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ABSTRACT

A Set-Theoretic approach for solving practical full-
state feedback control problems when some or all of the
states are not accessible and for which the available
controls are limited and it is desired to keep the sys-
tem states or outputs within prescribed bounds in the
presence of input disturbances is developed.

The input disturbance is represented by an unknown-
but-bounded process, a reduced-order observer is employed
to reconstruct the inaccessible states, and the control
and state constraints are treated directly. By treating
the constraints directly, this technique ensures that all
the constraints will be satisfied and a once-through de-
sign results,

The control problem associated with the operation
of a pressurized water nuclear power plant is investigated
and the Set-Theoretic Control technique is applied to dem-
onstrate its applicability to practical control problems.

Thesis Supervisor: Leonard A. Gould

Title: Professor of Electrical Engineering
and Computer Science
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NOMENCLATURE 13

For the sake of continuity ad for a minimum of confu-

sion, all symbols used in the main text and the appendices

are defined immediately. However, the following symbols are

redefined in order to eliminate any confusion:

8I fraction of delayed neutron

a free parameter that enters in the con-
struction of the ellipsoid

P' Pext nuclear reactor reactivities

PsubscriDts are densities

Si
1

SS 1 and

T

LT

L

ni

n

91

£

Abbreviations

PWR
LTI
STC
HP
LP
UTSG

are numbers i-1,2,2,..,

S2 are matrices

are numbers j=1,2,3,...

is a transformation matrix

turbine power output

a matrix

numbers i-1,23,...

vector

on a matrix, it means its transpose

on a variable, it means a prime

on a variable, it means double prime

if used as an operational symbol it means
element of

if used as a variable, it means main steam
valve coefficient.

Pressurized water reactor
Linear time-invariant
Set-Theoretic Control
High pressure
Low pressure
U-tube steam generator
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Chapter 1

INTRODUCTION

1.1 Background

By far, the largest fraction of electrical supply in

most parts of the world today is produced in central power

stations which employ steam-driven turbines to drive the

electric generators. Most such plants have in common

what is termed in the industry as a "Steam Supply System."

The name implies producing high pressure steam from water.

In pressurized water nuclear power plants, which share this

feature, the energy needed to produce the steam is pro-

vided by nuclear fission of uranium, which takes place

in the core of a nuclear reactor. In any power plant

and consequently in a PWR (pressurized water reactor) power

plant, the one basic operating objective is to produce

electrical energy as required by the load demand for that

power plant. In order to meet the load demand, the power

produced in the reactor core, its transfer through the

various power conversion systems, and the power delivered

by the turbine must be controlled. Such a control system

must provide a simultaneous coordinated control for both

the reactor and the turbine. A close coordination of the

reactor and turbine controls will prevent large deviations

in plant variables. Keeping the plant variables within
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prespecified bounds at all times is a vital requirement

since violation of limiting constraints can result in poor

performance, and could subject the power plant to extensive

damage.

In summary, the problem considered is to develop a con-

trol for load changes in a PWR power plant which can maintain

plant variables within prescribed bounds at all times.

In this study, this class of problems is addressed by

using "Set-Theoretic Control (STC)", synthesis technique (1).

In this design approach, satisfaction of system state or

outputs and control constraints requires that the variables

and controls lie within bounded sets. The bounded sets are

approximated by bounding ellipsoids for the ease of calcula-

tions. In the development of this design approach, the

control system that yields the maximum tolerable amplitude

of the input disturbance that the system can tolerate with-

out violation of the state and control constraints is

determined.

1.2 Review of Literature in Set-Theoretic Control

The foundation of the "Set-Theoretic Control" concept

is based on the "unknown-but-bounded" representation of un-

certainties (2,3). This representation assumes no

statistics for the uncertainty and the only information

that is known about its identity is that it belongs to a



16

bounded set. With this formalism, the idea of "using only

available amount of control effort is re-stated as "using

control from a bounded set of controls" and the idea of

"keeping the system states within prescribed bounds at all

times" is re-stated as "keeping the system states within

a prespecified sequence of bounded sets," where the pre-

specified sequence of bounded sets defines what is termed

a "Target Tube." Hence, the control objective is to keep

the system state in a Target Tube, using control from a

bounded control set, in the presence of unknown-but-bounded

input disturbances.

Earlier work (2,4,5,6,7,8) in Set-Theoretic Control was

done in the field of prediction and estimation. Further

work (9,10,11,12,13) on Target Tube reachability problems

provided more insight into the applicability of the Set-

Theoretic concept to control system design. Glover and

Schweppe (12) used the Target Reachability results to

describe the control problem as a Dynamic Programming

Problem. They showed that a solution of this problem,

if it exists, would prescribe a sequence of admissible

control sets that would meet the control objective but

where a solution does exist, no specific control is

defined at any particular instant of time. Sira-Ramirez(13)

extended the Target Reachability Concept to the coordinated

control of large scale systems and as in (11,12), the
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control solution was defined in terms of a sequence of

sets which may or may not exist and no procedure was

defined for determining a specific control to use at any

given time. Usoro (1) proceeded a step further by

defining a specific class of control systems (hypothesizing

a full state feedback control structure) and then selecting

the best control in this class which yields non-violation

of state and control constraints in the presence of the

input disturbance. In his development, he reformulated

the Set-Theoretic Control problem as "attempting to maxi-

mize the amplitude of the unknown-but-bounded input dis-

burbance instead of defining a prespecified bound on it."

Moore (14) applied set-theoretic concept, to a limited

extent, to the control of nuclear power plant load changes

by considering a state constraint set which is reduced by

the effect of stochastic observation noise.

1.3 Research Objectives

The main objectives of this study are:

(1) To extend the Set-Theoretic Control synthesis

technique as reformulated in (1) to include more

practical situations. Note that the hypothesized

structure for the control used in (1) is a full-

state-feedback which assumes knowledge of the

entire state variables. Unfortunately, in most
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practical systems, the complete state is not

always available for measurement and so there

is a need to reconstruct he state via a

device called "Observer." This subject is

addressed in this study.

(2) To apply Set-Theoretic control to the PWR power

plant as an example of a solution to a practical

control problem..

1.4 Modern Versus Classical Control Techniques in

Nuclear Power Plants

In the U.S. the design of control systems for nuclear

power plants is mostly based on conventional frequency

domain analysis methods and process computers have not

been used extensively. However,' the use of computers for

data acquisition, logging, plant performance monitoring,

etc., and the tendency toward adopting advanced control

techniques are growing at a rapid rate (15). In Norway,

an extensive program has been underway at the OECD Halden

Reactor Project using "Linear Quadratic Gaussian".

technique (16, 17). Frogner (18, 19) has applied this

technique to the control of a boiling water nuclear power

plant.

The lack of acceptance of modern control methods is

due to two main shortcomings (15).
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(1) Although the theoretical background is very well

developed, the practical design methods have not

been yet established.

(2) Most of the modern control methods result in

systems which are best implemented by computers

thus resulting in additional issues related to

the licensing of the plant.

However, we hope that in spite of these shortcomings,

the special advantages of Set-Theoretic Control will lend

it attractive to implementation.

It is worthwhile to note that in nuclear power plants

the control system is separated from the protection sys-

tem. U.S. Regulations require that credit cannot be taken

for the control system performance in the plant safety

analysis (15). Although the control system may guide the

plant in a safe direction during an emergency condition,

this contribution is not to be incorporated in the safety

analysis. Regulations (20) require an RPS (Reactor

Protection System) which is a special quadruply redundant

dedicated control sytem whose function is to trip the

reactor if any one of several potentially unsafe conditions

appear to exist.

1.5 Organization of Thesis

This thesis is organized in seven chapters. The second

chapter describes a typical pressurized water nuclear power
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plant with its steady state control program. Some of the

control systems are reviewed and a mathematical model of

the plant is presented. Chapter 3 treats the reconstruc-

tion of state by using observers. Chapter 4 underlines

the formulation of the Set-Theoretic Control synthesis

technique and the observation/control problem is stated.

In Chapter 5, the solution procedure is discussed and

the relevant parts of the algorithm, used in the solution

of the problem are presented. Applications are presented

in Chapter 6. Explanatory examples are solved first and

the procedure is applied to the PWR power plant. The

effectiveness of the technique is evaluated through simu-

lations of the time responses of the system. Conclusions

and recommendations are given in the last chapter.



21

Chapter 2

PRESSURIZED WATER NUCLEAR POWER PLANT

2.1 Introduction

The basic objective of a power plant is to produce

electrical energy as required by the load demand for that

power plant. The load demand from the power distribution

system is directly applied to the turbine-generator of the

plant. In a nucle-ar power plant, several energy conversions

take place, from nuclear energy to electrical energy. In

order to meet the load demand, the different power conversion

systems must respond with the correct flow of preconditioned

steam to the turbine. Therefore in satisfying the basic

objective, the energy release and energy transfers through

the plant must be controlled. Hence the first specific

control requirement is to coordinate the reactor control rods
and the turbine throttle valves so as to avoid large devia-
tions in plant variables.

In recent years, the problem of maintaining plant

variables within prescribed bounds at all times during

perturbations has become more demanding 21) because plants

are larger, power levels are higher, and margins imposed by

regulatory agencies are tighter. The effectiveness of any

control system is in fact evaluated in terms of its ability

to maintain the plant state variables within prescribed
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bounds, using only available control effort, in the presence

of input disturbances.

In this study, the PWR power plant is described by a

mathematical model derived from physical laws. The emphasis

is placed on modeling for analyzing normal operational tran-

sients and for designing control systems. The model is

linearized and assumed time-invariant. Thus, it is represented

by a set of equations of the form:

n = Ax + Bu + Gw (2.1.1)

z = Mx (2.1.2)

y = Hx (2.1.3)

where,

x is an nxl state vector

u is an rxl input control vector

w is a scalar input disturbance

z is an mxl measurement input vector

y is a pxl system output vector

A,B,H and M are matrices and G is a vector with

appropriate dimensions.

A full-state feedback control law is designed by using

the Set-Theoretic Control synthesis technique (1) as we shall

see in Chapter 4. This law requires knowledge of the entire

state vector x. However, not all components of this vector

can be detected. For this reason, the unavailable state

variables are first reconstructed via an observer as we shall

see in Chapter 3.



23

A typical PWR power plant is discussed in this chapter.

Control strategies for this type of power plant are reviewed

in section 2.2 with a general description. Some control

systems of the power plant are discussed in section 2.3 and

a mathematical model of the plant is presented in section 2.4.

2.2 Control Strategies for a PWR Power Plant

Let us begin this section with a brief description of

a pressurized water nuclear power plant in order to follow

the control strategies applied.

2.2.1 General Description

All PWR power plants (22,23) employ a dual system for

transferring energy from the reactor fuel to the turbine

as shown schematically in Fig. 2.2.1. The major subsystems

are reactor core, primary water loop, pressurizer, steam

generator, secondary water loop, throttle valves, turbine,

by-pass valve, condenser and feedwater system.

Heat is produced in the reactor core by nuclear fission.

Primary water flows downward around the core and then up-

ward through the fuel elements. It is maintained at high

pressure (about 2250 psi) and is heated to about 6000 F with-

out boiling. Primary water carries energy from the reactor

to the steam generators through a pipe called the hot leg.

PWR systems usually have two, three, or four reactor coolant
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loops (depending on the plant rating) with each loop having

one steam generator. Reactor coolant loops and steam

generators are, thus, operating in arallel. In each steam

generator, the high-pressure primary water circulates through

tubes whose outer surfaces are in contact with a stream of

secondary water returning from the turbine condenser (this

is called the feedwater). The feedwater is at considerably

lower pressure and temperature than the primary coolant water

and heat transferred from the hot primary water inside the

tube§ causes the feedwater to boil and produce steam. The

steam generator tubes thus separate the reactor coolant

from the secondary-side water. Reactor coolant is pumped

within its closed loop from steam generator to reactor vessel

via a pipe called the cold leg. Steam produced in the top

of the steam generators passes through steam separators.

The throttle valves admit steam to the turbine. The turbine

produces shaft power from the expansion of the steam. From

the turbine, the steam is admitted in the condenser and

then to the condensate system and through the feedwater

system to rereat the cycle. Alternatively, by-pass valves

admit steam from the steam generator directly to the con-

denser by by-passing the turbine.

2.2.2 Steady State Control Programs

It has been mentioned in section 2.1 that the first
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specific control requirement is to coordinate the reactor

control rods and the turbine throttle valves so as to avoid

large deviations in plant variables In PWR power plants,

this coordination is accomplished according to a well

determined program (21,24). This program favors the tend-

ency that primary loop variables must be kept within

acceptable limits and favors the tendency that steam must

be delivered to the turbine at acceptable pressures.

Why should primary loop variables be kept within

acceptable limits and why should steam be delivered at

acceptable pressures?

Let us first see the aspects of keeping primary

loop variables within acceptable limits. This means

(1) to maintain the state variables of the nuclear

reactor within limits by keeping the reactivity

equal to zero at all times; and

(2) to maintain the volume changes in the pressurizer

within limits.

For the control problems of interest here, the time

constants are of the order of seconds. It follows that

reactivity is affected only by the following three mechanisms.

(1) control rods;

(2) moderator temperature changes; note that the

moderator is also the reactor coolant;

(3) fuel temperature changes; this is also known as

Doppler effect.
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Suppose that the average temperature of the reactor

coolant changed. Then the reactivity in the core will

vary due to both moderator and/or fuel temperature varia-

tions, and the control rods must be moved in order to

keep a zero reactivity. In addition, the pressurizer must

accomodate the volume changes of the reactor coolant. In

this case, the control rods and the pressurizer increase

the capital cost of the plant. Of course if the average

temperature of the coolant were not changing, then this

incremental capital investment would not have been required.

Now let us understand the other aspect of the problem

which is to deliver steam at acceptable pressures.

Steam must be delivered to he turbine at a sufficiently

high pressure to maintain turbine plant efficiency (25).

Fig. 2.2.2 shows the variation of steam pressure as a func-

tion of steam temperature in the case of the saturated

steam which is produced in steam generators of PWR power

plants. It is clear from this figure that a change in steam

temperature results in asizable change in the steam pressure.

Acceptable pressures are meant to hold steam temperature

constant in order to avoid a large difference between the

no-load steam pressure and the full-load steam pressure. In

this way an optimum turbine performance is achieved in case

of a constant steam temperature and pressure.

Therefore in combining the two aspects, the primary



28

Steam Pressure (psia)

1200

900

600

300

400 - 500 600

Steam Temperature
(°F)

Fig. 2.2.2 Steamn Pressure as a Function
of Steam Temperature.



Temlperature or I ressur

_.~ ~~--'"TIIL

ave
TCL

Ts

\-v----_- _ S
% Power Output

Fig. 2.2.3 Constant-Average Temperature Program.

Temp. Pres.

T

v Power lutput

Fig. 2.2.4 Constant-Pressure Program.

I--�I--�- �--I-U--�--�--------- - .

29



30
loop prefers a constant coolant average temperature Tave

as shown in Fig. 2.2.3 and the secondary loop prefers a

constant steam temperature as shown in Fig. 2.2.4. This is

readily seen by writing the energy balance between the

primary loop and the secondary loop (21).

SG = (heffA)SG (T ave -Ts) (2.2.1)

Where

PSG = power delivered to the secondary fluid

heff = average effective primary-to-secondary heat

transfer coefficient for- the whole steam

generator

A = heat transfer area in steam generator

Tave coolant average temperature

= 1/2 (THL+TCL), where THL is hot leg temperature

and TCL is cold leg temperature

Ts - average steam temperature.

Eqn. (2.2.1) shows that the right-hand side must increase

with increasing power demand. This indicates that T andave
Ts cannot both remain constant with increasing load demand

unless (CheffA)SG increases.
In PWR power plants, there are two types of steam gener-

ators. The U-tube recirculation type steam generators used

by Westinghouse (24) and the once-through steam generators
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used by Babcock Wilcox (20). The former generate

saturated steam and have a substantial energy storage; the

latter generate superheated steam and have a higher thermo-

dynamic efficiency but also a smaller energy reservoir (26).

In this study a U-tube recirculation-type is considered

and it is abbreviated as (UTSG).

For a UTSG, the term (heffA)SG does not change appreci-

ably with load (21). Therefore the difference (Tave-Ts)

must change with load. It is quite obvious that it is not

possible to have a constant Tave in the primary loop and

a constant Ts in the secondary loop at all power levels.

A control strategy adopted in current PWR power plant

practice (with UTSG) is a compromise with Tave and Ts

(and consequently Ps) used as set points both varying

with load as shown in Fig. 2.2.5 . The relation between

Tave and Ps set points as functions of power levels is

called a steady state program.

According to this program, when load increases, Tave

increases and because more energy is added to the reactor

coolant, the control rods move out in order to offset the

negative reactivity feedback due to the moderator and

Doppler effects.
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2,3 PWR Power Plant Control Systems

In today's PWR power plants with a power exceeding

1200 MWe there is a multitude of variables to be observed.

Present control methods applied conventionally assign

single loop controllers to single variables and the

coupling phenomena between them is handled individually.

Kerlin (21) mentioned 10 measurable system variables of

potential value as control signals and 7 potential system

inputs for control actions. This makes 70 possible control

loops. In current practice, the interaction between

different control loops is supervised by a main control loop

which can represent a specific control system in the power

plant. For load changes control, we are mainly concerned

with the following control systems:

(1) reactor control system

(2) steam by-pass control system

(3) steam generator control system

(4) pressurizer pressure and level control systems.

In this study, the feedwater flow to the steam generator

is assumed to be controlled perfectly. This means that the

steam flow rate is equal to the feedwater flow rate at all

times. For this reason, the steam generator control system

is not considered. Concerning the pressurizer, pressure

changes have a feedback on the rest of the plant system

through the pressure coefficient of reactivity, cp.p'
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This coefficient is very small and can be neglected. The

water level in the pressurizer has no feedback on the rest

of the plant system. Therefore the pressurizer and level

control systems are both neglected.

The remaining control systems are seen as playing an

important role if coordinated by avoiding large deviations

in plant variables when the case is to meet large and fast

load changes. The reactor control system and the steam by-

pass control system are described separately in the next

two sections.

2.3.1 Reactor Control System

The main purpose of the reactor control system is to

force the average reactor coolant temperature, Tave to

follow as closely as possible the average temperature set

point, Tave set' determined by the steady state control

program shown in Fig. 2.2.5. Tave is measured by measuring

hot leg THL and cold leg TCL temperatures since Tave = 1/2

(THL+TCL). Temperatures are measured by using platinum

resistance thermometer detectors (RTD) (24).

