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ABSTRACT

A Set-Theoretic approach for solving practical full-
state feedback control problems when some or all of the
states are not accessible and for which the available
controls are limited and it is desired to keep the sys-
tem states or outputs within prescribed bounds in the
‘presence of input disturbances is developed.

The input disturbance is represented by an unknown-
but-bounded process, a reduced-order observer is employed
to reconstruct the inaccessible states, and the control
and state constraints are treated directly. By treating
the constraints directly, this technique ensures that all
the constraints will be satisfied and a once-through de-
sign results,

The control problem associated with the operation
of a pressurized water nuclear power plant is investigated
and the Set-Theoretic Control technique is applied to dem-
onstrate its applicability to practical control problems.
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Title: Professor of Electrical Engineering
and Computer Science



ACKNOWLEDGEMEN 5

To Professor Leonard A. Goud I express my greatest re-
spect. Since his warm reception fri the first time when he
suggested the thesis topic, I found with him comprehension
and understanding.

I am particularly indebted to Professor G. Verghese
for his valuable suggestions and guidance, and to Dr. P.B..
Usoro for his direct involvement in this research.

I would like to express my appreciation to Professors
E.Pl Gyftopoulos, F.C. Schweppe, J.E. Meyer, M.S. Kazimi
and D.D. Lanning for their comments and advice.

I am very grateful to Professor T.W. Kerlin of the
Department of Nuclear Engineering at the University of
Tennessee for his explanatory letter. His advice and the
material that he provided to me were of great help in the
development of this research.

I am particularly indebted to my friend Kamal Youcef
Toumi. ' His direct involvement in this work and his encourage-
ments at times of hardship contributed to the success of this
work.

I also wish to thank my colleagues, Mssrs. Shahriar
Negahdaripour and Ryan Kim for their suggestions and in-
teresting discussions.

1 would like to thank Mr. M.P, LeFrancois of Maine

Yankee for providing information about the tolerances in a



PWR power plant.
I would like to thank the University of Algiers for
sponsoring my studies at the USA,
I give a very special word of thanks to Miss Cathy
Lydon for her cooperation, patience and efficiency in typing
this thesis. Miss Jennice Phillips was also of great help.
I would like to take advantage of this opportunity
to remember my parents and all members of my family, es-
pecially my wife, Soheir, to whom I owe my success. Also
I wguld like to remember, of course, my dearest children:
Abir (chou-chou de papa) and Mohamed-Tarek (my Ibni).
Finally, I remember my two intimate friends, A. Gharmoul and

M. Abdellatif for their continued moral support.



TABLE OF CONTENTS

Item Page No
ABSTRACT -----mmm e m s meme e e e e e e m e e e e e e e e e 2
ACKNOWLEDGEMENTS -------mommm s mo i mm m e me e e em oo - 3
LIST OF TABLES -----cmmcmccmec e me e e e ee e e - 8
LIST OF FIGURES ------cmmmmm e e e e m e e e e oo -- 9
NOMENCLATURE --------cmmm i mmmm e mmm e e e e e mrm e e e - - 13
1. INTRODUCTION
1.1 Background ----------emmm e e e e - - 14
1.2 Review of rLiterature in Set-
Theoretic Control ---------==c-mcmmoommmunannn 15
3 Research Objectives ------=----------~-=----~ 17
4 Modern Versus Classical Con-
trol Techniques in Nuclear Power
Plants -----------------c e e 18
1.5 Organization of Thesis -----=--=--c-ccmmcuonoo- 19
2. PRESSURIZED WATER NUCLEAR POWER PLANT
2.1 Introduction ------=-c--emmmmcm o c e emm o - 21
2.2 Control Strategies for a
PWR Power Plant ------=-------"scccmrm-o-o-- 23
2.2.1 General Description ----=---~--=-------- 23
2.2.2 Steady-State Control
Programs ------==-=--=“ccmocemimm o 25
2.3 PWR Power Flant Control Systems ------------- 33
2.3.1 Reactor Control System ----------wwc-u-- 34
2.3.2 Steam-By-Pass Control System ---------- 38
2.4 System Model -------------cccmmmmmmem e e o - 40
2.4.1 Reactor Core Model -----------ec-mco-m- 42
2.4.2 Piping and Plenum Model -------=-==----- 52
2.4.3 Pressurizer Model ---------e-cceco-naoon 53
2.4.4 The Steam Generator Model ------------- 55
2.4.5 The Turbine and Feedwater
Heaters Model -------c-oemounooononnn- 61
2.4.6 A Reduced Order Model ----------------- 70



Table of Contents (cont'd)

Item Page Ng
3. STATE RECONSTRUCTION
3.1 Introduction =---=--=----momoomnanonno ne - 74
3.2 Observing a Lincar System ------------------~ 76
3.3 Full and Reduced Order Observers ' -----=------- 80
3.4 Representation of an Observed System
in Terms of the Stare Vector, x(t) and
Error Vector, e(t) -------------c-ocomomnnon 88
3.5 Conditions for the Observability
of an LTI System -~-=--c-vccmvmmemm e e e 92
4. SET-THEORETIC CONTROL
4.1 Introduction =-----------m-m-mmmm e ce e 97

4.2 Observation/Control Problem State-
ment for an LTI System with In-

accessible States -------c-mmmmmmmom e m e 99
4.3 The Synthesis Problem ------------c-o-------- 106
5. SOLUTION PROCEDURE
5.1 Introduction -----=----=commommmmm e cm oo 116
5.2 Solution Techniques ----=------------cc-w-wu- 119
5.2.1 Selecting a Nonsingular
Transformation --------------=---------- 124
5.2.2 Generatinc a Feasible
Starting Point -----------mcmm oo 125
5.2.3 Solving the Lyapunov Equation --------- 127
5.2.4 Optimization Search Method ------------ 128
5.3 Description of the Computer Program --------- 130

6. APPLICATIONS AND RESULTS

6.1 Introduction --------cmcrmmme e 134
6.2 Illustrative Example --------cceommmmwnnooox 135
6.3 Application to the PWR Power Plant :--------- 156
6.3.1 The Linear Time-Invariant System ------ 158
6.3.2 System Output and Control Con-
straint Bounds --------------emmmmm 165
6.3.3 Set-Theoretic Control Results
and Transient Response Simulations ---- 168
7. CONCLUSIONS AID RECOMMENDATIONS -----+-=-~-==wom- 193

REFERENCES = == - =< === = = mm e e e e e e e e et 195



Item

Appendix

Appendix

Appendix

Appendix

Table of Contents (cont'd)

Page No
EQUATIONS FOR SIMULAT UN
OF A PWR POWER PLANT ----------nonnoo- 201
DERIVATION OF THE REDUCED-
ORDER OBSERVER --------c--mcmommomman 228
SUPPORT FUNCTION REPRESENTA-
TION OF SETS ---------c---rmmmommmma 235
SETS OF REACHABLE STATES ------------ 239



No

LIST OF TABLES 8

Essential Design Parameters for the
Reactor Core Model -----r-ccmmmcmmrccrnar e 44

Essential Data for Generating a Typical
UTSG Model ---------comcmm e m e e 58

Essential Data for the Turbine Feed-
water Heaters Model -------- B 63

The State Variables of the 14th

Order Model -~----- - ocmmc e e e e e e e o 71
The State Variables of the 10th

Order Model -----=--c-mmmrmo e e e e oo 73
Results of the Illustrative Lxample -----r--- 143
Indication of the Different Variables

of the Marginal System -------------=c---=--- 145
System Matrices ---=---=-r--m-moceoomoooo- 163

Output System and Control Constraint
Bounds ------=---=---m-mem e 166

Set-Theoretic Contrcl Matrices ~------------- 170

Eigenvalues of the Closed Loop
System ---------------m-ommei e r oo — e 171

Bounds on Possible Variable Excur-
Sions --------e---mom e e e o 172

Labels to the Variables of the PWR
Power Plant ------r---cocmmmmcmc e cnm oo - 174

State Variables of the Turbhine and
Feedwater Heaters ---------c--crmmomrronenmnnx 216



2.2.3
2.2.4

2.2.5

2.3.1
2.3.2

2.3.3

2.4.1
2.4.2

-2.4.3
2.4.4
2.4.5
2.4.6

2.4.7
2.4.8

3.2.1

-

LIST OF FIGURES 9

" Page No.
Schematic Diagram of a PWR Power
Plant -----mmmmm i re e m e e e e e e 24
Steam Pressure as a Function of
Steam Temperature ----------ccc-ccccmoon oo 28
Constant-Average Temperature Program --------- 29
Constant-Pressure Program ---------c-e-ucmono-" 29
Average-Temperature Program ------------------ 32
Reactor Coolant Temperature Controller ------- 35
Reactor Response Following a Stepwise
Load Increase -------=---~----ce---moceoooooooo 37
(a) By-Pass valves system; (b) Functional
Block-Diagram of Steam By-Pass Con-
trol System -------------------o-comem 39
A Nodal Model for Fuel Heat
Transfer ----------------c---c-ccma - 48
Schematic of the Fuel-Coolant
Heat Transfer Model --------=-ecmccmmmcmmunnann. 49
Pressurizer Model Schematic Diagram ---------- 54
Steam Generator Schematic Diagram ------------ 57
Three Element Controller Schematic ~-~-=---=«--=- 60
Schematic Diagram of the Turbine Feed-
water Heaters Model ~--------comccccowonmnonn- 62
Rankine Cycle: Turbine and Reheater
Part Only -------c-cmrmccmme e rc e e drm e e 67
Control Volume Combinging Heater 1
and Heater 2 ------=----wc--ccmcmmmmci e e 69

An Original System Observed by a
System COpy =--=v-=-----==----mmmeammao e 78



3.2.2

3.3.1

5.1.1

.2.2

(53]

[=)}

2.1

2.2
.2.3
.2.4
.2.5

AN O O O

.2.6
6.2.7
6.2.8

6.2.9

List of Figures (conf‘d) 10

A Block Diagram Representing
Eqn. (3.2.7) --------------------------------- 78

An original System Observed by a :
Full-Order ObServer ---r--w=--=--ccommomoooo-- 82

Original System Observed by a
Reduced-Order Observer -------=c-c-mmcmocanon- 89

Sufficient Condition for the Sat-
isfaction of the Control Constraints -r=-=-~---- 111

Possible Set-Theoretic Control Syn-
thesis Routes =-------c-commmmmmocn e 118

Flow Chart for the Solution
Procedure ----------m-c--omeooome oo 123

A Flowchart of the Powell's

Method --------m-c-cmcmer e mmc e e e e e 129
A Flowchart of the STC Synthesis

Program when the System is Observed ---------- 133
Maximum Tolerable Disturbance

Amplitude ------v---mmmc e e e 146
Step Response of State Xq mmmmmmsmmseo-se-oo-- 147
Step Response of State Xo “==mcmmooscms-e-e--- 148
Step Response of State Xg mrm=sm--ssomssoso--o-- 149
Step Respone of Control u --------------------15Q
Time Response of Error in Xy mmmmommmosommoos 151
Time Response of Error in x, -------- Rt 152
Time Response of Errors When

