q'= [q, qy]t the vectors %-(qj are

q/2
--(- =[1 , =I (q-II -W = , 7 72( -= q, , -Y(q-=

q2/2

q 3/6

2qyq/2

qq2/2

q3/6

(8.45)

Vector p(q) has the general form (2.55) for 2-D scenarios. Expressions analogous to

(8.44), (8.45) can be written for Taylor series of any dimensionality.

The CR bound B is expressed in (8.28)-(8.32) in terms of matrices A and D(c-j).
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It follows from (8.43) that matrix A in (8.2) has Taylor series of the form

A = [a(Ocl), a(wM)]
00

= EwPAprF (8.46)
p=O

with matrix Ap as in (8.44), and rp is a constant real np x M matrix of the form

rpp - [p(q), · '·p(qM)] (8.47)

A Taylor series characterization of D(cj) is likewise straightforwardly identified

from the Taylor series (8.43) of a(wc). As defined in (8.31), each column di(coj) of

D(fj) is a partial derivative of the generic arrival vector (w-) at Wj, hence

di(-) _( [w = a(wo + wq)] (8.48)

since w = wo + 6wq. Hence from (8.31) and (8.48) we obtain

00

D(Wj) 1= wP-APrpp(v) (8.49)
p=O

where

rp(q) - [- oq- Oq-]q (8.50)q, ' q' OqD =

and Ap, 'Yp(q are as in (8.44), (8.45). Note that ro(Q) = 0 since (q) = 1, and that

the Ap and rp(q) are constant with w, so that (8.49) is a Taylor series in w.
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8.5 Sufficient Conditions for Non-Degenerate CR

Bounds

The CR bound analysis presented in Chapter 9 is simplified by identification of struc-

tural conditions satisfied in many DF scenarios; we refer to such scenarios as charac-

terized by non-degenerate CR bounds.

Analysis will show that the behavior of the CR bound for small w depends

fundamentally upon the interaction between the columns of matrix A and of the

matrix D(^j) of first spatial derivatives of a(S) at wj, for each j = 1 ... M. For

convenience, we define the augmented matrices

j [6w-b(j) , A] W x (M +D) (8.51)

for j = 1 ... M, which aggregate the columns of D(~j), scaled by 6w, and the columns

of A. We note that Ej has full rank M + V by Assumption A6.

Since the constituent matrices have Taylor series (8.49) and (8.46), each -j also

has Taylor series of the form

00

-- = ewPAprp(q) (8.52)
p=O

where Ap is as in (8.44) and

r() - [Np(-) , rp] p x (M + V) (8.53)

with rp(q;) as in (8.50) and r, as in (8.47).

The sufficient conditions for non-degenerate CR bounds are simply stated as:

Scenarios with non-degenerate CR bounds are scenarios which satisfy Condi-

tions C1-C3 that specify a non-degenerate matrix A, and additional scenario

Conditions CR1-CR2 (detailed subsequently) that specify non-degenerate aug-

mented matrices Ej, for j = 0 ... M.
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The sufficient conditions C1-C3 are restated here from Section 2.5.3:

Rank{Ao} = no

Rank{PAO..-Ap l] Ap} = p

Rank{ro} = no

for p = 0

forp= 1, .. m-1

for p = 0

Rank{rp P[rh,...,rrh_,} = pfor p = 1,-.. m- 1
m-1

Rank{P[AO,...Am._] Amrm Pjrh ...,rh 1_,]} = M - P
p=o

(8.54)

(8.55)

(8.56)

where M is the number of sources and m is the minimum number such that the sum

of terms p = 0... m of the Taylor series of matrix A is full rank. If Conditions C1-C3

are all satisfied, then m is determined by

m-1

ynp < M
p=O

m

p=O

(8.57)

We define the additional scenario conditions analogously,

matrices of the Taylor series (8.52) for augmented matrices:

CR1. Rank{Ao} = no for

Rank{P[Ao,...Ap-_] Ap}= n for

CR2. For j = 1 ... M, Rank{rO(q)} = no for

forRank{r,(q) P[r ()h...,r (_r/lh]} =np

CR3. For j = 1 ... M,

Rank{P[Ao, _1A Ar(q) P. ..-gxP_' ,(-)h,Ax~~x~~q/) Pr(¢a,.,_ , (/ a 

using the component

p=O

p = 1,- X - 1(8.58)

p=1, - (8.59)
p=l 1,X-1(8.59 )

X- 1

= M + D- ' np
p=O

(8.60)

where M+D is the number of columns in augmented matrix -j, and X is the minimum

number such that the sum of terms p = ... X of Taylor series (8.52) of matrix E is

full rank. If Conditions CR1-CR3 are satisfied, then X is determined by

x-1 x
Znp <M+D < zEnp

p=o p=O

(8.61)
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8.5.1 Definition of Cases I, II and III

Subsequent analysis will show that the small 6w behavior of the CR bound in multi-D

scenarios depends fundamentally upon a parameter v, defined as

m

v _ A ,-M (8.62)
p=O

Referring to definition (8.57) of m, we see that v reflects the number by which M

can be augmented without changing the value of m. We designate v as the number

of "vacancies" the mth SVD shell of matrix A. Parameter v depends only upon the

number M of sources, and the dimensionality V of the scenario, which determines

the values of ip.

Referring to definition (8.61) of X, we see that X is simply the value of m if M is

augmented by 2). Thus we relate X to the number of vacancies by

X = - (8.63)

For convenience, we define three distinct cases based upon the value of vacancy

parameter v:

Case I. (v = 0) In this "full shell" case there are no vacancies in the mth shell, and

X=m+1.

Case II. ( > D) In this case there are at least D vacancies in the mth shell, hence

X = m.

Case III. ( < v < D) In this case there are some, but fewer than ), vacancies in

the mth shell, hence X = m + 1.

Subsequent analysis will be simplified by separate consideration of each Case.

Examples in the following section illustrate the three Cases I, II and III, and show

that the CR bound simplifying Conditions C1-C3, and CR1-CR3, are satisfied for

typical direction finding scenarios.

159



8.6 Example Scenarios for CR Bounds

This section introduces the direction finding scenarios which will be used in numerical

simulations to illustrate CR bound thesis results. The four scenarios are derived

from the non-degenerate scenario of Example 2.3. The scenarios differ only in the

number M of sources present, and illustrate the occurrence of Cases I, II and III for

M = 3,4,5,6.

Each example involves a planar array of W = 16 unit-gain, isotropic sensors, and

far-field sources clustered near to the array broadside.

We recall from (2.68) that for this scenario the matrices Ao, Al, A2 and A3 are

rxl ryl

,A= j- [ ,A = -1 -

rxW ryW

r3_ 2 2rl fr2lyl rxl

A3 = -j : : :

rw3 2 2W rWryW rxwrfyw

2

2
rXw

3

3
fyW

rl ryl

rwrw

r2

r2FyW I

(8.64)

From (2.59), we recall for this scenario that

rO =

r =

r2=

r3=

[1, ... 1]

qyl, ... qyM

q q2l /2, .. q2M/2

qzl qyl, ...' qxMqyM

q31/6, q3M/6

qxlqYl/2, q- QMYM/2

q.,l1/2, ** qxMqM/2
q3 /6, q3 /6

(8.65)
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Therefore the partial derivative matrices ['p(q) in (8.50) take the form

O(qj) = [o , 0]

Fa(q ) = [1 '
0 , 0 1]

q)i , 0

F2 (qj) qyj q ij

0 , qyj

3(qi) =

q2./2 , 0
qxjqyj q2j/2

qj/2 , qxjqvj
0 , q2j/2Y3l 

(8.66)

The four example scenarios differ in the number M of sources which are active

out of the 6 sources in the "double chevron" source configuration of Figure 8-1. The

scenarios are defined as follows:

Example 8.1 : For this example M = 3 and the array and source geometries are

as follows.

Array: Sensors in a sparse grid per Figure 2-4A,

Sources: Sources SC1, SC2, SC3 clustered around broadside in a triangular

configuration per Figure 8-1.

Per Example 2.3, the columns of Ao, A1 , A 2, A 3 in (8.64) are all linearly inde-

pendent for this sensor array. It can be verified that the rows of Fo, Fr, given

by (8.65) with M = 3 are all linearly independent for this source configuration.

Thus the partial Taylor sum of A with terms p = 0, 1 has full rank M = 3, and

thus m = 1. Consequently, Conditions C1-C3 are all satisfied with m = 1.

Similarly, the rows of ro(q), ri(qj) given by (8.53) with (8.65) and (8.66) are

all linearly independent for this source configuration, and ro(qj), (qj) and

F(q) have M + D = 5 linearly independent rows. Thus the partial Taylor sum

161



SC4

SC2

SC3

qXI
- -

SC6 SC5

SC1

A. Double Chevron

Figure 8-1: Normalized Source Configuration for CR Bound Simulations

of - with terms p = 0, 1, 2 has full rank M = 5, and thus X = 2. Consequently,

Conditions CR1-CR3 are all satisfied with X = 2.

Since v = 0, this is an example of a Case I scenario with non-degenerate CR

bounds.

Example 8.2 : For this example M = 4 and the array and source geometries are

as follows.

Array: Sensors in a sparse grid per Figure 2-4A,

Sources: Sources SC1, SC2, SC3, SC4 clustered around broadside as in Figure

8-1.

Paralleling the arguments of Example 8.1, Conditions C1-C3 are all satisfied

with m = 2, and Conditions CR1-CR3 are all satisfied with X = 2 and v = 2.

This is an example of a Case II scenario with non-degenerate CR bounds.

8.3 : For this example M = 5 and the array and source geometries are

as follows.
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Array: Sensors in a sparse grid per Figure 2-4A,

Sources: Sources SC1, SC2, SC3, SC4, SC5 clustered around broadside as in

Figure 8-1.

Paralleling the arguments of Example 8.1, Conditions C1-C3 are all satisfied

with m = 2, and Conditions CR1-CR3 are all satisfied with X = 3 and v = 1.

This is an example of a Case III scenario with non-degenerate CR bounds.

Example 8.4 : For this example M = 6 and the array and source geometries are

as follows.

Array: Sensors in a sparse grid per Figure 2-4A,

Sources: Sources SC1-SC6 clustered around broadside as in Figure 8-1.

Paralleling the arguments of Example 8.1, Conditions C1-C3 are all satisfied

with m = 3, and Conditions CR1-CR3 are all satisfied with X = 4 and v = 0.

This is another example of a Case I scenario with non-degenerate CR bounds.
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Chapter 9

Cramer-Rao Bounds: New

Multi-D Results

The principal results of this chapter are simple expressions for the multi-D CR bound

(8.28), valid for the case of M closely spaced sources. The expressions make ex-

plicit the individual contributions of scenario parameters such as maximum source

separation 6w, source configuration, source powers and correlations, and sensor array

geometry. These results can be regarded as extensions of those of Lee [11] to the

multi-D case.

It is shown for typical multi-D scenarios that the expression for BC for small w

is

Be = (6w)-2(x-')IK + C (w - 2(x-l )+ l) (9.1)

where X is the integer that satisfies (8.61) for scenarios which satisfy Conditions C1-

C3 and CR1-CR3, and matrix Kx is identified in Section 9.4. The parameter X

determines the sensitivity of the bound to the maximum source spacing w for closely

spaced sources. Matrix K x is constant with w and depends upon the normalized

source configuration, the array geometry and cross-power matrix P. Expressions for

Kx are identified in the following sections for each Case I, II and III defined in Section

8.5, with the general properties listed in Table 9.1.
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Table 9.1: Properties of (9.1) for Cases I-III

Case X Rank{Kx}
I m + 1 full
II m full
III m + 1 partial

The corresponding bound on the variance of wij, the estimate of the ith component

of the jth source parameter vector -j, is identified to be

1 b
Var {i} > N SNR 2( - l) + O(W-2(X-1)+) (9.2)

for small 6w, where SNRj denotes the signal-to-noise ratio for the jth source, and bij

is constant with w and is identified in Section 9.4.1. In the case that 1Kx is not full

rank (Case III), we identify "preferred" coordinate directions for which the leading

term of (9.2) vanishes, and show that along those coordinates Var {wij} has the more

favorable (smaller) 6W- 2(x- 2) dependence for small 6w.

In order to identify the small w behavior of Bc, we begin with the prior expres-

sions (8.28)-(8.32). Since the matrix P+ in (8.28) is constant, the w dependence of

Be has its origins in the w dependence of the matrix H. Thus this chapter first

identifies the (distinct) small 6w expressions for H in each Case I, II and III. These

expressions are then transformed into small w expressions for Bc l, and finally for

Bc.

The chapter is organized as follows. Section 9.1 identifies explicit small w ex-

pressions for matrix H in each Case I, II and III for scenarios that satisfy the non-

degenerate conditions C1-C3 and CR1-CR3. Section 9.2 then develops explicit

small 6w expressions that identify B-1 in each of the three cases. Finally Section 9.3

derives small w expressions for BC in each of the three cases. A summary of CR

bound results is presented in Section 9.4, including expressions (9.1) and (9.2), and a

characterization of the CR bound along preferred frequency coordinates. Illustrative

simulation examples are presented in Section 9.5.
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9.1 Small w Behavior of H

The 6w dependence of Bc has its origins in the Sw dependence of matrix H. To

clarify the 6w dependence of H, we rewrite (8.29) as follows

H = Z(Sw)hZ(SW) (9.3)

where

Z(w) [I - A(A A)_Ah] [D(W) .. , * ( M)] (9.4)

with

Dr a - -aa(w), . .w)] (9.5)

The factor [I - A(AhA)-'Ah] is a projection matrix onto columns of W x M

matrix A, and hence 1) has constant non-zero rank W - M for all 6w # 0 from

Assumptions Al, A3, and 2) has unity non-zero eigenvalues for all 6w. Therefore,

[I - A(AhA)-'Ah] does not approach zero as w -, O. Similarly the typical column

di(Wj) of D(j) approaches the constant vector di(- 0) as Sw -, 0. However, numerical

examples show that the product (9.4) is such that Z(Sw) - 0 as 6w -+ 0. Conse-

quently, the essential properties of Z(Sw) and, therefore of H, for Sw - 0 derive from

the interaction of the factors [I - A(AhA)-lAh] and D(3j).

To clarify the small w behavior of H, it is desirable to obtain appropriate

small w characterizations of [I - A(AhA)-lAh] and bD(j), and then of the product

[I - A(AhA)-'Ah] D(wj). Such characterizations are developed below.
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9.1.1 Small w Behavior of [I - A(AhA)-IAh]

Subject to Conditions C1-C3, prior thesis results show that

[I - A(AhA)-lAh] = [I- [Ao, , Am-1, AmrmP[r ,...,rhl]

[A0,.. Am 1, AmrmP[r ..,th ] + + 0(6w)

= [I- AA+] + 0(6w) (9.6)

(see Corollary 5.3a with the specialization H = I), where Ap and r, are as in (8.44)

and (8.47), and where we define

A - [A, , A_ 1, AmTm] (9.7)

Tm- mp,,...,h ] h h)+ hm X m (9.8)Tm~ rmPr0,...,rM_,l(rmP t0,...,_ 

The second equality in (9.6) is a consequence of the equality of the column spaces of

AmrmP[r ... rh _ and of AmrP r o.. ._m,(rP[r0,...h ]_)+ .