There are three inputs to the reactor control system

as shown in Fig. 2.3.1:

(1) signal of the average temperature set point, Tave set;

(2) signal of the average coolant temperature T
as measured via Tve and T

as measured via THL and TCL; and,
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(3) signal of a temperature equivalent of a power

mismatch

A power mismatch occurs when reactor power is different

than turbine load. When turbine load changes stepwise, the

reactor power cannot change in a step manner to the new

steady state power level but rather it is delayed due to

the fact that control rods must be withdrawn to offset

the Doppler and moderator reactivity effects for a period

of time. But later in the transient the reactor power

must exceed the turbine load in order to make up for the

energy removed from the reactor coolant. The result is

that there is an overshoot in the reactor power following

a step increase in the turbine load as shown in Fig. 23.2

(25). The overshoot must be kept below a certain level

in order to avoid a reactor trip according to design criteria.

This is usually accomplished by moving the control rods at

maximum speed at the beginning of the transient, thus

reducing the overshoot. A signal of a power mismatch repres-

ented by a temperature is sent to the summation point of

the rod speed controller via the third channel.

Note that in Fig. 2.3.1 signals of the power mismatch

and Tave set are added positively while the signal of the

measured Tave is added negatively in order to make a tempera-

ture error signal. This error signal is sent to the rod

speed controller. For positive error signal, the reactivity
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induced is positive and for negative error signal, the

reactivity induced is negative which is consistent with

the steady state program. The automatic rod control

system is designed to maintain a programmed average temper-

ature in the reactor coolant by varying reactivity within

the core. This system is capable of restoring Tave to

within + 3.5°F of Tave set including a + 2F instrument

error and a + 1.5°F deadband following load changes (25).

2.3.2 Steam By-Pass Control System

The main purpose of the steam by-pass control system

is to limit high reactor coolant average temperature excursions

on turbine load reduction.

A typical steam by-pass valve system associated with steam

dump system as shown in Fig. 2.3.3(a) would allow a 95%

step load reduction (50% on some plants) without a reactor

trip (25). This system is not actuated for load losses less

than 15%. For a plant designed to take a 95% load rejection

without a reactor trip, the total capacity of the steam

dump system is 85%. Thus a 95% load reduction followed by

steam dump appears to the steam generators, Reactor Coolant

System (RCS), and nuclear reactor as a step decrease in load

of approximately 10%. In addition a steam dump (25)

(1) permits to remove stored energy and residual heat

following a reactor trip without actuation of the
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steam generator safety valves

(2) permits control of the steam generator pressure

at no-load conditions and permits a manually

controlled cooldown of the plant.

Similarly to the reactor control system, the steam

dump control system is actuated through the reactor coolant

average temperature control signals. Following a load

reduction, both of the two control systems become operative

upon coincidence of an abnormal increase in Tave error

signal and the signal derived from a large reduction in

turbine load (function of turbine first stage pressure) as

shown in Fig. 2.3.2(b). The'by-pass valves open to the

condenser and the rod control system is actuated to reduce

reactor coolant average temperature to its new programmed

set point.

2.4 System Model

A typical PWR power plant is represented by a mathe-

matical model in order to:

(1) establish the control law for a full-state feedback;

(2) Predict maximum input disturbance which the system

can tolerate without violating the state and control

constraints; and

(3) Predict dynamic responses of potential system

states and controls.
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A mathematical model of a pressurized water nuclear

power plant is presented in Appendix A. For the primary

side this modeling follows the proc-lure presented in (21)

and applied in (27,28,29) and, for the secondary side the

modeling procedure adopted in (29,30). Other modeling

procedures are found in (31,32,33).

The model presented in the appendix is linearized

about operating values. It is of high order ( a set of

31 linearized first order differential equations). In

general, if the system model were of order n with r

controls and m measurements (Eqns (2.1.1), (2.1.2) and

(2.1.3)), the number of independent variables that we have

to search over for the solution of the problem in this

study will be equal to (l+nxr+(n-m)xm). A high order model

will increase the computational time significantly; hence a

low order system model is desirable but it must be accurate

enough to predict the actual measurements fairly well.

Several methods of model reduction have been reported

in the literature. Davison (43) described a computational

approach of linear model reduction that eliminates the fast

modes of the model. Another approach using an. canomical

form is described in (44). In (29), the authors investigated

two methods of model reduction: the physical method and

the pole-zero deletion method. The first method was applied

to a 57th order PWR system model and resulted in a 25th order
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model. The low order model predicted the turbine mechanical

shaft power equally as well as the high order model. But

if other output variables of the sys+em are of interest,

some small differences exist between the two models. This

is primarily due to the nonlinear reactor control system

of the high order model. The second method was applied to

a 23rd order model and resulted in a 9th order approximation.

It was found that as more pole-zero pairs were deleted a

point was reached where the reduced response no longer

resembled the full order response.

Though the 31st order model presented in Appendix A

is a reduced version of the 57th order PWR model given in

(29), it is still of too high an order. For the purpose

of this study, it is desirable to reduce the model to a

lower order without losing its validity. In this section,

the system model presented in Appendix A is reduced to a

model of ten state variables. The response characteristics

of the 10th order model will be investigated by simulation

studies of their transient responses to the input disturbance

in Chapter 6. The maximum amplitude of the input disturb-

ance is determined by using the Set-Theoretic Control

synthesis technique presented in Chapter 4 following the

solution procedure presented in Chapter 5.

2.4.1 Reactor Core Model

The reactor core design used in this study is typical of
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of PWR's manufactured today. The essential design parameters

are given in Table 2.4.1. The numerical values of the

parameters listed in this table are taken from (29) and are

typical of a Westinghouse PWR plant.

The theoretical model representing the reactor core

is a linear time-invariant state-variable model that in-

cludes the neutron kinetics, the core heat transfer and

the transport of the coolant in the piping connecting the

core to the steam generators.

(1) Neutron Kinetics:

The major justification for using point kinetics in

Appendix A is that the obsorvor/controller does not need

information about spatial flux transients to coordinate

between the reactor control rods and the turbine valve

when the objective is to meet the load demand. There are

seven linearized point kinetic equations (Eqns. (A.3) and

(A.4)),one for power and six for delayed neutron precursors.

Onega and Karcher (33) studied the sensitivity of the

results to the number of delayed neutron precursors. For

a step input reactivity of 30 cents, they compared the

results of one precursor model to those of a six pre-

cursor model (27). They found that the final equilibrium

power, average fuel temperature, and bulk coolant temperature

were 2378.36 MBVth, 1679.87 °F and 574.56 °F respectively,
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Table 2.4.1

Essential Design Parameters

For the Reactor Core Model

* Kinetic Characteristics

Fuel Temperature Coefficient aF (1/°F) -l.1x10 5

Moderator Temperature Coefficient ac (1/°F) -2.0x10 4

Moderator Pressure Coefficient a (1/psi) -1.0x10 6

Neutron Generation Time A (sec) 17.9x10 6

Total Delayed Neutron Group Fraction 8* 6.898x10 3

Averaged Delayed Neutron Decay Constant X(sec 1 ) 0.082246

Delayed Neutron Constants:

Decay Constant

(Xi sec 1)

0.0125

0.0308

0.1140

0.3070

1.1900

3. 1900

Fraction

*

0.000209

0.001414

0.001309

0.002727

0. 00925

0.000314

Group

1st

2nd

3rd

4th

5th

6th
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Table 2.4.1 (continued)

*Core Thermal and Hydraulic Characteristics

Initial Power Level P (MTth) 3436.0

Mass of Fuel Mf (lbm) 222739.0

Specific Heat of the Fuel Cpf (Btu/lbmF) 0.059

Total Heat Transfer Area A (ft2) 59900.0

Fraction of the Total Produced in the Fuel f 0.974

Average Fuel Temperature (F) 1600.0*

Overall Heat Transfer Coefficient from

Fuel to Coolant, heff (Btu/hr ft2F) 200.0

Volume of Coolant n Upper Plenum Vp ( 3 1376.0
Volume of Coolant in Upper Plenum V (ft3) 13791.0

Volume of Coolant in Lower Plenum VLP (ft3 1791.0

Volume of Coolant in Hot Leg Piping VHL (ft3 ) 250.0

Volume of Coolant in Cold Leg Piping VCL (ft3) 500.0

Total Volume of Coolant in Core V (ft3) 540.0

Total Mass flow rate in core in (lbm/hr) 1.5x108

Hot Leg Temperature at 100 % Power THL (°F) 592.5

Cold Leg Temperature at 100 % Power TCL (°F) 542.5

Nominal Reactor Coolant System Pressure Ppo (psia) 2250.0

Coolant Density at System Pressure and

Average Temperature pc (ibm/ft 45.71

Coolant Specific Heat at System Pressure

and Average Temperature CpC (Btu/l.bm F) 1.390

* This value has been calculated.
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for the six precursor model, and 2379.14 MWth, 1683.4 F,

and 574.57 °F, respectively, for the one precursor model.

These results indicate that one averaged precursor is ade-

quate. The one precursor constants are given by:

B = 8 and X = / Xi/hi (2.4.1)
i =l

Thus the neutron kinetics model is reduced to two

equations. One more equation can be eliminated by adopting

the prompt jump approximation (35). Then Eqn. (A.3) becomes:

AX C + p (2.4.2)

and the neutron kinetics are governed by

d 6C _" p (2.4.3)as =A

As it can be seen from Eqn. (A.5) the reactivity p

contains the different feedbacks.

(2) Core heat transfer model

This model involves the heat conduction in the fuel

and the heat transfer in the coolant. The fuel temperature

is introduced in the overall system model to account for the

Doppler feedback. The coolant temperature is introduced in



the overall system ;nodel to account for the moderator

temperature feedback.

In PWR's,fuel rods are cylindrical. Generally, radial

conduction dominates over axial or azimuthal conduction (21).

In this context, it is common to divide the fuel into nodes

as shown in Fig. 2.4.1. A heat balance, as given by Eqn.

(A.7) may be performed for each node. The average time it

takes the heat to be transferred from the fuel to the cool-

ant includes the gas gap and the cladding. By defining the

average fuel temperature as given by Eqn. (A,8) one can use

the nodal approach to select one single node representing

the average condition in the fuel, gap, clad assembly.

The heat transfer in the coolant is an axial convection

which takes place in a channel when the coolant moves up-

ward. Models for time domain analysis are usually based

on a nodal approximation. Kerlin et al (27) formulated

two core heat transfer models: a detailed one with 45

nodes (15 for fuel and 30 for coolant), and a simplified

one with 3 nodes (1 for fuel and 2 for coolant). For a

step insertion of 7.14 reactivity the results of the two

models are in good agreement. Because of these results,

the low order model shown schematically in Fig. 2.4.2 is

used. Kerlin et al (27) state that this modeling approach

(of two coolant nodes for each fuel node) provides better

representation than the well-mixed or arithmetic average



48

gas gap
clad

Fig. (2.4.1) A Nodal Model for
Fuel Heat Transfer.



49

T 2

TC
1

-LP

Fig. 2.4.2. Schematic of the Fuel-Coolant
Heat Transfer Model.



average approximation (31). It gives a good approximation

to the average coolant temperature Tl. This temperature

is taken as the temperature to determine the heat transfer

rate. The outlet temperature is taken as the average

of the second node, T 2. Half of the heat rate is trans-

ferred to each fluid section. The governing equations of

Tcl and Tc2 are given by Eqns. (A.l1) and (A.12).

The lumped parameter model of the core heat transfer

is represented in this study by the three linearized

equation (A.13), (A.14), and (A.15).

fPo 6P Afheff
[ 6T f- 6T 1 

I !-IpJ f,p- I Il(CpJ f

(l-f)Po P Afheff
= 1 -- + - [6Tf-6T 1] 1mCp)cl o /mmc 1 ) cl

(m ) [6TcI- TLp]mcl

(l-f)Po dp Afhff [ Tf-6T]= _ + ~ f T cl]
(mCp)c2 Po 2 (mcp) c2

(mc) [6ac2- Tcl]

where P is
Po

substituted by its equivalent given by Eqn.

(2.4.2), and all terms are defined in Appendix A.
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d
-- 8T -

dt f

d
T cidt c

(2.4.4)

d
dt c2dt

(2.4.5)

(2.4.6)
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(3) Reactivity Feedback

The inherent feedbacks to the reactor used in this

study are the Doppler feedback and the moderator tempera-

ture feedback. The primary pressure Pp of the reactor

coolant system has some feedback on the rest of the

system but the pressure coefficient of reactivity, ap is

small and so this feedback is neglected. The core reacti-

vity p as given by Eqn. (A.5) is the sum of an externally

inserted reactivity 6Pext such as from control rod

motion and the feedbacks.

Sp = S p 6TT Tl+ 6T 2] C2.4.7)8 = fp + [f T+ c Tcl + c 2

(the second term in the right hand side is divided by B*

because 6Pf b is expressed in units of *).

where,

af - fuel coefficient of reactivity (1/°F)

ac = coolant coefficient of reactivity (1/°F)

Equation (2.4.7) is substituted into Eqns. (2.4.2) and

(2.4.3). The governing equation of the precursor concen-

tration is

d af 6T f+ 6 1 Tc * SP

UaTs A f 7 A °Tcl 7 7 Tc 2 6Pext

(2.4.3)
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The fractional change in nuclear power, Eqn. (2.4.2) becomes

6P AX f 1 ac 1 acp _ A C + - Tf + Tc + 2 + 6 ext

(2.4.2)

2.4.2 Piping and Plenum Model

Overall system model must include representations of

the fluid transport in piping and plenums to account for

the time lag which takes place. There is some heat trans-

fer to the metal walls but it is usually ommitted (21).

The flow in pipes results in axial mixing of the fluid.

It is modeled somewhere between two extremes. One extreme,

the slug flow model for temperature is given by Tout(t) =

Tin (t-T) where is the residence time. The other

extreme is the well-mixed model which is given by:

d 1 (TiTout T Tout

The second model is convenient for time domain

analysis using state variable models. The hot leg and cold

leg pipes as well as the reactor and steam generator

plenums are represented by Eqns. (A.16) to (A.21). Four

equations out of six can be eliminated by combining the

reactor upper plenum, hot leg, and steam generator inlet

plenum volumes, VUp, VHL, VIP respectively into one volume.
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By this way the hot leg temperature is represented by a

single time constant

HL ave SG VL UP
HL NUTSG + VHL+ VIP]m

(2.4.8)

where

ave = average coolant density

in = coolant flow rate

NUTSG = number of steam generators

The same assumption can be made on the steam generator

outlet plenum Vp, cold leg VCL, and reactor lower plenum

VLP' The cold leg time constant is

P
= ave

rCL [Vop + VCL +
VLp
NUTSG (2.4.9)

The governing equations of TILL and TCL become

' T 1 ( 6 Tc2 T HL)
T H L

d 16T c = (6T -6TcL)

(2.4.10)

(2.4.11)

2.4.3 Pressurizer Model

The reactor coolant is connected to the pressurizer

by a surge line from the hot leg piping to the bottom of

the pressurizer tank, as shown in Fig. (2.4.3). The

change in reactor coolant average temperature with load



Ste,

Wa

Hot Leg

Fig. (2.4.3) Pressurizer Model Schematic
Diagram.

54

current



55

results in a change in reactor coolant density with load.

Density changes will cause a change in the pressurizer

water level. The main function of he pressurizer is to

provide a surge chamber and a water reserve to accomodate

changes in the reactor coolant density and consequently

volume. This is accomplished by maintaining water and

steam in the pressurizer at the saturation temperature

corresponding to the system pressure. As the pressure

decreases below the desired value of 2250 psia the heaters

are energized. This heats the water in the pressurizer

and boils water to return the pressure to the nominal

value. When the pressure increases above 2250 psia

spray is used to condense steam and return the pressure to

2250 psia. Details about the function of the pressurizer

are found in (21,25,29,38,39,40). The governing equation

of the pressurizer pressure is given by Eqn. (A.22).

The only feedback this model has on the rest of the

system is through the pressure coefficient of reactivity

ap. Because this coefficient is so small (on the order

of 10'6/psia) this model can be eliminated by assuming

that ap is equal to zero. Eqn. (A.22) will not be

included in the system model.

2.4.4 The Steam Generator Model-

The steam generator considered in this study is a

vertical, U-Tube recirculation type steam generator (UTSG).
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Fig. 2.4.4 shows a steam generator schematic diagram.

The steam generator is essentially a boiler where the

energy transferred from the reactor coolant flowing on

the primary side (with the UTSG) boils water on the

secondary side to generate the steam to drive the turbine.

The steam passes through moisture separators and dryers

before leaving the UTSG with a quality of approximately

99.75%. The essential data for generating a typical

UTSG model are given in Table 2.4.2 (29).

The lumped parameter model of the UTSG consists of

a primary coolant lump, a heat conducting metal lump,

and a secondary coolant lump. The governing equations

in linearized form are (A.23), (A.24) and (A.25). This

model does not describe the downcomer water level. For

applications where the primary concern of the overall

system model is to deal with load demand, the downcomer

level will not need to be described (29). The model as

described by Appendix A with the three linearized equations

is retained without reduction. These equations are:

d = (m)p (6T 1 T - (mCp )
(j~tj j TI Tp (heff)pm (Tp- T )

(2.4.12)

d T _ (h heff A)ms TsatSP
Td ( Mc )P (6TP- T) 4 -( s)t(t6Tm PTp) m(mcr pm( m )

(2.4.13)
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58Table 2.4.2

Essential Data for Generating

a Typical UTSG Mciel

Number of UTSG/plant, NUTSG

Primary water mass flow rate, p (lbm/hr)

Specific heat of primary water, Cpp (Btu/lbm°F)

Primary water inlet temperature, Tpi (F)

Primary water outlet temperature, Tpo (°F)

Average density of primary water, pp (lbm/ft3)

Primary loop average pressure, Pp (psia)

Steam flow rate, Ws (lbm/hr)

Steam pressure, P (psig)

Saturation temperature at steam pressure

Tsat (F)

Feedwater inlet temperature, TFW (°F)

Subcooled secondary water average density

PS (lbm/ft 3)

Subcooled secondary water specific heat, CpS

(Btu/lbm°F)

Overall heat transfer coefficient from

primary fluid to metal, (heff)pm(Btu/hr ft2OF)

Heat transfer area of primary fluid to metal

Apm (ft 2 )

Overall heat transfer coefficient from metal to

secondary fluid, (h eff)ms (Btu/hr ft 2 F)

4

3.939x107

1.390

592.5

542.5

45.710

2250

3.731x106

832.0

521.9

434.3

52.32

1.165

4150.75

45614.3

5361.07
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Heat transfer area from metal to secondary, Ans

(ft2 ) 51500.0

Mass of metal tube, mm (Ibm) 8948

Mass of water inside tubes, mp, (bm) 4.03974x10

Metal heat capacity, Cpm (Btu/lbm°F) 0.11

Enthalpy of saturated steam hs(=hg) (Btu/lbm) 1198.3

Specific volume of saturated steam, V (ft3/lbm) 0.5457

aTsat /P s 0.14
ahg/P s -0.35

hot leg piping time constant, THL(S) 3.19

col leg piping time constant, TCL (S) 4.67
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d 1 sat
PS K { (efA) T [(hefA)ms at

ah
+ s aP + (h s -h l 6 P

S

+ W C 6TFw - W (hs hF 6 (2.4.14)
S Ps F s s F e

The steam generator is equipped with a three element

feedwater controller as shown in Fig. 2.4.5, which main-

tains a programmed water level on the secondary side.