€(0)=0 --------mremmo oo e 153

Time Response of Errors When
€(0)=0 -------mmmmreommm o m oo 154



List of Ficures (cont'd) 11

Page No.
Step Response of Control When
e(0)=0 ---rmmmmom e 155
(a) Step Responses of the PWR Power
Plant ---rm--cmmmcmo e e e 177
(b) Step Responses of the PWR Power
Plant ------rc-cm e e e e e o 178
(c) Step Responses of the PWR Power
Plant -------mmmm e m e e e e e e e e - 179
(d) Step Responses of the PWR Power
Plant -------cmmmmmm e e e e e e e e 180
(e) Step Responses of the PWR Power
Plant ------------mmmm e e e 181
(f) Step Responses of the PWR Power
Plant ----------------r- e e e o 182
(g) Step Responses of the PWR Power
Plant -------r---ccmemm e e e e e 183
(h) Step Responses of the PWR Power ' '
Plant ------------r-ccmimr e oo 184
(1) Step Responses of the PWR Power
Plant -----r-rerermcmcmeme e rc e e e e e 185
(j) Step Responses of the PWR Power
Plant ~----e-mmrem e ce e e e e e e e e e e 186
(k) Step Responses of the PWR Power
Plant -------------~e--mmrc e e 187
(1) Step Responses of the PWR Power .
Plant ----------cccmec e rcce e c e mm s e 188

(m) Step Responses of the PWR Power
Plant --------~----“c-cerccrm e r e e e 189



List of Figures (cont'd)

Page No.
(a) Time Responses of the Errors in
the PWR Inaccessible State Variables --------- 190
(b) Time Responses of the Errors in
the PWR Inaccessible State Variables --------- 191
(c) Time Responses of the Errors in _
the PWR Tnaccessible State Variables ~-------- 192
Nozzle Chest ------mooommm e 217
HP Turbine --------ccooommm el - 217
Moisture Separator and Reheater -------------- 222
LP Turbine -----------mmmm e e e oo 222
Feedwater Heater #1 ----c-ommmmoo oo 226
Feedwater Heater #2 ----vc-moooomomaa o 226

Support Function of a Closed Convex
Set of Two-Dimensional Vector X -------------- 236



NOMENCLATURE 13

For the sake of continuity and for a minimum of confu-

sion, all symbols used in the main text and the appendices

are defined immediately.

However, the following symbols are

redefined in order to eliminate any confusion:

£

B8 fraction of delayed neutron

B a free parameter that enters in the con-
struction of the ellipsoid

Ps Pext nuclear reactor reactivities

psubscripts are densities

%

Si are numbers i=1,2,2,..,

S,S1 and S2 are matrices

T? are numbers j=1,2,3,...

T - is a transformation matrix

Loy turbine power output

L a matrix

n; numbers i=1,2,3,...

n vector

! on a matrix, it means its transpose

! on a variable, it means a prime

" on a variable, it means double prime

€ if used as an operational symbol it means
element of :

€ if used as a variable, it means main steam
valve coefficient,

Abbreviations

PWR Pressurized water reactor

LTI Linear time-invariant

STC Set-Theoretic Control

HP High pressure

LP Low pressure

UTSG U-tube steam gencrator
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Chapter 1 4

INTROCDUCTION

1.1 Background \

By far, the largest fraction of electrical supply in
most parts of the world today is produced in central power
stations which employ steam-driven turbines to drive the
electric generators. Most such plants have in common
what is termed in the industry as a "Steam Supply System."
The name implies producing high pressure steam from water.
In pressurized water nuclear power plants, which share this
feature, the energy needed to produce the steam is pro-
vided by nuclear fission of uranium, which takes place
in the core of a nuclear reactor. In any power plant
and consequently in a PWR (pressurized water reactor) power
plant, the one basic operating objective is to produce
electrical energy as required by the load demand for that
power blant. In order to meet the load demand, the power
produced in the reactor core, its transfer through the
various power conversion systems, and the power delivered
by the turbine must be controlled. Such a control system
must provide a simultaneous coordinated control for both
the reactor and the turbine., A close coordination of the
reactor and turbine controls will prevent large deviations

in plant variables. Keeping the plant variables within
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prespecified bounds at all times is a vital requirement

since violation of limiting constraints can result in poor
performance, and could subject the power plant to extensive
damage.

In summary, the problem considered is to develop a con-
trol for load changes in a PWR power plant which can maintain
plant variables within prescribed boun&s at all times.

In this study, this class of problems is addressed by
using '"Set-Theoretic Control (STC)", synthesis technique (1).
In this design approach, satisfaction of system state or
outputs and control constraints requires that the variables
and contrcls lie within bounded sets. The bounded sets are
approximated by bounding ellipsoids for the ease of calcula-
tions. In the development of this design approach, the
control system that yields the maximum tolerable amplitude
of the input disturbance that the system can tolerate with-
out violation of the state and control constraints is

determined.

1.2 Review of Literature in Set-Theoretic Control

The foundation of the '"Set-Theoretic Control" concept
is based on the "unknown-but-bounded" representation of un-
certainties (2,3). This representation assumes no
statistics for the uncertainty and the only information

that is known about its identity is that it  belongs to a
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bounded set. With this formalism, the idea of '"using only

available amount of control effort is re-stated as "using
control from a bounded set of controls'" and the idea of
"keeping the system states within prescribed bounds at all
times" is re-stated as "keeping the éystem states within
a prespecified sequence of bounded sets," where the pre-
specified sequence of bounded sets defines what is termed
a "Target Tube.' Hence, the control objective is to keep
the system state in a Target Tube, using control from a
bounded control set, in the presence of unknown-but-bounded
input disturbances. |
Earlier work (2,4,5,6,7,8) in Set-Theoretic Control was
done in the field of prediction and estimation. TFurther
work (9,10,11,12,13) on Target Tube reachability problems
provided more insight into the applicability of the Set-
Theoretic concept to control system désign. Glover and
Schweppe (12) used the Target Reachability results to
describe the control problem as a Dynamic Programming
Problem. They showed that a solution of this problem,
if it exists, would prescribe a sequence of admissible
control sets that would meet the control objective but
where a solution does exist, no specific control is
defined at any particular instant of time. Sira-Ramirez(13)

extended the Target Reachability Concept to the coordinated

control of large scale systems and as in (11,12), the
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control solution was defined in terms of a sequence of

sets which may or may not exist and no procedure was
defined for determining a specific control to use at any
given time. Usoro (1) proceeded a step further by
defining a specific class of control systems (hypothesizing
a full state feedback control structure) and then selecting
the best control in this class which yields non-violation
of state and control constraints in the presence of the
input disturbance. In his development, he reformulated
the Set-Theoretic Control problem as "attempting to maxi-
mize the amplitude of the unknown-but-bounded input dis-
burbance instead of defining a prespecified bound on it.,"
Moore (li) applied set-theoretic concept, to a limited
extent, to the control of nuclear power plant load changes
by considering a state constraint set which is reduced by

the effect of stochastic observation noise.

1.3 Research Objectives

The main objectives of this study are:

(1) To extend the Set-Theoretic Control synthesis
technique as reformulated in (1) to include more
practical situations. Note that the hypothesized
structure for the control used in (1) is a fuli-
state-feedback which assumes knowledge of the

entire state variables. Unfortunately, in most
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practical systems, the complete state is not
always available for measurement and so there
is a need to reconstruct che state via a
device called "Observer.'" This subject is
addressed in this study.

(2) To apply Set-Theoretic control to the PWR power
plant as an example of a solution to a practical

control problem..

1.4 Modern Versus Classical Control Techniques in

Nuclear Power Plants

In the U.S. the design of control systems for nuclear
power plants is mostly based on conventional frequency
domain analysis methods and process computers have not
been used extensively. However,’fhe:use of computers for
data acquisition, logging, plant performance monitoring,
etc., and the tendency toward adopting advanced control
techniques are growing at a rapid rate (15). In Norway,
an extensive program has been underway at the OECD Halden
Reactor Preject using "Linear Quadratic Gaussian'. ‘
technique (16, 17). Frogner (18, 19) has appiied this
technique to the control of a boiling water nuclear power
plant.

The lack of acceptance of modern control methods is

due to two main shortcomings (15).
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(1) Although the theoretical background is very well
developed, the practical design methods have not
been yet established,

(2) Most of the modern control methods result in
systems which are best implementéd by computers
thus resulting in additional issues related to
the licensing of the plant.

However, we hope that in spite of these shortcomings,
the special advantages of Set-Theoretic Contrecl will lend
it attractive to implementation.

It is worthwhile to note that in nuclear power plants
the control system is separated from the protection sys-
tem. U.S. Regulations require that credit cannot be taken
for the control system performance in the plant safety
analysis (15). Although the control system may guide the
plant in a safe direction during an emergency condition,
this contribution is not to be incorporated in the safety
analysis. Regulations (20) require an RPS (Reactor
Protection System) which is a special quadruply redundant
dedicated control sytem whose function is to trip the
reactor if any one of several potentially unsafe conditions

appear to exist.

1.5 Organization of Thesis

This thesis is organized in seven chapters. The second

chapter describes a typical pressurized water nuclear power



plant with its steady state control program. Some of the
control systems are reviewed and a matﬁematical model of
the plant is presented. Chapter 3 treats the reconstruc-
tion of state by using observers. Chapter 4 underlines
the formulation of the Set-Theoretic Control synthesis
technique and the observation/control problem is stated.
In Chapter 5, the solution procedure is discussed and

the relevant parts of the algorithm, used in the solution
of the problem are presented. Applications are presented
in Chapter 6. Explanatory examples are solved first and
the procedure is applied to the PWR power plant. The
effectiveness of the technique is evaluated through simu-
lations of the time responses of the system., Conciusions

and recommendations are given in the last chapter.

20
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Chapter 2

PRESSURIZED WATER NUCLEAR POWER PLANT

2.1 Introduction

The basic objective of a power plant is to produce
electrical energy as required by the load demand for that
power plant. The load demand from the power distribution
system is directly applied to the turbine-generator of the
plant. In a nuclear power plant, several energy conversions
take place, from nuclear energy to electrical energy. In
order to meet the load demand, the different power conversion
systems must respond with the correct flow of preconditioned
steam to the turbine. Therefore in satisfying the basic
objective, the energy release and energy transfers through
the plant must be controlled. Hence the first specific
control requirement is to coordinate the reactor control rods
and thg turbine throttle valves so as to avoid large devia-
tions in plant variables.

In recent years, the problem of maintaining plant
variables within prescribed bounds at all times during
perturbations has become more demanding (21) beéause plants
are larger, power levels are higher, and margins imposed by
regulatory agencies are tighter. The effectiveness of any
control system is in fact evaluated in terms of its ability

to maintain the plant state variables within prescribed
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bounds, using only available control effort, in the presence
of input disturbances.

