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Abstract

Diseases such as diabetes, some forms of cancer, hyper-tension, auto-immune dis-
eases, and some viral diseases are characterized by complex interactions within the
human body. Efforts to understand and treat these diseases have only been partially
successful. There is currently a huge commercial and academic effort devoted to com-
putational biology to address the shortfalls of qualitative biology. This research has
become relevant due to the vast amounts of data now available from high-throughput
techniques such as gene-chips, combinatorial chemistry, and fast gene sequencing.

The goal of computational biology is to use quantitative models to test complex
scientific hypotheses or predict desirable interventions. Consequently, it is impor-
tant that the model is built to the minimum fidelity required to meet a specific goal,
otherwise valuable effort is wasted. Unlike traditional chemical engineering, compu-
tational biology does not solely depend on deterministic models of chemical behavior.
There is also widespread use of many types of statistical models, stochastic models,
electro-static models, and mechanical models. All of these models are inferred from
noisy data. It is therefore important to develop techniques to aide the model builder
in their task of verifying and using these models to make quantitative predictions.

The goal of this thesis is to develop tools for analysing the qualitative and quanti-
tative characteristics of cell-signaling models. The qualitative behavior of determin-
istic models is studied in the first part of this thesis and the quantitative behavior of
stochastic models is studied in the second part.

A kinetic model of cell signaling is a common example of a deterministic model
used in computational biology. Usually such a model is derived from first-principles.
The differential equations represent species conservation and the algebraic equations
represent rate equations and equations to estimate rate constants. The researcher
faces two key challenges once the model has been formulated: it is desirable to sum-
marize a complex model by the phenomena it exhibits, and it is necessary to check
whether the qualitative behavior of the model is verified by experimental observation.
The key result of this research is a method to rearrange an implicit index one DAE
into state-space form efficiently, amenable to standard control engineering analysis.
Control engineering techniques can then be used to determine the time constants,



poles, and zeros of the system, thus summarizing all the qualitative behavior of the
system.

The second part of the thesis focuses on the quantitative analysis of cell migra-
tion. It is hypothesized that mammalian cell migration is driven by responses to
external chemical, electrical and mechanical stimulus. It is desirable to be able to
quantify cell migration (speed, frequency of turning) to correlate output to experi-
mental conditions (ligand concentration, cell type, cell medium, etc). However, the
local concentration of signaling molecules and receptors is sufficiently low that a con-
tinuum model of cell migration is inadequate, i.e., it is only possible to describe cell
motion in a probabilistic fashion. Three different stochastic models of cell migration
of increasing complexity were studied. Unfortunately, there is insufficient knowledge
of the mechanics of cell migration to derive a first-principles stochastic model. Con-
sequently, it is necessary to obtain estimates of the model parameters by statistical
methods. Bayesian statistical methods are used to characterize the uncertainty in
parameter estimates. Monte Carlo simulation is used to compare the quality of the
Bayesian parameter estimates to the traditional least-squares estimates. The statis-
tical models are also used to characterize experimental design. A surprising result
is that for certain parameter values, all the estimation methods break down, i.e., for
certain input conditions, observation of cell behavior will not yield useful information.

Ultimately, this thesis presents a compendium of techniques to analyze biological
systems. It is demonstrated how these techniques can be used to extract useful
information from quantitative models.

Thesis Supervisor: Paul I. Barton
Title: Associate Professor

Thesis Supervisor: Douglas A. Lauffenburger
Title: Whittaker Professor of Bioengineering
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Chapter 1

Introduction

Most people are familiar with the decomposition of a mammal into biological struc-

tures at different scales (from largest to smallest): organs, tissues, cells, complex

assemblies of macromolecules, and macromolecules. Many diseases exhibit symp-

toms at the largest length scales but the cause of the disease is found to be at a

far smaller length scale. Furthermore, many diseases have a single main cause (e.g.,

bacteria, virus or genetic defect). Research that seeks to rationalize the mechanism

of a disease to a single cause is reductionist. A simple example might be diarrhea and

vomiting caused by the cholera bacteria. The symptoms of the disease have a single

cause (the bacteria) and the molecular mechanism by which the bacteria causes the

symptoms is well understood (see Page 868 of [144]). It is also well known that treat-

ing a patient with antibiotics will usually kill the bacteria and ultimately alleviate

the symptoms.

Historically, biological research has used reductionist methods to explain disease

and seek new treatments. This approach has been immensely successful. The majority

of bacterial diseases can be treated with antibiotics (for example: cholera, tuberculo-

sis, pneumonia) and a large number of serious viral diseases have an effective vaccine

(hepatitis A & B, small pox). Furthermore, the cause of many hereditary diseases

have been traced to a single genetic defect (for example: cystic fibrosis, Huntingdon’s

disease, retina-blastoma, sickle-cell anemia). However, there still remain a large num-

ber of diseases that are not so well understood and do not have an obvious single cause
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(for example: some forms of heart disease, some forms of cancer, and some forms of

auto-immune disease). There are also many diseases that may have a single cause

but are not amenable to a single treatment (for example: human immuno-deficient

virus (HIV)).

We are interested in analyzing and predicting cell signaling phenomena. Under-

standing of cell signaling pathways is important for determining the cause of some

diseases, devising treatments, or mitigating adverse consequences of treatments (e.g.

chemotherapy). Examples of such diseases include: diabetes and some forms of can-

cer [128], and some forms of heart disease [186]. Furthermore, the cause or treatment

of these diseases usually requires understanding a complex and interacting biological

system. However, it is difficult to analyze complex systems without some form of

mathematical model to describe the system. Consequently, computational modeling

in the biological sciences has become increasingly important in recent years.

1.1 Modeling in Biology

The ultimate goal of modeling biological systems is to treat diseases and not to write

abstract models. This objective can be stated in terms of the following desiderata for

the model:

1. the model should not be too time consuming to build,

2. the model should be reliable and capable of making testable predictions, and,

3. it should be possible to extract useful information from the model.

These desiderata can often be satisfied by a hierarchical approach to modeling [64].

At one extreme, abstract models typically have moderate fidelity over a large range

conditions. At the other extreme, detailed models have a far greater fidelity over a

limited range of conditions. If someone devotes a fixed amount of time to building

a model, they must choose an appropriate level of detail; too detailed and it will be

impossible to make predictions over the full range of interest, too abstract and it will

be impossible to make sufficiently accurate predictions.
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A hierarchy of models can be descended as an investigation proceeds. For example,

a research project might start with a geneticist, who builds an abstract statistical

model that suggests a genetic cause for a disease. Data from DNA microarrays might

be analyzed using a clustering technique to identify possible genes that are involved

in the disease. Ultimately, a detailed model is built that describes mRNA levels,

protein phosphorylation states and protein concentrations. This model can be used

to predict suitable interventions to treat the disease. To build such a detailed model

at the outset would be difficult and wasteful. Initially, it would not be evident which

proteins and genes to include in the detailed model.

1.1.1 Hierarchical Modeling

A typical hierarchy of computational models is suggested in [118] and shown in Fig-

ure 1-1. Increasing amounts of a priori knowledge is specified as the modeling hi-

erarchy is descended. It is therefore illogical and dishonest not to admit that some

(maybe implicit) assumptions are made before formulating a model. For example,

almost all scientists accept that stretches of DNA called genes contain a code for pro-

teins. It is therefore important to analyze computational models in a system where

such assumptions are made explicit and the concept of a priori knowledge is defined.

Not only is it necessary to define knowledge, but it is also important to quantify how

much we believe this knowledge, and to define some rules describing how this degree

of belief is manipulated. It has been shown by [50, 51] and discussed in [122, 123]

(and Chapters 1–2 of [121] for the clearest derivation) that Bayesian probability is

the best known way to represent this modeling hierarchy. The amount of knowledge

or information known about a system can even be quantified using the concept of

entropy [200, 121]. Hence, an alternative viewpoint is that the entropy of the model

description decreases as the model hierarchy is descended. Bayesian probability and

the concept of entropy will be discussed in detail in Chapter 3.

The concept of probability is used in the Bayesian framework to describe uncer-

tainty. This uncertainty is pervasive at every level in the modeling hierarchy. At

the most abstract levels, probabilistic models are used to describe uncertainty of
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Figure 1-1: Possible hierarchy for modeling biological processes

the system structure (statistical mining and Bayesian networks). In the middle of

the modeling hierarchy, Bayesian parameter estimation is combined with continuum

models to cope with unspecified model parameters. At a very detailed level, the un-

derlying physical laws governing the system can only be described in probabilistic

terms (detailed stochastic models). It should be stressed that modeling uncertainty

can arise even when a large amount of a priori knowledge is specified about a system.

One such example is a detailed stochastic model (for example: the work of [12]).

1.1.2 Modeling at Different Levels of Abstraction

Statistical mining and Bayesian networks are abstract models and Markov chains

and differential equations are more detailed models. Examples of abstract biological

modeling include Bayesian networks [89, 109, 194], and examples of more detailed

biological modeling include differential equation models [7, 15, 22, 198], hybrid dis-

crete/continuous models [152, 151], and stochastic models [12]. The appropriate mod-

eling approach is dictated by the objectives of the research. The work [89, 109, 194]
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used Bayesian networks to attempt to infer regulatory structure. Typically, this

would be important at the beginning of an investigation. More detailed modeling

work is done later in an investigation. Detailed models can be used to demonstrate a

proposed signaling network structure exhibits certain dynamic behavior. The predic-

tions from a mathematical model can be used to verify whether a proposed structure

is consistent with experimental data. The more detailed models can also be used

to perform in-silico experimentation; the model can be tested for a specific set of

input conditions to predict output behavior of the system under investigation. The

resulting information can be used to suggest possible interventions for a system.

In the middle of the modeling hierarchy are continuum models. These models are

often used to validate hypotheses about the detailed structure of cell regulation and

require a moderate to high degree of a priori knowledge about the system. Such mod-

els are not usually formulated in probabilistic terms. In one example, a mathematical

model of interleukin-2 (IL-2) trafficking and signaling was used to maximize the long

term proliferation of leukocytes by predicting the optimal binding affinities for the

IL-2 ligand at different pHs [81]. Subsequently, a modified IL-2 ligand was produced

from a genetically modified cell and used to verify the model predictions. The result-

ing ligand has the potential to reduce significantly the cost and risk associated with

treating people with IL-2. Similar work has also been applied to granulate colony fac-

tor (GCF) trafficking and signaling [197]. However, sometimes the model parameters

will be unknown a priori. In this case, the continuum model will be combined with

experimental data. The continuum model will be used as an “expectation” function

for Bayesian parameter estimation. For a detailed description of Bayesian parameter

estimation the reader is referred to [244, 121, 122, 123, 29].

In contrast, stochastic models vary in complexity and do not lie neatly at one

place in the modeling hierarchy. A stochastic process is a process where either the

underlying physics are in some sense random, or the complexity of the system pre-

vents full knowledge of the state of the system (for example: Brownian motion). A

stochastic model therefore describes physical behavior in probabilistic terms. How-

ever, the term “stochastic” makes no reference to the complexity or fidelity of the
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model. Hence, stochastic models will be further classified into “simple” or “detailed”

to describe the complexity of the model.

Both abstract and detailed models are inferred from experimental data. It is

misleading to distinguish arbitrarily between “first-principles” models (or “models

built on scientific/engineering fundamentals”) and “statistical models”. The term

“first-principles” implies that there are some fundamental axioms of science that are

known. However, all scientific models are subject to uncertainty and are inferred from

experimental observation. What is clumsily expressed by the terms “first-principles”

and “statistical” is a qualitative description of the amount of a priori knowledge

included in the model. Additional a priori information will improve the fidelity of

the model. A basic desiderata of Bayesian reasoning [121] dictates that the quality

of the predictions made from a model will improve as more information is included,

provided this a priori information is correct. We will always refer to “less detailed” or

“more detailed” to describe the amount of a priori knowledge included in the model.

For a detailed discussion about the scientific method the reader is referred to the

preface of [122].

Another common misconception is that detailed models represent the underlying

structure of the system whereas less detailed models do not, i.e., there is something ad-

hoc about statistical mining methods. This is not true. Clustering techniques (such

as Principal Component Analysis) can be interpreted in terms of hidden or latent

variables [226]. The hidden variables are analogous to states in a control model.

Consider principal component analysis of data obtained from DNA microarrays; the

latent variables may represent mRNA and protein levels in the cell, i.e., the PCA

model has a structure which has a physical interpretation. Bayesian networks are

another example of a statistical technique which has a physical basis [89, 109, 194].

The resulting graph suggests connections between physically measured quantities.

1.1.3 Detailed Modeling of Biological Systems

Detailed models occur at one end of the modeling hierarchy. Typically, such models

seek to model isolated phenomena with high fidelity. Such models are consistent with
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molecular-directed approaches to determining cell signaling pathways. Molecular-

directed methods have been very successful at determining isolated properties of sig-

naling networks. However, these methods are reductionist in nature. Unfortunately,

it is becoming increasingly evident that trying to reduce all diseases to a single cause

or treatment is a forlorn hope. The key to treating such diseases will rely on under-

standing complex interactions [118].

Modeling at high levels of abstraction has not been common in the biological

sciences, although this is rapidly changing. Traditionally, cell signaling networks

have been modeled at the highest degree of detail (consistent with a reductionist

approach). Often signaling cascades are modeled as ordinary differential equations

or systems of differential-algebraic equations. However, a drawback of this approach

is that only a few aspects of the investigation are addressed. The broader context of

the research is often not summarized by detailed models [118] and it is common to

limit the scope of a detailed model to a degree where important phenomena are not

modeled.

There are two possible approaches to mitigate the current shortfalls of detailed

cellular modeling:

1. Build tools to make qualitative and quantitative comparisons between model

behavior and experimental observation. This approach allows for the iterative

refinement of detailed models based on experimental observation.

2. Model the system at a high level of abstraction, sacrificing model fidelity versus

range of model applicability.

Both tactics have been used in this thesis and the goal of this work has been to

develop tools that can make qualitative and quantitative comparisons between model

behavior and experimental observation.
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1.2 Tools to Analyze Models

The major goal of this thesis is to develop computational tools for analyzing cell

signaling phenomena. We have chosen to investigate biological models at two different

levels in the modeling hierarchy. Specifically, we have devised methods to summarize

the qualitative behavior of detailed models and methods to quantify the accuracy of

prediction for less detailed models.

In the first part of the thesis, a kinetic model of the EGF signaling cascade is

analyzed. The model is written as a detailed system of differential algebraic equations.

The next step is to be able to compare the model to experimental data. We chose to

investigate how one could test qualitative agreement between model predictions and

experimental data. However, it is difficult to efficiently summarize the qualitative

behavior of a DAE model [119]. Yet, this problem has been broadly addressed in

the control literature for systems of ordinary differential equations (ODEs) [164].

Research was done on how to rearrange a sparse index one linear time invariant DAE

into explicit state-space form. Detailed control analysis can be performed on the

resulting model to summarize the qualitative behavior (time constants, poles, zeros

of the system).

In the second part of this thesis, stochastic models of cell migration are analyzed

using Bayesian statistics. A random component to cell motion is assumed. This

assumption is consistent with a model of movement dominated by signaling at low

receptor number [231, 232]. Three different models of motion are analyzed represent-

ing increasing levels of model complexity. For each model, we wish to quantify several

different things:

1. the quality of parameter estimates obtained from the model,

2. the error introduced by model-system mismatch,

3. the optimal experimental design for a given system, and,

4. identify parameter values where estimation was difficult or impossible.
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These questions require the quantitative comparison of the computational model to

experimental or simulated data. Bayesian statistics is a natural method to compare

a computational model to experimental data. Bayesian statistics works by assigning

a probability or “degree of belief” to every possible model outcome [122, 123, 121].

Thus, the assigned probability is a function of the hypothesis, statement, or propo-

sition. The resulting mapping from a hypothesis to a probability is called a proba-

bility density function. Probability density functions are updated using the famous

Bayes rule. While it is usually straightforward to formulate the Bayesian analysis

of a computational model, these techniques can be extremely difficult to implement

numerically. A particular problem is the high-dimensional integrals resulting from

marginalization of unobserved variables. Work in the second part of the thesis focuses

on formulating Questions 1–4 as computational problems and solving the resulting

integrals.

1.3 Epidermal Growth Factor Signaling

It is natural to write detailed models of a cell signaling network in terms of differential

and algebraic equations. The work in the first part of this thesis is focused on the

analysis of DAE models of cell signaling. In particular, we are interested in developing

tools to characterize the qualitative behavior of the epidermal growth factor cell

signaling network.

Growth factors are essential for mitogenesis. Over recent years there has been

intense experimental investigation into the epidermal growth factor (EGF) family of

receptors. There is experimental evidence to suggest that over-expression of these

receptors is common in some cancers [138]. Furthermore, there is increasing evidence

to suggest that epidermal growth factor signaling plays a key role in cancer [145, 196].

There is active research into EGF receptor tyrosine kinase inhibitors as potential

anticancer agents [36, 6]. However, there is also evidence coming to light that suggests

more detailed understanding of the role of EGF will be necessary to explain clinical

results [26]. To complicate matters, there is evidence to suggest that the EGF receptor
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is active in both mitogenic and apoptopic signaling pathways [23, 217]. There has

been much work on modeling Epidermal Growth Factor Receptor signaling (EGFR

signaling) [146, 216, 174, 132, 22, 113, 61, 198] to try and understand the complex

behavior of the signaling network.

Epidermal growth factor receptor (alternatively called HER1) is one of a class

of four Human Epidermal growth factor Receptors (HER) [75]. The HER family

is characterized by a ligand-binding domain with two cysteine rich regions, a single

membrane spanning region, and a catalytic domain of approximately two hundred

and fifty amino acids [234]. There are a variety of ligands that bind the HER family

of receptors. Typically, the ligands are either synthesized as membrane precursors

that are proteolytically cleaved to release a soluble polypeptide, or else function as

membrane-anchored proteins in juxtacrine signaling [185].

Ligand binding causes activation of the intrinsic kinase activity of the EGF-

receptor, leading to the phosphorylation of cellular substrates at tyrosine residues

[40] and autophosphorylation of receptors [65, 66]. One of the ultimate effects of

ligand binding is the activation of the MAPK enzyme as shown in Figure 1-2.

While the diagram suggests a clearly understood mechanism for MAPK activation,

the reality is that only part of the mechanism is fully known. For example, the role

of calcium in cell signaling is poorly understood [42]. Several different models have

been proposed for the regulation of calcium [157, 98]. A calcium clamp technique has

been developed that yields experimental results which suggest the information content

contained in the calcium signal is frequency encoded [63]. It has also been shown that

ligand affinity for the EGF receptor is not the only factor defining mitogenic potency.

Studies comparing the mitogenic potency of transforming growth factor α (TGFα)

to the potency of EGF, suggest that a lower affinity ligand does not necessarily lead

to a weaker response [181]. Ligand depletion effects [180] and differential receptor

down regulation [181] both play an important role in defining the response of a cell

to a signaling molecule. These competing effects have been exploited by producing a

genetically modified ligand for the EGF receptor with a lower affinity, which elicits a

greater mitogenic response [179].
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Figure 1-2: Mechanism of MAPK activation through the EGF receptor [22]
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The level of complexity in the EGFR system together with competing interac-

tions justify a hierarchical and quantitative approach to investigation [13]. Short

term activation of PLCγ and SOS by EGF has been modeled [132], although the

model did not take into account trafficking effects. Mathematical modeling of cell

signaling allows predictions to be made about cell behavior [141]. Typically, qualita-

tive agreement between a mathematical model and experimental data is sought. For

example, epidermal growth factor signaling has been investigated [22]. By construct-

ing a kinetic model of the signaling network, it was possible to show that signals are

integrated across multiple time scales, distinct outputs are generated depending on

input strength and duration, and self-sustaining feedback loops are contained in the

system. However, despite a wealth of modeling work, little attempt has been made to

systematize the analysis of these signaling models. Work in the first part of this the-

sis is devoted to the systematic analysis of these models, exploiting control theoretic

techniques.

1.3.1 Formulating Cell-Signaling Models

The first step in determining the qualitative behavior of a cell-signaling network model

is to write a model of the system. Typically, it is important to know:

1. what level of fidelity is required of the model (abstract / statistical or detailed

/ mechanistic),

2. whether the physical behavior of interest is deterministic or stochastic,

3. whether the physical behavior of interest occurs at steady-state or whether the

behavior is dynamic, and,

4. whether the biological system well-mixed or anisotropic.

A possible decision tree to decide what type of model is appropriate is shown in

Figure 1-3.

Cell-signaling networks are often modeled in great detail and typically either a

continuum or stochastic model is used. Modern physics casts doubt whether the
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Figure 1-3: Decision tree to decide appropriate model type
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“laws of physics” are deterministic. However, effective deterministic behavior can be

realized from a probabilistic system when average properties (concentration, temper-

ature, etc.) are of interest. It is often far simpler and more desirable to model the

effective behavior of the system rather than the small-scale detail. Depending on

the situation, this can either be achieved by writing a less detailed probabilistic de-

scription of the system (a stochastic model) or else writing a deterministic continuum

model.

A typical approach to modeling cell-signaling networks is to write conservation

equations for each of the species of interest for a specified control volume. The

conservation equations are usually an under-determined system of equations. It is

therefore necessary to add additional equations and specify some variables to make

a well-posed simulation. Typically, such equations would include algebraic equa-

tions specifying the rates of generation of species, algebraic relationships determining

equilibrium constants from the thermodynamic state of the system, and algebraic re-

lationships determining rate constants. Many biological systems are isothermal and

little transfer of momentum occurs within the system. It is therefore common to ne-

glect energy and momentum balances on the system of interest. Great care must be

taken in selecting the appropriate control volume and accounting for any changes of

volume of the system (see Chapter 2, § 2.1 for a more detailed explanation of potential

errors). When a species has more than one state, (for example: the phosphorylation

state of a protein) typically two or more variables are introduced to represent the

quantity of molecules in each state. The abstract form of the species conservation

equations can be written in terms of basic processes:

Rate of Accumulation = Flow In− Flow Out + Rate of Generation. (1.1)

This abstract model can be converted into either a continuum model or a stochastic

model. A crude statement of when a system is effectively deterministic is written

mathematically as: √
Var(x)

|E(x)|
� 1, (1.2)
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where Var(x) is the variance of x and E(x) is the expected value of x. The ratio

can interpreted as roughly the deviation of x between experiments run at constant

conditions divided by the average value of x over all the experiments. Clearly, if the

deviation of x is small then one is confident in predicting the value of x and the system

is effectively deterministic. These systems can be safely modeled using the continuum

approximation. The variables in a continuum model represent the average or expected

value of a quantity (for example: concentration, velocity, etc.). The quantities of

interest are represented by real numbers (rather than integer numbers) and the basic

processes: accumulation, flow in, flow out, and generation occur smoothly. Clearly,

the continuum model is an approximation of a cell signaling network as molecules

occur in integer amounts. Hence, the continuum model is only appropriate when the

quantity of molecules of interest is sufficiently high (see [56, 55] for a discussion of

how stochastic effects in ligand binding are governed by cell-receptor number). If

the condition in Equation (1.2) does not hold, then it is more appropriate to write a

probability based model.

For systems where the quantity of species is low, it may not be appropriate to use a

continuum model and instead a stochastic model of the system should be used (see [12]

for an example of a stochastic simulations of a cell-signaling network). This approach

is a more faithful representation of the system. However, the increased fidelity comes

at some cost. Stochastic simulations are computationally more challenging to solve

and the results of one simulation only represent one of many possible realizations of the

system. To determine average behavior requires many simulations to be performed.

1.3.2 Continuum Models of Cell-Signaling

It can be seen from the decision tree shown in Figure 1-3 that continuum models

represent several different classes of models. If there is no accumulation of material

in the control volume (the left hand side of Equation (1.1) is identically zero), the

system is at steady-state and all of the variables of interest hold a constant value

with respect to time. Such a system is at equilibrium. It is quite common to ma-

nipulate the conditions of an in vitro experiment to try to achieve equilibrium (for
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example: a ligand binding assay to determine a binding affinity, Ka). In contrast, if

there is accumulation of material within the control volume, the values of the system

variables will change with respect to time (the system shows transient or dynamic

behavior). This scenario is more common when examining the regulatory structure

of a mammalian cell.

If the whole of a steady-state system is well-mixed, the abstract conservation

equations reduce to the familiar form:

0 = Flow In− Flow Out + Rate of Generation. (1.3)

Each of the terms in Equation (1.3) can be represented by algebraic terms and the

resulting model equations are purely algebraic. If the system is not well-mixed, it

is necessary to model the spatial variations of quantities of interest (concentration,

electric field, etc.). There are two different approaches depending on the fidelity

required in the model:

1. a compartment approach where the control volume is sub-divided into a finite

set of well-mixed control volumes and flux equations are written to describe the

flow of material between the compartments, and,

2. a partial differential-algebraic equation (PDAE) approach where the conserva-

tion equations are derived for an infinitesimal element of the control volume

and boundary conditions are used to describe the flux of material to and from

the control volume.

The correct approach depends on the degree of fidelity required and whether there

are physically distinct regions. Typically, PDAEs are more difficult to solve and

require more a priori knowledge. A compartment approach may be more appropriate

if there are physically distinct regions within the overall control volume (for example:

organelles such as the endosome and lysosome inside a cell).

However, it is more common to find that the transient behavior of a cell signaling

network is of interest. Again, it is important to know whether the control volume
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is well-mixed. If the system is not well-mixed the choices are again to formulate a

compartment model or else write a PDAE model. Biological examples of the compart-

ment model approach to modeling cell signaling include [81, 197]. Examples of PDAE

models include [112]. It is usually simpler to formulate a compartment model since

the model represents a collection of well-mixed control volumes with flux equations

to describe the flow of material between the control volumes.

If it is appropriate to model the control volume as a well-mixed region, the rate

of accumulation term in Equation (1.1) is represented by a total derivative:

Rate of Accumulation =
d (Quantity)

dt
. (1.4)

It should be stressed that only extensive quantities such as mass, number of moles

of a species, internal energy, etc, are conserved. Intensive quantities such as concen-

tration are only ever conserved under very restrictive assumptions. Unfortunately,

it is almost de rigour in the biological simulation literature to formulate models in

terms of intensive properties. This approach has three main disadvantages: it is not

clear what assumptions were used to formulate the original model, it is often an error

prone task to convert a model written in terms of extensive quantities into a model

written in terms of intensive quantities, and finally it is not clear to which control

volume the equation applies. A common example of a conservation equation written

in terms of intensive quantities might be:

dCEGF
dt

= kfCEGFCEGFR − krCEGF−EGFR (1.5)

where CEGF , CEGFR, and CEGF−EGFR are the concentrations of EGF, the EGF re-

ceptor, and EGF bound to the EGF receptor. However, concentration is in general

not a conserved quantity and it is not clear in which control volume the concentration

is measured (media bulk, endosome, lysosome, cytoplasm, cell membrane, nucleus,

etc.). The advantage of formulating the conservation equations in terms of intensive

quantities is that it results in a system of ordinary differential equations. Instead, it
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is preferable to write the abstract species conservation directly:

dNBULK
EGF

dt
= FinBULKEGF − FoutBULKEGF +RBULK

EGF (1.6)

where NEGF is the number of moles of EGF in the bulk, FinBULKEGF and FoutBULKEGF

are the respective flow terms of EGF into and out of the bulk and RBULK
EGF is the

rate of generation of EGF in the bulk. The terms in Equation (1.6) must then be

specified with additional algebraic equations. This results in a system of differential-

algebraic equations. Historically, the simulation of DAEs has not been widespread

and it has been perceived that it is a computationally challenging task. Consequently,

much teaching has focused on ODE formulations of biological simulations. However,

with modern computers and sophisticated DAE process simulators (ABACUSS II

[41, 230], gPROMS [16], SPEEDUP (now Aspen Custom Modeler) [167]) it is not

true that DAE simulations are unduly difficult to solve; simulations and sensitivity

analyses of many thousands of equations can be computed in seconds or minutes.

Several different objectives can be achieved once the simulation has been formu-

lated. For example, a clinician may be interested in the results of a simulation for a

specific set of input conditions. In contrast, a researcher is probably more interested

in characterizing the behavior of the network. To characterize the behavior of the

network either requires a large number of simulations over a set of different input

conditions or some other mathematical way of characterizing the system [82]. The

control literature has developed sophisticated techniques to analyze systems of ordi-

nary differential equations. Many of these approaches require the construction of an

linear, time-invariant, explicit ODE approximation to the original systems of equa-

tions around an equilibrium point. The approximation is valid for sufficiently small

perturbations of the system around the equilibrium point. There is a well-developed

theory for describing the behavior state-space models (summarized in Chapter 2,

§ 2.2). Typically, the state-space approximation to the original ODE is constructed

by hand. It would be a monumental task to construct such an approximation to a

DAE by hand. Instead, we have developed a technique to generate such an approxi-
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mation automatically (Chapter 2).

1.4 Mammalian Cell Migration

Work in the second part of this thesis is devoted to developing statistical techniques

to analyze cell migration data. Cell migration plays a critical role in inflammation,

wound healing, embryogenesis, and tumor cell metastasis [233]. Consequently, there

have been numerous investigations of the in-vitro migration of mammalian cells (see

for example [8, 56, 91, 93, 97, 143, 162, 166, 172, 184, 237, 242]). However, a

key step in these studies is to quantify different types of cell migration behavior.

The objective of this work is to compare cell migration tracks to see if there is a

quantifiable difference between the migration of cells under different input conditions

(e.g., ligand concentration, cell medium, cell substrate, cell type, etc.). This step is

crucial to elucidate how cell migration occurs and what external influences control

cell migration.

A mammalian cell touches the substrate at distinct areas called focal adhesions.

Focal adhesions span the cell-surface membrane and contain a complex assembly of

cell surface receptor proteins, internal cell signaling proteins, actin polymer fibers and

other cyto-skeletal proteins [34]. The structures and mechanisms of focal adhesions

are not completely understood, although experimental evidence suggests that focal

adhesions are important for cell-substrate traction, mechanical properties of the cell

and cell receptor signaling. Traction between the cell and the base surface is mediated

through receptor-ligand interactions (often integrin receptor-fibronectin) and non-

specific binding. A very simplified schematic of a receptor mediated binding at a focal

adhesion is shown in Figure 1-4. The effect of integrin receptor-fibronectin interaction

on cell migration has been investigated [140, 58, 166]. Experimental evidence has

verified computational work suggesting that cell migration speed is a biphasic function

of substrate fibronectin concentration [166].

Cell migration is often broken into four distinct phases: extension, adhesion,

translocation and de-adhesion (shown in Figure 1-5) [144]. Continuous mammalian
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Figure 1-4: Simplified schematic of a focal adhesion [34]

cell migration is characterized by polarization of the cell and formation of a domi-

nant leading lamella [8, 143], although it is not unusual to see growth of competing

lamellae for certain cell types [156]. It is widely hypothesized that cell migration is

driven by the following basic molecular processes: actin assembly, actin disassem-

bly, cyto-skelatal reorganization, and contractile force generation. Assembly of actin

filaments occurs preferentially at the tip of the lamella and disassembly occurs at

the base [88, 222]. Although many of the basic molecular processes responsible for

cell migration have been characterized, their physiological regulation and mechani-

cal dynamics are not well understood [8]. For example, the following mechanisms

have been proposed for controlling the orientation of actin fiber assembly: transient

changes in actin polymerization [79, 209], protrusion of the cell membrane due to os-

motic swelling [45, 30], Brownian movement of the cell membrane [171], detachment

of membrane and actin filaments by action of myosin I [201, 83], and a combina-

tion of hydrostatic pressure and mechanical tension controlling the local dynamics of

microfilament alignment [133, 134, 31].

The first phase of cell migration is polarization of the cell followed by extension

of one or more lamellae through actin polymerization (extension). Ultimately, only

one lamella will be stable (defining the direction of motion) if more than one lamellae

are extended. A new focal adhesion forms at the tip of a stable lamella once the

lamella is fully extendend (adhesion). After a stable focal adhesion has formed at

the tip, the nucleus moves to the new center of the cell (translocation) by forces

exerted on the nucleus through the cyto-skeleton. The final step is de-adhesion of
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the rear focal adhesion and adjustment of the cell membrane location (de-adhesion).

Extensive work has been done to investigate regulation of some of the individual

steps of cell migration: polarization and lamellae extension (for example: [175, 177,

239]), formation of focal adhesions (for example: [34, 57, 241]), translocation of cell

(for example: [187, 238]), and de-adhesion of the rear focal adhesion (for example:

[24, 52]). Ultimately, it is desired to characterize the effect of external conditions on

physiological behavior, i.e., characterizing the response of the cell. However, there

is currently insufficient information to perform detailed modeling of cell migration

to the point where cell motion can be predicted. This has motivated the use of less

detailed models as described in § 1.4.1.

1.4.1 Random-Walk Models of Cell Migration

Much of the research cited in § 1.4 focuses on determining the molecular mechanism

of cell migration and regulation of migration. The ultimate goal is to be able to use

in vitro experimental work to make predictions about in vivo physiological behavior.

For example, it is known that over-expression of the HER2 receptor in mammary

epithelial cells correlates with a poor prognosis for sufferers of breast cancer [211].

It is also known that often breast cancer cells metastasize within the body. Two

questions naturally arise:

1. does over-expression of HER2 cause cancer cell migration?

2. if a chemical is found that blocks in vitro HER2 induced cell migration will this

be an effective anti-cancer drug?

To answer either of these questions requires characterization of in vitro cell migration

in a way that is relevant for in vivo predictions. To achieve this goal, it is desirable

to correlate cell migration to external stimuli or cell abnormalities.

Typically, cell migration is characterized by time-lapse video microscopy. However,

the researcher is then faced with the challenge of distinguishing between two different

sets of time-lapse data. Ideally, it would be possible to write a mechanistic model

39



that would predict cell motion as a function of external inputs. However, there are

currently two difficulties with this approach: the regulatory structure of cell migration

is not known in sufficient detail, and it is hypothesized that cell migration is driven

by stochastic processes.

Instead, it has been proposed to characterize cell migration paths in terms of a

small number of physical parameters that can then be correlated with external inputs.

The work of [91] was one of the first to model cell migration as a random walk. In

this work, the locomotion of mouse fibroblasts in tissue culture was observed at 2.5hr

and 5hr time intervals. Cell migration paths were modeled as a Brownian diffusion

and a correlated random walk. The Brownian diffusion model has a single parameter:

diffusivity, D. In contrast, the correlated random walk model has two parameters:

augmented diffusivity, D∗, and persistance tendency, ρ. Indeed, there are a large

number of different random walk models that can be used to model cell migration.

A comprehensive review of the different models is [165].
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Figure 1-5: Steps in polarized keratinocyte movement (see Page 788 of [144])
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Chapter 2

Detailed Modeling of

Cell-Signaling Pathways

Frequently, cell-signaling networks are modeled by writing conservation equations for

each of the signaling species, resulting in a large set of nonlinear differential-algebraic

equations (DAEs) that are sparse and unstructured (as discussed in § 2.1). The goal

of writing the model is to analyze the behavior of the network and predict suitable

interventions. The implicit nonlinear model may be unsuitable for this task since

it is difficult to analyze an implicit nonlinear model systematically. The alternative

to systematic analysis of the original implicit nonlinear model is the simulation of a

large number of scenarios. However, this can be quite time consuming [82].

Two methods have been advocated for constructing an explicit linear model from

a set of nonlinear DAEs:

1. process identification, and

2. linearization of the original nonlinear model and rearrangement.

However, it is easy to construct an explicit linear model by process identification,

which has the correct open loop behavior, but has qualitatively different closed loop

behavior [119]. Consequently, the second approach of linearizing the original model

appears attractive. A method for this task has been proposed by [240] and imple-
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mented in the Control Data Interface of Aspen Custom Modeler1 and SpeedUp2. It

has been found that this method is inadequate for larger systems [102].

For typical cell signaling models, the corresponding state-space matrices are sparse

(see § 2.6.1). Sparsity of the state-space model can be exploited in further calcula-

tions; e.g., eigenvalue calculations and identifying right-half plane poles [192, 193, 73,

74, 199]. Furthermore, many of the algebraic variables that appear in the original

nonlinear DAE are not of interest. For example, it is likely that an experimentalist

would be interested in the concentrations of key signaling molecules, but not so in-

terested in the value of fluxes of molecules due to trafficking and reaction. Another

example might be the semi-discretization of a set of partial differential-algebraic equa-

tions (PDAEs) where algebraic equations are introduced during the discretization. It

is therefore desirable to construct a smaller linear state-space model from the original

large-scale nonlinear DAE. In this situation, it may be necessary to retain only a

limited subset of the algebraic variables defined in the original model. Conventional

stability and controllability analysis can be applied to the resulting linearized model

to make qualitative statements about the original DAE [210].

2.1 Formulation of Cell-Signaling Models

Writing an accurate model of a cell-signaling system is the first step in perform-

ing a mathematical analysis of the system properties. Conventionally, cell-signaling

models have been written as systems of ordinary differential equations (for exam-

ple: [81, 197]). This approach to modeling has some potential pitfalls which will be

demonstrated in this Section. In particular, it can be difficult to correctly formulate

an ODE model for a system that does not have constant volume. Instead, we advo-

cate writing such models as DAEs. The general form for such a cell-signaling model

is:

f(x′,x,y,u) = 0, f : Rnx × Rnx × Rny × Rnu → Rnx+ny (2.1)

1Aspen Custom Modeler is a registered trademark of Aspen Technology, Cambridge, MA.
2SpeedUp was a process simulator developed at Imperial College, London and marketed by Aspen

Technology.
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where x(t) ∈ Rnx are the states of the system, y(t) ∈ Rny are the algebraic variables,

and u(t) ∈ Rnu are the inputs to the system at time t. It is more challenging

computationally to solve systems of DAEs compared to systems of ODEs. However,

with modern computers and sophisticated DAE process simulators (ABACUSS II

[41, 230], gPROMS [16], SPEEDUP (now Aspen Custom Modeler) [167]) it is not true

that DAE simulations are unduly difficult to solve; simulations of many thousands of

equations can be computed in seconds or minutes. Indeed, some process simulators

(for example: ABACUSS II [41, 230]) will even automatically generate sensitivities

of the state and output vectors with respect to model parameters.

2.1.1 ODE Model of IL-2 Receptor Trafficking

It is instructive to analyze an example trafficking model [81] to illustrate some of

the pitfalls in directly approximating the species conservation equations as an ODE.

It should be stressed that the authors’ model is a fairly close approximation to the

DAE conservation equations for the range of conditions investigated (the error of

the approximation is certainly less than the error due to parametric uncertainty).

However, the error might not be so small for alternative conditions or parameter

values. The goal of the work of [81] was to model the effect of molecular binding

and trafficking events of interleukin-2 (IL-2) on cell proliferation. A schematic of

the system is shown in Figure 2-1. The model proposed by the authors is shown

in Equations (2.2)–(2.9). The notation and parameter values are summarized in

Tables 2.1–2.2.

Receptor balance at cell surface:

dRs

dt
= Vs + krCs + ksynCs − ktRs − kfRsL. (2.2)

Ligand-receptor complex balance on cell surface:

dCs
dt

= kfRsL− krCs − keCs. (2.3)
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Figure 2-1: Schematic of interleukin-2 receptor-ligand trafficking

Receptor balance on endosome:

dRi

dt
= kreCi + ktRs − kfeRiLi − khRi. (2.4)

Ligand-receptor complex balance on endosome:

dCi
dt

= keCs + kfeRiLi − kreCi − khCi. (2.5)

Ligand balance on endosome:

dLi
dt

=
kreCi − kfeRiLi

VeNA

− kxLi. (2.6)

Ligand balance on bulk medium:

dL

dt
= Y

krCs − kfRsL

NA

+ Y kxVeLi. (2.7)
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Table 2.1: IL-2 trafficking parameters

Parameter Definition Value

kr dissociation rate constant 0.0138 min−1

kf association rate constant kr/11.1 pM−1

kre dissociation rate constant, endosome 8kr min−1

kfe association rate constant, endosome kre/1000 pM−1

kt constitutive receptor internalization rate
constant

0.007 min−1

Vs constitutive receptor synthesis rate 11 # cell−1 min−1

ksyn induced receptor synthesis rate 0.0011 min−1

ke internalization rate constant 0.04 min−1

kx recycling rate constant 0.15 min−1

kh degradation rate constant 0.035 min−1

Ve total endosomal volume 10−14 liter cell−1

NA Avogadro’s number 6× 1011# (pico mole)−1

Empirical cell growth rate relationship:

dY

dt
= max

(
600Cs

250 + Cs
− 200, 0

)
× 103. (2.8)

Concentration of ligand destroyed in lysosome:

dLd
dt

=
khCi
VeNA

. (2.9)

However, as already stated in Chapter 1, concentration is not generally a conserved

quantity. The model equations are only strictly valid if the total volume of cells

remains unchanged. The authors’ model is an approximation to an underlying DAE

model. The fact that strict conservation does not occur is illustrated by adding

Equation (2.10), which tracks the total ligand concentration in bound, unbound and

destroyed forms:

LT = L+
Y Cs
NA

+
Y Ci
NA

+ VeY Li + VeY Ld. (2.10)

An ABACUSS II simulation of the system is shown in Figure 2-2. In fact, it is always

worth adding such an equation to a cell-signaling model as it will often reveal mistakes

47



Table 2.2: IL-2 trafficking nomenclature

Variable Definition Units

Rs Number of unbound receptors on the cell surface # cell−1

Y Cell density # liter−1

Cs Number of ligand-receptor complexes on the cell surface # cell−1

L Bulk concentration of unbound ligand pM
Ri Number of unbound receptors in the endosome # cell−1

Ci Number of ligand-receptor complexes in the endosome # cell−1

Li Concentration of unbound ligand in the endosome pM
Ld Concentration of ligand destroyed in lysosome pM
LT Total ligand concentration in bound and unbound forms pM
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Figure 2-2: Simulation results for ODE IL-2 trafficking model
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Figure 2-3: Regions of accumulation for IL-2 trafficking model

(incorrect unit conversions, mistaken assumptions, etc.). The code for the simulation

is shown in Appendix B, § B.1. The total concentration of IL-2 ligand should remain

constant at 10pM. However, it can be seen from the plot that there is roughly a 1.5%

increase in ligand concentration; i.e., the model equations do not enforce conservation

of mass. It should be emphasized that for this particular example the discrepancy in

the mass balance is small so it does not alter the conclusions of the study.

2.1.2 Reformulated DAE Model of IL-2 Receptor Trafficking

It is preferable to formulate the model equations as a system of DAEs. The regions of

accumulation of material are shown in Figure 2-3. The corresponding model is shown

in Equations (2.11)–(2.36):

Empirical cell growth rate relationship:

dY

dt
= max

(
600Cs

250 + Cs
− 200, 0

)
× 103. (2.11)

Ligand balance on bulk medium (constant volume):

dL

dt
= F S→B

L − FB→S
L + FE→B

L . (2.12)
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Receptor balance on cell surface (volume is not constant):

dNS
R

dt
= FC→S

R − F S→E
R + rSR. (2.13)

Complex balance on cell surface (volume is not constant):

dNS
C

dt
= rSC − F S→E

C . (2.14)

Receptor balance on endosome (volume is not constant):

dNE
R

dt
= F S→E

R + rER . (2.15)

Complex balance on endosome (volume is not constant):

dNE
C

dt
= F S→E

C + rEC . (2.16)

Ligand balance on endosome (volume is not constant):

dNE
L

dt
= −FE→B

L + rEL . (2.17)

Ligand destroyed in endosome (volume is not constant):

dND
L

dt
= rDL . (2.18)

Ligand flux from surface to bulk:

F S→B
L =

Y krCs
NA

. (2.19)

Ligand flux from bulk to surface:

FB→S
L =

Y kfRsL

NA

. (2.20)
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Ligand flux from endosome to bulk:

FE→B
L = Y kxVeLi. (2.21)

Receptor flux from cytosol to surface:

FC→S
R = Y Vs. (2.22)

Receptor flux from surface to endosome:

F S→E
R = Y ktRs. (2.23)

Generation of free receptors at the surface:

rSR = Y (ksynCs + krCs − kfRsL) . (2.24)

Generation of ligand-receptor complexes at surface:

rSC = Y (kfRsL− krCs) . (2.25)

Complex flux from surface to endosome:

F S→E
C = Y keCs. (2.26)

Generation of free receptors in the endosome:

rER = Y (kreCi − kfeRiLi − khRi) . (2.27)

Generation of ligand-receptor complexes in the endosome:

rEC = Y (kfeRiLi − kre − khCi) . (2.28)
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Generation of free ligand in the endosome:

rEL =
Y (kreCi − kfeRiLi)

NA

. (2.29)

Rate of ligand destruction in the endosome:

rDL = Y
khCi
VeNA

. (2.30)

Total number of receptors on cell surface:

NS
R = Y Rs. (2.31)

Total number of complexes on cell surface:

NS
C = Y Cs. (2.32)

Total number of receptors in the endosome:

NE
R = Y Ri. (2.33)

Total number of complexes in the endosome:

NE
C = Y Ci. (2.34)

Total number of ligands in the endosome:

NE
L = Y Li. (2.35)

Total number of ligands destroyed in the endosome:

ND
L = Y Ld. (2.36)

The corresponding ABACUSS II simulation is shown in Appendix B, § B.2. At first
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glance, it may appear more cumbersome to write the model in the form proposed in

Equations (2.11)–(2.36) compared with the ODE form in Equations (2.2)–(2.9). It is

true that the ODE model is smaller. However, experience shows that it is easier to

make mistakes (incorrect units, etc.) when the fluxes are not written out explicitly. It

is certainly possible to convert the DAE model (Equations (2.11)–(2.36)) into an ODE

model by substitution of equations and application of the chain rule. For example,

combining Equations (2.11), (2.14), (2.32), (2.25) and (2.26) yields:

dCs
dt

= −Cs
Y

max

(
600Cs

250 + Cs
− 200, 0

)
× 103 + kfLRs − (kr + ke)Cs.

It should be emphasized that little benefit is gained from this additional (and therefore

potentially error prone) step since the original DAEs can be simulated with ease.

2.2 Properties of Explicit ODE Models

As shown in § 2.1, the original DAE cell-signaling model can be written according

to Equation (2.1). However, it is desirable to summarize the qualitative behavior of

such a system, thus allowing general statements to be made about the cell signaling

model. To begin the discussion, the properties of ODE models will be examined in

this Section.

2.2.1 Linear Time-Invariant ODE Models

Typically, cell-signaling models cannot be formulated as linear time-invariant ODEs

since most reaction networks include bimolecular reactions of the form:

L+R � C.

The species conservation equations for such a system are bilinear. Under some condi-

tions (for example: excess ligand) the system can be approximated by a linear pseudo

first-order reaction. In general, this approximation does not hold. However, it is use-
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ful to present some results about linear time-invariant ODEs as the theory of such

systems underpins the understanding of nonlinear ODE systems.

An autonomous linear time-invariant ODE has the form:

x′(t) = Ax(t) , (2.37)

where A is a constant matrix. The system is autonomous as the independent variable,

t, does not appear explicitly. Typically, cell signaling models are autonomous. The

solution to the linear system of ODEs given in Equation (2.37) is

x(t;x0, t0) = [expA (t− t0)]x0. (2.38)

Frequently, one is concerned with the response of the system to perturbations

around steady-state. Steady-state occurs when there is no accumulation of material,

energy, or momentum in the control volume. This corresponds to the condition:

x′(t) = 0. (2.39)

A value of x which causes Equation (2.39) to be satisfied is an equilibrium point.

Clearly, x = 0 is an equilibrium point for the linear system of ODEs given in Equa-

tion (2.37). It is natural to ask how the system responds to perturbations in the

initial condition around the zero state. In particular, it is interesting to determine

whether the states remain bounded for bounded perturbations in the initial condition.

Definitions 2.2.1–2.2.2 are used to describe the solution behavior of dynamic systems

formally.

Definition 2.2.1. (Page 370 of [243]) The zero state x = 0 of is said to be stable in

the sense of Lyapunov, if for any t0 and any ε > 0, there is a δ > 0 depending on ε

and t0 such that

||x0|| < δ ⇒ ||x(t;x0, t0)|| < ε ∀t ≥ t0.

Definition 2.2.2. (Page 371 of [243]) The zero state x = 0 is said to be asymptotically

stable if
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1. it is Lyapunov stable, and,

2. for any t0, and for any x0 sufficiently close to 0, x(t;x0, t0)→ 0 as t→∞.

It is straightforward to characterize the solution behavior of a linear time-invariant

ODE as the closed-form solution is known (Equation (2.38)). It is necessary to define

the minimal polynomial:

Definition 2.2.3. (Page 593 of [243]) Given the polynomial:

p(λ) =
N∑
k=0

akλ
k

the matrix p(A) is the matrix equal to the polynomial

p(A) =
N∑
k=0

akA
k,

where A0 = I. The minimal polynomial of the matrix A is the polynomial ψ(λ) of

least degree such that ψ(A) = 0 and the coefficient of the highest power of λ is unity.

The following Theorems relate the stability of the solution x(t) to the eigenvalues

of A.

Theorem 2.2.1. [243] The system described by Equation (2.37) is Lyapunov stable

iff

1. all of the eigenvalues of A have nonpositive real parts, and,

2. those eigenvalues of A that lie on the imaginary axis are simple zeros of the

minimal polynomial of A.

Proof. See Pages 375–376 of [243].

Theorem 2.2.2. [243] The system described by Equation (2.37) is asymptotically

stable iff all of the eigenvalues of A have negative (< 0) real parts.

Proof. See Pages 375–376 of [243].
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2.2.2 Nonlinear ODE Models

A system of differential equations in which the independent variable, t, does not occur

explicitly,

x′ = f(x) ,

is autonomous. Any system x′ = f(t,x) can be considered autonomous if the vector

x is replaced by the vector (t,x) and the system is replaced by t′ = 1, x′ = f(t,x).

An equilibrium point of an autonomous ODE, x0, is any vector that satisfies,

f(x0) = 0.

It is difficult to make general statements about the behavior of a system of nonlinear

ODEs. However, often one is interested in the behavior of the system perturbed

around steady-state (an equilibrium point, since x′ = 0). The Hartman-Grobman

Theorem can be used to make statements about perturbations of an autonomous

nonlinear ODE around an equilibrium point:

Theorem 2.2.3. [110, 111] In the differential equation:

ξ′ = Eξ + F(ξ) , (2.40)

suppose that no eigenvalue of E has a vanishing real part and that F(ξ) is of class C1

for small ||ξ||, F(0) = 0, and ∂ξF(0) = 0. Consider the linear system:

ζ ′ = Eζ. (2.41)

Let T t : ξt = η(t, ξ0) and Lt : ζt = eEtζ0 be the general solution of Equations (2.40)

and (2.41), respectively. Then there exists a continuous one-to-one map of a neigh-

borhood of ξ = 0 onto a neighborhood of ζ = 0 such that RT tR−1 = Lt; in particular,

R : ξ → ζ maps solutions of Equation (2.40) near ξ = 0 onto solutions of Equa-

tion (2.37) preserving parameterizations.

Proof. The reader is referred to [110, 111] for full details of the proof.
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Basically, the result in Theorem 2.2.3 means that local behavior of an autonomous

nonlinear ODE around an equilibrium point can be determined by studying the prop-

erties of a linearization of the ODE at the equilibrium point if there is no purely

oscillatory component in the solution of the linearized ODE.

2.3 State-Space Approximation of DAE Models

The Theorems presented in § 2.2 allow one to characterize the behavior of an ex-

plicit ODE. However, we are advocating formulating cell-signaling models as DAEs.

Naturally, the question arises whether there is an equivalent stability Theorem for

systems of DAEs. We will restrict ourselves to studying a system of DAEs defined by

Equation (2.1), and assume that the Jacobian matrix, [fx′ fy] is non-singular. This

condition is satisfied for almost all cell-signaling networks and is sufficient to ensure

that the DAE is index 1. Linearization of Equation (2.1) around an equilibrium

solution yields the linear time invariant DAE:

0 = fx′(x
′
0,x0,y0,u0) ∆x′ + fy(x′0,x0,y0,u0) ∆y (2.42)

+ fx(x
′
0,x0,y0,u0) ∆x + fu(x′0,x0,y0,u0) ∆u

where the variables (∆x,∆y,∆u) represent perturbations from the equilibrium solu-

tion,

x = x0 + ∆x

y = y0 + ∆y

u = u0 + ∆u,

and all of the Jacobian matrices are evaluated at the equilibrium solution. If the

matrix [fx′ fy] is non-singular, then the linearization is index 1 (at least in a neigh-

borhood of the equilibrium solution). For cell-signaling models, [fx′ fy] and [fx fu]

are unsymmetric, large, and sparse. The linearized DAE in Equation (2.42) can be
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rearranged to explicit ODE state-space form: ∆x′

∆y

 = −
[

fx′ fy

]−1 [
fx fu

] ∆x

∆u

 . (2.43)

It is natural to ask how the stability of the explicit state-space ODE (Equation (2.43))

is related to the stability of the original DAE. To characterize the stability of such a

DAE, it is necessary to use the Implicit Function Theorem:

Theorem 2.3.1. [188] Let f be a C1 mapping of an open set E ⊂ Rn+m into Rn,

such that f(a,b) = 0 for some point (a,b) ∈ E. Put A = f ′(a,b) and assume that

Ax is invertible.

Then there exists open sets U ⊂ Rn+m and W ⊂ Rm, with (a,b) ∈ U and b ∈ W ,

having the following property:

To every y ∈ W corresponds a unique x such that

(x,y) ∈ U,

and,

f(x,y) = 0.

If this x is defined to be g(y), then g is a C1 mapping of W into Rn, g(b) = a,

f(g(y) ,y) = 0, y ∈ W,

and

g′(b) = − (Ax)
−1Ay.

Proof. See Pages 225–227 of [188].

The stability of an autonomous DAE can now be described by the following The-

orem:

Theorem 2.3.2. Consider the autonomous DAE defined by Equation (2.44), and let

58



F be a C1 mapping of an open set E ⊂ R2nx+ny into Rnx+ny .

F(x′,x,y) = 0 (2.44)

Suppose Equation (2.45) is satisfied for some point (0,x0,y0) ∈ E:

F(0,x,y) = 0. (2.45)

If [Fx′ Fy](x0,y0) is non-singular and the time-invariant linearization around (x0,y0) is

asymptotically stable, then the original non-linear DAE in Equation (2.44) is asymp-

totically stable to sufficiently small perturbations around (x0,y0).

Proof. Define the variables ∆x and ∆y to be perturbations around the equilibrium

point:

x = x0 + ∆x

y = y0 + ∆y.

Then the following DAE can be written:

F(∆x′,x0 + ∆x,y0 + ∆y) = 0, (2.46)

where F is still a C1 mapping and the Jacobian matrix:

[
F∆x′ F∆y

]
(0,0)

=
[

Fx′ Fy

]
(x0,y0)

is non-singular. The conditions of the Implicit Function Theorem (Theorem 2.3.1)

apply to the autonomous index 1 DAE defined by Equation (2.46). Hence, it follows

that locally the explicit ODE system is equivalent:

∆x′ = g1(∆x) (2.47)

∆y = g2(∆x) , (2.48)
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where g1 and g2 are C1 mappings. The conditions of Theorem 2.2.3 apply to Equa-

tion (2.47). In particular, asymptotic stability of the linearization of Equation (2.47)

implies asymptotic stability of the explicit nonlinear ODE. Furthermore, since g2 is

a C1 mapping and g2(0) = 0 by definition, it follows that |∆y| → 0 as |∆x| → 0.

Hence, the original autonomous DAE given Equation (2.44) is asymptotically sta-

ble.

It is demonstrated in Example 2.3.1 that for a non-autonomous system of ODEs,

there can be a qualitative difference in the solution behavior between the time-

invariant linearization and the original equations, even around an equilibrium point.

Example 2.3.1. Equation (2.49) has a single equilibrium point x0(t) = 0.

x′(t) = − 1

1 + t2
x(t) (2.49)

Consider the time-invariant linearization of the Equation (2.49) around the equilib-

rium point x0(t) = 0. The time-invariant linearization of the equation at t = t0 is

given by:

δx′ = − 1

1 + t20
δx.

Hence from the time-invariant linearization, it would be concluded that the system

is asymptotically stable. The solution to the original system is given by:

x(t) = x(0) exp(− arctan(t)) .

It is clear that the original equation is Lyapunov stable but not asymptotically stable.