Details about the steam generator water-level control

are given in reference (41). The dynamics of this device

may involve six equations (29). But in this study the

feedwater flow is assumed to be ontrolled perfectly and

hence the dynamics of the three-element controller are

eliminated from the overall system model.

2.4.5 The Turbine and Feedwater Heaters Model

-This model is shown schematically in Fig. 24.6. The

parameters needed to calculate the coefficients are given

in Table 2. 4.3. It was originally developed by (4) and

derived with modifications in (29, 30). The model involves

mechanical and heat transfer processes which take place in

the secondary side. It is described in Appendix A by an

11th order state variable representation. In this section

it is reduced to a 5th order representation.

Eqn. (A.31) which gives the state variable hI ~~~~C
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Table 2.4,3

Essential Data for the Turbine

Feedwater Heaters Model

Flow rate of steam in and out of the nozzle

chest, W1 , W2 (lbm/sec) 3959.5

Flow rate of steam in and out of the reheater

shell side, W2, W3 (lbm/sec) 285208

Flow rate of steam in and out of the

reheater tube side WpR, WpR (lbm/sec) 182.36

The flow rate of the drain from the moisture

separator WS, (lbm/sec 385.03

The flow rate of the main steam and feedwater

at initial conditions from all UTSG's, IVsT

WFW (lbm/sec) 4145.9

Flow of steam leaving HP turbine to the

mositure separator, W," (lbm/sec) 3210.86

Flow of steam leaving the LP turbine to the

condenser W3' (lbrm/sec) 2232.6

Flow of fluid from feedwater heater 2 to

feedwater heater , VHp2 (lbm/sec) 1217.8

Fraction of steam entering the HP turbine that

is extracted to feedwater heater 2, KBHP 0.1634

Fraction of steam entering the LP turbine that

is extracted to feedwater heater 1, KB 0.2174
PL



Table(2.4.3) continued
Time constant for feedwater heater 1 heat

transfer TH, (sec) 100.0

Time constant for feedwater heater 2 heat

transfer, TH2, (sec) 40.0

Time constant for feedwater heater 2 shell

side, THP2 (sec) 10.0

Time constant for flow in LP turbine,

TR2 (sec) 4.0

Time constant for flow in reheater TW2 (sec) 2.0

Enthalpy of steam leaving reheater hR(B/lbm) 1270.8

Enthalpy of steam leaving HP turbine to

moisture separator h2 (B/lbm) 1100.3

Enthalpy of steam entering and leaving the

nozzle chest hs, hc (B/lbm) 1196.1

Enthalpy of saturated water in the moisture

separater, hf (B/lbm) 338.75

Latent heat of vaporization in the moisture

separater, hfg (B/lbm) 857.7

Density of steam leaving HP turbine to the

moisture separator, p2 (lbm/ft3) 1.8281

Density of steam leaving the nozzle chest,

Pc (lbm/ft3) 2.1263

Density of steam leaving the reheater, R

(lbm/ft3) 0.3566

Pressure of the steam leaving the nozzle

chest, Pc (psig) 756.363c



65
(Table 2.4.3) continued

Specific heat of the feedwater, CpFW (B/Ibm- °F)

Volume of the reheater shell side,VR (ft3)

Volume of the nozzle chest, V (ft3)

Assumed constant enthalpy of shell side in

heater 2, HFW (B/ilbm)

Assumed specific heat of steam in reheater,

1HR ()

Initial heat transfer in reheater, QR (Sr)

Valve coefficient of bypass steam, 2

(lbm/sec-psi)

Valve coefficient of main steam, £ (lbm/sec-psi)

Area used in empirical relationship for steam

flow out of the nozzle chest, Ak 2 (ft2)

Area used in empirical relationship for steam

flow out of the reheater shell side, K3 (ft 2)

Constant used in Callender's relationship, K1

Constant used in Caliender's relationship, k2

Constant used in ideal gas law, R (ft-lbf/lbm-°R)

1.14

20000.0

200.0

475.0

21.6

226.43

0.21918

1.2458

207.82

798. 7

7.415

149670.0

85.78
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represents an energy balance done on the nozzle chest.

Fig. 2.4.7 (30) shows the enthalpy versus the entropy

for the turbine and reheater part only. It is clear that

the enthalpy does not change appreciably across the nozzle

chest and therefore hc may be assumed to be equal to the

inlet enthalpy hs . The quality of the steam generated

in the boiler is around 99.75%. We assume that the

quality of the steam entering the nozzle chest is approxi-

mately 1.0, therefore

6h - Ld 6SP (24, 15)s P s

where hg is the gradient of steam enthalpy to steam
S

pressure in the main steam line. This quantity can be

easily evaluated from the steam tables.

The differential equation (A.31) can be eliminated

and the state -variables 6hc is substituted in the state-

variable representation by Eqn. (2.4.15).

The other approximation is that all the equations

which involve a simple time constant are eliminated by

assuming that the fluid enters the system and leaves it

almost instantaneously. The time constants are assumed

very small and can be neglected. The equations under

this case are (A.40), (A.45), (A.49) and (A.52).

The sixth equation to be eliminated is that of the
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state variable hW which is the enthalpy of the feed-
FW
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water leaving heater 1 and entering heater 2. This is done

by combining the two heaters into one control volume as

shown in Fig. 2.4.8. The resulting governing equation of

the feedwater temperature is given by

d 1 FW
dT FW _ I H(2 K 6I+26 28W +K 6W )

- TFW C WFW (BHP +2 ms PR BLP 3

p2 FW

HFIV

(2KBHpW2+2 + m2lR+ KBLP) 3 FW
W2W

-1 C FlIT d

TH P 2 FW

(2.4.16)

where TH :=H +T- 2

The rest of the equations representing the turbine and

feedwater heaters are (A.30),(A.41),(A.42) and (A.48) namely

d 6 1
at 6P- V [l-6W2]

C
(2.4.17)

where 6W1 and 6W2 are substituted by (A.32) and (A.33)

(2.4.18)d 6 1 V 3
dt 6 P R 23

where 61VW and 6 3 are substituted by (A.43) and (A.44).

d 6 hR 6 hR
R - W'+66 + 7 6 8 h8 9 QR (2.4.19)

t hRo 3 8 hRo +9 QR

~~d 6Q1 IC r 

~dt R PR -TR)6 '( . 4PRPR)R]+ R ~nrR i)R s R)
(2.4.20)



69

"1HP2 BLP

W M V TFVhWTEWv

h~Fw^

HP 2 LY
2

h
0

Old Configuration

BHP PR ms BLP

YJnI 1 ~1 i~LI
ii .iv

_v~-·~···· IIP·L3-C4.

I- 'h s

Wout

New Configuration

Fig. 2.4.8 Control Volnne Combining Heater 1
and Heater 2.

IWV, TFW I

hFIV

"
k * A__ w _~~-UII-·~-II

I., T -

-I<-------



70

2.4.6 A Reduced Order Model

So far, the reduction process followed in this section

has resulted in reducing the set of equations presented

in Appendix A from 31 equations to 14 equations. Table

2.4.4 gives a list of the 14 state variables. In this

relatively low order model the turbine and the feedwater

heaters are approximated by a mathematical model of five

equations, Eqns. (2.4.16) - (2.4.20), instead of eleven

equations given in Appendix A. Another representation of

the turbine and the feedwater heaters system is given by

two equations only involving an appropriate time constant

(18). In this approximation, the detailed dynamics of

the HP and LP turbines, the moisture separators, the

reheater, the feedwater heaters, etc., are thus all lumped

into this single time constant. In this representation,

the turbine power LT is considered as a state variable.

The fractional change in the turbine power output is given

in linearized form as

d 61T 1 c c Tt L P i >) (2.4.21)
TO IT CO LTO

where

PC = pressure in front of the nozzle chest
TT = 5.5 sec

.6P
An equation giving c is needed to predict the turbine

~> :0-
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Table 2.4.4

The State Variables of

the 14th Order Model

fractional change in delayed neutron precursor group

change in average fuel temperature of the core (°F)

change in coolant node 1 of the reactor core (F)

change in coolant node 2 of the reactor core (F)

change in hot leg temperature

change in cold leg temperature

change in the average primary coolant temperature

in the UTSG (F)

change in the average tube temperature in UTSG (°F)

change in the average steam pressure of the UTSG (psi)

change in the density of the steam in the nozzle

chest (lbm/ft3)

change in the density in the reheater tube side

(lbm/ft3)

fractional change in enthalpy of reheater tube side

change in the heat transfer in the reheater sheel

to tube (MW-hr/sec)

change in feedwater temperature leaving heater 2

6Tf

6Tcl

6Tc2

6THL

6TCL

sTp

6Tm

6PS

6Pc

6 hR

hRo

6QR

6 TFW
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power output. The differential equation describing the

nozzle chest pressure is given by

d 6P c P 2 66e 6
6PP P P P d c c 1 co so co 2 ' 0.157 + -c-t P-c T C c o Po 

(2.4.22)

= 0.5 sec

62 _ fractional change in the by-pass valve

¢2 0

coefficient

fractional change in the main valve coefficient6o
"o

An additional simplification involves the hot leg

piping. This is to eliminate THL by lumping the

temperature of the coolant node 2, Tc2 , with the

temperature, THL in a single time constant Tc2

Tc2 = ( )C2 THL

Equation (2.4.6) becomes

d (l-f)Po 6P Afheff
T Tc2 = imC) P ' I+ -mC [6Tf-6Tc 1]

p c2 p c2

[6 Tc 2 - 6 Tc]
Tc2 c2 1Tcl

(2.4.23)

(2.4.24)

Table 2.4.5 gives a list of the 10 state variables.

It is this low-order model which is investigated in the

application of Chapter 6.

where,

Tc
C

outlet

hot leg



Table 2.4.5

The State Variables

of the 10th Order Model

The first seven state variables:

6C, 6 Tf, 6Tl, 6Tc2, 6TcL, T IT and 6Tm

are as given in Table 2.4.4. The remaining state variables

are:

6P
sI fractional

Pso

6 L fractional

Lo

6Pc fractional
F-co

change in the

change in the

change in the

average steam pressure

turbine output

nozzle chest pressure

73



Chapter 3 74

STATE RECONSTRUCTION

3.1 Introduction

Many control system designs are based on state vector

feedback, where the input to the system is a function only

of the current state vector x(t). For the linear-time-

invariant dynamic system described in state-space form by

the continuous time model:

= Ax + Bu + Gw (3.1.1)

z = Mx (3.1.2)

y = Hx (3.1.3)

where,

x is an nxl state vector

u is an rxl input control vector

w is a scalar input disturbance

y is a pxl system output vector

z is an mxl measurement output vector

A,B,H and M are matrices and G is a vector all with

appropriate dimensions.

the hypothesized structure for a linear full-state feedback

control takes the form:

(3.1 .4)u = Kx
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Such full-state vector feedback designs offer cer-

tain advantages with respect to both system performance and

analysis (45,46,47). There is, hwever, one major draw-

back. In many control problems, the system state vector

is not available for direct measurement and so a control

law given by Eq. (3.1.4) cannot be used. Thus, a reasonable

substitute for the state vector must be found; other-

wise the whole control scheme must be abandoned.

This reasonable substitute for the state vector

may be approximately reconstructed by using an observer.

The observer reconstructs the state vector from the avail-

able outputs only. Once the state vector has been recon-

structed, we shall be able to use the control law of Eq.

(3.1.4), which assumes knowledge of the complete state

vector, by replacing the actual state x with the recon-

structed state, say x so the control law becomes:

u = Kx (3.1.5)

In this study we will be dealing with the type of

observer whose output approaches, as time increases, the

state that must be reconstructed but does not explicitly

take into account the difficulties that arise because of

the presence of noise in the measurements.

This type of observer for purely deterministic

continuous-time linear time-invariant systems was first
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proposed by Luenberger (48, 49, 50). In an earlier work,

Kalman and Bucy (51) treated the problem of estimating the

state when measurements of the outsets are corrupted by

noise.

3.2 Observing a Linear System

Consider, for simplicity, a linear-time invariant

system given by:

x(t) = Ax(t) + B(u+w), x(O)=x (3.2.1)

where x is an nxl state vector and u and w are scalar

inputs for control and disturbance respectively. A system

with no observations at all can be observed by merely

copying the original system (49) as shown in Fig. (3.2.1).

The inputs u and w to the original system are acting

on the system, u is a control supplied to it and w is the

process disturbance applied on it and hence they can be

applied to the copy as well. The system copy is represented

as:

q(t) = Aq(t) + B(u+w), q(O)=qo (3.2.2)

where q is the state estimate of the copy model which can

be easily measured.

It is clear that if q(O) = x(O), the system copy

will follow the original system exactly. The reason is
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that the error vector, e(t), which is the difference

between the estimate vector and the original state vector

X,

e(t) = [q(t) - x(t)]

will be zero. Note that the solution of e(t), namely

[q(t) - (t)] = A[q(t) - x(t)] (3.2.3)

is given by:

e(t) = [q(t) - x(t)] = eAt [q() - x()]
C3.2 .4)

consequently with q(o) = x(O), the system copy will track

the original system exactly, i.e., q(t) = x(t)

Now if q(O) x(O), the error e(t) given by Eq.

(3.2..4) may not die out quickly. It tends to zero only

if the original system is stable and then only at a speed

determined by the eigenvalues of the original system mat-

rix, A. This is indeed a serious limitation.

Suppose that the original system represented by

Eq. (3.2.1) has m observations given by:

(3. 2.5.)z = Mx



x (t)

4(t)

Fig. (3,2.1) An original System Observed by
a System Copy

qci

Fig. (3.2.2) A Block Diagram Representing Eqn. (3.2.7).

w

+
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with m<n. In order to overcome the previous limitation,

an extra term that is proportional to the difference
(

(z-z) is added to Eq. (3.2.2.) where

z = Mq (3.2. 6)

z is the observed variable as reconstructed by the

observer. In this case, the estimate of the state vector

is given by:

q (t) = Aq(t) + B(u+w) + L[z(t)-z(t)] (3. 2 .7)

where L,a matrix called the gain matrix of the observer,

is yet to be determined. Fig. 3.2.2 shows the scheme

described by Eq. (3.2.7).

In this scheme, it is clear that:

(i) If z(t) = z(t)
the observer will be nothing more than the sys-

tem copy given in the previous scheme.

(ii) If z (t) z(t)
by making the appropriate substitutions,

the error dynamics are expressed as:

[ (t) - (t)] = (A--LM) [ q (t) - x (t)] (3.2.8)

The difference between this equation and Eqn. (3.2.3)

The solution of Eq. (3.2.8) is given by:

79

is clear.



80

e(t) = [q(t)-x(t)] = exp{(A-LM)t}[(0O)-x(0)]

(3.2.9)

Therefore, if the observer is initiated such that q(0)=x(0),

it follows that q(t) = x(t) for all t>O, i.e., the state

of the observer tracks the state of the original system.

When q(0) x(0), the error vector, e(t), dynamics are

governed by the matrix (A-LM) in Eqn. (3.2.8) and Eqn.

(3.2.9).

If the system matrix (A-LM) is asymptotically

stable, the error vector, e(t) tends to zero at a rate

determined by the dominant eigenvalue of (A-LM). Here,

the gain matrix, L of the observer plays an important

role in prescribing the eigenvalues of (A-LM) according to

the designer's choice.

In the two examples above, it is clear that the

estimate vector (t) has the same order as the state vector

x(t). But is is actually not always necessary that the

order of q be equal to that of x. This will be the sub-

ject of the next section. Once the order of the estimate

q is specified, the order of the gain matrix L is also

specified.

3.3 Full and Reduced Order Observers

When the order of this estimate vector (t) is equal

to the order of the state vector x(t), we say that we have

a full-order observer. The observer given by Eqn. (3.2.7)
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is a full-order observer. It is customarily expressed as:

x(t) - Ax(t) + B(u+w) + L(z(t)-z(t)) (3.3.1)

where x is the estimate. Fig. 3.3.1 shows an original

system observed by a full-order observer.

For a system expressed by:

i(t) = Ax + Bu + Gw (3.3.2)

z = Mx (3.3.3)

where the vectors x, u and z as well as the scalar w are

as defined by Eqn. (3.1.1) the corresponding full-order

observer is given by:

x(t) = Ax(t) + Bu + Gw + L(z-Mx) (3.3.4)

If for some reason the input disturbance, w cannot

be observed then the full-order observer will be biased

by the term Gw and, therefore, given by:

x(t) = A^(t) + Bu + L(z-Mx) (3.3.5)

Since there are different types of observers, it is

instructive to express the observer in general terms. For

a linear time-invariant dynamic system given by Eqns. (3.3.2)
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and (3.3.3) a general observer design is given by: 83

_(t) = F + Cz + Uu + w (3.3.6)

where q is the estimate vector which may have different

orders for different observers, and the vectors'z and u

as well as the scalar w are as defined by Eqn. (3.1.1). The

matrices F, C and U as well as the vector IV take their part-

icular forms according to the particular observer used.

For example, in the case of a full-order observer, these

matrices and the vector WN are determined by comparing

the full-order observer equation (3.3.4) with the general

equation (3.3.6). This yields:

F = A-LM

C L

U = B

W =G (3.3.7)

The inaccessible states of the original system can

similarly be expressed in general terms. By adding and sub-

tracting the term Lz from the right-hand side. of Eqn.

(3.3.2), the inaccessible state vector x=q is given by:

q(t) = Fq + Cz + Uu + w (3.3.8)

where the matrices F, C and U and the vector W are-as de-
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fined by Eqn. (3.3.7).

The error dynamics are obtained by subtracting Eqn.

(3.3.8) from Eqn. (3.3.6), i.e. siiar to Eqn. (3.2.8),

e(t) = (A-LM)e(t) (3.2.8
bis)

As stated in Section 3.2 , the gain matrix of the

observer L, is chosen by the designer so as to make the

matrix (A-LM) asymptotically stable. In this case, the

error vector e(t) tends to zero at a rate determined by

the dominant eigenvalue of (A-LM).

The estimate vector q(t) in Eq. (3.3.6) takes the

order of the particular observer used. Now, if the

original system is of order n and the observations, z,

are of order m, then a full-order observer will reconstruct

all n state variables of the original system even though

m of these variables, already measured, are known precisely.

Therefore, a full-order observer possesses a certain de-

gree of redundancy.

The redundancy may be eliminated by reducing the

order of the observer to (n-m) only. In this. case, the

full state of the original system is obtained from the

(n-m) state variables of the observer and the m observations.

This type of observation is termed a reduced-order observer.

The reduced-order observer can consequently be cheaper to
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design and implement.