In this study, the PWR power plant is described by a
ﬁathematical model derived from physical laws. The emphasis
is placed on modeling for analyzing ndrmal operational tran-
sients and for designing control systems. The model is
linearized and assumed time-invariant., Thus, if is represented

by a set of equations of the form:

é = Ax + Bu + Gw (z.1.1)

z = Mx (2.1.2)

y = Hx (2.1.3)
where,

X is an nxl state vector

u is an rx1 input control vector

w is a scalar input disturbance

z is an mxl measurement input vector

y is a pxl system output vector

A,B,H and M are matrices and G is a vector with

appropriate dimensions.

A full-state feedback control law is designed by using
the Set-Theoretic Control synthesis technique (1) as we shall
see in Chapter 4. This law requires knowledge of the entire
state vector X. However, not all components of this vector
can be detected. For this reason, the unavailable state

variables are first reconstructed via an observer as we shall

see in Chapter 3.
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A typical PWR power plant is discussed in this chapter.

Control strategies for this type of power plant are reviewed
in section 2.2 with a general description. Some control
systems of the power plant are discussed in.section 2.3 and

a mathematical model of the plant is presented in section 2.4,

2.2 Control Strategies for a PWR Power Plant

Let us begin this section with a brief description of
a pressurized water nuclear power plant in order to follow

the control strategies applied.

2.2.1 General Description

All PWR power plants (22,23) employ a dual system for
transferring energy from the reactor fuel to the turbine
as shown schematically in Fig. 2.2.1. The majof subsystems
are reactor core, primary water loop, pressurizer, steam
generator, secondary water loop, throttle valves, turbine,
by-pass valve, condenser and feedwater system.

Heat is produced in the reactor core by nuclear fission,
Primary water flows downward around the core and then up-
ward through the fuel elements., It is maintained at high
pressure (about 2250 psi) and is heated to about 600°F with-
out boiling., Primary water carries energy from the reactor
to the steam generators through a pipe called the hot leg.

PWR systems usually have two, three, or four reactor coolant
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loops (depending on the plant rating) with each loop having

one steam generator. Reactor coolant loops and steam
generators are, thus, operating in parallel. In each steém
generator, the high-pressure primary water circulates through
tubes whose outer surfaces are in contact with a stream of
secondary water returning from the turbine condenser (this

is called the feedwater). The feedwater is at considerably
lower pressure and temperature than the primary coolant water
and heat transferred from the hot primary water inside the
tubes causes the feedwater to boil and produce steam. The
steam generator tubes thus separate the reactor coolant

from the secondary-side water. Reactor coolant is pumped
within its closed loop from steam generator to reactor vessel
via a pipe called the cold leg. Steam produced in the top
of the steam generators passes through steam separators.

The throttle valves admit steam to the turbine. The turbine
produces shaft power from the expansion of the steam. From
the turbine, the steam is admitted in the condenser and

then to the condensate system and through the feedwater
system to remeat the cycle. Alternatively, by-pass valves '
admit steam from the steam generator directly to the con-

denser by by-passing the turbine.

2.2.2 Steady State Control Programs

It has been mentioned in section 2.1 that the first
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specific control requirement is to coordinate the reactor
control rods and the turbine throttle valves so as to avoid
large deviations in plant variables In PWR power plants,
this coordination is accomplished according to a well
determined program (21,24). This program favors the tend-
ency that primary loop variables must be kept within
acceptable limits and favors the tendency that steam must
be delivered to the turbine at acceptable pressures.

Why should primary loop variables be kept within
accebtable limits and why should steam be delivered at
acceptable pressures?

Let us first see the aspects of keeping primary
loop variables within acceptable limits. This means

(1) to maintain the state variables of the nuclear

reactor within limits by keeping the reactivity
equal to zero at all times; and

(2) to maintain the volume changes in the pressurizer

within limits.

For the control problems of interest here, the time
constants are of the order of seconds. It follows that
reactivity is affected only by the following three mechanisms.

(1) control rods;

(2) moderator temperature changes; note that the

moderator is also the reaétor cooiant;

(3) fuel temperature changes; this is also known as

Doppler effect.
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Suppose that the average temperature of the reactor

coolant changed. Then the reactivity in the core will
vary due to both moderator and/or fuel temperature varia-
tions, and the control rods must be moved in order to
keep a zero reactivity. In addition, the pressurizer must
accomodate the volume changes of the reactor coolant. In
this case, the control rods and the pressurizer increase
the capital cost of the plant. Of course if the average
temperature of the coolant were not changing, then this
incremental capital investment would not have been required.

Now let us understand the other aspect of the problem
which is to deliver steam at acceptable pressures.

Steam must be delivered to the turbine at a sufficiently
high pressure to maintain turbine plant efficiency (25).
Fig. 2.2.2 shows the variation of steam pressure as a func-
tion of steam temperature in the case of the saturated
steam which is produced in steam generators cf PWR power
plants, It is clear from this figure that a change in steam
temperature results in a sizable change in the steam pressure.
Acceptable pressures are meant to hold steam temperature
constant in order to avoid a large difference between the
no-load steam pressure and the full-load steam pressure. In
this way an optimum turbine performance is achieved in case
of a constant steam temperature and pressure.

Therefore in combining the two aspects, the primary
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loop prefers a constant coolant average temperature Ta

ve
as shown in Fig. 2.2.3 and the seccondary loop prefers a
constant steam temperature as shown in Fig., 2.2.4. This is

readily seen by writing the energy balance between the

primary loop and the secondary loop (21).

Psg = (hoeeMgs (Toye "Ts) (z.2.1)
Where

Poo = power delivered to the secondary fluid

heff = average effective primary-to-secondary heat

transfer coefficient for the whole stean

generator
A = heat transfer area in steam generator
Tave = coolant average temperature
= 1/2 (THL+TCL), where THL is hot leg temperature
and TCL is cold leg temperature
T = average steam temperature.

Eqn. (2.2.1) shows that the right-hand side must increase

with increasing power demand. This indicates that Tave and
TS cannot both remain constant with increasing load demand
unless (heffA)SG increascs.

In PWR power plants, there are two types of steam gener-

ators. The U-tube recirculation type steam generators used

by Westinghouse (24) and the once-through steam generators
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used by Babcock & Wilcox (20). The former generate
saturated steam and have a substantial energy storage; the
latter generate superheated steam and have a higher thermo-
dynamic efficiency but also a smaller energy reservoir (26).
In this study a U-tube recirculation-type is considered

and it is abbreviated as (UTSG).

For a UTSG, the term (heffA)SG does not change appreci-
ably with load (21). Therefore the difference (Tave-TS)
must change with load. It is quite obvious that it is not
possible to have a constant Tave in the primary loop and
a constant Ts in the secondary loop at all power levels.

A control strategy adopted in current PWR power plant

practice (with UTSG) is a compromise with Tav and TS

e
(and consequently PS) used as set points both varying
with load as shown in Fig, 2.2.5 . The relation between
Tave and PS set points as functions df power levels is
called a steady state program.

According to this program, when load increases, Tave
increases and because more energy is added to the reactor
coolant, the control rods move out in order to offset the
negative reactivity feedback due to the moderator and

Doppler effects.
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2.3 PWR Power Plant Control Systems

In today's PWR power plants with a power exceeding
1200 MWe there is a multitude of va.iables to be observed.
Present control methods applied conventionally assign
single loop controllers to single variables and the
coupling phenomena between them is handled individually.
Kerlin (21) mentioned 10 measurable system variables of
potential value as control signals and 7 potential system
inputs for control acticns., This makes 70 possible control
loops. In current practice, the interaction between
different control loops is supervised by a main control loop
which can represent a specific control system in the power
plant. For load changes control, we are mainly concerned
with the following control systems:

(1) reactor control system

(2) steam by-pass control system

(3) steam generator control system

f4) pressurizer pressure and level control systems.

In this study, the feedwater flow to the steam generator
is assumed to be controlled perfectly. This means that the
steam flow rate is equal to the feedwater flow rate at all
times. For this reason, the steam generator control system
is not considered. Concerning the pressurizer, pressure
changes have a feedback on the rest of the plant system

through the pressure coefficient of reactivity, ap.
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This coefficient is very small and can be neglected. The
water level in the pressurizer has no feedback on the rest
of the plant system. Therefore the pressurizer and level
control systems are both neglected.

The remaining control systems are . seen as playing an
important role if coordinated by avoiding large deviations
in plant variables when the case is to meet large and fast
load changes. The reactor control system and the steam by-
pass control system are described separately in the next

two sections,

2.3.1 Reactor Control System

The main purpose of the reactor control system is to

force the average reactor coolant temperature, T to

ave?’
follow as closely as possible the average temperature set

point, T determined by the steady state control

ave set?’
program shown in Fig. 2.2.5. T ve is measured by measuring
' T i =
hot 1leg THL and cold leg [y temperatures since Tave 1/2

(THL+TCL). Temperatures are measured by using platinum

resistance thermometer detectors (RTD) (24).

There are three inputs to the reactor control system

as shown in Fig. 2.3.1:
(1) signal of the average temperature set point, Tave set?

(2) signal of the average coolant temperature Tave

as measured via THL and TCL; and,
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(3) signal of a temperature equivalent of a power

mismatch

A power mismatch occurs when recctor power is different
than turbine load. When turbine load changes stepwise, the
reactor power cannot change in a step manner to the new
steady state power level but rather it i1s delayed due to
the fact that control rods must be withdrawn to offset
the Doppler and moderator reactivity effects for a period
of time. But later in the transient the reactor power
must exceed the turbine load in order to make up for the
energy removed from the reactor coolant. The result is
that there is an overshoot in the reactor power following
a step increése iﬁ the turbine load as shown in Fig. 2.3.2
(25). The overshoot must be kept below a certain level
in order to avoid a reactor trip according to design criteria.
This is usually accomplished by moving the control rods at
maximum speed at the beginning of the transient, thus
reducing the overshoot. A signal of a power mismatch repres-
ented by a temperature is sent to the summation point of
the rod speed contreller via the third channel.

Note that in Fig. 2.3.1 signals of the power mismatch
and Tive set are added positively while the signal of the
measured Tave is added negatively in order to make a tempera-

ture error signal. This error signal is sent to the rod

speed controller. For positive error signal, the reactivity
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induced is positive and for negative error signal, the

reactivity induced is negative which is consistent with

the steady state program. The automatic rod control
system is designed to maintain a programmed average temper-
ature in the reactor coolant by varying reactivity within
the core. This system is capable of restoring Ta to

ve

within + 3,5°F of T including a + 2°F instrument

ave set
error and a + 1.5°F deadband following load changes (25).

2.3.2 Steam By-Pass Control System

The main purpose of the steam by-pass control system
is to 1limit high reactor coolant average temperature excursions
on turbine load recduction.