From this simple example, it can be seen that quite restrictive conditions are

required to guarantee qualitatively similar behavior between the linearization and

the original system DAE. Linearizations around non-equilibrium solutions, and com-

parison of the solution behavior of the linearization with the original system, are

considerably more complex, as discussed in [35, 149, 182].
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2.3.1 Identity Elimination

It is worthwhile examining whether the system of DAEs representing a model can be

simplified before calculating the state-space approximation to the original DAE. It is

common when formulating a DAE model in a process modeling environment to have

many assignments of the form shown in Equations (2.50)–(2.51),

yi = yj (2.50)

yi = xj, (2.51)

which can be safely eliminated. For example, the DAE system:

x′1 = −y1

x′2 = y2

y1 = x1

y1 = y2

can be rewritten as the ODE:

x′1 = −x1

x′2 = x1

by eliminating identities.

These equations result from connecting together smaller sub-models. For exam-

ple, the flux of intact receptors leaving the endosome might equal the flux of intact

receptors arriving at the cell surface. Such identity relationships can be automatically

eliminated from a DAE model without changing the dynamics of the system. The

advantages of eliminating identity equations symbolically are:

1. the resulting system of equations is smaller,

2. certain types of numerically ill-posed problems can be identified,
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3. and, the elimination is exact.

It should be noted that any assignment including an element of x′ is a differential

equation and should not be eliminated. Assignments of the form xi = xj imply a high

index system, and the elimination algorithm should halt. Assignments of the form

ui = uj imply a inconsistent set of equations.

If the model is formulated in a process modeling environment (such as ABACUSS

II [41, 230]), it is possible to identify these identity equations and eliminate them

symbolically [17]. A modified version of DAEPACK [228] has the ability to identify

simple identity equations and mark them for symbolic elimination. The algorithm

proceeds by defining an identity group, which contains all variables that are equiv-

alent. The root node of the identity group can be a differential variable, algebraic

variable, or input. All subsequent variables added to the identity group must be alge-

braic, otherwise the problem is ill-posed and the algorithm generates an error message.

The Jacobian matrices W, V are compressed to reflect the eliminated equations and

variables.

2.3.2 Construction of State-Space Approximation

It has now been established (Theorem 2.3.2) that under certain conditions the solution

behavior of the state-space approximation to an autonomous DAE is equivalent to the

solution behavior of the original DAE. The remaining question is whether the state-

space approximation of a cell-signaling model can be efficiently and automatically

constructed from the original system of DAEs.

We propose two alternative methods for calculating the state-space form of a lin-

earized DAE and compare these methods to a modification of an existing algorithm.

It is necessary to exploit model sparsity in order to construct the state-space approxi-

mation efficiently. A DAE model is sparse if each equation in the model depends only

on a few variables (typically 3-5 variables). It should be stressed that model spar-

sity does not imply the states are uncoupled. For example, the system of nonlinear
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equations:

f1(x1, x2) = 0

f2(x2, x3) = 0

... =
...

fn(xn−1, xn) = 0

is very sparse but does not block-decompose, i.e., all of the states are coupled. Most

cell signaling models are sparse; each species conservation equation typically depends

on a few fluxes and a small number of generation terms. In general, cell signaling

models tend to be strongly connected; the mole number of each species influences the

mole number of all the other species. More formally, the sparsity pattern of a matrix

is defined by Definition 2.3.1.

Definition 2.3.1. The sparsity pattern of the matrix A is the set of row and column

indices that correspond to a non-zero element of A; i.e.,

{i, j : aik,jk 6= 0} .

An overestimate of the sparsity pattern of A is a set of row and column indices of A

that contain the set of indices corresponding to the sparsity pattern of A; i.e.,

{
î, ĵ
}
⊃ {i, j} .

To construct the state-space approximation from the linearized DAE, the vector

y(t) is partitioned into (y1(t) ,y2(t)), where y1(t) ∈ Rny1 contains the algebraic vari-

ables desired in the state-space model (i.e., outputs that it is necessary to track), and

y2(t) ∈ Rny2 contains the variables to be eliminated (e.g., intermediate variables such

as rates of reaction, fluxes, and variables due to semi-discretization of PDAEs).

The matrices, W, S, and V, are defined according to Equations (2.52)–(2.54),
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where S is the state-space model to be calculated.

W =
[
fx′ fy

]
∈ R(nx+ny)×(nx+ny) (2.52)

S =

A B

C D

 ∈ R(nx+ny1)×(nx+nu) (2.53)

V = −
[
fx fu

]
∈ R(nx+ny)×(nx+nu) (2.54)

A näıve method to calculate the state-space model would be to solve the matrix

equation:

WZ3 = V, (2.55)

using dense linear algebra and obtain S by eliminating unwanted rows of Z3. The

difficulties with this approach are:

1. it is necessary to calculate rows of S that correspond to unwanted algebraic

variables, and,

2. sparsity is not exploited in the calculation.

For a large model, the computational cost of näıvely computing S would be pro-

hibitive. An even worse approach would be to calculate S from

S = P1W
−1V, (2.56)

where P1 is used to eliminate unwanted rows, since typically the inverse of W is dense

even if W is sparse.

In the proposed approached, the non-zero structure of the state-space model is

calculated a priori. Sparsity of the state-space model can thenbe exploited in further

calculations and reduces storage requirements. The generation of the structure of

the state-space model also guarantees that entries that are known to be zero are not

corrupted with numerical error. The graph tracing algorithm that determines the

structure of the state-space model is described in § 2.3.3. The idea of exploiting

structure of S when solving Equation (2.55) for sparse W and V is not new [96, 95].
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What is different in our approach compared to [96, 95] is that

1. direct memory addressing for the forward and back substitions is used, and,

2. in some of the proposed approaches, unwanted rows of the state-space matrix

are not calculated.

While the differences are subtle the impact can be profound, leading to a far faster

implementation.

2.3.3 Generation of State-Space Occurrence Information

It is necessary to determine the sparsity pattern of S from the sparsity pattern of the

Jacobian matrices W and V in order to compute the state-space model efficiently.

The system of DAEs is represented by an acyclic digraph which is a slight variant of

the digraphs used by [183, 84]. The digraph of the DAE is determined as follows:

1. A node is generated for each strongly connected component in W and the

matrix is permuted to block upper triangular form PWQ.

2. The occurrence information of the rectangular system:

[
PWQ PV

]
is constructed.

3. An arc is generated from each input or state to a strongly connected component

of PWQ if there is an entry in the column of PV that is in one of the rows

assigned to a strongly connected component in PWQ.

4. An arc is drawn between a strongly connected component of PWQ and another

strongly connected component of PWQ if there is an entry in a column assigned

to the first strongly connected component that corresponds to one of the rows

assigned to the second strongly connected component.
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/* Initialize */
1 white← 0
2 grey← 1
3 for each node v ∈ V [G]
4 do color (v)← white

/* Depth-first search */
5 for each φ ∈ (∆x,∆u)
6 for each node v ∈ Adj [φ]
7 do if color (v) < grey
8 DFS-VISIT (v, φ)
9 grey← grey + 1

/* dfs-visit(w,u) */
DFS-VISIT (w, u)

1 color (w)← grey

/* Write occurrence information */
2 for each variable ω = (∆x′,∆y) ∈ w
3 write (ω, φ)

4 for each node v ∈ Adj [w]
5 do if color (v) < grey
6 DFS-VISIT (v, φ)

Figure 2-4: Generation of state-space model occurrence information

The strongly connected components of W are found by performing row permutations

on W to find a maximal traversal [68]. A check is made to see whether the Jacobian

W matrix is structurally singular, in which case the current algorithm cannot be

applied. An equation assignment is made for each of the time derivatives and algebraic

variables (∆x′,∆y). The strongly connected components of W are identified from

the equation assignment using an algorithm proposed by [223] and implemented by

[71]. The digraph of the DAE is constructed using the depth-first search algorithm

of Figure 2-4. The digraph and occurrence information corresponding to a DAE is

demonstrated in Example 2.3.2.

Example 2.3.2. Consider the DAE defined by the system shown in Equations (2.57)–
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(2.61).

ẋ1 = −y1 (2.57)

ẋ2 = y1 − y2 (2.58)

ẋ3 = y2 (2.59)

y1 = k1x1 (2.60)

y2 = k2x2 (2.61)

The occurence information for W permuted to block upper triangular form is:

ẋ1 ẋ2 ẋ3 y1 y2

ẋ1 ⊗ 0 0 × 0

ẋ2 0 ⊗ 0 × ×

ẋ3 0 0 ⊗ 0 ×

y1 0 0 0 ⊗ 0

y2 0 0 0 0 ⊗

.

The occurrence information corresponding to the DAE shown in Equations (2.57)–

(2.61) is:

[
PWQ PV

]
=

ẋ1 ẋ2 ẋ3 y1 y2 x1 x2 x3

ẋ1 ⊗ 0 0 × 0 0 0 0

ẋ2 0 ⊗ 0 × × 0 0 0

ẋ3 0 0 ⊗ 0 × 0 0 0

y1 0 0 0 ⊗ 0 × 0 0

y2 0 0 0 0 ⊗ 0 × 0

.

The digraph of Equations (2.57)–(2.61) is shown in Figure 2-5.

The occurrence information for the state-space model is generated by tracing the

digraph of the DAE from states (differential variables) and inputs (∆x,∆u) to time

derivatives and outputs (∆x′,∆y). From each column in V, the strongly connected

components in W that depend on that input are traced. The nodes (∆x′,∆y) that are

67



ẋ1

ẋ2

y1

y2

x1

x2ẋ3

Figure 2-5: Graph of a system of DAEs

connected to the starting column (∆x,∆u) correspond to entries in the state-space

matrix. To avoid reinitializing the colors of each node for every iteration in the depth-

first search, a numerical value is assigned to grey and black, which is incremented on

every pass of the depth-first search. The state-space occurrence information can be

recorded as the digraph for the DAE is constructed (see algorithm in Figure 2-4).

The proposed algorithm is a generalization of the algorithm proposed by [95]. The

key difference in our approach is the recoloring of the nodes to avoid a reinitialization

step. The algorithm uses a depth-first search algorithm described by [48].

Theorem 2.3.3. The algorithm generates a sparsity pattern that is equal or overes-

timates the sparsity pattern of the state-space model S.

Proof. The proof requires the application of Theorem 5.1 of [95] to each column of

V.

It should be noted that if instead of augmenting the occurrence information of W

with the occurrence information of V, the occurrence information of W is augmented

with the identity, I, the structure of W−1 is obtained from this algorithm. If W is

irreducible, the structure of W−1 will be dense [69]. Furthermore, every column of

V with a non-zero entry, will correspond to a full column of the state-space matrix

S. However, for many problems of practical interest, W is reducible. Fortran code

to compute the structure of S is shown in Appendix C, § C.1.

Example 2.3.3. The occurrence information for the explicit state-space form of the
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model in Equations (2.57)–(2.61) of Example 2.3.2 is

x1 x2 x3

ẋ1 × 0 0

ẋ2 × × 0

ẋ3 0 × 0

y1 × 0 0

y2 0 × 0

.

Complexity of Determining Occurrence Information

The depth-first search to construct the occurrence information of the state-space

model has a worst case running time of O (τm) where τ is the number of non-zero

entries in W and m is the number of states and inputs, (∆x,∆u). This will happen

when W block decomposes to a triangular matrix, a complete set of states and inputs

are connected to every block and every block j is connected to all j − i blocks.

However, for most reasonable applications, it is anticipated that the running time is

considerably less that the worst case complexity.

2.3.4 Algorithms to Generate State-Space Model

Once the sparsity pattern of the state-space model has been computed, it is necessary

to compute numerical values for the entries in S. We propose three different methods,

summarized by:

1. Calculate columns of W−1 and then matrix-matrix product.

WZ1 = I (2.62)

S = P1Z1V (2.63)

2. Calculate rows of W−1 and then matrix-matrix product.

WTZ2 = P2 (2.64)
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S = ZT
2 V (2.65)

3. Calculate columns of S directly.

WZ3 = V (2.66)

S = P1Z3 (2.67)

The matrices P1 ∈ Rnx+ny1×nx+ny and P2 ∈ Rnx+ny×nx+ny1 are defined by

pij =

1 if j = minψ : zψ ∈ (x, y1)
T and pwj = 0 ∀ w < i,

0 otherwise.

and,

pij =

1 if i = minψ : zψ ∈ (x, y1)
T and piw = 0 ∀ w < j,

0 otherwise.

,

respectively. The matrices P1 and P2 are used to eliminated the unwanted algebraic

variables y2. It is straightforward to show by simple rearrangement that Methods 1–3

are mathematically equivalent.

Method 1 is a generalization of the existing method proposed by [240] and requires

the computation of a matrix inverse, Z1. Method (2.64) still requires the calculation

of a matrix inverse, Z2. However, it has the computational advantage that only

columns of Z2 corresponding to the variables (x,y1) to be included in the state-space

model need be calculated. The final method does not require the explicit calculation

of a matrix inverse, but requires the unwanted portion of the state-space model to be

eliminated after it has been calculated. The general form of the proposed algorithms

is shown in Figure 2-6.
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substitutions to construct

state-space matrices

Solve sequence of forward/back

Start

Find traversal for

Find strongly connected

components of

LU factor

Construct occurence

information for state-space

matrices

Find structurally orthogonal

matrices

columns of the state-space

Finish

[fx′ fy]

[fx′ fy]

[fx′ fy]

Figure 2-6: Summary of algorithm to calculate state-space model
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Algorithm I

In an existing method proposed by [240], it is assumed that the original DAE can be

written as shown in Equation (2.68).

f(x′,x,y,u) = 0 (2.68)

g(x,y,u) = 0

f is a set of n differential equations and g is a set of m algebraic equations. This

system can be linearized and rearranged to give the state-space matrix, S as shown

in Equation (2.69).

S = −

f−1
x′

(
fx − fyg

−1
y gx

)
f−1
x′

(
fu − fyg

−1
y gu

)
g−1

y gx g−1
y gu

 (2.69)

It can clearly be seen that the number of differential equations must equal the number

of differential variables, and that the Jacobians, fx′ and gy, must be invertible. The

state-space form is computed directly by inversion of fx′ and gy. It is not clear from

the description of this method whether the structure of the state-space matrix is

determined.

A generalization of the method by Wong [240] can be derived for the DAEs given

in Equation (2.1). The inverse of W is explicitly calculated by solving Equation (2.62)

a column at a time. If the method is implemented näıvely, the inverse of W is stored

in dense format. Instead, sparsity of Z1 and V should be exploited by calculating

the matrix-matrix product Z1V according to an algorithm by [104], shown in Equa-

tion (2.70).

S =
∑
k

(Z1):k Vk: (2.70)

The state-space matrix is accumulated through intermediate calculations, and only a

single column of Z1 is stored at any point in time. Hence, the intermediate storage

required is a single vector of length nx + ny. All of the columns of Z1 must be

calculated. Some of the entries in a full column of Z1 correspond to algebraic variables,
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y2, that will be eliminated from the state-space model.

Complexity of Algorithm I

The cost of Algorithm I is summarized below.

1. Cost of calculating LU factors, CLU .

2. Cost of nx + ny back and forward substitutions, where the combined cost of a

back and forward substitution, CSOLV E, is 2τLU − 3 (nx + ny) where τLU is the

number of entries in the factors L and U .

3. Cost of a matrix-matrix product CPRODUCT .

The total cost for the algorithm is is given by Equation (2.71), where n = nx + ny,

m = nx + nu and p = nx + ny1. For the dense case this evaluates to the expression

given by Equation (2.72).

CTOTAL = CLU + (nx + ny)CSOLV E + CPRODUCT (2.71)

=

(
2

3
n3 − 1

2
n2 − 1

6
n

)
+ n

(
2n2 − n

)
+ 2nmp (2.72)

For the sparse case, the cost terms are problem specific.

Algorithm II

The necessity of storing all of the inverse of W can also be avoided by calculating

the inverse a row at a time. This forms the basis of the second algorithm, shown

in Equations (2.64)–(2.65). Once a column of Z2 has been determined, a row of the

state-space matrix can be determined directly, by forming the vector-matrix product,

sj = zTi V , where sj ∈ Rnx+nu is a row of the state-space matrix, and zi ∈ Rnx+ny

is a column of Z2. The intermediate storage required is a single vector of length

nx +ny. The algorithm is computationally more efficient, since unwanted rows of the

inverse of W are not calculated. It can be concluded that there are no computational

advantages in implementing the first algorithm.
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Complexity of Algorithm II

The cost of Algorithm II is summarized below.

1. Cost of calculating LU factors, CLU .

2. Cost of nx + ny1 back and forward substitutions.

3. Cost of a matrix-matrix product CPRODUCT .

The total cost for the algorithm is is given by Equation (2.73), where n = nx + ny,

m = nx + nu and p = nx + ny1. For the dense case this evaluates to the expression

given by Equation (2.74).

CTOTAL = CLU +
(
nx + ny1

)
CSOLV E + CPRODUCT (2.73)

=

(
2

3
n3 − 1

2
n2 − 1

6
n

)
+ p

(
2n2 − n

)
+ 2nmp (2.74)

Algorithm III

No intermediate quantities are calculated in the third algorithm. The columns of the

state-space matrix are calculated directly from Equations (2.66)–(2.67). This method

has the advantage that no intermediate storage is required. Furthermore, the matrix-

matrix products that are necessary in the first two methods are avoided. It should

be noted that:

1. matrix-matrix products can be expensive to calculate, and

2. significant error can be introduced into the solution when the matrix-matrix

products are calculated.

The third method has the disadvantage that the unwanted portion of the state-space

model is calculated. However, the undesired entries can be discarded as each column

of the state-space model is calculated, as shown in Equation (2.67). The additional

storage workspace would be an additional ny2 entries.
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Complexity of Algorithm III

The cost of Algorithm III is summarized below.

1. Cost of calculating LU factors, CLU .

2. Cost of nx + nu back and forward substitutions.

The total cost for the algorithm is is given by Equation (2.75), where n = nx + ny

and m = nx + nu. There is no matrix-matrix product to calculate with this method.

For the dense case this evaluates to the expression given by Equation (2.76).

CTOTAL = CLU + (nx + ny)CSOLV E (2.75)

=

(
2

3
n3 − 1

2
n2 − 1

6
n

)
+m

(
2n2 − n

)
(2.76)

Comparison of Computational Cost

The computational cost for each algorithm is summarized in Table 2.3. It is assumed

that structurally orthogonal columns are not exploited in the calculation. CLU is the

cost of LU factoring W and is constant between all methods. CS is the cost of a back

substitution. In general, the number of back substitutions required for each method

will be different. However, in virtually all circumstances, ny >> nu or ny1, which

means that Algorithm I will be the most expensive. CP is the cost of an inner or

outer product between Z and V . It can be seen that this cost is not incurred by

Algorithm III. However, if ny1 < nu, then Algorithm II may be the fastest.

2.3.5 Structurally Orthogonal Groups

The speed of all three algorithms depends on solving a linear equation of the form:

Ax = b. (2.77)

It is usually assumed that the vector x is dense when solving Equation (2.77) with

a sparse LU factorization code. This assumption allows one to use direct memory
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Table 2.3: Comparison of computational costs

Alg. Step Cost

1 LU Factor. CLU
Back subs. (nx + ny)CS
Matrix product (nx + nu)

(
nx + ny1

)
CP

2 LU Factor. CLU
Back subs.

(
nx + ny1

)
CS

Matrix product (nx + nu)
(
nx + ny1

)
CP

3 LU Factor. CLU
Back subs. (nx + nu)CS

addressing when performing the forward and back substitutions. Typically, the im-

provement in speed of direct memory addressing compared to indirect addressing

outweighs the increase in the number of operations. Clearly, if x is very sparse, a

lot of additional work will be done. If Equation (2.77) must be solved repeatedly for

many different right hand sides, it is possible to exploit the concept of structurally or-

thogonal columns to reduce the number of operations while still assuming the vector

x is dense.

The concept of using structurally orthogonal columns to reduce the amount of

work in evaluating a Jacobian matrix was developed by [53]. An efficient algorithm to

partition a matrix into groups of structurally orthogonal columns has been developed

by [44] and implemented in [43]. A pair of columns are structurally orthogonal if

Definition 2.3.2 is satisfied.

Definition 2.3.2. A pair of columns, (xi,xj), are structurally orthogonal if for all

rows in xi with a non-zero entry, there is not a non-zero entry in the same row of xj.

In all of the algorithms, a matrix equation of the form shown in Equation (2.78)

is solved by repeatedly performing forward and back substitutions for each column

of B.

AX = B (2.78)

If a set {x1,x2, . . . ,xk} of columns of X are structurally orthogonal, then it is possible
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to solve the system shown in Equation (2.79).

A
k∑
i=1

xi =
k∑
i=1

bi (2.79)

The entries can then be recorded in the correct column of xi, since by definition each

entry in
∑k

i=1 xi corresponds to a unique column of X.

The occurrence information of X can be generated by the Algorithm described

in § 2.3.3. It is demonstrated in Example 2.3.4 that the proposed algorithm can

overestimate of the number of forward and back substitutions necessary to calculate

the state-space model.

Example 2.3.4. Consider the system:

x′1 = x1 + y1 − y2

x′2 = −x1 + y1 − y2

y1 = x2

y2 = x2.

The structural information for the DAE system is

[
fx′ fy| fx

]
=


× 0 × ×

0 × × ×

0 0 × 0

0 0 0 ×

∣∣∣∣∣∣∣∣∣∣∣∣

× 0

× 0

0 ×

0 ×

 .

The corresponding structure matrix for the state-space model is generated by the

proposed depth-first search algorithm (§ 2.3.3):

A
C

 =


× ×

× ×

0 ×

0 ×

 .
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It can be seen that the columns of the state-space matrix are not structurally or-

thogonal. However, when the state-space matrices are calculated, as shown in Equa-

tion (2.80), it can be seen that numerical cancellation leads to structurally orthogonal

columns.

A
C

 =


−1 0

1 0

0 −1

0 −1

 (2.80)

Consequently, more forward and back substitutions would be performed than strictly

required. However, the solution would be correct.

Theorem 2.3.4 can be used to bound the number of partitions of structurally

orthogonal columns in X.

Theorem 2.3.4. If B ∈ Rn×m, the inverse of A ∈ Rn×n exists, m ≥ n, and B

is structurally full row rank, then the number of partitions of structurally orthogonal

columns in X is greater than or equal to the number of partitions of structurally

orthogonal columns in A−1.

Proof. Since B is full row rank, each column of X, xj is a linear combination of the

columns of Z = A−1, where at least one of the coefficients is not structurally zero as

shown by Equation (2.81).

xj =
n∑
i=1

bijzi (2.81)

If two columns of B have an entry in the same row, then by definition, two columns of

X cannot be structurally orthogonal. If m ≥ n and B has n structurally orthogonal

columns, then every column of Z must appear as a linear combination in at least one

of the columns of X. Hence the number of orthogonal partitions must be equal to or

greater than the number of orthogonal partitions of A−1.

It is tempting to try to generalize Theorem 2.3.4 to matrices, B, of arbitrary

structure and dimension. However, except for very specific structures of B, there is

no general relationship between the number of structurally orthogonal groups in B
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and A−1. If the number of columns of B is smaller than the number of columns of

A, then it may be possible to choose all of the columns of X to be orthogonal linear

combinations of columns from a single orthogonal partition of A−1. This is shown in

Example 2.82.

Example 2.3.5. Consider the matrix-matrix product X = A−1B shown in Equa-

tion (2.82).

×
×

 =


×

×

× ×

× ×




×

×

 (2.82)

The number of partitions of structurally orthogonal columns in A−1 is two and the

number for X is one.

In practical problems, the number of partitions of structurally orthogonal columns

in the state-space model is smaller than the number of partitions in the inverse of W,

since usually nx + nu � nx + ny and typically V contains a small number of entries

per column. Hence, Algorithm I is likely to be more computationally expensive than

Algorithm III even with exploitation of structurally orthogonal columns.

There is no clear relationship between the number of partitions of structurally

orthogonal columns and the number of partitions of structurally orthogonal rows of

a matrix. Hence, it is difficult to conclude for general problems whether the number

of forward and back substitutions for Algorithm III is less than the number required

for Algorithm II.

2.4 Error Analysis of State-Space Model

Bounds on the error in Algorithms I, II and III are derived in § 2.4.1–2.4.3, respec-

tively. To compare the error in all three solution methods, it is necessary to bound

the error made in solving a linear system of equations and the error introduced when

calculating a vector-matrix product. The error introduced in calculating the solution
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to a set of sparse linear equations can be determined using the theory developed by

[163, 208, 207, 11] and described in [219]. Error bounds are based on the notion of

componentwise error. It is necessary to define the operators |·|, and 5, as shown in

Definition 2.4.1.

Definition 2.4.1. |u| is the vector of entries |ui|. |P| is the matrix of entries |pij|.

u ≤ v means ui 5 vi ∀ i. Q ≤ P means qij 5 pij ∀ i, j.

2.4.1 Algorithm I

A simplified version of Algorithm I is considered, where none of the rows of the

state-space matrix are discarded. The algorithm is shown in Equations (2.83)–(2.84).

WZ1 = I (2.83)

S = Z1V (2.84)

The residual of Equation (2.83) is defined as R1 = WZ1−I. The error in the solution

of Equation (2.83) is given by Equation (2.85).

δZ1 = W−1R1 (2.85)

The work of [208] shows, that with one step of iterative refinement and single precision

residual accumulation, it is possible to bound the components of the computed value

of the residual |R1|, as shown in Equation (2.86).

|R1| ≤ ε (n+ 1) |W| |Z1| (2.86)

Neglecting the round-off error in accumulating the necessary inner products, the

component error in the state-space matrix is given by Equations (2.87)-(2.90).

δS = δZ1V (2.87)

= W−1R1V (2.88)

80



|δS| ≤
∣∣W−1R1V

∣∣ (2.89)

≤ ε (n+ 1)
∣∣W−1

∣∣ |W| |Z1| |V| (2.90)

The bound shown in Equation (2.90), does not account for the fact that the computed

value of R1 is not equal to the true value of R1. However, the work of [11] shows that

the difference in R1 is a relatively small factor.

2.4.2 Algorithm II

A simplified version of Algorithm II is considered, where none of the rows of the

state-space matrix are discarded. It is assumed again that the columns of Z2 are

solved using iterative refinement. The algorithm is shown in Equations (2.91)–(2.92).

WTZ2 = I (2.91)

S = ZT
2 V (2.92)

According to the analysis presented in § 2.4.1, the component error in the state-space

matrix is given by Equation (2.93).

|δS| ≤
∣∣RT

2 W−1V
∣∣ (2.93)

≤ ε (n+ 1) |Z2|T |W|
∣∣W−1

∣∣ |V|
If the matrix W is symmetric, it should be noted that (δZ1)

T = δZ2, and the difference

in the componentwise error for both methods depends on how the error is propagated

in the matrix-matrix product δZV.

2.4.3 Algorithm III

Error is only introduced in the third algorithm from solving the linear system, shown

in Equation (2.94).

WS = V (2.94)
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The corresponding bound on the component error in the state-space matrix is shown

in Equation (2.95).

|δS| ≤ ε (n+ 1)
∣∣W−1

∣∣ |W| |Z1V| (2.95)

It can be seen that the upper bound derived in Equation (2.95) for the third algorithm

is tighter than the bound derived in Equation (2.90) for the first algorithm.

2.5 Stability of DAE

If the requirements of Theorem 2.3.2 are met, asymptotic stability of the linearized

DAE implies local asymptotic stability of the original DAE. More general comparisons

of the solution behavior of the original DAE to the linearization are discussed in

[35, 149]. The stability of the linearized DAE may be determined by examining the

eigenvalues of the system to check for right-half-plane poles. Two possible methods

to calculate the eigenvalues of the linearized DAE are:

1. examining the generalized eigenvalues of the matrix pencil, ([fx fy] + λ [fẋ 0]),

2. and, examining the eigenvalues of the rearranged, explicit state-space model

[137].

Rearrangement of the linearized DAE into state-space form eliminates the infinite

eigenvalues associated with the algebraic variables. In a typical problem, there can

be many thousands of eigenvalues associated with the algebraic variables and the

elimination of the algebraic variables can reduce the size of the eigenvalue problem

to the point where it is tractable with standard dense eigenvalue codes [10].

Robust methods exist to determine the eigenvalues of a dense matrix pencil

[60, 59]. However, the size of the DAE system may often preclude the use of al-

gorithms suitable for dense problems. Algorithms exist for the computation of a few

eigenvalues of a sparse matrix pencil [189, 142]. At the core of these algorithms is the

repeated LU factorization of the shifted coefficient matrix ([fx fy] + µ [fx′ 0]). The

set of indices corresponding to the sparsity pattern of the shifted coefficient matrix

must be a superset of the indices corresponding to the sparsity of pattern of [fx′ fy].
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Hence, rearrangement of the DAE into explicit state-space form followed by an eigen-

value calculation will be computationally more efficient than directly computing the

eigenvalues of the matrix pencil. Furthermore, some authors suggest that infinite

or almost infinite eigenvalues give rise to ill-conditioned eigenvalues that can affect

otherwise well conditioned eigenvalues [125].

2.5.1 Eigenvalues of Explicit State-Space Model

The dimension of A in Equation (2.53) is equal to the number of states in the model,

and may be very large. It is important that sparsity is exploited in calculation of

the eigenvalues of A. If only a small number of eigenvalues need to be calculated

(such as the ones with the smallest and largest real parts), several methods exist that

exploit the sparsity of A [192, 193]. In particular there are two classes of methods

(a subspace method and Arnoldi’s method) for which routines exist in the Harwell

Subroutine Library [73, 74, 199] and an implementation called ARPACK [142].

Furthermore, the eigenvalue problem can be decomposed into a series of smaller

eigenvalue problems for some systems, if the matrix A can be permuted into block

upper triangular form by a series of symmetric permutations.

Theorem 2.5.1. [100] If A ∈ Rn×n is partitioned as follows,

QTAQ = T =

T11 T12

0 T22


then λ (A) = λ(T11) ∪ λ(T22).

The permutation matrices Q and QT can be found by application of Tarjan’s

algorithm to the occurrence information of A [70]. It should be noted that a zero free

traversal is not obtained using row permutations, since unsymmetric permutations

would change the structure of the eigenvalue problem.

A code has been written to calculate a few eigenvalues of special character (i.e.

the largest and smallest in magnitude) of a sparse unsymmetric matrix. The matrix

is permuted to block upper triangular form, by application of Tarjan’s algorithm, and
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the eigenvalues are determined by solving a sequence of smaller sub-problems. The

code has been included in the DAEPACK libraries [228] and is based on the ARPACK

eigenvalue code [142], the LAPACK eigenvalue code [10], and the HSL routines MA48

and MC13 [3, 72].

2.5.2 Error Analysis of Stability Calculation

The state-space matrix, S, is defined by Equation (2.53) and the error in the state-

space matrix is δS. It is of particular interest to bound how much the eigenvalues of

the sub-matrix, A, are shifted by the error in S. If the real parts of the eigenvalues

of A change sign, the qualitative behavior of the solution of the derived state-space

model will be different from the solution of the implicit linearization of the original

DAE. The component of the error, δS, corresponding to the sub-matrix A is defined as

δA. Theorem 2.5.2 is useful for analyzing the sensitivity of an individual eigenvalue.

Theorem 2.5.2. [100]: If λ(ε) is defined by,

(A + εF)x(ε) = λ(ε)x(ε) ,

λ(0) is a simple eigenvalue of A and ||F||2 = 1, then

dλ

dε

∣∣∣∣
ε=0

≤ 1

|yHx|

where x and y satisfy Ax = λx and yHA = λyH , respectively.

If ε is calculated according to εF = δA, then ε = ||δA||2. An estimate of the

upper bound in the change of λ is given below.

δλ ≈ ||δA||2
|yHx|

≤ ||δA||F
|yHx|

where, ||δA||F is the Frobenius norm.
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2.6 Results

Algorithm III is tested on a model of short-term epidermal growth factor receptor

(EGF Receptor) signaling from [132] in § 2.6.1. The error in the solution and the

speed of Algorithms I, II and III for randomly generated sparse matrices is shown in

§ 2.6.2. The superior speed of Algorithms II and III for calculating the state-space

model of a semi-discretization of a PDAE is shown in § 2.6.3. Finally, Algorithms II

and III are applied to a model of a distillation column in § 2.6.4.

While it was relatively straightforward to compare the three proposed algorithms

in terms of computational speed, it was a more challenging task to compare the

accuracy of the three algorithms. In the testing of algorithms it was assumed that a

matrix-matrix product could be calculated to a far higher accuracy than the solution,

X, of AX = B. The justification was that short vector inner-products were necessary

to calculate a matrix-matrix product, due to the sparsity of the matrices, i.e., O (1)

floating-point operations. In comparison, despite sparsity of the LU factors of A, it

was common for at least O (n) operations to be necessary during the forward and

back-substitution phases when calculating X from AX = B.

2.6.1 Short-Term EGF Receptor Signaling Problem

Algorithm III was applied to a model of short-term EGF receptor signaling due to

[132]. The original model equations are shown as ABACUSS II input code in Ap-

pendix B, § B.3. The sparsity pattern of the state-space model was automatically

generated and is shown in Figure 2-7. It can be seen that the model is relatively

sparse. The original model equations were simulated along with the approximate

state-space model. The response of key signaling molecules in the model to a pertur-

bation in the total epidermal growth factor concentration was compared to the output

of the state-space model. It can be seen that the qualitative behavior of the model is

preserved and that the discrepancy between the original model and the approximate

state-space model is small. The eigenvalues of the state-space approximation were

calculated. All of the eigenvalues were real and negative.
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Figure 2-7: Sparsity pattern of short-term EGF signaling model [132]
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Figure 2-8: Comparison of a short-term EGF signaling simulation [132] to the explicit
state-space approximation
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The time constant of the fastest process was 0.1s and the time constant of the slowest

process was 20s. This information might be useful to an experimentalist since time-

series measurements need to be taken at a rate faster than the fastest time constant

to analyze some of the system dynamics.

2.6.2 Accuracy Testing Methods

There were two major difficulties in generating realistic test problems:

1. structural sparsity in the state-space model will only occur if the matrix W is

reducible,

2. and, for realistic problems, it is easy to estimate tightly the sparsity of X in the

solution of AX = B, however, it is difficult to estimate tightly the sparsity of

B in the calculation of the matrix-matrix product B = AX.

For example, a näıve method to determine the accuracy of the proposed algorithms

could be to generate random sparse matrices W, S, calculate the product, V̂, apply

the rearrangement algorithms to the matrices, W, V̂, and compare the solution, Ŝ

to the originally generated S. If W was irreducible this would not be a fair test,

since despite S was generated as a sparse matrix, the result from the rearrangement

algorithm would be a dense matrix with almost all of the entries close or identically

equal to zero, i.e., by construction, the matrix V leads to vast amounts of numerical

cancellation in S. Physically realistic problems rarely show this property.

An alternative test was to generate sparse random matrices, W and V in Matlab3

by the function:

sprand(n,m,fill,1/cndno)

where n and m were the matrix dimensions, fill was the fractional of non-zero entries

in the matrix, and cndno is the condition number of the matrix. Algorithm II was

applied to the matrices, W and V to calculate Ŝ with a structure consistent with W

3Matlab is a registered trademark of The Mathworks, Inc., Natick, MA.
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and V. The matrix V̂ was calculated from Equation (2.96) to generate a set of test

matrices W, V̂, and Ŝ that were consistent.

V̂ = WŜ (2.96)

However, this approach has the disadvantage that the recalculated V̂ has a significant

number of zero or close to zero entries that were not in the original matrix V, i.e.,

the structure of the matrix V̂ no longer completely represents a physically realistic

problem. Many of the equations in the DAE are of the form g(y) = 0, i.e., the row

in the Jacobian V corresponding to this equation is completely zero. However, it

is impossible to preserve this row as structurally zero when calculating it from W

and Ŝ, since by definition Ŝ will contain entries linking entries in y to inputs or

states in the model. A possible solution would be to eliminate entries in V̂ that did

not occur in the original matrix V. However, this would lead to a matrix V̂ that

was numerically inconsistent with the matrices W and Ŝ. It was felt that the most

reasonable compromise was to calculate Ŝ and V̂ without eliminating entries in V̂.

Numerical Tests with Sparse Random Test Matrices

All three algorithms were applied to the matrices W and V̂. The component error

was calculated according to Equation (2.97)

Error = max
ij

|sij − ŝij|
|ŝij|

(2.97)

For each algorithm, W was sparse LU factored with and without block decomposition.

The algorithms were implemented in Matlab and the code is included in Appendix A,

§ A.2. The results for 500 test problems are summarized in Table 2.4 for fill =

5 entries/row, cndno = 106.

Methods II and III require substantially fewer floating point operations in com-

parison to Method I. Which of Method II and III is fastest will depend on the ratio

nu/ny1.
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Table 2.4: Comparison of error and cost without elimination of entries in V̂

Size Alg. Error FLOPS

Mean Std. Dev.

nx = 50 I 1.01E+19 2.26E+20 4.4E+05
ny = 50 I BD 3.12E-06 6.77E-05 3.7E+05
nu = 20 II 6.50E+01 1.41E+03 2.4E+05
ny1 = 0 II BD 3.08E-08 3.85E-07 2.0E+05

III 7.68E+18 1.72E+20 1.0E+05
III BD 3.26E-06 7.12E-05 7.4E+04

nx = 20 I 1.02E+04 1.92E+05 7.4E+05
ny = 80 I BD 3.40E-07 6.68E-06 6.5E+05
nu = 50 II 9.98E-01 1.77E+01 1.7E+05
ny1 = 0 II BD 5.06E-08 5.65E-07 1.4E+05

III 5.11E+04 1.13E+06 2.1E+05
III BD 1.07E-07 1.34E-06 1.6E+05

The high standard deviation in the error indicates that a few pathological matrices

cause the mean error to be large. All methods perform well in terms of numerical error

for most matrices. Usually, Methods II and III have less error than Method I due to

the reduced number of floating point operations. Block decomposition substantially

improves the error in all three methods.

Typically, the element of S with the largest relative error is small, and non-

zero. The state-space matrices that have large amounts of error contain entries of

widely varying magnitude. Error due to gross cancellation can occur when W has off-

diagonal blocks after block triangularization that link small elements in the solution

to large elements in the solution during the back-substitutions. Block decomposition

reduces the error in the solution, since off-diagonal blocks that link small elements

to large elements are not factored. It should be noted that spurious entries in V̂

are likely to connected to elements in S by off-diagonal elements in W, i.e., the

large difference in error between algorithms with block decomposition and without

block decomposition may be in part attributable to the method of construction of

the test matrix V̂. Results for identical tests, where the spurious entries V̂ were
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Table 2.5: Comparison of error and cost with elimination of entries in V̂

Size Alg. Error FLOPS

Mean Std. Dev.

nx = 50 I 3.16E-06 5.53E-05 2.9E+05
ny = 50 I BD 1.99E-06 4.03E-05 2.3E+05
nu = 20 II 5.94E-06 8.81E-05 1.6E+05
ny1 = 0 II BD 2.00E-06 2.99E-05 1.2E+05

III 2.07E-06 2.70E-05 9.3E+04
III BD 3.72E-07 6.09E-06 6.7E+04

nx = 20 I 6.51E-06 1.39E-04 2.9E+05
ny = 80 I BD 2.52E-08 4.42E-07 2.4E+04
nu = 50 II 2.63E-07 2.82E-06 8.1E+04
ny1 = 0 II BD 2.37E-08 3.40E-07 6.0E+04

III 3.79E-06 7.90E-05 1.8E+05
III BD 1.84E-08 3.49E-07 1.3E+05

eliminated are shown in Table 2.5 These results would suggest that there would be

some improvement in accuracy due to block decomposition for models that represent

physical systems.

The method that provides the most accurate solution will depend on whether

the elements of a column of S vary over a large range compared with whether the

elements of a row of the inverse of W vary over a large range. The accuracy of each of

the different methods was tested on two application problems. The applications were

selected to contain a large number of algebraic variables to be eliminated from the

state-space model. This feature is a characteristic of many science and engineering

problems. The results are summarized in § 2.6.3–2.6.4.

2.6.3 Diffusion Problem

The following example looks at the discretization of a coupled PDE and ODE. The

physical situation is shown in Figure 2-9. Diffusion of signaling molecules is a com-

mon process in cell signaling. There are two tanks coupled together by a porous

membrane. The concentration in the tanks is given by C0 and Cn+1 respectively. The
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C0 Cn+1

Porous membrane

V V

Nx=0 Nx=L

Figure 2-9: Diffusion between two well-mixed tanks

flux of material leaving the left hand tank is given by Nx=0 and the flux of material

entering the right hand tank is given by Nx=L. A simple analytical solution to this

problem exists, but for a more complicated geometry it would be necessary to solve

this problem numerically. After sufficiently long time,

t >>
L2

D
,

and subject to the geometric constraint,

2ALK

V
� 1,

where L is the membrane thickness, D is the diffusivity of the solute, A is the surface

area of the membrane, V is the volume of the tanks, and K is the partition coeffi-

cient of the membrane, the behavior of diffusion in the membrane can be modeled

as pseudo-steady. The resulting system can be discretized into the following DAE,

where Ci, i = 1 . . . n − 2 corresponds to the concentration at mesh points inside the
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membrane, spaced at ∆x intervals.

V Ċ0 + ANx=0 = 0 (2.98)

V Ċn+1 − ANx=L = 0 (2.99)

C1 −KC0 = 0 (2.100)

Cn −KCn+1 = 0 (2.101)

Nx=0 +D

(
C3 − C1

2∆x

)
= 0 (2.102)

Nx=L +D

(
Cn − Cn−2

2∆x

)
= 0 (2.103)

Ci − 2Ci+1 + Ci+2

2∆x2
= 0 (2.104)

The resulting DAE system was transformed into state-space form using Algorithms

I, II, and III. The code was written in Matlab and is included in Appendix A, § A.3.

All methods used dense linear algebra and were performed in Matlab. The analytical

solution for the state variables, C0 and Cn+1, are given by Equations (2.105)–(2.107).

C0 = const
(
1 + e−

t
τ

)
(2.105)

Cn+1 = const
(
1− e−

t
τ

)
(2.106)

τ =
V L

2ADK
(2.107)

The eigenvalues of the system are
(
0,− 1

τ

)
. It should be noted that the discretized

solution should be exact (to within roundoff error) since the flux across the membrane

is constant.

The estimated number of floating point operations (FLOPS) for a system of 100

variables, were 3080740 for Algorithm I, 789412 for Algorithm II and 788580 for

Algorithm III. It should be noted that the LU factors of W are very sparse, but the

inverse is dense. It can be seen that there is considerable computational advantage

in Algorithms II and III compared to I.

The model was run at 100 mesh points and 1
τ

= 0.3030. The state-space lineariza-

tion based on all three methods solved for eigenvalues of (0,−0.3030). However, if the
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matrix inverses required by Algorithms I and II are calculated by Gauss-Jordan elim-

ination, rather than LU factorization, the eigenvalues of the state-space linearization

are (0,−0.3333). It can be seen that great care must be taken when calculating the

inverse of W.

2.6.4 Distillation Problem

Finally, the methods were tested on a model of a benzene-toluene distillation column,

written in the ABACUSS II input language (Appendix B, § B.4). This model was

chosen because of its size and complexity. Currently, there are very few cell signaling

models in the literature that are of a comparable size. There are many benefits to

writing the model in a structured modeling environment [16]. Fortran code corre-

sponding to the model was automatically generated by ABACUSS II. The automatic

differentiation tool DAEPACK [228] was used to generate code implementing the

Jacobians matrices W, and V, necessary for construction of the state-space approx-

imation. Algorithms II and III were implemented as components of the DAEPACK

library. An ABACUSS II input file was automatically generated corresponding to the

state-space form of the model. The distillation model had nx = 177 states, ny = 3407

algebraic variables and nu = 14 inputs. There were 929 identity equations in the

model that were eliminated exactly. All of the algebraic variables were eliminated

from the state-space model.

The sparsity pattern of the state-space model was generated and is shown in

Figure 2-10. There are fifteen groups of structurally orthogonal columns in the state-

space model. A disadvantage of Algorithm II is that it requires the generation of

the sparsity pattern of the inverse W−1. There were 113347 non-zero entries in the

matrix W−1 compared with 1835 entries in the state portion of the state-space model.

The speed and accuracy of the algorithms for a 128Mb 450Mhz PIII computer are

summarized in Table 2.6. The times were determined with the LAPACK [10] routine

DSECND. Algorithm II is slower than Algorithm III for the following reasons,

1. it takes significantly more time to determine the occurrence information of W−1
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Figure 2-10: Sparsity pattern of state-space approximation of a distillation model

Table 2.6: Distillation model results

Algorithm Error Time (s)

II (with identity elimination) 1.8E-04 0.4490
II (without identity elimination) 6.6E-6 0.7787
III (with identity elimination) 7.4E-5 0.0431
III (without identity elimination) 1.2E-4 0.0566

compared with the generation of the occurrence information of S,

2. it takes significantly more time to determine partitions of structurally orthogo-

nal columns of W−1 compared with determining the partitions of S, and,

3. more forward and back substitutions were required by Algorithm II to calculate

the state-space matrix.

The accuracy of the algorithms was determined by comparing S to Ŝ, using the

method outlined in § 2.6.2.

95



2.7 Summary

It was shown in this Chapter how to formulate a cell signaling model as a system

of DAEs (§ 2.1.2). The advantage of this approach is that there is a smaller risk of

making errors for non-constant volume systems. It was shown for an autonomous

DAE, that local stability of the DAE can be determined from the stability of the

state-space approximation (Theorem 2.3.2). Three new methods for transforming

the linearization of an index one DAE into state-space form are demonstrated in this

Chapter. One of the methods is a modification of an existing algorithm. Two of the

new methods show considerable advantage in terms of computational expense. From

the point of view of numerical error, if there are entries of widely varying magnitude

in a row of the state-space matrix, but entries in each column do not vary too much,

Algorithm III is preferred. If the entries of each row of the inverse of W do not vary

too much, Algorithm II may be preferred.
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Chapter 3

Bayesian Reasoning

Scientists and engineers are constantly faced with decisions based on uncertain infor-

mation. Clinicians routinely make decisions based on risk: is it safer to operate and

remove a tumor, or treat the tumor with an anti-cancer drug? To assess a risk, it

is important to have some method of predicting outcomes and quantifying the accu-

racy of such predictions. To make predictions about a system requires some form of

qualitative or quantitative model. As discussed in Chapter 1, qualitative modeling is

often insufficient to make predictions about diseases caused by complex network in-

teractions. In contrast, quantitative modeling of the system can yield greater insight.

Work was devoted in Chapter 2 to building and analyzing such detailed models of

cell-signaling networks. However, we are often faced with the situation where there

is insufficient a priori knowledge to build a mechanistic model. Hence, we wish to

find some compromise between a mechanistic model and a qualitative description of

the system. It is therefore important to have some way of describing less than per-

fect correlations. Furthermore, the work in Chapter 2 does not provide a method to

compare model predictions quantitatively with experimental data to determine the

accuracy of the model. Clearly, it is important to be confident about the accuracy of

a model when critical decisions are based on predictions from the model. It will be

shown in this Chapter how the theory of probability can be used to address many of

these shortcomings.
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3.1 Decision Making from Models

To motivate the discussion, we shall first discuss a classic example of risk analysis: the

causes of the Challenger space shuttle disaster. Many aspects of the launch decision

making process are similar to decisions made in the biological sciences (drug approval,

decision to operate on a person, etc.): the potential consequences of the decision were

of high cost, and the decision was made based on predictions from an engineering

model. On the night before the launch a decision had to be made whether there was

an unacceptable risk of catastrophic failure. Initially, one might be tempted to think

that any possibility of an accident resulting in a fatality is unacceptable. However, a

little reflection might make one realize that this line of thought is indeed false. Even

if it could be guaranteed the shuttle launch would be successful, there would be a

small but finite probability that one of the engineers driving to the launch would be

involved in a fatal car crash. It is almost always impossible to perform a task without

risk of adverse consequences. However, one hopes that the benefits from performing

such a task are sufficient compensation for the risks of an adverse consequence. For a

more detailed statistical interpretation of the events that cause the disaster see [67].

Example 3.1.1. The engineers had to decide whether to postpone the launch due

to cold weather. The space shuttle had three field joints on each of its two solid

booster rockets. Each of these six joints contained two O-rings. The engineers knew

that failure of one of these rings would be catastrophic. The previous lowest launch

temperature was 53F. At this temperature, the engineers knew that the probability

of an O-ring failure was acceptable, i.e., Pr(O-ring fails|T = 53F) was vanishingly

small. However, the temperature forecast for the night before the launch was an

uncharacteristically cold 31F. The engineers had to evaluate Pr(O-ring fails) and

see whether the risk of the launch failing was acceptable. Unfortunately, the risk of

launch failure was incorrectly evaluated with devastating consequences.

Several key concepts are highlighted in Example 3.1.1:

1. Decisions are always made conditionally based on some information.
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2. Decisions are based on models.

3. Decision making is somehow related to risk.

4. Risk is somehow related to probability.

Let us justify these statements. In the previous example, the decision to launch the

shuttle was based on the weather forecast (information) and a model of temperature

dependent material failure. The engineers had to evaluate the risk associated with

the launch, and this was based on the probability of O-ring failure. Furthermore, this

example illustrates that it is extremely important to take into account all possibilities

when making a decision. The decision whether to launch may change if it is predicted

that there is a 1% chance the temperature is 31F and a 99% chance the temperature

is over 60F. It is important to distinguish between the quantities Pr(O-ring fails) and

Pr(O-ring fails|T = 31F). These two probabilities are usually not equal. Hopefully, it

will become apparent that the probability can be used as a tool in making decisions.

In Example 3.1.1, the engineers needed a model of temperature dependent material

failure. Clearly, an important step in making a decision is developing an accurate

model. Often there is a folklore among engineers that a model with a small number

of parameters will have good predictive power. This is true for models that are

linear in the parameters. However, for nonlinear models, determining the predictive

capability of the model is significantly harder, as demonstrated by Example 3.1.2.

As in Chapter 2, the control-engineering convention is adopted: x is a state, y is a

measurement or output, and u is an input or manipulated variable.

Example 3.1.2. Consider fitting two alternative models defined by Equations (3.1)

and (3.2) to the data shown in Table 3.1.

M1 : x̂ = 40 sin
(
θ̂û
)

(3.1)

M2 : x̂ = θ̂û2 (3.2)

How does one decide which is the most appropriate model?

99



xi yi

1 0.8801
2 3.9347
3 9.4853
4 15.4045
5 24.8503

Table 3.1: Data for Example 3.1.2

The Matlab code to perform least squares minimization on this problem is shown

in Appendix A, § A.1. It can be seen from Figure 3-1a that both models can fit the

data relatively well (assuming “fitting well” means a small value of the sum of the

square of the residuals). However, one has the intuition that one would favor the

model defined by Equation (3.2) over the model defined by Equation (3.1) given the

data. This phenomenon can be explained by considering the posterior Probability

Density Functions (PDFs) for each model,

fθ(θ|ŷ = y,M1) ,

and

fθ(θ|ŷ = y,M2) .

A more thorough discussion of probability density functions is given in § 3.3. For

the moment it should be understood that the probability that θ̂ lies in the range

θ1 ≤ θ̂ ≤ θ2 given the data, y and that the true model is M1 can be derived from the

posterior PDF:

Pr
(
θ1 ≤ θ̂ ≤ θ2|y,M1

)
=

∫ θ2

θ1

fθ(θ|ŷ = y,M1) dθ.

The posterior PDFs are shown in Figures 3-1b-c. For the model defined by Equa-

tion (3.1), it can be seen there are many possible values of θ̂ which are candidate

“best-fit” parameter values (Figure 3-1b), hence, one is very uncertain about which

value is best. This is an undesirable feature of the first model since uncertainty in
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Figure 3-1: Nonlinear curve fits for Example 3.1.2
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θ̂ causes large differences in the prediction of x̂(û) for values of û which did not cor-

respond to the existing data. However, if the second model is true, one is relatively

certain about the true value of θ as shown by the probability density function plotted

in Figure 3-1c. In some sense, model M1 has a far greater capacity to fit any data

than model M2. Hence at the outset, one should be more sceptical of using model M1

than M2 and require greater evidence that model M1 is true than model M2. This

provides a qualitative motivation for why one would favor one model over another,

even if both of the models fit the data relatively well. It is necessary to understand

probability to quantify how much one model is preferred over another. For a thor-

ough discussion of model comparison the reader is referred to Chapter 5 of [123]. In

particular, the author considers the problem of determining when little additional

benefit is obtained from increasing the complexity of a model.

3.2 Rules of Probability

Most people are familiar with probability being some measure of the frequency of an

event (e.g., the fraction of times one gets a particular number when dice are rolled).

However, this is quite a limited view of probability. Furthermore, it is often assumed

that probability is used to describe a random or stochastic process. However, the

motion of a die can be described by Newtonian mechanics. (This is a chaotic system,

so it is extremely sensitive to initial conditions.) In principle, one could calculate

which face the die will land on given the initial condition had been measured with

sufficient accuracy. Rather than viewing probability as a frequency, it is more general

to view probability as a measure of belief in a proposition.

Probabilities need not (and in some circumstances) should not be equal to frequen-

cies. To force such a correspondence guarantees that a priori knowledge is worthless

and that data are all one knows. To see this is absurd, consider Example 3.2.1.

Example 3.2.1. Suppose a completely fair coin is manufactured and it is known

with certainty from the manufacturing process that there is a 50% chance of tossing

the coin and obtaining heads and a 50% chance of obtaining tails. The coin is tossed
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five times and each time the result is heads. If the probability of throwing heads

corresponds to the frequency of the result then one would conclude that there is a

100% chance of obtaining heads when the coin is tossed. However, it is already known

that the chance of obtaining heads is 50%. It can also be calculated that there is a

3.1% chance of obtaining five heads in a row with a perfectly fair coin. It would be

an extremely brave (or foolhardy) person to disregard the a priori knowledge when

there is a significant probability that the results just happened by chance.

Example 3.2.1 is a characture. Most people would talk about a correspondence

of probability to frequency in some limit of many experiments; i.e., one should not

draw any conclusions from a small number of trials. However, scientists wish to

make inferences based on limited results. Any theory that requires a large number

of experiments does not seem too helpful. Furthermore, there are many quantities

that are constant but cannot be measured exactly (for example: the speed of light).

According to modern physics, it is incorrect to suggest that each time the speed of

light is measured the speed is in fact different (even if each time a different value of

the measurement is obtained).

Hence, in this thesis probability will always correspond to a degree of belief in a

proposition. Rules governing the manipulations of probabilities can be obtained by

extending deductive logic. This view of probability is referred to as Bayesian statistics

or plausible reasoning. The development of the theory of probability as an extension

of deductive logic is abbreviated from [121].

3.2.1 Deductive Reasoning

In deductive reasoning, the truth of a proposition is considered and deductions are

based on a simple set of rules. Propositions are denoted by capital letters, A, B,

etc. There are only two possible outcomes when belief in a statement is decided:

either a statement is true or it is false. The notation, A = B (sometimes written as

A⇔ B), means A always has the same truth value as B (not A and B are identical

propositions), i.e., when statement A is true statement B is true and when statement
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Table 3.2: Binary truth table for implication

A B A⇒ B

0 0 1
1 0 0
0 1 1
1 1 1

A is false, statement B is false.

Definition 3.2.1. There are three basic operations defined in deductive reasoning:

negation, conjunction and disjunction.

1. A is false (negation): A, ¬A

2. A and B (conjunction): AB, A ∧B

3. A or B (disjunction): A+B, A ∨B

The notation, A⇒ B, means proposition A implies B and obeys the truth table

shown in Table 3.2. The only combination of A and B that is inconsistent with A⇒ B

is that A is true and B is false; all other combinations of A and B are consistent with

A⇒ B. Given A⇒ B then if A is true then B must be true. Likewise, if B is false

then A must be false (B ⇒ A). However, if A is false, then A ⇒ B does not give

any information about whether B is true or false. However, if one is just concerned

about the plausibility of a statement, then if A ⇒ B and A is false then one would

assume B is less likely (since at least one reason for B to be true has been removed).

It is apparent that deductive reasoning is not sufficient to make scientific inferences

since it is impossible to know whether a proposition or statement is completely true

or completely false; one hypothesis is either more or less likely than an another. The

framework to analyze the situation where propositions may be more or less likely is

plausible reasoning and was first developed by [50, 51]. It is possible to derive Bayes’

theorem directly from the desiderata of plausible reasoning.
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3.2.2 Plausible Reasoning

Following the development of [121], we will consider the situation where one wants to

express more than just certainty of a proposition. There are three situations where a

rational human would make an inference but no conclusion can be formally deduced:

1. if A⇒ B and B is true then one may infer that A is more plausible,

2. if A⇒ B and A is false then one may infer that B is less plausible, and,

3. if B is true implies A is more plausible and A is true then one may infer that

B is more plausible.