In Appendix B, the detailed derivation of the govern-

ing equations of a reduced-order observer is shown. The

general approach was first considered by Luenberger

(48,52), but the derivation in Appendix (B) follows that of

Cumming (53).

Consider the original linear time-invariant system

described by Eqns. (3.3.2) and (3.3.3), and define.first a

new state vector x1 characterized by the fact that the

first m elements are equal to z

x1 = [] (3.3.9)

Here we need a nonsingular transformation relating

x to the new state vector x.

Assume that the system is observalbe, m<n, and the

rows of the matrix M in Eqn. (3.3.3) are linearly indepen-

dent. In this case an (n-m)xn matrix N is selected such

that

n = Nx (3.3.310)

Note that it is possible to find such a matrix N

since M has rank m (M is assumed linearly independent).

The new vector is now given by:
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x1 = [] N (3.3.11)

Up to this point, the apprcach of a reduced-order

observer requires only a nonsingular transformation:

i -1

x = I[K [¥] (3.3.12)

and then, like the full-order observer, it follows exactly

the line stated earlier in Section 3.2.

Following the derivation in Appendix B, the governing

equations of a reduced-order observer is expressed in gen-

eral -form by Eqn. (3.3.6)

q(t) = F + Cz + Uu + Ww

such that:

F = P - LR

C = PL-LRL+V-LJ

U = TB 3

W = TG 3

where

(3. 3.6
bis)

(3.3.13)
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B3 = [-C-]B and G, M IMG

and the different matrices are defined in Appendix B.

The inaccessible state vector, q is expressed in

general form by Eqn. (3.3.8).

q (t) = Fq + Cz + Uu + WT?33, (3.3.8
bis)

where the matrices F,C and U as well as the vector Wt are

as defined by Eqns. (3.3.13).

Therefore, the error dynamics are given by:

eCt) = (P-LR) e(t) (3.3.14)

Now by appropriately choosing the initial conditions

of the estimate vector q(t) in order to make use of Eqn.

(B15) such as

q(O) = Tx 1 (0)

(3.3. 15)

the observer will track the (n-m) nonmeasured state

q, of the original system. But if Eqn. (3.3.15) is

variables,
not

satisfied due to the initial conditions of the estimate

= [-L I I I I x 0)
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vector, q(t), the error vector, e(t) will be governed by

Eqn. (3.3.14) and hence given by:

e(t) = exp{(P-LR)t~e(0) (3.3.16)

If the system matrix (P-LR) is asymptotically stable,

the error vector, e(t) tends to zero at a rate determined

by the dominant eigenvalue of (P-LR). The role of the

designer is then to choose the appropriate observation gain

matrix L. A system observed by a reduced-order observer

is presented in Fig. (3.3.2).

3.4 Representation of an Observed System in Terms of the
State Vector, _i(t) and Error Vector, e(t)

It was stated in Section 3.1 that once the state

vector has been reconstructed via an appropriate observer,

then the control law of Eqn. (3.1.4) which assumes knowledge

of the complete state vector can be employed by replacing

the -actual state x with the reconstructed state x

u = Kx (3.4.1)

In case of the reduced-order observer, the recon-

structed state vector, x is obtained, by using Eqn. (3.3.12),

from the non-singular transformation as:
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-E[N] x 1

= [ss 2 ] [L

= S + S2 1- 2- (3.4.2)

Substituting for x, the control law of Eqn. (3.4.1)

becomes

u = KS z + KSn
P-, _

(3.4.3)

By adding and subtracting the term KS2- in the right

hand side of En. (3.4.3), making the appropriate substitu-

tions for z, Eqn. (3.3.3), and Eqn. (3.3.10), and recog-

nizing that S1M+S2N = I, an nxn identity matrix, the con-

trol law becomes,

u = Kx + KS2e (3.4.4.)

Substituting for u in Eqn. (3.3.2), the linear time-

invariant system is expressed in terms of x and e as:

x = (A+BK)x + BKS2 e + Gw (3.4.5)

z = Mx + Oe (3.4. 6)

Where 0 is a zero matrix of order mx(n-m).
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The error dynamics are given by Eqn. (3.3.14), i.e.,

= (P-LR) e (3.4.7)

Note that if the disturbance were not observed the

dynamics of the unmeasured state vector q would still be

given by Eqn. (3.3.8 bis) while the dynamics of the es-

timate vector q would be given by:

= Fq + Cz + Uu (3.4.8)

where the matrices F, C and U are as defined by Eqn. (3.3.13).

In this case, the error dynamics become

_ = (P-LR)e - Iw (3.4.9)

The distinction between these two cases was made in

order to identify the ffect of the disturbance on the be-

havior of the observer.

In the case of a full order observer, the control

law is still given by Eqn. (3.4.1). By adding and sub-

tracting Kx from the right-hand side of this equation we

get

u = Kx + Ke (3.4.10)

By substituting for u in Eqn. (3.3.2), the linear
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time-variant system will be expressed in terms of x and

e as:

x = (A+BK)x + BKe (3.4.11)

z = Mx + Oe (3.4.12)

where 0 is a zero matrix of order mxn.

The error dynamics are given by Eqn. (3.2,8 bis) as

e = (A-LM)e (.3.4.13)

Here again, if the disturbance were not observed,

the error dynamics would be given by:

e - (A-LIM) e - Gw (3.4.14)

The derivation of these equations is useful in express-

ing the system together with the observer as a composite

system in matrix notation in chapters to follow.

3.5 Conditions for the Observability of a LTI System:

In deriving the equations describing the reduced

order observer in Section 3.4 it was assumed that the system

is observable. In fact, this is not just an assumption

but rather a necessary and sufficient condition for the

design of an observer (full or reduced). Otherwise, the

observation matrix L cannot be chosen and hence the state
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vector will not be reconstructed.

Consider the observer

cl = Fq + Cz + Uu + IWw

for the LTI

(3.5.1)

system

= Ax + Bu + Gw

z - Mx (3.5.2)

where all the matrices, vectors and scalar are as defined

in Section (3.3).

Note in particular that:

(i) for a full-order observer F=A-LM

(ii) for a reduced-order observer F=P-LR.

Observer Theorem(a) [47,50]

"The observation gain matrix, L, can be designed

or, in either words, the characteristic values

of F(=A-LM) can be arbitrarily located in the

complex plane by choosing L suitably if and only if

the LTI system given by Eqn. (3.5.2) is completely

observable".

In (47), it is a complete reconstructibility of the

system which is evoked. Note that for LTI systems, com-

plete reconstructibility implies nd is implied by
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complete observability.

The system 3.5.2) is completely observable which

means that the pair {A,M} is observable if and only if the

rank of the observability matrix is n, i.e.,

rank [M' A4d A2 M' ... An M ' ] = n (3.5.3)

where MI' = transpose of M

A' = transpose of A.

The structure (A'-M'L') is used to generate a stab-

ilizing L since

det[AI-.(.-LIM)] = det [XI-(A'-M'L')] (3.5.4)

where A is the characteristic value.

It is very well known from the structure (A'-M'L')

that a stabilizing L' cannot be generated unless the pair

{A',M'} is completely controllable. This is in fact dual to

saying the pair {A,M} is completely observable.

This result, due to duality, will be of help in gen-

erating a stabilizing L as we will see in Chapter (5).

Now concerning F=P-LR, for a reduced-order ob-

server, Gopinath (54) states the following theorem:
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Theorem(b)

"If {A,M} is completely observable, then

{P,R} is completely observable."

From Eqn. (B.7), our system is partitioned as:

z = J + Pil + Bu + _GW (3.5.5)

n = Vz + Pn + B2u + G2w. (3.5.6)

Where all variables, matrices and vectors are as defined

in Section 3.3.

It follows that if w were known, the only informa-

tion about n is obtained from Eqn. (3.5.5).

Rn =z - Jz - Blu - G1 (3.5.7)

which implies that P and R. should be completely observable

in order that {A,M} be completely observable.

Some authors in the literature have relaxed the con-

dition of complete observability to simply detectability (47).

Consider the LTI system given by Eqn. (3.5.2) and

its observer given by Eqn. (3.5.1).

Theorem(c) [47):

"An observation gain matrix, L, can be found such

that the observer is asymptotically stable if
and only if the system given by Eqn. (3.5.2) is de-

tectable".
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Consider the system given by Eqn, (3.5.2) to be

transformed to:

All 0
x = [ - ] I + .u + w

A2 1 A2 2

z = [M1 0 ] (3.5.8)

where the pair {All,M1} is completely observable.

system is detectable if and only if the matrix A22

asymptotically stable.

Then the

is

We have to first transform the system to the struc-

ture given by Eqn. (3.5.8) in order to check for the de-

tectability of the system via A2 2.
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SET-THEORETIC CONTROL

4.1 Introduction

Most practical systems are not completely isolated

from their environments and so are constantly subjected

to interactions in the form of input disturbances from

their environment. In order that the performance of the

system be considered acceptable, the system states (or out-

puts) must be kept within prespecified bounds at all times.

This often calls for the use of some form of control which

are limited in availability. The effectiveness of many

control systems in practice is evaluated in terms of their

ability to maintain the system states within prescribed

bounds, using only available control effort, in the presence

of input disturbances. Set-Theoretic Control is designed

to address this class of problems.

.Set-Theoretic Control (STC) is characterized by the two

following aspects (1).

a) direct treatment of the state and control con-

straints. (Note that in some other techniques,

the emphasis is placed on optimizing certain cost

criteria and the satisfaction of the state and

control constraints are treated indirectly.
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b) the disturbance is treated as an unknown--but

bounded process. (In some other techniques, the

disturbance is modeled as a stochastic process.

Note that, it may be easier in 'practice to de-

fine the bounds of a disturbance than to

measure its stochastic properties).

These are really two major departures from existing

control design techniques.

Usoro (1) formulated the Set-Theoretic Control

problem as follows:

(a) attempt to find the maximum amplitude of the

unknown-but-bounded input disturbance which

can be tolerated by the system instead of de-

fining a prespecified bound on it.

(b) define a specific class of control systems

by hypothesizing a full-state feedback

control structure and select the best

in this class which yields non-violation of

state and control constraints in the pre-

sence of the input disturbance.

The hypothesized structure for the control used by

Usoro (1) is, therefore, of the form:

(4.1.1)u = Kx
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It is important to note that the full-state feedback

control system assumes knowledge of the complete state

vector. Unfortunately, in many systems in practice, the

complete state vector is not always available for measure-

ment and so the full-state feedback control structure can-

not be adopted in its original form; rather, as shown in

Chapter 3, it can be adopted in terms of state estimates con-

structed by employing an observer, In the following sec-

tions the formulation of the Set-Theoretic Control problem

in the case of some inaccessible states is addressed.

4.2 Observation/Control Problem Statement for an LTI
System with Inaccessible States:

Consider the linear time invariant dynamic system

given by:

x = Ax + Bu + Gw (4.2.1)

y_ = -Hx (4.2.2)

z = Mx (4.2.3)

where,

x is an nxl state vector

u is an rxl input vector

w is a scalar input disturbance

y is an pxl system output vector
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z is an mxl measurement output vector

A,B,H and M are matrices of appropriate dimensions

G is an nxl vector.

In this system, it is assumed that some of the state

variables are not available for measurement. Therefore, we

have to resort to the observer for the reconstruction of

the state. It is important that the state be reconstructed

properly and accurately if the use of the same class of con-

trols defined in terms of a linear full-state feedback in

Eqn. (4.1.1) is to be appropriate.

Assume that the state vector, x(t) has been properly

and accurately reconstructed and let its estimate be repre-

sented by (t). Then the hypothesized structure for the

linear full-state feedback control is given in terms of the

estimate by:

u = K (4.2.4)

It is shown in Chapter 3 that the estimated state

vector, (t) reconstructed by the observer is given in gen-

eral form by Eqn. (3.3.6) and (3.3.6 bis) namely

= F + Cz f- Uu + Ww

and the inaccessible state vector is given by Eqns.

(3.3.8), namely



9.= Fq + CZ U + V 10 +

where the matrices F,C,U and the vector W are given by Eqn.

(3.3.7) in the case of a full reconstruction of the state

as

F = A-LM

C= L

U = B

W= G

and by Eqn. (3.3.13) inihe case of a partial reconstruction

of the state as:

F = P-LR

C = PL-LRL+V-LJ

U = TB 3

W = T3

where all the matrices are as defined in Chapter (3).

Matrix L is the gain matrix for the observer as de-

fined in Chapter 3. It is an arbitrary matrix chosen by

the designer, and determines the eigenvalues of the matrix

F when we have either full or partial reconstruction of the

state.
If the observer is initiated such that q(0) = q(O0),

it follows that q(t) = q(t) for all t>O, i.e., the estimate

state vector (t) of the observer tracks the state (t)
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of our system. But if q(0)q%(O), the error vector, which

is the difference between (t) and q(t), is governed by:

e(t) - Fe(t) (4.2.5)

where F is as defined earlier in either case and e(t) is

given by:

e(t) = exp[Ft]e(0) (4.2.6)

In our case, it is practical to express the control

law in terms of the state vector x and the error vector e.

Following the derivation in section 3.4, Eqn. (4.2.4) be-

comes

u = Kxx + Kee (4.2.7)

where,

- in the case of full-state reconstruction

Kx=Ke=K

- in the case of partial-state reconstruction

KX=K and Ke=KS 2, see Eqn. (3.4.4).

It is important to compare the hypothesized struc-

ture for the state feedback control as given by Eqn. (4.1.1)

with the hypothesized structure for the estimate feedback

control as given by Eqn. (4.2.7). If we were able to
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eliminate completely the error vector e from Eqn. (4.2.7)

or at least to make it die out quickly, we would then be

practically feeding back the state rector x(t) because then

the gain matrix K=K. Hence it can be stated that part of

the control problem for the system defined by Eqns. (4.2.1),

(4.2.2) and (4.2.3) is to initiate the observer such that

x(O) = x(O) and so (t) = x(t) for all t>O or at least

to cause the error vector e(t) die out quickly. In

this context we are seeking the estimate feedback control,

u = kx, which can tolerate the maximum input disturbance

without violating the state and control constraints.

The state constraints are expressed in terms of the

system output constraints by:

IYil < Yimax i=1,2,3...,p (4.2.8)

with IYil = Yi-Yoij

where

Yoi are known elements of the output set center Yo.

Yimax are the prespecified bounds on the ampli-

tudes of the associated outputs and re-

ferenced about the center.

It is clear that each of the elements yi of the

system output vector must be kept within its pre-

specified bounds at all times. Eqn. (4.2.8) defines a



hyperparallelopiped given by:

yEQy = {y: IYiYol < Yimax; i-l,2,...p}

= {Z: (Yi-Yoi)'S- (Yi-Yoi)<l;

i=1,2,;..p}

where

* 2

Si Yimax

Also, each element uj of the control vector u is

constrained to lie within its specified bounds at all times.

These constraints are of the form:

Iuj I < Ujmax j -1,2...r

luj I -iuj -u o3 3 03
where

Uoj are known elements of the control set center U0j -o

Ujmax are the prespecified bounds on the amplitudes

of the associated controls, referenced about

the center.

Equation (4.2.11) defines a hyper-parallelopiped

given by
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(4.2.9 )

(4.2.10)

with

(4.2.11)



uE U = {u: I Uj-Uoj - u - J 3 0

= {u: (Uj-UOj)'Tj

< U.- jmax

1

j=1,2,..r}

(Uj -U )<l3 03 -

j=l,2 ... r}

* 2
. - U.j jmax

In accordance with the formulation of the STC (1),

the next step is to find the control gains that maximizes

the amplitude of the unknown-but-bounded disturbance

w given by:

Iw < q1/2 (4.2.14)

By substituting for u from Eqn. (4.2.7) into Eqn.

the system governing equations in terms of x and e reduces

to:

x A4-BKXx_ .O
I BK
£_ _e

F

r

I - 4 
x0~- 

G (4.2. 15)

It follows from the structure of Eqn.

the eigenvalues of the composite system (the

(4.2.1.5) that

original system

and the observer) are those of the feedback system (A+BKx)

and those of the observer (F). This is in accordance with
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where,

(4.2 .12)

(4 . 2. 13)

(42.1) ,
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the statement by Luenburger (50) that insertion of an

observer in a feedback system to replace unavailable measure-

ments does not affect the eigenvalues of the feedback

system; it merely adjoins its own eigenvalues.

4.3 The Synthesis Problem

Due to the redundancy of the full-order observer,

let us specialize to the design of an observer/controller

for the case of a partial-state reconstruction, i.e.,

the observer is a reduced-order one. Its derivation is

given in Appendix (B).

Consider our LTI dynamic system given by Eqns. (4.2.1),

(4.2.2) and (4.2.3). By reconstructing the state vector

with the reduced-order observer to obtain the estimate

vector x(t) and by hypothesizing the structure of the de-

sired control system as given by Eqn. (4.2.4), the feed-

back system of Eqn. (4.2.15) becomes:

x A+BK1BKS x G
= [-+BKIBKS2I~xJ + w W (4.3.1)ie l O P- I Jo e

where P,R and S2 are as defined in Appendix B.

K is the gain matrix of the feedback of order rxn

L is the gain matrix of the observer of order

(n-m)xm.

The observation/control problem in a STC prespective



107thus reduces to finding:

(i) the gain matrix, L, of the observer such

that the state vector x(t) is properly and

accurately reconstructed (i.e., e(t)+0 as

fast as possible).

(ii) the control gain matrix K to maximize the

allowable unknown-but-bounded input disturb-

ance amplitude which the system can tolerate

without violating the output constraint,

Eqn. (4.2.9) and the control constraint,

Eqn. (4.2.12), subject to the governing equa-

tions, Eqn. (4.3.1).

Note that a sufficient condition for the satisfac-

tion of these constraints at all times is that the sets
of possible outputs and controls lie within the hyper-

parallelopipeds givenby Eqns. (4.2.9) and (4.2.12) re-

spectively.
The state governing equations (4.3.1) can be expressed

as follows:

x = A x + Gas (4.3.2)

wher e,

x is an (2n-m) - dimensional state vector given by

x

- -0Le
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the matrix X and the vector G are as specified.

w is the unknown-but-bounded disturbance.

In STC, the initial state vector x(0) is uncertain

and is regarded as belonging to a set of possible initial

state given by -(0) (2) which can be approximated by an

ellipsoid and is given by:

x(o) 2Q.-(O) = {i:(-)'i -l (X-)<l (4.3.3)

where,

= a characteristic positive definite matrix

describing the ellipsoidal set (0).

X = (2n-m) - dimensional vector denoting the center--o
S- .xo

It is shown in (2) that the state vector x(t), at

any time t, is contained within an ellipsoidal set Q-(t) given
x

by:

_(t) eQ(t) = : C- ) (t) x _- )_o . (4.3.3)X - -- -

where

r(t) is a positive definite matrix (or a positive

semi-definite matrix in the case where the ellipsoids are

expressed in terms of support functions--Appendix C) which

satisfies the equations: [See Appendix D].
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dr(t) = Ar + A'+ (t) + QG'
dt B(t)

r (0) = 

B(t) > 0, is a free parameter that enters in

the construction of the ellipsoid. (4.3.5)

If Eqn. (4.3.5) is solved for (t), then the el-

lipsoids bounding the set of possible states at the

corresponding times are defined.