For convenience, we define

k

n{o...k} - np (9.9)
p=O

As a consequence of Condition C1, all the column spaces of submatrices Ao, *--

Am-1 of A are linearly independent, and make a rank contribution of n{o,...m-l to

(9.7). As a consequence of Condition C3, the final matrix AmTm contributes ad-

ditional independent columns to complete the column space of A. The role of the

post-factor Tm of Am in (9.7) is to select a subspace of that defined by the columns

of Am to produce the result

Rank{A} = M (9.10)

As a consequence of Condition C2, the columns of matrices Fh,- - , _
1 are

linearly independent, and thus the (M x M) nullspace projection Prh,...,rh_] has
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M - f{o,...m-)} Since Pr0,.. ,r _l] appears as a factor in (9.8), Tm can have rank at

most M - i,...m-}. As argued above, AmTm must have rank at least M -n{,.._l}-

Therefore it must be that

Rank{Tm} = M - ,-...m-1} (9.11)

From (9.8) it is clear that Tm is defined by q', · · ,7 qm and, therefore, by the relative

geometry of the sources. We note specifically that projection Tm is independent of

Sw or of the sensor array geometry.

9.1.2 Small 6w Behavior of [I - A(AhA)-1Ah] b(j)

The small w behavior of D(cwj) is described by the Taylor series (8.49), for conve-

nience restated here,

00

Db(wj) = Sw P-1 ApP(qj) W x (9.12)
p=O

where p(q;) is defined in (8.50).

It is evident that the pre-factor [I - A(AhA)-'Ah] in (9.4) acts to annihilate all

components of the columns of D( j) which lie in the subspace defined by the columns

of A; the residual matrix then specifies the behavior of Z(Sw) and, therefore, of H.

Therefore it is desirable to decompose D(-j) as

/D(j) = A: + F() (9.13)

where matrix p specifies a linear interpolation of the columns of A, and matrix F(lj)

is the interpolation residual. Pre-multiplication of (9.13) by [I - A(AhA)-lAh] shows

that

[I - A(AhA)-1Ah] D(j) = [I- A(AhA)-IAh] F(j) (9.14)

regardless of the choice of matrix ,. Representation (9.13) facilitates analysis if matrix
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/3 is selected to clarify the small 6w properties of the product [I - A(AhA)-' A h] P(j).

It is convenient to express the residual matrix F(wj) in terms of the augmented

matrix --j defined in (8.51). Specifically

kF() = b(wj)-A#

1 [6w () , A]
_ w Y" -sop 1 (9.15)

. Since matrix -j has Taylor series (8.52) in 6w, the residual matrix F(wj) has series

expansion in sw of the form

oo

F0W:) = w6P-1Ap [(q) , rp] ( I W x D (9.16)
p=0

-6w J

Note that decomposition (9.16) may or may not be a Taylor series, depending on how

f3 depends on Sw.

As Sw -+ 0, reference to (9.6) shows that the dominant term of [I - A(AhA)-lAh

in (9.14) acts to annihilate the components of the columns of F(j) which lie in the

subspace defined by the columns of A. Reference to (9.16) shows that indeed the

p = 0 ... m - 1 series terms of F(Wj) are entirely contained in the space spanned by

the columns of A, as are the components of the p = m series term that are spanned

by the columns of AmTm. Consequently, it is desirable to select matrix ,B so that

the dominant components of the residual matrix F(-j) for small w are linearly

independent from the (doomed for small w) components which lie in the column

space of A.

To obtain a residual with a linearly independent dominant term, we select / to

annihilate entirely the p = 0,.. m - 1 terms of (9.16), and also annihilate the AmTm
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component of the p = m term. Specifically, a "desirable" P would satisfy

O=

/o(3)

,Pq (j)

Tm m( i)

[(qj), r]

r 0

rm-i

, Tmrm

-ow3
-sbWO 

[

I
-swO I

(9.17)

where we define the shorthand

r A

F(q 

F0

rm-1

Tmrm

fo( )

Tml(q')

Tmm(q)

nf{O,...m} x M

ni{o,...m} X D

(9.18)

(9.19)

As a consequence of Conditions C2 and C3, matrix F has full column rank MA. The

projection onto the columns of r is of the form

rr+ I{o,.. m-l} x {o
0

,.. , _l} 0

o T ]
(9.20)

since the projection identified in (9.20) is a pre-factor of r in (9.18) and, from (9.11),

is of rank M equal to that of r.

Therefore we select a "desirable" P to be

(9.21)
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Straightforward substitution with use of (9.20) shows that (9.21) satisfies (9.17).

Substitution of (9.21) in (9.16) results in

00

F( ) = 8WP-A, [PP(q) rp]
P=O

0= 0wP-App(Qj) (9.22)
p=m

where we define the shorthand

() [(qj), r [] qf I- (9.23)

-r+(q)

Note that 1,p(q) is real, and constant with 6w, so that (9.22) is a Taylor series in Sw.

From (9.17), we see that

P(qi) = 0 p = 0,-..m-1 (9.24)

TmIm(qi) = (9.25)

To clarify further analysis of the product [I- A(AhA)-lAh] F(j) and conse-

quently, of matrix H, for the small w, the following subsections address each Case

I, II, and III individually.

9.1.3 Small w Expressions for H in Case I

As defined in Section 8.5, Case I is the "full-shell" case for which there are no vacancies

in the mth shell (v = 0), that is

n{O,...,m} = M (9.26)

We consider scenarios with non-degenerate CR bounds for which conditions C1-C3

and CR1-CR3 are satisfied.
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Reference to (9.26), (9.8) and (9.11) shows that in Case I, projection Tm has full

rank and hence

T =I (9.27)

Therefore. the columns of matrix A in (9.7) span the entire column space of Am.

Specifically, we have

A = A

where

A [Ao, Al o ., Ai, Am]

Furthermore, use of (9.27) in (9.25) shows that for Case I

m(.(j) = 0

Therefore the p = m term of Taylor series (9.22) of P(Z,) is zero for Case I, as are

the p = 0... m - 1 terms from (9.24). Thus the leading (possibly) non-zero term of

(9.22) is identified as

= 6WmAm+lI'm+l(qj) + O(Sm+l)

Substitution of (9.31), (9.6) and (9.28) in (9.14) gives

[I - A(AhA)- 'lAh] b(j)
= [I- A(AhA)-'Ah] F(Lj)

= { [I - AA+] + o(9w)} {wmAm+lI+l() + O(6wm+l)}

-= w mEn+l/Jm+l(q) + O(6wm +' )

(9.31)

(9.32)
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where we define the constant matrix

em+ [- AA+] Am+, (9.33)

and from (9.23) we have

%1 m+l(q) - [tm+l(j), m+i] I 1 (9.34)

(Note that r+ may be specialized to r-1 for Case I, since reference to (9.18) and

(9.26) shows that r is square, and full rank subject to Conditions C2, C3.

Equation (9.32) together with (9.33) and (9.34), identify the dominant term of

[I - A(AhA)-lAh] )D( j ) for small 5w in Case I.

The question arises as to whether the identified dominant term of (9.32) consti-

tutes a complete first order representation of the entire span of (9.32). For scenarios

with non-degenerate CR bounds, the leading term of (9.32) is indeed full rank, as

shown by the following result.

Lemma 9.1 : In Case I with v = 0, if Conditions C1-C3 and CR1-CR3 are

satisfied, then the leading term of (9.32) has full column rank. That is

Rank {Elm+iml(+qi)} - D (9.35)

for j = 1 .. M.

Proof: See Appendix I.

Therefore subject to Conditions C1-C3, CR1-CR3, a complete first order charac-

terization of the product [I - A(AhA)-'Ah] (j) for Case I is given by (9.32) with

(9.33) and (9.34).

Substitution of (9.32) in (9.4) gives

Z(6w) = 6wMEm+l [m+i(q,),'" m+1( M)] + O(6w" + ) (9.36)
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and then (9.3) yields

H = SW2 mH2(m+l) + (6Sw2m+l) (9.37)

where

H2(m+l) = [[m (**)," * +em+l) [~m+l( ) ... ' m+(qM)] (9.38)

Eqs. (9.37), (9.38), with (9.33), (9.34), characterize the small 5w behavior of H

for Case I in scenarios with non-degenerate CR bounds. Note that H2(m+l) may not

be full rank. Nevertheless, analysis in Section 9.2 will show that H2(m+l) and the

result of Lemma 9.1 are sufficient to identify a full rank first order representation of

B 1' for small w in Case I.

9.1.4 Small bw Expressions for H in Case II

Next we address Case II of Section 8.5 for which there are at least D vacancies in the

mth shell (v > V), that is

fi(O,...,m}) M + (9.39)

We again consider scenarios with non-degenerate CR bounds, for which conditions

C1-C3 and CR1-CR3 are satisfied.

Reference to (9.39), (9.8) and (9.11) shows that in Case II, projection Tm has

only partial rank. Therefore columns of matrix A may not span the entire column

space of Am. Consequently, unlike Case I, it is possible that the dominant term of

[I - A(AhA)-lAh] in (9.14) does not entirely annihilate the p = m term of F( j) in

(9.22).

Directly from (9.22) we identify the (possibly) non-zero leading term as

F(cj) = Swm-AmIm(qJ) + O(w m ) (9.40)
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Substitution of (9.40) and (9.6) in (9.14) gives

[I - A(AhA)-lAh] b(j) = [I - A(AhA)-lAh] (j)

= { [I - AA+] + O(Sw)) {m m()+ O(m)

= bwm-l;mMX(qj) + (wm) (9.41)

where we define the constant matrix

Em [I AA+]Am (9.42)

and from (9.23) we have

(9.43)

Equation (9.41) together with (9.42) and (9.43) identify a candidate dominant

term of [I - A(AhA)-lAh] D (we;) for small 6w in Case II.

The identified term of (9.41) is non-zero, and in fact is full rank, for Case II

scenarios with non-degenerate CR bounds, as shown by the following result.

Lemma 9.2 : In Case II with v > D, if Conditions C1-C3 and CR1-CR3 are

satisfied, then the leading term of (9.41) has full column rank. That is,

Rank {Emm()) = D (9.44)

for j = 1.. M.

Proof: See Appendix J.

Therefore subject to Conditions C1-C3, CR1-CR3, a complete first order charac-

terization of the product [I - A(AhA)-lA h] D(Cj ) for Case II is given by (9.41) with

(9.42) and (9.43).
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Substitution of (9.41) in (9.4) gives

Z(Sw) = Swm-E [m(q)," ... m(qM)] + 0(6Sm) (9.45)

and then (9.3) yields

H = 6w2 (m-l)H2m + O(w2(m-l)+l) (9.46)

where

H2m = [ m(cM),* m½q)Ihemm [rnA)r"(q m()] (9.47)

Eqs. (9.46), (9.47), with (9.42), (9.43), characterize the small w behavior of H

for Case II in scenarios with non-degenerate CR bounds. Again note that H2m may

not be full rank, but that analysis will show that H2m and the result of Lemma 9.2

are sufficient to identify a full rank first order representation of Bc' for small 6w in

Case II.

9.1.5 Small 6w Expressions for H in Case III

Finally we consider Case III, for which there are some, but fewer than V, vacancies

in the mth shell (O < M < D), that is

{o,...,m} < M + D (9.48)

We again consider scenarios with non-degenerate CR bounds, for which conditions

C1-C3 and CR1-CR3 are satisfied.

Reference to (9.48), (9.8) and (9.11) shows that in Case III, as in Case II, projec-

tion Tm has only partial rank. Therefore columns of matrix A may not span the entire

column space of Am. Consequently, as in Case II, it is possible that the dominant

term of [I - A(AhA)-'Ah] in (9.14) does not entirely annihilate the p = m term of

F(j) in (9.22).
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Directly from (9.22) we identify the (possibly) non-zero leading term as

P(j) = wm-lAmm() + (6wm)

Substitution of (9.49) and (9.6) in (9.14) gives

[I - A(AhA)-lAh] b(pj) = [I- A(AhA)-lAh] F(tj)

= {[I -AA+] + 0(6w)} {sWm-1Amm(qj) + o(6wm)}

= 6wm lEm1m(qj) + 0(8w m ) (9.50)

where E,&, 1,m(qj) are as in (9.42), (9.43).

Case III differs from Case I and II in that the identified term of (9.50) is not

full rank D. Specifically E,mIm(q) is non-zero, but has only partial rank v (v < ))

for Case III scenarios for which Conditions C1-C3 and CR1-CR3 are satisfied, as

shown by the following.

Lemma 9.3: In Case III with 0 < v < D, if Conditions C1-C3 and CR1-CR3

are satisfied, then

Rank {Emm(qj)} = Rank {Em} = Rank { m(q)} = (9.51)

for j = 1 ... M, with the property

(9.52)

Proof: See Appendix K.

Consideration of only the single leading term of (9.22) is thus insufficient to iden-

tify a full rank first order representation of [I - A(AhA)-lAh] D(j) in Case III.

Accordingly, from (9.22) we identify two leading terms as

Pp ) >= 6WmLoA-ilA(e-j) + bWm Am+Pi'm+i(q) + oG8wm+l)
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Substitution of (9.53) in (9.14) gives

[I- A(AhA)-lAh] i() = 6wm-lEm(6w)Im(wq)

+Swm [I - A(AhA)-'Ah] Am++,,,, l(q)

+0(6wm+l) (9.54)

where making use of (9.52) we define

Em (6) - [I-A(A A)-' A A(]AmA)(qA J ),,(q ) +

= [I- A(AhA)-'Ah] AmE+Em,

= Em + 0(6w) (9.55)

Since Em is a factor of Em(w), the rank of Em(w) is at most that of E,. For small

6w, the rank of E,(6w) is at least that of its leading term mE, since the 0(w) term

cannot reduce the rank of the constant term for sufficiently small 6w. It follows that

for sufficiently small ow,

Rank{Em(6w)} = Rank{Em} (9.56)

To facilitate analysis, we rearrange expression (9.54) to be the sum of orthogonal

projections onto the column space, and column nullspace, of the leading term factor

Cm(5w). That is, we express (9.54) as

[I- A(AhA)-lAh] b(pj)

= (Cm(6w)Cm(6w)+ + [I-Em(6w)(6w)+])

* (6wm--1m(6w)lm(-qj) +6w [I - A(AhA)-IAh] Am+lm+l(q-) + O(Swm+l))

= wm1 Zm(qj) + SwmZ+ 1(j) (9.57)
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where we define

Zm() Em(6w)Em(6w) [m(6w)+ IE w)m(q) + 0(6w)]

2.m+(qj) - [I-E m(6w)em(6w)+]

[[I -A(AhA)-lAh] Am+lim+(q) + 0(6w)]

Noting from (9.55) and (9.56) that

= ,,,m + 0(6w)

and that

[I - 8Em,] [I - AA+] Am,+

- {[i'- A+ - [-,A+]

= [I- AA] Am+I

= m+1

Am (i -AA+] Am) Am+i

(9.61)

we identify the dominant terms of (9.58), (9.59) for small 6w as

Zm(qi)

Zm+I (q,)

= eMm(q) + (6w)

= Em+l Tim+ () + 0(6w)

From Lemma 9.3, the dominant term of Zm(qj) satisfies

Rank{Emm(qi)} = v

for all j = 1 ... M, and therefore that the rank of Zm(qij) is at least v for sufficiently

small 6w. From (9.56) and (9.51), we see that the rank of factor Em(6w) of Zm(qj) in

(9.58) is v. Therefore it must be that

Rank{Z,(qi)} = v (9.65)
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for sufficiently small w, and all j = 1 ... M.