For example, rain (A) implies a cloudy sky (B). If the sky is cloudy (B = 1) then it

is more likely to be raining (A is more plausible). Likewise, if it is not raining A = 0,

then it is less likely to be cloudy (B is less plausible). To derive a system of plausible

reasoning it is necessary to define some desiderata governing how inferences are made

(see Definition 3.2.2).

Definition 3.2.2. (A|B) denotes the plausibility of statement A given statement B

is true. The plausibility of a statement, (·), obeys the following rules:

1. Degrees of plausibility are represented by a real numbers.

2. If (A|C ′) > (A|C) then
(
A|C ′) < (A|C).

3. If (A|C ′) > (A|C) and (B|AC ′) = (B|AC) then (AB|C ′) ≥ (AB|C).

4. Conclusions about a statement that can be reasoned out via more than one

route lead to the same probability of the conclusion.

5. All of the evidence must be considered when calculating the probability of a

statement.

6. Equivalent states of knowledge lead to equivalent probabilities.

7. Continuity.
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The probability of a proposition, Pr(A|B), is defined as a monotonically increasing

function of the plausibility, (A|B).

It is possible to prove the following properties from the desiderata in Defini-

tion 3.2.2:

Theorem 3.2.1. By convention, Pr(A|B) = 0, if A is false given B is true. Prop-

erties 1–4 follow from the Desiderata in Definition 3.2.2:

1. Truth - If statement A is true given B is true:

Pr(A|B) = 1

2. (Mutual) Exclusivity:

Pr(A|B) + Pr
(
A|B

)
= 1

3. Bayes’ Theorem:

Pr(AB|C) = Pr(A|C) Pr(B|AC)

= Pr(B|C) Pr(A|BC)

4. Indifference - If information B is indifferent between mutually exclusive propo-

sitions {A1, . . . , An} then:

Pr(Ai|B) =
1

n
, 1 ≤ i ≤ n.

The proof of the properties described in Theorem 3.2.1 is quite complicated and

the reader is referred to the seminal work [50, 51] or to [121] for an explanation. How

the plausibility and the probability of a statement is related has not been described.

All it is necessary to know is that the probability is a monotonically increasing func-

tion of the plausibility; the assignment of numerical values to probabilities is defined

by Property 4 of Theorem 3.2.1.
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From Exclusivity and Bayes’ theorem it follows that (Chapter 2 of [121]):

Pr(A+B|C) = Pr(A|C) + Pr(B|C)− Pr(AB|C) , (3.3)

and if the propositions, {A1, . . . , Am}, are mutually exclusive:

Pr(A1 + · · ·+ Am|B) =
m∑
i=1

Pr(Ai|B) . (3.4)

3.2.3 Marginalization

An important corollary can be obtained from Theorem 3.2.1:

Corollary. Assuming the Desiderata from Definition 3.2.2 and the propositions

{A1, . . . , An} ,

are mutually exclusive it follows that:

Pr(C| (A1 + . . .)X) =

∑n
i=1 Pr(C|AiX) Pr(Ai|X)∑n

i=1 Pr(Ai|X)
. (3.5)

The formula in Equation (3.5) is often referred to as the marginalization formula.

The corollary is useful in determining how much one believes a statement given one of

many mutually exclusive statements may be true, as demonstrated by Example 3.2.2.

Example 3.2.2. There are three dice, one with four faces, one with five faces and

another with six faces. What is the probability of rolling a five, given one of the dice

were rolled?

It is necessary to define the following propositions:

1. A1 a die with four faces was rolled.

2. A2 a die with five faces was rolled.

3. A3 a die with six faces was rolled.
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4. B a die was rolled. B = A1 + A2 + A3.

5. C a five was rolled.

It is assumed that each score is equally likely, since there is no additional information

about the dice. From the principle of indifference it follows that: Pr(Ai) = 1/3, i =

1 . . . 3, and Pr(C|A1) = 0, Pr(C|A2) = 1/5, and Pr(C|A3) = 1/6. Making the

necessary substitutions it follows that:

Pr(C|BX) =

∑3
i=1 Pr(C|AiX) Pr(AiX)

Pr(B|X)

=
1

3

(
0 +

1

5
+

1

6

)
=

11

90
.

Marginalization is important since it allows one to relax assumptions and make more

general statements.

3.2.4 Independence

Often the situation arises where two or more propositions are independent. For ex-

ample, one might reasonably expect the propositions:

A: The score on the first roll of a die is six.

B: The score on the second roll of a die is six.

to be independent (both physically and logically). Care must be taken since two

propositions can be physically independent without being independent in the sense

of probability. For example, it is well known that some fraction of patients who

are treated with a placebo for some diseases will report an improvement in their

symptoms. Hence, the propositions:

A: The patient is treated with a placebo.

B: The patient reports an improvement in their symptoms.
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may appear to be physically independent, but are not independent in the sense of

probability. Formally, the independence of propositions A and B is defined as:

Pr(A|BC) = Pr(A|C) (3.6)

and follows directly from Desiderata 6 of Definition 3.2.2. An important corollary to

Property 3 of Theorem 3.2.1 can be obtained trivially.

Corollary. If two statements are independent, then Equation (3.6) holds by defini-

tion. Substituting Equation (3.6) into Bayes’ theorem yields Equation (3.7).

Pr(AB|C) = Pr(A|C) Pr(B|C) (3.7)

3.2.5 Basic Inference

How these rules can be used to solve inference problems is now demonstrated in

Example 3.2.3.

Example 3.2.3. There are three different possible mechanisms for ligand binding and

it is known with certainty that one of the mechanisms is correct. Let the statements

A, B and C be defined as:

A: mechanism one is true,

B: mechanism two is true, and,

C: mechanism three is true.

It is assumed that each mechanism is equally likely, Pr(A) = Pr(B) = Pr(C) = 1
3
. An

experiment is performed which categorically excludes at least one of the mechanisms.

What is the probability that either one of the remaining mechanisms is the correct

model?

For arguments sake let mechanism three be excluded after the experiment. Let

the statement X be defined as:
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X: the experiment excludes mechanism three

Applying Bayes’ theorem yields Equations (3.8)–(3.9). Equation (3.11) is obtained

by exclusivity (only one of the three different mechanisms is correct).

Pr(A|X) =
Pr(X|A) Pr(A)

Pr(X)
(3.8)

Pr(B|X) =
Pr(X|B) Pr(B)

Pr(X)
(3.9)

Pr(C|X) = 0 (3.10)

1 = Pr(A|X) + Pr(B|X) + Pr(C|X) (3.11)

Assuming that without prior knowledge, the experiment is just as likely to exclude

either one of the mechanisms that are not true, the probability of the experiment

excluding mechanism three given mechanism one is the underlying mechanism is

Pr(X|A) = 1
2
. Similarly, Pr(X|B) = 1

2
and Pr(X|C) = 0 (i.e., the experiment will

not exclude the correct mechanism). Hence, the probability of mechanism one being

true given the results of the experiment is given by Equation (3.12).

Pr(X) = Pr(X|A) Pr(A) + Pr(X|B) Pr(B)

=

(
1

2

)(
1

3

)
+

(
1

2

)(
1

3

)
+ (0)

(
1

3

)
=

1

3

Pr(A|X) =

(
1
2

) (
1
3

)
1
3

=
1

2
(3.12)

The probability of the ligand binding occurring according to mechanism one changes

from 1
3

before the experiment to 1
2

after the experiment. It can be seen that this

corresponds with common sense; the information from an experiment either increases

or decreases confidence in a hypothesis.

Bayes’ theorem allows one to relate an observation to a proposition or hypothesis

under investigation. For example, statement A could be “The temperature in the

beaker is 30oC” and statement B could be the statement, “The temperature measured

in the beaker is 31oC”. Hence, one can relate how much one believes the temperature

is 30oC given the temperature is measured to be 31oC.
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3.2.6 Simple Parameter Estimation

A framework was described in § 3.2.2 for making inferences between different propo-

sitions. Once a set of propositions have been written and numerical values assigned

to the probabilities of some of the propositions, it is possible to calculate some of the

probabilities of the other propositions using Properties 1–4 of Theorem 3.2.1. How-

ever, scientists and engineers are not interested in just manipulating probabilities; it

is necessary to connect propositions to real world problems. It is demonstrated in

Example 3.2.4 how one can formulate propositions to make useful calculations.

Example 3.2.4. Consider the situation where a die has p sides and the outcomes of

k rolls of the die are recorded. The largest value of the die roll is imax. Given the

measurements, how many sides does the die have?

Let Ap be the statement that a die has p sides and let Cij be the statement that

the outcome of the die roll is i on roll j. Let Di (data) be the outcome of the ith roll

of the die. Assuming the die is unbiased, the probability of rolling i, given the die

has p sides, Pr(Cij|Ap) is given by Equation (3.13).

Pr(Cij|Ap) =


1
p

: i ≤ p

0 : i > p

(3.13)

Equation (3.13) is a model of the physical system, familiar to any scientist or engineer.

The probability of a particular sequence of k throws is given by Equation (3.14).

Pr(CD1,1 · · ·CDk,k|Ap) =
k∏
j=1

Pr
(
CDj ,j|Ap

)
(3.14)

The probability that the die has p sides given a sequence of throws is given by appli-

cation of Bayes’ theorem:

Pr(Ap|CD1,1 · · ·CDk,k) =
Pr(CD1,1 · · ·CDk,k|Ap) Pr(Ap)

Pr(CD1,1 · · ·CDk,k)
. (3.15)
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It should be stressed that the quantity,

Pr(CD1,1 · · ·CDk,k|Ap) ,

will evaluate to either zero or 1/pk depending on the data. Immediately, two difficul-

ties arise; one needs to know

Pr(CD1,1 · · ·CDk,k)

and Pr(Ap) to be able to complete the parameter estimation problem. The quantity

Pr(Ap) is often referred to as the prior. In this example it seems reasonable to assume

that with no information, it is equally likely that a die has two sides as ten. Hence,

Pr(Ap) =
1

n
, (3.16)

where n is the maximum number of sides the die could possibly have. Note: imax is

the largest value of a roll that we have seen and need not be necessarily equal to n,

the number of sides of the die could have. Substituting Equations (3.13), (3.14) and

(3.16) into Equation (3.15) yields:

Pr(Ap|CD1,1 · · ·CDk,k) =


(

1

p

)k
1

Pr(CD1,1 · · ·CDk,k)

1

n
: p ≥ imax

0 : p < imax

(3.17)

The quantity,

Pr(CD1,1 · · ·CDk,k) ,

can be calculated from the additional requirement shown in Equation (3.18), i.e., one

of the outcomes must occur and each outcome is mutually exclusive.

n∑
p=1

Pr(Ap|CD1,1 · · ·CDk,k) = 1 (3.18)
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Figure 3-2: Probability density function for Example 3.2.4

Substituting Equation (3.17) into (3.18) yields:

Pr(CD1,1 · · ·CDk,k) =
1

n

n∑
p=imax

(
1

p

)k
. (3.19)

Hence, the probability that a die has p sides given a sequence of k rolls of the die,

can be made by making the necessary substitutions, as shown in Equation (3.20).

Pr(Ap|CD1,1 · · ·CDk,k) =


(

1

p

)k
1∑n

i=imax
(1/i)k

: p ≥ imax

0 : p < imax

(3.20)

The probability density function is shown in Figure 3-2. It should be noted that the

probability,

Pr(Ap|CD1,1 · · ·CDk,k) ,

depends on imax which is obtained from the data,

Di, i = 1 : k.
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In fact, it can be seen that the quantity imax complete summarizes the data for this

parameter estimation problem. The probability,

Pr(Ap|CD1,1 . . . CDk,k) ,

also depends on the prior probability, Pr(Ap). The question arises what value, n to

assign for the maximum possible number of sides of the die. If there is no a priori

knowledge to determine the value of n, it is important that the value of n is not too

small since there would be a risk that p > n. Provided the die has been rolled more

than once, (k ≥ 2) the series:
∞∑

p=imax

(
1

p

)k
is convergent. Hence, the simplest solution is to assume that the number of sides, p,

ranges 1 ≤ p <∞.

It still remains to answer the original question, “How many sides has the die?”.

It is impossible to answer this question with absolute certainty. Instead, one can

state how much one believes the statement that a die has a certain number of sides.

It seems reasonable to characterize the die by the most probable statement. For

this example, the most probable number of sides of the die is equal to imax or the

maximum value in a sequence of rolls.

3.3 Relating Probabilities to the Real World

It is important that one can characterize problems numerically, rather than just in

terms of propositions. By definition, probability is a function of a proposition; the

probability of a number is meaningless. In Example 3.2.4 of § 3.2.6, a correspondence

was defined between a proposition Ap (a die has p sides) and a number, p. In this sec-

tion two important functions are defined: the cumulative density function (CDF) and

the probability density function (PDF). These functions can be used to characterize

the probability of certain special propositions, allowing one to relate probabilities to

scientific problems. Three theorems are presented in this Section which allow one to
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derive new PDFs and CDFs from PDFs and CDFs that are already defined. Initially,

it may seem that the information contained in these Theorems is purely theoretical

and is not of use in problems of inference. However, these Theorems will be used

almost constantly later in this thesis.

3.3.1 Cumulative Density Functions

For problems where we are interested in a real valued quantity, the continuous cumu-

lative density function (CDF) is defined as:

Definition 3.3.1. Let x̂ ∈ R be the quantity of interest and let x ∈ R be some value

that x̂ could take. Let A be the proposition:

A ≡ (x̂ ≤ x) .

The continuous cumulative density function (CDF) is defined as:

Fx(x) ≡ Pr(A) .

The subscript on Fx(x) allows one to distinguish between which quantity is being

compared with which value. For example, the quantity Fx(y) should be interpreted

as:

Fx(y) ≡ Pr(x̂ ≤ y) .

It is extremely important that a distinction is made between a quantity (tempera-

ture, pressure, concentration, etc.) and the value it takes (as demonstrated by Def-

inition 3.3.1). In inference problems, the quantity under investigation is uncertain.

Hence, it makes sense to compare the quantity to some fixed value. In this thesis,

a variable representing a physical quantity is denoted by circumflex and variables

representing possible values will not have a circumflex.

An example continuous CDF is shown in Figure 3-3a. For discrete problems where

a quantity can take a countable number of values, the discrete cumulative density

function is defined as:
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Definition 3.3.2. Let n̂ ∈ N be the quantity of interest and let n ∈ N be some value

that n̂ could take. Let A be the proposition:

A ≡ (n̂ ≤ n) .

The discrete cumulative density function (CDF) is defined as:

Fn(n) ≡ Pr(A) .

A CDF has the properties:

1. It is always true that x̂ <∞, hence:

lim
x→∞

Fx(x) = 1.

2. It is never true that x̂ < −∞, hence:

lim
x→−∞

Fx(x) = 0.

3. If x1 < x2, it is more likely that x̂ ≤ x2 than x̂ ≤ x1, hence,

Fx(x1) ≤ Fx(x2) .

4. From mutual exclusivity of probability it follows:

Pr(x̂ > x) = 1− Fx(x) .

5. From mutual exclusivity of probability it follows:

Pr(x1 < x̂ ≤ x2) = Fx(x2)− Fx(x1) .

The discrete CDF is defined on the set of integers as shown in Figure 3-3b.
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Figure 3-3: Example cumulative density functions and probability density functions
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3.3.2 Probability Density Functions

Definition 3.3.3. The probability density function (PDF) corresponding to a con-

tinuous CDF is defined as a nonnegative function fx(x):

Fx(x) =

∫ x

−∞
fx(t) dt,

if such a function exists. An alternative definition (if this quantity is well defined) is

fx(x) ≡ lim
δx→0

Pr(x < x̂ ≤ x+ δx)

δx

or equivalently,

fx(x) ≡
dFx(x)

dx
.

The continuous PDF has the following properties:

1. A continuous CDF is always a monotonically increasing function, hence:

fx(x) ≥ 0.

2. It is always certain that −∞ < x̂ <∞:

∫ ∞

−∞
fx(τ) dτ = 1.

3. From the definition of an integral it follows:

Fx(x2)− Fx(x1) =

∫ x2

x1

fx(τ) dτ.

Definition 3.3.4. The PDF corresponding to a discrete CDF is:

fn(n) ≡ Pr(n̂ = n) .

The discrete PDF has the following properties:
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1. A probability is never less that zero, hence:

fn(n) ≥ 0.

2. It is always certain that −∞ < n̂ <∞, hence:

∞∑
i=−∞

fn(i) = 1.

3. From the definition of a PDF it follows:

Fn(n) =
n∑

i=−∞

fn(i) .

4. From the definition of a sum it follows (for n2 > n1):

Fn(n2)− Fn(n1) =

n2∑
i=n1+1

fn(i) .

Example probability density functions are shown in Figure 3-3.

3.3.3 Change of Variables

It is often necessary to map one proposition to another. For example, an input (tem-

perature, pressure, etc.) may be measured and the output (flow rate, composition,

etc.) is calculated. Scientists and engineers are used to writing models (functions) to

describe these mappings:

ŷ = g(x̂) , g : R→ R.

It is important to note that it is quantities that are mapped from one to another. It

does not make sense to write:

y = g(x)
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since x is just some value with which to compare x̂ and may (and probably will) not

have any relationship to the quantity ŷ, unless,

Pr(x̂ = x) = 1,

and,

Pr(ŷ = y) = 1,

in which case it would seem that use of probability is unwarranted.

Correspondingly, there are many situations where one would like to calculate,

Pr(The quantity, ŷ, equals y) ,

based on information about x̂. Theorem 3.3.1 can be used to derive the probability

density function of ŷ when the PDF of x̂ is discrete.

Theorem 3.3.1. [54] If the probability density function fn(n) for n̂ is discrete, and

the quantity m̂, is given by m̂ = g(n̂) then,

fm(m) = Pr(m̂ = m) = Pr(g(n̂) = m) =
∑

n:g(n)=m

fn(n) .

Example 3.3.1. Suppose fifty male-female pairs of rabbits mate and produce two

rabbits per pair. Derive the probability density function for the number of male-

female pairs in the second generation. Assume that the PDF for the numbers of male

rabbits born is fnm(nm).

Clearly, there are a total of 100 rabbits in the second generation. Let us denote

the number of male rabbits in the second generation as n̂m and the number of couples

in second generation as n̂c. Then,

n̂c =

n̂m : n̂m ≤ 50

100− n̂m : n̂m > 50

.
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From which it follows that the PDF for the number of couples is:

fnc(nc) = fnm(nc) + fnm(100− nc) , nc = 0, . . . , 50.

If the PDF for x̂ is continuous, then the CDF for ŷ can be derived from Theo-

rem 3.3.2.

Theorem 3.3.2. [54] If the probability density function fx(x) for x̂ is continuous,

and the quantity ŷ is given by ŷ = g(x̂) then,

Fy(y) = Pr(ŷ ≤ y) = Pr(g(x̂) ≤ y)

=

∫
x:g(x)≤y

fx(x) dx.

Example 3.3.2. Calculate the PDF for ŷ given it is related to x̂ by

ŷ = x̂2,

and the PDF for x̂ is uniform on the interval (−1, 1), i.e., the PDF for x̂ is given by:

fx(x) =


1
2
−1 < x < 1,

0 otherwise.

.

It is clear that,

x̂ ∈ (−1, 1)⇒ ŷ ∈ [0, 1) .

Hence, for y < 0, Fy(y) is zero. (The interval (−∞, y) does not intersect with [0, 1).)

For y > 1, Fy(y) is one, since all of [0, 1) is contained in (−∞, y). On the interval,

0 ≤ y < 1, the CDF, Fy(y), is given by:

Fy(y) =

∫ y
1
2

−y
1
2

fx(x) dx = y
1
2 .

Since Fy(y) is differentiable on the interval 0 < y < 1, the PDF for ŷ on the interval
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0 < y < 1 is given by:

fy(y) =
dFy(y)

dy
=

1

2y
1
2

.

3.3.4 Joint Cumulative Density Functions

It is easy to generalize the CDF to the situation where the probability of a com-

pound statement, Pr(AB|C), is of interest rather than the probability of just a single

statement, Pr(A|C).

Definition 3.3.5. The joint CDF is defined as:

Fx,y(x, y) ≡ Pr((x̂ ≤ x) ∧ (ŷ ≤ y)) .

It is straightforward to show the joint CDF has the following properties:

1. It is certain that (x̂, ŷ) ∈ (−∞,∞)× (−∞,∞), hence:

lim

x→∞

y →∞

Fx,y(x, y) = 1.

2. It is never true that either x̂ < −∞ or ŷ < −∞, hence:

lim
x→−∞

Fx,y(x, y) = 0,

lim
y→−∞

Fx,y(x, y) = 0.

3. From mutual exclusivity it follows:

Pr(x1 < x̂ ≤ x2, y1 < ŷ ≤ y2) = Fx,y(x2, y2)− Fx,y(x1, y2)

− Fx,y(x2, y1) + Fx,y(x1, y1)
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4. From the definition of a joint CDF it follows:

Fx(x) = lim
y→∞

Fx,y(x, y) ,

Fy(y) = lim
x→∞

Fx,y(x, y) .

3.3.5 Joint Probability Density Functions

Definition 3.3.6. The joint PDF is defined if there exists an nonnegative function

fx,y(x, y):

Fx,y(x, y) =

∫ x

−∞

∫ y

−∞
fx,y(s, t) dsdt.

If the joint CDF is sufficiently differentiable, an alternative definition is

fx,y(x, y) =
∂2Fx,y(x, y)

∂x∂y
.

The joint continuous PDF has the following property:

1. From the definition of the joint continuous CDF:

Pr({x, y} ∈ D) =

∫∫
D

fx,y(x, y) dxdy.

In § 3.2.3, an important corollary was stated (called marginalization). This is a

process by which one can calculate the probability that a proposition depends on the

occurrence one of many mutually exclusive propositions. The continuous version of

marginalization is stated as:

Theorem 3.3.3. [54, 169] The marginal PDF fz(z) is related to the joint PDF

fz,w(z, w) by

fz(z) =

∫ ∞

−∞
fz,w(z, w) dw.

Example 3.3.3. The joint PDF for the weight and length of a new-born baby is

given by:

fl,w(l, w) =
1

2πσ2
exp

(
−2.125l2 + 3.75lw + 2.125w2

2σ2

)
,
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where l̂ is the length of the baby and ŵ is the weight of the baby. Derive the marginal

PDF for the length of a baby.

The marginal PDF is obtained by direct application of Theorem 3.3.3:

fl(l) =

∫ ∞

−∞

1

2πσ2
exp

(
−2.125l2 + 3.75lw + 2.125w2

2σ2

)
dw

=
1

σ
√

4.25π
exp

(
− l2

4.25σ2

)
.

Often scientists and engineers have a model which relates inputs to outputs. Some-

times the PDF for the inputs is known, and one would like to derive the PDF for the

outputs. Theorem 3.3.4 relates the PDF of the outputs to the PDF of the inputs.

Theorem 3.3.4. [54, 169] To find fz,w(z, w), the joint probability density for {ẑ, ŵ},

where ẑ = g(x̂, ŷ) and ŵ = h(x̂, ŷ), solve the system:

g(x, y) = z

h(x, y) = w

denoting the roots, {xn, yn}. Then, if the relevant Jacobians matrices are nonsingular,

fz,w(z, w) =
fx,y (x1, y1)

|J (x1, y1)|
+ . . .+

fx,y(xn, yn)

|J (xn, yn)|
,

where the Jacobian matrix, J(x, y), is defined as

J(x, y) =

 ∂z
∂x

∂z
∂y

∂w
∂x

∂w
∂y


and |·| denotes the absolute value of the determinant of a matrix.

A common example is variable rescaling (for example: a temperature is measured

in Fahrenheit but is required in Celsius):
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Example 3.3.4. The variable, ẑ, is related to the variable x̂ by:

ẑ =
x̂− µ
σ

.

If the PDF for ẑ is fz(z), what is the PDF for x̂?

Direct application of Theorem 3.3.4 yields:

fx(x) =
fz(z)∣∣dx

dz

∣∣
=

1

|σ|
fz

(
x− µ
σ

)
.

Frequently, a scientist or engineer faces the situation where the number of outputs of

a system is less than the number of inputs (for example: the equilibrium concentra-

tion of a product may depend on the initial concentrations of two reactants and the

temperature of the system). A convenient trick allows one to determine the PDF of

the outputs from the PDF of the inputs (as shown in Example 3.3.5).

Example 3.3.5. Calculate fz(z), where ẑ is defined by ẑ = x̂+ ŷ and the probability

density function, fx,y(x, y), is known.

The desired PDF can be obtained by the introduction of an additional variable

ŵ = ŷ to make the resulting system square. By Theorem 3.3.4 the PDF for the square

system, fz,w(z, w), is

fz,w(z, w) =
fx,y(z − w,w)

1
,

since,

|J | = 1.

By Theorem 3.3.3, fz(z) is given by:

fz(z) =

∫ ∞

−∞
fx,y(z − w,w) dw.
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Theorem 3.3.5. (Page 146 of [85]). Let ŷ be the sum of n independent variables x̂i:

ŷ =
n∑
i=1

x̂i,

and fx(xi) be the probability density function for x̂i. The probability density function

for ŷ is given by:

fy(y) = f(n)
x (y) (3.21)

where f(n)
x (y) denotes the n-fold convolution:

f(n)
x = f(n−1)

x ∗ fx,

and

g ∗ f =

∫ ∞

−∞
g(y − x) f(x) dx.

Proof. Define ŷi as

ŷi = x̂i + ŷi−1

and the PDF for ŷi as gi(yi). Introducing an additional variable, ẑi = x̂i, the joint

PDF for {ŷi, ẑi} is given by (Theorem 3.3.4):

h(yi, zi) = gi−1(yi − zi) f(yi) .

Marginalization of the joint density yields the PDF for ŷi:

gi(yi) =

∫ ∞

−∞
h(yi, zi) dzi. (3.22)

Repeated application of Equation 3.22 yields the result in Equation (3.21).

3.3.6 Conditional Density Functions

It is a common situation in science to know a priori an accurate model of the system

of interest; the goal of experimentation is to determine some physical parameters.

The task of inferring model parameters from experimental data is called parameter
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estimation. It is important to have a form of Bayes’ Theorem that is suitable for this

task. To obtain such a form requires the conditional CDF and conditional PDF to

be defined:

Definition 3.3.7. The conditional CDF for x̂ ∈ R is given by

Fx(x|B) = Pr(x̂ ≤ x|B)

where B is some proposition. Likewise, the joint conditional CDF for {x̂, ŷ} ∈ R2 is

given by

Fx,y(x, y|B) = Pr((x̂ ≤ x) ∧ (ŷ ≤ y) |B)

where B is some proposition. The corresponding PDFs are defined as the derivatives

of the CDFs:

fx(x|B) =
dFx(x|B)

dx

fx,y(x, y|B) =
∂2Fx,y(x, y|B)

∂x∂y
.

A difficulty arises if the proposition B is defined as the real-valued quantity, x̂, equal-

ing a specified value x, (x̂ = x), since for many situations the probability of the

proposition is zero. Consequently, a conditional PDF that depends on two real-valued

variables x̂, and ŷ, fy(y|x̂ = x), is defined as the limit:

fy(y|x̂ = x) lim
δx→0

fy(y|x < x̂ ≤ x+ δx) .

It is demonstrated in Example 3.3.6 how a typical conditional PDF can be derived.

Example 3.3.6. Suppose n measurements are made where the PDF for the output,

ŷ, is fy(y|I), and I is any additional information. Derive the PDF for the kth largest

measurement, fyk
(yk|n, k, I).

To derive the PDF for the kth largest measurement, fyk
(yk|n, k, I) it is necessary

to know the probability that the kth largest measurement, ŷk lies in the range yk <
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ŷk ≤ yk + δyk. An equivalent statement to: ŷk lies in the range yk < ŷk ≤ yk + δyk

is there are k − 1 measurements less than yk, and there is one measurement between

yk and yk + δyk, and there are n− k measurements more than yk + δyk. Hence, there

are three possibilities for single measurement: it is less than yk, it is between yk and

yk + δyk, or it is more than yk + δyk. The probabilities corresponding to the different

outcomes are:

p1 = Fy(yk|I) ,

p2 =

∫ yk+δyk

yk

fy(t|I) dt,

and,

p3 = 1− Fy(yk + δyk|I) ,

respectively. Defining the following statements:

A: k − 1 of the n measurements are less than yk,

B: 1 of the n measurements is between yk and yk + δyk, and,

C: n− k of the n measurements are more than yk + δyk,

the probability Pr(ABC|n, k, I) is given by the multinomial density:

Pr(ABC|n, k, I) =
n!

(k − 1)!1! (n− k)!
pk−1

1 p2p
n−k
3 .

By considering the limit:

fyk
(yk|n, k, I) = lim

δyk→0

Pr(yk < ŷk ≤ yk + δyk|n, k, I)
δyk

= lim
δyk→0

Pr(ABC|n, k, I)
δyk

,

it follows:

fyk
(yk|n, k, I) =

n!

(n− k)! (k − 1)!
(Fy(yk|I))k−1 (1− Fy(yk|I))n−k fy(yk|I) . (3.23)

128



3.4 Risk, Reward, and Benefit

A probability alone is insufficient to make an informed decision. To make such a

decision it is also necessary to take into account the consequences of making such a

decision. Expectation is a closely related concept to probability [123]. It is assumed

that there is some value (reward) corresponding to the truth of a proposition, con-

ditional on some other information. A simple example of expectation might be the

game:

A: (Reward) I win $1 if the result of a coin toss is heads,

B: (Proposition) The result of the coin toss is heads, and,

C: (Conditional Information) the coin is fair.

The expectation of reward is defined as

E(A,B|C) = APr(B|C) ,

hence the expected reward of the game is 50 cents ($1 × 0.5). The expectation is a

function of the reward, the proposition, and conditional information, i.e., just like a

probability, an expectation is always dependent on conditional information.

Despite an unambiguous mathematical description of expectation, the interpreta-

tion of expectation can be troublesome as demonstrated in Example 3.4.1, .

Example 3.4.1. (Described on Page 31 of [123].) The following game is called the

Petersburg Problem. A coin is repeatedly tossed. $1 is awarded if a heads is thrown

on the first toss and $0 is awarded if the result is tails. The reward is doubled on

each successive throw of the coin. What is the value of the game?

The expected value of reward from the game is:

1.
1

2
+ 2.

1

4
+ 4.

1

8
+ · · · =∞.
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However, it is doubtful that there would be many people prepared to pay such a

price. The difficulty with the interpretation of expectation is that the value of reward

depends on how much someone already has. For example, it might be quite a catas-

trophe if one has $100 and a $500 bike is stolen. However, if the person has $100,000

and a $500 bike is stolen the consequences are most likely far less important.

3.4.1 Expectation

It is still extremely useful to use the concept of expectation for problems of inference,

despite the caveat that expectation must be interpreted carefully. The expectation

of a quantity where knowledge of the value of the quantity is described by a PDF is

given by the following definition:

Definition 3.4.1. The expected value of a real-valued quantity x̂ is defined as

Ex(x̂) =

∫ ∞

−∞
x fx(x) dx, (3.24)

and is defined as

En(n̂) =
∑
i

ifn(i) , (3.25)

for a discrete-valued quantity.

Often the expected value of a function, ŷ = g(x̂), is of interest. An expression for

Ex(ŷ) is provided by Theorem 3.4.1.

Theorem 3.4.1. [54, 169] The expected value of ŷ = g(x̂) is

Ex(g(x̂)) =

∫ ∞

−∞
g(x) fx(x) dx, (3.26)

if the PDF for x̂ is a continuous PDF, and,

En(g(n̂)) =
∑
i

g(i) fn(i) , (3.27)

if the PDF for n̂ is a discrete PDF. For problems with two variables, where ẑ = g(x̂, ŷ)
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and ẑ, x̂, ŷ are real variables, the variance of ẑ is given by:

Ex,y(g(x̂, ŷ)) =

∫ ∞

−∞

∫ ∞

−∞
g(x, y) fx,y(x, y) dxdy. (3.28)

The expectation operator has the following easily verified linearity properties:

1. Ex(ax̂) = aEx(x̂)

2. Ex,y(ax̂+ bŷ) = aEx,y(x̂) + bEx,y(ŷ)

where a and b are real-valued constants.

3.4.2 Variance and Covariance

The variance of a quantity, x̂, is defined in terms of the expectation of a function and

can be used to characterize a PDF for x̂. The variance of x̂ is defined as follows:

Definition 3.4.2. The variance of a continuous variable x̂ is defined as

Var(x̂) =

∫ ∞

−∞
(x− η)2 fx(x) dx (3.29)

and the variance of a discrete variable is defined as

Var(n̂) =
∑
i

(i− η)2 fn(i) (3.30)

where η = Ex(x̂).

Applying Theorem 3.4.1 to the definition of variance, yields:

Var(x̂) = Ex

(
(x̂− η)2) .

From the linearity of the expectation operator, the variance of x̂ can also be expressed

as:

Var(x̂) = Ex

(
x̂2
)
− (Ex(x̂))

2 . (3.31)
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For a joint PDF the covariance is an important measure of correlation between two

variables.

Definition 3.4.3. The covariance of two variables, x̂ and ŷ, is defined as:

Cov (x̂ŷ) = Ex,y((x̂− ηx) (ŷ − ηy)) (3.32)

where ηx and ηy are defined as:

ηx = Ex,y(x̂)

and,

ηy = Ex,y(ŷ) .

From the properties of the expectation operator:

Cov (x̂ŷ) = E(x̂ŷ − ηxŷ − ηyx̂+ ηxηy) (3.33)

= E(x̂ŷ)− E(x̂) E(ŷ) . (3.34)

It is possible to derive the following expressions and properties:

1. Var(ax̂) = a2Var(x̂), where a is a real-valued constant.

2. If x̂ and ŷ are independent (i.e., fx,y(x, y) = fx(x) fy(y)), they are uncorrelated:

Cov (x̂, ŷ) = 0.

3. If x̂ and ŷ are uncorrelated, Var(x̂+ ŷ) = Var(x̂) + Var(ŷ).

How to calculate the expected value and variance of a quantity is demonstrated

in Example 3.4.2.

Example 3.4.2. Calculate the expected value and variance of a Log-Normal density:

fx(x) =
1

xσ
√

2π
exp

(
−(log x− µ)2

2σ2

)
.
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By definition, the expected value of the density is given by:

E(x̂) =

∫ ∞

0

xfx(x) dx

=
1√
2π

∫ ∞

0

1

xσ
x exp

(
−(log x− µ)2

2σ2

)
dx.

To evaluate the integral it is necessary to transform variables. Defining t as

t ≡ log x− µ
σ

,

the expectation can be evaluated:

E(x̂) =
1√
2π

∫ ∞

−∞
exp

(
−t

2

2
+ σt+ µ

)
dt

=
1√
2π

exp

(
µ+

σ2

2

)∫ ∞

−∞
exp

(
−(t− σ)2

2

)
dt

= exp

(
µ+

σ2

2

)
.

The variance of the density is defined as:

E
(
(x̂− ηx)2) =

1√
2π

∫ ∞

0

(
x− exp

(
µ+

σ2

2

))2
1

σx
exp

(
−(log x− µ)2

2σ2

)
dx.

To evaluate the integral it is necessary to transform variables. Defining t as

t ≡ log x− µ
σ

,

the integral can be rewritten as

Var(x̂) =
1√
2π

∫ ∞

−∞

(
exp(2σt+ 2µ)− 2 exp

(
σt+ 2µ+

σ2

2

)
+ exp

(
2µ+ σ2

))
× exp

(
−t

2

2

)
dt,
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which can be rearranged to

Var(x̂) = exp
(
2µ+ σ2

)
+

exp(2µ+ 2σ2)√
2π

∫ ∞

−∞
exp

(
−(t− 2σ)2

2

)
dt

− 2
exp(2µ+ σ2)√

2π

∫ ∞

−∞
exp

(
−(t− σ)2

2

)
dt.

Evaluating the integrals yields:

Var(x̂) =
(
exp
(
µ+

σ

2

))2 (
exp
(
σ2
)
− 1
)
.

There are two widely used systems of inference: inference by statistics (sometimes

called “frequentist approach” or “orthodox statistics”) and inference by Bayes’ The-

orem. Inference by statistics makes use of expectation and variance to determine

parameter values.

3.5 Systems of Parameter Inference

Two different systems of parameter inference are described in this section: inference

by Bayes’ Theorem, and inference by statistics (sometimes known as “the frequentist

approach”). Despite the widespread adoption of the term “frequentist”, we will not

adopt this term as it is extremely misleading. The objective of both systems is the

same; to infer the value of a parameter, x̂ ∈ R, given data, ŷ ∈ Rny , equal to

the values, y ∈ Rny . Historically, these two systems of inference have been seen as

diametrically opposed. However, the differences between the systems of inference has

been reconciled with modern theory. It is perfectly consistent to use inference by

statistics and have the “Bayesian” view that a probability is a measure of belief in a

proposition.

Overall, the method of inference by Bayes’ theorem is preferred for two reasons:

1. the theory of Bayesian probability can be extended to more than just parameter

estimation, and,
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2. the method is straightforward to apply algorithmically.

In contrast, it is nearly impossible to extend the theory of inference by statistics to

problems such as model selection. Furthermore, inference by statistics requires the

selection of a statistic (function of the data). However, it is not straightforward to

determine the correct statistic for anything other than trivial parameter estimation

problems. Despite the drawbacks of inference by statistics, both systems of inference

are described in § 3.5.1–3.5.2 for completeness.

3.5.1 Inference by Bayes’ Theorem

The foundations of Bayesian inference for parameter estimation problems are de-

scribed in this section. For the purposes of exposition, it is assumed that the goal

is to infer the value of a single state, x̂, given a set of independent measurements,

y ∈ Rny , of an output, ŷ ∈ Rny . Knowledge about the value x of the state, x̂, is

summarized by the conditional PDF, fx(x|y). This conditional PDF can be obtained

by a straightforward extension of Theorem 3.5.1.

Theorem 3.5.1. Defining a conditional PDF according to Definition 3.3.7, applica-

tion of Theorem 3.2.1 yields the following commonly used forms of Bayes’ Theorem:

fx,y(x, y) = fx(x|ŷ = y)πy(y) , (3.35)

and,

fx(x|ŷ = y)πy(y) = fy(y|x̂ = x)πx(x) , (3.36)

where x̂, x, ŷ, and, y are real values quantities, and πx(x) and πy(y) are the uncon-

ditional (marginal) PDFs for x̂ and ŷ, respectively.

Proof. From the definition of the conditional CDF function and application of Bayes’

theorem (Theorem 3.2.1):

Fy(y|x < x̂ ≤ x+ δx) =
Pr((ŷ ≤ y) ∧ (x < x̂ ≤ x+ δx))

Pr(x < x̂ ≤ x+ δx)
(3.37)
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=
Fx,y(x+ δx, y)− Fx,y(x, y)

Fx(x+ δx)− Fx(x)
. (3.38)

Since by definition,

Fx,y(x, y) ≡
∫ x

−∞

∫ y

−∞
fx,y(α, β) dαdβ

then,
∂Fx,y(x, y)

∂y
=

∫ x

−∞
fx,y(α, y) dα

which on differentiation of Equation (3.38) yields,

fy(y|x < x̂ ≤ x+ δx) =

∫ x+δx

x

fx,y(α, y) dα∫ x+δx

x

πx(α) dα

,

where πx(x) is the marginal PDF for x̂. Examining the limit as δx→ 0 yields:

fy(y|x̂ = x) = lim
δx→0

fy(y|x < x̂ ≤ x+ δx)

= lim
δx→0

∫ x+δx

x

fx,y(α, y) dα∫ x+δx

x

πx(α) dα

.

Applying L’Hôpital’s rule [150]:

fy(y|x̂ = x) = lim
δx→0

d

d (δx)

∫ x+δx

x

fx,y(α, y) dα

d

d (δx)

∫ x+δx

x

πx(α) dα

=
fx,y(x, y)

πx(x)
.
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Another form of Bayes’ Theorem can be derived by application of Theorem 3.3.3:

fx(x|ŷ = y) =
fy(y|x̂ = x)πx(x)∫ ∞

−∞
fy(y|x̂ = x)πx(x) dx

, (3.39)

since,

πy(y) =

∫ ∞

−∞
fx,y(x, y) dx

=

∫ ∞

−∞
fy(y|x̂ = x)πx(x) dx.

It is clear that the denominator in Equation (3.39),

∫ ∞

−∞
fy(y|x̂ = x)πx(x) dx,

is a function that does not depend on x. Hence, the rule in Equation (3.39) is often

abbreviated to

fx(x|ŷ = y) ∝ fy(y|x̂ = x)πx(x) . (3.40)

If more than one independent measurement of the output is made, the posterior

PDF, fx(x|ŷ = y), can be derived by repeated application of Bayes’ Theorem (Theo-

rem 3.5.1):

fx(x|ŷn = yn, . . . , ŷ1 = y1) ∝ fy(yn|x̂ = x) fx(x|ŷn−1 = yn−1, . . . , ŷ1 = y1) . (3.41)

Hence, the posterior PDF is updated by a factor fy(yi|x̂ = x) for each measurement yi.

Equation (3.41) can be interpreted as a rule of incremental learning. If measurements

of the output are independent, the posterior PDF can also be written:

fx(x|ŷ = y) ∝ fy(y|x̂ = x)πx(x) , (3.42)
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where the joint likelihood function, fy(y|x̂ = x), can be expressed as

fy(y|x̂ = x) ≡
ny∏
i=1

fy(yi|x̂ = x) .

According to the notation of [123], the result in Equation (3.36) of Theorem 3.5.1

is called the rule of inverse probability. It is the fundamental theorem by which

inferences can be made. In the simplest case, x̂ is some quantity to be estimated

(for example: temperature, concentration, pressure) and y is a measurement of the

output, ŷ. The PDF fx(x|ŷ = y) summarizes the probability that the state, x̂, will

take a particular value, x, given the output, ŷ, is measured to be y; i.e., knowledge

about x̂ is summarized by the PDF, fx(x|ŷ = y).

The quantity, fy(y|x̂ = x) characterizes the probability of making a measurement ŷ

equal to a value y. According to standard statistical notation, the function fy(y|x̂ = x)

is called the likelihood function. In the engineering literature, fy(y|x̂ = x) is called a

process model since it maps the state of a system to a measurable output. It should

be stressed that correct selection of fy(y|x̂ = x) is made by the “art of modeling”.

There are no axioms from which such a model can be deduced. Accordingly, selection

of the function depends on prior experience or knowledge. Some authors make this

dependence explicit by denoting the likelihood function as fy(y|x̂ = x, I), where I is

the information used to select the likelihood function. There are many merits to this

notation, however, as a shorthand the form fy(y|x̂ = x) is preferred.

The function πx(x) is referred to as the prior PDF. This function characterizes

additional information about the quantity of interest, x̂, that is not included in the

likelihood function. The term prior is unfortunate and misleading: it does not imply

any chronology to the order in which information is obtained. Occasionally, the situa-

tion may arise where there is little or no additional information about the value of the

quantity of interest, in which case it is necessary to assign a prior PDF that appropri-

ately expresses ignorance. The assignment of prior probabilities is discussed in § 3.7.

The assignment of prior probabilities has been a source of controversy over the years,

leading some to call the Bayesian system of inference subjective. This controversy
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should not be confused with the appropriateness of Bayesian/Plausible reasoning; the

desiderata in Definition 3.2.2 are reasonable and the properties described in Theo-

rem 3.2.1 are derived directly from the desiderata. There is a distinction between

whether the rules of inference are objective/fair and whether assignments made to

probabilities realistically represent the system of interest; it is quite possible to do

Bayesian modeling badly but this does not mean that the rules of inference are incor-

rect. Likewise, no scientist would doubt that Newton’s laws of motion cannot be used

to model very high speed mechanics. However, this does not mean that the rules of

calculus are incorrect.

The complete framework for inference using Bayes’ Theorem has now been de-

scribed in § 3.2–3.5. However, the assignment of prior PDFs and likelihood functions

has not yet been discussed. This material is covered in § 3.6–3.7.

3.5.2 Inference by Statistics

An alternative but complementary system of inference is based upon the notion of

statistics. Due to historical reasons, this approach is often described as “frequentist”

or “orthodox” in the literature. The label “frequentist” refers to the interpretation

of probability as the frequency with which an event occurs in the limit of many

experiments. This view is not inconsistent with the Bayesian view of probability as a

measure of ones belief in the probability of a proposition. Quantitative correspondence

of a probability with a frequency (if such an interpretation exists) is guaranteed by

Desiderata 6 of Definition 3.2.2 [121]. Consequently, the description of inference by

statistics as “frequentist” is an over-simplification.

A statistic is an arbitrary function of the data. Typically, such a function maps

Rny → R. For example, a common statistic is the sample mean, y, defined as:

y =
1

ny

ny∑
i=1

yi.

The goal of this system of inference is to define a statistic in such a way that mean-

ingful conclusions can be drawn about a parameter of interest. Traditionally, the goal

139



has been to show that in the limit of many experiments, the value of the statistic

converges to a specific value of interest (for example: the value of the state of the

system). Furthermore, the rate of convergence is also characterized. Several terms

are used to describe a statistic:

Definition 3.5.1. The following terms are useful when describing a statistic:

1. A statistic is an unbiased estimate if the expected value of a statistic equals the

value of the parameter of interest.

2. A statistic is a minimum variance estimate if no other function of the data can

be found with a smaller variance.

3. A set of statistics, t1, t2, . . . , that completely summarizes knowledge about the

state is sufficient. By definition, for a set of sufficient statistics:

fx
(
x|t̂1 = t1, t̂2 = t2, . . . , I

)
= fx(x|ŷ = y, . . . , I) .

However, examining the asymptotic convergence of a statistic does not describe

the behavior of a statistic based on a small number of experiments. A preferable

analysis examines the conditional PDF for the statistic, fy(y|I). The conditional

PDF can be derived from the likelihood function fy(y|I) since the statistic, y(y), is a

function of the measurements y. I is any information that is cogent to the value of

the output (for example: the value of the state of the system).

Example 3.5.1. The PDF for the measurement of the output of a system is given

by the likelihood function,

fy(yi|x̂ = x, σ̂ = σ) =
1

σ
√

2π
exp

(
−(yi − x)2

2σ2

)
.

A set of independent measurements, y ∈ Rny are made of the system. Derive the

conditional PDF for the sample mean, ŷ, and the sample median ŷ1/2. Assume ny is

odd.
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Figure 3-4: PDFs for the sample mean and median (n = 13, σ̂ = 3, x̂ = 10)

The PDF for the sample mean, fy(y|x̂ = x, σ̂ = σ), is:

fy(y|x̂ = x, σ̂ = σ) =
1

(σ/
√
n)
√

2π
exp

(
− (y − x)2

2 (σ/
√
n)

2

)
,

and can be derived by direct application of Theorem 3.3.5. The PDF for the sample

median was derived in Example 3.3.6 and is:

fy1/2

(
y1/2|n̂y = ny, x̂ = x, σ̂ = σ

)
=

ny!(
ny+1

2

)
!
(
ny−3

2

)
!

(
Fy
(
y1/2|I

))ny−3

2
(
1− Fy

(
y1/2|I

))ny+1

2 fy
(
y1/2|I

)
,

where,

Fy
(
y1/2|I

)
=

1

2

(
1 + erf

(
y1/2 − x
σ
√

2

))
,

and,

fy
(
y1/2|I

)
=

1

σ
√

2π
exp

(
−
(
y1/2 − x

)2
2σ2

)
.

The PDFs for the sample mean and median are plotted in Figure 3-4.
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It is straightforward to show that the mode of the PDFs:

fy(y|x̂ = x, σ̂ = σ) ,

and,

fy1/2

(
y1/2|n, x̂ = x, σ̂ = σ

)
occur at y∗ = x and y∗1/2 = x, respectively. It can be seen from the plot in Figure 3-4

that it is fairly probable to calculate a value of the statistic that is close to the value of

the state. Hence, both the sample mean and sample median can be used to estimate

the value of the state. However, there is no guarantee that the sample mean (or

median) will exactly equal the value of the state (in fact this is extremely unlikely).

The real goal is to make inferences about the value of the state from the value of the

statistic. For the sample mean this information can be obtained from the posterior

PDF:

fx
(
x|ŷ = y, σ̂ = σ

)
.

If the prior PDF is uniform, the posterior PDF is given by:

fx
(
x|ŷ = y, σ̂ = σ

)
∝ fy(y|x̂ = x, σ̂ = σ) ,

hence, inferences can be drawn directly from the sample mean. In many situations it

is reasonable to assume that a uniform prior reflects ignorance about the true value

of a parameter. However, sometimes an additional constraint (such as knowledge of

the functional form of the likelihood function) may mean that a uniform prior does

not fairly represent ignorance. This is a real drawback of inference by statistics. To

emphasize the point:

fx
(
x|ŷ = y, σ̂ = σ

)
6= fy(y|x̂ = x, σ̂ = σ) ,

in the general case. A further drawback of inference by statistics is that it is difficult

to determine the functional form of a good statistic. A popular suggestion is the
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maximum likelihood method. In this method, the statistic is defined as the value

of the state or parameter that maximizes the likelihood function (see [123] for a

description of the method, together with its drawbacks). The maximum likelihood

method is equivalent to maximizing the posterior PDF when the prior PDF is uniform.

Example 3.5.2. The likelihood function for ŷ is given by:

fy(y|σ̂ = σ) =
1(

σ
√

2π
)ny

exp

(
−yTy

2σ2

)
.

Calculate the maximum likelihood estimate.

The value of σ that maximizes the likelihood function is given by the solution of

d

dσ

1(
σ
√

2π
)ny

exp

(
−yTy

2σ2

)
= 0,

which on completing the differentiation yields:

1(
σ
√

2π
)ny

exp

(
−yTy

2σ2

)(
yTy

σ3
− n

σ

)
= 0.

Hence, the estimate of σ̂ is

σ∗ =

√
yTy

ny
.

However, it has been shown that a better estimate of σ̂ is in fact [29, 121, 122, 123,

244]:

σ∗ =

√
yTy

ny − 1
.

The maximum likelihood estimate is not optimal even for the situation where there is

limited prior information. For samples that are not too small one can argue that the

discrepancy between the Bayesian estimate and the maximum likelihood estimate is

negligible. While this is true for the statistic derived in Example 3.5.2, in general this

is not the case. The work [86] provides a catalogue of examples where the maximum

likelihood estimate does not even asymptotically converge to the true parameter value.
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3.6 Selecting a Likelihood Function

Estimation and prediction are two common problems of interest. The PDF,

fy(y|x̂ = x) ,

or

fy(y|x̂ = x(u))

is necessary both for estimation and prediction, since the function characterizes ones

belief that the output, ŷ, takes a certain value y given the state (or inputs) of the

system are known. It is therefore necessary to know how to select the appropriate

PDF as a likelihood function. In this section, some of the more common PDFs that are

used in engineering are discussed. In addition, it is shown in Examples 3.6.1–3.6.4 how

the likelihood function can be used to make predictions about the output of system,

ŷ, conditional on knowledge of the state, x̂. However, knowledge of the likelihood

function alone is insufficient to solve inference problems (for example: estimate the

state of the system, x̂ given a set of measurements, ŷ = y). For this task it is

also necessary to assign a prior PDF to describe additional knowledge (or ignorance)

about the value of x̂. The assignment of prior PDFs is discussed in § 3.7. A summary

of the common PDFs is included in Tables 3.3–3.5. The PDFs are classified as

discrete, continuous, and derived. The discrete and continuous PDFs correspond to

commonly used likelihood functions. In contrast, the derived PDFs do not correspond

to commonly occurring likelihood functions, but rather to PDFs for specially defined

functions of the measurements g(y) (so called estimators), i.e., the PDF:

fg(y)(g(y) |x̂ = x) ,

where y ∈ Rny is a set of ny measurements (see § 3.5.2 for more details). Some of the

continuous PDFs are defined in terms of the gamma function and incomplete gamma
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Table 3.3: Discrete PDFs

Density Formula Range

Binomial f(x|n, p) =

(
n

x

)
px (1− p)(1−x) 0, . . . , n

Uniform f(x|N) =
1

N
1, . . . , N

Geometric f(x|p) = p (1− p)x 0, 1, . . .

Hypergeom. f(x|n,M,K) =

(
K
x

)(
M−K
n−x

)(
M
n

) 0, . . . , n

Poisson f(x|λ, t) =
(λt)x

x!
e−λt 0, 1, . . .

function. The gamma function and incomplete gamma functions are defined as

Γ(x) =

∫ ∞

0

t(x−1)e−t dt, 0 < x <∞

and,

B(a, b) =
Γ(a) Γ(b)

Γ(a+ b)
,

respectively.

3.6.1 Binomial Density

A common situation is where a trial is repeated i = 1 : n times with two possible

outcomes. The outcome of the ith trial is either A or A. The result of one trial

does not influence subsequent trials, i.e., the result of each trial is independent from

another. The PDF for the number of times A occurs, k̂, in n̂ = n trials is referred to

as the Binomial density and is given by:

Pr(A occurs k times in n trials) = fk(k|n̂ = n) =

(
n

k

)
pkqn−k q = 1− p, (3.43)
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Table 3.4: Continuous PDFs

Density Formula Range

Beta f(x|a, b) =
1

B(a, b)
βx−1 (1− x)b−1

(0, 1)

Exponential f(x|µ) =
1

µ
exp

(
−x
µ

)
[0,∞)

Log-Normal
f(x|µ, σ) =

1

xσ
√

2π
exp

(
−(lnx− µ)2

2σ2

)
(0,∞)

Normal f(x|µ, σ) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
(−∞,∞)

Uniform f(x|a, b) =
1

a− b
[a, b]

Table 3.5: Derived PDFs

Density Formula Range

χ2
f(x|ν) =

x
(ν−2)

2 exp
(
−x

2

)
2ν/2Γ(ν/2)

[0,∞)

F
f(x|ν1, ν2) =

(ν1/ν2)
ν1/2 x

ν1−2
2

B(ν1/2, ν2/2)
(1 + ν1x/ν2)

− ν1+ν2
2

[0,∞)

t f(x|ν) =
1√

νB(ν/2, 1)

(
1 + x2/ν

) ν+1
2 (−∞,∞)
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where,

Pr(A) = p.

Proof. If the outcome of each trial is independent, the probability of a particular

sequence (e.g., the probability of A and then A occurring, Pr
(
AA
)
) is the product of

the probabilities Pr(A) and Pr
(
A
)
.

Pr
(
AA
)

= Pr(A) Pr
(
A
)

The number of different ways A can occur k times in n trials is
(
n
k

)
, hence the binomial

PDF is given by Equation (3.43).

The appropriate use of the Binomial PDF is illustrated in Example 3.6.1.

Example 3.6.1. A cell has n receptors, divided between the cell surface (area Acell)

and the endosome (area Aendosome). If the receptor shows no preference between the

cell surface and the endosome, what is the probability of k receptors occurring on the

surface?

The probability of one receptor occurring on the surface is

p =
Acell

Acell + Aendosome
.

Hence the probability of k of the n receptors occurring on the cell surface is

fk(k|n) =

(
n

k

)(
Acell

Acell + Aendosome

)k (
1− Acell

Acell + Aendosome

)n−k
.

3.6.2 Poisson Density

The Binomial PDF described in § 3.6.1, characterizes the number of times an event

occurs (number of successes) in a discrete medium (number of trials). However, often

one is interested in the number of times an event occurs in a continuous medium (for

example: the number of photons that arrive in a fixed period of time). The Poisson
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PDF characterizes this situation and is given by:

Pr
(
k events|λ̂l̂ = λl

)
= fk

(
k|λ̂l̂ = λl

)
= e−λl

(λl)k

k!
, (3.44)

where the frequency of events is described by the parameter, λ̂, and the amount of

continuous medium is l.

Proof. Consider an interval of length L, which is divided into two non-overlapping

sections: of length l and L − l. n points are distributed at random throughout the

whole interval. The probability that one point occurs in the first section is given by:

p =
l

L
.

Hence, the probability that k of the n points lie in section one is given by:

Pr(k of n points lie in section one) =

(
n

k

)
pkqn−k.

If p� 1 and k ≈ np, then k � n and kp� 1. It follows that

(
n

k

)
=

n (n− 1) . . . (n− k + 1)

1.2 . . . k

≈ nk

k!

q = 1− p ≈ e−p

qn−k ≈ e−(n−k)p ≈ e−np.

and,

Pr(k of n points lie in section one) ≈ e−np
(np)k

k!
.