The hypothesized structure for the estimate feed-

back control, u kx, is expressed in terms of x and e

in Eqn. (4.2.7), therefore, we can write

X

u = [ K e ] [e]
e e

(4.3. 6)

where

K = K and K = KS2
X e 2

It is shown in (1) that if the set of possible states

Q- is bounded, the set of possible controls 2 is also
X U

bounded and is simply a linear transformation of the set

This set is bounded by the ellipsoidof possible states.



Qa {u:(U-X o)'KK'-(U-K )<i}u- - __ _J __ 

where

KX = U-O -o

In order to satisfy the control constraint, the bound-

ing ellipsoid for the set of possible controls, Eqn.

(4.3.7), must lie within the control constraint hyper-

parallelopiped given by Eqn. (4.2.12). Figure 4.3.1

illustrates this condition for a two-dimensional case.

This condition is satisfied if:

K.r.' < T.*
-J -3 

j=l,2. . .r

where . is the jth row vector of the control gain mat-
-j

rix K.

Eqn. (4.3.8) represents the statement of the control

constraint.
In a similar manner, the system output Eqn. (4.2.2)

may also be expressed in terms of x as follows:

X

y: I [I O] [.

(4.3.9)

Since the output given by Eqn. (4.3.9) is just a
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(4.3.7)

(4.3.8)
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ellipsoid bounding
the set of possible

controls

parallelopiped de-
fining the control
constraints.

Fig. 4.3.1 Sufficient Condition for the
isfaction of the Control
Constraints.

(the constraints are satisfied if
the bounding ellipsoid is con-
tained within the parallelopiped).

U2

U1

Sat-
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linear transformation of the system state x, it follows

that with a bounded system state the output is also bounded

by the ellipsoid

ay {y: CY-H )' I ITrI'] (Y-Fio) <1 1 (4.3. 10)

where HX = Y

In order to satisfy the output constraint, the bound-

ing ellipsoid for the set of possible outputs, Eqn; (4.3.10),

must lie within the output constraint hyper-parallelopiped

given in Eqn. (4.2.9).

.irFif < Si-1 -1 - 1

This condition is satisfied if:

i=1,2,.. p (4.3.11)

where Hi is the i h row vector of the system output matrix

H.

It is shown in (1) that if the system output is given

by:

y = Hx + Du + Ew (4.3.12)

then a sufficient condition for the output constraint to

be satisfied is



1.13

{EiQEi! + (+DK)i r (T+D) ';11 1 

, 1/2 *
+ 2[EiQEi'(-I+DK)i r (H+'DK) i] }<Si:i 1 1-

i=1,2,, . . ,p (4.3.13)

where

Ei. is the ith row of E

(H+DK) i is the i t h row of (H+DK).

Eqn. (4.3.11) or Eqn. (4.3.13) represents the state-

ment of the output constraint.

Now for a constant , the governing equation (4.3.5)

becomes:

dr(t) ( +- + r ( I) 
dt BI)P + p (NA+kI)'+ Q

3 > is now a constant (4.3.14)

Eqn. (4.3. 14) reveals that (2) a large tends to

make the system unstable while a small tends to amplify

the effect of the input bound Q.

Ience, by choosing appropriately the free parameter
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B and a stable (A+I2I), it is possible to find a steady-

state solution. Under the condition of stable (A+I-~I)

the steady-state solution may be shown to be the unique

solution rs of the Lyapunov equation (55)

+ I)rs+r 1 Ij '÷ Q4'- = o (4.3.15)

and

r > 0 (4.3.16)
-

Furthermore, if the system is controllable from the dis-

turbance, i.e, if

rank [G,A G,..., G] = (2n-m) (4.3.17)

then in fact

rs > 0 (4.3.18)

Therefore, in order for the steady state solution s

to define an ellipsoid, the condition for stable

(A ½I) must first be satisfied. In this case, rs de-

fines a steady state set, Qs, in accordance with (4.3.4),

with the implication that if system starts with an initial

state that is within 2s, i.e., x(O)eCQS, then. the system

state will lie within this set at all times.

The synthesis problem is then to find

(i) a positive free parameter 8

(ii) a gain matrix for the observer, L

(iii.) a gain matrix for the control, K
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that yield a stable ( + I) and maximize Q subject to
the Lyapunov equation (4,3.15), the output constraint,

Eq. (4.3.11) or Eqn. (4.3.13) and the control constraint,

Eqn. (4.3.8).



Cliaptcr 5 116

SOLUTION PROCEDURE

5.1 Introduction

The main goal in this study is to be able to use a

full state feedback control but only after the reconstruc-

tion of this state is accomplished in the form of a state

estimate, x, when a whole or part of this state, x, is not

available. The control law used in this study is:

u = Kx

After stating our observation/control problem in a

STC prespective, the synthesis problem was formulated in

Section 4.3 as a constrained non-linear optimization

problem of the form:

Determine: B,L and K that yield a maximum Q subject
to:

1. Governing equation

(+ I) + ( 1 -- = oA+12 1)fT-B() 1 f GQG'= o (5.1.2)

2. Output constraint

H.ri. < S . i=i,2,5...p
--1 -i - 1 (s . 3)

(5. 1.1)

ot7 . _



3. Control constraint

K.rK < .. j=1,2,3,...r (5.1.4)

4. Beta constraint

S > o Cs.i.s)

5. Ellipsoidal representability constraint

(A+lI) is stable (5.1.6)

Two main approaches (1) for solving the non-linear

constrained optimization problem posed above have been

identified as:

(i) The Direct Search approach.

(ii) The Lagrange approach.

Figure 5.1.1 illustrates the different routes that

are possible in each approach.

In the Direct Search approach, a search is performed

over the independent variables and is restricted to the

feasible region where all constraints are satisfied.

Usoro (1) developed a computer program based on the

Direct Search approach where the problem was reduced to

an unconstrained optimization-problem. The control law

(a full-state feedback control) used in (1) assumes avail-

ability and knowledge of the whole state, i.e.,
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u = Kx (5.1.7)

In this study the emphasis is placed on including

an extension to the already existing and working program

developed in (1) so as to be able to use either the control

law given by Eqn. (5.1.1) or the one given by Eqn. (5.1.7)

at the choice of the designer. This study allows us to judge

the effect on the control when we use a state estimate

feedback instead of an original state feedback.

In the Lagrange approach, Lagrange multipliers in

conjunction with Kunn-Tucker conditions are used to reduce

the constrained nonlinear optimization problem to that of

solving a set of simultaneous equaticns.

Recently, Negahdaripour (56) developed an algorithm

based on the Lagrange approach. He asserts that the problem

to be solved has been reduced in dimension and the computa-

tional time has been decreased in comparison to the Direct

Sea-rch approach.

5.2 Solution Techniques:

As stated earlier, the synthesis problem is to maxi-

mize Q subject to Eqns. (5.1,2), (5.1.3), (5.1.4), (5.1.5)

and (5.1.6). The special structure of this problem is

exploited in reducing it from a constrained nonlinear op-

timization problem to an unconstrained optimization
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problem. To this end, assuming that ,L and K are suit-

ably chosen, the matrix (A+-I) will be known and then

the Lyapunov equation, Eqn. (5.1.2), can be solved for

r as a function of Q. For a scalar Q, th'e relationship

between r and Q is linear and is given by (1):

r = oQ (5.2.1)

Substituting for into Eqns. (5.1.2), (.5.1.3) and

(5.1.4), the governing equation, the output constraint

and the control constraint become:

(A+ 2 I)e + e(A+I) + 1 GG'=o

Hi iQ Si i=1,2,...81< S1

K.OKQ < Tj*
J J -

j= 2,.. r

It follows from the inequalities, Eqns. (5.2.3) and

(5.2.4), that Q should satisfy:

S.
Q < 

i

Q < __e -
K.3K.'
3 cJ

i=1,2,...p

j=l,2,...r

(5.2.5)

(5. 2 . 6)

(5.2.2)

(5.2.3)

(5.2.4)
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In order to satisfy the output and control constraints,

the objective function, Q, should he less than or equal

to the smallest of the right-hand sides of the inequali-

ties, Eqns. (5.2.5) and (5.2.6), that is:

Si/(Eii 'O ) i=1,2,...p
Q = min { (5.2.7)

Tj/(KjKj') j=1,2,...r

By defining Q in this way, three of the constraints,

Eqns. (5.1.2), (5.1.3) and (5.1.4) have been satisfied.

The two other constraints, non-negativeness of 8

and stability of rCA+II), are checked by setting the objec-

tive function Q equal to zero whenever any of these con-

straints are violated, that is

If B < o; Q = 0
(5.2.8)

If (A+1.I) is unstable; Q = 0

It is clear that by exploiting the special structure

of the problem, it has been reduced to an unconstrained

optimization problem but the starting point for ,L and K,

must meet the conditions that >0 and (A+ 13I) is stable.

The solution procedure is summarized as follows:



122

(i) Generate feasible starting matrices L and K

and parameter 3,

(ii) Given ,L and K, solve Eqn, (5,2.2) for .

(iii) Compute Q using Eqns. (5.2.7) and (5.2.8)

(iv) Search over L,K and , and repeat steps (ii)

and (iii) until the optimum Q is obtained.

Figure 5.2.1 shows a flow-chart for the solution

procedure. It includes the two cases:

Case (i): the full-state x is available for feed-

back control.

Case (ii): a part of the state is not available

and then an observer is used to re-

construct a state estimate x.

Note that in the case where the system is not ob-

served, the Lyapunov equation and the objective function

are given by:

1 1
(A+BK+ -BI) + (A+BK+-1 I)'+! GG'=

B

Si/ (HieHi)1 - {1 
Q= 

Tj/(KOK!)
J 3 -

(5.2.9)

i=1,2,...p
(5.2.10)

The difference between Eqn. (5.2.9) and Flqn. (5.2.2)

is obvious. Matrix A has the form (See Eqn. (4.3.1))



1 2 

Yes

generate a feas.
ible starting L

and K

Yes

Solve Lyapunm
Eqn. (5.2.9)

Yes

or the Solution Procedure.

No

Fig. - 2 1) 1 O-Cacrt



124

A+BKi, BKS 2
A= [0,P 21

0 P-LR]' (5 . 2 . lla)

the relationship between and H is given by Eqn. (4.3.9)

H = [H 0]; (5.2.llb)

and that between K and K is given by Eqn. (4.3.6)

K = [K KS 2 ] (5.2.11c)

Although the flow-chart in Fig. 5.2.1 defines the solu-

tion procedure, certain computational issues require con-

sideration:

- Selecting a non-singular transformation for

the case where an observer is used.

- Generating a feasible starting point.

- Solving the Lyapunov equation.

- Searching over the independent variables by

using an optimization search method.

5.2.1 Selecting a Nonsingular Transformation:

A reduced-order observer requires a selection of

a nonsingular transformation of the form (see Appendix B)

S = [ (5.2.12)

The nonsingular transformation requires a choice of a
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matrix N such that the square matrix S is well-conditioned.

Matrix M given by Eqn. 4,2.3) is assumed to be linearly

independent of rank m. Therefore, it is possible to

select the (n-m)xn matrix N satisfying Eqn. (3.3.10),

n = Nx, where n is the order of x and m<n.

The nonsingular transformation S is achieved (57)

by assigning the maximum value of Mij to the elements of N

on the diagonal of S-1 . Also the average value of the

elements of M is assigned to appropriate locations in S 1

such that S becomes non singular. The method was originally

implemented in the last version of the computer program

OPTSYS of the Mechanical Engineering Department and

adopted in this study.

5.2.2 Generating a Feasible Starting Point:

Generating a feasible starting point in the solution

procedure means that ,L and K are selected such that

(i) > 0.

(ii) (A + 1BI) is stable,

The first condition does not constitute .any problem.

For the second condition we need to generate a stabilizing

K and a stabilizing L in order to make the matrix

(K + 13I) stable,
2
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It follows from the special structure of the matrix

A, given by Eqn. (5.2.11a) that the eigenvalues are pre-

scribed by those of (A + BK) and (P-LR).

First for a stabilizing K, we know that the character-

istic values of the matrix (A+BK) can be arbitrarily

located in the complex plane by choosing K suitably if the

pair (A,B) is controllable or at least stabilizable.

Bass (58) showed that for a controllable system des-

cribed by:

x = Ax + Bu

u = kx

a stabilizing K is given by:

K = B'Z l

where Z = Z'>O satisfies the Lyapunov

[-(A+yI)]Z + Z[-(A+'yI)]' =-

for some

The norm

(5. 2,13)

equation:

2BB' (5.2.14)

y>1 jAII, where I IAI is the norm of the matrix A.

is defined as:

i AI = Max{f A i }
i j j

(5.2.15)I IA = Max A .
j i
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Armstrong (58) relaxed Bass's requirement from com-

plete controllability to stabilizability.

Second, for a stabilizing L, we know that the charac-

teristic values of the matrix (P-LR) are identical to

those of (P'-R'L') since:

det[XI-(P-LR)] = det[XI-(P'-R'L')] (5.2.16)

Matrix (P'-R'L') has the same structure as the matrix

(A+BK). Therefore, the characteristic values of

(P'-R'L') can be arbitrarily located by choosing L' approp-

riately if the pair (P',R') is completely controllable.

From Chapter 3, we know that the pair (P',R') is completely

controllable if (P,R) is reconstructible. If this condition
were satisfied the generation of a stabilizing L' becomes

similar to that of a stabilizing K by using Bass algorithm.

The Bass algorithm was originally implemented in

Usoro's work (1) for the generation of a stabilizing K

and it is adopted in this study to generate both K and L.

5.2.3 Solving the Lyapunov Equation

In the solution of this problem, the Lyapunov Equa-

tion appears two times. It is the governing equation:

(5.2.2) if the system is observed and (5.2.9) if it is not

and the second time in Bass subroutine for the generation

of stabilizing K and L. There are several methods for
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solving the Lyapunov equation. These are (59):

(i) Direct Solution ethods

(ii) Iterative Solution IMethods
(iii) Transformation Solution Methods.

In transformation solution methods, the Lyapunov equa-

tion is reduced by similarity transformations to some

structure easier to solve. For example in the Bartels-

Stewart algorithm (60), the system is reduced to a real

Sc.hur form by orthogonal similarity transformations. The

Bartels-Stewart algorithm was adopted in Usoro's work (1)

because of its computational speed and because it does

generate eigenvalues as by-products. This algorithm is

retained in this study.

5.2.4 Optimization Search Method:

The search over the independent variables (B, the

elements of the gain matrix K, and the elements of the

observation matrix L) is performed by Powell method (61).

The method is illustrated in the flow-chart presented in

Fig. 5.2.2 (61). In this method, the iterative procedure

involves carrying out a succession of single variable

searches in each of "n" sets of independent directions

beginning initially with the coordinate directions where

"n" is the order of the problem, Powell search method was

adopted originally b Usoro (1) is retained in this study
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because it has been reported by others (62) as effective

in related fields. Note that Powell's method assume uni-

model objective functions and so in order to obtain global

optima for multi-modal functions the use f several start-

ing points is recommended.

5.3 Description of the Computer Program

Two programs for solving the problem posed in this

study have been developed based on the techniques dis-

cussed in Section 5.2. The structures of these pro-

grams are similar in all points of view except in the

nonsingular transformation, One of the two programs con-

tains the nonsingular transformation as discussed in Sec-

tion 5.2.1. In this case the input system matrices are:

A, B, G, H, D, E and M. The program select a matrix N

such that the nonsingular matrix S given by Eqn. (5.2.12)

is well conditioned. The matrices P and R are computed

directly according to the partitioning of the system

matrix given by Eqn. (B7). The second program does not con-

tain this option. Therefore, the partitioning of the sys-

tem matrix is performed externally and then the matrices P

and R are supplied to the input data in addition to

A, B, G, , D, E and M.

For a starting point, a positive "'1" is supplied by

the designer nd stabilizing lK and L are generated using
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Bass algorithm. Another option exists that starting

point is selected by the designer using any suitable method.

It should be noted that the condition on y that is

(Y1 >1 I A+-1 II 1) and on Y2 that is (C2>1 !P'+SI i1i) in the

Bass Algorithm is not a necessary condition and so

Y< A+-II and ¥ 2<_1P'+1sIl may be tried and this may

in some cases yield good starting poin-cs. TWhen the option

is to use Bass algorithm to generate a starting point, the

designer must scan the search region by suitably varying

B,Y1 and Y2 and decide on the "best" starting point to

adopt. This procedure greatly improves the chances of

obtaining a global optimum for a multi-modal function, and

may reduce the computation time required to obtain the

solution. When the other option is used, the best parameter

8 is that is less than twice the smallest eigenvalue of

the closed loop system in absolute value (B must be positive).

The objective function value is computed as described

in Section 5.2 and illustrated in Fig. 52,1. The search

over the independent variables is performed using Powell

method as illustrated in Fig, 5.2,2. Although Powell

method is adopted in this study, any suitable nonlinear

optimization method can in fact be employed in place of

Powell method.

Both of the two programs contain the two options

for solving the Set-theoretic control problem at the choice
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of the designer as shown in Fig. 5.2.3.

- Option (i): the case where the full-state x is
available or assumed available for a
feedback control. This constitutes
the original program developed by
Usoro (I).

- Option (ii): the case where a part of the state x
is not available and then a reduced-
order observer is used to reconstruct
a state estimate x. This constitutes
an extension developed in this study.
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Chapter 6

APPLICATIONS AND RESULTS

6.1 Introduction

The need to adequately control the PWR power plant was

emphasized in Chapter 2. It was stated that the goal is

to coordinate the reactor control rods and the turbine

throttle valves so as to avoid large deviations in plant

variables. Keeping the plant variables within prespecified

bounds at all times is a major requirement for the accepta-

bility of the performance of the system. In Chapter 4,

it was shown that this class of problems is better

addressed by using Set-Theoretic Control technique. The ap-

plication in this Chapter consists of:

(i) constructing a full-state feedback control

system which employes an observer to re-

construct the state estimate when not all

the components of the state vector are avail-

able for measurement.

(ii) determining the maximum input disturbance

amplitude which the system can tolerate

without violation of the state and control

constraints following the solution procedure

presented in Chapter 5.
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(iii) Simulating time responses of potential

system states and controls in presence of

input disturbances. The simulations are

obtained from time integration of the

associated governing dynamic equations us-

ing a fourth-order Runge-Kutta integration

routine, DYSYS (63).

Before we proceed to the application to the power

plant, the solution procedure is illustrated with a

3rd order system in order to give an insight into the

steps to follow.