Substitution of (9.54) in (9.4) yields

Z(6w) = wm-lz + wmZ+

where

Zm_ [(~), Zm (.. ()]
= em(6w)em(S) {em(6w) ['m(qj),- * * m(qM)] + (6Sw)}

(9.66)

(9.67)

Zml = [qmMl l ) **m+l(qM)]

= [I- m(6sw)Sm(6w)+]

{[I - A(AhA)-'A1h Am+ [l+r(ql)," I*m+(qM)] + (6w)} (9.68)

Finally, substitution of (9.66) in (9.3) and use of the orthogonality of the columns

of Zm and Zm+l gives

H = 6w2(m-l)H2m(6w) + &w2mH2(m+l)(Sw) (9.69)

where

H2m(bS) = ZZm

H 2 (m+l) (SwL) = Z+1 Zm+l

and for small Sw

= [X(qj), .-- m(M)] E em [4m(qj), ... 'm(fM)]
+ 0(w)

[m+,(i(), ... - m+,(M)] h E +1Em+ [m+i(¢,).

+ O(6w)

(9.71)

... Cim+l(qM)]

(9.72)

with Em, im(q7j) as in (9.42), (9.43), and em+,, Iim+(qij) as in (9.33), (9.34).
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Eqs. (9.69)-(9.72) characterize the small 6w behavior of H for Case III in scenarios

with non-degenerate CR bounds. We note that by suitably specializing Eqs. (9.69)-

(9.72), we can obtain Eqs. (9.37), (9.38) for Case I and Eqs. (9.46), (9.47) for Case

II. Analysis in the subsequent Sections shows that Eqs. (9.69)-(9.72), together with

the rank properties (9.64) and (9.65), are sufficient to identify a complete small w

representation of Bc in Case III.

9.2 Small w Behavior of BC1

This section exploits the representations of H developed in Section 9.1 to identify

small 6w representations for the inverse of the CR bound matrix Be for each Case I,

II and III. The Bc 1 expressions serve as the basis for identifying expressions for Bc

in Section 9.3.

Reference to (8.28) shows that

BC Re H P (9.73)

where from (9.3)

H = Z(Sw)hZ(Sw) (9.74)

and

Z(6w) = [I - A(AhA)-'Ah] [(w 1), , (COM)] (9.75)

For each Case I, II and III, the small w behavior of H has been identified respec-

tively in (9.37), (9.46) and (9.69), and that of [I - A(AhA)-lAh] D(-4j) (j = 1 ... M)

respectively in (9.32), (9.41) and (9.54).

To identify a complete small w representation of B- 1 suitable for computation

B e , it is desirable to identify the contribution to the rank of BC1 of series terms of

[I - A(AhA)-AhI b(qj) of either full or partial rank. To this end, we develop the
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following two enabling results.

Lemma 9.4 : Let G be a MD x MD matrix of the form

G = Re{([Il, ... , M [, .. I , M]) (9.76)

If Dj has full rank (= VD) for j = 1..- M, and P is Hermitian positive definite,

then G is Hermitian positive definite. That is

Rank{G} = MD

Proof: See Appendix L.

If each j has only partial rank, we obtain the following parallel result.

Lemma 9.5 : Let

G = Re{([(lI, ... M], Mh [l, -- X IM]) P+} (9.78)

If j has partial rank r (< D) for each j = 1 ... M, and P is Hermitian positive

definite, then G is Hermitian non-negative definite with

Rank{G} = M.r (9.79)

Proof: See Appendix M.

The following sections identify a complete first order representation of BC1 for

each of Cases I, II and III.

9.2.1 Small w Behavior of BE1 in Case I

Substitution of (9.37) in (9.73) gives

Bcd = S2m 2 Re{H2(m+l) 0 P} + (w 2m+l)

= bW2m 2N G2(m+l) + O((w 2m+l)
Or2

(9.80)
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where we define

G2(m+l) Re {H2(m+l) ) P}

Re {([@m+i(qi) * *m+1(M)]£mi+1

Em+ ['m+I(qj),... m+l(qM)]) P} (9.81)

where use is made of (9.38) to expand H2(m+l). Use of the block constant property

of P+, and of the real property of k(q;j) (j = 1,... M), results in

G2(m+l) = tm+lRe { ([I * I]h E+lm+1 [I, **, I]) 0 P} Im+l (9.82)

where we define the real, constant, block diagonal matrix

lm+l - Block Diag. {'tm+l(qc), - ',m+l(~M)} (9.83)

To further simplify (9.82), the Hadamard product with the enlarged matrix

P+ may be replaced by the Kronecker product 0 with the non-enlarged cross-power

matrix p t, with the result

G2(m+l) = m+Re [pt () h +lem+l] ,m+1 (9.84)

Matrix G2(m+l) is Hermitian positive definite with

Rank{G2 (m+l)} = M' D (9.85)

as seen by application of Lemma 9.4 to (9.81) with identifications

G = G2(m+l)

Dj = Em+l m+(' M) (9.86)

and use of the full rank (= D) property of Em+1 m+(q'M) in Case I identified in

Lemma 9.1.

184



Therefore, the identified leading term of (9.80) is a complete small 6w representa-

tion of BC 1 for Case I.

9.2.2 Small w Behavior of B- 1 in Case II

Identification of the behavior of BC1 for Case II parallels that of Section 9.2.1 for

Case I. For Case II, substitution of (9.46) in (9.73) gives

W2(m-) 2N
o2

*Re {H2 0+ + O(6w2(m- 1)+1)

= 6W2(m-1) 2N G2m + O(85w2 (m - l) +I)U2 (9.87)

Using (9.47) to expand H2m, and by rearrangement parallel to that of (9.81)-(9.84),

we define

G2 m Re H2m ( P+ }

= mRe [t E ] m

with the real, constant, block diagonal matrix

(9.88)

, A Block Diag. {km(q'), ... ''(qM)} (9.89)

Matrix G2 m is Hermitian positive definite with

Rank{G 2 m } =M .D (9.90)

as seen by application of Lemma 9.4 with identifications

G = G2m

'j = Emm(qj) (9.91)

and use of the full rank (= V) property of Em,'m(q-A) in Case II identified in Lemma

9.2.
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Therefore, the identified leading term of (9.87) is a complete small 6w representa-

tion of B- 1 for Case II.

9.2.3 Small 6w Behavior of B- 1 in Case III

Identification of the small w behavior of B- 1 for Case III scenarios is complicated

by the 6w dependence of the small 6w representation of H in (9.69).

Substitution of (9.69) in (9.73) gives

B- 1= 6W2(m- )2 N . Re (H2M(6w) + 6W2H2 (+l)(6)) O P.}C . 2

- 6W2(m-1)§ [G2m(6W) + 6W2G2(m+l)(6W)]

where using (9.70) we define

G2m (W) Re {H2 m (6w)O P }

= Re {(ZZm() +

G2(m+l) (W) Re {H2 (m+l)() ( 

= Re {(Zm+Zm+li) }

(9.92)

(9.93)

(9.94)

For small 6w, we identify the dominant terms of (9.93), (9.94) by a development

parallel to that of (9.84), (9.88) to be

G2m(6w) =

G2(m+l)(6W) =

G2m + O(6w)

G2(m+l) + O(Sw)

where G2 m is as in (9.88) and G2(m+l) is as in (9.84).

Matrix G2m(Sw) and its leading constant term G2m are Hermitian non-negative

with equal but partial rank Mv for small 6w in Case III, with

Rank{G2m(6w)} = Rank{G2m} = M.v (9.97)
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for small 6w, as seen by application of Lemma 9.5 first with identifications

G = G2m(6w)

0 = Zm(qj (9.98)

and use of the rank v property of Zm() for small w identified in (9.65), and then

with identifications

G = G2m

"Dj = Emk(qj) (9 99)

and use of the rank v property of EmIk(q) identified in Lemma 9.3.

Finally, matrix B-1 is Hermitian positive definite with

Rank{Bc'} = M .D (9.100)

for small 6w in scenarios with non-degenerate CR bounds, as seen by application of

Lemma 9.4 with identifications

G = G2m(W) + W 2G2(m+l)(6W)

= Zm(q) +sW2 Zm+l(qj)

= [I- A(AhA)-Ah] D( j ) (9.101)

since [I - A(AhA)-'A] D(,) is full rank (= D) by the linear independence assump-

tion A6 of Chapter 8.

The small 6w representation of B'- in (9.92)-(9.96), together with foregoing rank

properties, are sufficient to identify a complete small 6w representation of Bc for Case

III, as shown in the next section.
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9.3 Expressions for BC

This section transforms the small 6w expressions for B51 identified in the previous

section for each Case I, II and III into small 6w expressions for Bc.

To elucidate the inverse of B l, we make use of the following inverse and pseudo-

inverse properties.

PI1. Let matrix X(6w) be of the form

X(6w) = Xo + O(6w) (9.102)

where

Rank{X(6w)} = Rank{Xo} (9.103)

for sufficiently small 6w. It is well known [21] that

X(w)+ = X+ + 0(6w) (9.104)

and if Xo is full rank then (9.104) specializes to

X(6w)- 1 = Xo- + 0(w) (9.105)

PI2. Let X(6w) be Hermitian non-negative definite and of the form (9.102), with

rank property (9.103), but not full rank. Let G(6w) be Hermitian positive

definite (thus full rank) of the form

G(6w) = X(6w) + w 2Y(&w) (9.106)

where Y(6w) is Hermitian non-negative definite of the form

Y(6w) = Yo + 0(6w) (9.107)

188



It is shown in Appendix N that the inverse of G(6w) in (9.106) is of the form

G(6w)-' = w-2 W(6w)+

+ [ - W(W)+Y(6w)] X(6w)+ [I-Y(6w)W(6w)+]

+ O(6w2) (9.108)

where

W(Sw) = P[x(6w)]Y(w)P[x(a)] (9.109)

P[x(w)] = I - X(6w)X(6w) + (9.110)

The foregoing inverse properties are applied in the following to identify the small

Sw behavior of BC in each Case I, II and III.

9.3.1 Small w Behavior of BC in Case I

We rearrange the Case I expression (9.80) for B-1 to the form

BC-1 = w 2m [2NG 2 (m+l) + O(6w')] (9.111)

where G2(m+l) is the constant matrix (9.84), full rank by (9.85). Clearly the bracketed

expression in (9.111) is of the form (9.102), and satisfies rank property (9.103) with

full rank. Accordingly, the inverse of the bracketed expression in (9.111) is of the

form (9.105), and the inverse of (9.111) is

Bc = 8W -2m G-1 + O(a ~ -2m+1)
2N 2("m+l) +(S m+l )

= 6w-2m [wtm+,Re{Pt 0 6m+lm+1} m+]- + (6w-m+) (9.112)

where use is made of expansion (9.84) of G2(m+l). Expression (9.112) provides a

complete first order representation of Bc for Case I for small 6w, since the dominant

term is full rank.
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9.3.2 Small w Behavior of BC in Case II

A parallel argument elucidates the behavior of Bc for Case II. We rearrange expression

(9.87) for BC1 for Case II to the form

B = w2(m') [ G2m + 0(6w')] (9.113)

where G2m is the constant matrix (9.88), full rank by (9.90). Clearly the bracketed

expression in (9.113) is of the form (9.102), and satisfies rank property (9.103) with

full rank. Accordingly, the inverse of (9.113) is

B = 2(m-) G + O(&W-2(m-)+l)

2Nm [4tRe {Pt ® ¢lEm} 'm] + O(W-2(m-)+ ) (9.114)
= Sw-2( ' )1N

where use is made of expansion (9.88) of G2m. Expression (9.114) provides a complete

first order representation of Bc for Case II for small w, since the dominant term is

full rank.

9.3.3 Small 6w Behavior of BC in Case III

The structure of Bc for small w is complicated in Case III by the non-full rank

nature of the leading term of Bc'. We recall expression (9.92) for BC' for Case III

to be

= 2(ml)2N [G2m(6w) + 6w2G2(m+l)(S)] (9.115)

where G2m(6w), G2(,+l)(6w) are the matrices (9.93), (9.94) non-constant with w.

Clearly the bracketed expression of (9.115) is of the form (9.106) and is Hermitian

positive definite by (9.100). The term G2m(Sw) as in (9.95) is of the form (9.102), is

Hermitian non-negative definite and satisfies rank property (9.103) with partial rank

Mv from (9.97).

Accordingly, the inverse of the bracketed expression in (9.115) is of the form
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(9.108) and therefore

B = 6 w-2(m-1)2N [6W-2 W(Nw)+

+ [I - W(w)+G 2(m+l)(W)] G2m(6sw)+ [I - G2(m+l)(Sw) W(bw)+]

(9.116)+ O(6w2)]

where

W(Sw) = PG2m( 6w)]G2(m+l) (W)P[G2m(6W)

P[G2m ()] = I - G2m(Sw)G2m(Sw)+

(9.117)

(9.118)

To identify the dominant term of (9.116) for small w, we note from (9.95), (9.97),

and (9.104) that

G2m (Sw)

G2m (w)+

= G2m + O(W)

= G+ + O(w) (9.119)

and therefore

P[G2 (w)l = - G2 ,G+ + (W) (9.120)

From (9.88) ,m is the leading term of G2m. By construction (9.89) and Lemma

9.3, em has the same rank My as G2m, hence the projection onto the column space

of G2 m is simply

G 2 mG+m = t(' t )+ = m= ,(~, ,i+,i, (9.121)

Using (9.121), we simplify (9.120) to

PG 2 (6w) I + Jm + m o(6w)

= P[,] + O(8w) (9.122)
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Substitution of (9.122), (9.96) and (9.88) in (9.117) identifies the constant domi-

nant term of W(6w) for small 6w as

W(So) Pt't +1Re {pt 0 Eh+iem+1} Im+lP[, ] + 0(8w)=i +M 

Using the block diagonal and real properties of i'm+l and P[',t ], we express

P[l t +lRe {Pt Sh+lEm+l} m+lP[il

Re{ ['m+1 q)P[m() t ] m...+(M)m(iM)t] h

and therefore[+)P Im +I (qM),]] h h

and therefore

(9.123)

(9.124)

Rank{P[t1, ]t+lRe {Pt 0 E+l Em+1} 'I'm+l P[ijl } = M(D- v)

as seen by application of Lemma 9.5 with identifications

G = P[s ]rt +lRe {P t 0 £+m+i} m+,iPt

= £m+1 m+l ) n(W3) m

(9.125)

(9.126)

and use of the following result:

Lemma 9.6: In Case III with 0 < v < D, if Conditions C1-C3 and CR1-CR3

are satisfied, then

Rank {Cm,+1 'm+l (q) P[m(¢)] } = D-v (9.127)

for j = 1... M.