Defining, λ̂ = n̂/L, and assuming λ remains constant as L→∞, then Equation (3.44)

follows.

Example 3.6.2. Let the rate at which photons arrive at a microscope be 0.5s−1. If a

sample is viewed for 3s, what is the probability that the detector encounters at least
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Figure 3-5: Poisson density for Example 3.6.2

2 photons?

It is necessary to evaluate, Pr
(
k̂ ≥ 2

)
. By mutual exclusivity:

Pr
(
k̂ ≥ 2

)
= 1− Pr

(
k̂ < 2

)
.

Subsituting the Poisson PDF,

Pr
(
k̂ ≥ 2

)
= 1− e−λt

1∑
k=0

(λt)k

k!
,

which evaluates to

Pr(k ≥ 2) = 0.5578.

The Poisson density function for λ̂t̂ = 1.5 is shown in Figure 3-5.

3.6.3 Exponential Density

The exponential PDF is closely related to the Poisson PDF. This PDF is useful

in characterizing the amount of medium between events that occur in a continuous

medium (for example: length of time between α-particle emissions, distance between
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defects in DNA, etc.). The exponential PDF is given by:

ft

(
t|λ̂ = λ

)
=

0 t < 0

λe−λt t ≥ 0.

. (3.45)

where t̂ is the quantity of the medium between events and λ̂ is a parameter that

characterizes the frequency of events.

Proof. Define the CDF Ft

(
t|λ̂ = λ

)
as,

Ft

(
t|λ̂ = λ

)
≡ Pr

(
t̂ ≤ t|λ̂ = λ

)
which is equivalent to the statement,

Ft

(
t|λ̂ = λ

)
≡ Pr

(
There are at least one or more events in time t|λ̂ = λ

)
.

From mutual exclusivity it follows that

Ft

(
t|λ̂ = λ

)
= 1− Pr

(
There are at zero events in time t|λ̂ = λ

)
,

which on substitution of the Poisson density yields:

Ft

(
t|λ̂ = λ

)
= 1− e−λt (λt)

0

0!
= 1− e−λt.

By definition, the exponential density function is the derivative of the CDF,

Ft

(
t|λ̂ = λ

)
,

yielding the PDF in Equation (3.45).

Example 3.6.3. On average a migrating cell changes direction every 15 minutes.

Calculate the probability that the cell turns in the first five minutes.

150



From the data in the question:

λ̂ =
1

15
min−1,

hence,

Pr

(
Cell turns in the first five minutes|λ̂ =

1

15

)
=

∫ 5

0

1

15
exp

(
− 1

15
t

)
dt

= 1− exp(−5/15) = 0.2835.

3.6.4 Normal Density

Perhaps the most commonly used PDF in science and engineering is the Normal

density and in standard form is given by:

fx(x) =
1√
2π

exp

(
−x

2

2

)
. (3.46)

The Normal PDF naturally describes the limit of some physical processes. For ex-

ample, it has been shown that the Normal density is the appropriate PDF for the

position of a particle undergoing Brownian motion [76, 213, 139]. In a closely related

problem, it has been shown that the PDF for a vector r ∈ R3 is approximately Normal

when r is the sum of N � 1 displacements, ri, and the PDF for ri is arbitrary (see

page 15 of [37] for a proof of this property). This is a variant of the famous Central

Limit Theorem, which states the mean of N samples is approximately Normal for

sufficiently large N . This property is often invoked as a justification for using the

Normal density to model an output variable, y, that is related to a state, x by many

additive errors. A useful derivation of the Normal density can be obtained by Max-

imum Entropy. The Entropy of a PDF characterizes the information content of the

PDF (first shown by [200], see [205, 121] for discussion). Maximum ignorance (i.e.,

maximum Entropy, H),

H = −
∫ ∞

−∞
fx(x|α, β) log fx(x|α, β) dx
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about the value of x̂ subject to the constraints:

Ex(x) = α, Var(x) = β2,

can expressed by assigning the scaled Normal PDF:

fx(x|α, β) =
1

β
√

2π
exp

(
−(x− α)2

2β2

)
.

Hence, if only the first and second moments of a PDF are known then the PDF which

expresses least information about the value of x̂ is the scaled Normal PDF [205, 121].

A derivation of the joint normal PDF under relatively few assumptions was made

by Herschel and Maxwell [121]. Herschel considered the errors made in measuring

the position of a star (ε̂1, ε̂2). The following assumptions were made:

1. Knowledge of ε̂1 tells us nothing about ε̂2:

fε1,ε2(ε1, ε2) dε1dε2 = fε(ε1) dε1 · fε(ε2) dε2. (3.47)

2. The PDF can be written in polar coordinates:

fε1,ε2(ε1, ε2) dε1dε2 = fr,θ(r, θ) rdrdθ. (3.48)

3. The PDF of the errors (ε̂1, ε̂2) is independent of angle (invariant transformation):

fr,θ(r, θ) = fr(r) . (3.49)

Herschel showed that these assumptions were consistent with assigning the joint Nor-

mal density:

fε1,ε2(ε1, ε2) =
α

π
exp
(
−α
(
ε21 + ε22

))
. (3.50)

152



Proof. [121] Combining Equations (3.47)–(3.49) yields:

fr

(√
ε21 + ε22

)
= fε(ε1) fε(ε2) . (3.51)

Setting ε2 = 0 gives:

fr(ε1) = fε(ε1) fε(0) ,

which implies:

fr

(√
ε21 + ε22

)
= fε

(√
ε21 + ε22

)
fε(0) . (3.52)

Eliminating fr

(√
ε21 + ε22

)
from Equations (3.51)–(3.52) yields:

fε(ε1) fε(ε2)

(fε(0))2 =
fε

(√
ε21 + ε22

)
fε(0)

.

Taking logarithms of both sides yields:

log
fε(ε1)

fε(0)
+ log

fε(ε2)

fε(0)
= log

fε

(√
ε21 + ε22

)
fε(0)

. (3.53)

The solution of Equation (3.53) is

log
fε(ε1)

fε(0)
= −αε21

which when properly normalized yields:

fε(ε1) =

√
α

π
exp

(
−αε21

)
.

Hence, the joint density for the errors in the measurement (ε̂1, ε̂2), is given by Equa-

tion (3.50).

Often a measurement ŷ is related to a state x̂ by an additive error, ε̂:

ŷ = x̂+ σ̂ε̂, (3.54)
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where σ̂ is a parameter that describes the magnitude of the error. If the PDF for the

error, ε̂, is Normal (shown in Equation (3.46)), by Theorem (3.3.4) the PDF for the

output ŷ is given by the scaled Normal density:

fy(y|x̂ = x, σ̂ = σ) =
1

σ
√

2π
exp

(
−(y − x)2

2σ2

)
, (3.55)

(see Example 3.3.4).

Example 3.6.4. Given a migrating cell is at position {x̂1, x̂2} = {10, 10} and mea-

surements are made with a variance σ̂2 = 1, what is the probability of making a

measurement of the output in the range (9 ≤ ŷ1 ≤ 11, 8 ≤ ŷ2 ≤ 12)?

Assuming the errors in the measurement of each coordinate are independent and

the PDF for the measurement error is Normal, the joint PDF is:

fy1,y2(y1, y2|x̂1 = 10, x̂2 = 10, σ̂ = 1) = fy1(y1|x̂1 = 10, σ̂ = 1) fy2(y2|x̂2 = 10, σ̂ = 1)

=
1

2π
exp

(
−(y1 − 10)2 + (y2 − 10)2

2

)

From the definition of a continuous PDF,

Pr(9 ≤ ŷ1 ≤ 11, 8 ≤ ŷ2 ≤ 12) =

∫ 11

9

∫ 12

8

fy1,y2(y1, y2|x̂1 = 10, x̂2 = 10, σ̂ = 1) dxdy.

Making the necessary substitutions:

fy1,y2(y1, y2|x̂1 = 10, x̂2 = 10, σ̂ = 1) = erf

(
1√
2

)
erf

(
2√
2

)
= 0.6516.

3.6.5 Log-Normal Density

The Normal PDF is inappropriate for the situation where the error in the measure-

ment scales with the magnitude of the measurement. The appropriate density to

use is the log-normal density. Furthermore, the log-normal PDF is zero for negative
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values of the variable. The probability density is defined by Equation (3.56).

fx(x|µ̂ = µ, σ̂ = σ) =
1

σx
√

2π
exp

(
−(log x− µ)2

2σ2

)
(3.56)

3.7 Prior Probability Density Functions

In § 3.6 the assignment of likelihood functions was discussed; the goal was to use Equa-

tion (3.36) of Theorem 3.5.1 to make inferences about a state, x̂, given a measurement

ŷ. Frequently, the correct functional form of the likelihood function is prescribed by

the underlying physics of the system of interest. However, it is necessary to assign a

prior PDF before Equation (3.36) can be used for this task. Naturally, the question

arises as to how one should assign prior PDFs. Unfortunately, this question is not as

straightforward to answer as the assignment of likelihood functions.

In some situations, a subjective prior PDF can be assigned based on data obtained

from previous experimentation or from the literature. The adjective, “subjective”,

should not be taken to mean the process of Bayesian inference is unfair. Indeed, the

process of updating the posterior PDF through the likelihood function allows one to

change one’s mind in light of the data.

Example 3.7.1. Given a subjective prior PDF for x̂:

πx(x) =
1

σ0

√
2π

exp

(
−(x− µ0)

2

2σ2
0

)
,

the most probable value of x̂ is initially close to µ0. If ny independent measurements

of the output ŷ are made, and the likelihood function for the output ŷ is:

fy(yi|x̂ = x) =
1

σ
√

2π
exp

(
−(yi − x)2

2σ2

)
,

derive the posterior PDF and determine the most probable value of x̂ after the mea-

surements have been made.

Substituting the prior PDF and the likelihood function into Equation (3.42),
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yields:

fx(x|ŷ = y) ∝ 1

σ0

√
2π

exp

(
−(x− µ0)

2

2σ2
0

)
ny∏
i=1

1

σ
√

2π
exp

(
−(yi − x)2

2σ2

)
,

which on rearrangement and normalization yields:

fx(x|ŷ = y) =
1

σ1

√
2π

exp

(
−(x− µ1)

2

2σ2
1

)
(3.57)

where,

µ1 = σ2
1

(
y

σ2/ny
+
µ0

σ2
0

)
and,

σ1 =

√
σ2σ2

0/ny
σ2/ny + σ2

0

.

Therefore, the most probable value of x̂ lies close to µ1. It can be seen that µ1 is the

weighted average of ŷ and µ0. As more data are collected, ny →∞, µ1 → y, i.e., the

contribution of the prior PDF to the posterior PDF becomes negligible and the data

become more important.

However, often one is faced with the situation where there is little or no infor-

mation pertaining to the value of a quantity to be inferred. In this situation, the

assignment of such a peaked PDF is not appropriate. There are three common tech-

niques for determining a prior PDF to express small amounts of knowledge relative

to the information available from the data: the principle of indifference, the prin-

ciple of invariance, and the principle of a data translated likelihood. Each of these

methods seeks to minimize the impact of the prior PDF on the posterior PDF and

consequently produces a non-informative prior PDF.

In all of these situations, it is assumed that it is known that the parameter lies

in a certain range, xmin < x̂ ≤ xmax. This is not too much of a restriction since it

is extremely unusual to perform an experiment where no bounds on the states and

parameters are known a priori. For example, a rate constant has a minimum bound

of zero and an upper bound determined by the maximum rate of collisions. The prior
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PDF is proper when a priori bounds are known on the parameter.

3.7.1 Indifferent Prior

Perhaps the simplest method for assigning a prior probability density is the principle

of indifference. Consider n propositions A1, A2, ..., An which depend on the informa-

tion, B in the same way and are mutually exclusive. In Theorem 3.2.1 of § 3.2.2 it

was established that

Pr(Ai|B) =
1

n
.

If one is completely ignorant about the value of a discrete state, x̂, (between certain

bounds) then

Pr(x1 < x̂ ≤ x2|I) = Pr(x3 < x̂ ≤ x4|I) ,

if x2− x1 = x4− x3. It follows that a uniform prior PDF should be assigned for x̂, as

defined in Equation (3.58).

πx(x) =
1

xmax − xmin + 1
xmin ≤ x̂ ≤ xmax (3.58)

For a continuous state, the prior PDF is:

πx(x) =


1

xmax−xmin
xmin ≤ x̂ ≤ xmax,

0 otherwise.

(3.59)

The difficulty with always assigning a uniform prior PDF is that it is rare that one

knows absolutely nothing about the parameter to be inferred. There are two common

situations:

1. It is known that the parameter should remain invariant under some transforma-

tion. For example, the units of measurement for the error between the output

and state may be unknown. Clearly, the form of the prior PDF should not alter

if the units of the problem are changed.

2. The form of the likelihood function is known. Hence, one may wish to assign a
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prior PDF which biases the posterior PDF by the least amount.

These two situations are discussed in § 3.7.2–3.7.3.

3.7.2 Invariant Prior

It is often the case that one can argue the inference problem should remain the same

even if the problem is reparameterized. For example, the units of measurement may

not be known a priori. In this situation, the prior PDF can be determined by the

theory of invariance groups [120]. The method relies on determining a coordinate

transform under which the posterior PDF remains unchanged. Application of the

method is demonstrated in Example 3.7.2.

Example 3.7.2. Suppose the likelihood function is defined as

fy(y|x̂ = x, σ̂ = σ) = h

(
y − x
σ

)
, (3.60)

but the units of the output, ŷ, are unknown (for example: ŷ may be measured in

Celsius or Fahrenheit). It is reasonable to assume that the posterior PDF remains

invariant under a change of units. Use this information to determine the prior PDF

for (x̂, σ̂).

Suppose (x̂, ŷ, σ̂) are the problem variables in Celsius and (x̂′, ŷ′, σ̂′) are the prob-

lem variables in Fahrenheit. The coordinate transform between both sets of variables

is

x̂′ = ax̂+ b (3.61)

σ̂′ = aσ̂ (3.62)

ŷ′ = aŷ + b. (3.63)

If the problem remains unchanged then:

fx,σ(x, σ|ŷ = y) = fx′,σ′(x
′, σ′|ŷ′ = y′) . (3.64)
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The posterior PDF for the original problem can be written as:

fx,σ(x, σ|ŷ = y) ∝ h

(
y − x
σ

)
πx,σ(x, σ) . (3.65)

The posterior PDF for the transformed variables can be written as (Theorem 3.3.4):

fx′,σ′(x
′, σ′|ŷ = y) ∝ 1

a2
h

(
y′ − x′

σ′

)
πx,σ

(
x′ − b
a

,
σ′

a

)
. (3.66)

Combining Equations (3.64)–(3.66) yields the following functional relationship:

πx,σ(x, σ) =
1

a2
πx,σ

(
x− b
a

,
σ

a

)
. (3.67)

It is straightforward to verify that the relationship in Equation (3.67) implies the

prior PDF:

πx,σ(x, σ) =
const

σ2
. (3.68)

The prior PDF shown in Equation (3.68) should not be used universally for a

likelihood function of the form in Equation (3.60). The coordinate transform sug-

gested in Equations (3.61)–(3.63) presupposes that knowledge about x̂ and σ̂ is not

independent since the transformation to the new variables has a common parameter

between x̂′ and σ̂′ (see [29, 123] for discussion). A transformation that expresses

greater ignorance is therefore [120]:

x̂′ = x̂+ b

σ̂′ = aσ̂

ŷ′ − x̂′ = a (ŷ − x̂)

which results in the prior PDF:

πx,σ(x, σ) =
const

σ
, (3.69)

which was originally proposed by [122, 123].
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3.7.3 Data Translated Likelihood Prior

Another method for exploiting the functional form of the likelihood function for de-

termining the prior PDF is described in [29]. It should be stressed that this method

for determining a prior PDF does not necessarily yield the same PDF as the method

described in § 3.7.2 since a data translated likelihood prior presupposes less a priori

information (invariance requires knowledge of the likelihood function and a trans-

form).

When the likelihood function takes the form:

g(x− f(y)) ,

the quantity x̂ is a location parameter. The data do not change the shape of the

likelihood function but do change the location of the PDF. A non-informative prior

for such a likelihood function is uniform [122, 123].

The goal of this method is to find a variable transform for the inferred variables

such that it is reasonable to assign a uniform PDF for the transformed problem. For

a single state, x̂, the method works by finding a variable transformation such that

the transformed likelihood function can be expressed as

fy(y|x̂′ = x′) = g(x′ − f(y)) . (3.70)

The rationale is that if a uniform prior is assigned for x̂′ then the shape of the posterior

PDF for the transformed variable does not change regardless of the data collected. It

is then possible to determine the prior PDF for the original likelihood function based

on the variable transformation x̂→ x̂′.

Example 3.7.3. [29] A likelihood function has the form:

fy(y|σ̂ = σ) = h

(
yTy

σ

)
.

Determine the data translated prior PDF.
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By inspection [29]:

fy(y|σ̂ = σ) = h
(
exp
(
log
(
yTy

)
− log σ

))
,

hence, defining σ̂′ = log σ̂ yields the desired transformation. Given, that it is now

appropriate to assign a uniform prior PDF for σ̂′ this implies a prior PDF for σ̂:

πσ(σ) =
const

σ
.

A difficulty arises with this method since it is not always possible to find a transfor-

mation to bring the likelihood function into data translated form (Equation (3.70)).

It can be shown that the likelihood can be approximately transformed by defining

the transformation (Pages 36–38 of [29]):

dx̂′

dx̂
∝ H1/2(t) ,

whereH(·) is the expected value of the second derivative of the log-likelihood function:

H(x) = −Ey|x

(
d2 log fy(y|x̂ = x)

dx2

)
.

The corresponding prior PDF for x̂ is

πx(x) ∝ H1/2(x) . (3.71)

There is a multiparameter version of the data translated likelihood rule when the

goal is to infer the value of several states, x̂, given measurements, y of the outputs

ŷ [29]. However, this rule is not necessarily very satisfactory since it is impossible to

guarantee a transformation that preserves the shape of the likelihood function with

respect to a change in the data y. The best that one can hope for is that a change

in data approximately preserves the volume enclosed by the likelihood function. The
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prior PDF for x̂ is then [29]:

πx(x) ∝ |H(x)|1/2 , (3.72)

where H(x) is the expected value of the Hessian matrix of the log-likelihood function:

H(x) = −Ey|x

(
∂2 log fy(y|x̂ = x)

∂xixj

)
.
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Chapter 4

Bayesian Analysis of Cell Signaling

Networks

The work in this Chapter focuses on applying the techniques developed in Chapter 3

to analyzing cell-signaling networks. Typically, there are three main goals when

analyzing cell-signaling data:

1. determing model parameters when the structure of the model is known,

2. determing the most probable model structure supported by the data, and,

3. using the knowledge gained from the data to design more informative experi-

ments.

It is relatively straightforward to use Bayesian statistics to develop mathematical

formulations for all three goals; the challenge is in developing reliable computational

techniques to solve these formulations. Some work was devoted in this thesis to

developing such techniques. While only limited progress was made towards solving

these problems, recent developments in optimization [203] suggest that this topic

remains an interesting research question. It is necessary to solve the first two problems

to develop experimental design criteria. Hence, it was decided to focus on the first

two goals: parameter estimation and model selection.
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4.1 Parameter Estimation

In the simplest formulation, it is assumed that the relationship between the inputs,

û ∈ Rnu , and the states, x̂ ∈ Rnx , of the system is deterministic; i.e.,

x̂ = g(û, p̂1) , (4.1)

where p̂1 ∈ Rnp1 is a vector of model parameters. It is also assumed that the model in-

puts are known with infinite precision, and the function, g : Rnu×np1 → Rnx , uniquely

maps the inputs and parameters, (û, p̂1), to the states, x̂. The function defined in

Equation (4.1) is sometimes called an expectation function [29]. This terminology is

not unreasonable since often the outputs, ŷ, are an average property of a stochastic

system (for example: thermodynamic quantities such as temperature, concentrations

of reacting species, etc.). However, for biological systems it is not always valid to as-

sume the states are a deterministic function of the inputs. For example, cell migration

(studied in Chapter 5) is a stochastic phenomenon. However, the deterministic ap-

proximation is often realistic for cell regulatory mechanisms. As shown in Chapter 2,

cell-signaling models can often be formulated as systems of ODEs.

The outputs of the system, ŷ, are related to the state of the system through a

probabilistic measurement model,

fy(y|x̂ = x, p̂2 = p2) , (4.2)

where p̂2 ∈ Rnp2 is a set of parameters that characterize the measurement process.

It is normally reasonable to assume that the measurement error is well characterized

since the error is usually related to the precision and accuracy of the experimen-

tal apparatus. Common measurement models are discussed in § 3.6, Chapter 3.

The input-output relationship (Equation (4.1)) and the measurement model (Equa-

tion (4.2)) can be combined to yield the likelihood function for a single measurement

y ∈ Rny :

fy(y|û = u, p̂ = p) = fy(y|x̂ = g(û, p̂1) , û = u, p̂ = p) , (4.3)
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where p̂ = (p̂1, p̂2). Often, it is reasonable to assume the measurements of the system

output are independent between experiments. Hence, the likelihood function for nk

measurements is

fY

(
Y|Û = U, p̂ = p

)
=

nk∏
i=1

fy(yi|ûi = ui, p̂ = p) , (4.4)

where Y ∈ Rny×nk is a matrix of nk measurements, yi, and Û ∈ Rnu×nk is a matrix

of nk input conditions. Finally, it is necessary to assign a prior PDF for the model

parameters, πp(p). Techniques for determining a suitable prior PDF are discussed in

§ 3.7, Chapter 3. One must take caution when assigning the prior PDF for the pa-

rameters if the problem depends on a large number of parameters [29]. By application

of Bayes’ Theorem, the posterior PDF for the parameters p̂ is:

fp

(
p|Ŷ = Y, Û = U

)
= fY

(
Y|Û = U, p̂ = p

)
πp(p) . (4.5)

Often, the input-output relationship in Equation (4.1) is defined implicitly. For ex-

ample, the relationship may be defined as the solution of a nonlinear set of equations:

g(û, x̂, p̂) = 0,

or as the solution of a system of differential equations at fixed times,

x̂′ = g(x̂, û, p̂) ,

or as the solution of DAE/PDAE models at fixed times. It should be stressed that

the posterior PDF given in Equation (4.5) is conditional on prior knowledge used to

assign the expectation function, measurement model and prior PDF for p̂. To denote

this dependence more clearly we will write:

fp(p|ŷ = y, û = u,M) , (4.6)
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where M is the statement that the assigned models (measurement, prior and expecta-

tion) are true. The consequences of not properly accounting for structural uncertainty

in a model was discussed in Chapter 3 and is also discussed more fully in [67].

Estimates of the parameters and confidence intervals can be obtained directly

from the posterior PDF in Equation (4.5). Typically, such estimates rely on solving

a global optimization problem related to the posterior PDF. A typical estimate is the

Maximum A Posteriori (MAP) estimate (Definition 4.1.1).

Definition 4.1.1. The MAP estimate is defined as the solution, p∗, of the following

problem:

max
p∈P⊂Rnp ,X∈Rnx×nk

fY

(
Y|X̂ = X

)
πp(p)

subject to the following constraints:

g(x1,u1,p) = 0

...
...

g(xnk
,unk

,p) = 0

where g(x,u,p) may either be an algebraic constraint or implicitly define x(u,p) as

the solution at fixed times to a dynamic system. The space P is defined by the prior

PDF, πp(p).

The MAP parameter estimate is illustrated in Example 4.1.1.

Example 4.1.1. Consider the chemical reaction:

A
p1→ B

p2→ C.

It is desired to estimate the rate constants p̂1 and p̂2 from a single time-series exper-

iment. The time-series concentrations of A, B, and C are shown in Table 4.1. The
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concentrations of the reacting species are given by:

x′1(t) = −p1x1(t) (4.7)

x′2(t) = p1x1(t)− p2x2(t)

x′3(t) = p2x2(t) ,

and the measurement model is given by:

fY(Y|x̂(t1) = x(t1) , x̂(t2) = x(t2) , . . .) = (4.8)

1(
σ
√

2π
)nxnk

exp

(
−
∑nk

i=1

∑nx

j=1 (yj(ti)− xj(ti))2

2σ2

)
,

where σ is a known parameter, nx = 3, and nk equals the number of time points

sampled. If a uniform prior PDF is assumed for (p̂1, p̂2), the MAP estimate can be

obtained by maximizing the function defined in Equation (4.8) over p ∈ P ⊂ R2,

X ∈ X ⊂ Rnx×nk subject to satisfying the system of ODEs defined in Equation (4.7)

at fixed time points {t1, . . . tnk
}. For measurement model given in Equation (4.8), the

global optimization problem can be simplified by noting that the objective function

has the form:

g(p) = f(α(p)) = exp(α(p)) .

where α is a scalar and exp(α) is a monotonically increasing function of α. Hence the

optimization problem can be rewritten as

min
X∈X,p∈P

nk∑
i=1

nx∑
j=1

(yj(ti)− xj(ti))2 (4.9)

subject to satisfying the system of ODEs defined in Equation (4.7) at fixed time

points {t1, . . . , tnk
}. Many aspects of this parameter estimation problem (including

the selection of a suitable experimental design) are discussed in detail by [29]. In

particular, it is demonstrated graphically that convexity of the resulting optimization

problem depends on the chosen experimental design.
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Table 4.1: Simulated Data for Example 4.1.1

t y1(t) y2(t) y3(t)

0.0 10.000 0.000 0.000
0.2 3.428 4.019 1.907
0.4 1.311 3.468 5.364
0.6 0.458 1.949 7.593
0.8 0.245 1.495 8.567
1.0 -0.047 0.800 9.153
1.2 -0.171 0.042 9.651
1.4 -0.080 0.005 9.641
1.6 0.220 0.334 9.916
1.8 0.476 0.109 10.023
2.0 0.046 0.093 10.260

Point estimates of parameters from a posterior PDF provide little information

about the confidence associated with the estimate. Confidence intervals for an esti-

mate can be obtained from Definition 4.1.2.

Definition 4.1.2. [29] Let fα(α|y,X) be the posterior PDF. The volume Z ⊂ Rnα

is a highest posterior density (HPD) region of content 1− γ iff

Pr(α ∈ Z|y,X) = 1− γ,

and ∀α1 ∈ Z, ∀α2 /∈ Z

fα(α1|y,X) ≥ fα(α2|y,X) .

It should be stressed that even confidence intervals based on the HPD region can

be misleading if the posterior PDF is multimodal. In this situation, it is desirable to

report all parameter values that correspond to high probability regions.

Another common scenario is that it is desired to estimate a subset of the param-

eters (for example, one may not be interested in the parameters characterizing the

measurement model). In this situation, it is more appropriate to make inferences

from the marginal PDF for a subset of the parameters, θ̂:

fθ(θ|ŷ = y, û = u,M) =

∫
σ

fθ,σ(θ,σ|ŷ = y, û = u,M) dσ (4.10)
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where p̂ =
(
θ̂, σ̂

)
. Care must be taken when making inferences from a marginal

density if the shape of the joint posterior PDF changes dramatically as the parameters,

σ, are varied. In this situation, the change in shape serves as a warning that the

resulting parameter estimate, θ∗, is very sensitive to inaccuracy in the estimate of σ̂.

Typically, the simplest parameter estimation problem that arises in cell signaling is

estimation of steady-state parameters (for example, the estimation of an equilibrium

dissociation constant Kd). The resulting expectation function is defined in terms of

the solution of a set of nonlinear algebraic equations. The MAP parameter estimate

from the joint posterior PDF can be obtained from the solution of a nonconvex

nonlinear program (nonconvex NLP) shown in Definition 4.1.1 [29]. It is misleading

to solve the nonconvex NLP with local optimization tools, since there is a risk that

one might miss characterizing values of the parameters that correspond with high

probability. In recent years, there have been considerable advances in the technology

available to solve these types of problems to global optimality [2, 191]. Algorithms

are now available that can in principle estimate up to several hundred parameters

[190, 1]. Most of these techniques rely on variants of branch-and-bound algorithms.

More frequently, one is interested in the dynamic behavior of a cell signaling net-

work. As discussed in Chapter 1, some cellular processes are controlled by the time-

dependent concentration of key signaling molecules. The goal is to estimate rate

constants for a series of complex enzymatic reactions (phosphorylation, dephospho-

rylation) that regulate the concentration of these key signaling molecules. Typically,

time-series data is used to estimate model parameters. For dynamic systems, the ex-

pectation function is defined in terms of the solution at fixed times to a set of ODEs.

The MAP estimate corresponds to the solution of a nonconvex dynamic embedded op-

timization problem. These estimation problems are not approximations of variational

problems; i.e., the problems are naturally formulated as nonlinear programs.

There are two different approaches for solving these optimization problems to lo-

cal optimality. The first method is a sequential algorithm. A local nonlinear program

(NLP) solver is combined with an numerical integration routine. The integration

routine is used to evaluate the states and sensitivities (or adjoints) at a fixed set of
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model parameter values (for example: [27]). The second approach is a simultaneous

algorithm, which requires the approximation of the dynamic system as a set of al-

gebraic equations (for example: [227]). The resulting large-scale NLP can then be

solved with standard techniques.

Two methods have been proposed by [77, 78] for solving optimization problems

with nonlinear ordinary differential equations embedded to global optimality with

finite ε tolerance. The first method is collocation of the ODE followed by applica-

tion of the αBB algorithm [2] to the resulting NLP. Provided a sufficient number of

collocation points have been chosen to control the error in the discretization of the

ODE, this method will yield a close approximation to the global optimum. However,

this approach has the disadvantage that many additional variables are introduced,

making the resulting spatial branch-and-bound procedure intractable except for small

problems.

Sufficient conditions are available for the existence of derivatives with respect

to parameters of the solution of a set of ordinary differential equations [101, 173].

For problems that are twice continuously differentiable, [77] suggest a branch-and-

bound strategy (βBB) which uses a convex relaxation generated in a manner similar

to αBB. However, analytic expressions for the Hessian of the solution to the ODE

with respect to the parameters are generally not available. The solution space is

sampled to suggest possible bounds on the elements of the Hessian. Consequently,

rigorous bounds on β are not determined by their method. i.e. Their implementation

does not guarantee finite ε convergence to a global optimum. An advance on this

technique that rigorously guarantees the global solution has been proposed [168]. In

this technique, rigorous bounds on the elements of the Hessian matrix are derived

which can be used to determine a value β sufficiently large to guarantee convexity

of the lower bounding problem (LBP). An alternative theory for constructing convex

lower bounding problems has been developed [203]. These methods look extremely

promising for solving kinetic parameter estimation problems.
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4.1.1 Branch and Bound

A branch-and-bound [80, 214] or branch-and-reduce procedure [191, 224] is at the core

of most deterministic global optimization techniques. A generic branch-and-bound

algorithm is described in [154]. Let S ⊂ Rn be a nonempty compact set, and v∗

denote the minimum value of f(x) subject to x ∈ S. Let ε > 0 be the acceptable

amount an estimate of v∗ can differ from the true minimum. Set k = 1 and S1,1 = S.

It is assumed at iteration k there are k regions Sk,l, each Sk,l ⊆ S for l = 1, . . . , k.

For each k programs, Ak,l, vk,l∗ , is the minimum of f(x) subject to x ∈ Sk,l and

v∗ = min vk,l∗ l = 1 . . . k must be true.

1. Find xk,l ∈ Sk,l, an estimate of a solution point of Ak,l, for l = 1, . . . , k.

2. Find vk,l, a lower bound on vk,l∗ for l = 1, . . . , k

Let vk = min
(
vk,l
)
l = 1, . . . k. If f

(
xk,l
)
≤ vk + ε then the algorithm terminates,

otherwise k = k + 1. It can be shown that under certain conditions, the algorithm

will terminate in a finite number of steps [116]. Steps 1 and 2 can be realized by

many different methods.

The lower bounding problem (Step 2) is generated by constructing a convex relax-

ation of the original problem via direct analysis of the functions participating in the

objective function and embedded system. Convexity of a set and function is defined

as follows:

Definition 4.1.3. The set S is convex if for every λ ∈ [0, 1] the point x = λx1 +

(1− λ)x2 lies in the set S for all x1,x2 ∈ S. The function f : S → R is convex on

the set S if:

1. the set S is convex, and,

2. for every λ ∈ (0, 1), x1 ∈ S and x2 ∈ S the following inequality holds:

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ) f(x2) .

The function f is strictly convex if the inequality in 2 holds strictly.
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For example, the convex envelope of a bilinear term on any rectangle in R2 is

given by Equation (4.11) [5].

w = max (u, v) (4.11)

u = xL1 · x2 + xL2 · x1 − xL1 · xL2

v = xU1 · x2 + xU2 · x1 − xU1 · xU2

Any local optimum that is found for the convex relaxation is guaranteed to be the

global optimum for the convex relaxation by Theorem 4.1.1. Hence, it is a valid lower

bound on the original optimization problem.

Theorem 4.1.1. Let S ⊂ Rn be a nonempty convex set, and let f : S → R be convex

on S. Consider the problem to minimize f(x) subject to x ∈ S. Suppose that x∗ ∈ S

is a local optimal solution to the problem, then, x∗ is a global optimal solution.

Proof. See [18].

Polynomial time, globally convergent algorithms, based on the work of [87], exist

for most classes of smooth, convex NLPs [161, 235, 9]. Cutting plane methods also

exist for non-smooth convex NLPs [202, 160]. An upper bounding problem (Step 1)

can be constructed by solving the original embedded optimization problem to local

optimality. In fact, any feasible point is a valid upper bound on the objective function.

4.1.2 Convexification of Nonlinear Programs

Many techniques for constructing convex relaxations of nonlinear programs depend

either implicitly or explicitly on a composition theorem due to [153, 154] (shown in

Theorem 4.1.2). For purely algebraic problems, the theorem is typically realized in a

computationally efficient manner due to the methods of [212, 94].

Theorem 4.1.2. [153, 154] Let f(x(p)) : P → R, where P ⊂ Rnp is a convex set and

f(x) is a univariate function of x. Let functions c(p) and C(p) obey the inequality:

c(p) ≤ x(p) ≤ C(p) , ∀p ∈ P,
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where c(p) is convex on the set P and C(p) is concave on the set P . Let xL and xU

be valid bounds on the state

xL ≤ x(p) ≤ xU ,

and let the function e(·) be a convex underestimate of the function f on the interval[
xL, xU

]
∈ R. Let zmin be defined as,

zmin = arg inf
xL≤x≤xU

e(z)

Then the lower bounding convex function on the set p ∈ P ∩
{
p|xL ≤ x(p) ≤ xU

}
is

e(mid{c(p) , C(p) , zmin})

where the mid{·} function takes the middle value of the three values.

Proof. See [154].

Theorem 4.1.2 can be used construct a convex underestimating function of the

posterior PDF, once convex underestimates ci(p) and concave overestimates Ci(p) of

the states, xi(p), and state bounds, xLi and xUi , can be obtained.

Example 4.1.2. Use the McCormick relaxation shown in Theorem 4.1.2 to express

the convex relaxation of the MAP objective function defined in Equation (4.9), Ex-

ample 4.1.1.

From the definition of convexity, the function h(x) = f(x) + g(x) is convex on

the set X if the functions f(x) and g(x) are convex on the set X. Hence, the prob-

lem of constructing a convex underestimate of the MAP objective function reduces

to constructing convex underestimates for each of the terms in the sum defined in

Equation (4.9). The function

f(x) = (x− a)2 ,

is already convex and a minimum is achieved at zmin = a. Therefore, a convex
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underestimate of the MAP objective function is given by:

nk∑
i=1

nx∑
j=1

(yj(ti)−mid{cj(ti,p) , yj(ti) , Cj(ti,p)})2 , (4.12)

where cj(ti,p) are convex functions and Cj(ti,p) are concave functions that satisify:

cj(ti,p) ≤ xj(ti,p) ≤ Cj(ti,p) , ∀p ∈ P.

Hence, it is necessary to construct convex functions that underestimate the solution of

a system of ODEs at fixed time and concave functions that overestimate the solution

of a system of ODEs at fixed time.

4.1.3 State Bounds for ODEs

It is necessary to bound the solution of an ODE, x(t,p), for deterministic global

optimization techniques. State bounds are two functions xL(t) and xU(t) which satisfy

the inequality:

xL(t) ≤ x(t,p) ≤ xU(t) , ∀p ∈ P ⊂ Rnp ,

where the vector inequalites should be interpreted as holding componentwise; i.e.,

the functions xL(t) and xU(t) bound the solution of a system of ODEs for all pos-

sible parameter values p ∈ P . Tight state bounds are necessary to generate convex

relaxations of the fixed time solution of ODEs. Exact state bounds can be deter-

mined for a system of ODEs that is linear in the parameters [204], and linear ODEs

[107, 108]. Methods to generate state bounds of a nonlinear ODE are generally based

on interval Taylor methods [136, 158], interval Hermite-Obreschkoff methods [159] or

differential inequalities [19, 236]. A particular problem is a phenomenon known as,

“The Wrapping Effect”, which causes the estimated bounds to inflate exponentially.

Methods to overcome this are discussed in [220, 159]. A simple but often effective

method to generate bounds due to [106] relies on differential inequalities described in

Theorem 4.1.3.
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Theorem 4.1.3. (An extension due to [106] of a Theorem by [236].) Let x(t,p) be

the solution of

x′ = f(x,p) , (4.13)

where

xL(0) ≤ x(0) ≤ xU(0)

pL ≤ p ≤ pU ,

for some known vectors xL(0), xU(0), pL, and pU . Assume for all pL ≤ p ≤ pU , f

satisfies the one-sided Lipschitz condition:

fi(x,p)− fi(z,p) ≤
∑
j

λij(t) |xj − zj| , when xi ≥ zi,

where the λij(t) are continuous positive functions on 0 ≤ t ≤ T . Let xL(t) and xU(t)

satisfy

xLi
′ ≤ min fi(z,p) , where pL ≤ p ≤ pU ,xL ≤ z ≤ xU , zi = xLi

xUi
′ ≥ max fi(z,p) , where pL ≤ p ≤ pU ,xL ≤ z ≤ xU , zi = xUi .

Then xL(t) ≤ x(t,p) ≤ xU(t) for all 0 ≤ t ≤ T .

The work of [106] advocates using interval analysis [158] to provide bounds on the

derivatives, xLi
′
and xUi

′
. This bounding technique is demonstrated in Example 4.1.3.

Example 4.1.3. Consider the kinetic model described in Example 4.1.1. Generate

state bounds using interval evaluation of differential inequalities described in Theo-

rem 4.1.3. Assume that xLi (0) = xi(0) = xUi (0), pL1 ≤ p1 ≤ pU1 , and pL2 ≤ p2 ≤ pU2 .

Consider the lower bound of the first state, xL1 . According to Theorem 4.1.3, it is

necessary to construct a lower bound of

min (−p1z1) ,
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subject to z1 = xL1 , and pL1 ≤ p1 ≤ pU1 and set the lower bound equal to the derivative,

xL1
′
. Using interval arithmetic, this evaluates to

xL1
′
= −max

(
pL1 x

L
1 , p

U
1 x

L
1

)
. (4.14)

Likewise, the lower bound of the second state, xL2 , can be evaluated by setting the

lower bound of

min (p1z1 − p2z2)

subject to xL1 ≤ z1 ≤ xU1 , pL1 ≤ p1 ≤ pU1 , pL2 ≤ p2 ≤ pU2 , and z2 = xL2 , equal to the

derivative, xL2
′
. Again, using interval arithmetic this evaluates to

xL2
′
= min

(
pL1 x

L
1 , p

L
1 x

U
1 , p

U
1 x

L
1 , p

U
1 x

U
1

)
−max

(
pL2 x

L
2 , p

U
2 x

L
2

)
. (4.15)

The remaining lower and upper bounds can be evaluated analogously:

xL3
′

= min
(
pL2 x

L
2 , p

L
2 x

U
2 , p

U
2 x

L
2 , p

U
2 x

U
2

)
(4.16)

xU1
′

= −min
(
pL1 x

U
1 , p

U
1 x

U
1

)
(4.17)

xU2
′

= max
(
pL1 x

L
1 , p

L
1 x

U
1 , p

U
1 x

L
1 , p

U
1 x

U
1

)
−min

(
pL2 x

U
2 , p

U
2 x

U
2

)
(4.18)

xU3
′

= max
(
pL2 x

L
2 , p

L
2 x

U
2 , p

U
2 x

L
2 , p

U
2 x

U
2

)
. (4.19)

Care must taken when evaluating the ODE system corresponding to Equations (4.14)–

(4.19) since the min and max functions can produce hidden discontinuities [229]. A

robust algorithm to detect state events has been proposed by [170] and implemented

in ABACUSS II. The ODE system shown in Equations (4.14)–(4.19) was converted

into an ABACUSS II simulation (§ B.5, Appendix B) for 1 ≤ p1 ≤ 3, 1 ≤ p2 ≤ 3,

and x1(0) = 10, x2(0) = x3(0) = 0. The simulation results are shown in Figure 4-

1. A disadvantage of this bounding method is that physical bounds on the states

are not taken into account. For example, the concentration of reacting species must

always be nonnegative xi(t) ≥ 0 for all 0 ≤ t ≤ T . Furthermore, by conservation

of mass, it is easy to argue that x1(t) ≤ x1(0), x2(t) ≤ x1(0) + x2(0), and x3(t) ≤
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Figure 4-1: Simulation of state bounds for chemical kinetics
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x1(0) + x2(0) + x3(0). A method based on differential inequalities that takes into

account physical bounds has been proposed by [203].

4.1.4 Convexification of ODEs

In principle, the state bounds derived in § 4.1.3 can be used to construct a lower bound

for the objective function of the MAP estimate. However, the bound on the objective

function resulting from the state bounds may not be very tight. A tighter bound

on the value of the objective function may often be achieved by solving a convex

optimization problem constructed from the original equations. This can be achieved

using Theorem 4.1.2 due to [154]. To realize this the composition in this Theorem it is

necessary to generate convex functions that underestimate the solution to a system of

ODEs at fixed time and concave functions that overestimate the solution to a system

of ODEs at fixed time. The convex underestimate, c(t,p), and concave overestimate,

C(t,p), must satisfy the inequality:

c(t,p) ≤ x(t,p) ≤ C(t,p) ,

for all p ∈ P and each fixed t ∈ [0, T ]. A method to construct the functions c(t,p)

and C(t,p) has been proposed by [204, 203]. The functions are obtained by solving

a system of ODEs:

c′i = ui(x
∗(t) ,p∗) +

∂ui
∂xi

∣∣∣∣
x∗(t),p∗

(ci − x∗i (t)) (4.20)

+
∑
j 6=i

[
min

{
cj
∂ui
∂xj

∣∣∣∣
x∗(t),p∗

, Cj
∂ui
∂xj

∣∣∣∣
x∗(t),p∗

}
− x∗j(t)

∂ui
∂xj

∣∣∣∣
x∗(t),p∗

]

+

np∑
j=1

(
pj − p∗j

) ∂ui
∂pj

∣∣∣∣
x∗(t),p∗

,

and,

C ′
i = oi(x

∗(t) ,p∗) +
∂oi
∂xi

∣∣∣∣
x∗(t),p∗

(Ci − x∗i (t)) (4.21)
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+
∑
j 6=i

[
max

{
cj
∂oi
∂xj

∣∣∣∣
x∗(t),p∗

, Cj
∂oi
∂xj

∣∣∣∣
x∗(t),p∗

}
− x∗j(t)

∂oi
∂xj

∣∣∣∣
x∗(t),p∗

]

+

np∑
j=1

(
pj − p∗j

) ∂oi
∂pj

∣∣∣∣
x∗(t),p∗

,

where p∗ ∈
[
pL,pU

]
and x∗(t) is any function that lies in the set X (t) generated

from the state bounds. The function ui(p) is a convex underestimate of fi(p) on

the set X (t) × P for each t ∈ [0, T ], where fi is the ith component of the right

hand side of Equation (4.13). Likewise, the function oi(p) is a concave overestimate

of fi(p) on the set X (t) × P for each t ∈ [0, T ]. The convex underestimates and

concave overestimates can be obtained automatically through symbolic manipulation

of the algebraic functions fi(x,p) using standard techniques [212, 94]. A code that

automatically constructs a simulation of the necessary state-bounding ODE together

with the convex lower bounding ODE and concave upper bounding ODE from the

original system of ODEs is available [203].

Example 4.1.4. Plot ci(t,p) and Ci(t,p) for each of the states corresponding to

the system of ODEs defined in Equation (4.7), Example 4.1.1. Use the McCormick

relaxation of the MAP objective function shown in Equation (4.12) together with the

measurements in Table 4.1 to generate a plot of the corresponding convex underesti-

mate of the objective function.

The convex relaxation of the objective function was generated on the set p ∈

[1, 2]×[1, 2] around a reference trajectory obtained from the solution of Equations (4.22)–

(4.24).

x∗1
′ = −p∗1x∗1 (4.22)

x∗2
′ = p∗1x1 − p∗2x∗2 (4.23)

x∗3
′ = p∗2x

∗
2 (4.24)

The initial condition was x∗(0) = (10, 0, 0) and p∗ = (1.3, 1.7). The ODEs for the

convex relaxation of the states is given by the following system of Equations:
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IF
(
xL1 p

∗
1 + pU1 x

∗
1 − xL1 pU1 < pL1 x

∗
1 + xU1 p

∗
1 − pL1 xU1

)
THEN

c′1 = −xL1 p∗1 + pU1 x
∗
1 − xL1 pU1 − pU1 (c1 − x∗1)− xL1 (p1 − p∗1)

ELSE

c′1 = −pL1 x∗1 + xU1 p
∗
1 − pL1 xU1 − pL1 (c1 − x∗1)− xU1 (p1 − p∗1)

ENDIF

IF
(
xU1 p

∗
1 + pU1 x

∗
1 − pU1 xU1 > xL1 p

∗
1 + pL1 x

∗
1 − pL1 xL1

)
THEN

IF
(
xL2 p

∗
2 + pU2 x

∗
2 − xL2 pU2 < pL2 x

∗
2 + xU2 p

∗
2 − pL2 xU2

)
THEN

c′2 =
(
xU1 p

∗
1 + pU1 x

∗
1 − pU1 xU1

)
−
(
xL2 p

∗
2 + pU2 x

∗
2 − xL2 pU2

)
+ min

(
c1p

L
1 , C1p

L
1

)
− pL1 x∗1

− pU2 (c2 − x∗2) + xU1 (p1 − p∗1)− xL2 (p2 − p∗2)

ELSE

c′2 =
(
xU1 p

∗
1 + pU1 x

∗
1 − pU1 xU1

)
−
(
pL2 x

∗
2 + xU2 p

∗
2 − pL2 xU2

)
+ min

(
c1p

U
1 , C1p

U
1

)
− pU1 x∗1

− pL2 (c2 − x∗2) + xU1 (p1 − p∗1)− xU2 (p2 − p∗2)

ENDIF

ELSE

IF
(
xL2 p

∗
2 + pU2 x

∗
2 − xL2 pU2 < pL2 x

∗
2 + xU2 p

∗
2 − pL2 xU2

)
THEN

c′2 =
(
xL1 p

∗
1 + pL1 x

∗
1 − pL1 xL1

)
−
(
xL2 p

∗
2 + pU2 x

∗
2 − xL2 pU2

)
+ min

(
c1p

U
1 , C1p

U
1

)
− pU1 x∗1

− pU2 (c2 − x∗2) + xL1 (p1 − p∗1)− xL2 (p2 − p∗2)

ELSE

c′2 =
(
xL1 p

∗
1 + pL1 x

∗
1 − pL1 xL1

)
−
(
pL2 x

∗
2 + xU2 p

∗
2 − pL2 xU2

)
+ min

(
c1p

L
1 , C1p

L
1

)
− pL1 x∗1

− pL2 (c2 − x∗2) + xL1 (p1 − p∗1)− xU2 (p2 − p∗2)

ENDIF
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ENDIF

IF
(
xU2 p

∗
2 + pU2 x

∗
2 − pU2 xU2 > xL2 p

∗
2 + pL2 x

∗
2 − pL2 xL2

)
THEN

c′3 = xU2 p
∗
2 + pU2 x

∗
2 − pU2 xU2 + min

(
pU2 c2, p

U
2 C2

)
− pU2 x∗2 + xU2 (p2 − p∗2)

ELSE

c′3 = xL2 p
∗
2 + pL2 x

∗
2 − pL2 xL2 + min

(
pL2 c2, p

L
2 c2
)
− pL2 x∗2 + xL2 (p2 − p∗2)

ENDIF

The initial condition c(0) = (10, 0, 0) was used. The concave overestimates of the

states are obtained in an analogous fashion:

IF
(
xU1 p

∗
1 + pU1 x

∗
1 − pU1 xU1 > xL1 p

∗
1 + pL1 x

∗
1 − pL1 xL1

)
THEN

C ′
1 = −

(
xU1 p

∗
1 + pU1 x

∗
1 − pU1 xU1

)
− pU1 (C1 − x∗1)− xU1 (p1 − p∗1)

ELSE

C ′
1 = −

(
xL1 p

∗
1 + pL1 x

∗
1 − pL1 xL1

)
− pL1 (C1 − x∗1)− xL1 (p1 − p∗1)

ENDIF

IF
(
xL1 p

∗
1 + pU1 x

∗
1 − xL1 pU1 < pL1 x

∗
1 + xU1 p

∗
1 − pL1 xU1

)
THEN

IF
(
xU2 p

∗
2 + pU2 x

∗
2 − pU2 xU2 > xL2 p

∗
2 + pL2 x

∗
2 − pL2 xL2

)
THEN

C ′
2 =

(
xL1 p

∗
1 + pU1 x

∗
1 − xL1 pU1

)
−
(
xU2 p

∗
2 + pU2 x

∗
2 − pU2 xU2

)
+ max

(
pU1 c1, p

U
1 C1

)
− pU1 x∗1

− pU2 (C2 − x∗2) + xL1 (p1 − p∗1)− xU2 (p2 − p∗2)

ELSE

C ′
2 =

(
xL1 p

∗
1 + pU1 x

∗
1 − xL1 pU1

)
−
(
xL2 p

∗
2 + pL2 x

∗
2 − pL2 xL2

)
+ max

(
pU1 c1, p

U
1 C1

)
− pU1 x∗1

− pL2 (C2 − x∗2) + xL1 (p1 − p∗1)− xL2 (p2 − p∗2)

ENDIF
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ELSE

IF
(
xU2 p

∗
2 + pU2 x

∗
2 − pU2 xU2 > xL2 p

∗
2 + pL2 x

∗
2 − pL2 xL2

)
THEN

C ′
2 =

(
xL1 p

∗
1 + pU1 x

∗
1 − xL1 pU1

)
−
(
xU2 p

∗
2 + pU2 x

∗
2 − pU2 xU2

)
+ max

(
pL1 c1, p

L
1C1

)
− pL1 x∗1

− pU2 (C2 − x∗2) + xU1 (p1 − p∗1)− xU2 (p2 − p∗2)

ELSE

C ′
2 =

(
xL1 p

∗
1 + pU1 x

∗
1 − xL1 pU1

)
−
(
xL2 p

∗
2 + pL2 x

∗
2 − pL2 xL2

)
+ max

(
pL1 c1, p

L
1C1

)
− pL1 x∗1

− pL2 (C2 − x∗2) + xU1 (p1 − p∗1)− xL2 (p2 − p∗2)

ENDIF

ENDIF

IF
(
xL2 p

∗
2 + pU2 x

∗
2 − xL2 pU2 < pL2 x

∗
2 + xU2 p

∗
2 − pL2 xU2

)
THEN

C ′
3 =

(
xL2 p

∗
2 + pU2 x

∗
2 − xL2 pU2

)
+ max

(
pL2 c2, p

L
2C2

)
− pL2 x∗2 + xL2 (p2 − p∗2)

ELSE

C ′
3 =

(
pL2 x

∗
2 + xU2 p

∗
2 − pL2 xU2

)
+ max

(
pU2 c2, p

U
2 C2

)
− pU2 x∗2 + xU2 (p2 − p∗2)

ENDIF

The initial condition C(0) = (10, 0, 0) was used. The function f : x → (x− a)2 is

convex and is minimized by f(a). Hence, the convex relaxation of objective function

can be obtained by application of Theorem 4.1.2:

nk∑
i=1

nx∑
j

(yj(ti)−midfun(cj(ti) , Cj(ti) , yj(ti)))
2 .

An automatically generated ABACUSS II simulation was generated by symbolic anal-

ysis of the original ODE system [203]. The generated code is shown in § B.6, Ap-

pendix B. Convex underestimates and concave overestimates of the states x(t,p) at
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fixed time t are shown in Figure 4-2. The resulting convex relaxation of the MAP

objective function together with the objective function is shown in Figure 4-3.

4.2 Model Selection

Model selection is a more complex problem that occurs routinely when analyzing cell

signaling data. Often one wants to test several competing hypotheses (for example:

species A interacts with species B versus species A does not interact with species

B). Therefore, it is no longer valid to assume the assigned models are accurate.

Mathematically, one wishes to select the most probable model from a set of possi-

ble models {M1,M2, . . .Mm}. There is a large amount of common computational

infrastructure between model selection and parameter estimation since parameter es-

timation is a form of continuous model selection (much like an NLP relaxation of

an integer problem). Techniques for Bayesian model selection have been developed

and expounded by many authors [32, 206, 221], but all of these authors make many

simplifying assumptions to make the problem numerically tractable.

To analyze the different criteria for model selection it is necesary to define the

minimum of the sum of the square of the residuals for the jth model as:

Ŝj = min
p∈Rnp

nk∑
i=1

(
yi − gj(ui,p)

)T
Σ−1

(
yi − gj(ui,p)

)
,

where Σ is the standard covariance matrix. From the definition of the covariance

matrix, the expected value of Ŝj for the correct model, gj, is

E
(
Ŝj
)

= nxnk, (4.25)

or the total number of measurements made. Several approximate criteria have been

developed for the purpose of model selection and experimental design:

1. Akaike Information Criterion, AIC, for known variances in the measurement
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Figure 4-2: Convex underestimate and concave overestimate for states at t = 4
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Figure 4-3: Convex underestimate (left) combined with objective function (right)

model, p̂2 = p2, given in Equation (4.26) [4].

AIC = Ŝj + njp (4.26)

Ŝj is the minimum of the sum of the square of the residuals over all data, and

njp is the number of independent parameters in model j. It can be seen from

Equation (4.25) that the contribution to the AIC from the penalty term njp

diminishes as more measurements are made.

2. A sequential experimental design criterion for a single output model defined by

Equation (4.27) [117]:

u = arg

[
max
u∈Rnu

∣∣∣∣x̃1 − x̃2
∣∣∣∣]

2

(4.27)

where after {y1, . . . , ynk
} measurements, x̃1 is an estimate of the state based

on model 1, given an estimate of the parameters p1, and x̃2 is an estimate of

the state of model based on model 2 given an estimate of the parameters p2.
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This experimental design criterion implies that determining the most probable

model does not depend on the number of parameters in the model. A good

explanation of why one would expect a penalty term according to the number

of parameters in a model is given in [103].

3. A criterion for a single output model based on the posterior probability of the

model being true [28]:

fMj

(
Mj|y,U

)
=

fMj(Mj|y1, . . . , ynk−1,U) fy(ynk
|Mj,U)∑m

j=1 fMj(Mj|y1, . . . , ynk−1,U) fy(ynk
|Mj,U)

(4.28)

where,

fy
(
ynk
|Mj,U

)
=

1√
2π (σ + σj)

exp

(
− 1

2 (σ2 + σj)

(
ynk
− ỹjnk

)2)
.

fMj(Mj|y,U) is the probability of model j given a set of measurements y at the

input conditions U, fy(ynk
|Mj,U) is the probability of making a measurement

ynk
given model j, ỹjnk

is the predicted value of the measurement based on the

previous observations and model j. σ is the variance of the measurement model:

fy
(
ynk
|x,Mj,U

)
=

1

σ
√

2π
exp

(
−(ynk

− x)2

2σ2

)
,

and σj is the variance of the estimate ỹjnk
. Similarly, the estimates of the

posterior PDF given in [28] do not have any penalty terms associated with the

number of parameters [221].

4. A criterion based upon Bayesian arguments for model selection defined by Equa-

tion (4.29) [221]:

fMj

(
Mj|Ŷ = Y, Σ̂ = Σ,U

)
∝ 2−

n
j
p
2 exp

(
− Ŝ

j

2

)
πMj

(
Mj
)

(4.29)

where fMj

(
Mj|Ŷ = Y, Σ̂ = Σ,U

)
is the probability of model j with njp indepen-

dent parameters, given data, Y, and covariance matrix, Σ, Ŝj is the minimum
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of the sum of the square of the residuals over all data, and πMj(Mj) is the prior

probability assignment for model j.