6.2 Illustrative Example

Consider a third-order marginally

described by

X 0 1 0 x

= 0 0 1 x
x 0 -1 0 x

I I i I 1 i~~~~

z=xl= [1 0 0 ]

1x 1

=[X I = [x 3

[xlI
X2

x31

0 0
0 i1

stable system

+ 0 + [j w
(6.2.1)

(6.2.2)

[xli
X2

LX3 (6.2.3)
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z is the measurement output

y is the system output vector.

The constraints imposed on the state variables and

the control are given as:

xl1 1 < 1.0

1x3 1 < 1.0

lul < 1.0

The problem is to find a control u to keep the system

state and control within constraint limits in the pres-

ence of the input disturbance w.

It-: is clear from Eqn. (6,2.2) that we have two in-

accessible state variables: x 2 and x3. In this case we

need to use an observer to reconstruct the whole state

vector x. The observer reconstructs a tate estimate x

from the measured output z. A hypothesized structure

for a full-state feedback control is

u = Kx (6.2,4)

We shall design a reduced-order observer since it is
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cheaper to design and implement, A sufficient condition

for the existence of the reduced der observer is the ob-

servability of the system.

The observability matrix is:

[M' A'M' A' 2,] = 1 

0 0 1

Since the rank of the observability matrix is 3, the system

is observable.

Let us define a new state vector x1 given by:

X1 _ [ i (6.2.5)

The non-singular transformation relating the state

vector x to the new state vector xl is given by

Xl [ -] [] X (6.2.6)

where,

z = Mx

n = Nx.
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The matrix M is knol and given by Eqn. (6.2.2), A

good choice of the matrix N is

N= [
0 1 0
0 0 1

] (6.2.7)

Eqn. (6.2.6) becomes

fl 0 o0

= o i o i x
O -

o o l]

i.e., x x (6.2.8)

It happens in this example that the non-singular trans-
formation is an identity matrix but this is not always the

case. The inverse of this matrix is:

[ 1

i.e.N

i.e.,

= [S1 S2 ]

(6.2.9)S2 = I 0 

0 1J

From Eqn. (6.2.6) we

-1
x= [M]

N-

g et

[Z] = rS S2] [Z]

X = SZ + S 21 (6.2.10)
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and similarly
A 2

x= S1Z + s2 C6, 2 11)

It is preferable to express x in terms of. x and the
error vector e where,

(6.2.12)

Eqn. (6.2.11) becomes

x = SZ + S -
- 1 2 - S2T + S2

= S Mx + S 2 Nx + S (n-n)

= (S1 + S2N)x + S2e

= + S,e
_ c-

(6.2.13)

where (S1M + S2 N) = I(3x3).

Substituting for in Eqn. (6.2.4), the control law
becomes

= K + KS e2-

= [K KS 2 ] e

= K x (6.2.14)

By following the remaining steps from Appendix B, we

find that the error dynamics are given by:



140

(6.2,15)

where,

A 2 2 = 

0 0

] , A1 2 = ti 0]
-1 0

It becomes clear from Eqn. (6.2.14) that if we were

able to eliminate completely the error vector e or at

least to make it die out quickly by an appropriate choice

of' L, we would then be practically feeding back the

original state vector x.

Combining Eqns. (6.2.1), (6.2,14) and (6,2.15),

we get

X1

.2

x3

*1
x2

A+BK t

I

BKS2

4. ___

0 0 0

0 O 0

A2 2 -LA 12 412

Xl

X2

x3

e 
e2-

+

1!

1i

O jIoJ

W

(6.2.16)

Note that if the disturbance were not observed,

the error dynamics will be governed by (see Appendix B).

e(t) = (A2 2 - LAl2)e(t) - TGw

T = [-L Ii ]
rn

where

(6.2.17)

= ( LA et

Ii

I
I
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In order to compute the maximum allowable input

disturbance, the constraints on the state variables

and the control are translated into the form given by

Eqns; (4.2.10) and (4.2.13) as follows:

S1 = (1.00) = 1.0;

S2 = (1.0)2 = 1.0l

(1.0)2 10

The maximum allowable input

by using Eqn. (5.2.7)

Q = min

where,
1

0

K= [K

* Si/(H i i )
Tj / (Kj 0 5 )

00 0 0

0 1 0 0

KS2]; S2

S* is a number

S2 is a number

disturbance is computed

i=1,2

(6.2.18)

is a matrix.

The problem is solved by using the computer pro-

gram described in Chapter (5) for the following three

cases:
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(i) assuming a full-state feedback of the

structure u = kx where all the states

are assumed known. In this case:

x = (A+1BK)x + Gw

S./(H.OHI') i=1,2
and Q =min 1 1/(K ek!) j=l

(ii) using a reduced order-observer. In this

case the governing equations are given

by Eqn. (6.2.16) and Q is computed from

Eqn. (6.2.18).

(iii) using a reduced order-observer but we

assume that the disturbance is not ob-

served. In this case we substitute

Eqn. (6.2,17) for Eqn. (6.2.15) in the

governing equations and then use Eqn.

(6.2.18) for the computation of Q.

The results are summarized in Table 6.2.1 .

It is clear that Case 2 is very close to Case 1,

whereas Case 3 does not represent the right picture since

an input is not fed to the observer. We, therefore, de-

duce that in order to have a true state reconstruction all

inputs supplied to the original system must be supplied to

the observer.
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Case 2 shows that by an appropriate design of the

observer, i.e., a good selection of the observation gain

matrix L, we can obtain virtually the same control gain

matrix K as with a full-state feedback.

The response characteristics of the three cases were

investigated by simulation studies of their transient re-

sponses to a step input. In each case the step input is

the maximum tolerable amplitude of the disturbance. The

cases were run at zero steady state conditions for two

seconds before being subjected to the disturbance as

shown in the figures. In these figures, the numbers

stand for the different variables as indicated in Table

6.2.2. Figure 6.2.1 shows the disturbance Q2 for each

case where the values are given in Table 6.2.1. The time

responses of the states x1,X 2, and x3 and the control u

are illustrated in Fig. 6.2.2, 6.2.3, 6.2.4, and 6.2.5

respectively. The observer was subjected to a severe

condition since the errors on the non-measured states x2

and x3 were given an initial value of 10% of the maximum

deviation of x2 and x3 respectively as shown in Fig.

6.2.6 and 6.2.7. The observer is designed such that the

errors die out quickly. For case 2, errors do in fact die

out rapidly whereas for case 3, they do not.. Even under

this severe condition the similarity between cases (1) and
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Table 6,2,2

Indication of the Different Variables
of the Marginal System

Variables i Case (1) Case (2) Case (3)

States

x11 4 9

x 2 2 5 10

x 3 3 6 11

Errors

el in x2 7 12

e2 in x3 8 13

Control

u 14 15 1.6

Disturbance

w 17 18 19

.... __ · k . .. _ ~ _ _ _ _ _ - ~ , , , ,...
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(2) is clear according to the transient responses of the

states and control as shown in the corresponding figures.

The observer may be initiat Ud such that (0)=x(0)

which means e(0)=0. This situation is illustrated by Fig.

6.2.8 and 6.2.9. In Fig. 6.2.8, the errors start with zero

initial value and stay with zero value whereas for case 3

shqwn in Fig. 6.2.9, even though the errors start with zero

initial value, they persist as time goes on. It follows

from the assumption e=0 that (t)=x(t) for all t>0, i.e.,

the state of the observer tracks exactly the state of the

original system. Figure 6.2.10 shows the control of the

three cases for this particular situation. Figure 6.2.10

is different from Fig. 6.2.5 in that the controls 14 and

15 for case 1 and case 2 respectively are completely

identical if the assumption e=0 where considered.

6.3 Application to the

As stated in the

of this application is

by using an observer.

estimate as accurately

is considered observed

PTR Power Plant

introduction, one of the objectives

to reconstruct the state estimate

In order to reconstruct the state

as possible, the input disturbance

by the reduced-order observer. I t

was shown in the illustrative example of Section 6.2 that

the case where the disturbance is assumed not to be ob-

served is not a realistic situation. Therefore, in this

I
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application, the following two cases are considered:

(i) the case where the full-state x is

assumed available for a feedback control

u=kx.

(ii) the case where a part of the state x is

not available and then a reduced-order ob-

server is used to reconstruct the state es-

timate x for a feedback control u=kx. The

input disturbance is observed.

6.3.1 The Linear Time-Invariant System

In Section 2.4.6, a linearized model of the power

plant was developed. A set of 10 first order differential

equations represent the entire PR power plant as follows:

dtC = -0.614526T, -5.58660 6Tc1 -5,58660 6C2

+ 385.36 6pext (6.3.1)

d6T = 5.15147.10 26C -0 . 6 3 8 126 Tf -3.24600 6TC1

-3.49920 61T2 + 241.37 6pext (6.3.2)

d 6T 2d T 5.5888 10 45C + 9.8744.10 2 6TTf -3.68720 6TC1

-3.7962.10 2 6TC2 3.54620 TCL + 2.618606Pext

(6.3.3)
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E- Fc = 5.5889.10 46C 4 9,8744,10 26Tf + 0.14691 oT

-0.32575 6Tc + 2.61860 pext

d 6CL -0.21411 6TL + 021411 6Tp
dt CL CL

(6.3,4)

(6.3.5)

dt 6 Tp = 0.32502 6T -1 60550 6Tp + 1.28050 Tm
d.(C2 P ' m

(6.3.6)

d 6T = 4.78740 6Tp -7.
dt m P

d s= 6.61226.10 6T
dt P so

78180 6T + 354.95357 
m Pso

(6.3.7)

-0.93331 -0.14572
P c0SO O

(6.3.8)
(6 3.9)

I 6L17 6P 6-1
d 4LT C i2 -

dt L 0.18200 0O120
TO co

d6P P sP 62
2.20000 2.00000 -0.31400

dtP 'cso b o20

+ 2.00000 £ (6.3.10)
EO

Equation (6.3,8) is further approximated from Eqn.

(2.4.14) by assuming that the change in the feedwater tem-

perature 6T-F is small and can be neglected. In matrix

notation, the system can be described in state space form

by:

x = Ax + Bu + Gw

whe re,

(6.3 1 1)

m



159

x = a 10 th-dimensional state vector having the

state variables of the power plant as components

(Table 2.4.5).

u = a second-dimensional control vector. Its two

components are:

u 1 = Pext which is the external re-

activity of the reactor control rods.

2 which is the fractional change in theU2 - which is the fractional change in the

steam by-pass valve coefficient

(position).

w = a scalar input disturbance. It is the fractional

change in the main steam valve coefficient (position)

F_

0
A and B are matrices, and G is a vector. All are of ap-

propriate dimensions.

In this study, the variable 6E/co is considered the

input disturbance because it is seen as representing the

load demand. It is desired to find the maximum amplitude

of the input disturbance which the system can tolerate

without violation of the potential system state constraints

and control constraints.

The potential system state and output are:

(i) the core average coolant temperature, Tcl-
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(ii) the hot leg coolant temperature, Tc2Z In the model,

Tc2 represents the core outlet temperature, but in the
model reduction, it has been lumped with the

hot leg temperature THL with a single time

constant as given by Eqn. (2.4.23).

(iii) the steam pressure in the steam generator Ps

(iv) the steam pressure in front of the nozzle chest

of the HP turbine, Pc

(v) the reactor power level P.

The reactor power level P is a system output which

is expressed in terms of the state variables by Eqn.

(2.4.2)

6- = 2,1343.10 3 6C - 1.5947.10 3 Tf 1.4497.10 2 6To f 0 -2
- 1.4497.10 6Tc2 + 6Pext (6.3.12)

The turbine power output LT is an important system

output but no constraint bounds were considered on the

excursions of this variable since it is considered to

be directly controlled by c/co which is treated as the

input disturbance.

The fuel temperature Tf is a critical state var-

iable butno constraint bounds were considered on this
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variable because, with a maximum tolerance of more than

8% as shown in Table 6.3.2, it was found that the same

results are obtained with or without the constraint bounds

on the excursions of Tf.

In matrix notation, the system outputs are given

by:

= Hx + Du + Ew (6.3 13)

where,

= a fifth-dimensional system output vector

H,D are matrices and E is a vector. All are of

appropriate dimensions.

The control problem is to find a control vector u

such that

u = Kx (6.3.14)

where,

is the state estimate vector of the state

vector x

K is a control gain matrix of appropriate dimen-

sions.

In order to be able to use a full-state estimate feed-

back control given by Eqn. (6.3.14), the non-measurable

state variables are first reconstructed via an "observer".
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The inaccessible state variables considered here are:

(i) the delayed neutron precursor concentra-

tion C.

(ii) the average fuel temperature Tf.

(iii) the average coolant temperature Tcl.

The remaining seven state variables of the vector
x are assumed measured. In matrix notation, the measure-

ment output vector, z is given by:

z - Mx (6.3-15)

where,

z a= seventh-dimnensional measurement output

vector.

M = a 7x10 measurement matrix.

Equations (6.3.11), (6 3.13) and (6.3.15) constitute

the linear time-invariant dynamic system of the PR power

plait described in state-space form. The system matrices

are given in Table 6.3.1. The matrix coefficients are ob-

tained upon substitution from the parameter values for a

typical 1200 MWe plant at 100% power. The parameter

values are given in the tables of Chapter 2,
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6.3.2 System Output and Control Constraint Bounds:

In the presence of load demand changes, the con-

trol objective is to find a control u givenby Eqn. (6.3.14)

such that:

lyil

I Uj I

- Yimax

< u.- jmax

i=1,2,...5

j=1,2

(6.3.16)

(6.3.17)

at all times.

The constraint bounds on the excursions of the system

output and control are given in Table 6.3.2, Some of the

maximum percent changes from steady state value are ob-

tained from references (64,65).

The bounds on the reactor control rods reactivity are

calculated from Eqn. (2.4.7) as follows:

1 1

max (6extmax f Tf)max c

(6Tc max + T 2 ax)](d~~~ cl max 
where

= $1 which is the maximum reactivity

that a reactor is allowed to reach.

In this case the reactor is prompt

critical.
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(6Tf)max (6 Tcl)rmax and (6Tc2)ma are given

in Table 6.3.2.

B* = fraction of delayed neutron

af and ac = fuel and coolant temperature coefficients.

At the 100% operating load level, about which the

plant was linearized, the core reactivity 6p is equal to

zero, so the maximum possible external reactivity 6Pext

which is induced by the reactor control rods at steady state

is equal to the reactor inherent feedback reactivity of

$0.4204 induced by fuel and coolant temperature changes.

It follows that (6p ext) must lie between 1.0 prompt

critical reactivity. These are the constraint

bounds on the excursions of the control rods reactivity

considered in this study.

At the operating load level, the steam by-pass con-

trol valve position 2 is equal to 0.21918 lb /sec.psi. At

110% overpower, the maximum possible 2 is equal to

0.2411 lb /sec.psi. It follows that 2 must lie between

zero (completely closed) and 0.2411 (completely open).

So at 100% power level, the possible perturbation in E2

becomes: -0.21918 < 6c < + 0.02192. In order to prevent an

over-estimation or an under-estimation, we consider a pos-

sible perturbation in 2 to occur at 50% power level. In

this case we have: -0.12055 < 6 2 < +0.12055.
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Note that the maximum percent changes in the pres-

sures P and P from steady-state values given in Table

6.3.2 are assumed.

6.3.3 Set-Theoretic Control Results and Transient Response
Simulations

In applying Set-Theoretic control to the power plant

control problem, the input disturbance 6/c ° is modeled

by an unknown-but-bounded uncertainty and the control

objective is to find the control that maximizes the tol-

erable disturbance amplitude, subject to output and con-

trol constraints. In this procedure, the constraints on

the outputs and controls are translated into parameters

S and T defined in Chapter 4 as follows:1 j

* 2S (Yimax i=-1,2,...5 (6.3.13)

T= (u j=1,2 (6.3.19)j j max

For the constraints specified, the corresponding values

of S and T are given in Table 6. 32.1 j

This problem is solved, as described in Chapter 5,

using the computer program discussed in Chapter 5. The re-

sults are obtained for the two cases:

(i) the case where the full-state vector x

is assumed available for measurement.

(ii) the case where only the measurement out-

put vector z is available.
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The resultant control. gain matrix K1 for the first

case, the resultant control gain matrix 2 and the observa-

tion gain matrix L for the second case are given in Table

6.3.3. By comparing the two matrices K and K2, we find

that the only difference resides in the two elements: K19
and K29. From these results, it is clear that from the
measurement output vector z, the reconstructed state

vector x yields virtually the same control gain matrix:

K1 ~ K 2.

The maximum tolerable disturbance amplitude is

S.53579% and 5.53498% for the first and second case re-

spectively. The system eigenvalues for the two cases are

given in Table 6.3,4. The bounds on possible variable ex-

cursions are given in Table 6.3.5.

The Set-Theoretic control syster is further tested by

studying the transient responses of the power plant for the

two cases. By implementing on the pow-er plant model the

control u=K x for the first case and u=K2x for the

second case, we are simulating the time responses of the

closed loop systems. In the set of simulations, the system

was run at steady state conditions corresponding to the

10-0% operating load lvel for few seconds before being

subjected to a step down change in main steam control

valve position as follows:
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171Table 6.3.4

Eigenvalues of the Closed Loop
System

Free Parameter

Maximum Toler-
able Disturb-
ance Amplitude

Closed-

Loop

Eigen-
values

X10

t12

Case (1)
System Not Observed

0.164

5.53579 %
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.....

-0.19014

-0,.68849

-0.082251

-0.30022 - j0.61.136

-0.30022 + j0.61163

-1.9698

-3.6526

-3.177 - j1.0527

-3.177 j 1.0527

-8.8956

Case (2)
System Observed

0.164

5.53498%

-0.1877

-0.68918

-0.082251

-0.30001-j 0.61129

-0.30001+j0.61129

-1.9694

-3.6551

-3.1771-j1. 0527

-3.1771+j1.0527

-8.8956

-6.2627-j8.1353

-6.2627+j8.1353

-6.2625

1
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(i) in case 1, = 0,0553579

6E(ii) in case 2, 6 - 0.0553498

The results for corresponding variables in the two

cases are plotted on the same graph for ease of comparison.

The labels for the variables in each case are given in

Table 6.3.6. The time respones of representative variables

are presented in Figure 6.3.1. The sudden closing of the

main steam control valve causes an instantaneous decrease

in the main steam flow rate and a consequent decrease in

nozzle chest pressure accompanied by decrease in tur-

bine power output. The load reduction is accompanied

by an increase in the steam pressure inside the steam

generator. This response is in good agreement wi.th the

"Average-Temperature Program" assigned to the PR power

plant shown in Fig, 22.5. The sudden increase in the

secondary pressure inside the U-tube steam generator causes

a sudden change in the heat removal rate and hence a

consequent increase in the primary coolant temperature. The

tube metal temperature increases in consequence. Since

the temperature of the primary fluid increased inside the

UTSG, it follows that the cold leg temperature increases.