A typical steam by-pass valve system associated with steam
dump system as shown in Fig. 2.3.3(a) would allow a 95%
siep load reduction (50% on some plants) without a reactorr
trip (25). This system is not actuated for load losses less
than 15%. For a plant designed to take a 95% load rejection
without a reactor trip, the total capacity of the steam
dump system is 85%. Thus a 95% load reduction followed by
steam dump appears to the steam generators, Reactor Coolant
System {(RCS), and nuclear reactor as a step decrease in load
of approximately 10%. In addition a steam dump (Z5)

(1) permits to remove stored energy and residual heat

following a reactor trip without actuation of the
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(2) permits control of the steam generator pressure

at no-load conditions and permits a manually
controlled cooldown of the plant.

Similarly to the reactor control system, the steam
dump control system is actuated through the reactocr coolant
averagé temperature control signals. Following a load
reduction, both of the two control systems become operative
upon coincidence of an abnormal increase in Tave error
signal and the signal derived from a large reduction in
turbine load (function of turbine first stage pressure) as
shown in Fig. 2.3.2(b). The by-pass valves open to the
condenser and the rod control system is actuated to reduce

reactor coolant average temperature to its new programmed

set point.

2.4 System Model

A typical PWR power plant is represented by a mathe-
matical model in order to:
(1) establish the control law for a full-state feedback;
(2) Predict maximum input disturbance which the system
can tolerate without violating the state and control
constraints; and
(3) Predict dynamic responses of potential system

states and controls.
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A mathematical model of a pressurized water nuclear
power plant is presented in Appendix A. For the primary
side this modeling follows the proc~lure presented in (21)
and applied in (27,28,29) and, for the secondary side the
modeling procedure adopted in (29,30). Other modeling
procedures are found in (31,32,33).

The model presented in the appendix is linearized
about operating values. It is of high order ( a set of
31 linearized first order differential eqguations). In
genefal, if the system model were of order n with r
controls and m meas;rements (Eqns (2.1.1), (2.1.2) and
(2.1.3)), the number of independent variables that we have
to search over for the solution of the problem in this
study will be equal to (l+nxr+(n-m)xm). A high order model
will increase the computational time significantly; hence a
low order system model is desirable but it must be accurate
enough to predict the actual measurements fairly well.

Several methods of model reduction have been reported
in the literature. Davison (43) described a computational
approach of linear model reduction that eliminates the fast
modes of the model. Another approach using an . canomical
form is described in (44). 1In (29), the authors investigated
two methods of model reduction: the physical method and
the pole-zero deletion method. The first method was applied

to a 57th order PWR system model and resulted in a 25th order
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model. The low order model predicted the turbine mechanical

shaft power equally as well as the high order model. But
if other output variables of the system are of interest,
some small differences exist between the two models. This
is primarily due to the nonlinear reactor control system
of the high order model. The second method was applied to
a 23rd order model and resulted in a 9th order approximation.
It was found that as more pole-zero pairs were deleted a
point was reached where the reduced response no longer
resembled the full order response.

Though the 31st order model presented in Appendix A
is a reduced version of the 57th order PWR model given in
(29), it isrstill of too high an order. For the purpose
of this study, it is desirable to reduce the4mode1 to a
lower order without losing its validity. In this section,
the system model presented in Appendix A is reduced to a
model of ten state variables. The response characteristics
of the 10th order model will be investigated by simulation
studies of their transient responses to the input disturbance
in Chapter 6. The maximum amplitude of the input disturb-
ance is determined by using the Set-Theoretic Control
synthesis technique presented in Chapter 4 following the

solution procedure presented in Chapter 5.

2.4.1 Reacter Core Model

The reactor core design used in this study is typical of
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of PWR's manufactured today. The essential design parameters

are given in Table 2.4.1. The numerical values of the
parameters listed in this table are taken from (29) and are
typical of a Westinghouse PWR plant.

The theoretical model representing the reactor core
is a linear time-invariant state-variable model that in-
cludes the neutron kinetics, the core heat transfer and
the transport of the coolant in the piping connecting the

core to the steam generators.

(1) Neutron Kinetics:

The major justification for using point kinetics in
Appendix A is that the observer/contrcller does not need
information about spatial flux transients to coordinate
between the reactor control rods and the turbine valve
when the objective is to meet the load demand., There are
seven linearized point kinetic equations (Eqns. (A.3) and
(A.4)),one for power and six for delayed neutron precursors.,

’Onega and Karcher (33) studied the sensitivity of the
results to the number of delayed neutron precursors. For
a step input reactivity of 30 cents, they compared the
results of one precursor model to those of a six pre-
cursor model (27). They found that the final equilibrium
power, average fuel temperature, and bulk coolant temperature

were 2378.36 MWth, 1679.87 °F and 574.56 °F respectively,



Table 2.4.1
Essential Design Parameters

For the Reactor Core Model

% Kinetic Characteristics

Fuel Temperature Coefficient op (1/°F)
Moderator Temperature Coefficient a. (1/°F)
Moderator Pressure Coefficient o (1/psi)
Neutron Generation Time A (sec)

Total Delayed Neutron Group Fraction RB*

Averaged Delayed Neutron Decay Constant A(sec~1

)

Delayed Neutron Constants:

Group Decay Constant Fraction
(3 sec™ 1) B;
1st 0.0125 0.000209
2nd 0.0308 0.001414
3rd 0.1140 0.001309
4th 0.3070 0.002727
S5th 1.1900 0.00925

6th 3.1900 0.000314
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Table 2.4.1 (continued)

#Core Thermal and Hydraulic Characteristics

Initial Power Level PO (MWth)

Mass of Fuel Mf (1bm)

Specific Heat of the Fuel CPf (Btu/1bmF)

Total Heat Transfer Area A (ftz)

Fraction of the Total Produced in the Fuel f

Average Fuel Température (°F)

Overall Heat Transfer Coefficient from

Fuel to Coolant, heff (Btu/hr ftzF)

Volume of Coolant in Upper Plenum Vip (ft3)

Volume of Coolant in Lower Plenum VLP (fts)

Volume of Coolant in Hot Leg Piping VHL (fts)

Volume of Coolant in Cold Leg Piping VCL (ftS)

Total Volume of Coolant
Total Mass flow rate in
Hot Leg Temperature at
Cold Leg Temperature at

Nominal Reactor Coolant

in Core V (fts)

core in (1bm/hr)

100
100

[
]

0
°

[s]
Power Ty (°F)

(o]
Power TCL (°F)

3436.0
222739.0
0.059
59900.0
0.974

1600.0%

200.0
1376.0
1791.0
250.0
500.0
540.0
1.5x108
592.5

542.5

System Pressure PpO (psia) 2250.0

Coolant Density at System Pressure and

Average Temperature o {1bm/ft3)

Coolant Specific Heat at System Pressure

and Average Temperature CPC (Btu/1bm °F)

¥ This value has been calculated.,

45,71

1.390
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for the six precursor model, and 2379.14 MWth, 1683.4 °F,

and 574.57 °F, respectively, for the one precursor model.
These results indicate that one averaged precursor is ade-
‘quate. The one precursor constants are given by:
% ® *6 %
B=Rand x = B/ & Bi/Ai (2.4.1)
i=1

Thus the neutron kinetics model is reduced to two

equations. One more equation can be eliminated by adopting

the prompt jump approximation (35). Then Eqn. (A.3) becomes:

sP AX
_IT— = _8-; GC + Sp (2.4.2)

0

and the neutron kinetics are governed by

d &C

Y (2.4.3)
dt B ¥

As it can be seen from Eqn. (A.5) the reactivity &p

contains the different feedbacks.

(2) Core heat transfer model

This model involves the heat conduction in the fuel
and the heat transfer in the coolant. The fuel temperature
is introduced in the overall system model to account for the

Doppler feedback. The coolant temperature is introduced in



the overall system imodel to account for the moderator 47

temperature feedback.

In PWR's,fuel rods are cylindrical. Generally, radial
conduction dominates over axial or azimuthal conduction (21).
In this context, it is common to divide the fuel into nodes
as shown in Fig. 2.4.1. A heat balance, as given by Eqn.
(A.7) may be performed for each node. The average time it
takes the heat to be transferred from the fuel to the cool-
ant includes the gas gap and the cladding. By defining the
average fuel temperature as given by Eqn. (A.8) one can use
the nodal approach to select one single node representing
the average condition in the fuel, gap, clad assembly.

The heat transfer in the cocolant i1s an axial convection
which takes place in a channel when the coolant moves up-
ward. Models for time domain analysis are usually based
on a nodal approximation. Kerlin et al (27) formulated
two core heat transfer models: a detailed one with 45
nodes . (15 for fuel and 30 for coolant), and a simplified
one with 3 nodes (1 for fuel and 2 for coolant). For a
step insertion of 7.1¢ reactivity the results of the two
models are in good agreement. Because of these results,
the low order model shown schematically in Fig. 2.4.2 is
used. Kerlin et al (27) state that this modeling approach
(of two coolant nodes for cach fuel node) provides better

representation than the well-mixed or arithmetic average



cladding

Fig.

gas gap

(2.4.1)

A Neodal Model for
Fuel Heat Transfer.
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Fig. 2.4.2. Schematic of the Fuel-Coolant
Heat Transfer Model.
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average approximation (31). It gives a good approximation

to the average coolant temperature Tél' This temperature
is taken as the temperature to determine the heat transfer
rate. The outlet temperature is taken as the average
of the second node, TCZ' Half of the heat rate 1is trans-
ferred to each fluid section. The governing equations of
TCl and TCZ are given by Egns. (A.11) and (A.12).

The lumped parameter model of the core heat transfer
is represented in this study by the three linearized

equation (A.13), (A.14), and (A.15).

£ . _
™ Te = SPo B  _£ off [6T ¢- 6T 4] (2.4.4)
dt (m¢ ),, Po Eﬂlr N .
p T p-t
Ach
dt (mcp)Cl Po z(mcp]cl'
m
- () [8T q-8Tppl (2.4.5)
cl
(1-f)Po 6P  Ach __ i
a 6T, = — o+ L eff [8Tg-6T 4]
dt (mcp)cz Po Z(mcp)cz
- () (81,6 (2
c

where 6P 1is substituted by its equivalent given by Eqn.
Po
(2.4.2), and all terms arec defined in Appendix A.
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(3) Reactivity Feedback

The inherent feedbacks to the reactor used in this
study are the Doppler feedback and the moderator tempera-
ture feedback. The primary pressure Pp of the reactor
coolant system has some feedback on the rest of the
system but the pressure coefficient of reactivity, ap is
.small and so this feedback is neglected. The core reacti-
vity S8p as given by Eqn. (A.5) is the sum of an externally
inserted reactivity épext’ such as from control rod
motion and the feedbacks.