5. Criteria based on Maximum entropy, that account for model structural un-

certainty by assuming the parameters, θ̂, are distributed (as opposed to the

probability associated with the parameter) [38, 39, 218]. These criteria are

of little use if the information required is the model structure. Furthermore,

it is implicitly assumed that some integral constraint is perfectly satisfied by

potentially noisy data.

However, there are considerable conceptual difficulties with each of these model selec-

tion criteria. With an increase in the number of parameters, there is a corresponding

increase in the number of potential models (hypothesis space), and a corresponding

decrease in the certainty that any one of those models is correct. Therefore, mod-

els with many parameters are less likely until there are some data to support them.

Both criteria 1 and 4 and provide methods for model selection with a criterion that

includes a penalty term dependent on the number of parameters and the sum of the

square of the residuals. However, it is easy to produce an example model that despite

having a few fitted parameters, can fit any data exactly, as shown in Example 3.1.2,

Chapter 3. It can be seen that the task of model selection is more complex than a

including single penalty term for the number of parameters in the criterion, and it

depends on the structure of the model. The methods of model selection proposed by

[205, 121] are logically consistent, but difficult to solve numerically.

Typically, Bayesian model selection [205, 121] is performed by evaluating the

model selection criterion for every possible model. However, the discrimination cri-

terion is often extremely expensive to compute exactly. It is therefore wasteful to

explicitly enumerate all possible models when evaluating the discrimination criterion,

even if the number of possible models is small. A preferable approach is to formulate

the model selection problem as either a integer nonlinear program or a mixed integer

nonlinear program. The resulting selection process is an optimization problem. This

approach has several advantages:
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1. it may not be necessary to evaluate the selection criterion for all models, and,

2. it may be possible to generate cheap bounds on the objective function that

eliminate the need for a costly objective function evaluation.

It should be stressed that this optimization approach to model selection has only

recently become feasible due to advances in optimization technology. The method is

still immature but represents a very interesting avenue of research.

4.2.1 Optimization Based Model Selection

The Bayesian model selection criteria of [205, 121] are based on the posterior PDFs for

the parameters. In this Section these model selection criteria will be reformulated as

integer optimization problems. The model selection criteria will be presented for single

output models to simplify the exposition. The model Mi is a specific combination of

mechanistic model (or expectation function), measurement model and prior PDF for

the parameters. The prior PDF must be proper; i.e., satisfy the constraint:

∫ ∞

−∞
. . .

∫ ∞

−∞
πp(p) dp = 1.

A set of integer variables (z1, z2, . . . , znz) ∈ {0, 1}
nz is used to index the models Mi in

the hypothesis space under investigation. For example, the set of mechanistic models:

M1 : x = 0

M2 : x = p1u

M3 : x = p2u
2

M4 : x = p1u+ p2u
2,

could be written as

x = z1p1u+ z2p2u
2. (4.30)

Ideally, the mechanistic model may be defined as the solution of a set of algebraic

nonlinear equations, the solution at fixed times to a set of ODEs or the solution at
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fixed times to a set of DAEs/PDAEs. It is assumed that each model (expectation,

measurement and prior) is dependent on a subset of parameters pj ∈ Rnpj ⊂ p ∈ Rnp .

If the ith parameter is included in the jth model zi = 1 and if the parameter is not

included in the model then zi = 0. It follows that

npj
=

nz∑
i=1

zi.

Hence, the state of the system, xi ∈ R, is uniquely determined by the inputs, ui ∈ Rnu ,

and the parameters, (p, z) ∈ Rnp × {0, 1}nz . It should be stressed that different

expectation models, Mj, may be dependent on different numbers of real parameters.

Additional logic constraints must be added to the optimization problem to set the

values of real parameters that do not appear in the expectation model, otherwise

the solution to the optimization problem will be degenerate. The binary variables

are used to change the structure of the expectation model, measurement model and

prior PDF. The output of the system, ŷi, is related to the state of the system, by a

probability model,

fy(yi|x̂i = xi, p̂2 = p2, ẑ = z) ,

where p2 ∈ Rnp2 is a subset of p which characterize the model of uncertainty in the

measurement. It is assumed that each of the measurements are independent of each

other. The PDF for the vector of nk measurements is given by Equation (4.31),

fy

(
y|X̂ = X(U,p, z) , p̂ = p, ẑ = z

)
=

nk∏
i=1

fy(yi|x̂i = x(ui,p, z) , p̂ = p, ẑ = z) ,

(4.31)

where U ∈ Rnu×nk is a matrix of input conditions corresponding to nk experiments

and y ∈ Rnk is a vector of measurements. By application of Bayes’ theorem the joint

posterior PDF for the parameters, given the measurements, can be derived and is

shown in Equation (4.32),

fp,z(p, z|ŷ = y,U) =
fy

(
y|X̂ = X(U,p, z) , p̂ = p, ẑ = z

)
πp,z(p, z)

πy(y)
(4.32)

189



where πp,z(p, z) is the prior PDF for (p, z). A technical difficulty, is that the structure

of the prior PDF will depend on the number of real parameters that appear in the

expectation function and measurement model. If zi = 1, then a term corresponding

to pi should be included in the prior density. If it is assumed that initially, the

parameters are not correlated, the prior PDF can be expressed as the product of

individual functions, as shown in Equation (4.33).

πp,z(p, z) =

np∏
i=1

(ziπpi
(pi) + (1− zi)) (4.33)

The likelihood function and prior PDF completely define the joint posterior PDF

which is used to characterize the uncertainty in the complete vector of parameters

(p, z) given that the values of the measurements y are known.

One possible model selection scheme is to estimate whole parameter vector (p, z)

from the joint posterior PDF. For an algebraic expectation function this would cor-

respond to solving an Mixed Integer Nonlinear Program (MINLP). Algorithms have

been developed to solve this type of problem [129, 130, 131]. However, it is more

likely for cell signaling work that the expectation function is a system of ODEs. The

corresponding optimization problem would then be formulated as a mixed integer dy-

namic optimization problem. To our knowledge these problems have not been solved

using deterministic global methods. However, it is possible to use the convexity the-

ory developed in [203] with the techniques in [129, 130, 131] to solve this problem.

Unfortunately, the necessary theory has only existed for the last two months and

these problem formulations were not studied in this thesis.

It is more likely that it is only required to estimate integer parameters from the

marginal posterior PDF. The marginal posterior PDF is defined as:

fz(z|ŷ = y,U) =

∫
P

fp,z(p, z|ŷ = y,U) dp, (4.34)

where P is a space defined by the prior PDF. Rigorous optimization techniques for

the objective function defined in Equation (4.34) do not currently exist. However,
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again it is postulated that branch-and-bound strategies may be effective. There are

some interval techniques to construct rigorous bounds on the value of the multi-

dimensional integral shown in Equation (4.34). These techniques are discussed in

§ 5.4.4, Chapter 5. However, it was found that sometimes these techniques do not

work.

4.3 Summary

A recently developed theory of deterministic global optimization [203] was presented

in this Chapter. This theory is applicable to a broad range of parameter estimation

problems, including those derived from mechanistic models of cell signaling. The

advantages of global optimization compared to traditional parameter estimation ap-

proaches are twofold:

1. the technique guarantees the correct parameter estimate, and,

2. it is also possible to identify other parameter values which correspond to regions

of high probability density.

Therefore, it is easier to identify parameter estimation problems which are likely to

lead to poor estimates (insufficient data, poor experimental design, etc.).

Model selection was discussed in the second half of this Chapter. It was found

that many existing model selection criteria are based on too many restrictive assump-

tions (linearity of expectation model, Normal measurement model, etc.). The model

selection problem was formulated in a Bayesian framework as an integer optimization

problem. While techniques to solve the resulting optimization problems are poorly

developed, it is postulated that this may prove an exciting new research area.
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Chapter 5

Mammalian Cell Migration

There have been numerous investigations of in-vitro migration of mammalian cells

(see for example [8, 56, 91, 93, 97, 143, 162, 166, 172, 184, 237, 242]). Much of the

motivation for investigating cell migration has already been presented in Chapter 1,

§ 1.4. In particular, cell migration is a key process in inflammation, wound healing,

embryogenesis, and tumor cell metastasis [233]. A lot of this research has focused on

the molecular biology of cell motion (actin polymerization, assembly/disassembly of

focal adhesions, microtubule dynamics, etc.). However, it is ultimately desirable to

be able to correlate cell type and cell conditions to cell physiology; i.e., we wish to

determine how much condition X affects cell motion. The mechanistic understanding

of cell migration is not yet detailed enough to be able to answer this question. It

is therefore important to have experimentally verified conclusions. In particular, we

wish to characterize experimentally how much external conditions affect cell motion.

It is hypothesized that in vitro characterization of cell migration will be relevant for

understanding in vivo cell migration. Work in this Chapter will focus on attempting

to answer this problem. In particular, the aim is to characterize cell migration tracks

with a few parameters (e.g., diffusivity of motion or cell speed, frequency of turning).

Furthermore, posterior PDFs are derived for these parameters. The influence of

experimental conditions on cell migration is revealed by the comparison of the shape

and location of posterior PDFs resulting from each condition.
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5.1 Experimental Setup

A typical use of a cell migration assay is described in [147]. The goal of their work

was to determine the effect of EGF and fibronectin concentration on the speed of

cell migration. In a standard setup, migrating cells are imaged using a digital video

microscopy. A schematic of the microscope is shown in Figure 5-1. Images of the

cells are sampled at 15min intervals. A typical image is shown in Figure 5-21. The

sampled images of the migrating cell is converted into cell centroid data using the

proprietary DIAS2 software. In the open literature, the clearest description of this

processing step is [215]. The resulting cell centroid data is shown in Figure 5-3.

The work in this Chapter focuses on converting the cell centroid data into physically

relevant parameters that can be correlated with cell conditions.

5.2 Random Walk Models

Unfortunately, there is insufficient information to build a mechanistic model describ-

ing cell-centroid position as a function of time. The lack of knowledge is twofold:

it is hypothesized that cell migration is controlled by low number cell receptor acti-

vation where stochastic effects are dominant [232], and knowledge of the regulation

mechanism is incomplete. Therefore, cell migration is typically modeled as a random

walk, dating from the work of [91]. The greater level of abstraction allows for many

different effects to be lumped into the value of a few parameters. It is often desired

to estimate the random walk parameters from experimental data to correlate these

parameters either to the output from mechanistic models [58, 166] or to characterize

a particular experimental intervention.

Cellular behavior in biological systems is often distributed [165] and researchers

may wish to characterize inter-cellular variation. It is therefore desirable to estimate

the parameters defining the motion from measurements of a single particle. The

objective of the work in this Chapter is to derive Bayesian parameter estimates for

1Image provided by Brian Harms.
2Solltech, Inc., Technology Innovation Center, Oakdale, IA 52319, USA.
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Figure 5-1: Microscope setup
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Figure 5-2: Microscope image of migrating cells
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Figure 5-3: Sample cell centroid data
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two different types of random walk: Brownian diffusion, and a correlated random

walk. It is shown in § 5.3.3 that these models exhibit quite different behavior and

can only be used interchangeably under restrictive conditions.

The simplest model is Brownian diffusion (a position-jump process) where there

are nd states corresponding to the dimension of the walk. The particle displacement

is completely uncorrelated between time intervals. Historically, the diffusivity of the

walk is estimated from fitting the mean squared displacement. We can show that

this method has several major pitfalls. In contrast, we apply a Bayesian analysis to

this problem and show that the estimates of diffusivity obtained are superior to the

estimate from the mean squared displacement. A weakness of the Brownian diffusion

model for representing cell migration is that it admits the possibility of infinite speed

signals and experimental evidence shows that cells migrate at finite speeds. However,

at long sampling times this difficulty becomes less significant [91].

A more complex model for describing cell migration is a one-dimensional correlated

random walk. This model is interesting as it is the simplest model where migration

occurs at finite speeds. The one-dimensional model is sufficient to analyse some

biologically relevant systems, including neuron cell migration, where movement is

limited to the axis of the astroglial fiber [93]. The formulation of the parameter

estimation problem does not change for motion in higher dimensions but solution of

the problem becomes significantly more computationally expensive.

It is important to state several facts in order to appreciate the value of our con-

tribution.

1. The particle position, xi, at time ti is not the same as a measurement of the

particle position, yi, at time ti; there is error in the measurement of the particle

position.

2. A particle position at a single point in time, xi is not the same as a set of

particle positions at a set of times, x.

3. The joint density for the set of particle positions does not equal the product of
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the density for the particle position at a single point in time, i.e.,

p(xi|xi−1) 6= p(xi) .

There has been extensive study of Brownian diffusion [135, 33, 37, 92], starting from

the original work [76, 213, 139]. Most of this work focuses on the properties of the

probability density function (PDF) for the particle position, xi, at a single point in

time. To our knowledge no one has tried to analyze the joint density for a set of

particle positions x. The parameter estimation strategy is to derive the posterior

probability density for the parameters of the walk according to Bayes theorem (see

[29, 123, 244, 121] for details of Bayesian parameter estimation).

Most of the previous work on the correlated random walk has focused on the

properties of the probability density function (PDF) for the particle position, xi, at

a single point in time. We are unaware of work that considers Bayesian parameter

estimation for a one-dimensional correlated random walk. Parameter estimation for a

two-dimensional correlated random walk by fitting moments has been considered [91,

62]. It has been demonstrated that parameter estimation by minimizing the square of

residuals between the estimated the mean squared displacement and measured mean

square displacement has the following difficulties:

1. the method only works if the magnitude of the measurement error, α, is known

a priori,

2. the method can lead to non-physical estimates of the model parameters, and,

3. there is a significant probability of a large discrepancy between the estimate

parameters and the true value of the parameters.

The Bayesian parameter estimation framework does not suffer from these problems.

To our knowledge no one has tried to analyze the joint density for a set of particle

positions x.
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5.3 Brownian Diffusion

For sake of simplicity, we will consider diffusion in R and at the end of the section

generalize the results to higher dimensional walks. We will drop the circumflex no-

tation used in Chapter 3. However, it will be still understood that PDFs and CDFs

are based on comparisons of the form x̂ < x. We will derive the posterior PDF of the

diffusivity of a particle given a set of measurements,

y =
(
y1, y2, . . . , yny

)
∈ Rny ,

of a particle obeying Brownian diffusion. Sometimes it will be useful to refer to the

vector of measured particle displacements,

d =
(
d1, d2, . . . , dny

)
∈ Rny ,

where di = yi − yi−1. The Brownian walk has a single state, x(t), corresponding to

the displacement of the particle along the axis. The vector,

x =
(
x0, x1, . . . , xny

)
∈ Rny+1,

where xi = x(ti), represents the displacement of the particle at discrete time points,

t = ti. The initial measurement of particle position will be set arbitrarily y0 = 0; it

does not make a difference what value for y0 is chosen, but y0 = 0 will simplify the

subsequent calculations.

It is well known that the PDF for the location of a particle diffusing according

to Brownian motion in one dimension, p(·), is given by the solution of the parabolic

partial differential equation [76, 213, 139],

D
∂2p

∂x2
=
∂p

∂t

where x is the particle location, t is the time elapsed, and D is the diffusivity of the

particle. If it is assumed that the initial location of the particle is known (x = xn−1),
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the initial condition p(x|t = 0) = δ(x− xn−1) is implied. Additionally, the constraint,

∫ ∞

−∞
p(x|t = 0) dx = 1

must be satisfied. The PDF is given by the standard result,

p(x|xn−1, D, t) = N(xn−1, 2Dt) (5.1)

where N(·) is a Normal density.

The PDF for the measurement of particle positions, fm(·), is given by:

fm(yi|xi, α) = N
(
xi, α

2
)
, i = 1, . . . , ny

where α is a parameter characterizing the magnitude of the errors in the measurement.

The initial location of the particle is unknown. However, it is reasonable to assume

the prior for x0 is p(x0|α) = N(0, α2), since we have assumed y0 = 0. For a single

time interval, the PDF for the measured displacement, d is

p(d|D,α,∆t) =

∫ ∞

−∞

∫ ∞

−∞
fm(d|x1, α) p(x1|x0, D,∆t) p(x0|α) dx1dx0

= N
(
0, 2D∆t+ 2α2

)
.

A common literature method [91] for estimating the diffusivity is to fit D by least-

squares to the squared displacement:

DLS = arg

[
min
D

ny∑
i=1

(
d2
i −

(
2D∆ti + 2α2

))2]
.

This yields the estimate:

DLS =
1

2
∑ny

i=1 ∆ti

ny∑
i=1

(
d2
i − 2α2

)
, (5.2)

although many authors forget to correct for the measurement error. There are three
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weaknesses to this method of estimation:

1. it is impossible to estimate accurately the confidence intervals for DLS,

2. it is necessary to know the correct value of α2 a priori, and,

3. it does not account for correlation in the measured displacement between two

adjacent time intervals.

It is not possible to estimate α with the least-squares method, since the measured

displacements, di, are assumed to be independent. The assumption of independence

of the measured displacements is false. Clearly a measurement error in yi affects

both di and di+1. In contrast, the Bayesian formulation explicitly accounts for the

correlation in measured displacement between time intervals.

From Bayes’ theorem, the joint PDF for the measurements and the particle posi-

tions at discrete times is

g(y,x|D,α, t) = p(x0|α)

ny∏
i=1

fm
(
yi|xi, α2

) ny−1∏
i=0

p(xi+1|xi, D,∆ti) (5.3)

where ∆ti = ti − ti−1 is the sampling interval. Alternatively, Equation (5.3) can be

written

z ∼ N
(
0,V−1

)
,

where z = (x,y), and

V =

 V11 V12

V21 V22

 .
The submatrices V11 ∈ R(ny+1)×(ny+1), VT

21 = V12 ∈ R(ny+1)×ny , and V22 ∈ Rny×ny
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are given by:

V11 =



v11 =
1

α2
+

1

2D∆t1

vnn =
1

α2
+

1

2D∆tny

n = ny + 1

vii =
1

α2
+

1

2D∆ti
+

1

2D∆ti−1

i = 2, . . . , ny

vij = − 1

2D∆ti
i = 1, . . . , ny, j = i+ 1

vij = − 1

2D∆ti−1

i = 2, . . . , ny + 1, j = i− 1

0 Otherwise

,

VT
21 = V12 =


0 . . . 0

− 1
α2

. . .

− 1
α2

 ,

and V22 = α−2I. The marginal density for the data can be obtained through integra-

tion of Equation (5.3):

r(y|D,α, t) =

∫ ∞

−∞
· · ·
∫ ∞

−∞
g(y,x|D,α,∆t) dx (5.4)

and is given by [244]:

y ∼ N
(
0,
(
V22 −V21V

−1
11 V12

)−1
)
.

If the value of α is known, the posterior PDF for the diffusivity, h1(D|y, α, t), is

obtained by application of Bayes’ theorem. We will assume an improper uniform

prior for the particle diffusivity. It could be argued that the prior for the particle

diffusivity is proportional to 1/D or even 1/D2 [123]. However, the substance of the

calculation will remain the same and we will neglect this complication.

h1(D|y, α, t) =
1

K1

r(y|D,α, t) (5.5)
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The constant K1 can be determined from,

K1 =

∫ ∞

0

r(y|D,α, t) dD.

and if necessary, evaluated by numerical quadrature.

However, the more likely scenario is that α is unknown, in which case we should

decide whether we are interested in estimating the joint density, h2 (D,α|y, t), or

the marginal density, h3 (D|y, t). Remarkably, it is possible to distinguish between

the contributions to the measured displacement from measurement error and particle

diffusion. To derive both the joint and the marginal densities it is necessary to assume

a prior for (α,D). We will again assume an improper uniform prior. To derive the

joint density, application of Bayes’ theorem yields:

h2(D,α|y, t) =
1

K2

r(y|D,α, t) , (5.6)

where,

K2 =

∫ ∞

0

∫ ∞

0

r(y|D,α, t) dD dα.

The marginal density is obtained by integration of the joint density with respect to

α:

h3(D|y, t) =

∫ ∞

0

h2(D,α|y, t) dα. (5.7)

All of the necessary integrations can be achieved using simple quadrature.

Remark. It is possible to generalize the results in § 5.3 to a particle diffusing in higher

dimensions. As discussed in [37] the PDF for the location of a particle diffusing

according to isotropic Brownian motion in more than one dimension, p(·), is given

by:

p
(
xi1, xi2, . . . |x(i−1)1, x(i−1)2, . . . , D,∆t

)
=

N
(
x(i−1)1, 2ndD∆ti

)
·N
(
x(i−1)2, 2ndD∆ti

)
. . .

and if it is assumed that the error in the measurement of each coordinate is indepen-
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dent and Normal, the posterior PDF is given by:

1

nd
h1(ndD|Y, α, t) =

1

K1nd

ny∏
i=1

r(ndD|yi, α, t)

where,

K1 =

∫ ∞

0

1

nd

ny∏
i=1

r(ndD|yi, α, t) d (ndD) ,

and Y ∈ Rny×nd is a matrix of ny measurements and nd is the number of dimensions.

The joint density, h2(·), and the marginal density, h3(·), can be derived in analogous

fashion.

5.3.1 Results

A noisy Brownian random walk was simulated (see Figure 5-4) for α2 = 9, 2D∆t = 6,

and ny = 30. The parameter values were deliberately chosen to ensure that the

contribution to the measured displacement from both measurement error and diffusion

would be comparable. It should be realized that the simulation represents just one of

an infinite number of possible realizations for y. Each different realization of y will

lead to a slightly different shapes for the posterior PDFs. The plots shown in this

paper were selected to be qualitatively “characteristic” of a several runs. The quality

of the estimates obtained from the posterior PDFs is characterized in § 5.3.2.

The joint posterior PDF, h2(D,α|y, t) was evaluated according to Equation (5.6)

(shown in Figure 5-5). It can be seen from this plot that the PDF has a distinct max-

imum, suggesting that it is indeed possible to estimate both the diffusivity and the

measurement error. The marginal posterior PDF h3(D|y, t) and the conditional post-

erior PDF h1(D|y, t, α) are shown in Figure 5-6. It can be seen that PDF h2(D|y, t)

is less peaked than h1(D|y, t, α). This is to be expected; the conditional PDF (more

peaked) represents a greater state of knowledge than the marginal PDF (less peaked).

However, it is satisfying to notice that lack of knowledge of α does not lead to catas-

trophic widening of the PDF.

The Maximum A Posteriori (MAP estimate) is the value of a parameter that
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Figure 5-4: Simulated Brownian random walk for D = 3, α = 3, ny = 30

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

1

2

3

4

5

6

7

8

9

10

11

12

α

D
iff

us
iv

ity
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Figure 5-6: Marginal posterior and conditional PDFs for particle diffusivity

maximizes the posterior PDF [29]. It can also be shown that this is the appropri-

ate estimate when the inference problem is framed as a decision with a “0-1” loss

function [121]. We will let DMAP (y, t, α) denote the MAP estimate of the diffusivity

when α is known and D̂MAP (y, t) denote the MAP estimate when α is unknown. The

least-squares estimate of the diffusivity (calculated from Equation (5.2)) is denoted

DLS(y, t, α). The following estimates of the diffusivity were calculated from the sim-

ulation shown in Figure 5-4: DLS = 4.0, DMAP = 2.5, and D̂MAP = 2.4. However, it

can be seen from the long asymmetric tails of h1(D|y, t, α) and h3(D|y, t) (shown in

Figure 5-6) that a point estimate of the diffusivity is a little misleading. In general,

we will prefer the full posterior PDF (if it is available) rather than a point esti-

mate. Furthermore, it is impossible to accurately construct confidence intervals from

the least-squares problem. In contrast, it is straightforward to calculate confidence

intervals directly from the posterior probability density function [29].

5.3.2 Comparison of MAP and Least-Squares Estimate

It has already been stated in § 5.3.1 that the plots shown in Figures 5-4–5-6 only

characterize a single simulation. In general, the results from each simulation will be
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slightly different. In this section we will characterize in greater detail the performance

of the estimates: DLS(y, t, α), DMAP (y, t, α), and D̂MAP (y, t). Even if we know the

true value of the diffusivity we will not collect the same data with each experiment.

This process has already been characterized by the PDF, r(y|D,α, t), shown in Equa-

tion (5.4). Correspondingly, the results from each different experiment would yield a

different estimate of the diffusivity. It is therefore interesting to calculate the PDFs,

p(DLS|D, t, ny, α), p(DMAP |D, t, ny, α), and p
(
D̂MAP |D, t, ny

)
where D is the true

value of the diffusivity. Ideally, this PDF will be sharply peaked and its mode will

correspond to the true value of the diffusivity, i.e., it is probable that the collected

data, y, will lead to an estimate of the diffusivity that is close to the true value of

the diffusivity.

The easiest method to calculate the PDF p(DEST |D, I) (I is the additional in-

formation) is Monte Carlo since closed-form solutions for the MAP estimates, DMAP

and D̂MAP , do not exist. Plots for each of the estimates: DLS, DMAP , and D̂MAP are

shown in Figure 5-7. The Monte Carlo simulations were based on n = 5000 samples.

It is clear from Figure 5-7 that DLS is a poor estimate of D. The PDF,

p(DLS|D,α,∆t, ny) ,

has wide tails indicating a high probability that the least squares estimate will not

coincide with the true value of the diffusivity. Furthermore, it can be seen that there

is a significant probability that the calculated value of the least-squares estimate is

negative. This surprising result comes from the correction for measurement error. It

is impossible to calculate a negative value for the uncorrected least-squares estimate.

However, the curve for the PDF for the uncorrected estimate would be translated to

the right by nyα
2/
∑ny

i=1 ∆ti and the mode would no longer coincide with the true

value of the diffusivity.

It is also interesting to compare p(DMAP |D,α,∆t, ny) with p
(
D̂MAP |D,∆t, ny

)
.

It can be seen from Figure 5-7 that both of these densities have a significant area
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Figure 5-7: Comparison of different estimates for diffusivity (∆t = 1)
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contained in the tails, i.e., there is still a significant probability that there will be

large discrepancy between the calculated estimate and true value of the diffusivity.

This is yet another warning that one should not rely on DMAP or D̂MAP as a single

point estimate characterizing the state of knowledge about D. It is also interesting to

observe that there is not a large amount of widening between p(DMAP |D,α,∆t, ny)

and p
(
D̂MAP |D,∆t, ny

)
; more evidence that knowing α only provides a marginal

improvement in the estimate of D.

5.3.3 Effect of Model-Experiment Mismatch

The effect of model-experiment mismatch was investigated. In a real cell migration

data, it is likely that there is significant correlation between the displacement in

adjacent time intervals due to persistance in cell motion. Perhaps a better model of

cell migration is a correlated random walk, as described § 5.4. In this model, it is

assumed that the cell moves in a straight line at constant speed and changes direction

at time points obeying an exponential PDF. It has been shown that a correlated

random walk tends to Brownian diffusion as the time interval at which the position

measurements are sampled increases. The diffusion limit in this case is [165]:

D = lim
∆t→∞

C2

2λ
. (5.8)

It is therefore interesting to generate data according to a correlated random walk

and see whether the proposed Brownian diffusion estimation algorithms can extract

useful information.

This simulation experiment was done for the C = 3, λ = 0.6 and ∆t = 1. The

results are shown in Figure 5-8. It can be seen that the effect of correlation for a short

sampling time is to broaden the peak of the estimate. It can also be seen that there

is a large discrepancy between the mode of the PDFs and the value of the diffusivity

calculated from Equation (5.8) (D = 32/ (2× 0.6) = 7.5). This is not surprising since

the sampling time is small ∆t = 1. In contrast, as ∆t is increased the accuracy of

all the estimates improves (see Figure 5-9). However, there is still a fair degree of
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uncertainty in all the estimates. In fact, there is little difference between all of the

estimates. Consequently, one might be tempted to use the least-squares estimate as it

is simpler to compute. However, the marginal Bayesian estimate is perhaps preferable

since no a priori knowledge of α is required.

5.4 Correlated Random Walk

Diffusion by discontinuous movements was briefly considered by G. I. Taylor [225].

A particle moves at constant speed, C, for an interval of time τ . At each time point,

t = τ, 2τ, . . . , nτ , the particle either continues in the same direction with probability

p or reverses direction with probability q = 1− p. The seminal work [99] considered

the limit of this discrete time random walk as p = 1 − τ/2A, with A constant,

and n → ∞, τ = ∆t/n → 0 and showed that the probability density function

describing the diffusion obeyed the telegraph equation. A continuous time model has

been proposed [124] where a particle moves at constant speed, C, for exponentially

distributed lengths of time, τi, before reversing directions. The probability density

function for τi is given by:

p(τi|λ) =

 λ exp(−λτi) τi ≥ 0

0 τi < 0
.

The parameter λ characterizes the frequency at which the particle reorients. The

constant A is related to the turning frequency, λ, according to

λ =
1

2A
.

It has been shown that this model is equivalent to the limit of the discrete random

walk model [124].

We will derive the posterior PDF of (C, λ) ∈ R2
+ for a particle given a set of

measurements,

y =
(
y1, y2, . . . , yny

)
∈ Rny
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Figure 5-8: Diffusivity estimates for correlated random walk (∆t = 1, ny = 20)
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Figure 5-9: Diffusivity estimates for correlated random walk (∆t = 7, ny = 20)
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obeying the continuous correlated random walk. The initial measurement of particle

position will be set arbitrarily y0 = 0; it does not make a difference what value for

y0 is chosen, but y0 = 0 will simplify the subsequent calculations. The PDF for the

measurement of particle positions is given by:

fm(yi|xi, α) = N
(
xi, α

2
)
, i = 1, . . . , ny (5.9)

where N(·) is a Normal density and α is a parameter characterizing the magnitude

of the errors in the measurement. The initial location of the particle is unknown.

However, it is reasonable to assume the prior for x0 is p(x0|α) = N(0, α2) since we

have assumed y0 = 0. The correlated random walk has two states, x(t) and I(t), cor-

responding to the displacement along the axis and particle orientation, respectively.

The vector,

x =
(
x0, x1, . . . , xny

)
∈ Rny+1

where xi = x(ti), represents the displacement of the particle at discrete time points,

t = ti. Sometimes it will be useful to refer to the vector of actual displacements

d =
(
d1, d2, . . . , dny

)
∈ Rny

where di = xi − xi−1. The vector I,

I =
(
I0, I1, . . . , Iny

)
∈ {0, 1}ny+1

where Ii = I(ti), represents the particle orientation.

It can be shown that PDF for the particle position, x, is given by the solution of

the telegraphers equation [99, 195, 124, 114, 126, 155] if it is assumed that it is equally

probable the particle starts with a positive or negative orientation. The solution is

shown in Equation (5.10),

φ(x,∆t) =
e−λ∆t

2C

[
δ
(
∆t− x

C

)
+ δ
(
∆t+

x

C

)
+ λ

(
I0(Γ) +

λ∆t

Γ
I1(Γ)

)]
(5.10)
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for |x| ≤ C∆t and φ(x,∆t) = 0 for |x| > C∆t, where Γ is defined as

Γ = λ

√
(∆t)2 − x2

C2
,

and I0(·) and I1(·) are the modified Bessel functions of first kind of zeroth and first

order, respectively.

It is important to notice that the PDF shown in Equation (5.10), φ(x,∆t), does not

depend on the orientation of the particle at any given time. However, the probability

of a specific particle orientation at the start of the time interval changes after a

position measurement has been made. Consider the hypothetical situation where

there is no measurement error and the particle speed is known. Suppose the initial

position of the particle is x = 0. If the particle position at time t = ∆t is measured

as x = +C∆t (there is a probability of 1/2 exp(−λ∆t) of this occurring) then the

particle orientation at t = ∆t is known with absolute certainty; the particle must

be traveling in a positive direction. Furthermore, it now becomes significantly more

probable that the particle will be found on the interval [C∆t, 2C∆t] compared to

the interval [0, C∆t] at time t = 2∆t. It is clear that position measurements contain

information about the orientation of the particle and bias the probability density for

a subsequent measurement.

It is necessary to derive the joint density Φ(x|t, C, λ) for a set of particle positions

x. We will assume a uniform prior [123] for (C, λ) although it is straightforward to

use a more complicated function. The conditional posterior PDF, h1(C, λ|y, t, α), is

given by application of Bayes’ Theorem:

h1(C, λ|y, α, t) =
1

K1

r(y|C, λ, α, t) (5.11)

r(y|C, λ, α, t) =

∫ ∞

−∞
· · ·
∫ ∞

−∞
Φ(x|t, C, λ)

ny∏
i=1

fm(yi|xi, α) dx

where the constant,

K1 =

∫ ∞

0

∫ ∞

0

r(y|C, λ, α, t) dC dλ.
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We will assume a uniform prior for α if α is unknown. Hence, the joint posterior PDF

is given by:

h2(C, λ, α|y, t) =
1

K2

r(y|C, λ, α, t) , (5.12)

where the constant,

K2 =

∫ ∞

0

∫ ∞

0

∫ ∞

0

r(y|C, λ, α, t) dα dC dλ.

The marginal posterior PDF can be obtained by integrating the joint posterior PDF:

h3(C, λ|y, t) =

∫ ∞

0

h2(C, λ, α|y, t) dα. (5.13)

However, the classical work [99, 195, 124, 114, 126, 155] derives the PDF, φ(x,∆t),

(Equation (5.10)) as the solution of the telegraph equation. Unfortunately, this work

does not immediately suggest a method to derive the joint density.

A more general description of the particle motion has been considered by [115]

where the motion is described by the stochastic differential equation (SDE):

x′(t) = C1 − C2I(t) , x(0) = 0, (5.14)

where I(t) is a dichotomous alternating renewal stochastic process [49, 127, 115].

I(t) = 0 corresponds to the particle moving in a positive direction and I(t) = 1

corresponds to the particle moving in a negative direction. The successive sojourn

times of I(t) in the states {0} and {1} are {ηi} and {ξi} respectively. The PDF for

ηi is g(ηi|µ) and the PDF for ξi is f(ξi|λ).

The joint PDF, Φ(x|t, C1, C2, µ, λ), can be obtained by application of Bayes’ theo-

rem. It is necessary to define the following functions, βi(xi, . . . , x1) and γi(xi, . . . , x1),

which correspond to the following PDFs:

βi(xi, . . . , x1) = p(I(ti) = 0, xi, . . . , x1|t, C1, C2, µ, λ) (5.15)

γi(xi, . . . , x1) = p(I(ti) = 1, xi, . . . , x1|t, C1, C2, µ, λ) . (5.16)
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It is also necessary to define the following transition probabilities:

p11(di) = p(xi, I(ti) = 0|xi−1, I(ti−1) = 0, C1, C2, µ, λ) (5.17)

p12(di) = p(xi, I(ti) = 0|xi−1, I(ti−1) = 1, C1, C2, µ, λ) (5.18)

p21(di) = p(xi, I(ti) = 1|xi−1, I(ti−1) = 0, C1, C2, µ, λ) (5.19)

p22(di) = p(xi, I(ti) = 1|xi−1, I(ti−1) = 1, C1, C2, µ, λ) . (5.20)

Closed-form expressions for the transition probabilities in Equations (5.17)–(5.20)

are derived in § 5.4.1. Defining the transition matrix P(di) as

P(di) =

 p11(di) p12(di)

p21(di) p22(di)


it is possible to use Bayes theorem to write βi(xi, . . . , x1)

γi(xi, . . . , x1)

 = P(di)

 βi−1(xi−1, . . . , x1)

γi−1(xi−1, . . . , x1)

 .
It then follows that the joint PDF for a set of particle positions, Φ(x|t, C1, C2, µ, λ),

can be expressed by Equation (5.21):

Φ(x|t, C1, C2, µ, λ) =
[

1 1
] ny∏
i=1

P(di)

 p0(x0)

p1(x0)

 (5.21)

where p0(x0) is the PDF for the initial position x0 given I(0) = 0, and p1(x0) is the

PDF for the initial position x0 given I(0) = 1. For an alternating renewal process at

equilibrium (i.e., after sufficiently long time), the PDFs, p0(x0) and p1(x0), are given

by Equations (5.22)–(5.23) [49]:

p0 =
〈ξi〉

〈ξi〉+ 〈ηi〉
p(x0|α) (5.22)

p1 =
〈ηi〉

〈ξi〉+ 〈ηi〉
p(x0|α) (5.23)
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where 〈ξi〉 is the mean of f(ξi|λ), 〈ηi〉 is the mean of g(ηi|µ), and p(x0|α) is the prior

for the position of x0 regardless of orientation.

5.4.1 Derivation of Transition PDFs

Although the work of [115] does not present the transition PDFs, the author uses an

ingenious construction to derive a solution for φ(x,∆t) which we will use to obtain the

transition PDFs. Again, it should be stressed that this model has two states: a con-

tinuous state, x, the particle position, and a discrete state, I, the particle orientation.

Equation (3) of [115] states a solution for φ(x, t):

φ(x, t) =
p0

C2

Pr
[
Nη = 0|t̂ = t

]
δ(Ω1) +

p1

C2

Pr
[
Nξ = 0|t̂ = t

]
δ(Ω2) (5.24)

+
p0

C2

{
∞∑
n=1

g(n)(Ω1) Pr
[
Nξ = n|t̂ = Ω2

]
+

∞∑
n=1

f (n)(Ω2) Pr
[
Nη = n− 1|t̂ = Ω1

]}
Θ(Ω1)

+
p1

C2

{
∞∑
n=1

g(n)(Ω1) Pr
[
Nξ = n− 1|t̂ = Ω2

]
+

∞∑
n=1

f (n)(Ω2) Pr
[
Nη = n|t̂ = Ω1

]}
Θ(Ω2)

where Θ(·) is the Heaviside step function,

Θ(x) =

 1 z ≥ 0

0 z < 0
.

Nξ counts the number of transitions from I = 0 to I = 1 up to time t, Nη counts the

number of transitions from I = 1 to I = 0, and, fn(·) is the n-fold convolution defined

in Theorem 3.3.5 of Chapter 3. We will show an alternative (but similar) derivation

of Equation (5.24) which allows us to derive the transition PDFs. From the solution

of Equation (5.14):

x = C1Ω2 + (C1 − C2) Ω1 (5.25)
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I(t) = 1
η1 η2

I(t) = 0
Nξ = 1 t− η1 − ξ1 − η2

p12(di)

I(t) = 1

I(t) = 0
ξ1 Nη = 1 ξ2

t− ξ1 − η1 − ξ2

p21(di)

I(t) = 1

I(t) = 0
Nξ = 1

η1

Nξ = 2

η2

t− ξ1 − η1 − ξ2 − η2

I(t) = 1
t− ξ1 − η1 − ξ2 − η2

Time

Nη = 1 ξ1 Nη = 2 ξ2

I(t) = 0

p11(di)

p22(di)

Figure 5-10: Particle orientations at start and end of time interval

where Ω1 is the total time spent in state I = 1 and Ω2 is the total time spent in state

I = 0. By definition,

t = Ω1 + Ω2. (5.26)

Hence,

Ω1 =
C1t− x
C2

Ω2 =
(C2 − C1) t+ x

C2

.

The different possible combinations of particle orientation at the beginning and end

of a time interval, corresponding to the PDFs, p11(di), p12(di), p21(di), and p22(di),

are shown in Figure 5-10. It is necessary to define the following functions:

θη(Nξ) = η1 + η2 + . . .+ ηNξ
, Nξ = 1, 2, . . .

ζη(Nξ) = η1 + η2 + . . .+ ηNξ+1, Nξ = 1, 2, . . .
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ζξ(Nη) = ξ1 + ξ2 + . . .+ ξNη+1, Nη = 1, 2, . . .

θξ(Nη) = ξ1 + ξ2 + . . .+ ξNη , Nη = 1, 2, . . .

The transition probabilities can be obtained from:

p11(x) = δ(Ω1) Pr(Nξ = 0)

∣∣∣∣dΩ1

dx

∣∣∣∣+ Pr(θη = Ω1)

∣∣∣∣dΩ1

dx

∣∣∣∣ (5.27)

p12(x) = Pr(ζη = Ω1)

∣∣∣∣dΩ1

dx

∣∣∣∣ (5.28)

p21(x) = Pr(ζξ = Ω2)

∣∣∣∣dΩ2

dx

∣∣∣∣ (5.29)

p22(x) = δ(Ω2) Pr(Nη = 0)

∣∣∣∣dΩ2

dx

∣∣∣∣+ Pr(θξ = Ω2)

∣∣∣∣dΩ2

dx

∣∣∣∣ . (5.30)

The PDFs for θη, ζξ, ζη, and θξ can be obtained from Bayes theorem:

Pr(θη = Ω1) =
∞∑
n=1

Pr(θη = Ω1|Nξ = n) Pr
(
Nξ = n|t̂ = Ω2

)
(5.31)

Pr(ζξ = Ω2) =
∞∑
n=1

Pr(ζξ = Ω2|Nη = n− 1) Pr
(
Nη = n− 1|t̂ = Ω2

)
(5.32)

Pr(ζη = Ω1) =
∞∑
n=1

Pr(ζη = Ω1|Nξ = n− 1) Pr
(
Nξ = n− 1|t̂ = Ω1

)
(5.33)

Pr(θξ = Ω2) =
∞∑
n=1

Pr(θξ = Ω2|Nη = n) Pr
(
Nη = n|t̂ = Ω1

)
. (5.34)

The quantities Pr(θη = Ω1|Nξ = n), Pr(ζξ = Ω2|Nη = n− 1), etc., can be obtained

from Theorem 3.3.5 of Chapter 3.

Making the necessary substitutions in Equations (5.27)–(5.34) yields the following

expressions for p11(x), p12(x), p21(x) and p22(x):

p11(x) =
1

C2

{
Pr[Nξ = 0] δ(Ω1) (5.35)

+ Θ(Ω1)
∞∑
n=1

g(n)(Ω1) Pr
[
Nξ = n|t̂ = Ω2

]}
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p12(x) =
Θ(Ω2)

C2

∞∑
n=1

g(n)(Ω1) Pr
[
Nξ = n− 1|t̂ = Ω2

]
(5.36)

p21(x) =
Θ(Ω1)

C2

∞∑
n=1

f (n)(Ω2) Pr
[
Nη = n− 1|t̂ = Ω1

]
(5.37)

p22(x) =
1

C2

{
Pr[Nη = 0] δ(Ω2) (5.38)

+ Θ(Ω2)
∞∑
n=1

f (n)(Ω2) Pr
[
Nη = n|t̂ = Ω1

]}
. (5.39)

To recover the simpler motion described by [99, 195, 124, 114, 126, 155], set

C = C1 =
C2

2

and

f(x) = g(x) =

 λ exp(−λx) x ≥ 0

0 x < 0
.

From which it follows:

p11(di) =


exp(−λ∆t)

C

[
δ
(
∆t− di

C

)
+ λ2

Γi
I1(Γi)

(
∆t+ di

C

)]
|di| ≤ C∆t

0 |di| > C∆t
(5.40)

p12(di) =

 exp(−λ∆t) λ
C
I0(Γi) |di| ≤ C∆t

0 |di| > C∆t
(5.41)

p21(di) =

 exp(−λ∆t) λ
C
I0(Γi) |di| ≤ C∆t

0 |di| > C∆t
(5.42)

p22(di) =


exp(−λ∆t)

C

[
δ
(
∆t+ di

C

)
+ λ2

Γi
I1(Γi)

(
∆t− di

C

)]
|di| ≤ C∆t

0 |di| > C∆t
(5.43)

where,

Γi = λ

√
(∆t)2 − d2

i

C2
.

220



−6 −4 −2 0 2 4 6
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

d
i

P
ro

ba
bi

lit
y 

D
en

si
ty

Monte Carlo
Analytical

Figure 5-11: Transition PDF, p22(di), plotted against di for λ = 0.5, C = 3, and
∆t = 2

5.4.2 Comparison of Transition PDFs

The transition PDFs derived in § 5.4.1, Equations (5.40)–(5.43) were plotted and

compared to Monte Carlo simulation of the correlated random walk (Figures 5-11–5-

12). The term,
exp(−λ∆t)

C
δ

(
∆t+

di
C

)
was omitted from p22(di) for clarity of the plot. The PDF, p11(di), is not shown since

it is a reflection about di = 0 of the function p22(di). It can be seen that there is close

agreement between the Monte Carlo simulation and the closed-form solutions for the

transition PDFs.

5.4.3 Closed-Form Posterior PDF for λ = 0

It is interesting to consider the estimation of particle speed for the situation where

λ = 0 (i.e., the particle does not turn). The transition PDFs, p11(di), p12(di), p21(di),

and p22(di) simplify to

p11(di) =
1

C
δ

(
∆t− di

C

)
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Figure 5-12: Transition PDF, p21(di), plotted against di for λ = 0.5, C = 3, and
∆t = 2

p12(di) = 0

p21(di) = 0

p22(di) =
1

C
δ

(
∆t+

di
C

)
.

The joint density, Φ(x|t, Cλ), is therefore,

Φ(x|t, Cλ) = p0(x0|α)

ny∏
i=1

1

C
δ

(
∆t− di

C

)
+ p1(x0|α)

ny∏
i=1

1

C
δ

(
∆t+

di
C

)

where,

p0(x0|α) = p1(x0|α) =
1

2α
√

2π
exp

(
− x2

0

2α2

)
.

If it is assumed that the PDF for the particle measurement, fm(·), is given by

fm
(
yi|xi, α2

)
= N

(
xi, α

2
)
, i = 1, . . . , ny
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where α is a parameter characterizing the magnitude of the error in the measurement,

the integral in Equation (5.11) can be computed in closed-form:

r(y|C,∆t, α) =
1

2
(
α
√

2π
)ny √

ny + 1

[
exp

(
(Sy)

2 − (ny + 1)Syy
2 (ny + 1)α2

)
(5.44)

+ exp

((
Sy
)2 − (ny + 1)Syy

2 (ny + 1)α2

)]

where,

Sy =

ny∑
i=1

yi − iC∆t,

Syy =
n∑
i=1

(yi − iC∆t)2 ,

Sy =

ny∑
i=1

yi + iC∆t,

Syy =
n∑
i=1

(yi + iC∆t)2 .

It follows that the posterior PDF is given by:

h1(C|y, α,∆t) =


1
K2

[
exp
(
− (C−θ)2

2σ2

)
+ exp

(
− (C+θ)2

2σ2

)]
C > 0

0 C ≤ 0
(5.45)

where,

θ =
12
(
ny/2

∑ny

i=1 yi −
∑ny

i=1 iyi
)

ny (ny + 1) (ny + 2)
(5.46)

σ2 =
12α2

(∆t)2 ny (ny + 1) (ny + 2)
, (5.47)

and,

K2 =

∫ ∞

0

exp

(
−(C − θ)2

2σ2

)
+ exp

(
−(C + θ)2

2σ2

)
dC.

It can be seen from Equation (5.45) that the density is unimodal and the width of

the peak decreases roughly n
−3/2
y .
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5.4.4 Numerical Evaluation of Posterior PDF

A closed-form solution for r(y|C, λ, α, t) does not exist. Hence, it is necessary to

evaluate the multi-dimensional integral shown in Equation (5.11) numerically. Three

different methods were examined for computing the integral:

1. integration by importance sampling,

2. integration by validated methods, and,

3. integration by iterated use of the extended Trapezoid rule.

Numerical difficulties were encountered with the first two methods for this specific

problem. In comparison, the third method work fairly efficiently on this problem.

Integration by Importance Sampling

Importance sampling is one of several Monte Carlo methods for evaluating a complex

high-dimensional integral [176]. To exploit the method it must be possible to write

the multi-dimensional integral as:

I ≡
∫
V

f(x) p(x) dx, (5.48)

where, ∫
V

p(x) dx = 1.

The function p(x) can be interpreted as a probability density function. It follows

that if probability density can be efficiently sampled: x1, . . .xn, the integral can be

approximated by

I ≈
n∑
i=1

f(xi) .

For a general integral,

I ≡
∫
V

h(x) dx,

the method can be implemented by setting f = h/p. Rigorous bounds on the error

of integration do not exist. However, an estimate of the error in Equation (5.48) can
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Figure 5-13: Contours of r(y1, y2|C = 3, λ = 1.5,∆t = 1, α = 0.3)

be obtained from √√√√√ 1

N

 n∑
i=1

f 2(xi)−

(
n∑
i=1

f(xi)

)2
.

For the method to be effective, it is necessary that f is relatively constant for values

of x that correspond to high probability regions of p.

Samples were generated from Φ(x|t, C, λ) to calculate the integral shown in Equa-

tion (5.11). The choice of Φ is natural as it is possible to generate samples quickly.

The code to generate samples from Φ(·) is shown in Appendix A, § A.5. Unfor-

tunately, the PDF Φ is a multi-modal function of x with many peaks. Each peak

corresponds with different sequences of changes in direction. The likelihood function

is effectively a blurred form of Φ(·). A plot of the corresponding likelihood function for

two measurements, (y1, y2), is shown in Figure 5-13. It was found that the importance

sampling integration failed to converge in a reasonable number of iterations. For a

more comprehensive study of the computational difficulties associated with using a

Monte Carlo integration method on a multi-modal integrand see [105].
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Integration by Validated Methods

Another popular approach to calculating multi-dimensional integrals is verified inte-

gration, based on interval arithmetic [158, 47]. These methods are attractive since

symbolic analysis yields higher order information which can be used to target values

of parameters where function evaluations should occur. Furthermore, exact bounds

on the error in the approximated integral are available at each iteration of the algo-

rithm. For a comparison of Monte Carlo and verified methods see [21]. Most verified

methods rely on constructing an interval Taylor polynomial (Definition 5.4.1).

Definition 5.4.1. [148, 20] Let f be a Cn+1 mapping on Df ⊂ Rν , and B = [a1, b1]×

· · · × [aν , bν ] ⊂ Df be an interval box containing x0. Let T be the Taylor polynomial

of f around x. An interval Taylor polynomial is defined as (T, I) where,

f(x)− T (x) ∈ I, ∀x ∈ B.

A basic premise of the interval Taylor methods is that it is straightforward to cal-

culate higher order derivatives of the elementary functions used to make f . It is com-

putationally infeasible to derive these derivatives symbolically since for many elemen-

tary functions there is an explosion in the computational complexity for evaluating

the derivatives. Instead, it is possible to derive recursive expressions for the high-order

derivatives using Automatic Differentiation (AD) (see Pages 24–29 of [158]).

It was attempted to construct a Taylor polynomial integration scheme for the

integral in Equation (5.11). Consequently, it was necessary to obtain expressions for

the high-order derivatives of the modified Bessel functions of first kind, I0 and I1.

The recursion for the kth derivative of I0 evaluated at x0 6= 0 was derived to be

(f)k+3 =
(f)k + (f)k+1 x0 − (f)k+2 (k + 2)2

x0 (k + 3) (k + 2)
, (5.49)

where (f)k denotes the kth derivative of I0. Unfortunately, for |x0| < 1 this recursion

is unstable numerically. To demonstrate the difficulty the expression was evaluated

using GNU multi-precision library (GMP 4.1). It can be seen from Table 5.4.4 that
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Table 5.1: Taylor coefficients for I0(x) expanded around x0 = 0.001

16 digit mantissa 256 digit mantissa

Coefficient Value Coefficient Value

7 0.177197E-05 7 0.542535E-07
8 -0.149622E-02 8 0.678169E-05
9 0.133600E+01 9 0.678169E-09
10 -0.120240E+04 10 0.6781687E-07
11 0.109309E+07 11 0.565140E-11
12 -0.100200E+10 12 0.470950E-9
13 0.924925E+12 13 0.3363931E-13

for a reasonable size of mantissa the derivatives wildly fluctuate from the true values.

This difficulty can be ameliorated by moving to higher precision. However, it was

decided that the additional effort required to evaluate the integrand in multi-precision

arithmetic was not worthwhile. Consequently, this approach was abandoned.

Exploiting Structure in Integrand

The final method for computing the integral in Equation (5.11) relies on special

structure of the integrand. The integral can be expressed as a sequence of one-

dimensional integrals:

ψ1(x1) =

∫ ∞

−∞
p11(x1 − x0) p0(x0) + p12(x1 − x0) p1(x0) dx0 (5.50)

γ1(x1) =

∫ ∞

−∞
p21(x1 − x0) p0(x0) + p22(x1 − x0) p1(x0) dx0 (5.51)

ψi(xi+1) =

∫ ∞

−∞
fm(xi) (p11(xi+1 − xi)ψi−1 + p12(xi − xi) γi−1) dxi(5.52)

γi(xi+1) =

∫ ∞

−∞
fm(xi) (p21(xi − xi)ψi−1 + p22(xi+1 − xi) γi−1) dxi(5.53)

r(y|C, λ, α, t) =

∫ ∞

−∞
fm
(
xny

) (
γny−1 + ψny−1

)
dxny (5.54)

where if λ = µ, the priors for x0 are

p0(x0) = p1(x0) =
1

2
p(x0|α) .
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Each one-dimensional integral can be calculated using the extended Trapezoid approx-

imation [46]. The Dirac-delta terms in p11(·) and p22(·) can be handled analytically

using the identities:

1

C

∫ ∞

−∞
δ

(
∆t+

xi+1 − xi
C

)
f(xi) dxi = f(xi+1 + C∆t) (5.55)

and
1

C

∫ ∞

−∞
δ

(
∆t− xi+1 − xi

C

)
f(xi) dxi = f(xi+1 − C∆t) (5.56)

for C > 0.

The scheme outlined in Equations (5.50)–(5.54) requires a total of O
(
ny · n2

q

)
operations, where nq is the number of quadrature points used in evaluating a one-

dimensional integral. The error in the approximation of the iterated integral by

repeated application of the extended Trapezoid approximation is given by Theo-

rem 5.4.1.

Theorem 5.4.1. The error in r(y|C, λ, α,∆t) can be bounded by the expression given

in Equation (5.57):

|r(y|C, λ, α,∆t)− srN | ≤ erT + erA (5.57)

=

ny∑
i=1

Ciw
ny−i

(
1−

∫ bi

ai

fm
(
yi|xi, α2

)
dxi

)
+ Cny+1w

ny

(
1−

∫ b0

a0

p(x0|α) dx0

)
(5.58)

+ h2

ny∑
i=0

Biw
ny−i

where the integration limits are ai = −w/2+ yi and bi = w/2+ yi. s
f
N is the extended

Trapezoid approximation to the integral:

F =

∫ b

a

f dx,
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and is defined as

sfN =
h

2

[
f0 + fN + 2

N−1∑
i=1

fi

]
,

where fs = f(a+ sh) with h = (b− a) /N .

Proof. The quantities ψ1(x1) and γ1(x1) are given by:

ψ1(x1) = sψ1

N (x1) + eψ1

Q + eψ1

T + eψ1

A (5.59)

γ1(x1) = sγ1N (x1) + eγ1Q + eγ1T + eγ1A (5.60)

where sψ1

N (x1) and sγ1N (x1) are the extended Trapezoid approximations to the integrals

shown in Equations (5.50)–(5.51), eψ1

A and eγ1A are the errors from approximating the

integrand, and eψ1

Q and eγ1Q are the errors in the quadrature rule. The errors in

approximating the integrands are eψ1

A = 0 and eγ1A = 0. The quadrature errors are

given by [46]:

∣∣∣eψ1

Q

∣∣∣ ≤ kψ1

Q h
2∣∣eγ1Q ∣∣ ≤ kγ1Q h
2.