With the sudden increase in the primary coolant temperature,

the control action taken is such that the average coolant



Tabl.e 6.3,6

Labels to the Variables 174
of the FWR Poiwer Plant

Variables

States
6C
6T

6Tcl

6Tc2
6 TCL

6Tp

6T
m

6Ps /Pso

6LT /LTo

6Pc/Pco

Errors
error in C, el
error in Tf, e2

error in 6Tu, e3

Controls

ext
6 2/ 20

System Output
6P/P

O

Disturbance

System O :urved

1

2

3

4

5

6

7

8

9

10

24

26

28

30

System Not Observed

11

12

13

14

15

16

17

18

19

20

21

22

23

25

27

29

___ __
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(i) the reactor inherent feedbacks which

are the moderator temperature and

Doppler feedbacks.

(ii) a negative reactivity induced externally

by the reactor control rods which are

manipulated by the reactor control sys-

tem according to the "Average-Temperature

Program".

This control action is accompanied by a decrease in re-

actor power level.

Note that the Set-Theoretic control system causes

a closing of the steam by-pass control valve in order

to minimize excursions of the state variables.

The time responses of the errors in the three in-

accessible state variables are shown in Fig. 6.3,2. The

errors were allocated a 10% of the maximum deviations of

the corresponding state variables as initial values in

order to use the reduced order observer under a severe con-

dition. The designed observation gain matrix L given in

Table 6.3.3 was able to cause the errors to die out rapidly

as shown in corresponding figures in less than a half second,

Some of the state variables as well as controls are affected

by the errors associated with the state reconstruction
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as shown in the time responses, The average coolant tem-

peraturc at the core is the most affected state variable.

The difference of the time response for the 2nd case

from that of the 1st case is considerable., The difference

in time responses can be considered to give a measure of per-

formance of the state reconstruction.

It must be emphasized that since the implemented

controls u = Kx or u = K2x are of the proportional feed-

back type without integral control action, the steady state

values of the variables are non-zero as evident in the cOr-

responding figures.
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CONCLUSIONS AND RECOMM}ENDATIONS

This study provides an extension to the Set-Theoretic

control synthesis technique as reformulated in (1). Also

it demonstrates the applicability of this technique to more

practical situations and opens the door for its adaptation

to other control problems.

The Set-Theoretic control synthesis technique has been

applied to a PWR power plant control problem for two cases.

In he first case the full-state vector is assumed available

for measurement and in the second case some state variables

are inaccessible. A good design of the observer which in-

volves choosing appropriate observation gain matrix can re-

construct the full-state vector without much error. In the

application to the power plant, the observer was tested under

severe conditions by allocating high initial values to the

errors in order to study the applicability of Set-Theoretic

control technique under this severe situation. The design

of K and L provided by this technique generated results

which show that Set-Theoretic Control is an affective and

promising scheme. The difference between the time re-

sponses of the second case from those given in the first

case are small in most of the step responses of the power

plant. The other advantage of the Set-Theoretic control

technique is that it addresses control problems associated
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with PWR power plants since keeping critical plant variables

within prespecified bounds at all times is a vital requirement.

With the full state feedback control structure coordination be-

tween the primary and secondary loops is achieved and this

helps to yield satisfactory response characteristics for the

power plant.

The recommendations for future work in the field of

state reconstruction would be to design observers in cases

where measurements are noise-corrupted in addition to the

process disturbance. Concerning the solution algorithms

adopted in this study, they are slow and no attempt has been

made to investigate other algorithms since the goal was first

to test and implement the state reconstruction to Set-

Theoretic control in an existing and working algorithm.

Lagrange approach seems to be promising (56). Implementing

the state reconstruction to a Set-Theoretic Control using

Lagrange approach and also investigating other algorithms

then can be used in the Direct Search approach are sub-

jects of interest for future work.,
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EQUATIONS FOR SIIUJLATION OF A PR POWER PLANT

In this Appendix, we present the equations that are

the basis for the simulated PWIR power plant. The equations

for the primary side (reactor core, pressurizer and steam

generator of U-tube type) are derived following the model-

ing procedure presented in (21) and as applied in (27,28,29).

The equations for the secondary side (turbine and feedwater

heat.ers) are taken from (29,30). Because the number of these

equations is large, we have further reduced the overall

power plant model to a set of ten equations in linearized

form.

A.1 Neutron Kinetics and Reactivity Feedback

The most commonly known neutron kinetics model is

the space-independent point kinetics. This model is derived

from the time-dependent neutron transport equation follow-

ing Henry (35,36) by the use of perturbation weighting

functions. A key assumption in the derivation is that the

spatial shape of the neutron flux density does not change

appreciably as time goes on. The point kinetics equations

are given by:
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dt / P(t-) + Z iCi (A.1)
A i

dCi(t) 6

__ A PCt) - \iCi i=1,2.,.6 (A.2)dt A.

where

P(t) = reactor power level

p(t) = reactivity

= fraction of fission eutrons produced as
delayed neutrons. = Z i

i z
i = delayed neutron fraction for ith group.

= decay constant of the i t h delayed neutron
precursor.

A = prompt neutron generation time.

Ci(t)= delayed neutron precursor density in power
units.

Reactivity p(t) is commonly expressed in units of or

equivalently in dollars (6p = is equivalent to $1).

The point kinetics equation are linearized about an

operating condition Po, Cio and zero reactivity. If devia-

tions from the operating values are 6P, 6Ci and 6p respec-

tively, the linearized point kinetics equations are given

as:

G
d61 86P + X6c. - 6o (A.3)
-t Po A Po i=l 

d _ i 6Pd 6C1 = - P - X ' i=,2,...6 (A.4)
A P
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6p and 6SC. are expressed in terms of the normalized

quantities p/B and 6Ci/Po respectively.

The reactivity p consists of a part p ext induced by

using the control rods and another 6Pfb induced by temperature

and/or pressure feedbacks inherent to the reactor:

6 P = 6Pext + Pf.b, (A.5)

The inherent feedbacks in Eqn. (A,5) serve as coupling

between the point kinetic equations (A.3), (A.4) and the

core heat transfer equations as well as the pressurizer,

There are other feedbacks inherent to the reactor but they

are not considered because their time constants are much

longer (hours and days) that those of interest to this study

(seconds and minutes).

A.2 Core Heat Transfer

The heat transfer rate from fuel surface to coolant is

given by:

qs = Ashfc (s-Tc) (A.6)

where, As = heat transfer area

hf = heat transfer coefficient for fuel-to-coolant

s = fuel temperature in surface node
Tc = coolant temperature.

The fuel is divided into 6 nodes as shown in Fig. 2.4.1

with a heat balance of the form:
dT

pfCpfVfi -dF - (heat generated)i + (heat flow in);
- (heat flow out)i, i=1,2,...n (A.7)
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where,

subscript i denotes node i

pf = fuel density

Cpf = fuel specific heat capacity.

Vfi = volume of fuel node i.

Tfi = temperature of fuel node i.

The average fuel temperature is obtained as follows

(18):

TflVfl + Tf2Vf2 + -+TfiVfi +Tf6Cf6
Tf =

Vfl + Vf2+.. +Vfi +..V f6

i=1,2..,6 (A.8)

By adding the 6 equations of (A.7) we can obtain the

heat balance equation for the average fuel temperature

dTf f Afhef f
dt (cmp)f P - (Cf (TfT (A.9)

where,

f = fraction of power released in the fuel.

h = overall fuel.-to-coolant heat transfer coefficient
including resistances in fuel as well as film
resistance.

Af = area chosen as a basis for application of
heff.
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The fuel with the effect of cladding is lumped in

only one node, and the only state variable is the average

fuel temperature, Tf. The entire effect of the cladding

is simply a thermal resistance in the overall heat trans-

fer coefficient. The thermal resistance of the fuel is

corrected for the fact that the average fuel temperature

Tf is used. The thermal resistance across the gas gap de-

pends on the gas in the gap, the gap thickness, the fuel

surface properties and power history (21,33),

In the lumped parameter model of the core, two cool-

ant nodes are used for each fuel node to obtain a good

approximation to the average coolant temperature (21,27,37).

Figure (2.4.2) shows a schematic of the fuel-coolant heat

transfer model.

The average coolant temperature of the first node

TC1 is taken as the temperature to determine the heat

transfer rate qf

qf = Af heff (Tf-TCl) (A.10)

The outlet temperature is taken as the average of

the second node TC2. Using the heat balance equation (A.7)

for the first coolant node and the second coolant node

respectively, we get:
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dTci (1-f) +f CP) TdT = (1 E Af+_epf (Tf-Tc) mCp C l(Tcl LP)

(A. 11)

dTc2 (1-f) p j C (Tf Tcl) (mTC ) C TC1)
dt (Mc P)C2 c -)C2T - M Pdt (mcp) p + Af Chf1C2Cl)

(A. 12)

where,

TLp = reactor lower plenum temperature,

m ci = mass of coolant in node i (assumed equal
for node 1 and node 2).

CPC = specific heat of coolant.

If deviations from thc operating values are 6Tf, 6Tc1
and 6TC2, the linearized equations for the core heat trans-

fer are:

d fPo 6P Af heff
6T (TP - (Tf = 6T ol (A.13)dt f -mC ) P mC)f (6Tf- Tc1)f pf

d ,c =f (1-f)Po 6P Af heff
-t Tcl (mcp)cl P + 2(mcp)c (6Tf TC1) m) C1

(6Tcl- TLp) (A.14)

d (l-f)Po P Af heffT )
Jdt 6TC2 (i, P + 2 (nc f C (T -m6TCi)-( c2P'C2 o c2

(6T 2 -6Tc1 ) (A.15)
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A.3 Piping and Plenums

Piping sections and plenums are modeled as well-

mixed volumes (21). It is assumed that the heat trans-

fer to the metal walls in these sections is small and can

be omitted and that the plenums perform their mixing

function perfectly.

d
E~ 6 Tup

The linearized equations are:

(-) upm UP

d 6T=T
a t HL = (m) HL

d 1
dt I'P m IP

d
dt ToP =

d
E- 6TCL

d T
dt 6TLp

m) op

= (m)

m
m LP

(6T c2- 6Tup)

(6Tup- 6 THL)

(THL- TIp)

(6Tp- 6Top)

(STop- 6TCL)

(6TCL - T P

(A. 16)

(A. 17)

(A. 18)

(A. 19)

where,

(A. 20)

(A. 21)
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the subscript UP stands for reactor upper plenum,

HL for hot leg pipe, IP for steam generator inlet

plenum, OP for steam generator outlet plenum, CL

for cold leg pipe and LP for reactor lower plenum.

6Tp is the deviation in the primary coolant tempera-

ture in the steam generator.

m is mass flow rate

m is mass of coolant.

A.4 Pressurizer

The pressure of the reactor coolant system (RCS)

has some feedback on the rest of the system through the

pressure coefficient of reactivity y, in Eqn. (A.5). This
P

is contained in the feedbacks term Pf .b. The pressurizer

maintains the RCS pressure at a constant value during

steady-state operation of the plant. Details of its func-

tion are found in (21,25,29,38,39,40). Figure 2.4.3

shows a schematic of the pressurizer. During a transient,

pressure changes are limited by the pressurizer control

system. This system regulates the pressurizer level,

pressurizer pressure and reactor coolant pressure. However,

there is no feedback front pressurizer water level on the rest

of the system.

A pressurizer pressure equation is given in linearized



form by (28)

d 6P 6P a + +3 + ,6IV + e5 T STu
dt lP p lp 2 s3 6u 4 p s

"6 TSp (A.22)

N d8T.
with su i=l 

where,

P is the pressure of the primary side.
p

q is the rate of heat addition to the fluid with
electric heater.

Wsu mass flow of surge water into (or out of) the
pressurizer depending on the coolant average
temperature.

WS mass flow of spray water.sp
TSu surge water temperature.

TSp spray water temperature

a's are coefficients to be determined from algebraic
substitutions.

Vi volume of i t coolant node

Bi slope of coolant density versus temperature cuve.

Ti temperature of i t h coolant node,

Eqn. (A.22) is based on mass, energy, and volume

balances and the assumption that saturation conditions

always apply for the steam-water mixture in the pressurizer.

209
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dM

= W + W - T7F-t -su sp s

dM
Ws--i-t , s

dE

--t su Su + W hssp sp - W h - P V +qs s pw

dE
- Wh -P 

dt s s p s

Vw + V = VT

where,

Mw mass of water in the pressurizer.
Ms =ms fsemintepesrzr

M = mass of steam in the pressurizer.

Ws = flashing rate (or condensing rate)
pressurizer.

in the

Ew,Es = internal energy of water and steam in the
pressurizer respectively.

h ,h 5h = are enthalpies of surger water, spray
su sp s ~water and steam respectively.

vw, vs, VT = water volume, steam volume and total
volume respectively.

In the reduction process of the overall power plant

model, Eqn. (A.22) for the pressurizer as well as that of

the pressurizer pressure control system are neglected.

A.5 The Steam Generator

This model (27,28,29) consists of a primary coolant

lump, a heat conducting metal lump, and a secondary cool-

ant lump. For the pr-imary coolant lump, an energy balance
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is made on theprimary coolant which results in the primary

coolant temperature, T as a state variable, The govern-
P

ing equation is given in linearized form

d6T m C
dt _ P Pm C (6TIp"- Tp)

(h -A)
eff.mC A(6T -6Tm) (A.23)

mp f, are mass of primary coolant in the UTSG and
its flow rate respectively.

Cpp - specific heat of primary coolant.

(h ff) = heat transfer coefficient for primary coolanteff pm to metal (includes portion of the metal re-
sistance as well as the film resistance).

A = primary side to U-tube metal heat transfer
area.

Tm =U-tube metal temperature.

For the heat conducting metal lump, an energy balance

is also made on the tube metal which results in the tube

metal temperature T as a state variable. The governing

equation is given in linearized form

d (heffA)p (T T (heffA) 
dt m nm C m sat

(A.24)
with "'sat

ST SPsat sP ss

where,
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where,

= mass of tube metal,

= specific heat of tube metal.

= tube metal to secondary coolant heat
transfer area.

Cheff) Ims

aT sat
aP s

= heat transfer coefficient for metal to
secondary coolant (includes a portion
of the metal resistance as well as the film
resistance).

= slope of saturation temperature versus
saturation pressure curve,

Ps = steam pressure.

Equation (A.24) is based on the assumption that

saturation conditions exist througlout the secondary cool-

ant lump. This assumption leads to consider the steam

pressure Ps as a state variable for the secondary coolant

lump. The governing equation for the secondary coolant lump

is given in linearized form by:

dT -hd 1 sat s
dt s K { (hffA) ms T m [(h h e f f A) m s at + s

S S

+ o(h hFw)~s s psSs TF - s (ll h ) X } (A. 25)
0

where,

TFl = feedwater temperature

- fractional ch ange in v alue coeffici ent, (equal
o to a constant x valr are a) and zero denotes

steady state condition.

K = constant to be determined by algebraic substitu-
tions.

m
m

C
pm

A
ms
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Equation (A.25) is based on the assumption that any

drop in the domrstream or turbine pressure will not change

the steam flow rate lW from thl-e steam generator. This

assumption is commonly known as the "critical flow" assump-

tion. Following this assumption, it is possible to write

W = cP

or in linearized form

6Ws = E 6P< + P (A.26)
s 0 so E

0

where,

zero denostes values at steady state conditions.

Equation (A.25) is obtained by applying mass balances

for the water and steam components, an energy balance on

the secondary coolant, and a volume balance on all the

secondary coolant in the whole steam generator.

The steam generator is equipped with a three element

feedwater controller which maintains a programmed water

level on the secondary side during normal plant opera-

tion. Three signals determine the main feedwater value

position as shown in Fig. 2.4.5: the level error signal, the

steam flow rate signal, and the feedwater flow rate signal.

Details about the steam generator water-level control are

given in reference (41). In this study, the feedwater

flow is assumed to be controlled perfectly. Perfect feed-
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water flow control means that at every instant, the feed-

water flow is assumed equal to the steam flow

WFW s s

IV = Eo 6s o+ E (A.27)WFW o0 s so E

A.6 The Turbine and Feedwater Heaters

This model was originally developed by (34) and used

with modifications in (29,30). This model is reduced

physically in Section 2.4 for computatioal purpose. For a

review of dynamic models of some widely used steam turbines

and their speed-governing systems, reference (42) may be

consulted. Typical parameters are also given.

A block diagram of the model is shown in Fig. 2.4.6.

The governing equations are derived (18) by applying

physical laws on the different subsystems as follows:

(i) nozzle chest, Fig. A.!.

(ii) high pressure turbine, Fig. A.2.

(iii) reheater and moisture separator, Fig. A.3.

(iv) low pressure turbine, Fig. A.4.

(v) feedwater heater No. 1, Fig. A.5.

(vi) feedwater hater No. 2, Fig. A.6.
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The resulting state variables of the model are described in

Table A.1.

(i) nozzle chest, Fig. A.1:

A mass balance over the constant volume Vc and an

energy balance will result in the following:

dM
E =Wl -W2

dE h -h
E W Nlhs Wshca- ls s c

The mass can be written as M=pcVc and the energy

stored in Vc can be expressed as E=Mu'uc. Uc is eliminated

by using Callendar's empirical state equation

(A.28)PcVc g [Klhc k2 k3 Pc]lc

where k, k2' and k3 are constants. The product Pck3 is

small and can be neglected. The relationship between

hc and uc that is (hc = c + Pcvc) becomes

dh K -1 duc
c- [ - g (A.29)d t the governing equa-c

After substitution and linearization, the governing equa-
tions are:
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State Variables of the Turbine and Feedwater Heaters

6pc Change in the density of the steam in the nozzle
chest (lbm/ft 3) ,

6h
Fractional change in the enthalpy of the nozzle

co chest.
dWII

2 Fractional change in the flow rate of steam
2" entering the moisture separator,

0

do Density of steam in the reheater tube side
R (lbm/ft 3 ).

6 hR
Fractional change in enthalpy of reheater tube

R side.
0

6Wp~
Fractional change in flow rate of steam leaving

PR' the reheater shell side
0

6QR lHeat transfer in the reheater shell to tube
(Mw-hr/sec) .

6WI
- Fractional change in flow rate of steam leav-

W20 ing LP turbine to the condenser,

6h Change in the enthalpy of feedwater in heater 1FW w
(B/lbm)

6TFW Change in feedwater temperature leaving heater
2 (F).

HP2 Fractional change in flow rate of fluid eav-
WHP2 ing heater 2 to heater 1.
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Fig. A.1 Nozzle Chest
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dt 1 [c aW -VW ] (A. 30)

d c = Tj 6hcdt h - + q1 6++ 2 + n (A.31)C nl 6W1 + 2 6hs + 4h 
CO CO

with

6W1 6Ws x NUTSG

= [6P s + Wso - ] x NUTSG (A.32)
O

W2 is given by the empirical relationship [IBM].