Proof: See Appendix 0.

Since the factor P[G2m(6w)] of W(6w) in (9.117) also has rank M(D - v) by (9.97),
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it follows from (9.125) that

Rank{W(6w)} = M( D- v) (9.128)

for sufficiently small 6w.

.Reference to (9.125) and (9.128) shows that W(6w) satisfies rank property (9.103)

with rank M(D - v) and therefore the pseudo-inverse is of the form (9.104), namely

W (SW) += h 4- O(6w) (9.129)W(Sw) + [- [ ]I+iRe {P0 ®er+iEm+i} ,m+lP[~t]] + (8w) (9.129)

Substitution in (9.116) shows that the dominant term of Bo for small Sw is

Be - -6w2m N [Pt +lR e {pt h +lEm+l} m+lP [t]] + (w 2m+l )

(9.130)

In contrast to Cases I and II, the dominant term in expression (9.130) of BC for

Case III is not full rank. Specifically, the leading term of (9.130) which identifies

the components of BC with a 6w - 2 m dependence for small 6w, is shown in (9.125)

to have only partial rank M(D - v). A complete small Sw representation of B is

provided by (9.116), which identifies additional components of BC with a (more fa-

vorable) Sw-2m+2 dependence for small w. The effect of these additional components

is addressed in Section 9.4.2.

9.4 Summary of Results

The expressions (9.112), (9.114), and (9.130) for Bc for small Sw can be compactly

expressed as follows

Bc = SW-2(X-)Ix + 0(6 - 2(x-l)+1) (9.131)
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where parameter X defined in (8.61) takes the values

X ={2+
m+1

Case II

Cases I and III

and the constant matrix K x is defined as

2N \ _11X-1 

where

I Cases I and II

i_ = I-+Vm+ CaseIII

The general

follows

expression (9.133) for Kx can be specialized for each of the cases as

0r2 (m+lRe [Pt ( E+lEm+l] m+l)-

KIX = a2 (t Re [Pt® Em] Am)-)

aN (P, ]t+lRe [Pt 0 ] +

Case I

Case II (9.135)

Case III

for k = m, m + 1, with

Em = [I-AA+] Am

em+l = [I - AA+] Am+

A = [A0 A, ... , Am1,_ AmTm]

A = [A0, Al, ... , Am_i, Am]

, = Block Diag. {iP(q), ,P(q2), * (qM)} p = m,m+ 1

We interpret the terms in (9.136)-(9.140) as follows. Matrix Em consists of the mth

order spatial derivatives of a(w) at 0o, less their projection onto the limiting column

space of A as Sw -- 0. Similarly, matrix Em+l consists of the (m + l)th order spatial
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derivatives of a(w) at 0, less their projection onto the column space spanned by all

the spatial derivatives of lower order. Note that the matrix m,,+i specializes to the

vector M used in the 1-D small Sw CR bound expressions (8.14)-(8.24) previously

developed by Lee [11].

To interpret p,(q), we express (9.23) as

IP(7) = P(q~ - rpr+(q-,)

q=qj

with vector function

p(q') [=2 ( - rpr+ (l)] (9.142)

where the vector -(q) is defined as

Ao(q)

Tm-m(q)

(9.143)

The vector function bp(q has zeros at each of the normalized source directions q' = q-,

j = 1 ... M, since -(qi) is simply the jth column F so that

r+ (q) = Uj (9.144)

where uij is a vector of zeros except for element j which is 1.

Thus the jth matrix element p(q,() along the diagonal of Ulp consists of the partial

derivatives with respect to the elements of q' of vector function p(q) at the zero

crossing q' = qj. Note that the block diagonal matrix Ujp generalizes to multi-D

the diagonal matrix '1 used in the 1-D small w CR bound expressions (8.14)-(8.24)

previously developed by Lee [11]; recall that the jth scalar diagonal element ,'(qj) of
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fi' is the derivative of scalar polynomial +(q) at the zero crossing q = qj.

Given the above interpretations, we obtain the following insight on the small 6w

behavior of the CR bound. The bound BC will have a small norm (i.e. be favorable)

if

1. the Xth order partial derivatives of the generic arrival vector a(w) are well-

separated from the vector space spanned by the partial derivatives of lower

order (i.e. Ex has large norm), and

2. the scalar functions that make up the vector function ox(q) have steep slope at

the zero-crossings q= qj. (i.e. x%(q~) has large norm)

9.4.1 CR Bound on Var(wij)

The corresponding bound on the variance of Cwij, the estimate of the ith component

of the jh source parameter vector -j, is by definition given by the diagonal entries

of BC. For small 6w, we have from (9.131)

Var{ij} _ (Bc) = N. SNRj 6w2(Xi1) + O(Sw- 2(x-1)+l) (9.145)

where I = D(j - 1) + i and

dnt the ([pinlt oRe {pto E6} Pr 1 ) (9.146)

SNRj denotes the signal-to-noise ratio for the jth source,

SNR =(P)/ 2 (9.147)

and p denotes the matrix of (complex) signal correlation coefficients

p p 1/2pjD 1 / 2

PD = diag [(P)11,(P) 22, .. (P)MM (9.148)
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The result (9.145), (9.146) is quite useful in that it makes explicit tradeoffs among

scenario parameters such as frequency separations, signal powers and correlations, and

the sampling grid. Specifically these quantities are represented in (9.145), (9.146) as

follows

frequency separations. x 'x(q), x-l(qj), () - 2(x -1)

signal powers and correlations ~ p, SNRj

sampling grid H Ex

Thus, for example, it is immediately clear from (9.131) for a 2-dimensional scenario

with non-degenerate CR bounds, that reducing the frequency separation factor w by

a factor of 10 in a M = 3, (X = 2) signal scenario requires that the source powers be

increased by 2 (X - 1) 10dB = 20dB for an unbiased estimator to maintain the same

frequency standard deviation. Note that the same conditions require a 40dB SNR

increase in 1-D scenarios.

9.4.2 CR Bound in Preferred Directions

Expression (9.131) showed that for Case III scenarios the dominant term of Bc for

small 6w is w- 2(x-)KxI_ with X = m + 1. Matrix Km was found in (9.125) to

have only partial rank (= M(V - v)) for Case III scenarios for which 0 < v < D.

Consequently, in Case III scenarios, there exist coordinate directions for which the

coefficient bij of the w-2m term of the variance bound (9.145) vanishes, and for

which the small w CR bound is more favorable (smaller). This section identifies the

preferred directions and the dominant term of the CR bound in those directions.

In order to identify the CR bound in preferred directions, we note from (9.116),

(9.117) that

Q[G2m(6))iBcQ[G2m(6s) = 6W-2(m-1) 2 [G2m(Sw)+ + O(6w2)] (9.149)
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where projection

Q[G2m(6w)] = G 2m(Sw)G 2m(6w) + (9.150)

is orthogonal to W(6w).

Therefore the dominant term of (9.149) for small w is identified using (9.119),

(9.88) to be

Q[G2m,(6w)]BcQ[G 2m(6w)] = 6,-2(m-1) [G+ + ((wl)]

w-2(m-1) 2 [t Re {Pt ® EEm} ,m] +

+ O)(6w-2 (m-1)+l) (9.151)

Furthermore,

Q[G2m(6w)] = G2m(G2m)+ + 0(6W)

m= ,+~'m + 0(6w)

= Q[t] + o(w) (9.152)

where use is made of (9.121). Since Am has block diagonal structure, it follows that

the

Preferred Coordinate Directions at the jth source for small 6w are specified

by coordinate vectors i, that lie in the row space of Vm(Q).

The CR bound along preferred coordinate for small w is proportional to &w 2(m- l) =

bw2(x - 2) from (9.149).

A geometric interpretation of preferred coordinate directions in terms of emitter

configuration can be derived straightforwardly for 2-D scenarios. The results are

Geometric Interpretation of Preferred Directions in 2-D: For small w, the

preferred directions are normal to the unique (X- 1)th order polynomial curve

specified by the M source locations q-,.- q.
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Two simple examples of Case III scenarios are

1. M = 2 source 2-D scenario for which the preferred direction is normal to line

between through the two source locations specified by q'i, q2-

2. M = 5 source 2-D scenario with non-degenerate CR bounds for which the

preferred directions are normal to the unique conic section curve specified by

the q, ' * *q5.

The latter example is illustrated in the simulation examples in the following section.

The practical effect of preferred directions in Case III is that for these types of

multi-D scenarios, the resolution ability of any unbiased DF algorithm is likely to be

much more severely challenged in certain spectral directions than in others. In a 2-D

example with M = 5 sources in a circular configuration, it is likely to be much more

difficult to accurately estimate the tangential than the radial spectral parameter of

each source. Note that preferred directions do not arise in 1-D scenarios, for which

there is only one spectral coordinate.

9.5 CR Bound Examples

To illustrate the accuracy of the foregoing limiting theoretical expressions for direc-

tional CR bounds as w -- 0, we compare the small Sw representations to the exact

CR bounds for the 2-D direction finding scenarios of Examples 8.1-8.4.

Each example involves a planar array of W = 16 unit-gain, isotropic sensors, and

far-field sources clustered near to the array broadside.

We assume that the sources are correlated and equal power. The source cross-

correlation matrix p is taken to be of the form (5.39).

The exact CR bounds computed using (8.28) are compared to the asymptotic

values for small w predicted by the result (9.131) of our analysis in the following

numerical examples.

Example 9.1 : For this example M = 3 and the array and source geometries are

as follows.
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Array: Sensors in a sparse grid per Figure 2-4A,

Sources: Sources SC1, SC2, SC3 clustered around broadside in a triangular

configuration per Figure 8-1.

As shown in Example 8.1, this is a Case I scenario with non-degenerate CR

bounds. Consequently the directional variance CR bounds for small Sw may be

determined using (9.145).

Figure 9-1 shows the values of the CR bounds for parameter estimates along

the x and y spectral frequency axes for one of the sources, specifically SC1 in

Figure 8-1. The solid curves depict the exact CR bounds; the dashed lines

depict the asymptotic behavior predicted by Eq. (9.145). The horizontal scale

denotes spatial frequency separation w normalized by the array beamwidth

BW, so that unity on the horizontal scale of the graph corresponds to maximum

source separation of one beamwidth. The vertical scale depicts the value of the

normalized bound

N SNR1 (Bc) (9.153)

where (Bc)ll is as in (9.145).

Clearly the simplified asymptotic expressions capture the essence of the bounds

for emitter separation less than one beamwidth. As predicted, the CR bounds

exhibit a 6w-2 behavior for small 6w, with a slope of 20 dB/decade. Thus the

theoretical expressions accurately predict the CR bounds for small separations

w for this Case I scenario with non-degenerate CR bounds.

Example 9.2 : For this example M = 4 and the array and source geometries are

as follows.

Array: Sensors in a sparse grid per Figure 2-4A,

Sources: Sources SC1, SC2, SC3, SC4 clustered around broadside as in Figure

8-1.
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I 0T' = [
- P[ra,...,rh _jr'~ 0 ]

(M + D) x M

The columns of T are by construction linearly independent, and form a rank V

subspace of the nullspace of the columns of r(qj)h ... r _l(qj) since T satisfies·. mlq ) ,sicTsaife

[r(q)h, ... rt_l(qj)h] T

ro

ri

= 0

since the rows of rp, (p = 0... m - 1) are equal to

The columns of T' are by construction linearly

also lie in the nullspace of the columns of Fr(q)h,

[r;(p)h, ... r,()h ] T =

I
Pip,~ qj

]

(J.18)

rows of r.

independent from those of T and

... rm_,(-q)h, since r' satisfies

F 1

ri

rm-1

0

= 0

As a consequence of Conditions C2,

independent, and thus

(J.19)

the o ...ml} columns of roh, * * r_ are linearly

Rank {T'} = Rank {P[rh,...rh]] = M-ii{o..m-) (J.20)

Thus the columns of T and T' together span the rank M + D - {O...m-1} column

nullspace of Fr(i)h, ... r l,(q j)h that is

P[r(;)h. , (qj) h = [T , T'] [T , T']+(q0 -,r x (6f)hI] (J.21)
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-+ Ranki {Q[pA.A.,_lAmlTm] m(j) P[rI(j)h...r(j)h]} (J.12)

since Rank{X + Y} = Rank(X)+ Rank{Y} for matrices X, Y with orthogonal col-

umn spaces.

Using definition (J.6) of Tm we note that

Rank {P[Ao,.Am._]AmTm}

= Rank P[Ao..-A,rl (PmP[r(h..,r_-,])+ }

= Rank {P[Ao...A AmFmP[roh,...,rhl}

= M- n{o...m-1} (J.13)

since removal of the post-factor Y+ does not change the rank of the product XYY+

for any X, Y, and the last equality follows from (J.8). Consequently, the rank of

Q[P[Ao...A_,l]AmTm] is M - n{o...m-l}), and the second term in (J.12) is at most M -

n{o...m-1}. Rearrangement of (J.12) yields

Rank {emr(4q ) P[r;()h...r'_ (,)h]} > (M + D - no..m-}) - (M - o...m-1))

= (J.14)

As a consequence of Condition CR2, all the n{O...m-_} columns of ro(qi)h,

rm_l(qj ) are linearly independent, and thus the post-factor projection in (J.14) has

rank

Rank {P[r (q-I)h,r ()h]} = (M + D)- {o... m-l} (J.15)

Now consider matrices

T ] (M + D) x D (J.16)
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Proof: For scenarios with non-degenerate CR bounds, reference to Condition C3

shows that

Rank{P[Ao,...t._] Am_,]r P[rh...,rh_] = M - f{O...m-) (J.8)

and reference to Condition CR3 with X = m for Case II shows that

Rank{P[Ao,...Am_] AmFrm(q) P[r (/)h,...,r (lj)h]} = M + D - i{O...m-1} (J.9)

for j = 1 . ... M, where

(J.10)

We now show that (J.1) can be inferred from (J.8) and (J.9). Specifically, we

decompose the matrix product in (J.9) into the sum of the matrix product in (J.1),

and an orthogonal term of rank M - n{0...m-1}, as follows.