The errors from truncating limits of the integrals are given by:

∣∣∣eψ1

T

∣∣∣ ≤ kψ1

T

(
1−

∫ b0

a0

p(x0|α) dx0

)
|eγ1T | ≤ kγ1T

(
1−

∫ b0

a0

p(x0|α) dx0

)
,

where kψ1

T and kγ1T are determined by:

kψ1

T = max
x0,x1∈R2

1

2
(p11(x1 − x0) + p12(x1 − x0))

and

kγ1T = max
x0,x1∈R2

1

2
(p21(x1 − x0) + p22(x1 − x0)) .
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The errors in ψi(xi+1) and γi(xi+1) are given by Equations (5.61)–(5.62):

ψi(xi+1) = sψi

N (xi+1) + eψi

Q + eψi

T + eψiA (5.61)

γi(xi+1) = sγi

N(xi+1) + eγi

Q + eγi

T + eγiA . (5.62)

The error terms eψi

Q , eψi

T , eψi

A , eγi

Q , eγi

T , and eγi

A are given by:

∣∣∣eψi

Q

∣∣∣ ≤ kψi

Q h
2∣∣∣eψi

T

∣∣∣ ≤ kψi

T

(
1−

∫ bi

ai

fm(yi|xi, α) dxi

)
∣∣∣eψi

A

∣∣∣ ≤ w
[
kψi

A1

(
e
ψi−1

Q + e
ψi−1

T + e
ψi−1

A

)
+ kψi

A2

(
e
γi−1

Q + e
γi−1

T + e
γi−1

A

)]
∣∣eγi

Q

∣∣ ≤ kγi

Qh
2

|eγi

T | ≤ kγi

T

(
1−

∫ bi

ai

fm(yi|xi, α) dxi

)
|eγi

A | ≤ w
[
kγi

A1

(
e
ψi−1

Q + e
ψi−1

T + e
ψi−1

A

)
+ kγi

A2

(
e
γi−1

Q + e
γi−1

T + e
γi−1

A

)]
where,

kψi

T = max
xi,xi+1∈R2

p11(xi+1 − xi)ψi−1(xi) + p12(xi − xi) γi−1(xi)

kγi

T = max
xi,xi+1∈R2

p21(xi+1 − xi)ψi−1(xi) + p22(xi − xi) γi−1(xi)

kψi

A1
= max

xi,xi+1∈R2
fm(xi) p11(xi+1 − xi)

kψi

A2
= max

xi,xi+1∈R2
fm(xi) p12(xi+1 − xi)

kγi

A1
= max

xi,xi+1∈R2
fm(xi) p21(xi+1 − xi)

kγi

A2
= max

xi,xi+1∈R2
fm(xi) p22(xi+1 − xi) .

Finally, the error in r(y|C, λ, α,∆t) is given by:

r(y|C, λ, α,∆t) = srN
(
xny

)
+ erQ + erT + erA
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where,

∣∣erQ∣∣ ≤ krQh
2

|erT | ≤ krT

(
1−

∫ bny

any

fm
(
yny |xny , α

2
)

dxny

)
|erA| ≤ krAw

(
e
ψny−1

Q + e
ψny−1

T + e
ψny−1

A + e
γny−1

Q + e
γny−1

T + e
γny−1

A

)
and,

krT = max
xny∈R

ψny−1

(
xny

)
+ γny−1

(
xny

)
,

krA = max
xny∈R

fm
(
xny

)
.

The result shown in Equation (5.57) follows by making the necessary substitutions

and collecting terms.

Remark. If the PDFs for the measurement error and prior for x0 have compact sup-

port: fm(yi) : [ai, bi] → R+, and p(x0) : [a0, b0] → R+ the term in Equation (5.57)

due to the truncation of the integration limits:

eT =

ny∑
i=1

Ciw
ny−i

(
1−

∫ bi

ai

fm(yi|xi, α) dxi

)
+ Cny+1w

ny

(
1−

∫ b0

a0

p(x0|α) dx0

)
,

will be precisely zero. If the PDF is defined on R, the term can be reduced by letting

w →∞ if the limits

lim
ai→−∞

∫ ∞

ai

fm(yi|xi, α) dxi = 1

and

lim
bi→∞

∫ bi

−∞
fm(yi|xi, α) dxi = 1,

(and the same for p(x0|α)) are achieved sufficiently quickly. For example, if

fm
(
yi|xi, α2

)
= N

(
xi, α

2
)
,
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and p(x0|α) = N(0, α2), the error term can be approximated by:

eT =

ny∑
i=0

Ciw
ny−i

(
1− erf

(
w

2α
√

2

))

≤
ny+1∑
i=1

2αCi

√
2

π
wny−i exp

(
− w2

8α2

)
,

which clearly satisfies this property. The term in Equation (5.57) which comes from

the approximation error:

eA = h2

ny∑
i=1

Biw
ny−1,

can be made small by selecting a sufficient number of quadrature points, nq, where

h =
w

nq − 1
.

5.4.5 Results

A noisy correlated random walk was simulated (Figure 5-14) for λ = 0 and the

posterior PDF was evaluated according to the closed-form solution, (Equation (5.45,

§ 5.4.3)). The posterior PDF was also evaluated using the numerical scheme outlined

in Equations (5.50)–(5.54) of § 5.4.4. It can be seen from the results shown in Figure 5-

15 that there is close agreement between the numerical solution and the closed-form

solution. It can be seen from the posterior PDF that it does not require many

measurements to obtain a fairly accurate estimate of speed.

A noisy correlated random walk was also simulated for C = 3, λ = 0.6, α = 0.1

and α = 1. The modified Bessel functions were calculated with FNLIB [90]. The

simulations are shown in Figures 5-16 and 5-18, respectively. The posterior PDFs

were calculated numerically and contour plots are shown in Figures 5-17–5-19. It

can be seen for the situation where α = 0.1, the contours of the posterior PDF

(Figure 5-17) are tightly centered around the simulation values; i.e., it is relatively

easy to estimate both the particle speed and turning frequency to good accuracy. In

contrast, when α = 1 (there is more error in the particle measurement), the contours
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Figure 5-14: Simulated correlated random walk for C = 3, λ = 0, α = 1, ny = 20
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Figure 5-15: Posterior PDF for particle speed
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Figure 5-16: Simulated correlated random walk for C = 3, λ = 0.6, α = 0.1, ny = 20

of the posterior PDF (Figure 5-19) are wide and there a positive correlation between

C and λ. Unfortunately, this is an inescapable consequence of the problem. The

Bayesian estimate is optimal and the wide contours are fundamental to the problem;

it is harder to estimate speed and turning frequency with noisy data. It was attempted

to reparameterize the problem in terms of ω = λ, and D = C2/λ (how to make this

transformation is described in Theorem 3.3.4 of Chapter 3). i.e. Derive the posterior

PDF h̃(D,ω|y, α, t). The rationale was that in the limit ∆t → ∞ the parameter

D corresponds to a diffusion coefficient. However, this reparameterization is very

misleading. The contours of h̃(D,ω|y, α, t) are fairly tight ellipses. However, the

mode of the PDF is a long distance from the simulation values of (D,ω) used to

generate the data y. In general, we prefer keeping the original parameterization of

the problem. The wide contours of the PDF serve to warn that the estimate will be

misleading.

5.4.6 Experimental Design

It is particularly interesting to characterize the conditions under which the proposed

parameter estimation scheme will be successful. Typically, the output of an engi-
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Figure 5-18: Simulated correlated random walk for C = 3, λ = 0.6, α = 1, ny = 20
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Figure 5-19: Posterior PDF for h1(C, λ|α = 1,y, t)

neering system is a reproducible function of the inputs. Each experiment at fixed

input conditions is likely to yield a similar amount of information. Hence, for many

engineering experimental design problems, once the input conditions have been set,

it is possible to estimate how much information is contained in a set of experimental

measurements. The goal is to pick the input conditions to yield the most valuable

information.

Unfortunately, the stochastic nature of cell migration changes the problem quali-

tatively. For fixed input conditions, the outputs are not a reproducible function of the

inputs; i.e., it is not possible to calculate a priori how much information a data point

yi is likely to contain. However, it is possible to describe qualitatively circumstances

that will lead to accurate parameter estimates and circumstances that will not. For a

given cell speed, C, turning frequency, λ, measurement error, α, and sampling times,

t, there is a certain probability an experimental data set, y, is collected that is rela-

tively informative about the true values of speed and turning frequency and a certain

probability that the data set is uninformative. We will refer to this stochastic effect

as the uninformative likelihood function. The effect is described in § 5.4.7. For the

correlated random walk, it is easy to determine qualitatively when there will be a
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high probability of collecting useful data y. This will be explained in more detail in

§ 5.4.8.

5.4.7 Uninformative Likelihood Functions

The work of [86] gives a comprehensive review of when the likelihood function does

not contain sufficient information about the values of the parameters to be estimated.

The author cites an example due to [178] that is instructive. In this example, a set

of independent measurements y are made where the individual measurement obeys

the likelihood function:

fy(yi|x, σ) =
1

2
ϕ(yi) +

1

2σ
ϕ

(
yi − x
σ

)
, (5.63)

and ϕ(·) is a standard Normal density N(0, 1). It has been shown that the maximum

likelihood estimate of (x, σ) does not converge to the true values of the parameters.

A description due to [25] gives the best interpretation of why this occurs. Another

way to express the likelihood function is

fy(yi|x, σ, vi) =
1

σvi + (1− vi)
ϕ

(
yi − xvi

σvi + (1− vi)

)

where vi is unobserved, vi ∈ {0, 1}, and Pr(vi = 0) = Pr(vi = 1) = 1/2. Stated this

way the difficulty is apparent. If ny measurements are made, there is a (1/2)ny chance

that vi = 0 for all i = 1, . . . , ny. In this situation, the likelihood function does not

depend on (x, σ). A Bayesian problem formulation can help the situation if there is a

significant amount of prior information about (x, σ). In this formulation, if the data

are uninformative, the posterior PDF will be dominated by the contribution from

the prior PDF for (x, λ). Unfortunately, there is no solution to the problem if there

is no prior information; the Bayesian formulation faithfully reports ignorance. The

example due to [178] is perhaps the most extreme kind of an uninformative likelihood

function. We will discuss the less pathological example of the correlated random walk

in § 5.4.8.
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5.4.8 Parameter Estimation for a Correlated Random Walk

An experimental design consists of a set of values for the inputs to the system. Direct

simulation can be used to verify whether a proposed experimental design will work.

The steps of the procedure are outlined below:

1. The process is simulated for reasonable guesses of the model parameters and

the proposed experimental design.

2. The resulting simulation data is then used to generate the posterior PDF for

the parameters.

3. The posterior PDF is checked to see that an accurate estimate of the parameters

can be generated.

4. The procedure is repeated several times at the same parameter values to ensure

the design consistently works.

5. The procedure is repeated for slightly different parameter values to check it is

insensitive to poor estimates of the model parameters.

It is straightforward to implement this scheme for the correlated random walk based

on the algorithms developed in § 5.4.1–5.4.4 and it is the preferred method for testing

an experimental design.

Several different experimental designs for a correlated random walk were tested.

It is hard to summarize the conclusions quantitatively. However, it was found that

the posterior PDF generated for some fixed parameter values would dramatically

change shape between different runs; i.e., sometimes the collected data would yield

useful information about the values of the parameters and sometimes the collected

data would not. The two most important parameters that affected the quality of the

parameter estimates were measurement error and turning frequency. This is not too

surprising since it is difficult to distinguish between a cell that is turning and a cell

that is ruffling or changing shape. The qualitative observations of different simulations

are summarized in Table 5.2. There a three different scenario that potentially face
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Table 5.2: Probability of collecting useful information

α λ Probability

Low Low High
Middle Low High
High Low High

Low Middle High
Middle Middle Middle
High Middle Low

Low High Low
Middle High Low
High High Low

the experimentalist:

1. the collected data are consistently informative about the parameter values,

2. the collected data are sometimes informative about the parameter values, and,

3. the collected data are consistently uninformative about the parameter values.

Data collected from the first scenario are likely to be reported in the literature. If

the third scenarios is encountered, it is likely that an experimentalist would search

for a different end point to measure (for example: cell receptor phosphorylation, cell

adhesion, etc.), rather than struggle with estimating parameters from poor data. The

second scenario is perhaps the most worrying. In this situation it is likely that the data

may point to conflicting conclusions. It is possible that such data is discarded. This

raises the unsettling question of whether there is selective reporting of cell migration

results in the literature.

To estimate speed and turning frequency reliably, it was observed that for moder-

ate values of measurement error, α, it was necessary to have at least one long run of

time intervals where the cell does not change direction. Combining this observation

with the result in Equation (5.47), it seems reasonable to assume that the quantity

ρ =
α2

∆t2k3
, (5.64)
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must be small. k is the number of time intervals in the longest run where the cell

does not change direction. Clearly, ρ is small if the measurement error is decreased.

Unfortunately, the measurement error may be dominated by dynamic changes in cell

shape over which the experimenter has no control. It is not straightforward to predict

the effect of changing the sampling time, ∆t, without calculation since the PDF for k

also depends on ∆t. The PDF for k is related to the geometric distribution of order

k and is given by [14]:

Pr(k|n, p) = F (n, k, p)− F (n, k + 1, p) , (5.65)

where F (n, k) is the recursive function:

F (n, k, p) =


F (n− 1, k, p) + qpk (1− F (n− k − 1, k, p)) n > k

pk n = k

0 0 ≤ n < k

,

n, p, and q are given by

n =
T

∆t
,

p = exp(−λ∆t) ,

q = 1− p,

and T is the total length of time over which measurements are made. The probability

p is the chance that a cell does not turn in a time interval of ∆t. The probability of

achieving a long unbroken run of measurements increases if more points are sampled,

n, or the probability of not turning during a time interval, p, is increased (i.e., ∆t is

reduced).
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5.5 Summary

In the first part of the Chapter, Bayesian estimates for the diffusivity and measure-

ment error of a Brownian random walk are presented. The Brownian random walk is

the simplest model of cell migration. The Bayesian parameter estimates are compared

to the common literature method of estimating diffusivity by fitting the squared dis-

placement. It was shown that the least-squares estimate suffers from the following

problems:

1. the method will only work if the magnitude of the measurement error, α, is

known a priori,

2. there is a relatively high probability that the estimate is significantly different

from the underlying true value, and,

3. there is a significant probability that data will be collected that lead to a neg-

ative estimate.

In contrast, the Bayesian estimates are valid even when α is unknown. Remarkably,

it is possible to distinguish between measurement error and diffusion with Bayesian

methods. The Bayesian estimates have a far lower probability of differing significantly

from the true value and have a zero probability of being negative. It is therefore our

recommendation to use the Bayesian estimates rather than the least-squares estimates

when calculating the diffusivity of a Brownian random walk. The posterior PDF for

the Bayesian estimate had a significant amount of skewness and a long tail. Conse-

quently it is more honest to plot the posterior PDF when reporting data rather than

just reporting a point estimate. The effect of model mismatch was investigated. The

Brownian parameter estimates for a correlated random walk did not work well for

short sampling times. In contrast, for longer sampling times the Brownian parameter

estimates yielded reasonably accurate estimates.

In the second part of this Chapter, a one-dimensional correlated random walk was

analyzed. It was found that this model was significantly harder to use computationally

due to the multi-modal nature of the likelihood function. It was found that standard
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Monte Carlo techniques could not be used to analyze this model. However, a tailored

integration scheme was devised to evaluate Bayesian parameter estimates. Code

was written to simulate a one-dimensional correlated random walk. The proposed

parameter estimation strategy was tested on simulated data. It was found that for

some parameter values it was likely to collect informative data. In contrast, for some

parameter values it was found unlikely to collect informative data. It is postulated

that one of the key factors causing this effect is the difficulty in distinguishing between

changes in cell shape and cell turning. Furthermore, it was found that data that

contained a long unbroken run where the cell had not changed direction was more

likely to yield information about the true parameter values.
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Chapter 6

Conclusions and Future Work

Cell-signaling phenomena are extremely important in the physiology of disease. Over

recent years there has been much interest in using mathematical modeling of cell sig-

naling to gain insight into complex cellular behavior. This modeling effort has encom-

passed a broad range of mathematical formalisms: Bayesian networks and clustering

of gene array data, stochastic models, and deterministic ODE/DAE/PDAE models.

The recurring themes of this work are to make inferences about a complex experi-

mental systems and to make predictions about cell physiology. In this context, it is

important to analyze mathematical models of cell signaling systematically. In partic-

ular, it is important to be able to characterize the solution behavior of a model both

qualitatively and quantitatively. Furthermore, it is necessary to have techniques that

enable the comparison of experimental data with model predictions. Several different

computational techniques have been developed in this thesis to analyze models of

cell-signaling phenomenon. These techniques have ranged from the qualitative char-

acterization of model behavior to the statistical analysis of stochastic models. The

common theme is to build tools that enable one to characterize and validate complex

hypotheses.

Detailed kinetic models of cell-signaling pathways were analyzed in Chapter 2.

In particular, it was found that it was error prone to formulate species conservation

equations as a system of ODEs. Instead, it was proposed to model such systems as

index one DAEs. A drawback of formulating cell-signaling models as index one DAEs
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is that the systematic analysis of these models is more complex. Three methods were

proposed for generating a state-space approximation to the original index one DAE

system around an equilibrium solution. The idea is that there is a well-developed

control theory for systematically analyzing state-space models. It was shown by the

implicit function theorem that asymptotic stability of the state-space approximation

implies local asymptotic stability of the original DAE system. A drawback with this

analysis is that it cannot be used to make statements about the global behavior of

the solution to large perturbations. Whether this is a series deficiency depends on

the system under investigation. The proposed methods for generating state-space

approximations exploited sparsity in the model equations and were implemented in

Fortran 77. The speed and the accuracy for all three methods were characterized.

Parameter estimation for deterministic systems and model selection problems were

analyzed in Chapter 4. It was found that Bayesian formulations of these problems

lead to logically consistent inferences. Recent advances in deterministic global opti-

mization make tractable kinetic parameter estimation for cell-signaling pathways. In

particular, these methods rely on the generation of state bounds and convex under-

estimating and concave overestimating functions. The state bounds can also be used

to characterize the global behavior of the solution to an ODE with respect large vari-

ations in the parameter values rigorously . Commonly, the global solution behavior is

used to verify whether a model prediction is insensitive to parameter uncertainty. It

was shown in this Chapter how model selection can be formulated as an integer op-

timization problem. It is postulated that integer optimization techniques will reduce

the computational burden of model selection compared with explicit enumeration of

the discriminating criteria for all possible models. Unfortunately, the optimization

technology necessary to solve these problems is still too immature at the time of writ-

ing this thesis. However, it is now clear from recent advances that it is likely that

this problem can be solved in the near to medium term.

In Chapter 5, stochastic models of cell migration were analyzed using Bayesian

techniques. It was possible to answer a variety of questions using these techniques

that are not amenable to traditional statisical analysis. For example, it was possible
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to estimate the diffusivity of a particle moving according to Brownian motion without

a priori knowledge of the measurement error. It was found that the Bayesian param-

eter estimates performed better that the traditional estimates derived from expected

mean-squared displacement. However, it was found that all methods of parameter

estimation based on Brownian diffusion faired badly if there was significant corre-

lation between the displacement over adjacent time intervals. A more sophisticated

model cell migration based on a correlated random walk was also analyzed. Closed-

form solutions for the transition PDFs were derived for this model. It was necessary

to evaluate a high-dimensional integral to obtain Bayesian parameter estimates. It

was found that common techniques for evaluating high-dimensional integrals such as

Monte Carlo and interval methods were not suitable for this problem. A tailored

integration method was developed that exploited problem structure. Bayesian pa-

rameter estimates could be obtained efficiently using this algorithm. A study was

performed to characterize the accuracy of the parameter estimates for different pa-

rameter values. Unlike parameter estimation for deterministic problems, for some

parameter values it was found that there was a wide variation in the information

gained between runs; i.e., the variance of the posterior PDF was not constant be-

tween identical experiments. This effect is caused by the inherent stochastic nature

of the problem. For given parameter values there is some probability that useful in-

formation is gained from an experiment and some probability that useful information

is not gained. This observation suggests that one should be wary of over-interpreting

experimental results.

6.1 Future Work

The work in Chapter 2 remains relatively self-containted. However, the implementa-

tion of the algorithms for constructing the state-space approximations is quite cum-

bersome to use. It would be nice to integrate the code for constructing the state-space

approximation with high-level modeling software such as ABACUSS II to allow the

automatic generation of the state-space approximation from a high-level description
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of the DAE system.

The work in Chapter 4 is very preliminary in nature, but quite promising. There

is a large amount of work that could be done to improve parameter estimation and

model selection using deterministic global optimization techniques. The convexity

theory developed by [203] is very new and the automatic implementation of the tech-

nique is not yet tightly integrated to a suitable branch-and-bound code. Given the

complexity of implementing this by hand, developing an integrated code should be

a priority for the wide spread adoption of this parameter estimation method. The

proposed parameter estimation method relies on generating tight state bounds for a

system of ODEs. It seems reasonable to investigate alternative techniques for gen-

erating the bounds. The model selection formulations developed in the second part

of Chapter 4 seem a promising avenue of research. It seems that the mixed integer

dynamic optimization formulation could be solved by combining the convexity theory

developed by [203] with the outer approximation ideas developed in [129, 130, 131].

Work could be done on realizing this in a practical implementation. In the longer

term, it is necessary to develop optimization algorithms where the objective function

is defined by a high dimensional integral. From previous experience it seems that a

necessary step is to develop a suitable convexity theory for these problems.

In Chapter 5 it was shown how the Bayesian parameter estimation problem could

be formulated for stochastic cell migration models. There are at least four avenues

of research that would be interesting to follow: improvement of the integration al-

gorithms, extension of the correlated random walk to planar motion, increasing the

sophistication of stochastic models, and improvements in experimental data collec-

tion. For one-dimensional correlated migration it was found that the speed of the

existing integration routine was sufficient. However, it may be necessary to optimize

the integration procedure for two-dimensional cell migration parameter estimation.

Perhaps the simplest improvement to the integration method would be to replace

näıve quadrature for evaluation of the repeated convolution (Equation (5.11)) with

Fast Fourier Transform methods, thus reducing the computational complexity of eval-

uating the multi-dimensional integral.
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In principle, it is simply necessary to derive the transition PDFs to extend the

tailored Bayesian parameter estimation methods to planar motion and more sophis-

ticated models of cell migration. However, it does not seem likely that it will be

possible to derive the requisite PDFs from alternating renewal theory. Instead, there

are two obvious possibilities to construct the transition PDFs: Monte Carlo and solv-

ing Fokker-Planck equations. It seems that Monte Carlo simulation is probably the

simpler alternative to implement.

Finally, there is the possibility of improving data collection. There are several dif-

ferent possibilities that could be tried to gain more information about cell migration.

The current bottleneck in collecting cell migration data is the hand analysis of images

to determine the cell outline. It therefore seems reasonable to stain the cell to see if

the improvement image contrast is sufficient to allow automatic cell outline detection.

Another possibility is to look at movement of the cell nucleus rather than the cell

centroid. It is possible that measurement of the movement of the cell nucleus is less

susceptible to error due to multiple lamella extension than the measurement of the

cell centroid. Furthermore, some authors have measured the relative displacement of

the cell nucleus from the cell centroid as a function of time [215]. This measurement

gives an indication of the distortion of the cell as it moves. Again, it seems like this

measurement might be less susceptible to error due to spurious lamella extension.

Finally, the parameter estimation procedure could be improved if it was possible to

measure the orientation of the cell rather than infer it from the position measure-

ments. (Therefore, one could easily verify when a cell had turned.) It is know that

certain receptors localize at the leading edge of the lamella. It might be possible to

develop a antibody based marker to highlight regions on the cell membrane where

these characteristic receptors have colocalized. This might give an alternative method

to infer the cell orientation and hence improve the estimate of cell speed and turning

frequency.
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Appendix A

Matlab Code

A.1 Least Squares Fit

%
% Simple function to fit y=40sin(ax)
% and y=ax^2.
%

function [ ]=tt1() % Void function
clear;

%
% Set up data 10

%

xi=[1 2 3 4 5];
yi=[0.8801 3.9347 9.4853 15.4045 24.8503];

%
% Least Squares functions.
%

chi=inline(’sum((40*sin(a*[1,2,3,4,5])-[0.8801,3.9347,9.4853,15.4045,24.8503]).^2)’); 20

chi2=inline(’sum((a*[1,2,3,4,5].^2-[0.8801,3.9347,9.4853,15.4045,24.8503]).^2)’);

[P1,feval]=fminbnd(chi,0,20)
[P2,feval]=fminbnd(chi2,0,20)
return;

249



A.2 Testing State-Space Approximation to Ran-

dom Sparse DAEs

%
% %
% Code to test error in finding state-space form of a DAE %
% The algorithms are described in: %
% %
% Efficient Construction of Linear State-Space Models from Index One %
% DAES, D. M. Collins, D. A. Lauffenburger and P. I. Barton, 2001. %
% %
% Code written by D. M. Collins %
% % 10

% Form problem %
% ———— %
% 1.) Generate W (n+m x n+m) and V (n+m x n) %
% 2.) Calculate S (n+m x n) by solving W S = V. %
% 3.) Refine V by calculating V=W*S. %
% %
% Generate State-Space Models S1, S2 and S3 %
% —————————————– %
% 4.) Calculate S 1 by WZ 1 = I; S 1 = Z 1 V. %
% 5.) Calculate S 2 by W^T Z 2 = I; S 2 = Z 2^T V. % 20

% 6.) Calculate S 3 by W S 3 = V. %
% %
% Compare State-Space Models S1, S2 and S3 with S %
% ———————————————– %
% %
%
function test()
% Initialize vector.
clear;
warning debug; 30

n=100;
m=50;
n1=20;
maxiter=500;
fill W=5;
fill V=5;
cndno=1e6;

error=state(n,m,n1,maxiter,fill W,fill V,cndno);
% 40

% Syntax: error=test(n,m,n1,maxiter,fnme)
%
% n: Number of states+algebraic variables
% m: Number of states+inputs
% n1: Number of states and algebraic variables in state-space model
% maxiter: Number of tests to run
% fill W: Number of entries per row of W
% fill V: Number of entries per row of V
% error(1:3,1:maxiter):
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% 50

%
% Plot error distribution %
%

hist(transpose(error),linspace(0,3*std(error(1,:)),10))
tt=strcat(’Distribution of Errors for (n_{x}+n_{y})=’,num2str(n),. . .
’ (n_{x}+n_{u})=’,num2str(m));
title(tt)
ylabel(’Frequency’) 60

xlabel(’Relative error’)
legend(’Algorithm 1’,’Algorithm 2’,’Algorithm 3’)
return;

function [error]=state(n,m,n1,maxiter, fill W, fill V, cndno)

n2=n−n1; % Number of algebraic variables eliminated.

error(1:6,1:maxiter)=0;
comperror(1:6,1:maxiter)=0; 70

fc1=0;
fc2=0;
fc3=0;

fc1dm=0;
fc2dm=0;
fc3dm=0;

for i=1:maxiter,
80

%
% Initialize problem %
%

W=sprand(n,n,fill W/n,1/cndno);
V=sprand(n,m,fill V/m);
[iv, jv] = find(V);

% Solve for S
[S,fc]=dmss3(W,V); 90

% Refine V
V1=W*S;

% Delete entries that do not correspond to original V1

for j=1:length(iv),
V(iv(j),jv(j))=V1(iv(j),jv(j));
end
V=sparse(V); 100

%
% Test algorithms %
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%

% Algorithm 1 without block decomposition.
[S 1,fc]=ss1(W, V);
fc1=fc+fc1;

% Record error. 110

error(1,i)=err(S,S 1,n1);
comperror(1,i)=comperr(S,S 1,n1);

% Algorithm 1 with block decomposition.
[S 1,fc]=dmss1(W, V);
fc1dm=fc+fc1dm;

% Record error.
error(4,i)=err(S,S 1,n1);
comperror(4,i)=comperr(S,S 1,n1); 120

% Algorithm 2 without block decomposition.
[S 2,fc]=ss2(W, V, n1);
fc2=fc+fc2;

% Record error.
error(2,i)=err(S,S 2,n1);
comperror(2,i)=comperr(S,S 2,n1);

130

% Algorithm 2 with block decomposition.
[S 2,fc]=dmss2(W, V, n1);
fc2dm=fc+fc2dm;

% Record error.
error(5,i)=err(S,S 2,n1);
comperror(5,i)=comperr(S,S 2,n1);

% Algorithm 3 without block decomposition.
[S 3, fc]=ss3(W, V); 140

fc3=fc+fc3;

% Record error.
error(3,i)=err(S,S 3,n1);
comperror(3,i)=comperr(S,S 3,n1);

% Algorithm 3 with block decomposition.
[S 3, fc]=dmss3(W, V);
fc3dm=fc+fc3dm;

150

% Record error.
error(6,i)=err(S,S 3,n1);
comperror(6,i)=comperr(S,S 3,n1);

end

%
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% Report statistics %
%
disp(sprintf(’\n%s\n\n%s\n%s\n%s%d\n%s\n%s%e’,. . . 160

’Finding the Explicit form of an Implicit DAE.’, . . .
’Problem Statistics’, . . .
’------------------’, . . .
’Number of test problems: ’, maxiter, . . .
’Matrix generated by function: sprand’, . . .
’Mean condition number: ’, cndno))
disp(sprintf(’%s%d\n%s%d\n%s%d\n%s%d\n%s%d\n%s%d’, . . .
’Number of entries per row of W: ’, fill W, . . .
’Number of entries per row of V: ’, fill V, . . .
’Number of states+outputs: ’,n, . . . 170

’Number of states+inputs: ’,m, . . .
’Number of outputs in explicit form: ’,n1, . . .
’Number of outputs eliminated from model: ’,n2))

disp(sprintf(’\n\n%s\n%s\n%s’,. . .
’ Max Error Mean Error Standard Deviation Floating Point Operations’, . . .
’ --------- ---------- ------------------ -------------------------’))

disp(sprintf(’\n%s\n%s%e%s%e%s%e%s%d\n%s%e%s%e%s%e%s%d\n%s%e%s%e%s%e%s%d’,. . .
’Norm error: ’,. . . 180

’A1 ’, max(error(1,:)),’ ’,mean(error(1,:)),’ ’,. . .
std(error(1,:)),’ ’,fc1/maxiter, . . .
’A2 ’, max(error(2,:)),’ ’,mean(error(2,:)),’ ’,. . .
std(error(2,:)),’ ’,fc2/maxiter, . . .
’A3 ’, max(error(3,:)),’ ’,mean(error(3,:)),’ ’,. . .
std(error(3,:)),’ ’,fc3/maxiter))

disp(sprintf(’\n%s%e%s%e%s%e%s%d\n%s%e%s%e%s%e%s%d\n%s%e%s%e%s%e%s%d’,. . .
’A1 DM ’, max(error(4,:)),’ ’,mean(error(4,:)),’ ’,. . .
std(error(4,:)),’ ’,fc1dm/maxiter, . . . 190

’A2 DM ’, max(error(5,:)),’ ’,mean(error(5,:)),’ ’,. . .
std(error(5,:)),’ ’,fc2dm/maxiter, . . .
’A3 DM ’, max(error(6,:)),’ ’,mean(error(6,:)),’ ’,. . .
std(error(6,:)),’ ’,fc3dm/maxiter))

disp(sprintf(’\n%s\n%s%e%s%e%s%e%s%d\n%s%e%s%e%s%e%s%d\n%s%e%s%e%s%e%s%d’,. . .
’Component error: ’,. . .
’A1 ’, max(comperror(1,:)),’ ’,mean(comperror(1,:)),’ ’,. . .
std(comperror(1,:)),’ ’,fc1/maxiter, . . .
’A2 ’, max(comperror(2,:)),’ ’,mean(comperror(2,:)),’ ’,. . . 200

std(comperror(2,:)),’ ’,fc2/maxiter, . . .
’A3 ’, max(comperror(3,:)),’ ’,mean(comperror(3,:)),’ ’,. . .
std(comperror(3,:)),’ ’,fc3/maxiter))

disp(sprintf(’\n%s%e%s%e%s%e%s%d\n%s%e%s%e%s%e%s%d\n%s%e%s%e%s%e%s%d’,. . .
’A1 DM ’, max(comperror(4,:)),’ ’,mean(comperror(4,:)),’ ’,. . .
std(comperror(4,:)),’ ’,fc1dm/maxiter, . . .
’A2 DM ’, max(comperror(5,:)),’ ’,mean(comperror(5,:)),’ ’,. . .
std(comperror(5,:)),’ ’,fc2dm/maxiter, . . .
’A3 DM ’, max(comperror(6,:)),’ ’,mean(comperror(6,:)),’ ’,. . . 210

std(comperror(6,:)),’ ’,fc3dm/maxiter))
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return;

function [x]=err(S,Serr,n1)
% Function to generate error for non-zero components
x=normest(S(1:n1,:)−Serr(1:n1,:))/normest(S(1:n1,:));
return;

function [x]=comperr(S,Serr,n1)
S=sparse(S); 220

Serr=sparse(Serr);
[i,j]=find(S(1:n1,:));
nz=length(i);
x=0;
for k=1:nz,

t=abs((S(i(k),j(k))−Serr(i(k),j(k)))/S(i(k),j(k)));
x=max(x,t);

end
return;

230

function [S,fc]=ss1(W, V)
%
% Algorithm 1
%
flops(0);
I=speye(size(W));
Z 1=W\I;
S=Z 1*V;
fc=flops;
return; 240

function [S,fc]=dmss1(W, V)
%
% Algorithm 1
%
flops(0);
I=speye(size(W));
Z 1=dmsolve(W,I);
S=Z 1*V;
fc=flops; 250

return;

function [S,fc]=ss2(W, V, n1)
%
% Algorithm 2
%
flops(0);
I=speye(size(W));
Z 2=W’\I(:,1:n1);
S=Z 2’*V; 260

fc=flops;
return;

function [S,fc]=dmss2(W, V, n1)
%
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% Algorithm 2
%
flops(0);
I=speye(size(W));
Z 2=dmsolve(W’,I(:,1:n1)); 270

S=Z 2’*V;
fc=flops;
return;

function [S,fc]=ss3(W, V)
%
% Algorithm 3
%
flops(0); 280

S=W\V;
fc=flops;
return;

function [S,fc]=dmss3(W, V)
%
% Algorithm 3
%
flops(0);
S=dmsolve(W,V); 290

fc=flops;
return;

function x = dmsolve(A,b)
%
% Solve Ax=b by permuting to block %
% upper triangular form and then performing %
% block back substition. %
% % 300

% Adapted from pseudo-code in: %
% Sparse Matrices in Matlab: Design and Implementation, %
% John R. Gilbert, Cleve Moler, and Robert Schreiber. %
% %
% By: David M. Collins 02/12/01. %
%

% Check for a square matrix.

[n,m]=size(A); 310

if (n˜=m)
error(’Matrix is not square.’)
end

% Check that b is long enough.
m=length(b);

if (n˜=m)
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error(’Vector is different length to order of matrix’) 320

end

% Permute A to block form.
[p,q,r]= dmperm(A);
nblocks=length(r)−1;
A=A(p,q);
x=b(p,:);

% Block backsolve
for k=nblocks:−1:2 330

% Indices above the kth block
i=1:r(k)−1;

% Indices of the kth block.
j=r(k) : r(k+1)−1;
x(j,:) = A(j,j)\x(j,:);
x(i,:) = x(i,:) − A(i,j)*x(j,:);

end;
340

j=r(1):r(2)−1;
x(j,:)=A(j,j)\x(j,:);
% Undo the permutation of x.
x(q,:) = x;

return;
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A.3 Generation of State-Space Approximation to

Coupled-Tanks Problem

%
% Example 1 for IFAC paper. Two tanks coupled by a membrane.
%
% Equations:
% V xdot1 + Ayn+1 = 0
% V xdot2 - Ayn+2 = 0
% y1 - Kx1 = 0
% Kyn - x2 = 0
% yn+1 + D(y3-y1)/2delta = 0
% yn+2 + D(yn-yn-2)/2delta = 0 10

% (yi-2yi+1+yi+2)/2delta^2 = 0 i=1. .n-2
%
clear;
more on;
% Initialize the Jacobian.
N=100;
V=10;
D=1;
A=3;
K=0.5; 20

delta=0.01;

Jac =zeros(N+4,N+4);

Jac(1,1)=V;
Jac(1,N+3)=+A;
Jac(2,2)=V;
Jac(2,N+4)=−A;
Jac(3,3)=1;
Jac(4,N+2)=1; 30

Jac(5,N+3)=1;
Jac(5,3)=−D/2/delta;
Jac(5,5)=D/2/delta;
Jac(6,N+4)=1;
Jac(6,N+2)=D/2/delta;
Jac(6,N)=−D/2/delta;

for i=1:N−2,
Jac(6+i, 3+i)=−2;
Jac(6+i, 2+i)=1; 40

Jac(6+i, 4+i)=1;
end
JacX=zeros(N+4,2);
JacX(3,1)=K;
JacX(4,2)=K;

% Initialize the identity.
I=eye(N+4);
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% Setup problem: 50

flops(0);
[L, U]=lu(Jac);
fclu=flops;

flops(0);
[LT, UT]=lu(transpose(Jac));
fclut=flops;

% Method 1
flops(0); 60

Z 1=U\(L\I);
S 1=Z 1*JacX;
fc1=flops+fclu;

% Method 2
flops(0);
Z 2=UT\(LT\I(:,1:2));
S 2=transpose(Z 2)*JacX;
fc2=flops+fclut;

70

% Method 3
flops(0);
S 3=U\(L\JacX);
fc3=fclu+flops;

l=(N−1)*delta
t=l^2/D
[fc1,fc2,fc3]

geom=2*A*l*K/V 80

[eig(S 1(1:2,1:2)), eig(S 2(1:2,1:2)), eig(S 3(1:2,1:2))]
tau= 1/(V*l/2/A/D/K)
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A.4 Bayesian Parameter Estimation for Brownian

Diffusion

function [ ]=brownian();
%===========================================
%
% Function to simulate Brownian Random walk
% and then estimate D and alpha from simulation
% data. Written by D. M. Collins 08/12/03.
%
%===========================================

close;
Df true=3; 10

alpha true=3;
ndata=20;
deltat(1:ndata,1)=ones(ndata,1);
beta true=sqrt(2*Df true.*deltat);
K=sqrt(2*pi);

%
% Generate Data
%

x=zeros(ndata+1,1); 20

x(1)=alpha true*randn(1,1);
x(2:ndata+1)=beta true.*randn(ndata,1);
x=cumsum(x);
y(1:ndata,1)=alpha true*randn(ndata,1)+x(2:ndata+1,1);
t=[0;cumsum(deltat)];

d=diff([0;y]);
dsl=1/(2*sum(deltat))*sum(d.*d−2*alpha true^2);

30

%
% Plot the data!!
%

plotl=plot(t,x,’k-’);
hold on;
e=2*alpha true*ones(1,ndata);
errl=errorbar(t(2:ndata+1),y,e,’xk’);
legend([plotl,errl(2)],’True Position’,’Measured position’,−1)
v=axis;
axis([0,1.1*max(t),v(3:4)]) 40

xlabel(’Time’)
ylabel(’Displacement’)
hold off;
exportfig(gcf,’simdata’,’FontMode’,’Fixed’,’FontSize’,’8’,’Color’,’gray’,. . .
’Height’,’3’,’Width’,’5’,’LineMode’,’Fixed’,’LineWidth’,’1’)

%===========================================
%
% Run Estimation
%
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%=========================================== 50

%
% Set up diffusivity grid
%

minD=0.01;
maxD=12;
norder=8;
[df,wb]=qsimp(minD,maxD,norder);
nD=length(df); 60

beta=sqrt(2*df*deltat’);

minalpha=0.01;
maxalpha=6;
[alpha,wa]=qsimp(minalpha,maxalpha,norder);
nalpha=length(alpha);
pdf=zeros(nD,nalpha);

70

for j=1:nalpha,
for i=1:nD,

V11=zeros(ndata+1,ndata+1);
V11(2:ndata+1,1:ndata)=V11(2:ndata+1,1:ndata)−diag(1./beta(i,:).^2);
V11(1:ndata,2:ndata+1)=V11(1:ndata,2:ndata+1)−diag(1./beta(i,:).^2);
V11=V11+1/alpha(j)^2*eye(ndata+1);
V11(1:ndata,1:ndata)=V11(1:ndata,1:ndata)+diag(1./beta(i,:).^2);
V11(2:ndata+1,2:ndata+1)=V11(2:ndata+1,2:ndata+1)+diag(1./beta(i,:).^2);
V22=1/(alpha(j))^2*eye(ndata);
V12=zeros(ndata+1,ndata); 80

V12(2:ndata+1,1:ndata)=−1/alpha(j)^2*eye(ndata);
Q=V22−V12’*inv(V11)*V12;
pdf(i,j)=sqrt(det(Q))*exp(−y’*Q*y/2)/(K^ndata);

end
end

%===========================================
%
% Plot Results
%
%=========================================== 90

[alph,nal]=min((alpha−alpha true).*(alpha−alpha true));
colormap(’gray’)
contour(alpha,df,pdf,50)
xlabel(’\alpha’)
ylabel(’Diffusivity’)
exportfig(gcf,’contplot’,’FontMode’,’Fixed’,’FontSize’,’8’,’Color’,’gray’,. . .
’Height’,’4’,’Width’,’4’,’LineMode’,’Fixed’,’LineWidth’,’1’)

100

pdfal=pdf(:,nal)/(wb’*pdf(:,nal));
pdf2=pdf*wa;
pdf2=pdf2/(wb’*pdf2);
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plot(df,pdfal,’k’,df,pdf2,’k--’)
legend(’p(D|{\bf y},\alpha)’,’p(D|{\bf y})’)
xlabel(’Diffusivity’)
ylabel(’Probability Density’)
dmapa=df(find(pdfal==max(pdfal)));
dmap=df(find(pdf2==max(pdf2)));

110

info=[’\alpha known: D_{LS} = ’,num2str(dsl)];
info=strvcat(info,[’\alpha known: D_{MAP} = ’,num2str(dmapa)]);
info=strvcat(info,[’\alpha unknown: D_{MAP} = ’,num2str(dmap)]);
h=axis;

% ’\n D {MAP}’)
text(7.5,0.75*h(4),info)

exportfig(gcf,’brownian’,’FontMode’,’Fixed’,’FontSize’,’8’,’Color’,’gray’,. . .
’Height’,’4’,’Width’,’5’,’LineMode’,’Fixed’,’LineWidth’,’1’)

120

return;

%
% Simpson integration routine.
%

function [xi,wi]=qsimp(a,b,n); 130

ngap=2^(n−1);
xi=(a:(b−a)/ngap:b)’;
wi=zeros(ngap+1,1);
wi(1)=1/3*(b−a)/ngap;
for i=(2:2:ngap),

wi(i)=4/3*(b−a)/ngap;
end
for i=(3:2:ngap−1),

wi(i)=2/3*(b−a)/ngap;
end 140

wi(ngap+1)=1/3*(b−a)/ngap;
return
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A.5 Generation of Correlated Random Walk Data

function [ ]=rwalk();
sigma=1;
lambda=0.6;
ndata=21;
C=3;
deltat=1;
[tturn,ytrue,tsample,ymeasured]=rwalk(sigma,lambda,ndata,C,deltat);
close
plotl=plot(tturn,ytrue,’k-’);
hold on; 10

e=2*sigma*ones(ndata,1);
errl=errorbar(tsample,ymeasured,e,’xk’);
legend([plotl,errl(2)],’True Position’,’Measured position’,−1)
v=axis;
axis([0,1.1*max(tsample),v(3:4)])
xlabel(’Time’)
ylabel(’Displacement’)
hold off;
exportfig(gcf,’simdata2’,’FontMode’,’Fixed’,’FontSize’,’8’,’Color’,’gray’,. . .
’Height’,’3’,’Width’,’5’,’LineMode’,’Fixed’,’LineWidth’,’1’) 20

fid=fopen(’corr.dat’,’w’);
fprintf(’% Data and results for Correlated Random Walk\n’);
fprintf(’% Generated by rwalk.m \n’);
fprintf(fid,’ndata = %i;\n’,ndata-1);
fprintf(fid,’y = [’);
fprintf(fid,’%d, ’,ymeasured(2:ndata−1));
fprintf(fid,’%d ];\n’,ymeasured(ndata));
fclose(fid);

30

return;

function [tturn,ytrue,tsample,ymeasured]=rwalk(sigma,lambda,ndata,C,deltat)
%
% Function to simulate noisy random walk data
% ——————————————-
% tturn Turning times
% ytrue True positions of random walk
% tsample Sampling times
% ymeasured Noisy measurements of particle position 40

%
np=6*ceil(lambda*ndata);
isign=2*(rand(1)<0.5)−1;
x=exprnd(1/lambda,np,1);
t=zeros(np+1,1);
disp=zeros(np+1,1);
t(2:np+1)=cumsum(x);
isign=1−2*(rand(1)>0.5);
disp(3:2:np+1)=isign*x((2:2:np));
disp(2:2:np)=−isign*x((1:2:np−1)); 50

disp(1)=sigma*randn(1,1);
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disp=C*cumsum(disp);

tsample=(0:deltat:(ndata−1)*deltat);
ymeasured(1)=0;
ymeasured(2:ndata)=interp1(t,disp,tsample(2:ndata))’+sigma*randn(ndata-1,1);
tmax=tsample(ndata);
imax=min(find(tmax<t));
tturn=t(1:imax);
ytrue=disp(1:imax); 60

ytrue(imax)=(ytrue(imax)−ytrue(imax−1))/(tturn(imax)−tturn(imax−1))*. . .
(tsample(ndata)−tturn(imax−1))+ytrue(imax−1);

tturn(imax)=tsample(ndata);

return;
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Appendix B

ABACUSS II Code

B.1 Interleukin-2 Trafficking Simulation [81]

#===========================================
# Simple model of IL-2 trafficking. Adapted from
# Fallon, EM, Lauffenburger DA, Computational Model for
# Effects of Ligand/Receptor Binding Properties on
# Interleukin-2 Trafficking Dynamics and T Cell Proliferation
# Response, Biotechnol. Prog, 16:905-916, 2000.
#

# Written by David M. Collins 03/27/02.
# Copyright MIT 2002.
#=========================================== 10

DECLARE
TYPE
Concentration = 1000 :−1E−4 :1E20 UNIT = "pM"
Moleculescell = 1E3 :−1E−4 :1E20 UNIT = "molecules/cell"
Moleculesliter = 1E3 :−1E−4 :1E20 UNIT = "molecules/liter"
CellDensity = 1E8 :0 :1E10 UNIT = "cells/litre"
END #declare

MODEL InterleukinTrafficking 20

PARAMETER
# Surface dissociation rate constant (min^-1)
kr AS REAL
# Surface association rate constant (pM^-1 min^-1)
kf AS REAL
# Constitutive receptor internalization rate constant (min^-1)
kt AS REAL
# Constitutive receptor synthesis rate (# cell^-1 min^-1)
Vs AS REAL 30

# Induced receptor synthesis rate (min^-1)
ksyn AS REAL
# Internalization rate constant (min^-1)
ke AS REAL
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# Avogadro’s number (#/pico mole)
Na AS REAL
# Endosome dissociation rate constant (min^-1)
kre AS REAL
# Endosome association rate constant (pM^-1 min^-1)
kfe AS REAL 40

# Recycling rate constant (min^-1)
kx AS REAL
# Degradation rate constant (min^-1)
kh AS REAL
# Endosomal volume (liter/cell)
Ve AS REAL

VARIABLE
# Number of unbound receptors at cell surface (#/cell)
Rs AS Moleculescell 50

# Number of ligand-receptor complexes at cell surface (#/cell)
Cs As Moleculescell
# Ligand concentration in bulk (pM)
L AS Concentration
# Number of unbound receptors in endosome (#/cell)
Ri AS Moleculescell
# Number of ligand-receptor complexes in endosome (#/cell)
Ci AS Moleculescell
# Ligand concentration in endosome (pM)
Li AS Concentration 60

# Ligand destroyed in endosome (pM)
Ld AS Concentration
# Number of cells per unit volume (#/litre)
Y AS CellDensity
# Total ligand concentration in all forms (pM)
LT AS Concentration

SET
kt:=0.007;
Vs:=11; 70

ksyn:=0.0011;
ke:=0.04;
kx:=0.15;
kh:=0.035;
Ve:=1E−14;
Na:=6E11;

EQUATION
80

# Warning: The number of cells in the medium is not constant.
# Each time a cell divides, the number of receptors at the
# surface halves.

# Receptor balance at surface:

$Rs = Vs + kr*Cs + ksyn*Cs − kt*Rs − kf*Rs*L;
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# Ligand-receptor complex balance at surface: 90

$Cs = kf*Rs*L − kr*Cs − ke*Cs;

# Receptor balance in endosome:

$Ri = kre*Ci + kt*Rs − kfe*Ri*Li − kh*Ri;

# Ligand-receptor complex balance in endosome:

100

$Ci = ke*Cs + kfe*Ri*Li − kre*Ci − kh*Ci;

# Ligand balance in endosome:

$Li = (kre*Ci−kfe*Ri*Li)/(Ve*Na) − kx*Li;

# Ligand balance on bulk medium:

$L = (Y*kr*Cs/Na + Y*kx*Ve*Li − Y*kf*Rs*L/Na);
110

# Empirical cell growth relationship
$Y = MAX(600*Cs/(250+Cs)−200,0)*1E3;

# Concentration of ligand destroyed in endosome (pM/min)
$Ld = kh*Ci/(Ve*Na);

# Track total ligand concentration in bound/unbound forms (pM)
LT = L + (Y*Cs/Na +Y*Ci/Na + Ve*Y*Li+ Ve*Y*Ld);

END #model 120

SIMULATION EXAMPLE
OPTIONS

CSVOUTPUT := TRUE ;
UNIT

CellProliferation AS InterleukinTrafficking
REPORT

CellProliferation.LT
SET
WITHIN CellProliferation DO 130

kr:=0.0138;
kf:=kr/11.1;
kre:=8*0.0138;
kfe:=CellProliferation.kre/1000;

END

INITIAL
WITHIN CellProliferation DO

L = 0;
Y = 2.5E8; 140

$Rs = 0;
$Cs = 0;
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$Ri = 0;
$Ci = 0;
$Li = 0;
Ld = 0;

END

SCHEDULE
SEQUENCE 150

CONTINUE FOR 1
REINITIAL

CellProliferation.L
WITH

CellProliferation.L=10;
END
CONTINUE FOR 5*24*60

END
END #simulation
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B.2 Reformulated Interleukin-2 Trafficking Simu-

lation

#=======================================
# Simple model of IL-2 trafficking. Adapted from
# Fallon, EM, Lauffenburger DA, Computational Model for
# Effects of Ligand/Receptor Binding Properties on
# Interleukin-2 Trafficking Dynamics and T Cell Proliferation
# Response, Biotechnol. Prog, 16:905-916, 2000.
#

# Written by David M. Collins 03/27/02.
# Copyright MIT 2002.
#======================================= 10

DECLARE
TYPE
Concentration = 1000 :−1E−4 :1E20 UNIT = "pM"
Moleculescell = 1E3 :−1E−4 :1E20 UNIT = "molecules/cell"
Moleculesliter = 1E3 :−1E−4 :1E20 UNIT = "molecules/liter"
CellDensity = 1E8 :0 :1E10 UNIT = "cells/litre"
Flux = 1E3 :−1E20 :1E20 UNIT = "pM/min"
END #declare

20

MODEL InterleukinTrafficking

PARAMETER
# Surface dissociation rate constant (min^-1)
kr AS REAL
# Surface association rate constant (pM^-1 min^-1)
kf AS REAL
# Constitutive receptor internalization rate constant (min^-1)
kt AS REAL
# Constitutive receptor synthesis rate (# cell^-1 min^-1) 30

Vs AS REAL
# Induced receptor synthesis rate (min^-1)
ksyn AS REAL
# Internalization rate constant (min^-1)
ke AS REAL
# Avogadro’s number (#/pico mole)
Na AS REAL
# Endosome dissociation rate constant (min^-1)
kre AS REAL
# Endosome association rate constant (pM^-1 min^-1) 40

kfe AS REAL
# Recycling rate constant (min^-1)
kx AS REAL
# Degradation rate constant (min^-1)
kh AS REAL
# Endosomal volume (liter/cell)
Ve AS REAL

VARIABLE
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# Number of unbound receptors at cell surface (#/cell) 50

Rs AS Moleculescell
# Number of ligand-receptor complexes at cell surface (#/cell)
Cs As Moleculescell
# Ligand concentration in bulk (pM)
L AS Concentration
# Number of unbound receptors in endosome (#/cell)
Ri AS Moleculescell
# Number of ligand-receptor complexes in endosome (#/cell)
Ci AS Moleculescell
# Ligand concentration in endosome (pM) 60

Li AS Concentration
# Ligand destroyed in endosome (pM)
Ld AS Concentration
# Number of cells per unit volume (#/litre)
Y AS CellDensity
# Total ligand concentration in all forms (pM)
LT AS Concentration
# Total number of receptors
Nrs AS Moleculesliter
# Total number of complexes 70

Ncs AS Moleculesliter
# Total number of internalized receptors
Nri AS Moleculesliter
# Total number of internalized compexes
Nci AS Moleculesliter
# Overall concentration of ligand in endosme
Nli AS Concentration
# Overall concentration of ligand destroyed
Nld AS Concentration
# Flux of ligand from surface to bulk 80

FLsb AS Flux
# Flux of ligand from bulk to surface
FLbs AS Flux
# Flux of ligand from endosome to bulk
FLeb AS Flux
# Flux of receptor from cytosol to surface
FRcs AS Flux
# Flux of receptor from surface to endosome
FRse AS Flux
# Rate of generation of free receptors at surface 90

rRs AS Flux
# Rate of generation of ligand-receptor complexes at surface
rCs AS Flux
# Flux of complexes from surface to endosome
FCse AS Flux
# Rate of generation of receptors in endosome
rRe AS Flux
# Rate of generation of complexes in endosome
rCe AS Flux
# Rate of generation of ligands in endosome 100

rLe AS Flux

SET
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kt:=0.007;
Vs:=11;
ksyn:=0.0011;
ke:=0.04;
kx:=0.15;
kh:=0.035;
Ve:=1E−14; 110

Na:=6E11;

EQUATION

# The number of cells in the medium is not constant. Each time a
# cell divides, the number of receptors at the surface halves.
# Hence we must perform the balance around the total cell volume.