W2 = g0. Ak2 [PcPc PR21 5 (A.33)

where,

n 's are coefficients to be determined by
algebraic substitutions.

gc gravitational constant = 32.2 lbmft/lbf sec2

NUTSG number of U-tube steam generators in
the power plant.

A = constant

PR = pressure of steam entering the reheater. -

P2= density of steam leaving HP turbine to the
moisture separator.

Equation (A.33) can be expressed in terms of the

state variables by using Callender's empirical relationship

on Pc and PR.
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Pc -'Pc [Klh c k2] (A.34)

PR g PR[KlhR - k2] (A.35)

It is assumed that the quality of the steam entering

the nozzle chest and entering the reheater shell side is

approximately 1.0. Therefore, the following equations are

obtained

ah
6hS = aP 6P s (A.36)

aT _ saat6T a a dp (A.37)
sat aP s

ah
5h =-g 6P (A.38)

g ap R R

9P 2
6P2 PR 6PR (A.39)

(ii) high pressure turbine, Fig. A.2

A mass balance will result in

dM -"

dt 2 2 BHIP

Let BHP = KBHP W2 and M = T 2 W2 , where KBHP is a

constant (a fraction of steam entering the HP turbine that
is extracted to feedwater heater 2) and TW2 is a time con-

stant associated with volume of bleed lines. The linearized
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form of the mass balance

6W2

d 62 1 1 KBHP 6 W W (A.40)
d ,W" =, - 2 (420

20 TW2 20 20

(iii) reheater and moisture separator, Fig. A.3:

A mass balance and an energy balance on the shell

side of the reheater will result in the following equations

dM W2 -W

dE '
QR + W2g - 13 hR.

The reheater volume remains constant, so the mass

is given by M = PRVR and the internal energy is E=MuR.

UR can be eliminated by using an equation similar to

Eqn. (A.29). Upon substitution and linearization, the govern-

ing equations are:

d [p _ 1- 61W3] (A-41)
d t R nVI) 2 3]

6h
id R; 61V + n 6h + n S + RW 6
h R + q6QR (A.42)R ]5 tW~ +P a15g 7 3 8

with
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6W2 h2 h g
fg fg (A 43)

W 0 K P 0 , (A.44)
W3 = gc 3 [pRPR]

where 's are coefficients to be determined hg is as given

by Eqn. (A.38) and PR is as givenby Eqn. (A.35).

A mass balance on the tube side is given by:

dM

dt WpR PR

The reheater is assumed a "well-mixed tank". Let I be

given by M = TI 1 'DPR where TR1 is a time constant. The

governing equation in linearized form is:

d 6W'1~ R I 6WI'PR _1 PR PR
d - - T [l' -I I i (A. 45)
PRO Ri PRO PRO

With IpR following the critical flow, VPR = E2Ps'

and 6 VpR, in linearized form, given by:

6 2

6 WPR 20 6Ps + PRO c20 (A.46)

where,

e2 is the coefficient of the by-pass valve
and 20 is its operating value.

The derivation of the reheater heat transfer QR
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Fig, A. 3 Moisture Separator and
Reheatcer
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Fig. A. 4 LP Turbine.
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is based on two assumptions:

(i) the dynamic heat transfer is assumed to be

equal to the steady state heat transfer modified

by a time constant.

(ii) the heat transfer coefficient for heat trans-

fer across the reheater tubes is assumed to vary

linearly with the tube side flow rate.

dQR pR WPR (TT
TR2 dt + QR HR [ R

where

tR2 is a time constant

TS is main steam temperature, Eqn. CA.37)

TR is reheat steam temperature

HR is overall heat transfer coefficient.

TR can be expressed in terms of the state variables

by assuming that the superheated steam on te tube side of

the reheater behaves as an ideal gas, that is PR=RPRTR.

The enthalpy is given by hR=uR+PR/pR. The linearized

equation of TR is

6TR = [R + CV]1 6 hR (A.47)

where,



R = constant of ideal gas law

CV = specific heat at constant volume.

The governing equation for QR in linearized form is

t QR yR2 [IRTS-TR) (G14PR+6W PR

+ R(' R VR )R P (STh) --QR (A.4

(iv) low pressure turbine, Fig. A.4:

A mass balance will result in:

dt W - WBLP

224

8)

- WI
3

Let WBLP KBLPW3 and M=Tw3W3, where KBLP is the

fraction of steam entering the LP turbine that is extracted

to feedwater heater 1 and W3 is a time constant associated

with volume of bleed lines. The governing equation in

linearized form is:

i-KB W.
[d 3 1 BLP 6W I W13(A.49)

30 TW3 30
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(v) feedwater heater No. 1, Fig. A.5'

An energy balance on the tube side of the heater is:

dE =
a -t QH1 + ho WFW - h ' FTF iW F-

Let M = TH1 WFW for a "wrell mixed tank" assumption

where is a time constant and let the energy be E=M u.

The fluid is in liquid state and so it is assumed incompres-

sible, the internal energy is ui = h tw since the change in
1- FWiT 

(Pv) w is very small. The heat transfer from the shell

side to the tube side, QH1 is expressed as an effective

flow on the shell side multiplied by a constant iTFW (34)

QH1 = HFIg (WBLP HTI-P2)

BLp = KBLP 3

Assuming that inlet enthalpy change is zero (h o = 0), the

governing equation in linearized form is:

d h' FW K + 6WE ]
EhFT - wHIWFW [KBLP 63 HP2 LHi FIV Hi: h'P2

hI

T Fv (KLpl 3 + W1 p2) 
6 FW

HI 2 L 3 HEN- I

hFIV d SWF 

I F dt

(A.50)
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WHP2

}tIP2+t "BLP

Fig. A5 Feedwater Heater #1

VW, w lt,
B-IP rnis FI

Fig. A.6 Feedwater Heater 2.

I'VFW' hFWV
WFW ho0W 

TFW' hFr
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Where the constant IFlV is the lateint heat removed from

the steam entering the shell side. 6W3 is given by the

linearized form of Eqn. CA.44) and 6Fs, is given by Eqn.

(A.27) and consequently d-t6WFwV can be known.

(vi) feedwater heater o. 2, Fig. A.6:

Similarly, an energy balance is done on feedwater

heater No. 2 with the same assumptions except that we set

ShFW = Cp2wTFi where Cp2 is the specific heat. The govern-

ing equation in linearized form is:

d 1 H 'IV F
5 t - I K F'FW t SIdt FW C W, BliP + m ,PT2H 2 FIV

(K BHPI 2 + Wms + WR) SWF, + hw]

8TFwl, hFW dlSW Fw

iHZ C2 WTFT dtE2

6W = 6lVTWI- 'tI
ms 2 2

HFIW is the latent heat removed from the steam.

A mass balance on feedwater heater No. 2 will give

dcI = WBTp + IVms + - WHP 2dt - BHP ins PR HP2

W 2

FWlr

where,

(A. 51)

+ MI )
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Let M = THp2 WHp2 for a "well-mixed tank" assumption

HP2 "BHP BtlPH'where THP2 is a time constant and let 1, B1P - KB11P W2.
Upon linearization and division by WHP20 the governing

equation in linearized form is:

d WHP2 1

dt WHP20 THP2 WHP20 [KBHP i2+ ms 6

1 aVHP2 (A.52)

THP2 WHP2 0



Appendix B

DERIVATION OF THE REDUCED-ORDER OBSERVER

Consider a linear time-invariant dynamic system as

x = Ax + Bu + Gw (B.1)

(B.2)z = Mx

where,

x = n-dimensional

u = r-dimensional

state vector

control vector

z = m-dimensional measurement outputs vector

w = scalar input disturbance

A,B and M are matrices with appropriate
dimensions

G = n-dimensional vector.

Let consider a new state vector x given by

1 = _ I (B.3)-i = [Z

So that the first m elements of xl are equal to .

We need a non-singular transformation relating x to the

new state vector x1.

Assume that the system is observable, m<n, and the

rows of NM are linearly independent.

(n-m)xn matrix N is selected so that

In this case an

229



n = Tx

z
r -

M
= 1 1 

NIT 

-1
= ] 

x = [S 1 S 2 ] n ]L 2 B r

x = S Z + S2 n1- 2

Equations (B.1) , (B. 5)

IM

N]

-1.

x 1-1

and (. 6)

M= A [~],' 

-1
xI-1

give

+ Bu + Gw

I AN

z
A [SiS 2] []1 T

J R
: Iv [-3TT -n

Bi

2 -

I] Gw

(B.7)

be written

n =

Let

P +

as:

V z + B2u + G2w

Jz + Rr + Bu + GlI

- Jz - Bu

z is of crder mxl.
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(B. 4)

(B.5)

(B.6)

z
d

zdt r-[~ l]
G1

+ [ ]
_s,

This may

w

(B.8)

(B.9)

(B.10)
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Note that the instantaneous values of the variables

z and u are available for measurement and consequently

dz/dt can be determined.

From Eqns. (B.8) and (B.10), the plant 'is expressed as:

n= P + Vz + B2u + G2w (B..8

Z = R + GW
- - -1 (B. l)

According to the theory of observers, see Section (4.2),

the dynamics of the estimate vector are given by:

n = Pn + Vz + B2u + G w + L(Z-(Rn+Gw))
2 2" + L (Z- C~rl+G:~\r1.

(B.12)

where L is

Therefore,

A
q =

the gain matrix to be determined by the designer.

by using Eqn. (B. 10)

(P-LR)n + (V-LJ)Z + (B2-LB1)u + (G2-LG1 )w+Lz

(B .13)

Let q = - LZ (B. 4)

Or equivalently, Eqn. (B.14) may be expressed by:

q = [-L I ] r-]

(B.15)= T x1
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Similarly, if Eqn. (B.9) is multiplied by the aribtrary

gain matrix, L, and subtracted from Eqn. (B,8), we get

q = (P-LR)n + (V-Lj)z + (B2-LB1)u + '(G2-LG1)w

where q = n - Lz

I

= f [-L I [] = TX1 (B. 16)

By adding and subtracting the term (P-LR)Lz in the right-

hand side of Eqn. (B.13), we get

q = (P-LR)q + (PL-LRL + V-LJ) + TB3u + TG3w (B .17)-- .r _ .~-- --.% 

where

B M

B = -3 = [RI P, G =[i] = [IB3 B 2 3 G 2 N -
S N~~~~~~~~~~~-.

Eqns. (B.16) and (B.17) can be written as:

q = Fq + Cz + Uu + lwTvW

q = F q + C z + Uu + w

F = P-LR

C = PL-LRL + V-LJ

U = TB 3

W = T 33=S
w_ T_

where

(B.18)

(B. 19)

(B.20)
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The estimate x is expressed as:

-1

N
x 1-1

= Is1 S2 ] []

S +S1 - "~S2-

Using Eqn. (B.14), we may express Eqn. (B,19) as:

x = S1Z + S(q + L)

- (S + SL) z + S2q

Eqns. (B.18) and (B.20) define an (n-m) state dynamic

system that provides an estimate x of x.

The dynamics of the error are found by subtracting

Eqn. (B.18) from Eqn. (B.19)

e = - F(q-q) = F e

= r- _ = F(n-n) = F e (B. 23)

In the case of an observer, the control law is ex-

pressed as:

u = kx (B.24)

where K is a gain matrix for the controller. From Eqn.

(B. 21) 
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(B.21)

(B.22)
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u K(S 1z + S2_ (B.25)

Adding and. Subtracting the te. m KS2n and making the

appropriate substitutions for both z and n and also recog-

nizing that S1M + S2N = Inxn), we get:

u=kx + KS2 e. (B.26)

The plant with its reduced-order observer may be

conveniently described in terms of the state vector x and

the error vector e as follows:

x - Ax + B(Kx + KS2e) + Gw

e = Fe = (P-LR)e (B.27)

or, in matrix notation,

x A+BIK: BS 2 X f GI
[ = - - -P-LR2 e +T w (B.28)

The computation may be repeated for the case when the

disturbance is not observed by the observer, i.e., when

the only input to the observer is the control input u.

The result in matrix notation is given by:

x rA+sK:BKS 2 x G.
[i] L= 0 P-LR J- - T_3 w (B.29)
e OP-L C j[TG 3
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Appendix C

SUPPORT FUNCTION REPRESENTATION OF SETS (1,2)

Consider a closed convex set of a vector x as shown

in Fig. C.1. The support function s(n) defines all the

support hyperplanes which touch the boundary of the set 2,

and so, it provides a useful representation of the set. The

support function sCn) is defined by:

s(n) = maximum {xr'n} (C.1)

all x S2

n'n = 1

It is shown in (2) that as n varies, the support hyper-

planes "sweep around" the boundary of . The set can be

expressed as:

2 = {x: x'n < s(n) for all n, n'n = 1} (C.2)

Let the closed convex set be an ellipsoid defined by

(C.3)bx = x: [x-x-o]' r x-x ] < 11
X~~~~~ - 0-

where,

Q denotes the set of vector x
X
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plane

iding

convex set ,

Vector x max( nl)nI

X1

d is a vector in direction of nl with length d=x'x(na)nL = s(n )

Fig. C.1 Support Function of a Closed Convex Set
of Two-Dimensional Vector x.

x2
I - . - ' -C ,4- 1 -- -41

d*
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x denotes the center of the ellipsoid-0

r is a positive definite latrix,

If s(n) denotes the suport function of the ellipsoid

defined by (C.3), we can find x (n) of Eqn. (C. 1) by--max -
introducing a Lagrange multiplier ard solving the set

of equations:

- {x'n + [x-_ )'r-l(-x) - 1]) - o-n 2 - T- o c (C.4)

to get

Xmax () = X - n-max - -o -n

= + /n'rn (C.s)

Some of the characteristic properties of the support

function for ellipsoid are:
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(i) the vector sum of two ellipsoids with F1

and r 2 with centers x l 0 and x2 0 respectively is:

+2 )n) =n'[x 0 +x2 0 ] + /n' n n' r 2 n (C. 6)1+2 10 20 -1- 2

Thus the vector sum is not an ellipsoid.

(ii) Consider two ellipsoids Q1 and Q2 with common

centers (say, the origin) defined by Fr and

r2 . Assume that 1 > 2 so ( 1 -r 2 ) is

positive definite. It follows from (C.5)

that

jc 1. > S ( ) for all n

which means that 1= 22 (Q]. contains 2).
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SETS OF REACIIABLE STATES (1,2)

Consider a linear dynamic s stem subjected to an

unknown-but-bounded input disturbance w(t)

x(t) = A(t)x(t) + G(t) w(t)

X(O) QX (0)

w (t)s S2w(t) (D.1)

If the system starts from an initial unknown-but-

bounded state x(O) in the presence of w(t), it undergoes time

excursions which depend on the dynamic characteristics of

the system and the control action taken at subsequent times.

In order for the excursions of the system states to be con-

sidered acceptable, the sets of possible states at every

instant of time should be contained in the corresponding

prespecified target set. This is easily visualized for
the'discrete time case

x(nA+A) = d(n)x(nA) + AG(nA)wi(nA)

xCO0)E (°)

w (nA) c Q (nA) (D, 2)

wh ere

4(nA) = I+AA(nA) (D 3)
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The set (nA) containing all possiblex
the set of reachable states,

x (nA) is called

It follows that

2x (nA+A) = {x: x=-(nA)x I + AG(nA)w,

xl x(nA), ws w w(nA)}x w

(D.4)

xQ (nA+A)

as follows:

can be expressed as a vector sum of two sets

Q (nA+A) = x (nA+AlnIA) + QGw (nA)

Qx (nA+A I 11A) {x: x=p(nA)x ixiQ (nA)}

QGw(nA) = {x: x = AG(nA)w, wQw (nA) }
w

Using support functions,

Sx(nA+A) (n)

Eqn. (D. 5)

= Sx(nA+AlnA) (n)

is given by:

+ SGw (n) (D. 8)

By defining:

Sx(nA) (n)

Sw(nA) ()

support function Qx (nA)x.

support function of w (nA)

Eqn. (D.8) reduces to

where,

(D.5)

(D.6)

(D.7)



x(nA+A) (n) = Sx(nd )[1t (nA)n]+,(n,) [AG' nA)n]

If x (O) and w (nA) are ellipsoi; defined by

ax() = {x: (x-x )
-- -- O

Q (nA) = {w:

'-1, (x-Xo) }

w ' (nA)w <1}

the corresponding support functions are given by:

Sx (0) (n)

Sw(nA) (n)

where x is-o

= n'x
- - + [n' ln]

1

(D.12)

1

= [n 1Qn]L (D.13)

the center of the states.

Assume that Qx (nA) is bounded by an

cribed by:

x ,b (nA) = {x: x-x )- - -- O

then the corresponding

Sx(nA) ,b (n)

'Tr

ellipsoid des-

(nA) (x-x )<}-0-o-- (D. 14)

support function is:

= nx -o

1

+ ln'rn] 2 (D. 15)

Using Eqs. (D. 11) and (D. l), equation

duced to
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(D 9)

(D.10)

(D. 11)

(D.9) is re-



Sx (nA+ApSI n' (nA)x + n'

+[n'G (nA)Q(nA)G'
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1

(nA) (nA) (nhA)n] 2

]1

(na)nA2] 2 (D. 16)

Eqn. (D.16) is not the support function of an el-

lipsoid.
Holder ' s

A bounding ellipsoid can be obtained by using

inequality

(l-v) -1 b2 + > (bi+b2 ) 2
(D. 17)

O<v<l

with

= n' G (nA)

' n4) (nA)n 
1

Q(nA) G' (nA)nA 2 2

Using Holder's inequality, the support function of

bounding ellipsoid is given by:

Sx(nA+A),b (n) = n (nA)x

+{ [,* n' I (nA) r (niA) I I CA) +-l--l'nIG (nA) Q ) G (nA) n ]2-v - V -(D,2
(D,20)

for v=AS(nA) in Eqn. (D.20)

(D. 18)

(D.19)

a

. ,

Substituting
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Sx(nA+A), (n) = n'$(nA)x

+[n (Ag3 nA(nA) (nA) '(nA) + (n)G (nA)Q(nA) G (nA))n]

(D. 21)

It follows that the ellipsoid bounding the set of reach-

able states is given by:

x (nA) = {x: (x-x ) l (nA)(x-x ) < 1} (D.22)- -0 -0

where F(nA) satisfies

r (A ) = 1-n + '(na)( A) (nA)+AG (nA ) G' (nA)

(D.23)
r(o) (

> (n/A) > 0

The solution for the corresponding continuous-time

system described by Eqn. (D.1) is obtained by applying the

discrete to continuous time limit: Ean. (D 3), -+o, n+- and

nA+t. The resultant bounding ellipsoid for the set of reach-

able states is given by:

gx b(t) = {x: (-xo) 'r -l) - < 1 (D.24)-- 0 -0
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where (t) satisfies

= A(t) (t) + F(t)A' (t) + 13(t)r(t) +

Q (t)
t3(t)

r(o) = 

co> S (t)

df 7(t)

> 0 (D.25)