First we rearrange the pre-factor projection matrix in (J.9) to be the sum

P[Ao,...Am_1] = I- [Ao, ... Am1,] [Ao, X', Am,1] +

- [P[Ao,.A_l]AmTm] [P[Ao,...A,_1]AmTm]+

+ [P[Ao,AmIAmTm- [Ao,...Am_]iA4mTm1

- I-[Ao, .., 'M-1, Am Tm] [Ao, Ami, AmTm]1'

+ [Ao , ]Am_,]ATm] [P[Ao...Am _]AmTm]

[I- AA+] + Q[PAOAm AmT]

where Q[PA. -Am_,iAmTm] is the projection onto the column space of P[Ao,...A_,,]AmTm.

The two terms in (J.11) have orthogonal column spaces, since the columns of matrix

P[iAo,...Am_,]AmTm are contained in the space spanned by the columns of A.

Substitution of (J.11) in (J.9), and use of (J.2) gives

M + D - (o...m-1 = Rank {Emr(qj) P[r;()h...r(qi)h]}
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Appendix J

Proof of Lemma 9.2

This appendix establishes the result:

Lemma 9.2: In Case II with v > D, if Conditions C1-C3 and CR1-CR3 are

satisfied, then

Rank {Em'm(qi)} (J.1)

for j = 1... M, where

Em = [I -AA+] Am (J.2)

(J.3)A = [Ao, .. , A, AmTm]

['m( ), r ] (J.4)I

f{o,...m} x M,

Tm

Pf(q) =

o( )

'm-l(q)

TmJm(q)

= rmP[ro...,rh_l (rmP[rOf,..,r_])+

= n{o...m)-M > D
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where the last equality follows from (I.7).

Now consider matrix

I
-r-P(q)

(M+V) x (I.15)

with V linearly independent columns and the property

[r(), r] = [P((), T = = 0
-r-,f(qj)

(I.16)

Hence the columns of T form a complete spanning set for the rank V nullspace of the

columns of (I.12). Thus we express nullspace projection (I.13) as

P[r(j)h,., - (j)h]] = TT+ (I.17)

Substitution of (I.17) into (I.11) gives

= Rank{Em+l r'+I (q) TT + }

= Rank{Em+l r+l (q)T} (I.18)

since removal of the post-factor Y+ does not change the rank of the product XYY +

for any X, Y. From (I.4), (I.9) and (I.15) we note that

(I.19)r+iGqi = Fm+I (q) TT.+1( ) r'

Assertion (I.1) of the lemma is established by substitution of (I.19) in (I.18).
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Proof: For scenarios with non-degenerate CR bounds, reference to Condition CR3

with X = m + 1 in Case I shows that

Rank {P[Ao,...Am] Am+r+ () P[ro;()h...,r (l)h]}

(1.8)

for all j = 1 ... M, where the last equality follows from (1.7), and

(I.9)rp(q) = [frp(qj) , rp]

We now show that (I.1) follows directly from (1.8). From (I.3) we note that

P[A,,...Am] = I- AA+

Substitution in (I.8), and use of (1.2) gives

Rank {em+lr +(q ) P[r(,)h..,r )} = D

From (I.5), (I.6) and (I.9) we note that

(I.10)

(I.11)

[ro(qj)h , rm(qj)h] = [(qj), r]h

Thus the post-factor in (I.11) can be expressed as

= I- [ (), r] [ (q-), r]

(M + D) X nf{o...m}

(M + ) x (M + D)

As a consequence of Condition CR2, the n{o...m} columns of (I.12) are linearly

independent, and thus the projection (1.13) onto the nullspace of the columns of

(1.12) has rank

= (M + D) - fi{o...m} (I.14)
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Appendix I

Proof of Lemma 9.1

This appendix establishes the result:

Lemma 9.1: In Case I with v = 0, if Conditions C1-C3 and CR1-CR3 are satis-

fied, then

Rank { +1 +q) = D (I.1)

for j = 1. M, where

Xm+l (')

n{O,...m} x M,

Tm

=- [ m+l(), rm+1]

[

Po( )

Fm-1(q)

Tmwm(Q)

I
r-lft-)

2

n{O,..m} X )

= I

= n{O,...m}-M = 0
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E,+1 = [I-AA+] Am+I

A = [Ao, ., Am-, Am]

FO

rm-1

Tmrm

I

(1.2)

(1.3)

(1.4)

(1.5)

(I.6)

(1.7)
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for p = 0 .. m - 1. Pre-multiplication by A of the matrices in (H.8) does not affect

the equality, and hence we have

Rank{AprpHP[B , ... ,Bh_ = Rank{Aprpn} (H.9)

or equivalently

RankBoPP[B = Rank{Bop} (H.10)

for p = 0 ... m-1. Expression (H.10) corresponds to the definition (4.10) of Condition

II but over the range of Taylor series terms p = 0,-.. m - 1.

To make expression (H.10) equivalent to the definition (4.10) of Condition II, we

need to show that fr = m. We recall that h is defined as the minimum number such

that a partial sum of p = 0... m Taylor series terms of Bo() has rank equal to that

of Bo(e). Similarly, m is defined as the minimum number such that a partial sum of

p = 0... fi Taylor series terms of matrix A has full rank. Under identifications (7.4),

we have Bo(e) = All, where fI is a square full rank matrix which does not affect the

rank or linear dependence properties of the Taylor series terms, and thus it must be

that fi = m. To complete Assertion b) we note that

fm = m A (H.11)

since m = mA under Condition C2.

The proof of Assertion a) is analogous.
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First we establish Assertion b) as follows. By construction Fr has np rows, and

hence Condition C2 implies that rp has full row rank for p = ... m - 1. Therefore

Rank{rpP[rh,...rh_1]} = Rank{Fp} for p = 1...m-1

which in turn implies that the rows of rp are linearly independent of the rows of

Fo ... Fp._l. Since II is a square full rank matrix, it follows that the rows of rpI are

also linearly independent of the rows of (ron)... (r_ll). That is

Rank{FpHIP[(ron)h,...(rp_,n)h]} = Rank{rprl} forp=--..m-1 (H.4)

We note that

(H.5)

where Bo,p is of the form (7.4), since pre-multiplication by Ap can only reduce the

row space of FprI. Therefore

(H.6)

Substitution of (H.6) in (H.4) gives

Rank{rnPI o P[Bh O _... > Rank{rPIHP[(r0 n)h,..(rp nl)hl} = Rank{rpn} (H.7)

for p = 0... m - 1, which must be satisfied Kwith equality since the rank of a product

is at most the rank of any of its factors. Therefore

Rank{rPHP[Boho ... o_ l = Rank{rpFI}
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Appendix H

Proof of Lemma 7.1

This appendix shows that if B and Bo(e) have Taylor series as in (7.2) and (7.3), and

given identifications (7.4), then

a) if Conditions C1 and C3 r are satisfied with m = mr, then so are Conditions I

and IIIr with mn = mr,

b) if Conditions C2 and C3 A are satisfied with m = m A, then so are Conditions

II and IIIc with ff = m A.

where mr and m A are respectively defined by relations (7.7) and (7.8).

By definition in Section 2.5.3, Conditions C1, C2 state that

Rank{Ao} = no

Rank{PA,-...-A,_,] AP} = P

Rank{ro} = no

Rank{rp P[ro,...r-pl = np

forp = 0

for p= 1, **m-1

for p = O

forp= 1,-..m- 1

where m = mr as defined by (7.7) if Condition C1 is satisfied, and m = m A as

defined by (7.8) if Condition C2 is satisfied.

239

C1.

C2.

(H.1)

(H.2)



Using (G.25) in (G.24), we find that it must be that

Rank {PAo ... ,AmI_]AmrMnPIP[(on)h,.. (Fm_ )h]}})

= Rank {P[Ao,...,Am-]AmrmP[roh,...r_l]}

It follows from (G.23), (G.26) and Condition C3 that

Rank{P[cm-,]Bo,mP[Rm-], }

which establishes Assertion (G.7) of the lemma.

m-1
= M-Z p

p=o
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(G.22)= P[Ao...A,]

for p = O ... m - 1, which proves Assertion (G.5) of the lemma.

To prove Assertion (G.7), we use (G.1), (G.21), (G.22), to obtain

Rank{P[cm_,]Bo,mP[Rm_, 1} = Rank{P[Ao ,..,Am-i]AmFrm IP[(ron)h,...,(rm-n)h] } (G.23)

We then consider the identity

Rank

ron

rmln

P[Ao,...,Am_]AmrFm IP[(ro)h...(n)...(r n)h 

= Rank

= Rank

Foil

AmrmrI

F0

P[Ao,.,AmlAmFm

= Rank

ro

rm-_l

P[Ao,.... A_,lAmmP[roh,...r 11

where use is made of property (G.8). Also from property (G.8), we have

= Rank 

rm-1
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(G.24)

Rank

roi

rmnll I

(G.25)

I

P[A,--,A,n-11



* Block Diag. {(Aoh)+,... (Ah)+}}

= Rank {[(rpon)h,... , (rp )h]} (G.18)

for p = 0 .. m - 1. Similarly if Condition C2 is satisfied, then using (G.16), (G.8),

and (G.12) we obtain

Rank {Cp,} = Rank {[Ao, · ·. A]

* Block Diag. {(FoHn), .. , (rnH)}}

= Rank [Ao, .. .A]

Block Diag. {(Frol), * .. , (rpI)}

* Block Diag. {(ro)+ .
= Rank {[Ao, Ap]}

(rpu)+}}

(G.19)

for p= 0 *m-1.

Eqs (G.18) and (G.19) enable us to prove Assertions (G.3), (G.5) and (G.7) as

follows. By definition,

P[z] = I-ZZ + (G.20)

Thus we apply property (G.9) with (G.17) and (G.18) to obtain

P[RP]
Ir n(Jh h nh h +OI-[BLO'O '.Bop][Bo o .. Bop]J

= I- [(ron)h, . .. , (rn)][(ro), .. , (rp )]+

(G.21)

for p = 0.. m - 1, which proves Assertion (G.3) of the lemma.

Similarly, we apply property (G.9) with (G.16) and (G.19) to obtain

PtcP = I- [Bo,o,-.. Bo,p] [Bo,o, Bo,p] +

= I- [4o.
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for p= 0...m-- 1.
To prove Assertion (G.4), we use (G.1), (G.8), (G.10) and (G.12) to obtain

Rank{Bo,p} = Rank{ApIH}

= Rank{AprpHII+ }

= Rank{Aprpi

= Rank{Aprprp+)

= Rank{Ap}

for p= O*..m-1.
To prove Assertion (G.6), we use (G.8) and (G.11) in (G.14) to obtain

Rank{Bo,p} = Rank{Ap}

= Rank{A+Ap}

= Rank{hlpxnp }

- p (G.15)

for p= O m- 1.

To show the remaining assertions, we use the identification (G.1) to express

Cp = [Bo,o, " Bo,p]

Rp= =[Bh * B.h ]Rp = [O,, o,p]

= [Ao, ... Ap] Block Diag. {(roI), .. , (rpI)}

= [(ror)h, ... , (rpj,)h] Block Diag. {Ah,... Ah}

If Condition C1 is satisfied, then using (G.17), (G.8), and (G.11) we obtain

Rank {Rp} = Rank {[(roI)h,. ., (rnP)h]

* Block Diag. {Aoh,... A}

= Rank {[(roH)h, . . , (pf)h

* Block Diag. {Aoh, .. Ah}
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Rank{P[cm_l,]Bo,mP[Rm,_] 
m-1= M-E ip
p=O

The proof makes use of the following well-known pseudo-inverse properties [21]

Rankl{XY} = Rank{X+XY} = Rank{XYY+ }

XY(XY)+ = XX+ if Rank{XY} = Rank{X}

applicable to any suitably sized matrices X, Y.

Since matrix II is square full rank by construction,

1111 + = I

If C1 is satisfied, then A has full column rank, and therefore

A+AP p = Ifpxnp

for p = O... m - 1. If C2 is satisfied, then rP has full row rank, and therefore

rprp+ = iipXnp

for p= 0..m- 1.
To prove Assertion (G.2), we use (G.1), (G.8), (G.10) and (G.11) to obtain

Rank{Bo,p} = Rank{AprpII}

= Rank{A+Apr pTIn i + }

= Rank{rp}
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Appendix G

Proof of Lemma 5.1

This appendix shows that for Bo,p defined as

Bo,p = Aprp 

we have the following results

a) If Condition C1 is satisfied, then

Rank{Bo,p} = Rank{rp} for p =O... m-1

and

P[RP] = P[(ron)h,...(rpn)h] for p= O0.m-1

b) If Condition C2 is satisfied, then

Rank{Bo0 ,}

PqcP]

= Rank{Ap}

= P[Ao...Ap]

for p= O..m-1

for p= O0..m-1

c) If all Conditions C1, C2 and C3 are satisfied, then

Rank{Bo,p} = np for p = O-..m-1
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Matrices 3j(c), j = 0, 1 ... , have Taylor series by Lemma 4.3; by definition (4.24),

Bj,o is the constant term of Taylor series of 1B(c). Therefore, the row nullspace

projection P[f&()h,...b,_l(e)h] also has Taylor series of the form

P= o( )h[B ..B + jwj (F.5)
j>1

where the constant term PBh .. Bh B is the projection onto the row nullspace of

B0,o,... Bi-l,o, and Wj denotes the constant matrix coefficient of the jth order term.

For small e, we identify the dominant term of (F.4) as follows:

()o(hBi()h] )+ O(i'+1)

= i'Bi,o + O( i+' 1 ) (F.6)

Therefore we can express Bi,o as

B,,o lim pi,() (F.7)
C--O 

where

fpi(E) Bo(e)P[&()h..Bi_l(C))h ] (F.8)

Matrix /,i(E) has a Taylor series since the factor matrices Bo(e) and PBo(f)h,BI (h]

have Taylor series. To produce the constant result for Bi,o demanded by Lemma 4.3,

non-withstanding the division by in (.7), all Taylor series terms of Pi(e) of order

es , for j < i, must equal zero. Additionally, Bi,o must be equal the order term of
3i(E), which is the sum of products of order Sj , j = 0 ... i terms of Taylor series of

Bo(e) and of order i'- j terms of Taylor series of PBo(e)h..,l _()h]- That is

i-i
B,,o = BO,iP[Bho... Bh , o + Bo,jWj (F.9)

j=O

Assertion (F.1) of the lemma follows from (F.9), with Xj = Wi_j. Assertion (F.2) fol-

lows from a parallel argument involving pre-multiplication of Bo(c) by P[(O,()..-B(O]'
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Appendix F

Proof of Lemma E.1

This appendix establishes the following result:

Lemma E.1: If Bo(E) has Taylor series in , then the limiting singular matrix Bi,o

of Bo(e) satisfies the relationships

Bi,o
i-1

= BoPr[Bo,B,_ 1,.o + E Bo,JX
j=o

(F.1)

and

Bi,o
i-1

= P[Bo.o,B...i_,oJBO,k + E YjBo,j
j=o

(F.2)

for any i = 1, 2, ... , where Xj and Yj are appropriate square matrices.