# Empirical cell growth relationship 120

$Y = MAX(600*Cs/(250+Cs)−200,0)*1E3;

# Ligand balance on bulk medium:

# Accumulation $L (pM/min)
# Dissociation of ligand-receptor Y*kr*Cs (#/litre/min)
# Ligand recycling Y*kx*Ve*Li (pM/min)
# Association of ligand and receptor Y*kf*Rs*Ls (#/litre/min)

$L = FLsb−FLbs+FLeb; 130

FLsb=Y*kr*Cs/Na;
FLbs=Y*kf*Rs*L/Na;
FLeb=Y*kx*Ve*Li;

# Receptor balance at surface:

# Accumulation $(YRs) (#/litre/min)
# Bulk synthesis Y*Vs (#/litre/min)
# Dissociation of ligand-receptor complex Y*kr*Cs (#/litre/min)
# Induced receptor synthesis Y*ksyn*Cs (#/litre/min) 140

# Constitutive internalization Y*kt*Rs (#/litre/min)
# Association of ligand and receptor Y*kf*Rs*L (#/liter/min)

$Nrs =FRcs−FRse+rRs;
FRcs=Y*Vs;
FRse=Y*kt*Rs;
rRs=Y*(ksyn*Cs+kr*Cs−kf*Rs*L);
Nrs = Y*Rs;

# Ligand-receptor complex balance at surface: 150

# Accumulation $(YCs) (#/litre/min)
# Association of ligand and receptor Y*kf*Rs*L (#/litre/min)
# Dissociation of ligand-receptor complex Y*kr*Cs (#/litre/min)
# Internalization of complex from surface Y*ke*Cs (#/litre/min)

$Ncs = rCs−FCse;
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rCs=Y*(kf*Rs*L − kr*Cs);
FCse=Y*ke*Cs;
Ncs = Y*Cs; 160

# Receptor balance in endosome:

# Accumulation $(YRi) (#/litre/min)
# Dissociation of ligand-receptor complex Y*kre*Ci (#/litre/min)
# Constitutive internalization Y*kt*Rs (#/litre/min)
# Association of ligand and receptor Y*kfe*Ri*Li (#/litre/min)
# Receptor destruction by lysosome Y*kh*Ri (#/litre/min)

$Nri = FRse+rRe; 170

rRe=Y*(kre*Ci − kfe*Ri*Li − kh*Ri);
Nri=Y*Ri;

# Ligand-receptor complex balance in endosome:

# Accumulation $(YCi) (#/litre/min)
# Internalization of complex from surface Y*ke*Cs (#/litre/min)
# Association of ligand and receptor Y*kfe*Ri*Li (#/litre/min)
# Dissociation of ligand-receptor complex Y*kre*Ci (#/litre/min)
# Complex destruction by lysosome Y*kh*Ri (#/litre/min) 180

$Nci = FCse+rCe;
rCe=Y*(kfe*Ri*Li − kre*Ci − kh*Ci);
NCi=Y*Ci;

# Ligand balance in endosome:

# Accumulation $(Y*Li*Ve) (pM/min)
# Dissociation of ligand-receptor complex Y*kre*Ci (#/litre/min)
# Association of ligand and receptor Y*kfe*Ri*Li (#/litre/min) 190

# Ligand recycling Y*kx*Li (pM/min)

$N`i = −FLeb+rLe;
rLe=Y*(kre*Ci−kfe*Ri*Li)/Na;
Nli=Y*Li*Ve;

# Concentration of ligand destroyed in endosome (pM/min)
$NLd = Y*(kh*Ci/(Ve*Na));
Nld=Y*Ld;

200

# Track total ligand concentration in bound/unbound forms (pM)
LT = L + (Y*Cs/Na +Y*Ci/Na + Ve*Y*Li+ Ve*Y*Ld);

END #model

SIMULATION EXAMPLE
OPTIONS

CSVOUTPUT:=TRUE;
UNIT 210

CellProliferation AS InterleukinTrafficking
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REPORT
CellProliferation.LT

SET
WITHIN CellProliferation DO

kr:=0.0138;
kf:=kr/11.1;
kre:=8*0.0138;
kfe:=CellProliferation.kre/1000;

END 220

INITIAL
WITHIN CellProliferation DO

Y = 2.5E8;
$NRs = 0;
$NCs = 0;
$NRi = 0;
$NCi = 0;
$NLi = 0; 230

NLd = 0;
L = 0;

END

SCHEDULE
SEQUENCE
CONTINUE FOR 1
REINITIAL

CellProliferation.L
WITH 240

CellProliferation.L = 10;
END
CONTINUE FOR 5*24*60
END

END #simulation
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B.3 Short Term Epidermal Growth Factor Signal-

ing Model

#====================================
#

# A kinetic model of short term EGF activation provided from
# paper:
#

# Kholodenko B. N., Demin O. V., Moehren G., and Hoek J. B.,
# Quantification of Short Term Signaling by the Epidermal
# Growth Factor Receptor, Journal of Biological Chemistry,
# 274(42), pp 30169-30181, 1999.
# 10

# Model written by D. M. Collins, 11/25/2000.
#

#====================================

DECLARE

TYPE
# Identifier # Default # Lower # Upper

Concentration =0 : −1E−7 : 10000 UNIT="nM"
Rate =1 : −1E9 : 1E9 UNIT="nM/s" 20

END

MODEL EGF

PARAMETER
NFORWD AS INTEGER # Number of forward reactions
NREVRS AS INTEGER # Number of reverse reactions
NMICHL AS INTEGER # Number of M-M reactions
NREACS AS INTEGER # Total number of reactions 30

kforwd AS ARRAY(NFORWD) OF REAL #(nM/s or s^-1)
krevrs AS ARRAY(NREVRS) OF REAL #(nM/s or s^-1)
K AS ARRAY(NMICHL) OF REAL #nM
V AS ARRAY(NMICHL) OF REAL #nM/s

#

# Mass balance constraints
#

40

EGFRT,
PLCgT,
GrbT,
ShcT,
SOST AS REAL

VARIABLE

#
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# States 50

#

EGF,
R,
Ract,
Rdimer,
RP,
R PL,
R PLP,
R G,
R G S, 60

R Sh,
R ShP,
R Sh G,
R Sh G S,
G S,
ShP,
Sh G,
Sh G S,
PLCg,
PLCgP, 70

PLCgP I,
Grb,
Shc,
SOS AS Concentration

#

# Calculated quantities
#

R BOUND SOS,
TOTAL P PLCg, 80

TOTAL P Shc,
TOTAL R Grb,
TOTAL Grb Shc AS Concentration

#

# Rates
#

u AS ARRAY(NREACS) OF Rate

# 90

# Inputs
#

EGFT AS Concentration

SET
NFORWD:=22; # Number of forward reactions
NREVRS:=22; # Number of reverse reactions
NMICHL:=3; # Number of M-M reactions
NREACS:=25; # Total number of reactions

100

#

# Mass balance constraints
#
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EGFRT := 100;
PLCgT := 105;
GrbT := 85;
ShcT := 150;
SOST := 34;

# 110

# Elementary reaction parameters
#

kforwd(1):=0.003;
krevrs(1):=0.06;

kforwd(2):=0.01;
krevrs(2):=0.1;

kforwd(3):=1;
krevrs(3):=0.01; 120

kforwd(4):=0.06;
krevrs(4):=0.2;

kforwd(5):=1;
krevrs(5):=0.05;

kforwd(6):=0.3;
krevrs(6):=0.006;

130

kforwd(7):=0.003;
krevrs(7):=0.05;

kforwd(8):=0.01;
krevrs(8):=0.06;

kforwd(9):=0.03;
krevrs(9):=4.5E−3;

kforwd(10):=1.5E−3; 140

krevrs(10):=1E−4;

kforwd(11):=0.09;
krevrs(11):=0.6;

kforwd(12):=6;
krevrs(12):=0.06;

kforwd(13):=0.3;
krevrs(13):=9E−4; 150

kforwd(14):=0.003;
krevrs(14):=0.1;

kforwd(15):=0.3;
krevrs(15):=9E−4;
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kforwd(16):=0.01;
krevrs(16):=2.14E−2;

160

kforwd(17):=0.12;
krevrs(17):=2.4E−4;

kforwd(18):=0.003;
krevrs(18):=0.1;

kforwd(19):=0.03;
krevrs(19):=0.064;

kforwd(20):=0.1; 170

krevrs(20):=0.021;

kforwd(21):=0.009;
krevrs(21):=4.29E−2;

kforwd(22):=1;
krevrs(22):=0.03;

#

# Michaelis-Menton parameters
# 180

V(1):=450;
K(1):=50;

V(2):=1;
K(2):=100;

V(3):=1.7;
K(3):=340;

EQUATION 190

# $EGF = -u(1);
# $R = -u(1);

$Ract = u(1)−2*u(2);
$Rdimer = u(2)+u(4)−u(3);
$RP = u(3)+u(7)+u(11)+u(15)+u(18)+u(20)−u(4)−u(5)−u(9)−u(13);

# $R PL = u(5)-u(6);
$R PLP = u(6)−u(7);
$R G = u(9)−u(10);
$R G S = u(10)−u(11); 200

$R Sh = u(13)−u(14);
$R ShP = u(14)−u(24)−u(15)−u(17);
$R Sh G = u(17)−u(18)−u(19);
$R Sh G S = u(19)−u(20)+u(24);
$G S = u(11)+u(23)−u(12)−u(24);
$ShP = u(15)+u(23)−U(21)−u(16);
$Sh G = u(18)+u(21)−u(22);
$PLCg = u(8)−u(5);
$PLCgP = u(7)−u(8)−u(25);
$PLCgP I = u(25); 210

# $Grb = u(12)-u(9)-u(17)-u(21);
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# $Shc = u(16)-u(13);
# $SOS = u(12)-u(10)-u(19)-u(22);

$Sh G S = u(20)+u(22)−u(23);

#

# Elementary and MM reactions
#

u(1) = kforwd(1)*R*EGF − krevrs(1)*Ract; 220

u(2) = kforwd(2)*Ract*Ract − krevrs(2)*Rdimer;
u(3) = kforwd(3)*Rdimer − krevrs(3)*RP;
u(4) = V(1)*RP/(K(1)+RP);
u(5) = kforwd(4)*RP*PLCg − krevrs(4)*R PL;

u(6) = kforwd(5)*R PL − krevrs(5)*R PLP;
u(7) = kforwd(6)*R PLP − krevrs(6)*R*PLCgP;
u(8) = V(2)*PLCgP/(K(2)+PLCgP);
u(9) = kforwd(7)*RP*Grb − krevrs(7)*R G;
u(10) = kforwd(8)*R G*SOS − krevrs(8)*R G S; 230

u(11) = kforwd(9)*R G S − krevrs(9)*RP*G S;
u(12) = kforwd(10)*G S − krevrs(10)*Grb*SOS;
u(13) = kforwd(11)*RP*Shc − krevrs(11)*R Sh;
u(14) = kforwd(12)*R Sh − krevrs(12)*R ShP;
u(15) = kforwd(13)*R ShP − krevrs(13)*ShP*RP;

u(16) = V(3)*ShP/(K(3)+ShP);
u(17) = kforwd(14)*R ShP*Grb − krevrs(14)*R Sh G;
u(18) = kforwd(15)*R Sh G − krevrs(15)*RP*Sh G; 240

u(19) = kforwd(16)*R Sh G*SOS − krevrs(16)*R Sh G S;
u(20) = kforwd(17)*R Sh G S − krevrs(17)*Sh G S*RP;

u(21) = kforwd(18)*ShP*Grb − krevrs(18)*Sh G;
u(22) = kforwd(19)*Sh G*SOS − krevrs(19)*Sh G S;
u(23) = kforwd(20)*Sh G S − krevrs(20)*ShP*G S;
u(24) = kforwd(21)*R ShP*G S − krevrs(21)*R Sh G S;
u(25) = kforwd(22)*PLCgP − krevrs(22)*PLCgP I;

# 250

# Mass balance constraints
#

EGFRT = R + Ract + 2*(Rdimer + RP + R PL + R PLP + R G + R G S
+ R Sh + R ShP + R Sh G + R Sh G S);

EGFT = EGF + Ract + 2*(Rdimer + RP + R PLP + R PL + R Sh + R ShP
+ R G + R G S + R Sh G + R Sh G S);

PLCgT = R PL + R PLP + PLCg + PLCgP + PLCgP I; 260

GrbT = Grb + G S + Sh G + Sh G S + R G + R G S + R Sh G + R Sh G S;

ShcT = Shc + ShP + Sh G + Sh G S + R Sh + R ShP + R Sh G + R Sh G S;
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SOST = SOS + G S + Sh G S + R G S + R Sh G S;

#

# Calculated Quantities
# 270

R BOUND SOS = R G S + R Sh G S;
TOTAL P PLCg = R PLP + PLCgP;
TOTAL P Shc = R ShP + R Sh G + R Sh G S + ShP + Sh G + Sh G S;
TOTAL R Grb = R G + R G S + R Sh G + R Sh G S;
TOTAL Grb Shc = R Sh G + Sh G + R Sh G S + Sh G S;

END

SIMULATION SHORT TERM EGF
OPTIONS
ALGPRINTLEVEL:=1; 280

ALGRTOLERANCE:=1E−9;
ALGATOLERANCE:=1E−9;
ALGMAXITERATIONS:=100;
DYNPRINTLEVEL:=0;
DYNRTOLERANCE:=1E−9;
DYNATOLERANCE:=1E−9;
CSVOUTPUT := TRUE;
UNIT EGF Kinetics AS EGF

REPORT 290

EGF Kinetics.TOTAL P PLCg, EGF Kinetics.R G S,
EGF Kinetics.EGFT, EGF Kinetics.R Sh G S

INPUT

#

# Mass balance constraints
#

WITHIN EGF Kinetics DO
EGFT :=300; 300

END
INITIAL
STEADY STATE

SCHEDULE
SEQUENCE
SAVE PRESETS TEST
CONTINUE FOR 10
RESET

EGF Kinetics.EGFT := 350; 310

END
CONTINUE FOR 120
END
END
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B.4 Distillation Model

#=====================================
#

# Distillation Model (Final Column of HDA Distillation train)
#

# Based on distillation model written for 10.551 Systems
# Engineering Class
#

#=====================================

DECLARE 10

TYPE
# Identifier # Default # Lower #Upper

NoType =0.9 : −1E9 : 1E9 UNIT="−"
MoleComposition =0.5 : 0 : 1 UNIT="kmol/kmol"
Temperature =373 : 100 : 473 UNIT="K"
MoleFlow =100 : 0 : 1E3 UNIT="kmol/hr"
Pressure =1.0135 : 1E−9 : 100 UNIT="Bar"
Energy =50 : −1E3 : 1E3 UNIT="MJ/kmol"
EnergyHoldup =20 : −1E6 : 1E6 UNIT="MJ" 20

MoleHoldup =10 : 1e−9 : 1000 UNIT="kmol"
MolecularWeight =20 : 1e−9 : 1000 UNIT="kg/kmol"
Density =800 : 1e−9 : 1000 UNIT="kg/m^3"
Percent =50 : 0 : 100 UNIT="%"
Control Signal =50 : −1E9 : 1E9 UNIT="−"
Heat =1e4 : −1E7 : 1E7 UNIT="MJ/hr"
Length =1 : 1e−9 : 20 UNIT="m"
Area =1 : 0 : 100 UNIT="m^2"
SpecificVolume =1 : 1e−9 : 1500 UNIT="m^3/kmol"
Velocity =1 : 0 : 100 UNIT="m/s" 30

SpecificArea =1 : 0 : 1E2 UNIT="10E−1m^2/mmol"
SurfaceTension =1 : 0 : 1000 UNIT="dyne/cm"

STREAM

Process stream IS MoleFlow,
MoleComposition,
Temperature,
Pressure,
Energy, 40

SpecificVolume,
Density

END

#

# End of declare section
#

MODEL LiquidProperties 50

#=====================================
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#

# Simple thermodynamic model for: Liquid enthalpy
# Liquid molecular weight
# Liquid density
# Liquid surface tension
#

# Physical properties taken from:
# Reid R. C., Prausnitz J. M., Poling B. E.,
# The Properties of Gases and Liquids, 4th Ed, McGraw Hill, 1987. 60

#

# Parameter Description Units
# ——— ———– —–
# R Gas constant (MJ/kmol K)
# NC Number of components
# alpha Index for Watson equation
# no Avogadros Number
# CPA, CPB, . . Idea heat capacity coeffs
# TC Critical Temperatures (K)
# TBR Reduced boiling temperature (K) 70

# PC Critical pressure (bar)
# MW Pure component molecular weight (kg/kmol)
# DHf Pure component heat of formation (MJ/kmol)
# ZRA Rackett compressibility factor (-)
#

# Variable Description Units
# ——– ———– —–
#

# x Array of liquid mole fractions (kmol/kmol)
# TR Array of reduced temperatures (K/K) 80

# DHvb Pure comp. heat of vapor. at b.p. (MJ/kmol)
# DHv Pure comp. heat of vapor. (MJ/kmol)
# Hvi Pure comp. vapor enthalpy (MJ/kmol)
# Hli Pure comp. liquid enthalpy (MJ/kmol)
# Ai Pure comp. specific area (1E4 m^2/mol)
# Vs Pure comp. liquid specific volume (m^3/kmol)
# sigi Pure comp. liquid surface tension (dyne/cm)
# Q Intermediate in surface tension calc
# P Pressure (bar)
# T Temperature (K) 90

# mwl Molecular weight of liquid mixture (kg/kmol)
# rhol Density of liquid mixture (kg/m^3)
# hl Liquid mixture enthalpy (MJ/kmol)
# A Specific area of mixture (1E4 m^2/mol)
# voll Liquid mixture specific volume (m^3/kmol)
# sigl Liquid mixture surface tension (dyne/cm)
#

# Modifications:
#=====================================

100

PARAMETER
R AS REAL
NC AS INTEGER
alpha AS REAL
no AS REAL
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CPA, CPB, CPC,
CPD AS ARRAY(NC) OF REAL
TC AS ARRAY(NC) OF REAL
TBR AS ARRAY(NC) OF REAL 110

PC AS ARRAY(NC) OF REAL
MW AS ARRAY(NC) OF REAL
DHf AS ARRAY(NC) OF REAL
ZRA AS ARRAY(NC) OF REAL

VARIABLE

x AS ARRAY(NC) OF MoleComposition
TR AS ARRAY(NC) OF NoType
DHvb, DHv, 120

Hvi, Hli AS ARRAY(NC) OF Energy
Ai AS ARRAY(NC) OF SpecificArea
Vs AS ARRAY(NC) OF SpecificVolume
sigi AS ARRAY(NC) OF SurfaceTension
Q AS ARRAY(NC) OF NoType

P AS Pressure
T AS Temperature
mwl AS MolecularWeight
rhol AS Density 130

hl AS Energy
A AS SpecificArea
voll AS SpecificVolume
sigl AS SurfaceTension

SET

# Component properties are set here.
# Assumes two components: Component 1 is Toluene and component 2 is
# Benzene 140

# Gas constant
R := 0.0083144; # MJ/(kmol K)

# Avogadro’s number
no := 6.023E5;

# Watson index
alpha := 0.38;

150

# Molecular weights
MW(1) := 92.141;
MW(2) := 78.114;

# Critical Temperatures
TC(1) := 591.8;
TC(2) := 562.2;

# Reduced boiling temperature
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TBR(1) := 383.8/591.8; 160

TBR(2) := 353.2/562.2;

# Critical Pressures
PC(1) := 41.0;
PC(2) := 48.9;

# Enthalpies of formation
DHf(1) := 5.003E+1;
DHf(2) := 8.298E+1;

170

# Ideal Heat Capacity coeffs.
CPA(1) := −2.435E−2;
CPB(1) := 5.125E−4;
CPC(1) := −2.765E−7;
CPD(1) := 4.911E−11;

CPA(2) := −3.392E−2;
CPB(2) := 4.739E−4;
CPC(2) := −3.017E−7;
CPD(2) := 7.130E−11; 180

# Rackett parameters for liquid molar volume
ZRA(1) := 0.2644;
ZRA(2) := 0.2698;

EQUATION

# Reduced temperature
TR*TC = T;

190

# Giacalone Equation
DHvb = R*TC*TBR*LOG(PC/1.01325)/(1−TBR);

# Watson Equation
DHv = DHvb*((1−TR)/(1−TBR))^alpha;

# Pure component vapor enthalpy
Hvi = CPA*(T−298.2)+CPB/2*(T^2−298.2^2)+CPC/3*(T^3−298.2^3)+
CPD/4*(T^4−298.2^4)+DHf;

200

# Pure component liquid enthalpy
Hli = Hvi−DHv;

# Liquid mixture enthalpy
hl = SIGMA(Hli*x);

# Average liquid molecular weight
mwl = SIGMA(MW*x);

# Pure component liquid molar volume 210

Vs = 10*R*TC/PC*ZRA^(1+(1−TR)^(2.0/7.0));

# Liquid mixture specific volume
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voll = SIGMA(Vs*x);

# Liquid density
rhol = mwl / voll;

# Sum of liquid mole fractions
SIGMA(x) = 1; 220

# Pure component surface tension (Corresponding states)
sigi = PC^(2.0/3)*TC^(1.0/3)*Q*(1−TR)^(11.0/9);
Q = 0.1196*(1+TBR*LOG(PC/1.01325)/(1−TBR))−0.279;

# Liquid mixture surface tension for binary mixture
# (assumes ideality)

Ai = Vs^(2.0/3)*no^(1.0/3);
A = 0.5*SIGMA(Ai);
sigl = SIGMA(x*sigi) − A/(200*R*T)*(sigi(1)−sigi(2))^2*x(1)*x(2); 230

END

MODEL PhysicalProperties INHERITS LiquidProperties
#=====================================CE
#

# Simple thermodynamic model for: K Values
# Vapor enthalpy
# Vapor density
# 240

# Physical properties taken from:
# Reid R. C., Prausnitz J. M., Poling B. E.,
# The Properties of Gases and Liquids, 4th Ed, McGraw Hill, 1987.
#

# Parameter Description Units
# ——— ———– —–
# VPA, VPB. . Modified Antoine coefficients
#

# Variable Description Units
# ——– ———– —– 250

#

# y Array of vapor mole fractions (kmol/kmol)
# logPvap log of pure component vapor pressure (-)
# logK log of K value (-)
# mwv Molecular weight of vapor (kg/kmol)
# rhov Vapor mixture density (kg/m^3)
# hv Vapor mixture enthalpy (MJ/kmol)
# volv Vapor mixture specific volume (m^3/kmol)
#

# Modifications: 260

#=====================================
PARAMETER

VPA, VPB, VPC,
VPD AS ARRAY(NC) OF REAL

VARIABLE
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y AS ARRAY(NC) OF MoleComposition
logPvap, 270

logK AS ARRAY(NC) OF NoType
mwv AS MolecularWeight
rhov AS Density
hv AS Energy
volv AS SpecificVolume

SET

# Component properties are set here.
# Assumes two components: Component 1 is Toluene and component 2 is 280

# Benzene

# Extended Antoine coeffs.
VPA(1) := −7.28607;
VPB(1) := 1.38091;
VPC(1) := −2.83433;
VPD(1) := −2.79168;

VPA(2) := −6.98273;
VPB(2) := 1.33213; 290

VPC(2) := −2.62863;
VPD(2) := −3.33399;

EQUATION

# Extended Antoine Vapor pressure of each component
(logPvap − LOG(PC))*TR = (VPA*(1−TR)+VPB*(1−TR)^1.5+VPC*(1−TR)^3+

VPD*(1−TR)^6);

# Vapor mixture enthalpy 300

hv = SIGMA(Hvi*y);

# K-value
logK = logPvap − LOG(P);

# Average vapor molecular weight
mwv = SIGMA(MW*y);

# Vapor mixture specific volume
volv = 10*R*T/P; 310

# Vapor density
rhov = mwl / volv;

# Sum of vapor mole fractions
SIGMA(y) = 1;

END

MODEL Flash INHERITS PhysicalProperties
#===================================== 320

#
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# Generic dynamic flash model
#

# Parameter Description Units
# ——— ———– —–
# Vtot Volume of flash tank (m^3)
# AT Cross-sectional area of tank (m^2)
# g Gravitational constant (m/s^2)
#

# Variable Description Units 330

# ——– ———– —–
#

# hlin Specific enthalpy of liquid feed (MJ/kmol)
# vollin Specific volume of liquid feed (m^3/kmol)
# rholin Density of liquid feed (kg/m^3)
# Level Liquid level in tank (m)
# Tin Temperature of liquid feed (K)
# Pin Pressure of liquid feed (bar)
# Pout Outlet pressure of liquid (bar)
# z Array of mole fraction of feed (kmol/kmol) 340

# F Feed flow rate (kmol/hr)
# L Liquid outlet flowrate (kmol/hr)
# V Vapor outlet flowrate (kmol/hr)
# N Array of comp. total mole holdups (kmol)
# Nv Vapor mole holdup (kmol)
# Nl Liquid mole holdup (kmol)
# U Internal energy of contents (MJ)
# Qh Heat supplied to vessel (MJ/hr)
#

# Modifications: 350

#=====================================

PARAMETER
Vtot AS REAL
AT AS REAL
g AS REAL

VARIABLE

hlin AS Energy 360

vollin AS SpecificVolume
rholin AS Density
Level AS Length
Tin AS Temperature
Pin,
Pout AS Pressure
z AS ARRAY(NC) OF MoleComposition
F, L,
V AS MoleFlow
N AS ARRAY(NC) OF MoleHoldup 370

Nv,
Nl AS MoleHoldup
U AS EnergyHoldup
Qh AS Heat
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STREAM
Feed: F, z, Tin, Pin, hlin, vollin, rholin AS Process stream
Vapor: V, y, T, P, hv, volv, rhov AS Process Stream
Liquid: L, x, T, Pout, hl, voll, rhol AS Process Stream

380

EQUATION

# Species Balance
$N = F*z−L*x − V*y;

# Energy Balance
$U = F*hlin − V*hv − L*hl + Qh;

# Equilibrium
LOG(y) = logK + LOG(x); 390

# Definition of molar holdups
N = Nv*y + Nl*x;

# Definition of energy holdups
U + 0.1*P*VTot = Nv*hv + Nl*hl;

# Volume constraint
Vtot = Nv*volv + Nl*voll;

400

# Outlet liquid pressure based on static head
Level*AT = Nl*voll;
Pout = P + 1E−5*Level*rhol*g;

END

MODEL Downcomer INHERITS LiquidProperties
#=====================================
#

# Simple mass and energy balance model of downcomer: 410

# Assumes negligible dP/dt term
#

# Parameter Description Units
# ——— ———– —–
# Ad Cross-sectional area of downcomer (m^2)
# g Gravitational constant (m/s^2)
#

# Variable Description Units
# ——– ———– —–
# 420

# Nl Liquid mole holdup in downcomer (kmol)
# Tin Inlet liquid temperature (K)
# Pin Pressure (bar)
# hlin Specific enthalpy of inlet liquid (MJ/kmol)
# xin Inlet liquid mole composition (kmol/kmol)
# vollin Specific volume of inlet liquid (m^3/kmol)
# rholin Density of inlet liquid (kg/m^3)
# Lin Inlet liquid flowrate (kmol/hr)
# Lout Outlet liquid flowrate (kmol/hr)
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# Level Liquid level in downcomer (m) 430

#

# Modifications:
#=====================================

PARAMETER
Ad AS REAL
g AS REAL

VARIABLE
Nl AS MoleHoldup 440

Tin AS Temperature
Pin AS Pressure
hlin AS Energy
xin AS ARRAY(NC) OF MoleComposition
vollin AS SpecificVolume
rholin AS Density
Lin, Lout AS MoleFlow
Level AS Length

STREAM 450

Liqin: Lin, xin, Tin, Pin, hlin, vollin, rholin AS Process stream
Liqout: Lout, x, T, P, hl, voll, rhol AS Process Stream

EQUATION
# Overall mass balance

$N` = Lin − Lout;

# Component balance
FOR I:=1 TO NC−1 DO

Nl*$x(I) = Lin*(xin(I)−x(I)); 460

END

# Energy balance - Neglects pressure term
Nl*$h` = Lin*(hlin − hl);

# Outlet pressure
Level*Ad = Nl*voll;
P = Pin + 1E−5*rhol*g*Level;

END 470

MODEL Tray INHERITS PhysicalProperties
#=====================================
#

# Model of distillation tray and downcomer:
#

# Equilibrium stage model
# Full hyrdrodynamics
# Negligible liquid and vapor entrainment
# Downcomer is sealed 480

#

# Assumes that dV/dt term is negligible in energy balance
# on tray
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#

# Lin Tray p
# | | |
# | V |
# | |
# | |—————————- Pp-1
# | | 490

# | | Vout
# | | ^

# | | | ———- Pp
# | | \
# |LDout -> | | |
# | | | | |
# ^ | | | | — Pp+1
# | V
# Vin Lout
# 500

# Parameter Description Units
# ——— ———– —–
#

# g Gravitational constant (m/s^2)
# PI
# dh Diameter of sieve holes (m)
# tt Tray thickness (m)
# Ad Cross-sectional area of downcomer (m^2)
# Ac Cross-sectional area of column (m)
# phi Fraction of hole to bubbling area (m^2/m^2) 510

# k Dry plate pressure drop coeff.
# hw Weir height (m)
# hd Clearance under downcomer (m)
# Cdd Discharge coefficient for downcomer
#

# Variable Description Units
# ——– ———– —–
#

# Lin Liquid flowrate into downcomer (kmol/hr)
# xin Liquid inlet mole composition (kmol/kmol) 520

# Tlin Inlet liquid temperature (K)
# Plin Pressure on plate p-1 (bar)
# hlin Specific enthalpy of inlet liquid (MJ/kmol)
# vollin Specific volume of inlet liquid (m^3/kmol)
# rholin Density of inlet liquid (kg/m^3)
# LDout Liquid flowrate out of downcomer (kmol/hr)
# xD Downcomer outlet composition (kmol/kmol)
# TD Temperature of downcomer outlet (K)
# PD Pressure at base of downcomer (bar)
# hlD Specific enthalpy of downcomer outlet (MJ/kmol) 530

# vollD Specific volume of downcomer outlet (m^3/kmol)
# rholD Density of downcomer outlet (kg/m^3)
# Vin Vapor flowrate onto plate (kmol/hr)
# yin Inlet vapor composition (kmol/kmol)
# Tvin Inlet vapor temperature (K)
# Pvin Inlet vapor pressure (bar)
# hvin Inlet vapor specific enthalpy (MJ/kmol)
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# volvin Inlet vapor specific volume (m^3/kmol)
# rhovin Inlet vapor density (kg/m^3)
# Lout Liquid outlet flowrate (kmol/hr) 540

# Vout Vapor flowrate off plate (kmol/hr)
# Nl Liquid mole holdup on plate (kmol)
# U Internal energy of liquid on plate (MJ)
# DeltaPr Pressure drop due to surface tension (bar)
# DeltaPdt Pressure drop due to dry plate (bar)
# DeltaPcl Pressure drop due to clear liquid (bar)
# DeltaPcli Pressure drop due to clear liquid
# at entrance to plate (bar)
# DeltaPudc Pressure drop due to flow out of
# downcomer (bar) 550

# Ab Bubbling area (m^2)
# Ah Area covered by sieve holes (m^2)
# uh Super. vel. based on hole area (m/s)
# us Super. vel. based on bubbling area (m/s)
# psi Discharge coefficient for plate
# Fr Froude number (-)
# FrP Froude number (-)
# eps Aeration factor (-)
# Cd Discharge coefficient over weir (-)
# how Height of liquid over weir (m) 560

# hcl Height of clear liquid (m)
# theta Angle subtended by downcomer (rads)
# W Length of weir (m)
#

# Modifications:
#=====================================

PARAMETER
g AS REAL
PI AS REAL 570

dh AS REAL
tt AS REAL
Ad AS REAL
Ac AS REAL
phi AS REAL
k AS REAL
hw AS REAL
hd AS REAL
Cdd AS REAL 580

UNIT
Downcomer AS Downcomer

VARIABLE
# Liquid in

Lin AS MoleFlow
xin AS ARRAY(NC) OF MoleComposition
Tlin AS Temperature
Plin AS Pressure 590

hlin AS Energy
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vollin AS SpecificVolume
rholin AS Density

# Liqiud out of downcomer
LDout AS MoleFlow
xD AS ARRAY(NC) OF MoleComposition
TD AS Temperature
PD AS Pressure
hlD AS Energy 600

vollD AS SpecificVolume
rholD AS Density

# Vapor in
Vin AS MoleFlow
yin AS ARRAY(NC) OF MoleComposition
Tvin AS Temperature
Pvin AS Pressure
hvin AS Energy
volvin AS SpecificVolume 610

rhovin AS Density

# Liquid flowrate out
Lout AS MoleFlow

# Vapor flowrate out
Vout AS MoleFlow

# Tray holdup
Nl AS MoleHoldup 620

U AS EnergyHoldup

# Hydrodynamics
DeltaPr,
DeltaPdt,
DeltaPcl,
DeltaPcli,
DeltaPudc AS Pressure
Ab, Ah AS Area
uh, us AS Velocity 630

psi, Fr, FrP,
eps, Cd AS NoType
how, hcl AS Length

# Tray geometry
theta AS NoType
W AS Length

STREAM
# Downcomer 640

Liqin: Lin, xin, Tlin, Plin, Hlin, vollin, rholin AS Process stream
LiqDout: LDout, xD, TD, PD, hlD, vollD, rholD AS Process stream

# Tray
Liqout: Lout, x, T, P, hl, voll, rhol AS Process stream
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Vapin: Vin, yin, Tvin, Pvin, hvin, volvin, rhovin AS Process Stream
Vapout: Vout, Y, T, P, hv, volv, rhov AS Process Stream

SET
dh := 0.005; # Lockett Recommendation 650

tt := 0.0025; # Tray thickness
Ad := 0.25; # Cross-sectional area of downcomer
Ac := 1.5; # Cross-sectional area of column
phi := 0.1; # Fraction of hole area to bubbling area
k := 0.94; # Assumes triangular pitch
hw := 0.05; # Weir height
hd := 0.025; # Clearance under downcomer
Cdd := 0.56; # Discharge coefficient for downcomer (Koch)

EQUATION 660

# Overall Mass Balance
$N` = LDout − Lout + Vin − Vout;

# Component Balance
FOR I:=1 TO NC−1 DO
Nl * $x(I) = LDout*(xD(I)−x(I)) + Vin*(yin(I)−x(I))+ Vout*(x(I)−y(I));
END

# Energy Balance
U + 0.1*P*Nl*voll = Nl*hl; 670

$U = LDout*hlD − Lout*hl + Vin*hvin − Vout*hv;

# Equilibrium
LOG(y) = logK + LOG(x);

# Connect Downcomer to tray
Liqin = Downcomer.Liqin;
LiqDout = Downcomer.Liqout;

680

#

# Hydrodynamics: All correlations from Lockett M. J., Distillation tray
# fundamentals, Cambridge University Press, 1986. Reported original
# references for completeness
#

#

# Calculate weir length
#

690

2*Ad/Ac * PI = theta − SIN(theta);
W = (4*Ac/PI)^0.5*sin(theta/2);

#

# Vapor flow onto plate
#

#

# Residual pressure drop:
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# Van Winkle M., Distillation, McGraw-Hill, 1967 700

# Fair J. R., (In Smith B. D.) Design of Equilibrium Stage Processes,
# Chp 15, McGraw-Hill, 1963.
#

DeltaPr = 4E−8*sigl/dh;

#

# Dry plate pressure drop:
# Cervenka J. and Kolar V. Hyrdodynamics of plate columns VIII,
# Czech. Cem. Comm. 38, pp 2891, 1973.
# 710

phi*Ab = Ah;
Ab = Ac−2*Ad;
uh = Vin * volvin/(3600*Ah);
psi = k*(1−phi^2)/(phi*tt/dh)^0.2;
DeltaPdt = 1E−5*psi*rhovin*uh^2/2;

#

# Clear liquid pressure drop from mass balance
# 720

DeltaPcl = 1E−5*Nl*mwl*g/Ab;

#

# Pressure drop across plate (defines vapor flowrate)
#

Pvin − P = DeltaPdt + DeltaPcl + DeltaPr;

# 730

# Liquid flowrate off plate
#

#

# Clear liquid pressure drop:
# Colwell C. J., Clear liquid height and froth density on sieve trays,
# Ind. Eng. Chem. Proc. Des. Dev., 20(2), pp 298, 1979.
#

DeltaPcl = 1E−5*rhol*g*hcl; 740

us = Vin * volvin/(3600*Ab);

eps = 12.6*(1−eps)*FrP^0.4*phi^(−0.25);
FrP*(rhol−rhovin) = Fr*rhovin;
Fr * hcl= us^2/g;
hcl = (1−eps)*(hw+0.7301*(Lout*voll/(3600*W*Cd*(1−eps)))^0.67);
how *(1−eps)= hcl−hw*(1−eps);

IF how/hw > 8.14 THEN
Cd*how^1.5 = 1.06*(how+hw)^1.5; 750

ELSE
Cd*hw = 0.61*hw+0.08*how;

END
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#

# Liquid flowrate onto plate from downcomer: Momentum balance
#

DeltaPcli = 1E−5*rhold*g*(2./g*(LDout*vollD/(3600*W))^2*(1./hcl−1./hd) +
2./3*hcl^2/(1−eps))^0.5; 760

DeltaPudc = 1E−5*rhold/2*(LDout*vollD/(3600*W*hd*Cdd))^2;

Pd − P = DeltaPcli + DeltaPudc;

END

MODEL TopTray INHERITS PhysicalProperties
#===================================== 770

# Top tray model:
# Top tray does not have a downcomer associated with it!!!
# Equilibrium stage model
# Full hyrdrodynamics
# Negligible liquid and vapor entrainment
# Assumes that dV/dt term is negligible in energy balance
# on tray
#

# Lin Tray p
# | 780

# V
# Vout
# ^

# | ——– Pp
# | \
# |LDout -> | | |
# | | | | |
# ^ | | | | — Pp+1
# | V
# Vin Lout 790

#

# Parameter Description Units
# ——— ———– —–
#

# g Gravitational constant (m/s^2)
# PI
# dh Diameter of sieve holes (m)
# tt Tray thickness (m)
# Ad Cross-sectional area of downcomer (m^2)
# Ac Cross-sectional area of column (m) 800

# phi Fraction of hole to bubbling area (m^2/m^2)
# k Dry plate pressure drop coeff.
# hw Weir height (m)
#

# Variable Description Units
# ——– ———– —–
#
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# Lin Liquid flowrate into downcomer (kmol/hr)
# xin Liquid inlet mole composition (kmol/kmol)
# Tlin Inlet liquid temperature (K) 810

# Plin Pressure on plate p-1 (bar)
# hlin Specific enthalpy of inlet liquid (MJ/kmol)
# vollin Specific volume of inlet liquid (m^3/kmol)
# rholin Density of inlet liquid (kg/m^3)
# Vin Vapor flowrate onto plate (kmol/hr)
# yin Inlet vapor composition (kmol/kmol)
# Tvin Inlet vapor temperature (K)
# Pvin Inlet vapor pressure (bar)
# hvin Inlet vapor specific enthalpy (MJ/kmol)
# volvin Inlet vapor specific volume (m^3/kmol) 820

# rhovin Inlet vapor density (kg/m^3)
# Lout Liquid outlet flowrate (kmol/hr)
# Vout Vapor flowrate off plate (kmol/hr)
# Nl Liquid mole holdup on plate (kmol)
# U Internal energy of liquid on plate (MJ)
# DeltaPr Pressure drop due to surface tension (bar)
# DeltaPdt Pressure drop due to dry plate (bar)
# DeltaPcl Pressure drop due to clear liquid (bar)
# Ab Bubbling area (m^2)
# Ah Area covered by sieve holes (m^2) 830

# uh Super. vel. based on hole area (m/s)
# us Super. vel. based on bubbling area (m/s)
# psi Discharge coefficient for plate
# Fr Froude number (-)
# FrP Froude number (-)
# eps Aeration factor (-)
# Cd Discharge coefficient over weir (-)
# how Height of liquid over weir (m)
# hcl Height of clear liquid (m)
# theta Angle subtended by downcomer (rads) 840

# W Length of weir (m)
#

# Modifications:
#=====================================
PARAMETER

g AS REAL
PI AS REAL

dh AS REAL
tt AS REAL 850

Ad AS REAL
Ac AS REAL
phi AS REAL
k AS REAL
hw AS REAL

VARIABLE
# Liquid in

Lin AS MoleFlow 860

xin AS ARRAY(NC) OF MoleComposition
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Tlin AS Temperature
Plin AS Pressure
hlin AS Energy
vollin AS SpecificVolume
rholin AS Density

# Vapor in
Vin AS MoleFlow
yin AS ARRAY(NC) OF MoleComposition 870

Tvin AS Temperature
Pvin AS Pressure
hvin AS Energy
volvin AS SpecificVolume
rhovin AS Density

# Liquid flowrate out
Lout AS MoleFlow

# Vapor flowrate out 880

Vout AS MoleFlow

# Tray holdup
Nl AS MoleHoldup
U AS EnergyHoldup

# Hydrodynamics
DeltaPr,
DeltaPdt,
DeltaPcl, 890

Ab, Ah AS Area
uh, us AS Velocity
psi, Fr, FrP,
eps, Cd AS NoType
how, hcl AS Length

# Tray geometry
theta AS NoType
W AS Length 900

STREAM

# Tray
Liqin: Lin, xin, Tlin, Plin, hlin, vollin, rholin AS Process stream
Liqout: Lout, x, T, P, hl, voll, rhol AS Process stream
Vapin: Vin, yin, Tvin, Pvin, hvin, volvin, rhovin AS Process Stream
Vapout: Vout, Y, T, P, hv, volv, rhov AS Process Stream

SET 910

dh := 0.005; # Lockett Recommendation
tt := 0.0025; # Tray thickness
Ad := 0.25; # Cross-sectional area of downcomer
Ac := 1.5; # Cross-sectional area of column
phi := 0.1; # Fraction of hole area to bubbling area
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k := 0.94; # Assumes triangular pitch
hw := 0.05; # Weir height

EQUATION
# Overall Mass Balance 920

$N` = Lin − Lout + Vin − Vout;

# Component Balance
FOR I:=1 TO NC−1 DO
Nl * $x(I) = Lin*(xin(I)−x(I)) + Vin*(yin(I)−x(I))+ Vout*(x(I)−y(I));
END

# Energy Balance
U + 0.1*P*Nl*voll = Nl*hl;

930

$U = Lin*hlin − Lout*hl + Vin*hvin − Vout*hv;

# Equilibrium
LOG(y) = logK + LOG(x);

#

# Hydrodynamics: All correlations from Lockett M. J., Distillation tray
# fundamentals, Cambridge University Press, 1986. Reported original
# references for completeness
# 940

#

# Calculate weir length
#

2*Ad/Ac * PI = theta − SIN(theta);
W = (4*Ac/PI)^0.5*sin(theta/2);

#

# Vapor flow onto plate 950

#

#

# Residual pressure drop:
# Van Winkle M., Distillation, McGraw-Hill, 1967
# Fair J. R., (In Smith B. D.) Design of Equilibrium Stage Processes,
# Chp 15, McGraw-Hill, 1963.
#

DeltaPr = 4E−8*sigl/dh;
960

#

# Dry plate pressure drop:
# Cervenka J. and Kolar V. Hyrdodynamics of plate columns VIII,
# Czech. Cem. Comm. 38, pp 2891, 1973.
#

phi*Ab = Ah;
Ab = Ac−2*Ad;
uh = Vin * volvin/(3600*Ah);
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psi = k*(1−phi^2)/(phi*tt/dh)^0.2; 970

DeltaPdt = 1E−5*psi*rhovin*uh^2/2;

#

# Clear liquid pressure drop from mass balance
#

DeltaPcl = 1E−5*Nl*mwl*g/Ab;

#

# Pressure drop across plate (defines vapor flowrate) 980

#

Pvin − P = DeltaPdt + DeltaPcl + DeltaPr;

#

# Liquid flowrate off plate
#

#

# Clear liquid pressure drop: 990

# Colwell C. J., Clear liquid height and froth density on sieve trays,
# Ind. Eng. Chem. Proc. Des. Dev., 20(2), pp 298, 1979.
#

DeltaPcl=1E−5*rhol*g*hcl;
us = Vin * volvin/(3600*Ab);

eps = 12.6*(1−eps)*FrP^0.4*phi^(−0.25);
FrP*(rhol−rhovin) = Fr*rhovin;
Fr * hcl= us^2/g; 1000

hcl = (1−eps)*(hw+0.7301*(Lout*voll/(3600*W*Cd*(1−eps)))^0.67);
how *(1−eps)= hcl−hw*(1−eps);

IF how/hw > 8.14 THEN
Cd*how^1.5 = 1.06*(how+hw)^1.5;

ELSE
Cd*hw = 0.61*hw+0.08*how;

END

END 1010

MODEL FeedTray INHERITS PhysicalProperties
#=====================================
#

# Model of distillation tray and downcomer:
#

# Equilibrium stage model
# Full hyrdrodynamics
# Negligible liquid and vapor entrainment
# Downcomer is sealed 1020

#

# Assumes that dV/dt term is negligible in energy balance
# on tray
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#

# Lin Tray p
# | | |
# | V |
# | |
# | |—————————- Pp-1
# | | 1030

# | | Vout <- F
# | | ^

# | | | ———- Pp
# | | \
# |LDout -> | | |
# | | | | |
# ^ | | | | — Pp+1
# | V
# Vin Lout
# 1040

# Parameter Description Units
# ——— ———– —–
#

# g Gravitational constant (m/s^2)
# PI
# dh Diameter of sieve holes (m)
# tt Tray thickness (m)
# Ad Cross-sectional area of downcomer (m^2)
# Ac Cross-sectional area of column (m)
# phi Fraction of hole to bubbling area (m^2/m^2) 1050

# k Dry plate pressure drop coeff.
# hw Weir height (m)
# hd Clearance under downcomer (m)
# Cdd Discharge coefficient for downcomer
#

# Variable Description Units
# ——– ———– —–
#

# F Feed flowrate onto plate (kmol/hr)
# z Feed composition (kmol/kmol) 1060

# Tf Feed temperature (K)
# Pf Feed pressure (bar)
# Hf Specific enthalpy of feed (MJ/kmol)
# vollf Specific volume of feed (m^3/kmol)
# rholf Density of feed (kg/m^3)
# Lin Liquid flowrate into downcomer (kmol/hr)
# xin Liquid inlet mole composition (kmol/kmol)
# Tlin Inlet liquid temperature (K)
# Plin Pressure on plate p-1 (bar)
# hlin Specific enthalpy of inlet liquid (MJ/kmol) 1070

# vollin Specific volume of inlet liquid (m^3/kmol)
# rholin Density of inlet liquid (kg/m^3)
# LDout Liquid flowrate out of downcomer (kmol/hr)
# xD Downcomer outlet composition (kmol/kmol)
# TD Temperature of downcomer outlet (K)
# PD Pressure at base of downcomer (bar)
# hlD Specific enthalpy of downcomer outlet (MJ/kmol)
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# vollD Specific volume of downcomer outlet (m^3/kmol)
# rholD Density of downcomer outlet (kg/m^3)
# Vin Vapor flowrate onto plate (kmol/hr) 1080

# yin Inlet vapor composition (kmol/kmol)
# Tvin Inlet vapor temperature (K)
# Pvin Inlet vapor pressure (bar)
# hvin Inlet vapor specific enthalpy (MJ/kmol)
# volvin Inlet vapor specific volume (m^3/kmol)
# rhovin Inlet vapor density (kg/m^3)
# Lout Liquid outlet flowrate (kmol/hr)
# Vout Vapor flowrate off plate (kmol/hr)
# Nl Liquid mole holdup on plate (kmol)
# U Internal energy of liquid on plate (MJ) 1090

# DeltaPr Pressure drop due to surface tension (bar)
# DeltaPdt Pressure drop due to dry plate (bar)
# DeltaPcl Pressure drop due to clear liquid (bar)
# DeltaPcli Pressure drop due to clear liquid
# at entrance to plate (bar)
# DeltaPudc Pressure drop due to flow out of
# downcomer (bar)
# Ab Bubbling area (m^2)
# Ah Area covered by sieve holes (m^2)
# uh Super. vel. based on hole area (m/s) 1100

# us Super. vel. based on bubbling area (m/s)
# psi Discharge coefficient for plate
# Fr Froude number (-)
# FrP Froude number (-)
# eps Aeration factor (-)
# Cd Discharge coefficient over weir (-)
# how Height of liquid over weir (m)
# hcl Height of clear liquid (m)
# theta Angle subtended by downcomer (rads)
# W Length of weir (m) 1110

#

# Modifications:
#=====================================

PARAMETER
g AS REAL
PI AS REAL

dh AS REAL
tt AS REAL 1120

Ad AS REAL
Ac AS REAL
phi AS REAL
k AS REAL
hw AS REAL
hd AS REAL
Cdd AS REAL

UNIT
Downcomer AS Downcomer 1130
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VARIABLE
# Feed

F AS MoleFlow
z AS ARRAY(NC) OF MoleComposition
Tf AS Temperature
Pf AS Pressure
Hf AS Energy
vollf AS SpecificVolume
rholf AS Density 1140

# Liquid in
Lin AS MoleFlow
xin AS ARRAY(NC) OF MoleComposition
Tlin AS Temperature
Plin AS Pressure
hlin AS Energy
vollin AS SpecificVolume
rholin AS Density

1150

# Liqiud out of downcomer
LDout AS MoleFlow
xD AS ARRAY(NC) OF MoleComposition
TD AS Temperature
PD AS Pressure
hlD AS Energy
vollD AS SpecificVolume
rholD AS Density

# Vapor in 1160

Vin AS MoleFlow
yin AS ARRAY(NC) OF MoleComposition
Tvin AS Temperature
Pvin AS Pressure
hvin AS Energy
volvin AS SpecificVolume
rhovin AS Density

# Liquid flowrate out
Lout AS MoleFlow 1170

# Vapor flowrate out
Vout AS MoleFlow

# Tray holdup
Nl AS MoleHoldup
U AS EnergyHoldup

# Hydrodynamics
DeltaPr, 1180

DeltaPdt,
DeltaPcl,
DeltaPcli,
DeltaPudc AS Pressure
Ab, Ah AS Area

301



uh, us AS Velocity
psi, Fr, FrP,
eps, Cd AS NoType
how, hcl AS Length

1190

# Tray geometry
theta AS NoType
W AS Length

STREAM
# Feed

Feed: F, Z, Tf, Pf, Hf, vollf, rholf AS Process stream

# Downcomer 1200

Liqin: Lin, xin, Tlin, Plin, Hlin, vollin, rholin AS Process stream
LiqDout: LDout, xD, TD, PD, hlD, vollD, rholD AS Process stream

# Tray
Liqout: Lout, x, T, P, hl, voll, rhol AS Process stream
Vapin: Vin, yin, Tvin, Pvin, hvin, volvin, rhovin AS Process Stream
Vapout: Vout, Y, T, P, hv, volv, rhov AS Process Stream

SET
dh := 0.005; # Lockett Recommendation 1210

tt := 0.0025; # Tray thickness
Ad := 0.25; # Cross-sectional area of downcomer
Ac := 1.5; # Cross-sectional area of column
phi := 0.1; # Fraction of hole area to bubbling area
k := 0.94; # Assumes triangular pitch
hw := 0.05; # Weir height
hd := 0.025; # Clearance under downcomer
Cdd := 0.56; # Discharge coefficient for downcomer (Koch)

EQUATION 1220

# Overall Mass Balance
$N` = F + LDout − Lout + Vin − Vout;

# Component Balance
FOR I:=1 TO NC−1 DO
Nl * $x(I) = F*(z(I)−x(I)) + LDout*(xD(I)−x(I)) + Vin*(yin(I)
−x(I))+ Vout*(x(I)−y(I));
END

# Energy Balance 1230

U + 0.1*P*Nl*voll = Nl*hl;

$U = F*hf + LDout*hlD − Lout*hl + Vin*hvin − Vout*hv;

# Equilibrium
LOG(y) = logK + LOG(x);

# Connect Downcomer to tray
Liqin = Downcomer.Liqin;
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LiqDout = Downcomer.Liqout; 1240

#

# Hydrodynamics: All correlations from Lockett M. J., Distillation tray
# fundamentals, Cambridge University Press, 1986. Reported original
# references for completeness
#

#

# Calculate weir length
# 1250

2*Ad/Ac * PI = theta − SIN(theta);
W = (4*Ac/PI)^0.5*sin(theta/2);

#

# Vapor flow onto plate
#

#

# Residual pressure drop: 1260

# Van Winkle M., Distillation, McGraw-Hill, 1967
# Fair J. R., (In Smith B. D.) Design of Equilibrium Stage Processes,
# Chp 15, McGraw-Hill, 1963.
#

DeltaPr = 4E−8*sigl/dh;

#

# Dry plate pressure drop:
# Cervenka J. and Kolar V. Hyrdodynamics of plate columns VIII,
# Czech. Cem. Comm. 38, pp 2891, 1973. 1270

#

phi*Ab = Ah;
Ab = Ac−2*Ad;
uh = Vin * volvin/(3600*Ah);
psi = k*(1−phi^2)/(phi*tt/dh)^0.2;
DeltaPdt = 1E−5*psi*rhovin*uh^2/2;

#

# Clear liquid pressure drop from mass balance 1280

#

DeltaPcl = 1E−5*Nl*mwl*g/Ab;

#

# Pressure drop across plate (defines vapor flowrate)
#

Pvin − P = DeltaPdt + DeltaPcl + DeltaPr;
1290

#

# Liquid flowrate off plate
#
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#

# Clear liquid pressure drop:
# Colwell C. J., Clear liquid height and froth density on sieve trays,
# Ind. Eng. Chem. Proc. Des. Dev., 20(2), pp 298, 1979.
#

1300

DeltaPcl=1E−5*rhol*g*hcl;
us = Vin * volvin/(3600*Ab);

eps = 12.6*(1−eps)*FrP^0.4*phi^(−0.25);
FrP*(rhol−rhovin) = Fr*rhovin;
Fr * hcl= us^2/g;
hcl = (1−eps)*(hw+0.7301*(Lout*voll/(3600*W*Cd*(1−eps)))^0.67);
how *(1−eps)= hcl−hw*(1−eps);

IF how/hw > 8.14 THEN 1310

Cd*how^1.5 = 1.06*(how+hw)^1.5;
ELSE

Cd*hw = 0.61*hw+0.08*how;
END

#

# Liquid flowrate onto plate from downcomer: Momentum balance
#

DeltaPcli = 1E−5*rhold*g*(2./g*(LDout*vollD/(3600*W))^2*(1./hcl−1./hd) + 1320

2./3*hcl^2/(1−eps))^0.5;

DeltaPudc = 1E−5*rhold/2*(LDout*vollD/(3600*W*hd*Cdd))^2;

Pd − P = DeltaPcli + DeltaPudc;

END

MODEL ValveLiquid 1330

#=====================================
#

# Algebraic model of a valve
#

#

# Date: 26th June 2000
#

# Model Assumptions: Linear model of non-flashing liquid valve
# No enthalpy balance
# 1340

# Parameter Description Units
# ——— ———– —–
# NC Number of components
# Cv Valve constant m^-2
# Tau p Valve time constant
#

# Variable Description Units
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# ——– ———– —–
# L Liquid flowrate kmol/hr
# X Liquid composition kmol/kmol 1350

# T Temperature K
# Plin Inlet pressure bar
# hl Enthalpy of liquid kJ/kmol
# voll Specific volume of liquid m^3/kmol
# rhol Density of liquid kg/m^3
# Plout Pressure at outlet bar
# I in Control signal
# P drop Pressure drop across valve bar
# Stem pos Valve stem position
# 1360

# Modifications:
# Included valve dynamics
#=====================================
PARAMETER

NC AS INTEGER
Cv,
Tau p AS REAL

VARIABLE
# Input: 1370

L AS MoleFlow
x AS ARRAY(NC) OF MoleComposition
T AS Temperature
Plin AS Pressure
Hl AS Energy
voll AS SpecificVolume
rhol AS Density

# Output
Plout AS Pressure 1380

# Connection
I in AS NoType

# Internal
P drop AS Pressure
Stem pos AS Percent

STREAM
1390

Liqin: L, x, T, Plin, Hl, voll, rhol AS Process stream
Liqout: L, x, T, Plout, Hl, voll, rhol AS Process stream

# Connections required for the controllers.

Manipulated : I in AS CONNECTION

SET
Cv := 1;
Tau p := 0.006; 1400
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EQUATION
# Pressure relationship

Plout = Plin − P drop;

# Valve dynamics
Tau p * $Stem pos + Stem pos = I in;

# Flow equation for non-flashing liquids 1410

L * voll = Cv * Stem pos *
SIGN(P drop)* SQRT(ABSOLUTE(P drop)/(rhol/1000));

END

MODEL Reboiler INHERITS Flash
#=====================================
#

# Model of reboiler. Inherits model of flash
# 1420

#

# Date: 26th June 2000
#

# Model Assumptions: Simple model of steam line. Instantaneous
# heat transfer
#

# Parameter Description Units
# ——— ———– —–
# Tau p Time constant for valve
# VPAW, VPBW, . . Vapor pressure constants for water 1430

# PCW Critical pressure of water (bar)
# TCW Critical temperature of water (K)
# UA Heat transfer coefficient for reboiler (MJ/hr K)
#

# Variable Description Units
# ——– ———– —–
# TS Temperature of steam (K)
# TRS Reduced temperature of steam
# P Reboiler in Pressure of steam at reboiler inlet (bar)
# I in Control signal to valve 1440

# I in c Clipped control signal
#

# Modifications:
# Included valve dynamics
#=====================================
PARAMETER

Tau p AS REAL
VPAW, VPBW,
VPCW, VPDW AS REAL
PCW, TCW AS REAL 1450

UA AS REAL

VARIABLE
TS AS Temperature
TRS AS NoType
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P Boiler AS Pressure
P Reboiler in AS Pressure
P Reboiler out AS Pressure
I in AS NoType
Stem Pos AS NoType 1460

SET
Vtot := 2;
AT := 1;
UA := 129.294433;

# Water Vapor Pressure Coefficients from Reid Prausnitz and Poling

PCW := 221.2;
TCW := 647.3;
VPAW := −7.76451; 1470

VPBW := 1.45838;
VPCW := −2.77580;
VPDW := −1.23303;
Tau p := 0.006;

EQUATION

# Model of steam line

TRS*TCW = TS; 1480

(LOG(P Reboiler in) − LOG(PCW))*TRS = (VPAW*(1−TRS)+VPBW*(1−TRS)^1.5
+VPCW*(1−TRS)^3 + VPDW*(1−TRS)^6);

# Valve dynamics
Tau p*$Stem pos + Stem pos = I in;

# Heat transfer

Stem pos*SQRT(ABSOLUTE((P Boiler−P Reboiler in)*P Boiler))
= 150*SQRT(ABSOLUTE((P Reboiler in−P Reboiler out)*P Reboiler out));

1490

Qh = UA*(TS − T);

END

MODEL Condenser INHERITS Flash
#=====================================
#

# Model of condenser. Inherits model of flash
#

# 1500

# Date: 26th June 2000
#

# Model Assumptions: Includes additional equation to calculate
# inlet vapor flow
#

# Parameter Description Units
# ——— ———– —–
# K Valve Valve constant for inlet vapor flow
# Tau p Time constant for valve
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# CPW Specific heat capacity of water (MJ/kg K) 1510

# M Mass of water in condenser (kg)
# UA Heat transfer coefficient (MJ/hr K)
#

# Variable Description Units
# ——– ———– —–
# D Distillate flowrate (kmol/hr)
# LT Reflux flowrate (kmol/hr)
# I in Control signal
# Stem pos Stem position
# T Water in Temperature of inlet water (K) 1520