§p = &p + l—,,[oe, 5T_+-};- a. OT . + L o 6T ] (2.4.7)

ext gEYf {7 Yc el 0 7 Yc e

(the second term in the right hand side is divided by B8*

because pr b is expressed in units of ff}

where,
Gg = fuel coefficient of reactivity (1/°F)
a_. = coolant coefficient of reactivity (1/°F)

c
Equation (2.4.7) is substituted into Eqns. (2.4.2) and

(2.4.3). The governing equation of the precursor concen-

tration is
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The fractional change in nuclear power, Eqn. (2.4.2) becomes

SP _ AA Of . 1 % . 1 %
'?;“”B'*@CJ"B'*srf+?'§‘—6TC1+7"€¥5TC2+Gp

2.4.2 Piping and Plenum Model

Overall system model must include representations of
the fluid transport in piping and plenums to account for
the time lag which takes place. There is some heat trans-
fer to the metal walls but it is usually ommitted (21).

The flow in pipes results in axial mixing of the fluid.
It is modeled-somewhere between two extremes. One extreme,

(t) =

the slug flow model for temperature is given by Tout

Tin (t-1) where t is the residence time. The other
extreme is the well-mixed model which is given by:

%? Tout = % (Tin Tout)

The second model is convenient for time domain
analysis using state variable models. The hot leg and cold
leg pipes as well as the reactor and steam genérator
plenums are represented by Eqns. (A.16) to (A.21). Four
equations out of six can be eliminated by combining the
reactor upper plenum, hot leg, and steam generator inlet

plenum volumes, VUP’ VHL’ VIP respectively into one volume.
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By this way the hot leg temperature is represented by a

single time constant

Vv

o] T
T _ Fave Up
HL - 7 IxoTse * VaLt Vie! (2.4.8)
where
pa\re = average coolant density

mn coolant flow rate

NUTSG = number of steam generators
The same assumption can be made on the steam generator
outlet plenum VOP’ cold leg VCL’ and reactor lower plenum

Vip. The cold leg time constant is

Y
Top = ave v (2.4.9)

opP

The governing equations of THL and TCL become

d _ 1 ) ‘
Se 6Toy = = (8T =T

2.4.3 Pressurizer Model

The reactor coolant is connected to the pressurizer
by a surge line from the hot leg piping to the bottom of
the pressurizer tank, as shown in Fig. (2.4.3). The

change in reactor coolant average temperature with load
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results in a change in reactor coolant density with load.

Density changes will cause a change in the pressurizer
water level. The main function of ihe pressurizer is to
provide a surge chamber and a water reserve to accomodate
changes in the reactor coolant density and consequently
volume. This is accomplished by maintaining water and .
steam in the pressurizer at the saturation temperature
corresponding to the system pressure. As the pressure
decreaseé below the desired value of 2250 psia the heaters
are.energized. This heats the water in the pressurizer
and boils water to return the pressure to the nominal
value. When the pressure increases above 2250 psia

spray is used to condense steam and return the pressure to
2250 psia. Details about the function of the pressurizer
are found in (21,25,29,38,39,40). The governing equation
of the pressurizer pressure is given by Eqn. (A.22).

The only feedback this model has on the rest of the
systém is through thé pressure coefficient of reactivity
ap. Because this coefficient is so small (on the or@er
of 10_6/psia) this model can be eliminated by assuming
that « is equal to zero. Eqn. (A.22) will not be

P
included in the system model.

2.4.4 The Stcam Generator Model.

The steam generator considered in this study is a

vertical, U-Tube recirculation type steam generator (UTSG).



© 56
Fig. 2.4.4 shows a steam generator schematic diagram.

The steam generator is essentially a beiler where the
energy transferred from the reactor coolant flowing on
the primary side (with the UTSG) boils water on the
secondary side to generate the stéam to drive‘the furbine.
The steam passes through moisture separators and dryers
before leaving the UTSG with a quality of approximately
99.75%. The essential data for generating a typical
UTSG model ‘are given in Table 2.4.2 (29).

The lumped parameter model of the UTSG consists of
a primary coolant lump, a heat conducting metal lump,
and a secondary coolant lump. The governing equations
in linearized form are (A.23), (A.24) and (A.25). This
model does not descriﬁe the downcomer water level. For
applications where phe primary concern of the overall
system model is to deal with load demand, the downcomer
level will not need to be described (29). The model as
described by Appendix A with the three linearized equations

is retained without reduction. These equations are:

. h A
d | - _ (Ceff )pm
T T, = (@p (8Typ-dTp) (7,05 (6Tp- 8T )
(2.4.12)
h A .h A 8T
d _ (Ceff)pm ) _ (Ceffms sat 8P
Tt Ty me ) (8Tp-8T) me T (8T - SPS s)

(2.4.13)
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Essential Data for Generating

a Typical UTSG Mc el

Number of UTSG/plant, NUTSG 4

Primary water mass flow rate, mp (1bm/hr) 3.939x107
Specific heat of primary water, Cpp (Btu/lbm°F) 1.390
Primary water inlet temperature, Tpi (°F) 592.5
Primary water outlet temperature, Tpo (°F) 542.5
Averaée density of primary water, Py (1bm/ft3) 45,710
Primary loop average pressure, Pp (psia) 2250
Steam flow rate, Ws (1bm/hr) 3.731x106
Steam pressure, Ps (psig) 832.0

Saturation temperature at steam pressure

Tsat (°F) . 521.9
Feedwater inlet temperature, Tpy (°F) 434.,3
Subcooled secondary water average density

< Py (1bm/£t>) 52.32

Subcooled secondary water specific heat, CPS |

(Btu/1bm°F) 1.165
Overall heat transfer coefficient from

primary fluid to metal, (heff)pm(Btu/hr ft2°F) 4150.75
Heat transfer area of primary fluid to metal

Ay (£69) 45614.3
Overall heat transfer coefficient from metal to

secondary fluid, (h_gg), ¢ (Btu/hr Frlom) 5361.07



Heat transfer area from metal to secondary, Ams
(£t%)

Mass of metal tube, m (1bm)

Mass of water inside tubes, mp, (1bm)

Metal heat capacity, Cpm (Btu/1bm°F)

Enthalpy of saturated steam hs(=hg) (Btu/1bm)

Specific volume of saturated steam, Vg (fts/lbm)

3Tsat/aps

3hg/ 3P,

hot leg piping time constant, THL(S]

col leg piping time constant, TeL (S)

51500.0
8948
4.03974x10°
0.11
1198.3

0.5457
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L = level measurement

W = flow measurement
(S for steam)
(FW for feedwater)

from hot leg
| ) .
to cold leg

Fig. 2.4.5 Three Element Controller Schematic.



d SP = 1 (U" A) &T - [(h A) aTS&t
dt S K *Yeff'7ms “'m eff ' ms oP
Bhs
W 57§ *oe, (hs-hFW)]SPS
+ W_ C_ 6T W (hg- hg) 22} (2.4.14)

[ Ps FW S S €,

The steam generator is equipped with a three element
feedwater controller as shown in Fig. 2.4.5, which main-
tains a programmed water level on the secondary side.
Details about the steam generator water-level control
are given in reference (41). The dynamics of this device
may involve six equations (29). But in this study the
feedwater flow is assumed ts be controlled perfectly and
hence the dynamics of the three-element controller are

eliminated from the overall system model,

2.4,5 The Turbine and Feedwater Heaters Model

61

This model is shown schematically in Fig. 2.4.6. The

parameters needed to calculate the coefficients are given

in Table 2.4.3, It was originally developad by (34) and

derived with modifications in (29, 30). The model invclves

mechanical and heat transfer processes which take place in

the secondary side. It is described in Appendix A by an

11th order state variable representation. In this section

it is reduced to a 5th order represcntation.

Eqn. (A.31) which gives the state variable hC
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Table 2.4.3
Essential Data for the Turbine

Feedwater Heaters Model

Flow rate of steam in and out of the nozzle

chest, Wl, W, (1bm/sec) 3959.5
Flow rate of steam in and out of the reheater

shell side, WZ’ W3 (1bm/sec) 2852.8
Flow rate of steam in and out of the

reheater tube side WPR’ WPR (1tm/sec) 182.36
The flow.rate of the drain from the moisture

separator Wyq, (1bm/sec) 385.03
The flow rate of the main steam and feedwater

at initial conditions from all UTSG's, WS,

WFW (1bm/sec) 4145.9
Flow of steam leaving HP turbine to thé

mositure separator, Wz" (1bm/sec) 3210.86
Flow of‘steam leaving the LP turbine to the

condensér WS' (1bm/sec) : 2232.6
Flow of fluid from feedwater heater Z to

feedwater heater 1, Wy, (1bm/sec) - 1217.8
Fraction of steam entering the HP turbine that

is extracted to feedwater heater 2, KBHP 0.1634
Fraction of steam entering the LP turbine that

is extracted to feedwater heater 1, KB 0.2174
PL



Table(2.4.3) continued
Time constant for feedwater heater 1 heat

transfer Ty» (sec)

Time constant for feedwater heater 2 heat
transfer, THz» (sec)

Time constant for feedwater heater 2 shell
side, THpP2 (sec)

Time constant for flow in LP turbine,
TR2 (sec)

Time constant for flow in reheater Tw2 (sec)

Enthalpy of steam leaving reheater hR(B/lbm)

Enthalpy of steam leaving HP turbine to
moisture separator h, (B/1bm)

Enthalpy of steam entering and leaving the
nozzle chest hs’ hc (B/1bm)

Enthalpy of saturated water in the moisture
separater, h (B/1bm)

Latent heat of vaporization in the moisture
separater, hfg (B/1bm)

Density of steam leaving HP turbine to the
moisture separator, Py (lbm/fts)

Density of steam leaving the nozzle chest,
Pe (1bm/ft3)

Density of steam leaving the reheater, PR
(1bm/ £t3)

Pressure 6f the steam leaving the nozzle

‘chest, P_ (psig)

64

100.0

40,0

10.0

4.0

2.0

1270.8

1100.3

1196.1

338.75

857.7

1.8281

2.,1263

0.3566

756.363



(Table 2.4.3) continued

Specific heat of the feedwater, CPFW (B/1bm-°F)

Volume of the reheater shell side,VR (fts)

Volume of the nozzle chest, VC (fts)

Assumed constant enthalpy of shell side in
heater 2, Hew (B/1bm)

Assumed specific heat of steam in reheater,
Hp  (MW)

Initial heat transfer in reheater, QR (MW)

Valve coefficient of bypass steam, €y
(1bm/sec-psi)

Valve coefficient of main steam, ¢ (lbm/sec-psi)

Area used in empirical relationship for steam
flow out of the nozzle chest, AkZ (ftz)

Area used in empirical relationship for steam

flow out of the reheater shell side, K (ftz)

=3

Constant used in Callender's relationship, Kl

Constant used in Caliender's relationship, k2

Constant used in ideal gas law, R (ft-ibf/l1bm-°R)

1.14
20000.0
200.0

475.0

21.6
226.43

0.21918

1.2458

207.82

798.7
7.415
149670.0

85.78

65
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represents an energy balance done on the nozzle chest,
Fig. 2.4.7 (30) shows the enthalpy versus the entropy
for the turbine and reheater part only. It is clear that
the enthalpy does not change appreciably across the nozzle
chest and therefore hC may be assumed to be equal to the
inlet enthalpy hs. The quality of the steam generated
in the boiler is around 99.75%. We assume that the
quality of the steam entering the nozzle chest is approxi-

mately 1.0, therefore

_ dhg
shs 3 SPS (2.4.15)
where %%g is the gradient of steam enthalpy to steam
s

pressure in the main steam 1line. This gquantity can be
easily evaluated from the steam tables.