We begin with the proof of Assertion (F.1) of the lemma. Recall from (4.22) that

(F.3)= E >B,(,)
i>0

where the row (and column) spaces of Bi(e), Bj(e) are orthogonal for i y# j. Using

the row space orthogonality, we write

(F.4)= E diB()
j>i

where P[O(f)he..Bl(e)h] denotes projection onto the row nullspace of Bo(e),- , Bi-1 ().
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where Zj are appropriate matrices. It follows from (E.13) and result (E.2) of Lemma

E.1 for i = 1,... k- 1 that the column space of Fkl is contained within that of

Bo,o, Bo, ,Bo,k-l. Pre-multiplication of (E.13) by P[B,o..-Bk-l,o] shows that

k-i
= P[Boo,..Bklo] [P[Bo,.o.Bkl,] (E Bo,j Xj)]

(E.14)

since P[Bo,-..Bk-_,0 is idempotent. Therefore the columns of Fk_1 are in the nullspace

of Bo,o, and the column space of Fkl- satisfies the stricter condition

a) the column space of Fk_1 is contained in that of Taylor series matrix coefficient

sequence Bo, Bo,k-1.

Similarly we find that from (E.12) and (E.11) that

k-1

= ( YjBoj) [B, hO ..-Bh
j=o

(E.15)

and

k-1

j=0

(E.16)

It follows from (E.15), result (E.3) of Lemma E.1 for i = 1,... k - 1 and finally from

(E.16) that

b) the row space of Fk-l is contained in that of Taylor series matrix coefficient

sequence Bo, Bo,k- 1.

To this point we have established (E.12), and that Fk_1 has properties a) and b)

of Lemma 4.4. To complete proof of (E.1), Nwe observe from (E.14) and (E.16) that

P[Boo,...Bk_OFk-1 P[B,0... , 1] ' Fk-1 (E.17)

Use of (E.17) in (E.12) establishes representation (E.1) of Bk,o for k > 1.
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To prove (E.1) for k > 1, we begin with expression (E.2) for i = k

Bk,O

k-1

= Bo,kPr-Bh....Bh Bo,j Xj
j=0

Pre-multiplication both sides by P[Bo,o,...Bk-,o] gives

P[Bo,o,...Bk-l,O]Bk,o P[Bo,o,...Bk- , o]Bo,kP[Bho ... Bh_,ol +

k-1

PBo,o,...Bk_1,0](E B,jXj)
j=o

(E.9)

Simplification of (E.9) using (E.4) gives

P[Bo,o,...BkI O]Bo,kP[BO,...B, I
k-1

+ P[Bo,o,...Bo,,o](E Bo,jXj)
j=o

(E.10)

A parallel argument involving post-multiplication of (E.3) by P[Bho ...Bh_ ]

subsequent simplification using (E.5) gives

and

k-1

= P[Boo,...Bk-,BOO,kP[Bho...Bh, ] + ( YIBo,J)P[Boh ,, ..Bh_ O] (E.ll)
j=0

The remainder of the appendix reconciles the two expressions (E.10) and (E.11)

to derive result (E.1) for k > 1. Defining

Bk,o (E.12)

we find from (E.10) that

k-I

P[Bo,o, ..Bkl(Z Bo,jXj)

k-1
= (I - [Bo,o, , Bk-l,o[Bo,o,- , Bk-l,o]+)( Bo,jXj)

j=o
k-i

BioZi
i=o

k-1
= Bo,j Xj-

j=O
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Bk,o

P[Bo,o,...Bk-lol ]B,kP [Bo,o,...Bk_o + Fk-

Fk-1



The lemma is satisfied trivially for k = 0.

To establish (E.1) for k > 1, we first show that the columns, rows of Bi,o are

contained in the vector spaces spanned respectively by the columns, rows of the

Taylor series term sequence Bo0 o,'. Bo,i. Specifically, we have

Lemma E.1 : If Bo(e) has Taylor series in , then

i-1

= Bo,iP,[Bho, , ...Bh_l + E Bo,jXj
j=O

(E.2)

and

Bi,o
i-i

= P[Boo,...B,_BoO,k + E YjBO,j
j=o

(E.3)

for any i = 1, , where Xj and Yj are appropriate square matrices.

Proof: See Appendix F.

Next, we observe that since the columns (and rows) of Bk,o are by construction

orthogonal to those of Bo,o,". Bk-l,0, it follows that Bk,o has the two properties

= Bk,o

- Bk,o

(E.4)

(E.5)

We make use of Lemma E.1 and properties (E.4), (E.5), to establish (E.1) for

k > 1 as follows.

For k = 1, we begin with expression (E.2) for i = 1

Bl, 0 = Bo,1P[Bho] + Bo,oXo (E.6)

Pre-multiplication of both sides by P[Bo,o] gives

P[Bo,0 ]B 1 ,o P[BOO] B0,l P[Bho] (E.7)

since the columns of Bo0 ,0o are in the nullspace of PBOO,]. Simplification of (E.7) using

(E.4) establishes (E.1) for k = 1.
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Appendix E

Proof of Lemma 4.4

This appendix establishes the following result:

Lemma 4.4: For any Bo(e) with Taylor series in , limiting singular matrices Bk,o

have the recursive structure

Bk,o

=

Bo,o

P[BoO] Bo, 1 P[Bh ]

PBO,O,...Bk-,01] (Bo,k + Fk-) P[Bho.. B_L, o

k = O

k=1 (E.1)

k = 2,

where Bo,k is the matrix coefficient of the kth order term in the Taylor series

of Bo(E), and P[BOO,...Bk-I, o] P[Bh O...Bh- 0] defined in (4.26), (4.27), respectively,

denote projections onto the column, row nullspace of limiting singular matrix

sequence Bo,o,- Bk-l,o. Matrix Fk-l is a suitable rectangular matrix factor

with properties:

a) the column space of Fkl is contained in that of Taylor series matrix coef-

ficient sequence Bol,,- BO,k-1.

b) the row space of Fk-_ is contained in that of Taylor series matrix coefficient

sequence Bol, Bo,k-1,
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matrix as . - O; therefore the singular values of Bk(e) are proportional to c° as e -- 0.

It follows that I = 0, and that Bk(c) has a series in non-negative integer powers of e

with constant matrix coefficients, hence a Taylor series in c.
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Appendix D

Proof of Lemma 4.3

This appendix establishes that if Bo(e) has Taylor series in , then the matrices Bk(e)

also have Taylor series in e.

Since column spaces of Bk(e), Bj(e) are orthogonal for k $ j, we express Bk(e) as

Bk(C) =k ( P[Bj()]) Bo(6) (D.1)

where P[Bj(E)] denotes the projection onto the nullspace of the columns of Bj(e).

The columns of U(e) in (4.23) that span Bj(e) are by definition eigenvectors of

Bo(E)Bo(e)h associated with limiting eigenvalues proportional to 2j . Thus we have

P[3j(,)] = P23(c) (D.2)

where P2j(e) is an eigenprojection matrix as defined in (B.4), with Taylor series (B.8)

in . Since Bo(c) has Taylor series (4.3), Bk(C) is expressed in (D.1) as a product

of several Taylor series scaled by -k , hence as a series in integer powers of , with

minimum power I > -k, and with constant matrix coefficients.

We now show that the power series of Bk(e) has no terms with negative powers

of (i.e. that the minimum power of is I = 0). As --+ 0, the largest singular value

of Bk(C) must be proportional to et. The definition (4.23) of Bk(e) also identifies

the SVD of Bk(e) for all e. From result S1, CEk(e) converges to a constant diagonal
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Substitution of (C.10) in (C.8) gives a more precise version of result (C.4), namely

P2 k(e)A2k() = O(2)

Use of (C.11) in definition (B.3) of matrix A2k+l(E) shows that

A2k+1 (E)
1

= -P 2 k(E)A2k(C)

= O(E)

As e -, 0, (C.12) converges to (C.2) which concludes proof of the lemma.
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Since P2k is the leading term of the Taylor series (B.8) of P2k(e), and A2k,o is the

leading term of the Taylor series (B.7) of A2k(E), it follows from (C.3) that

P2k(c)A2k(16) = O(E) (C.4)

Use of property (B.6) gives

P2k ()A2k(6) = P2k(E)A2k(1)P2k(6)

Use of definition (B.3) of A2 k(E) in (C.5) gives

P2k (E)A 2k(6)
1

= -P2k(6) [P2k-l(6)A2k-1(6)] P2k(6)
6

(C.6)

Repeated applications of steps (C.5), (C.6) result in

1
P2k(5)A2k(6) = -~P2k()P2k-1(6) '.. Po()Ao(c)Po(c)" P2k-.1(.)Pk() (C.7)

Since Ao(e:) that satisfies Condition IV is the outer product; (4.14) of Bo(E), we re-

arrange (C.7) as

k(c)A2k() = (-P2k(C)P2k-1() ... Po(c)Bo(c))

(1 ~~~~~~~~~h

(k P2k()P2k-1(C) Po(c)Bo(e))

It follows from (C.4) and the product form of P2 k(c)A2k(e) in (C.8) that

1
-¥P2k(C)P2k-() ' ' ' Po(c)Bo(c) = (c1/2)

Since Bo(c) has Taylor series (4.15) in , and Pj(c) j = 0,.. 2k have Taylor series

(B.8), their product in (C.9) must be a series in integral powers of C. It follows from

(C.9) that we must have

1
- P2k(C)P2k- l (C) ... Po(c)Bo(c) = 0(C) (C.10)
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Appendix C

Proof of Lemma 4.1

This appendix establishes the following result:

Lemma 4.1: If matrix Ao(e) satisfies Condition IV of Chapter 4, then each non-

zero eigenvalue Ai(c) of Ao(e) is asymptotically (as c - 0) proportional to

non-negative even powers of c. That is,

liim .2k:} = 1 (C.1)

for suitable constants ~A and :k E {O, 1 }, for all i = 1, , rank{Ao(e)}.

Whenever Ao(c) satisfies Condition IV, Ao(e) is Hermitian and has Taylor series

in e. Hence result R1 states that the limiting eigenvalues of Ao(e) are proportional

to non-negative integer powers of e. Thus to prove the lemma it is sufficient to show

that there are no limiting eigenvalues of Ao(c) proportional to odd powers of , or

equivalently by result R2, that the odd order limiting eigenmatrices A2k+1,0 satisfy

A2k+1,o = 0 (C.2)

for all k > 0.

To show (C.2), we observe from the definition (3.15) of P2 k in terms of A2k,o that

P2kA2k, = (I- Ak,oAO) A2k, = 0 (C.3)
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(See Eq. (2.23) of [18]). In the limit as --+ 0, Ak(e) converges to limiting eigen-

matrix Ak,o. Therefore eigenprojection Pk(E) defined by (B.4) converges to limiting

eigenprojection Pk defined in (3.15) in terms of limiting eigenmatrices.

Note that the characterization (B.2)-(B.8) of the limiting eigenmatrices Ak,o as

limiting forms of matrices Ak(e) does not specify the Ak,o in terms of the (known)

matrix coefficients Ao,p in the Taylor series (B.1) for Ao(e).

To relate the Ak,o to the Ao,p, Reference [17] derives recursive and very complicated

expressions in terms of the leading eigenprojection term Pk-, and of the Taylor series

terms of Akl(e) (Eq. (2.18) in Chapter II of [17]). In reference [18], the authors

simplify the recursive expressions in [17] to identify the expressions (3.14) for the

limiting eigenmatrices Ak,o in terms of the known Taylor series terms of Ao().

As evident from (3.14), this approach results in increasingly complex expressions

for Ak,o as k increases; extension of the approach to A4,0 reveals that it involves dozens

of terms.
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Ak(e) a Pk-l(E)Ak-1(e) Pk-l() ..' '' Po()Ao() k> 1 (B.3)

where matrices Pk(e), designated eigenprojections, are defined analytically in terms of

a contour integral in [17], [18]. (See Eq. (2.22) of [18]). A geometrical interpretation

of matrix Pk(c) for Hermitian Ao(E) is as a projection onto the space spanned by the

eigenvectors associated with the eigenvalues of Ak(e) that are zero when e = 0. Thus,

a convenient definition of Pk(e) for Hermitian Ao(e) is

Pk() I - Qk(E) (B.4)

Qk() = {Ek(C)}A olI=o {Ek(E)}A 1 =0 (B.5)

for k = 0, .. , where Ek(e) denotes a complete matrix of eigenvectors of Ak(e), and

operator { } I01=o selects the subset of eigenvectors associated with eigenvalues that

remain non-zero when e = 0.

By definition (B.4), (B.5) of Pk(e), we have the property

Pk(e)Ak(e) = Pk(c)Ak(C)Pk(e) (B.6)

for k = 0, 1L .. Repeated use of property (B.6) in definition (B.3) shows for Hermitian

matrices Ao(e) that matrices Ak(e) are also Hermitian.

References [17], [18] show that matrices Ak(e) exist (i.e. remain finite) as e - 0,

non-withstanding the denominator factor c in (B.3). (See Theorem 6.38 Chapter II

of [17]). It is further shown that matrices Ak(c) and eigenprojections Pk(e) depend

on via Taylor series

Ak(e) = Ak,o + .PAk,p (B.7)
p=l

where Ak,c, are the limiting eigenmatrices (See Eq.(4.5) of [18]), and

Pk(E) = Pk + Pk,p (B.8)
p=l
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Appendix B

Definition of Ak,0 in [17], [18]

This appendix states the definition of the limiting eigenmatrices Ak,o presented in

References [17], [18] and outlines the approach used therein to derive expressions

(3.14). The prior results restated in this appendix are used in subsequent appendices

to derive the thesis SVD results.

Reference [18] considers a Hermitian matrix Ao(e) with Taylor series about = 0

00

Ao(e) = cPAo,p (B.1)
p=o

where Ao,p are known constant matrices, independent of variable parameter .

The essence of the approach of [17], [18] is to define the constant limiting eigen-

matrices Ak, as

Ak,o - lim Ak() (B.2)

for k = 0,1,, where the Ak(c) are a sequence of matrices non-constant with 

whose eigenstructure is related to that of Ao(). The Ak(c) are defined recursively

from matrix Ao(e) as

Ao(e) - Ao(c)

A Po(c)Ao(c)
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Appendix A

Additional Notation

This appendix provides additional notation detail, to explicitly define the Hadamard

and Kronecker products.

Hadamard Product:

The Hadamard product of the I x J matrices A and B is defined as the I x J matrix

AAOB =

allbll

a2lb21

ailbil

al2bl2

a22b22

aI2bI2

alJblJ

... a2 jb 2 J

... aijbij

(A.1)

where aij, bij respectively denote the i, jth elements of A, B. The Hadamard product

of matrices A and B is simply the element-by-element product of A and B.

Kronecker Product:

The Kronecker product of the I x J

the IK x JL matrix

AA0B=

matrix A and the K x L matrix B is defined as

al lB

a21 B

alB

al2B

a22B

ai2B

... aljB

... a2jB

.. azjB

(A.2)
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The multi-D results developed herein in some ways parallel the prior 1-D results,

but also differ from the 1-D results in interesting and significant ways. For example,

for a given number of sources, we find multi-D scenarios are typically much less

sensitive to small source separation w than 1-D scenarios. Specifically, for typical

multi-D scenarios with closely spaced sources 1) matrix Rs is much better conditioned,

2) the CR directional variance bounds are much lower, and 3) the resolution and

detection thresholds are much more favorable than in 1-D scenarios.