# T Water out Temperature of outlet water (K)
#

# Modifications:
# Included valve dynamics
#=====================================
PARAMETER

K Valve AS REAL
Tau p AS REAL
CPW AS REAL
M AS REAL 1530

UA AS REAL
Height AS REAL

VARIABLE
D AS MoleFlow
LT AS MoleFlow
Plout AS Pressure

# Cooling Water
I in AS NoType 1540

Stem pos AS Percent
T Water in AS Temperature
T Water out AS Temperature

STREAM
Reflux: LT, x, T, Plout, hl, voll, rhol AS Process Stream
Distillate: D, x, T, Plout, hl, voll, rhol AS Process Stream

SET
Vtot := 2; 1550

AT := 1;
K Valve := 2454;
Tau p := 0.006;
CPW := 0.0042;
M := 200;
UA := 121.81;
Height := 0.63;

EQUATION
# Vapor Flowrate 1560

F = K Valve*(Pin − P)/(1E−4+SQRT(ABSOLUTE(Pin −P)));

# Reflux splitter
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L = D+LT;

# Total Condenser
V = 0;

# Pressure drop due to static head between accumulator and return
Plout = Pout+1E−5*Height*g*rhol; 1570

# Calculate cooling from the cooling water flow

3600*M*CPW*$T Water Out =
4.9911272727*Stem pos*(T Water In − T Water out) − Qh;

Qh = UA*(T Water Out − T);

# Cooling water valve dynamics
1580

Tau p* $Stem pos + Stem pos = I in;

END

MODEL PI Cont
#=====================================
#

# Model of PI Controller
#

# 1590

# Date: 26th June 2000
#

# Model Assumptions:
#

# Variable Description Units
# ——– ———– —–
# I in Control signal
# SP Controller setpoint
# I out Actuator signal
# Bias Controller bias 1600

# Error Difference between control signal and SP
# Gain Controller gain
# I error Integral error
# C reset Integral time
# Value Unclipped actuator signal
# I max Maximum actuator signal
# I min Minimum actuator signal
#

# Modifications:
# Included valve dynamics 1610

#=====================================

VARIABLE

# Connections

I in AS Control Signal
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SP AS Control Signal
I out AS Control Signal

1620

# Internal

Bias AS Notype
Error AS Notype
Gain AS Notype
I error AS Notype
C reset AS Notype
Value AS NoType
I max AS NoType
I min AS NoType 1630

EQUATION

Error = SP − I in;
$I error = Error;
Value = Bias + Gain * (Error + I error / C reset );

# Ensure signal is clipped. Pick sensible values of I max and
# I min for the valves

1640

IF Value > I max THEN

I out = I max;

ELSE IF Value < I min THEN

I out = I min;

ELSE
1650

I out = Value;

END
END

END

MODEL LiqFeed INHERITS LiquidProperties
#=====================================
# Model to set feed condition to column 1660

#=====================================
VARIABLE

F AS MoleFlow

STREAM
Feed: F, x, T, P, hl, voll, rhol AS Process stream

END

MODEL Column 1670

#=====================================
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#

# Model of distillation column
#

# Parameter Description Units
# ——— ———– —–
# NC Number of components in mixture
# NT Number of stages + reboiler + condenser
# NF Location of feed tray
# g Gravitational constant (m/s^2) 1680

# PI
#

# Variable Description Units
# ——– ———– —–
#

# Xdist Scaled distillate composition
# Xbot Scaled bottoms composition
# DistillatePurity Distillate purity
# BottomsPurity Bottoms purity
# 1690

# Modifications:
#=====================================

PARAMETER
NC AS INTEGER
NT AS INTEGER # Number of stages + reboiler + condenser
NF AS INTEGER # Location of feed tray
g AS REAL
PI AS REAL

UNIT 1700

Liquid AS LiqFeed
Rectifier AS ARRAY(NF−2) OF Tray
TopTray AS TopTray
FeedTray AS FeedTray
Stripper AS ARRAY(NT−NF−2) OF Tray
Reboiler AS Reboiler
RefluxValve,
DistillateValve,
BottomsValve AS ValveLiquid
Condenser AS Condenser 1710

VARIABLE
XDist,
XBot AS NoType
DistillatePurity,
BottomsPurity AS Percent

SET
NT := 30;
NF := 15;

1720

EQUATION
Liquid.Feed = FeedTray.Feed;

TopTray.LiqOut = Rectifier(1).LiqIn;
TopTray.VapIn = Rectifier(1).VapOut;
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Rectifier(1:NF−3).LiqOut = Rectifier(2:NF−2).LiqIn;
Rectifier(1:NF−3).VapIn = Rectifier(2:NF−2).VapOut;

# Connections to feed tray 1730

Rectifier(NF−2).VapIn = FeedTray.VapOut;
Rectifier(NF−2).LiqOut = FeedTray.LiqIn;
Stripper(1).LiqIn = FeedTray.LiqOut;
Stripper(1).VapOut = FeedTray.VapIn;

Stripper(1:NT−NF−3).Liqout = Stripper(2:NT−NF−2).Liqin;
Stripper(1:NT−NF−3).Vapin = Stripper(2:NT−NF−2).Vapout;

# Connections to reboiler 1740

Reboiler.Feed = Stripper(NT−NF−2).Liqout;
Reboiler.Vapor = Stripper(NT−NF−2).Vapin;
Reboiler.Liquid = BottomsValve.LiqIn;

# Connections to condenser

TopTray.VapOut = Condenser.Feed;
Condenser.Reflux = RefluxValve.LiqIn;
Condenser.Distillate = DistillateValve.LiqIn; 1750

RefluxValve.LiqOut = TopTray.LiqIn;

TopTray.Plin = TopTray.P;

# Calculate scaled composition and product purity

Xdist = LOG(TopTray.X(2)/TopTray.X(1));
Xbot = LOG(Stripper(13).X(2)/Stripper(13).X(1));
DistillatePurity = 100*DistillateValve.X(2);
BottomsPurity = 100*BottomsValve.X(1); 1760

END

#=====================================
SIMULATION Distillation
OPTIONS
ALGPRINTLEVEL:=0;
ALGRTOLERANCE:=1E−7;
ALGATOLERANCE:=1E−7; 1770

ALGMAXITERATIONS:=500;
DYNPRINTLEVEL:=0;
DYNRTOLERANCE:=1E−7;
DYNATOLERANCE:=1E−7;

UNIT
Plant AS Column

SET
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WITHIN Plant DO 1780

NC :=2;
g := 9.81;
PI := 3.141592654;

END

INPUT
WITHIN Plant.Liquid DO

F := 100;
x(1) := 0.25;
T := 353; 1790

P := 1.17077;
END

WITHIN Plant.BottomsValve DO
Plout := 1.435;
I In := 42.41;

END

WITHIN Plant.DistillateValve DO
Plout := 1.31; 1800

I in := 54.43;
END

WITHIN Plant.RefluxValve DO
I in := 27.197;

END

WITHIN Plant.Condenser DO
T Water in := 291;
I in := 50; 1810

END

WITHIN Plant.Reboiler DO
I in := 61.8267;
P Boiler := 10;
P Reboiler out := 1;

END

PRESET INCLUDE DistPresets
INITIAL 1820

STEADY STATE

SCHEDULE
SEQUENCE
CONTINUE FOR 10
RESET
Plant.Condenser.I in:=60;
END
CONTINUE FOR 10
END 1830

END
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B.5 State Bounds for Reaction Kinetics

#=============================
#

# Simulation of state bounds
# for kinetics A->B->C.
# D. M. Collins 08/22/03.
#

#=============================
DECLARE

TYPE
NoType = 0 :−1E5 :1E5 UNIT = "−" 10

END

MODEL Series
PARAMETER

p AS ARRAY(2) OF REAL
pL AS ARRAY(2) OF REAL
pU AS ARRAY(2) OF REAL

VARIABLE
XL AS ARRAY(3) OF NoType
XU AS ARRAY(3) OF NoType 20

X AS ARRAY(3) OF NoType
EQUATION

# Original ODE
$X(1)=−p(1)*X(1);
$X(2)=p(1)*X(1)−p(2)*X(2);
$X(3)=p(2)*X(2);

# Bounding system
$XL(1)=−MAX(PL(1)*XL(1),PU(1)*XL(1));
$XL(2)=MIN(PL(1)*XL(1),PU(1)*XL(1),PL(1)*XU(1),PU(1)*XU(1))
−MAX(PL(2)*XL(2),PU(2)*XL(2)); 30

$XL(3)=MIN(PL(2)*XL(2),PU(2)*XL(2),PL(2)*XU(2),PU(2)*XU(2));
$XU(1)=−MIN(PL(1)*XU(1),PU(1)*XU(1));
$XU(2)=MAX(PL(1)*XL(1),PU(1)*XL(1),PL(1)*XU(1),PU(1)*XU(1))
−MIN(PL(2)*XU(2),PU(2)*XU(2));
$XU(3)=MAX(PL(2)*XL(2),PU(2)*XL(2),PL(2)*XU(2),PU(2)*XU(2));

END

SIMULATION BoundReactions
OPTIONS
CSVOUTPUT:=TRUE; 40

UNIT SeriesSimulation AS Series
SET

WITHIN SeriesSimulation DO
pL(1):=1;
pU(1):=2;
pL(2):=1;
pU(2):=2;
p(1):=1.5;
p(2):=1.5;

END 50

INITIAL
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WITHIN SeriesSimulation DO
XL(1)=10;
XU(1)=10;
X(1)=10;
XL(2)=0;
XU(2)=0;
X(2)=0;
XL(3)=0;
XU(3)=0; 60

X(3)=0;
END

SCHEDULE
CONTINUE FOR 10

END
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B.6 Convex Underestimates and Concave Overes-

timates of States

# This file automatically generated by ./oa.exe on Thu Aug 21 11:31:07 2003

DECLARE
TYPE

STATE = 0.0 : −1E9 : 1E9
END #declare

MODEL OAmodel
10

PARAMETER
p AS ARRAY(2) OF REAL
p L AS ARRAY(2) OF REAL
p U AS ARRAY(2) OF REAL
p ref AS ARRAY(2) OF REAL

VARIABLE
x AS ARRAY(3) OF STATE
x ref AS ARRAY(3) OF STATE
x L AS ARRAY(3) OF STATE 20

x U AS ARRAY(3) OF STATE
c AS ARRAY(3) OF STATE
CC AS ARRAY(3) OF STATE
ifVar AS ARRAY(16) OF STATE

EQUATION
# original equation(s)
$x(1)=−p(1)*x(1);

$x(2)=p(1)*x(1)−p(2)*x(2); 30

$x(3)=p(2)*x(2);

# original equation(s) lower bound(s)
$x L(1)=−max(p L(1)*x L(1), p U(1)*x L(1));

$x L(2)=min(p L(1)*x L(1), p L(1)*x U(1), p U(1)*x L(1), p U(1)*x U(1))
−max(p L(2)*x L(2), p U(2)*x L(2));

40

$x L(3)=min(p L(2)*x L(2), p L(2)*x U(2), p U(2)*x L(2), p U(2)*x U(2));

# original equation(s) upper bound(s)
$x U(1)=−min(p L(1)*x U(1), p U(1)*x U(1));

$x U(2)=max(p L(1)*x L(1), p L(1)*x U(1), p U(1)*x L(1), p U(1)*x U(1))
−min(p L(2)*x U(2), p U(2)*x U(2));
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$x U(3)=max(p L(2)*x L(2), p L(2)*x U(2), p U(2)*x L(2), p U(2)*x U(2)); 50

# convex OA term(s)
$c(1)=−min(x L(1)*p ref(1)+p U(1)*x ref(1)−x L(1)*p U(1),
p L(1)*x ref(1)+x U(1)*p ref(1)−p L(1)*x U(1))
+(−ifVar(1))*(c(1)−x ref(1))+(−ifVar(2))*(p(1)−p ref(1));

$c(2)=max(x U(1)*p ref(1)+p U(1)*x ref(1)−p U(1)*x U(1),
x L(1)*p ref(1)+p L(1)*x ref(1)−p L(1)*x L(1))
−min(x L(2)*p ref(2)+p U(2)*x ref(2)−x L(2)*p U(2), 60

p L(2)*x ref(2)+x U(2)*p ref(2)−p L(2)*x U(2))+
min(ifVar(5)*c(1), ifVar(5)*CC(1))−ifVar(5)*x ref(1)
+(−ifVar(6))*(c(2)−x ref(2))+ifVar(7)*(p(1)−p ref(1))
+(−ifVar(8))*(p(2)−p ref(2));

$c(3)=max(x U(2)*p ref(2)+p U(2)*x ref(2)−p U(2)*x U(2),
x L(2)*p ref(2)+p L(2)*x ref(2)−p L(2)*x L(2))
+min(ifVar(13)*c(2), ifVar(13)*CC(2))
−ifVar(13)*x ref(2)+ifVar(14)*(p(2)−p ref(2));

70

# concave OA term(s):
$CC(1)=−max(x U(1)*p ref(1)+p U(1)*x ref(1)−p U(1)*x U(1),
x L(1)*p ref(1)+p L(1)*x ref(1)−p L(1)*x L(1))
+(−ifVar(3))*(CC(1)−x ref(1))+(−ifVar(4))*(p(1)−p ref(1));

$CC(2)=min(x L(1)*p ref(1)+p U(1)*x ref(1)−x L(1)*p U(1),
p L(1)*x ref(1)+x U(1)*p ref(1)−p L(1)*x U(1))
−max(x U(2)*p ref(2)+p U(2)*x ref(2)−p U(2)*x U(2),
x L(2)*p ref(2)+p L(2)*x ref(2)−p L(2)*x L(2)) 80

+max(ifVar(9)*c(1), ifVar(9)*CC(1))−ifVar(9)*x ref(1)
+(−ifVar(10))*(CC(2)−x ref(2))+ifVar(11)*(p(1)−p ref(1))
+(−ifVar(12))*(p(2)−p ref(2));

$CC(3)=min(x L(2)*p ref(2)+p U(2)*x ref(2)−x L(2)*p U(2),
p L(2)*x ref(2)+x U(2)*p ref(2)−p L(2)*x U(2))
+max(ifVar(15)*c(2), ifVar(15)*CC(2))−ifVar(15)*x ref(2)
+ifVar(16)*(p(2)−p ref(2));

90

# define the if variable(s):
IF x L(1)*p ref(1)+p U(1)*x ref(1)−x L(1)*p U(1)
< p L(1)*x ref(1)+x U(1)*p ref(1)−p L(1)*x U(1) THEN

ifVar(1) = +p U(1);
ELSE

ifVar(1) = p L(1);
END #if

IF x L(1)*p ref(1)+p U(1)*x ref(1)−x L(1)*p U(1)
< p L(1)*x ref(1)+x U(1)*p ref(1)−p L(1)*x U(1) THEN 100

ifVar(2) = x L(1);
ELSE

ifVar(2) = +x U(1);
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END #if

IF x U(1)*p ref(1)+p U(1)*x ref(1)−p U(1)*x U(1)
> x L(1)*p ref(1)+p L(1)*x ref(1)−p L(1)*x L(1) THEN

ifVar(3) = +p U(1);
ELSE

ifVar(3) = +p L(1); 110

END #if

IF x U(1)*p ref(1)+p U(1)*x ref(1)−p U(1)*x U(1)
> x L(1)*p ref(1)+p L(1)*x ref(1)−p L(1)*x L(1) THEN

ifVar(4) = x U(1);
ELSE

ifVar(4) = x L(1);
END #if

IF x U(1)*p ref(1)+p U(1)*x ref(1)−p U(1)*x U(1) 120

> x L(1)*p ref(1)+p L(1)*x ref(1)−p L(1)*x L(1) THEN
ifVar(5) = +p U(1);

ELSE
ifVar(5) = +p L(1);

END #if

IF x L(2)*p ref(2)+p U(2)*x ref(2)−x L(2)*p U(2)
< p L(2)*x ref(2)+x U(2)*p ref(2)−p L(2)*x U(2) THEN

ifVar(6) = +p U(2);
ELSE 130

ifVar(6) = p L(2);
END #if

IF x U(1)*p ref(1)+p U(1)*x ref(1)−p U(1)*x U(1)
> x L(1)*p ref(1)+p L(1)*x ref(1)−p L(1)*x L(1) THEN

ifVar(7) = x U(1);
ELSE

ifVar(7) = x L(1);
END #if

140

IF x L(2)*p ref(2)+p U(2)*x ref(2)−x L(2)*p U(2)
< p L(2)*x ref(2)+x U(2)*p ref(2)−p L(2)*x U(2) THEN

ifVar(8) = x L(2);
ELSE

ifVar(8) = +x U(2);
END #if

IF x L(1)*p ref(1)+p U(1)*x ref(1)−x L(1)*p U(1)
< p L(1)*x ref(1)+x U(1)*p ref(1)−p L(1)*x U(1) THEN

ifVar(9) = +p U(1); 150

ELSE
ifVar(9) = p L(1);

END #if

IF x U(2)*p ref(2)+p U(2)*x ref(2)−p U(2)*x U(2)
> x L(2)*p ref(2)+p L(2)*x ref(2)−p L(2)*x L(2) THEN

ifVar(10) = +p U(2);
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ELSE
ifVar(10) = +p L(2);

END #if 160

IF x L(1)*p ref(1)+p U(1)*x ref(1)−x L(1)*p U(1)
< p L(1)*x ref(1)+x U(1)*p ref(1)−p L(1)*x U(1) THEN

ifVar(11) = x L(1);
ELSE

ifVar(11) = +x U(1);
END #if

IF x U(2)*p ref(2)+p U(2)*x ref(2)−p U(2)*x U(2)
> x L(2)*p ref(2)+p L(2)*x ref(2)−p L(2)*x L(2) THEN 170

ifVar(12) = x U(2);
ELSE

ifVar(12) = x L(2);
END #if

IF x U(2)*p ref(2)+p U(2)*x ref(2)−p U(2)*x U(2)
> x L(2)*p ref(2)+p L(2)*x ref(2)−p L(2)*x L(2) THEN

ifVar(13) = +p U(2);
ELSE

ifVar(13) = +p L(2); 180

END #if

IF x U(2)*p ref(2)+p U(2)*x ref(2)−p U(2)*x U(2)
> x L(2)*p ref(2)+p L(2)*x ref(2)−p L(2)*x L(2) THEN

ifVar(14) = x U(2);
ELSE

ifVar(14) = x L(2);
END #if

IF x L(2)*p ref(2)+p U(2)*x ref(2)−x L(2)*p U(2) 190

< p L(2)*x ref(2)+x U(2)*p ref(2)−p L(2)*x U(2) THEN
ifVar(15) = +p U(2);

ELSE
ifVar(15) = p L(2);

END #if

IF x L(2)*p ref(2)+p U(2)*x ref(2)−x L(2)*p U(2)
< p L(2)*x ref(2)+x U(2)*p ref(2)−p L(2)*x U(2) THEN

ifVar(16) = x L(2);
ELSE 200

ifVar(16) = +x U(2);
END #if

# Enter the user defined x ref equation(s)
$x ref(1)=−p ref(1)*x ref(1);

$x ref(2)=p ref(1)*x ref(1)−p ref(2)*x ref(2);

$x ref(3)=p ref(2)*x ref(2); 210
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END #OAmodel

SIMULATION mySim

UNIT OA AS OAmodel

# Enter parameter values here
SET 220

WITHIN OA DO
p(1) := 1.75;
p(2) := 1.55;
p ref(1) := 1.3;
p ref(2) := 1.7;
p L(1) := 1;
p L(2) := 1;
p U(1) := 2;
p U(2) := 2;

END # within 230

# Enter initial conditions here
INITIAL

WITHIN OA DO
x(1) = 10;
x(2) = 0;
x(3) = 0;
x L(1) = 10;
x L(2) = 0;
x L(3) = 0; 240

x U(1) = 10;
x U(2) = 0;
x U(3) = 0;
c(1) = 10;
c(2) = 0;
c(3) = 0;
CC(1) = 10;
CC(2) = 0;
CC(3) = 0;
x ref(1) = 10; 250

x ref(2) = 0;
x ref(3) = 0;

END # within

SCHEDULE
SEQUENCE
# Enter the simulation length
CONTINUE FOR 10

END # sequence
260

END # simulation
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Appendix C

Fortran Code

C.1 Generation of State-Space Occurrence Infor-

mation

SUBROUTINE GRAPH(NB,NY,NX,NSTATE, MINPUT, NEINPUT, NINDEX,
$ NEINDEX, NESTATE, IRINPUT, JCINPUT, IPERM, IFLAGY,
$ IBLOCK, IRPRM, JCPRM, ISTATE, JSTATE, IWORK,
$ LOCIWORKOLD, LIWORK, LSTATE,IERROR,INFO)

IMPLICIT NONE
INTEGER NB,LIWORK,NY,NX,NSTATE, MINPUT, NEINPUT
INTEGER NINDEX, NEINDEX, NESTATE, LSTATE
INTEGER IRINPUT(NEINPUT), JCINPUT(NEINPUT) 10

INTEGER IPERM(2*NINDEX)
INTEGER IFLAGY(NY)
INTEGER IBLOCK(NINDEX+1)
INTEGER IRPRM(NEINDEX), JCPRM(NEINDEX)
INTEGER ISTATE(LSTATE), JSTATE(LSTATE)
INTEGER IWORK(LIWORK)

C===================================
C INPUTS
C —— 20

C NB: Number of blocks in block decomosition.
C NX : Number of states (XDOTs).
C NY : Number of algebraic variables.
C LIWORK: Length of integer workspace.
C LSTATE: Length of ISTATE, JSTATE and FSTATE. May need up to
C NSTATE*MINPUT but may be a lot less.
C NSTATE: Number of states+number of algebraic variables to be
C included in the state-space model. (Some of the Y’s
C may be eliminated.)
C MINPUT: Number of inputs+ number of states. 30

C NINDEX: NX+NY.
C NEINPUT: Number of entries in IRINPUT, JCINPUT
C NEINDEX: Number of entries in IRPRM, JCPRM.
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C LIWORK: Length of integer array IWORK.
C LSTATE: Length of integer arrays ISTATE, JSTATE and double array
C FSTATE.
C IRINPUT: An integer array of length NEINPUT which holds the row
C indices of [f x f u]. The list must be column sorted.
C JCINPUT: An integer array of length NEINPUT which holds the column
C indices of [f x f u]. The list must be column sorted. 40

C IFLAGY: An array of length NY which indicates whether an algebraic
C variable, Y, is to be included in the state-space model.
C IFLAGY(I)=0 indicates the I’th algebraic variable is to be
C kept. IFLAGY(I)=-1 indicates the I’th algebraic variable is
C to be eliminated.
C IPERM: An integer array of length 2*NINDEX. The first NINDEX
C entries hold the column permutations and the next NINDEX
C entries hold the row permutations
C IBLOCK: Integer array I=1.NB+1 which points to the row which starts
C the I’th block. 50

C IRPRM: Integer array of length NEINDEX which holds IRINDEX in
C block upper triangular form. It is not established until
C after the call to FACTOR.
C JCPRM: Integer array of length NEINDEX which holds JCINDEX in
C block upper triangular form. It is not established until
C after the call to FACTOR.
C IWORK: Integer workspace. See error checks for length.
C
C OUTPUTS
C ——- 60

C NESTATE: Number of entries in ISTATE, JSTATE.
C LSTATE: Length of ISTATE, JSTATE, FSTATE
C ISTATE: An integer array of length LSTATE which holds the row
C indices of the state-space model.
C JSTATE: An integer array of length LSTATE which holds the column
C indices of the state-space model.
C IERROR: An integer holding the error return code.
C INFO: An integer holding additional information about an error
C return.
C 70

C ERROR RETURN CODES
C ——————
C
C IERROR: -1 Insufficient integer workspace. INFO=Required memory
C IERROR: -11 Error return from GRAPH, insufficient memory to accumulate
C ISTATE, JSTATE.
C
C===================================

INTEGER LOCISTBLOCK, LOCIPLIST
INTEGER LOCICOLOUR, LOCIBLKNO, LOCICOLNO, LOCIWORK 80

INTEGER LOCIRINPUTC, LOCJCINPUTC,LOCIWORKEND
INTEGER I, LWRK

INTEGER LOCIWORKOLD, IERROR,INFO

LWRK=MAX(MINPUT+3*NEINPUT+1,NY+NINDEX,2*NEINDEX+NINDEX)
LOCIRINPUTC=1
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LOCJCINPUTC=LOCIRINPUTC+NEINPUT
LOCISTBLOCK=LOCJCINPUTC+NEINPUT
LOCIPLIST=LOCISTBLOCK+NINDEX+1 90

LOCICOLOUR=LOCIPLIST+NINDEX
LOCIBLKNO=LOCICOLOUR+NINDEX
LOCICOLNO=LOCIBLKNO+NINDEX
LOCIWORK=LOCICOLNO+NINDEX
LOCIWORKEND=LOCIWORK+LWRK

C
C Check workspace requirements again now we have repartitioned
C

IF ((LOCIWORKOLD+LOCIWORKEND).GT.LIWORK) THEN 100

IERROR=−1
INFO=LOCIWORKOLD+LOCIWORKEND

RETURN
ENDIF

DO 100 I=1,NEINPUT
IWORK(I)=IRINPUT(I)
IWORK(I+NEINPUT)=JCINPUT(I)

100 CONTINUE
110

CALL GRAPH2(NB,NY,NX,NSTATE, MINPUT, NEINPUT,NINDEX,
$ NEINDEX, NESTATE, LSTATE, LWRK,IWORK(LOCIRINPUTC),
$ IWORK(LOCJCINPUTC),
$ IPERM, IFLAGY,IBLOCK, IRPRM, JCPRM, ISTATE, JSTATE,
$ IWORK(LOCISTBLOCK),
$ IWORK(LOCIPLIST), IWORK(LOCICOLOUR),
$ IWORK(LOCIBLKNO), IWORK(LOCICOLNO),
$ IWORK(LOCIWORK), IERROR)

RETURN 120

END
C===================================

SUBROUTINE GRAPH2(NB,NY,NX,NSTATE, MINPUT, NEINPUT,NINDEX,
$ NEINDEX, IPSTATE, LSTATE, LWRK, IRINPUTC, JCINPUTC,
$ IPERM, IFLAGY,
$ IBLOCK, IRPRM, JCPRM,ISTATE, JSTATE,ISTBLOCK, IPLIST,
$ ICOLOUR, IBLKNO, ICOLNO,IWORK, IERROR)

IMPLICIT NONE 130

INTEGER NX, NY

INTEGER NSTATE, MINPUT, NEINPUT
INTEGER NINDEX, NEINDEX, LSTATE, IERROR
INTEGER NB, LWRK

INTEGER IRINPUTC(NEINPUT), JCINPUTC(NEINPUT)
INTEGER IPERM(2*NINDEX)
INTEGER IFLAGY(NY)
INTEGER IBLOCK(NINDEX+1),IWORK(LWRK) 140

INTEGER ISTBLOCK(NINDEX+1)
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INTEGER ISTATE(LSTATE), JSTATE(LSTATE)
INTEGER IRPRM(NEINDEX), JCPRM(NEINDEX)
INTEGER IPLIST(NINDEX)

INTEGER I, J, IFINDBK
INTEGER IYDELETE,ISP, IGREY, IPSTATE

C
C Variables for depth first search: 150

C IBLKNO(ISP) contains block on stack.
C ICOLNO(ISP) contains pointer to IRLIST.
C ICOLOUR(I) is the colour of the i’th block.
C

INTEGER ICOLOUR(NINDEX), IBLKNO(NINDEX), ICOLNO(NINDEX)

C===================================
C Now we need to permute the rows of INPUT so that they correspond
C with the block triangularized form of [f xdot f y]
C 160

DO 100 I=1,NEINPUT
IRINPUTC(I)=IPERM(IRINPUTC(I)+NINDEX)

100 CONTINUE

C
C Row and column sort the data
C

CALL DECCOUNTSORT(NEINDEX,NINDEX,IRPRM,JCPRM,IWORK,
$ IWORK(NEINDEX+1),IWORK(2*NEINDEX+1)) 170

CALL COUNTSORT(NEINDEX,NINDEX,IWORK(NEINDEX+1),IWORK,
$ JCPRM, IRPRM,IWORK(2*NEINDEX+1))

C===================================
C Assemble [f x f u] into row pointer form.
C Entries are marked for every row associated with IBLOCK(I)
C Establish pointer for start of column into JCINPUT. Last pointer must
C be NEINPUT+1 i.e. the last row finishes at the end of the data.
C For empty rows the pointer is not incremented. Duplicate entries in 180

C JCINPUT for each block are removed.
C

C===================================
C Construct ISTBLOCK(I)=row number I=1,NB a pointer into the new system
C Some of the blocks may be empty!!
C First we’ll permute IFLAGY into IWORK.
C

DO 800 I=1,NX 190

IWORK(IPERM(I))=0
800 CONTINUE

DO 900 I=1,NY
IWORK(IPERM(I+NX))=IFLAGY(I)
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900 CONTINUE

ISTBLOCK(1)=1
IYDELETE=0

200

DO 1000 I=2,NB+1
DO 1100 J=IBLOCK(I−1),IBLOCK(I)−1

IYDELETE=IYDELETE+IWORK(J)
1100 CONTINUE

ISTBLOCK(I)=IBLOCK(I)+IYDELETE
1000 CONTINUE

C===================================
C Need to initialize pointer IPLIST(I) = BLOCK NUMBER. 210

C
C

J=1
IPLIST(1)=1

DO 1200 I=2, NINDEX
IF (I.GE.IBLOCK(J+1)) THEN

J=J+1
ENDIF 220

IPLIST(I)=J
1200 CONTINUE

C
C Change IBLOCK so it points to a position in IRPRM rather than the
C column number.
C

J=1
230

DO 1400 I=2,NB
1500 IF (JCPRM(J).LT.IBLOCK(I)) THEN

J=J+1
GOTO 1500

ENDIF
IBLOCK(I)=J

1400 CONTINUE

IBLOCK(NB+1)=NEINDEX+1
240

C===================================
C At this point we have all the pointers set and we can begin
C the depth first search. Remember to go up the matrix!!!
C since we are block upper triangular.
C

C Initialize block colours.

DO 1600 I=1,NB
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ICOLOUR(I) = 0 250

1600 CONTINUE

C
C Initialize pointer to ISTATE, JSTATE
C

IPSTATE=0

C===================================
C Start depth first search 260

C

DO 8000 I=1,NEINPUT
IGREY=JCINPUTC(I)

C
C Starting block for dfs
C

IFINDBK = IPLIST(IRINPUTC(I))
270

IF (ICOLOUR(IFINDBK).NE.IGREY) THEN
C
C Put a single block on the stack.
C

C
C We have to change the colours on each iteration of the depth
C first search otherwise we will be n^2!!! with the reinitializations.
C Hence ICOLOUR(I).NE.IGREY means unvisited on this round.
C 280

ISP=1

C
C Initialize stack inputs to zero
C

IBLKNO(1)=IFINDBK
ICOLNO(1)=IBLOCK(IFINDBK)+1

C 290

C Mark block as grey
C

ICOLOUR(IFINDBK)=IGREY

C
C Do while stack is not empty!!
C

9000 IF (ISP.NE.0) THEN
300

C Check to see if there are any remaining blocks to be searched
C
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IFINDBK=IBLKNO(ISP)
IF (ICOLNO(ISP).GE.IBLOCK(IFINDBK+1)) THEN

C
C Pop a block from the stack.
C

C=================================== 310

C
C Occurence information is written as stack is popped.
C
C Write occurence information to ISTATE in sparse format. Now we
C need to be careful about the entries we are going to delete from y.
C

DO 5000 J=ISTBLOCK(IFINDBK),ISTBLOCK(IFINDBK+1)−1
IPSTATE=IPSTATE+1 320

IF (IPSTATE.GT.LSTATE) THEN
IERROR=−11
RETURN
ENDIF
ISTATE(IPSTATE)=J
JSTATE(IPSTATE)=JCINPUTC(I)

5000 CONTINUE
C===================================

ISP=ISP−1 330

ELSE
IFINDBK=IPLIST(IRPRM(ICOLNO(ISP)))

IF (ICOLOUR(IFINDBK).NE.IGREY) THEN

C
C Put connected blocks on the stack
C

ICOLNO(ISP)=ICOLNO(ISP)+1 340

ISP=ISP+1
ICOLNO(ISP)=IBLOCK(IFINDBK)+1
IBLKNO(ISP)=IFINDBK
ICOLOUR(IFINDBK)=IGREY

ELSE

C
C Skip over entry
C 350

ICOLNO(ISP)=ICOLNO(ISP)+1
ENDIF

ENDIF

GOTO 9000
ENDIF
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ENDIF
8000 CONTINUE 360

C===================================
C Permute the graph back so that it is consistent with the
C original inputs.
C
C This bit is a little confusing as we have to remember all
C those Y’s we’ve deleted.
C
C
C 370

C

IYDELETE=0

DO 9500 I=1,NY
IF (IFLAGY(I).EQ.0) THEN

IYDELETE=IYDELETE+1
IWORK(IYDELETE)=I

ENDIF
9500 CONTINUE 380

DO 9600 I=1,NINDEX
IWORK(NY+I)=0

9600 CONTINUE

DO 9700 I=1,NX
IWORK(NY+IPERM(I))=I

9700 CONTINUE

DO 9800 I=1,IYDELETE 390

IWORK(NY+IPERM(IWORK(I)+NX))=I+NX
9800 CONTINUE

IYDELETE=0
DO 9900 I=1,NINDEX

IF (IWORK(I+NY).NE.0) THEN
IYDELETE=IYDELETE+1
IWORK(IYDELETE+NY)=IWORK(I+NY)

ENDIF
9900 CONTINUE 400

C
C Permute ISTATE according to IWORK.
C

DO 9950 I=1,IPSTATE
ISTATE(I)=IWORK(ISTATE(I)+NY)

9950 CONTINUE

410

C
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C===================================
RETURN
END

C Fortran code to perform counting sort
C assumes the data is in the form of pairs (i,j)
C where the data is to be sorted on i.
C By David M. Collins 09/12/00

SUBROUTINE countsort(ne, n, irow, jcol,irowsort,jcolsort,irwork)
IMPLICIT NONE
INTEGER ne, n, i, j
INTEGER irow(ne), jcol(ne), irowsort(ne), jcolsort(ne)
INTEGER irwork(n) 10

C Initialize workspace

DO 10 i=1,n
irwork(i) = 0

10 CONTINUE

DO 20 j=1,ne
irwork(irow(j)) = irwork(irow(j))+1

20 CONTINUE 20

C irwork(i) now contains # elements equal to i

DO 30 i=2,n
irwork(i) = irwork(i)+irwork(i−1)

30 CONTINUE

C irwork(i) now contains # elements less than or equal to i

DO 40 j=ne,1, −1 30

irowsort(irwork(irow(j))) = irow(j)
jcolsort(irwork(irow(j))) = jcol(j)
irwork(irow(j)) = irwork(irow(j)) − 1

40 CONTINUE

RETURN
END

SUBROUTINE deccountsort(ne, n, irow, jcol,irowsort,jcolsort, 40

$ irwork)
IMPLICIT NONE
INTEGER ne, n, i, j
INTEGER irow(ne), jcol(ne), irowsort(ne), jcolsort(ne)
INTEGER irwork(n)

C Initialize workspace
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DO 10 i=1,n
irwork(i) = 0 50

10 CONTINUE

DO 20 j=1,ne
irwork(irow(j)) = irwork(irow(j))+1

20 CONTINUE

C irwork(i) now contains # elements equal to i

DO 30 i=2,n
irwork(i) = irwork(i)+irwork(i−1) 60

30 CONTINUE

C irwork(i) now contains # elements less than or equal to i

DO 40 j=ne,1, −1
irowsort(ne+1−irwork(irow(j))) = irow(j)
jcolsort(ne+1−irwork(irow(j))) = jcol(j)
irwork(irow(j)) = irwork(irow(j)) − 1

40 CONTINUE
70

RETURN
END

C===================================
SUBROUTINE countsortd(ne, n, irow, jcol,f,irowsort,jcolsort,fsort,

$ irwork)
IMPLICIT NONE
INTEGER ne, n, i, j
INTEGER irow(ne), jcol(ne), irowsort(ne), jcolsort(ne)
DOUBLE PRECISION f(ne), fsort(ne)
INTEGER irwork(n) 80

C Initialize workspace

DO 10 i=1,n
irwork(i) = 0

10 CONTINUE

DO 20 j=1,ne
irwork(irow(j)) = irwork(irow(j))+1

20 CONTINUE 90

C irwork(i) now contains # elements equal to i

DO 30 i=2,n
irwork(i) = irwork(i)+irwork(i−1)

30 CONTINUE

C irwork(i) now contains # elements less than or equal to i

DO 40 j=ne,1, −1 100

irowsort(irwork(irow(j))) = irow(j)
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jcolsort(irwork(irow(j))) = jcol(j)
fsort(irwork(irow(j))) = f(j)
irwork(irow(j)) = irwork(irow(j)) − 1

40 CONTINUE

RETURN
END

110

C===================================
SUBROUTINE heapsort(ne,irow,jcol)

C
C Code adapted from Numerical Recipes in Fortran
C

IMPLICIT NONE
INTEGER ne
INTEGER irow(ne), jcol(ne) 120

INTEGER i, ir, j, l
INTEGER itemprow, jtempcol

C
C Check if we are called with only one thing to be sorted
C

IF (ne.LT.2) RETURN

l=ne/2+1
ir=ne 130

10 CONTINUE
IF (l.GT.1) THEN

l=l−1
itemprow=irow(l)
jtempcol=jcol(l)

ELSE
itemprow=irow(ir)
jtempcol=jcol(ir)
irow(ir)=irow(1) 140

jcol(ir)=jcol(1)
ir=ir−1

IF (ir.EQ.1) THEN
irow(1)=itemprow
jcol(1)=jtempcol
RETURN

ENDIF
ENDIF
i=l 150

j=l+l
20 IF (j.LE.ir) THEN

IF (j.LT.ir) THEN
IF(irow(j).LT.irow(j+1)) j=j+1

ENDIF
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IF (itemprow.LT.irow(j)) THEN
irow(i)=irow(j)
jcol(i)=jcol(j)
i=j
j=j+j 160

ELSE
j=ir+1

ENDIF
GOTO 20
ENDIF
irow(i)=itemprow
jcol(i)=jtempcol

GOTO 10
END

C=================================== 170

SUBROUTINE heapsortd(ne,irow,jcol,f)
C
C Code adapted from Numerical Recipes in Fortran
C

IMPLICIT NONE
INTEGER ne
INTEGER irow(ne), jcol(ne)
INTEGER i, ir, j, l
INTEGER itemprow, jtempcol
DOUBLE PRECISION f(ne) 180

DOUBLE PRECISION ftemp

C
C Check if we are called with only one thing to be sorted
C

IF (ne.LT.2) RETURN

l=ne/2+1
ir=ne

190

10 CONTINUE
IF (l.GT.1) THEN

l=l−1
itemprow=irow(l)
jtempcol=jcol(l)
ftemp=f(l)

ELSE
itemprow=irow(ir)
jtempcol=jcol(ir)
ftemp=f(ir) 200

irow(ir)=irow(1)
jcol(ir)=jcol(1)
f(ir)=f(1)
ir=ir−1

IF (ir.EQ.1) THEN
irow(1)=itemprow
jcol(1)=jtempcol
f(1)=ftemp
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RETURN 210

ENDIF
ENDIF
i=l
j=l+l

20 IF (j.LE.ir) THEN
IF (j.LT.ir) THEN

IF(irow(j).LT.irow(j+1)) j=j+1
ENDIF
IF (itemprow.LT.irow(j)) THEN

irow(i)=irow(j) 220

jcol(i)=jcol(j)
f(i)=f(j)
i=j
j=j+j

ELSE
j=ir+1

ENDIF
GOTO 20
ENDIF
irow(i)=itemprow 230

jcol(i)=jtempcol
f(i)=ftemp

GOTO 10
END
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C.2 Bayesian Parameter Estimation for a Corre-

lated Random Walk

program main
implicit none

c### Expermental observations (generated from a simulation)
integer NDATA
parameter (NDATA=21)
double precision YOBS(NDATA)
data YOBS /0D0, 3.672119e−02, 4.827638e+00, 4.637363e+00,

$ 4.560976e+00, 8.747609e+00, 6.471495e+00, 5.676686e+00,
$ 9.041612e+00, 1.188896e+01, 1.452761e+01, 1.844011e+01,
$ 2.012600e+01, 2.589751e+01, 2.461056e+01, 2.639762e+01, 10

$ 2.668319e+01, 2.571101e+01, 2.255608e+01, 1.881938e+01,
$ 2.001533e+01/

double precision DELTAT, SIGMA
parameter (DELTAT=1D0, SIGMA=1D0)

c### Lambda, Speed grid
integer NDIST, NSPEED
parameter (NDIST=51, NSPEED=51)
double precision MINDIST, MAXDIST, MINSPEED, MAXSPEED
parameter (MINDIST=0.5D0, MAXDIST=10D0)
parameter (MINSPEED=2D0, MAXSPEED=8D0) 20

double precision DIST(NDIST), SPEED(NSPEED)
c### Solution

double precision z(NSPEED,NDIST)
c### Intermediate variables
c### Upper a lower integration limits are y i-NWIDTH*alpha, and
c### y i+NWIDTH*alpha

integer NWIDTH
parameter (NWIDTH=6)

c### Number of quadrature points (must be an odd number!!)
integer NINTP, NFMAX 30

parameter (NINTP=201)
parameter (NFMAX=1000000)
integer nf, ixmin, ixmax
integer iceil
integer iptrst, iptrend, iptrphis, iptrphie
integer istart, igstart,iend
double precision x(NFMAX), f(NFMAX), w(NFMAX)
double precision phi(NFMAX), gamma(NFMAX)
double precision phitemp(NFMAX), gammatemp(NFMAX)
double precision p1(NFMAX), p2(NFMAX), p3(NFMAX), p4(NFMAX) 40

double precision xn(NINTP), r(NINTP), s(NINTP), t(NINTP)
double precision width1, width2, w1(NDIST), w2(NSPEED)
double precision temp1, temp2
double precision width, xmin, xmax, hmin, hmax
double precision time1, time2
integer i, j, k, l

if (mod(NINTP,2).ne.1) then
write(*,*) "NINTP is even"
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stop 50

endif

call cputime(time1)
c### Generate lambda speed grid

width=(MAXDIST−MINDIST)/(NDIST−1)
do i=1,NDIST

DIST(i)= (i−1)*width+MINDIST
enddo

width=(MAXSPEED−MINSPEED)/(NSPEED−1) 60

do i=1,NSPEED
SPEED(i) = (i−1)*width+MINSPEED

enddo

do j=1,NDIST
do i=1,NSPEED

c### Set PDF = 0 and begin accumulations
z(i,j)=0D0

c### Set initial x grid for evaluation of measurement PDF.
width=2*SPEED(i)*DELTAT/(NINTP−1) 70

ixmin=−iceil(NWIDTH*SIGMA/width)
ixmax=+iceil(NWIDTH*SIGMA/width)
nf=2*ixmax+1
if (nf.gt.NFMAX) then

write(*,*) "Insufficient memory. nf =", nf
stop

endif
xmin=width*ixmin
xmax=width*ixmax
do l=ixmin,ixmax 80

x(l−ixmin+1)=l*width+YOBS(1)
enddo

c### Calculate transition probabilities
do k=1,NINTP

xn(k) = (k−1)*width−SPEED(i)*DELTAT
enddo
call cond11(r,xn,DIST(j),DELTAT,SPEED(i),NINTP)
call cond21(s,xn,DIST(j),DELTAT,SPEED(i),NINTP)
call cond22(t,xn,DIST(j),DELTAT,SPEED(i),NINTP)

90

do k=1,nf
phi(k)=1D0
gamma(k)=1D0

enddo
c### Loop over data performing convolutions with transition PDFs.

do k=1,NDATA−1
call gauss(f,x,YOBS(k),SIGMA,nf)
do l=1,nf

c### Store integrand for Dirac-delta function
phitemp(l)=phi(l)*f(l) 100

phi(l)=width*phitemp(l)
gammatemp(l)=gamma(l)*f(l)
gamma(l)=width*gammatemp(l)
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enddo

c### Calculate pointers into convolution that
c### correspond to the NWIDTH*ALPHA limits on the
c### measurement PDF and recalculate grid.

hmin=xmin−SPEED(I)*DELTAT 110

hmax=xmax+SPEED(I)*DELTAT
xmin=YOBS(k+1)−NWIDTH*SIGMA
xmin=nint((xmin−YOBS(1))/width)*width+YOBS(1)
do l=1,nf

x(l)=(l−1)*width+xmin
enddo
xmax=x(nf)
if ((xmax.lt.hmin).or.(xmin.gt.hmax)) then

c### Intersection is empty we know that z=0 !!
z(i,j)=0D0 120

goto 100
endif
iptrst=max(1,nint((xmin−hmin)/width)+1)
iptrend=min(nf+NINTP−1,nf+NINTP−1−

$ nint((hmax−xmax)/width))

c### Calculate pointers into phi and gamma
iptrphis=max(1,nint((hmin−xmin)/width)+1)
iptrphie=iptrphis+iptrend−iptrst

130

c### Call convolution code

call partconv (phi,nf,r,NINTP,p1,iptrst,iptrend)
call partconv (gamma,nf,s,NINTP,p2,iptrst,iptrend)
call partconv (gamma,nf,t,NINTP,p3,iptrst,iptrend)
call partconv (phi,nf,s,NINTP,p4,iptrst,iptrend)

c### Zero out parts that don’t intersect.
do l=1,iptrphis−1

phi(l)=0D0
gamma(l)=0D0 140

enddo

do l=1,iptrend−iptrst+1
phi(l+iptrphis−1)=p1(l)+p2(l)

enddo

istart=max(iptrst,1)
iend=min(nf,iptrend)

do l=istart,iend 150

phi(l+iptrphis−istart)=exp(−SPEED(i)/DIST(j)*DELTAT)*
$ phitemp(l+iptrst−istart)+phi(l+iptrphis−istart)

enddo

do l=1,iptrend−iptrst+1
gamma(l+iptrphis−1)=p3(l)+p4(l)

enddo
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istart=max(NINTP,iptrst)
iend=min(nf+NINTP,iptrend) 160

igstart=max(1,iptrst−NINTP+1)
iptrphis=iptrphis+max(0,NINTP−iptrst)
do l=istart,iend

gamma(l+iptrphis−istart)=exp(−SPEED(i)/DIST(j)*DELTAT)*
$ gammatemp(l−istart+igstart)+
$ gamma(l+iptrphis−istart)

enddo

do l=iptrphie+1,nf
phi(l)=0D0 170

gamma(l)=0D0
enddo

c### enddo k
enddo
call gauss(f,x,YOBS(NDATA),SIGMA,nf)
do l=1,nf

phi(l)=width*phi(l)*f(l)
gamma(l)=width*gamma(l)*f(l)
z(i,j)=z(i,j)+phi(l)+gamma(l) 180

enddo
100 continue

c### enddo i
enddo

c### enddo j
enddo

c### Normalize z(i,j) assuming a uniform prior for (C,lambda)

c call qsimp(w1,NLAMBDA)
c call qsimp(w2,NSPEED) 190

c width1=(MAXLAMBDA-MINLAMBDA)/(NLAMBDA-1)
c width2=(MAXSPEED-MINSPEED)/(NSPEED-1)
c
c temp2=0D0
c do j=1,NLAMBDA
c temp1=0D0
c do i=1,NSPEED
c temp1=temp1+z(i,j)*w2(i)
c enddo
c temp2=temp2+w1(j)*temp1 200

c enddo
c do j=1,NLAMBDA
c do i=1,NSPEED
c z(i,j)=z(i,j)/temp2
c enddo
c enddo

call cputime(time2)
write(*,*) "Total elapsed CPU time:", time2−time1
open(10,file=’results.m’) 210

write(10,*) "% Matlab results file for posterior PDF"
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write(10,*) "% written by correlated.f"
write(10,*) "% Total elapsed CPU time: ", time2−time1, "s"
write(10,*)
write(10,*) "ndata = ", NDATA−1, ";"
write(10,*) "y =[ "
do i=2,NDATA

write(10,*) YOBS(i)
enddo
write(10,*) "];" 220

write(10,*) "DeltaT =", DELTAT, ";"
write(10,*) "alpha =", SIGMA, ";"
write(10,*) "i=(1:1:ndata)’;"
write(10,*) "theta = 12/(DeltaT*(ndata*(ndata+2)*(ndata+1)))

$ *(ndata/2*sum(y)-sum(i.*y));"
write(10,*) "sigma=sqrt(12*alpha^2/

$ (DeltaT^2*ndata*(ndata+1)*(ndata+2)));"
write(10,*) "speed =[ "
do i=1,NSPEED
write(10,*) SPEED(i) 230

enddo
write(10,*) "];"
write(10,*)
write(10,*) "dist =[ "
do i=1,NDIST
write(10,*) DIST(i)

enddo
write(10,*) "];"
write(10,*) "z =["
do i=1,NSPEED 240

write(10,1000) (z(i,j), j=1,NDIST)
enddo
write(10,*) "];"
write(10,*) "z=z./repmat(speed,1,length(dist));"
write(10,*) "z=z./repmat(dist’,length(speed),1);"
write(10,*) "contour(dist,speed,z,20)"
write(10,*) "pause"
write(10,*) "width=speed(2)−speed(1);"
write(10,*) "z(:,1)=z(:,1)/(width*sum(z(:,1)));"
write(10,*) "z2=normpdf(speed,theta,sigma) 250

$ +normpdf(speed,−theta,sigma);"
write(10,*) "z2=z2/(width*sum(z2));"
write(10,*) "plot(speed,z2,speed,z(:,1),’+’)"
write(10,*) "% End of file"

close(10)
1000 format(1000(D16.9, 1X))

end

subroutine cond11(r,x,DIST,DELTAT,SPEED,NINT)
C### Subroutine to evaluate the transition probability r. 260

implicit none
C### Inputs: x(NINT), LAMBDA, DELTAT, SPEED

integer NINT
double precision x(NINT), DIST,LAMBDA, DELTAT, SPEED

C### Outputs: r(NINT)
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double precision r(NINT)
C### Intermediate variables

integer i
double precision gamma
double precision dbesi1 270

double precision EPS
parameter (EPS=1D−60)

LAMBDA=SPEED/DIST

do i=1,NINT
gamma=DELTAT * DELTAT − x(i) * x(i)/(SPEED*SPEED)

if (gamma.le.0) then
gamma=EPS 280

else
gamma=LAMBDA * sqrt (gamma)

endif
r(i)=exp (−LAMBDA * DELTAT) * LAMBDA * LAMBDA *

$ dbesi1 (gamma) / (gamma*SPEED) * (DELTAT − x(i)/SPEED)
enddo
return
end

subroutine cond21(s, x,DIST,DELTAT,SPEED,NINT) 290

C### Subroutine to evaluate the transition probability, s.
implicit none

C### Inputs: x(NINT), LAMBDA, DELTAT, SPEED
integer NINT
double precision x(NINT), DIST,LAMBDA, DELTAT, SPEED

C### Outputs: s(NINT)
double precision s(NINT)

C### Intermediate variables
integer i
double precision gamma 300

double precision dbesi0
double precision EPS
parameter (EPS=1D−60)

LAMBDA=SPEED/DIST
do i=1,NINT

gamma=DELTAT * DELTAT − x(i) * x(i)/(SPEED*SPEED)
if (gamma.le.0) then

gamma=EPS
else 310

gamma=LAMBDA * sqrt (gamma)
endif
s(i)=exp (−LAMBDA * DELTAT) * LAMBDA * dbesi0 (gamma)

$ /SPEED
enddo

return
end
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subroutine cond22(t, x,DIST,DELTAT,SPEED,NINT) 320

C### Subroutine to evaluate the transition probability, t.
implicit none

C### Inputs: x(NINT), LAMBDA, DELTAT, SPEED
integer NINT
double precision x(NINT), DIST,LAMBDA, DELTAT, SPEED

C### Outputs: tnorm(NINT)
double precision t(NINT)

C### Intermediate variables
integer i
double precision gamma 330

double precision dbesi1
double precision EPS
parameter (EPS=1D−60)
LAMBDA=SPEED/DIST
do i=1,NINT

gamma=DELTAT * DELTAT − x(i) * x(i)/(SPEED*SPEED)

if (gamma.le.0) then
gamma=EPS

else 340

gamma=LAMBDA * sqrt (gamma)
endif

t(i)=exp (−LAMBDA * DELTAT) * LAMBDA * LAMBDA *
$ dbesi1 (gamma) / (gamma*SPEED) * (DELTAT + x(i)/SPEED)

enddo

return
end

subroutine gauss (z,x,mu,sigma,N) 350

C### Subroutine to calculate Gaussian density with mean, mu, and variance
C### sigma.

implicit none
C### Inputs: x(N), mu, sigma

integer N
double precision x(N)
double precision mu, sigma

C### Outputs: z(N)
double precision z(N)

C### Intermediate variables 360

integer i
double precision k
parameter(k=0.3989422804014327D0)

do i=1,N
z(i)=k/sigma*exp(−(x(i)−mu)*(x(i)−mu)/(2D0*sigma*sigma))

enddo

return
end 370

subroutine partconv (f,nf,g,ng,h,iptrst,iptrend)
c### Subroutine to calculate partial numerical convolution.
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c### We are only interested in the part of the convolution
c### that overlaps the non-zero section of the measurement
c### PDF. hfull(x)=int f(x)*g(x-u) du
c### where nhfull=nf+ng.
c### h=hfull(iptrh:iptrend)

implicit none
c### Inputs: f(nf), g(ng), nf, ng, iptrst, iptrend 380

integer nf, ng, iptrst, iptrend
double precision f(nf), g(ng)

c### Outputs: h(nf)
double precision h(*)

c### Intermediate variables
integer i, j, istart, iend, jstart, jend

do i=iptrst,iptrend
h(i−iptrst+1)=0D0

c### Band index 390

istart=min(i,ng)
iend=max(1,i−nf+1)

c### Column index
jstart=max(1,i−ng+1)
jend=jstart+istart−iend

c### Quadrature uses 1/2 endpoints
h(i−iptrst+1)=h(i−iptrst+1)+0.5D0*f(jstart)*g(istart)
do j=jstart+1,jend−1

h(i−iptrst+1)=h(i−iptrst+1)+f(j)*g(istart−j+jstart)
enddo 400

h(i−iptrst+1)=h(i−iptrst+1)+0.5D0*f(jend)*g(iend)
enddo

c### If there is only one entry in the row the integral is zero
if (iptrst.eq.1) then

h(1)=0D0
endif

if (iptrend.eq.(nf+ng−1)) then
h(nf+ng−1)=0D0 410

endif
return
end

subroutine partconv2 (f,nf,g,ng,h,iptrst,iptrend)
c### Subroutine to calculate partial numerical convolution.
c### We are only interested in the part of the convolution
c### that overlaps the non-zero section of the measurement
c### PDF. hfull(x)=int f(x)*g(x-u) du 420

c### where nhfull=nf+ng.
c### h=hfull(iptrh:iptrend)

implicit none
c### Inputs: f(nf), g(ng), nf, ng, iptrst, iptrend

integer nf, ng, iptrst, iptrend
double precision f(nf), g(ng)
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c### Outputs: h(nf)
double precision h(*)

c### Intermediate variables 430

integer i, j, istart, iend, jstart, jend

do i=1,iptrend−iptrst+1
h(i)=0D0

enddo

istart=max(1,iptrst+1−nf)
iend=min(ng,iptrend)

do i=istart,iend 440

jstart=max(iptrst+1−i,1)
jend=min(nf,iptrend+1−i)
do j=jstart,jend

h(i+j−iptrst)=f(j)*g(i)+h(i+j−iptrst)
enddo

enddo

return
end

450

function iceil(x)
c### Function to round towards infinity

implicit none
double precision x
integer iceil

if (((x−int(x)).eq.0D0).or.(int(x).lt.0D0)) then
iceil=int(x)

else
iceil=int(x)+1 460

endif
return
end

subroutine qsimp(w,nf)
c### Subroutine to calculate vector of Simpson weights

implicit none
integer nf, n,i
double precision w(nf)

470

if (mod(nf,2).ne.1) then
write(*,*) "NF is even"
stop

endif
n=(nf−1)/2
w(1)=1D0/3D0
w(nf)=1D0/3D0
do i=1,n−1

w(1+2*i)=2D0/3D0
enddo 480
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do i=1,n
w(2*i)=4D0/3D0

enddo

return
end
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