The differential equation (A.31) can be eliminated
and the state variables Shc is substituted in the state-
variable representation by Eqn. (2.4.15).

The other approximation is that all the equations
which involve a simple time constant are eliminated by
assuming that the fluid enters the system and ‘leaves it
almost instantaneously. The time constants are assumed
very small and can be neglected., The equations under
this case are (A.40), (A.45), (A.49) and (A.52).

The sixth equation to be ecliminated is that of the



Fig, 2.4.7 Rankine Cycle: turbine and Re-
heater Part Only.
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. . 638
state variable h

W which is the enthalpy of the feed-
water leaving heater 1 and entering heater 2. This is done
by combining the two heaters into one control volume as

shown in Fig. 2.4.8. The resulting governing equation of

the feedwater temperature is given by

H,.

d _ 1 W e
i 1 [pr (2Kpyyp o)+ 28N o+ 28Wpp Ky pST )
pz‘H
Hpy
s 1]
(2l 20 2Ky W) Sy
W
h
1 P d L
- "':'“" 6TFI"J - C‘—‘“—&v’-"—j a—‘ Ourw- (2.4.16)
Ty P, FW

T = +
where - Tu1 Ty
The rest of the equations representing the turbine and

feedwater heaters are (A.30),(A.41),(A.42) and (A.48) namely

d

where §W, and 6W, are substituted by (A.32) and (A.33)
d 1
15 Sep = vg[5Wé-5w3] (2.4.18)
where GWé and 6W3 are substituted by (A.43) and (A.44).
a 5}Q ShR
— 1 o i ———— » V4
IT H—~ = ng W, +n6ohg+n75W3+n8 th 4ﬂ95QR (2.4.19)
d 1,1 ey e et
at R C TRzifﬂR(Ts Tp) (SWpp+élipg)
1 a1\ Wt rem L _
+ > HRJXPR'HJPR) (s FS 6TR] 5QR}

(2.4.20)
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2.4.6 A Reduced Order Model

So far, the reduction process followed in this section
has resulted in reducing the set of equations presented
in Appendix A from 31 equations to 14 equations. Table
2.4.4 gives a list of the 14 state variables. In this
relatively low order model the turbine and the feedwater
heaters are approximated by a mathematical model of five
equations, Eqns. (2.4.,16) - (2.4.20), instead of eleven
equations given in Appendix A. Another representation of
the turbine and the feedwater heaters system is given by
two equations only iavolving an appropriate time constant
(18). In this approximaticn, the detailed dynamics of
the HP and LP turbines, the moisture separators, the
reheater, the feedwater heaters, etc., are thus all lumped
into this single time constant. In this representation,
the turbine power LT is considered as a state variable.
The fractional change in the turbine power output is given

in linearized form as

SL SP SL

d T 1 c T
— = = . —) (2.4.21)
It Lyg  Tp Peo Lo
where
P. = pressure in front of the nozzle chest

T~ = 5.5 sec
T 5P

p

c . . .
= 1is needed to predict the turbine
Cco

™)

An equation giving
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6T ¢
6TC1
6TC2

HL

71

Table 2.4.4

The State Variables of

the 14th Order Model

fractional change

change
change
change
change
change
change
in the
change
change

change

in
in
in
in
in

in

average
coolant
coolant

hot 1leg

in delayed neutron precursor group
fuel temperature of the core (°F)
node 1 of the reactor core (°F)
node 2 of the reactor core (°F)

temperature

cold leg temperature

the average primary coolant temperature

UTSG (°F)

in the average tube temperature in UTSG (°F)

in the average steam pressure of the UTSG (psi)

in the density of the steam in the nozzle

chest (1bm/ft3)

change in the density in the reheater tube side

(1bm/£t7)

fractional change in enthalpy of reheater tube side

change in the heat transfer in the reheater sheel

to tube (MW-hr/sec)

change in feedwater temperature leaving heater 2
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power output. The differential equation describing the

nozzle chest pressure is given by

d 5Pc_ 1 Pso GPs épc - 682 e , (2.4.22)
T s e s p - 01T e
co c co "so co 20 "0
where,

Te = 0.5 sec
682 _ fractional change in the by-pass valve coefficient
€20
8¢ _ fractional change in the main valve coefficient

€

)

An additional simplification involves the hot leg
piping. This is to eliminate THL by lumping the outlet
temperature of the coolant node 2, TcZ’ with the hot leg

temperature, THL’ in a single time constant T2

- :
Tep = (§-%2+ 4L (2.4.23)

Equation (2.4.6) becomes

d_ o . (1-f)Po sp , Aeless [&T .- 6T .1
dt c2 (mC_) Po = Z({mc_) “f cl
p’c2 p’c )
I O S (2.4.24)
Teo c2 cl b

Table 2.4.5 gives a list of the 10 state variables.
It is this low-order model which is investigated in the

application of Chapter 6.



Table 2.4.5 73
The State Variables

of the 10th Order Model

The first seven state variables:

6C, 8Tg, & 6T 55 OT 6T, and 6T

Te1r cL’
are as given in Table 2.4.4. The remaining state variables

are:
s+ fractional change in the average steam pressure
8Ly fractional change in the turbine output

Lo

¢ fractional change in the nozzle chest pressure



Chapter 3 74
STATE RECONSTRUCTION

3.1 Introduction

t

Many control system designs are based on state vector

feedback, where the input to the system is a function only

of the

current state vector x(t). For the linear-time-

invariant dynamic system described in state-space form by

the continuous time model:

{54

|

where,

e X

z

<

z

A,

= Ax + Bu + Gw (3.1.1)
= Mx (3.1.2)
= HE (3.1.3)

is an nxl state vector

is an rxl input control vector

is a scalar input disturbance

is a px1l system output vector

is an mxl measurement output vector

B,H and M are matrices and G is a vector all with

appropriate dimensions.

the hypothesized structure for a linear full-state feedback

control takes the form:

= Kx (3.1.4)
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Such full-state vector feedback designs offer cer-
tain advantages with respect to both system performance and
analysis (45,46,47). There is, huwever, one major draw-
back. In many control problems, the system state vector
is not available for direct measurement and so a control
law given by Eq. (3.1.4) cannot be uéed. Thus, a reasonable
substitute for the state vector must be found; other-
wise the whole control scheme must be abandoned.

This reasonable substitute for the state vector
may be approximately reconstructed by using an observer.
The observer reconstructs the state vector from the avail-
able outputs only. Once the state vector has been recon-
structed, we shall be able to use the control law of Eq.
(3.1.4), which assumes knowledge of the complete state
vector, by replacing the actual state x with the recon-
structed state, say 2 so the control law bécomes:

A

u = Kx

(3.1.5)

In this study we will be dealing with the type of
observer whose output approaches, as time increases, the
state that must be reconstructed but does nof explicitly
take into account the difficulties that arise because of
the presence of noise in the measurements.

This type of obscrver for purely deterministic

continuous-time linear time-invariant systems was first
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~

proposed by Luenberger (48, 49, 50). In an earlier work,
Kalman and Bucy (51) trcated the problem of estimating the
state when measurements of the outnmts are corrupted by

noise.

3.2 Observing a Linear System

Consider, for simplicity, a linear-time invariant

system given by:

x(t) = Ax(t) + Blurw),  x(0)=x_ (3.2.1)

where x is an nxl state vector and u and w are scalar

inputs for control and disturbance respectively. A system
with no observations at all can be observed by merely
copying the original system (49) as shown in Fig. (3.2.1).
The inputs u and w to the original system are acting

on the system, u is a control supplied to it and w is the
process disturbance applied on it and hence they can be
applied to the copy as well. The system copy is represented

as:

d(t) = AG(t) + Br),  4(0=3,  (3.2.2)

where § is the state estimate of the copy model which can
be easily measured.
It is clear that if i(O) = x(0), the system copy

will follow the original system exactly. The reason is
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that the error vector, e(t), which is the difference
between the estimate vector § and the original state vector

X,

e(t) = [q(t) - x(t)]

will be zero., Note that the solution of é(t), namely

[a(t) - x(t)] = A[q(t) - x(t)] (3.2.3)

is given by:

e(t) = [q(t) - x(©)] = *[q(0) - x(0)]
(3.2.4)

consequently with a(o) = x(0), the system copy will track
the original system exactly, i.e., ﬁ(t) = x(t)

Now if i(O) # x(0), the error e(t) given by Eq.
(3.2.4) may not die out quickly. It tends to zero only
if the original system is stable and then only at a speed
determined by the eigenvalues of the original system mat-
rix, A. This is indeed 2 serious limitation._

Suppose that the original system represented by

Eq. (3.2.1) has m observations given by:

z = Mx (3.2.5.)



+ {(__(t\
u N B Loy S  x(t)
A e
q(t)
+ am— A
ANY2na ik > q(t)

Fig. (3.2.1) An original System Cbserved by
a System Copy

+ -
z(t) — T fe
zZ
'
L M
b
+ q(t)
B D e I - q
+
A

Fig. (3.2.2) A Block Diagram Representing Egn. (3.2.7).
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with m<n. In order to overcome the previous limitatiom,
an extra term that is proportional to the difference

(z-2) is added to Eq. (3.2.2.) where

z = Mq (3.2.6)

"~
z is the observed variable as reconstructed by the
observer. In this case, the estimate of the state vector

is given by:

q(t) = AQ(t) + B(u*w) + L[z(t)-z(t)]  (3.2.7)

where L,a matrix called the gain matrix of the observer,
is yet to be determined. Fig. 3.2.2 shows the scheme
described by Eq.(3.2.7).

In this scheme, it is clear that:
(1) If 2(t) = z(t)
the observer will be nothing more than the sys-
tem copy given in the previous scheme.
(1) If 2(t) # z(t)
by making the appropriate substitutions,
the error dynamics are expressed as:

[G(6) - ()] = (A-LM)[4(6) - x()] (3.2.8)

The difference between this equation and Eqn. (3.2.3)

is clear. The solution of Eq. (3.2.8) is given by:
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e(t) = [q(t)-x(t)] = expl{(A-LM)t}[4(0)-x(0)]
(3.2.9)

Therefore, if the observer is initiated such that §(0)=§(0),
it follows that @ﬁt) = x(t) for all t>0, i.e., the state
of the observer tracks the state of the original system.
When i(O) # x(0), the error vector, e(t), dynamics are
governed by the matrix (A-LM) in Eqn. (3.2.8) and Eqn.
(3.2.9).