Thesis analysis shows that for typical DF scenarios the eigendecomposition of Rs,

and the SVD of its rectangular factor matrix B (or A), decompose for small 6w to a

series of simpler shell problems, involving decomposition of low rank matrices which

are constant with 6w. Furthermore, the numerical conditioning and the span of Rs

can be determined by simple linear algebra without the need for eigendecomposition

or polynomial rooting.

The thesis identifies side conditions that greatly simplify prior results on eigen-

structure of perturbed Hermitian matrices of [17], [18]. These side conditions typically

are present in DF scenarios. Analysis also develops new results for the SVD of per-

turbed rectangular matrices, which not only facilitate the eigendecomposition of Rs

for closely spaced sources, but may also have use in other applications.

The thesis results show that the direction finding problem imposes challenging

requirements on practical systems intended to provide unbiased frequency estimates

of closely spaced sources. For example, reducing by a factor of 10 the maximum

separation 6w of M = 6 sources in a typical 2-D scenario (with m = 2 and X =

3) requires increasing the SNR by 2m. 10dB = 40dB to maintain constant source

detection performance, or increasing the SNR by 2 X - 10dB = 60dB to maintain

constant source resolution performance.

The thesis provides an analytical framework for the direction finding problem in

multi-D scenarios, which should facilitate the performance analyses of candidate DF

techniques, help quantify the numerical-accuracy and hardware-alignment issues as-

sociated with implementing high-resolution techniques, facilitate beamformer design

and provide insight helpful for development of improved DF algorithms in multi-D

scenarios.

214



Chapter 11

Conclusions

The objective of this thesis has been to clarify the multi-dimensional geolocation

problem for closely-spaced sources. The principal results are explicit analytical ex-

pressions in terms of maximum source separation 6w, source configuration, source

powers and correlations, and sensor array geometry, that elucidate the following:

* The eigenstructure of covariance matrix Rs that is central to many High Res-

olution direction finding (DF) algorithms, for closely-spaced sources in non-

degenerate and partially degenerate multi-D scenarios (Chapters 5, 7).

* The Cramer Rao (CR) lower bound on the directional variance of any unbi-

ased DF algorithm, for closely-spaced sources in multi-D scenarios with non-

degenerate CR bounds (Chapter 9).

* The detection threshold SNR and data set size N at which the number M of

closely spaced sources can reliably be determined in typical multi-D scenarios

by any eigenvalue based detection algorithm (Chapter 6).

* The resolution threshold SNR and data set size N at which M closely-spaced

sources can reliably be resolved in typical multi-D scenarios by any unbiased

DF algorithm (Chapter 10).

These results generalize to multi-D the analytical results recently developed for 1-D

scenarios [11]-[13]. These results should be useful in identifying fundamental perfor-

mance limitations and opportunities for multi-dimensional geolocation.
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Similarly, identification of the data set size resolution threshold gives

XR > R KW-2X (10.15)
SNR

10.3 Summary

The threshold expressions (10.14) and (10.15) are important since they provide ex-

plicit expressions for the minimum SNR and data set size N required to satisfy the

"necessary condition" (10.5) for resolution of Al closely spaced sources using any

unbiased spectral estimation algorithm. The threshold expressions can be used to

generate model resolution curves for any given scenario, since the constant IR can

be calculated explicitly given the array geometry, sensor directional response, source

configuration and source correlations.

The threshold expressions (10.14) and (10.15) also clarify the trade-off between

SNR, N and maximum source spacing 6w required to maintain resolution performance

in multi-D scenarios. For example, if noise power is doubled in a given scenario,

then the size of the data set must increase by a factor of 2 to maintain resolution

performance. If on the other hand, the maximum source spacing 6w is decreased by

a factor of 2 in a 2-D scenario with non-degenerate CR bounds and M = 6 sources

(with X = 3), then to maintain resolution performance with a fixed data set size N,

the SNR must increase by a factor of 26 = 64. Alternately if w is halved while the

SNR remains fixed, then the data set size N must increase by a factor of 26 = 64.

By way of comparison, if the maximum source spacing w is decreased by a factor

of 2 in a 1-D scenario with M = 6 sources, then to maintain resolution performance

with a fixed data set size N (or fixed SNR), the SNR (or N) must increase by a

factor of 212 = 4096!!! For small w and a given number of sources M, the resolu-

tion thresholds are typically much smaller (more favorable) in multi-D than in 1-D

scenarios.
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Analogously, we define the data set size resolution threshold N/R to be the smallest

value of N for which (10.5) is satisfied for a fixed power factor p.

To elucidate the necessary conditions for resolution, we square (10.5) and substi-

tute expression (9.131) to obtain

6w2(x) 2 ( rtw-2(X-1 )t 'Re [P
2N xoX3 0 Ee£] 'XP[,L,] )

< f2 w2 .min llqj -qklI
-k#j

(10.9)

for small w. Rearrangement of (10.9) and use of (10.6) gives the equivalent condition

SNR. N > Kr ,ij 6W- 2 X (10.10)

where we define

1 ~ t Re 0 ,I j, , p['' _'] Ehe X + (10.11)
f2 min lli - 1142 Pit[_] XIt Re 0 x Xh x [xP[[_]Jj2 k min j qt X kfj

where I = D(j - 1) + i.

We note that an equivalent condition for (10.10) to be satisfied for all j = 1 ... M,

i = 1 D... D is the condition

SNR N > IKS' - 2X (10.12)

where we define

= max{Ij ,,j}
20 'Z'

(10.13)

Thus we deem satisfactory resolution performance to be possible whenever condition

(10.12) is satisfied.

Identification of the SNR resolution threshold gives

ER > NR 6&-2XN (10.14)
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is that

/(Bc)u f. Swj (10.5)

for all i = 1 D, j = 1 ... M, with = (j - 1) + i and where f is a suitable fraction

(e.g. f = 1/8).

Note that the structure of the CR bound (Bc),l was elucidated in Chapter 9.

Accordingly the results of Chapter 9 together with (10.5) enable us to make useful

statements about the resolution thresholds oR and ./R.

10.2 Resolution Thresholds R and /R

To define the resolution thresholds, we extend the approach used in [13], as in Chapter

6. We represent the source amplitude correlation matrix P as follows

P = pPo (10.6)

where Po is a constant matrix the eigenvalues of which sum to unity, and p is a

variable scale factor. Note that representation (10.6) retains the correlations between

the source powers. We define the signal SNR to be the ratio of the scale factor p to

the noise power o2. That is

SNR = p 2 (10.7)

We deem satisfactory resolution performance to be possible whenever condition

(10.5) is satisfied for all i,j, (i.e. for all signals and for all coordinate directions).

We define the resolution threshold power to be the smallest value Pmin of p for which

(10.5) is satisfied for a fixed N, and define the resolution threshold SNR to be

ER = Pminfr2 (10.8)
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array geometry, normalized source configuration, source powers and correlations.

Since parameter X < M for typical multi-D scenarios, comparison of (10.1) and

(10.2) leads to the conclusion that for small 6w, the resolution thresholds are typically

much smaller (more favorable) in multi-D than in 1-D scenarios.

The chapter is organized as follows. Section 10.1 postulates a necessary condition

for successful resolution of closely-spaced sources. Section 10.2 then develops the

expressions (10.2) and (10.3) for the resolution threshold SNR and N. Section 10.3

summarizes the resolution threshold results.

10.1 "Necessary Conditions" for Reliable Reso-

lution

To obtain resolution threshold expressions for both SNR and N, we follow the argu-

ment of Lee [11] that any unbiased estimator can successfully resolve M closely spaced

sources only if the standard deviation of the directional estimates is substantially less

than the minimum spacing between any two sources. The SNR and N values required

to satisfy the above condition result are deemed to be the resolution threshold values.

Thus, consider M closely-spaced signals, and define wj to denote the minimum

spacing between the jth and any other source. That is

6wj = w min jqj - 11 (10.4)
k1j

where q-, ... qM are the normalized spectral frequency offsets. If the root CR bounds

/(Bc)u for all coordinate directions at the jih source (I = D(j -1) +i and i = 1. D)

are small compared to wj for each source j = 1 ... M, then there is a basis for seeking

an unbiased estimator for resolving the signals. On the other hand, if one or more of

the /(Bc)ll are large compared to the associated wj, then it is unlikely that there

exists an unbiased estimator which can resolve the signals with high probability.

Accordingly, one strongly suspects that a necessary condition for the existence of an

unbiased estimator capable of resolving M closely spaced sources with high probability
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minimum SNR and N at which "one can see" each of the M sources present.

Prior work by Stoica and Nehorai [15] for the 1-D MUSIC algorithm, and by Lee

[11] for any unbiased 1-D DF spectral estimation algorithm, has used the CR bound

on directional estimate variance to elucidate the dependence on scenario parameters

of the SNR resolution threshold R, and of the data set size threshold AR. Specifically,

Lee has argued that any unbiased estimator can successfully resolve M closely spaced

sources only if the standard deviation of the directional estimates is substantially less

than the minimum spacing between any two sources. The CR bound provides a lower

bound on the standard deviation of any unbiased estimator, and thus can be used to

elucidate the form of the resolution thresholds ER and K/R for any unbiased estimation

algorithm.

Lee in [11] identified expressions for the CR bound for closely-spaced sources

in 1-D scenarios, and used the results to characterize the SNR resolution threshold

ER for closely spaced sources in 1-D scenarios. The author argued that the ER at

which unbiased spectral estimation algorithms can reliably resolve M sources in 1-D

scenarios is proportional to 6w - 2M. That is

eR .- 2M (10.1)N

where KR is constant with w.

This chapter extends the result (10.1) of [11] to multi-D scenarios. Drawing upon

the CR bound expressions for multi-D scenarios derived in Chapter 9, we characterize

the (SNR) threshold ER and the data set size threshold AR for M closely spaced

sources in multi-D scenarios with non-degenerate CR bounds. The results are:

C£R -. 6S-2X (10.2)

AR SNR' w-2X (10.3)

where w is the maximum source separation parameter, X is the parameter defined in

(8.61), and KRI is a constant defined in Section 10.1, that depends only upon sensor
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Chapter 10

Resolution Thresholds

An important aspect of Direction Finding (DF) algorithm performance is the ability to

identify distinct direction estimates for each of M closely-spaced sources; if successful,

the algorithm is said to have resolved the sources. For DF estimators based upon the

peaks of a spectrum function S(W), a necessary condition for reliable resolution of M

closely spaced sources is the appearance, with high probability, of M distinct peaks

in the spectrum function in the vicinity of the sources.

Note that the ability of an algorithm to resolve Al sources is different from the

ability to determine (detect) the number of sources; indeed many eigenvector-based

DF algorithms such as MUSIC and MinNorm require a-priori knowledge of the source

number for proper operation. In practice, the number of sources M is typically ob-

tained from side information, or is estimated using detection algorithms. Example

detection algorithms are Akaike Information Criteria (AIC) [22], and Minimum De-

scriptive Length (MDL) [23]. For the purposes of the discussion of resolving ability,

we assume that the number M is known or has been correctly estimated.

One useful measure of the "resolving power" of a DF algorithm is the signal-to-

noise ratio (SNR) threshold £R at which the algorithm can reliably resolve M sources

for a given source-array configuration, and a given number N of data snapshots. An

alternative performance measure is the data set size N threshold A/R at which the

algorithm can reliably resolve the M sources for a given source-array configuration,

and a given SNR. These threshold values also can be regarded respectively as the
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normalized bound (9.153).

Clearly the simplified asymptotic expressions again capture the essence of the

bounds for emitter separation less than one beamwidth. As predicted, the CR

bounds exhibit a 6w- 4 behavior for small w, with a slope of 40 dB/decade.

Thus the theoretical expressions accurately predict the CR bounds for small

separations 6w for this Case I scenario with non-degenerate CR bounds.
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depict the asymptotic behavior predicted by Eq. (9.145). The horizontal scale

denotes spatial frequency separation w normalized by the array beamwidth

BW, so that unity on the horizontal scale of the graph corresponds to maximum

source separation of one beamwidth. The vertical scale depicts the value of the

normalized bound (9.153).

Clearly the simplified asymptotic expressions again capture the essence of the

bounds for emitter separation less than one beamwidth. Note that the 5 sensors

lie on an ellipse centered at coordinate origin. As predicted, the CR bounds

exhibit a preferred 6w -2 behavior for small 6w, with a slope of 20 dB/decade,

along the preferred direction normal to the ellipse curve (y-axis), and exhibit a

ow-4 behavior, with a slope of 40 dB/decade, along the tangential direction (z-

axis). Thus the theoretical expressions again accurately predict the CR bounds

for small separations w for this Case III scenario with non-degenerate CR

bounds.

Example 9.4 : For this example M = 6 and the array and source geometries are

as follows.

Array: Sensors in a sparse grid per Figure 2-4A,

Sources: Sources SC1-SC6 clustered around broadside as in Figure 8-1.

As shown in Example 8.4, this is a Case I scenario with non-degenerate CR

bounds. Consequently the directional variance CR bounds for small w may be

determined using (9.145).

Figure 9-4 shows the values of the CR bounds for parameter estimates along

the x and y spectral frequency axes for one of the sources, specifically SC1 in

Figure 8-1. The solid curves depict the exact CR bounds; the dashed lines

depict the asymptotic behavior predicted by Eq. (9.145). The horizontal scale

denotes spatial frequency separation w normalized by the array beamwidth

BW, so that unity on the horizontal scale of the graph corresponds to maximum

source separation of one beamwidth. The vertical scale depicts the value of the

204



10-1 10 Sw/BW 101

Figure 9-3: Limiting CR Bounds for Source SC1 in M = 5 Source Scenario

........bound . .

bou'nd &= .....:-axis
~~~~~~~~~i ...... 

y-axis bound ' = 2 'yl
. ... ......... .... : ..... : I..,.....

Ix 
I I I I I I I I II I I I I I I I I I I I

10-1 10 Sw/BW 101

Figure 9-4: Limiting CR Bounds for Source SCI in M 6 Source Scenario

203

106

10

104

10 3

102

101

100

10-1

x-axis bound w" -:'W-

I I I I I i I I I I i I I I I I I ISlo pe 40 dB/de"ad: :i.. .... ... .
Yaxi bun. : W

....... i ~~ ~~~~~~~~~~~~ ...........·. ..... .. ..... .. :::'' w w~~~~~~~~...

...... ~~~~~~~~~~~~~~~ ... .. ..
; i i~~~~~~~~~~~~~~~~~~

: :' : i ~ ~ \ ' ' i: i ' i ..

10-2

106

10 5

104

10 3

102

101

100

I /"-1
10-2

· \ · -· r-rl- · · 1 1 I · 1-· I 1 · ·- r·

........... ................

. ............

i . .

q

I ' I 

I � � � . . .:. . . . . . . . . . . .



106

105

104

103

102

101

100

10-1
10-2 10-1 100 8w/BW

Figure 9-1: Limiting CR Bounds for Source SC1 in M = 3 Source Scenario
106

10 5

10 4

103

102

101

100

10-1
10-2 10-1 100 Sw/BW

Figure 9-2: Limiting CR Bounds for Source SC1 in M = 4 Source Scenario

202

! , ! ! ! ! ! ! , , , ! ! ! ! ! ! , , , ! ! ! ! !)·· ·· ·· ·· ··i· ··:· ·· ··: · ·;·:··:· ·· ·· ·· ·· ····

yaxis boundi c'=Wvi

Slope 20 dB/decade.........................:................................. :. . . . . ....................... ......... . . . . .........,. . ...i ............................................ .........-........

x-axis bound:v X1 i

I I I I . . ............... ... .. .. .. .. . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .... . . . . ...... .. ..

101

......................... ............ '......... ........' ........ ... ..... ......... .......... ''""" ................................... .......... .......

x-axis h:ound ^D Wo1

~~~~~~~~~~~~~~~~~~............. .... i .... !i...... ... .... ...................... ........ ..... ..... . ............. .............

...... ... . ............................... . ... . .... ......... ..... .. . . . . . . . . . . . . . . . . . .y-axis bound w

:. . .. . .. . . .. . . .. . . . .. . . . .. :. . . . .: ......... . . . . . . ..... . ............. ...... ..............~~~~~~~~~~~~~~··- · · · ;... _ I··:·- · · · ·· I I I I I: I I

101



As shown in Example 8.2, this is a Case II scenario with non-degenerate CR

bounds. Consequently the directional variance CR bounds for small Sw may be

determined using (9.145).

Figure 9-2 shows the values of the CR bounds for parameter estimates along

the x and y spectral frequency axes for one of the sources, specifically SC1 in

Figure 8-1. The solid curves depict the exact CR bounds; the dashed lines

depict the asymptotic behavior predicted by Eq. (9.145). The horizontal scale

denotes spatial frequency separation w normalized by the array beamwidth

BW, so that unity on the horizontal scale of the graph corresponds to maximum

source separation of one beamwidth. The vertical scale depicts the value of the

normalized bound (9.153).

Clearly the simplified asymptotic expressions again capture the essence of the

bounds for emitter separation less than one beamwidth. As predicted, the CR

bounds exhibit a 6w-2 behavior for small Sw, with a slope of 20 dB/decade.

Thus the theoretical expressions again accurately predict the CR bounds for

small separations 6w for this Case II scenario with non-degenerate CR bounds.

Example 9.3 : For this example M = 5 and the array and source geometries are

as follows.

Array: Sensors in a sparse grid per Figure 2-4A,

Sources: Sources SC1, SC2, SC3, SC4, SC5 clustered around broadside as in

Figure 8-1.

As shown in Example 8.3, this is a Case III scenario with non-degenerate CR

bounds. Consequently the directional variance CR bounds for small Sw may be

determined using (9.145).

Figure 9-3 shows the values of the CR bounds for parameter estimates along

the x and y spectral frequency axes for one of the sources, specifically SC1 in

Figure 8-1. The solid curves depict the exact CR bounds; the dashed lines
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Substitution of (J.21) into (J.14) gives

1 < Rank{EmF'r(q() [T, T'][T , T']+} = Rank{Cmlrm(q) [T, T']} (J.22)

since removal of the post-factor Y+ does not change the rank of the product XYY +

for any X, Y.

From (J.17) we note that

ECm Frm(q) T' = i - AA+] Amrm P[r,...rhl

= 0

since AmFm P[rh...rh l is in the column space of A, and is annihilated by [I - AA+].

Therefore we simplify (J.22) to

2D < Rank{em Fm(q)T} (J.24)

Since the last factor in (J.24) has only 1D columns, (J.24) must be satisfied with

equality. From (J.4), (J.10) and (J.16) we note that

(J.25)

Assertion (J.1) of the lemma is established by substitution of (J.25) in (J.24) satisfied

with equality.
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Appendix K

Proof of Lemma 9.3

This appendix establishes the result:

Lemma 9.3: In Case III with 0 < v < D, if Conditions C1-C3 and CR1-CR3 are

satisfied, then

Rank {em(m(q)} = Rank{Em} = Rank {m(cq)} = v

for j = 1.. M, and also

EEm = (q)(q)

Em = [I-AA+] Am

A = [Ao ... Am_i, AmTm]

rO

rm-l

Tmrm

no,...m x M,

= [tm(Q) , Fm] I
l -r-(qj) 

r(q) = nm-i (') f{o,...m x D

Tmm-(q)

Tm = rmP[r ,...rh 1l (rmP[,r rhn-l) +
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(K.1)

where

(K.2)

(K.3)

(K.4)

r =

(K.5)

(K.6)

(K.7)



v = nfo,...m}-M

Proof: For scenarios with non-degenerate CR bounds, reference to Condition C3

shows that

= M - i{o...m-1) (K.9)

and reference to Condition CR2 for p = x - 1 and X = m + 1 for Case III shows that

for j = 1.. M, where

r (M)

(K.10)

(K.11)= [(q) , rp]

We first show that (K.1) can be inferred from (K.9) and (K.10). Specifically, a

development parallel to that of (J.11)-(J.25) in Appendix J gives

Rank{Em 'Im(q)} ,

Recall from (9.25) that

Tm m(q)

(K.12)

(K.13)= 0

and from (9.11) that

Rank{Tm } = M - ft{O,...m-1} (K.14)

Thus the column nullspace of .m(q') is at least of rank M - i{O,...m-}, and the

maximum rank of lim(qi) is

Rank{bm(q)} < i -(M -(o...m}) = 
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(K.8)

RakPAo·-_- -Amp,~.~jj1,
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Similarly, we note that

ET, = [I-AA+] AmTm = 0 (K.16)

since AmTm is contained in the column space of A. By argument parallel to (K.14)-

(K.15), the maximum rank of Em is

Rank {em} < v (K.17)

Assertion (K.1) follows from (K.12) and (K.15), (K.17).

To show assertion (K.2), we note from (K.13), (K.16) and (K.14) that

(I- T)'m(i) = m(q) (K.18)

Em(I- .Tm) =em (K.19)

Rank{(I - Tm))} < i - (M - f,...m}) = (K.20)

Since (I- Tm) is a prefactor of (qj) in (K.18), and a post factor of E, in (K.19), and

the rank of (I - Tm) equals that of (q) and of Em by Assertion (K.1) and (K.19),

it must be that (I - Tm) spans the column space of ,,(q) and the row space of Em.

That is,

I-Tm = e+em = ~m(')'m('j) + (K.21)

which establishes Assertion (K.2).
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Appendix L

Proof of Lemma 9.4

This appendix establishes the result:

Lemma 9.4: Let G be a MD x MD matrix of the form

G = Re{([Il, *.. , )M]h[I, , , IM])) PII (L.1)

If 4j has full rank (= D) for j = 1 ... M, and P is Hermitian positive definite,

then G is Hermitian positive definite. That is

Rank{G} = MD (L.2)

Since P is positive definite, it can be decomposed as-= -h -+ + -7r171 +7r27r2 +rM7rM (L.3)

where

I = [I, I2, =' [TM] (L.4)

is non-singular.
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Since G is real, to show that G is positive definite it suffices to show that

vtG > 0 (L.5)

for all real $ O. Thus let v be real, and partition v into D x 1 subvectors as follows

(L.6)V =

VM

Formation of the product tGv using (L.3) and (L.6), and simplification gives

M

v'tG = E llll12

i=1

where

Ui = Yi

i= 1...M, and

Y = [1,...M]

Yj = v

for j = 1.. M.

It follows from (L.7), (L.8) that

VtGv 0

with equality iff

ui = Yi = 0
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for i = 1 ... M, or equivalently iff

Since II is non-singular, this requires

or equivalently

for all j = 1 ... .

requires

But since Žj have full rank by hypothesis, condition (L.12)

= 0 (L.16)

for j = 1 ... M. Therefore (L.11) is satisfied with equality iff = 0. It follows that

G is positive definite.

The Hermitian property of G is trivially verified by inspection of (L.1).
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YH = 0

Y=O

(L.13)

(L.14)

y = 4jv =O (L.15)
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Appendix M

Proof of Lemma 9.5

This appendix establishes the result:

Lemma 9.5: Let

G = Re{([l, * ' , [ i* , M]) ®P+} (M.1)

If aj has partial rank r (< D) for each j = 1 ... M, and P is Hermitian positive

definite, then G is Hermitian non-negative definite with

Rank{G} = M r (M.2)

The result (M.2) can be extracted from the proof of Lemma 9.4 as follows. Specif-

ically, the requirement (L.15) is

jvij = 0 (M.3)

for all j = 1 ... M. If Oj has partial rank r, then there exist D-r linearly independent

real v f- 0 which satisfy (M.3). Additionally there exist M(/D-r) linearly independent

real vY # 0 for which (L.11) is satisfied with equality. It follows that G has rank

deficiency of M(D - r), or has rank

Rank{G} = MD- M(D-r) = M r (M.4)
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where MD is the dimension of G.

The Hermitian property of G is trivially verified by inspection of (M.1).
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Appendix N

-Proof of Property PI2

This appendix derives the result:

P1]2. Let

((Sw) = X(w) + 6W2 Y(Sw) (L x L) (N.1)

where X(6w), Y(6w) are non-negative Hermitian matrices having Taylor series

valid in the neighborhood of 6w = 0. Assume that

1) X(6w) has constant rank T for sufficiently small 6w, including 6w = 0,

and

2) the matrix G(6w) has full rank for sufficiently small 6w.

Then for small bw,

G(ow)-1 = W-2W(6w)+ + [I- W(6w)+Y(6w)] X(6w)+ [I -- Y(6w)W(6sw)+]

+ O{Sw2} (N.2)

where

P[x(s)]

= P[x(s)]Y(w)P[x (w)]

= I - X(sw)X(6w)+

(N.3)

(N.4)
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Proof: This appendix uses the shorthands G, X, Y and W for G(6w), X(Sw),

Y(6w) and W(6w).

As a first step, let the eigendecomposition of X be denoted

X = EAEh (N.5)

where A is an R x 7R diagonal matrix of positive eigenvalues, E1 is a L x 7R matrix of

corresponding eigenvectors, and both E1 and A depend upon w and have a Taylor

series in w.

Consider the matrix

6 = EhGE (N.6)

where E is a unitary matrix of the form

then

E = [E1,E2]

G-1 = EO- 1Eh

(N.7)

(N.8)

Partition O in (N.6) conformally with E in (N.7) as follows

)= [l11 012

021 022 
(N.9)

with

= A+ Sw2EYEi

= w2E2hYEl

, (12

, 022

= Sw2 E hYE2

= Sw2E2 hYE 2

Sub-matrix 011 is 7 x R and has full rank since A is full rank 7? and the rank of

O11 is not reduced by the 0(6w 2 ) additive term, for sufficiently small 6w. Sub-matrix
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022 is (L - R) x (L - R) and likewise has full rank as follows. By construction, the

rank of 022 equals that of the component of the column space of Hermitian matrix Y

that is orthogonal to the column space of X. Since by assumption matrix G is full for

sufficiently small 6w, and column space of Y must have a component, of rank L - R

that is orthogonal to the column space of X.

Straightforward calculation shows that

[ - [0 1 1 - 012022 21] - [(011 - 1 202e 21 ]- 1 01202 1
-[022 - 0 21 0110 12] 1 021 011 [022- 021011012] 

(N.11)

Substitution of (N.11) in (N.8) and use of (N.7) gives

G - 1 = T1l + T12 +T21 +T22 (N.12)

where

Tl1 = El [ -01202021] - Eh

T12 = -E 1 [11 - 0122121] El2 22Eh

T21 = -E 2 [022 - 021(11012]-1 0 21 01E1

T22 = E2 [022 - 02 10j 1 1 2] Eh (N.13)

Substitution of (N.10) in (N.13) and simplification gives

T1 = El [Il-l + O{(6w2}] E

= X+ (+ 9{w 2} (N.14)

T12 = -E 1 [A-L + O({&W2}] EhY'E 2 [EhyE 2] E2h

= -X+YW+ + {Sw 2} (N.15)

T21 = -E 2 [E2hYE2 + {5w2}] -1 E2hYE1 [i-1 + I{W2}] Elh

= -W+YX+ + {6w2} (N.16)
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= w-2E2 [E2hYE2 _ - w2 E hYE 1 [A-' + O{6S2}] EhYE2] - 1EhL.J.. 2 -~~2 1 ·'

= w- 2E2 (E2hyE 2)- 1 /2 [I- w2 (E2hYE2) -1/ E2hYE1 [A-1 + O{6w2}]

EYE 2 (EhyE 2)-1/2] -1

= w-2E2 (E YE 2)-12 I+ 6 2 (EhYE 2) -1/2 E2'hYEL1 [A-' + O{Sw2}]

EhYE 2 (E2hYE 2) - 1/ 2 + {w4}] (E 2YE2) - 1/ 2

= Sw-2W+ + W+YX+YW+ + O{Sw2}

Substitution of (N.14)-(N.17) into (N.12), and rearrangement gives (N.2).
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Appendix O

.Proof of Lemma 9.6

This appendix establishes the result:

Lemma 9.6: In Case III with 0 < v < D, if Conditions C1-C3 and CR1-CR3 are

satisfied, then

Rank {Em+l ,m+l ()P[~m(,)t]} = D-v (0.1)

for small w and for j = 1.. M, where

F1 = [I- AA+] Am+l

A = [Ao, ... Am_i, Am]

[ifm G(, m] [ I

- F-,~ (j,

m+(qj)

FO

Tr,
n{o,...m x M,

[Fm+ (), F m+il] [

rm-(q)

Tm m(q )

(0.2)

(0.3)

(0.4)

(0.5)

Tm = rmP[rh...rh,] (rFmP[rh ,...rh ])Tm ,. o 0 ml I l 0 -m-l1) (0.7)
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, -F4qj) 

nj...m x DT (0.6)



1 = n(o,...m)-M < :D

Proof: For scenarios with non-degenerate CR bounds, reference to Condition CR3

for Case III with X = m + 1 shows that

= M + D- i{o,...m}

(0.9)

where the last equality follows from (0.8).

We now show that (0.1) follows directly from (0.9). From (0.3) we note that

(0.10)PtAo,Am], = I- AA+

Substitution in (0.9), and use of (0.2) gives

Rank {E,+lr+l(q) i), P[r(,)h . r - }j)h} = Z)- (0.11)

Further rearrangement shows that

Rank {,lm+l+( j()Pr;()h ,,r(j)h]} = Rank {em,+l ,+l(q)P[1m(j)t]} (0.12)

Assertion (0.1) of the lemma is established by substitution of (0.12) in (0.11).
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