If the system matrix (A-LM) is asymptotically
stable, the error vector, e(t) tends to zero at a rate
determined by the dominant eigenvalue of (A-LM). Hefe,
the gain matrix, L of the observer plays an important
role in prescribing the eigenvalues of (A-LM) according to
the designer's choice.

In the two examples above, it is clear that the
estimate vector ﬁ(t) has the same order as the state vector
5(t): But is is actually not always necessary that the
order of q be equal to that of x. This will be the sub-
ject of the next section, Once the order of the estimate
§ is specified, the order of the gain matrix L is also

specified.

3.3 Full and Reduced Order Observers

When the order of this estimate vector é(t} is equal
to the order of the state vector x(t), we say that we have

a full-order observer. The observer given by Eqn. (3.2.7)
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is a full-order observer. It is customarily expressed as:

R(t) = AR(t) + Bluww) + L(z(8)-2(8))  (3.3.1)

where X is the estimate. Fig. 3.3.1 shows an original

system observed by a full-order observer.
For a system expressed by:
x(t) = Ax + Bu + Gw (3.3.2)

2 = Mx (3.3.3)

where the vectors x, u and z as well as the scalar w are

as defined by Eqn. (3.1.1) the corresponding full-order

observer is given by:

X(t) = AX(t) + Bu + Gw + L(z-MX) (3.3.4)

If for some reason the input disturbance, w cannot
be observed then the full-order observer will be biased

by the term Gw and, therefore, given by:

X(t) = AX(t) + Bu + L(2z-MX) (3.3.5)

Since there are different types of observers, it is

instructive to express the observer in general terms. For

a linear time-invariant dynamic system given by Eqns. (3.3.2)
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Full-Order Observer.
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and (3.3.3) a general observer design is given by:

q(t) = Fq + Cz + Uu + Ww (3.3.6)

where i is the estimate vector which may have different
orders for different observers, and the vectors'z and u

as well as the scalar w are as defined by Eqn. (3.1.1), The
matrices F, C and U as well as the vector W take their part-
icular forms according to the particular observer used.

For example, in the case of a full-order observer, these
matrices and the vector W are determined by comparing

the full-order observer equation (3.3.4) with the general

equation (3.3.6). This yields:

F = A-LM

¢ = L

U=38

W=g (3.3.7)

The inaccessible states of the original system can
similarly be expressed in general terms. By adding and sub-
tracting the term Lz from the right-hand side of Eqn.

(3.3.2), the inaccessible state vector x=q is given by:

é(t) = Fq + Cz + Uu + Ww (3.3.8)

where the matrices F, C and U and the vector W are as de-
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fined by Eqn. (3.3.7).

The error dynamics are obtained by subtracting Eqn.

(3.3.8) from Eqn. (3.3.6), i.e. s:nilar to Eqn. (3.2.8),

e(t) = (A-LM)e(t) (3.2.8
bis)

As stated in Section 3.2 , the gain matrix of the
observer L, is chosen by the designer so as to make the
matrix (A-LM) asymptotically stable. In this case, the
‘erfor vector e(t) tends to zero at a rate determined by
the dominant eigenvalue of (A-LM).

The estimate vector i(t) in Eq. (3.3.6) takes the
order of the particular observer used. Now, if the
original system is of order n and the observations, z,
are of order m, then a fuli-order observer will reconstruct
all n state variables of the original system even though
m of these variables, already measured, are known precisely.
Therefore, a full-order observer possesses a certain de-
gree of redundancy.

The redundancy may be eliminated by reducing the
order of the observer to (n-m) only. In this case, the
full state of the original system is obtained from the
(n-m) state variables of the observer and the m observations.
This type of observation is termed a reduced-order observer.

The reduced-order observer can consequently be cheaper to
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design and implement.

In Appendix B, the detailed derivation of the govern-
ing equations of a reduced-order observer is shown. The
general approach was first considered by Luenberger
(48,52), but the derivation in Appendix (B) follows that of
Cumming (53).

Consider the original linear time-invariant system
described by Eqns. (3.3.2) and (3.3.3), and define. first a
new state vector X; characterized by the fact that the

first m elements are equal to z

— Z
x; = (3] (3.3.9)

Here we need a nonsingular transformation relating
X to the new state veétor Xg-

Assume that the system is observalbe, m<n, and the
rows of the matrix M in Eqn. (3.3.3) are linearly indepen-

dent. In this case an (n-m)xn matrix N is selected such

that

n = Nx (3.3.10)

Note that it is possible to find such a matrix N
since M has rank m (M is assumed linearly independent).

The new vector is now given by:
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1

—

x; =[5 = Iglx (3.3.11)

=2

Up to this point, the apprcach of a reduced-order

observer requires only a nonsingular transformation:

x = [§] (<] (3.3.12)

and then, like the full-order observer, it follows exactly
the line stated earlier in Section 3.2.

Following the derivation in Appendix B, the governing
equations of a reduced-order observer is expressed in gen-

eral form by Egn. (3.3.6)

q(t) = Fq + Cz + Uu + Ww (3.3.6
bis)
such that:
F=P - LR
C = PL-LRL+V-LJ
U = TB, |
W= TG, (3.3.13)

where
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B, = J}%]B and G = [N1G

3

and the different matrices are defined in Appendix B,
The inaccessible state vector, g is expressed in

general form by Egn. (3.3.8).

o -

(t) = Fg + CE 4 Up; S Ei“‘r (3.3.8
bis)

where the matrices F,C and U as well as the vector W are
as defined by Eqns. (3.3.13).

Therefore, the error dynamics are given by:
b

é(t) = (P-LR)e(t) (3.3.14)

Now by anpropriately choosing the initial conditions
of the estimate vector @(t] in crder to make use of Eqn.

(B15) such as

1}

a(0) = Tx, (0)

M

[-L I.1f) x(0) _ (3.3.15)

"

the observer will track the {(n-m) nonmeasured state variables,
q, of the original system. But if Eqn. (3.3.15) is not

satisfied due to the initial conditions of the estimate
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vector, i(t), the error vector, e(t) will be governed by

Eqn. (3.3.14) and hence given by:

e(t) = exp{(P-LR)t}e(0) (3.3.16)

If the system matrix (P-LR) is asymptotically stable,
the error vector, e(t) tends to zero at a rate determined
by the dominant eigenvalue of (P-LR). The role of the
designer is then to choose the appropriate observation gain
matrix L. A system observea by a reduced-order observer
is presented in Fig. (3.3.2).

3.4 Representation of an Observed System in Terms of the
State Vector, x{t) and Error Vector, e(t)

It was stated in Section 3.1 that once the state
vector has been reconstructed via an appropriate observer,
then the control law of Eqn. (3.1.4) which assumes knowledge
of the complete state vector can be employed by replacing

the -actual state x with the reconstructed state X

u = Kx (3.4.1)

In case of the reduced-order observer, the recon-
structed state vector, g is obtained, by using Eqn. (3.3.12),

from the non-singular transformation as:
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R = Iy
- z
= [5;8,] [ﬁ} |
=5z + Szﬁ (3.4.2)

Substituting for X, the control law of Eqn. (3.4.1)

becomes

u = KS;z + KS,n (3.4.3)

By adding and subtracting the term KSzn‘in the right
hand side cf Eqn. (3.4.3), making the appropriate substitu-

tions for z, Eqn. (3.3.3), and n Eqn. (3.3.10), and recog-

nizing that SlM+SZN

trol law becomes,

I, an nxn identity matrix, the con-

u = Kx + KS,e (3.4.4.)

Substituting for u in Eqn. (3.3.2), the linear time-

invariant system is expressed in terms of x and e as:

i

x = (A+BK)x + BKS,e + Gw (3.4.5)

]

z = Mx + Qe (3.4.6)

Where 0 is a zero matrix of order mx(n-m).
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The error dynamics are given by Eqn. (3.3.14), i.e.,

&= (P-IR) e (3.4.7)

Note that if the disturbance were not observed the
dynamics of the unmeasured state vector g would still be
given by Eqn. (3.3.8 bis) while the dynamics of the es-

timate vector § would be given by:

§ = F§ + Cz + Uu (3.4.8)

where the matrices F, C and U are as defined by Eqn. (3.3.13).
In this case, the error dynamics become
é = (P-LR)e - Ww (3.4.9)
The distinction between these two cases was made in
order to identify the effect of the disturbance on the be-
havier of the observer.
In the case of a full order observer, the control
law is still given by Eqn. (3.4.1). By adding and sub-
tracting Kx from the right-hand side of this equation we

get

u = Kx + Ke (3.4.10)

By substituting for u in Eqn. {(3.3.2), the linear



time-variant system will be expressed in terms of x and

€ as:

kol
i

(A+BK)x + BKe (3.4.11)

z = Mx + Qe (3.4.12)

where 0 is a zero matrix of order mxn.

The error dynamics are given by Eqn. (3.2.8 bis) as
e = (A-LM)e (3.4.13)

Here again, if the disturbance were not observed,

the error dynamics would be given by: ’ .

e = (A-LM) e - Gw (3.4.14)

-

The derivation of these equations is useful in express-
ing the system together with the observer as a composite

system in matrix notation in chapters to follow.

3.5 Conditions for the Observability of a LTI System:

In deriving the equations describing the reduced
order observer in Section 3.4 it was assumed that the system
is observable. In fact, this is not just an aésumption
but rather a necessary and sufficient condition for the
design of an observer {(full or reduced). Otherwise, the

observation matrix L cannot be chosen and hence the state



vector will not be reconstructed.

Consider the observer

A A
q = Fq + Cz + Uu + Ww

for the LTI system

X = AX + Bu + Gw

Z = Mx

(3.5.1)

(3.5.2)

where all the matrices, vectors and scalar are as defined

in Section (3.3).

Note in particular that:

(i) for a full-order observer F=A-LM

(ii) {for a reduced-order observer F=P-LR.

Observer Theorem(a) [47,50]

"The observation gain matrix, L, can be designed

or, in either words, the characteristic values

of F(=A-LM) can be arbitrarily located in the

complex plane by choosing L suitably if and only if

the LTI system given by Eqgn.

observable™.

(3.5.2) is completely

In (47), it is a complete reconstructibility of the

system which is evoked. Note that for LTI systems, com-

plete reconstructibility implies and is implied by
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conplete observability.

The system (3.5.2) is completely observable which
means that the pair {A,M} is observable if and only if the
rank of the observability matrix is n, i.e.

y -

rank [M' AM' A2 ... AMTIMr] = (3.5.3)

where M' transpose of M

Al transpose of A.

The structure (A!'-M'L') is used to generate a stab-

ilizing L since

det [AI-(A-IM)] = det [AI-(A'-M'LY)] (3.5.4)

where ) is the characteristic value.

It is very well known from the structure (A'-M'L')
that a stabilizing L' cannot be generated unless the pair
{A*,M'} is completely controllable. This is in fact dual to
saying the pair {A,M} is coﬁpletely observable.

This result, due to duality, will be of help in gen-
erating a stabilizing L as we will see in Chapter (5).

Now concerning F=P-LR, for a reduced-order ob-

server, Gopinath (54) states the following theorem:
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"If {A,M} is completely observable, then

{P,R} is completely observable."

From Eqn. (B.7), our system is partitioned as:

z=Jz + Bn + Biu + Gw (3.5.5)

Vz + Pn + B,u + G,w, (3.5.6)

n =2

2

Where all variables, matrices and vectors are as defined
in Section 3.3.
It follows that if w were known, the only informa-

tion about n is obtained from Eqn. (3.5.5).

Rn =z - Jz - Bju - Gyw (3.5.7)

which implies that P and R should be completely observable
in order that {A,M} be completely observable.
.§ome authors in the literature have relaxed the con-
dition of complete observability to simply detectability (47).
Consider the LTI system given by Egn. (3.5.2) and

its observer given by Eqn. (3.5.1).

Theorem(c) [47):

"An observation gain matrix, L, can be found such
that the observer is asymptotically stable if
and only if the system given by Eqn. (3.5.2) is de-

tectable".
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Consider the system given by Eqn. (3.5.2) to be

transformed to:

: App O N N
x=1[. . ] X+ Bu~+ Gy
Ax1 Ay,
z = [M, 0] % (5.5.8)

~

where the pair {All,ﬁl} is completely observable. Then the

system is detectable if and only if the matrix A is

22
asymptotically stable.

We have to first transform the system to the struc-

ture given by Egn. (3.5.8) in order to check for the de-

tectability of the system via AZZ'
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SET-THEORETIC CONTROL

4,1 Introduction

Most practical systems are not éompletely isolated
from their environments and so are constantly subjected
to interactions in the form of input disturbances from
their environment. In order that the performance of the
system be considered acceptable, the system states (or out-
puts) must be kept within prespecified bounds at all times.
This often calls for the use of some form of control which
are limited in availability. The effectiveness of many
control systems in practice is evaluated in terms of their
“ability to maintain the system states within prescribed
bounds, using only available control effort, in the presence
of input disturbances. Set-Theoretic Control is designed
to address this class of problems.
Set-Theoretic Control (STC) is characterized by the two
following aspects (1).
a) direct treatment of the state and control con-
straints. (Note that in some other techniques,
the emphasis is placed on cptimizing certain cost
criteria and the satisfaction of the state and

control constraints are treated indirectly.
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b) the disturbance is treated as an unknown--but

bounded process. (In some other techniques, the
disturbance is modeled as a stochastic process.
Note that, it may be easier in 'practice to de-

fine the bounds of a disturbance than to

measure its stochastic properties).

These are really two major departures from existing
control design techniques.
Usoro (1) formulated the Set-Theoretic Control
problem as follows:
(a) attempt to find the maximum amplitude of the
unknown—but-bounded input disturbance which
can be tolerated by the system instead of de-

fining a prespecified bound on it.

(b) define a specific class of control systems
by hypothesizing a full-state feedback
control structure and select the best
in this class which yields non-violation of
state and control constraints in the pre-

sence of the input disturbance.

The hypothesized structure for the control used by

Usoro (1) is, therefore, of the form:

u = Kx (4.1.1)
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It is important to note that the full-state feedback

control system assumes knowledge of the complete state
vector. Unfortunately, in many systems in practice, the
complete state vector is not always available for measure-
ment and so the full-state feedback control structure can-
not be adopted in its original form; rather, as shown in
Chapter 3, it can be adopted in terms of state estimates con-
structed by employing an observer, In the following sec-
tions the formulation of the Set-Theoretic Control problem

in the case of some inaccessible states is addressed.

4,2 Observation/Control Problem Statement for an LTI
System with Inaccessible States:

Consider the linear time invariant dynamic system

given by:
X = AX + Bg'+ Gw (4.2.1)
X_=H£ (4.2.2)
z = Mx (4.2.3)
where,
X is an nx1 state vector

ie

is an rxl input vector

=

is a scalar input disturbance

is an px1l system output vector

r<
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z is an mxl measurement output vector

A,B,H and M are matrices of appropriate dimensions

G is an nx1 vector.

In this system, it is assumed that some of the state
variables are not available for measurement. Therefore, we
have to resort to the observer for the reconstruction of
the state. It is important that the state be reconstructed
properly and accurately if the use of the same class of con-
trols defined in terms of a linear full-state feedback in
Eqn. (4.1.1) is to be appropriate.

Assume that the state vector, x(t) has been properly
and accurately reconstructed and let its estimate be repre-
sented by g(t). Then the hypothesized structure for the
linear full-state feedback control is given in terms of the

estimate by:

u = K& : (4.2.4)

It is shown in Chapter 3 that the estimated state
vector, @(t) reconstructed by the observer is given in gen-

eral form by Eqn. (3.3.6) and (3.3.6 bis) namely

§=F4 + Cz + Uu + Ww

and the inaccessible state vector g is given by Eqns.

(3.3.8), namely



. - - . x"
q = Fq + Cz + Uu + Ww 101

where the matrices F,C,U and the vector W are given by Eqn.
(3.3.7) in the case of a full reconstruction of the state

as

= A-IM

= o o =
1 "
I W

and by Eqn. (3.3.13) in the case of a partial reconstruction

of the state as:

F = P-LR

C = PL-LRL+V-LJ
U = TB3

W= TG,

- =3

where all the matrices are as defined in Chapter (3).

Matrix L is the gain matrix for the observer as de-
fined in Chapter 3. It is an arbitrary matrix chosen by
the designer, and determines the eigenvalues of the matrix
F when we have either full or partial reconstfuctian of the
state.

If the observer is initiated such that g(0) = q(0),
it follows that §{t) = q(t) for all t>0, i.e.

, the estimate

state vector @(t) of the observer tracks the state gq(t)
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of our system. But if §(0)#q(0), the error vector, which

is the difference between @{t) and gq(t), is governed by:

e(t) = Fe(t) _— (4.2.5)

where F is as defined earlier in either case and e(t) is

given by:

e(t) = exp[Ftle(0) (4.2.6)

In our case, it is practical to express the control
law in terms of the state vector x and the error vector e.
Following the derivation in section 3.4, Eqn. (4.2.4) be-

comes

u=Kx+K.e (4.2.7)

where,
- in the case of full-state reconstruction
Kx=Ke=K
- in the case of partial-state reconstruction

KX=K and Ke=KSZ’ see Eqn. (3.4.4).

It is important tc compare the hypothesized struc-
ture for the state feedback control as given by Egn. (4.1.1)
with the hypothesized structure for the estimate feedback

control as given by Eqn. (4.2.7). If we were able to
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eliminate completely the error vector e from Eqn. (4.2.7)

or at least to make it die out quickly, we would then be
practically feeding back the state vector X(t) because then
the gain matrix K =K. Hence it can be stated that part of
the control problem for the system defined by Eqns. (4.2.1),
(4.2.2) and (4.2.3) is to initiate the observer such that
g(O) = x(0) and so X(t) = x(t) for all t>0 or at least
to cause the error vector e(t) die out quickly. In
this context we are seeking the estimate feedback control,
u = kX, which can tolerate the maximum input disturbance
without violating the state and control constraints.

The state constraints are expressed in terms of the

system output constraints by:

Yil € ¥Yipax 1%15253....P (4.2.8)

with lyi] = lYi-Yoil
where

Yoi are known elements of the output set center Yo,

Yimax @Y€ the prespecified bounds on the ampli-
tudes of the associated outputs and re-

ferenced about the center.
It is clear that each of the clements Y3 of the
system output vector y must be kept within its pre-

specified bounds at all times. Equ. (4.2.8) defines a
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hyperparallelopiped given by:

Zegy = {X: gYi-YOi{ _'.\’_Yimax; i_lDZQ"‘p}

*
= lyr (Y3-YQ ) "SI (Y -Y )<y
i=1,2,;..p} (4.2.9)
where
£ 2
Si = Yimax (4.2.10)

Also, each element Uj of the control vector u is
constrained to lie within its specified bounds at all times.

These constraints are of the form:

[ujl < Ysmax j-1,2...r (4.2.11)
with
lug[ = U5-U; 1
where
Uoj are known elements of the control set center 90
ujmax are the prespecified bounds on the amplitudes

of the associated controls, referenced about
the center.
Equation (4.2.11) defines a hyper-parallelopiped

given by



105

= * - . = ‘1
ue = {u: [U ojl < Uinaxs 37120007
= {u: (U.-U )'T. Yu.-u_.)<1
- J 0l J J 01 -
i=1,2...1} (4.2.12)
where,
'* - 2
57 Ynax (4.2.13)

In accordance with the formulation of the STC (1),
the next step is to find the control gains that maximizes

the amplitude of the unknown-but-bounded disturbance

w given by:
wl < Qt/? (4.2.14)

By substituting for u from Ean. (4.2.7) into Eqn. (4.2.1),

the system governing equations in terms of x and e reduces

A+BK_ 1 BK_ ||
= X €
0T TF t

It follows from the structure of Eqn. C4.2.15) that

s

Lo

[eRIRta

the eigenvalues of the composite system (the original system
and the observer) are those of the feedback system {A+BKy)

and those of the observer (F). This is in accordance with
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the statement by Luenburger (50) that insertion of an

observer in a feedback system to replace unavailable measure-
ments does not affect the eigenvalues of the feedback

system; it merely adjoins its own eigenvalues.

4.3 The Synthesis Problem

Due to the redundancy of the full-order observer,
let us specialize to the design of an observer/controller
for the case of a partial-state reconstruction, i.e.,
the observer is a reduced-order one. Its derivation is
given in Appendix (B).

Consider our LTI dynamic system given by Eqns. (4.2.1),
(4.2.2) and (4.2.3). By reconstructing the state vector
with the reduced-order observer to obtain the estimate
vector §(t) and by hypothesizing the structure of the de-
sired control system as given by Eqn. {(4.2.4), the feed-

back system of Eqn. (4.2.15) becomes:

x A+BK:BK527 [x lg
g = '“b—gﬁfiﬁ] l + tﬁ‘ w (4.3.1)

e

@] |

!

where P,R and S2 are as defined in Appendix B.
K is the gain matrix of the feedback of order rxn
L is the gain matrix of the observer of order

(n-m)xm.

‘The observation/control prcblem in a STC prespective
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(i) the gain matrix, L, of the observer such

that the state vector x(t) is properly and

accurately raconstructed (i.e., e(t)>0 as

fast as possible).

(ii) the control gain matrix K to maximize the

allowable unknown-but-bounded input disturb-

ance amplitude which the system can tolerate

without violating the output constraint,

Eqn.
Eqn.

tions

Note that

(4.2.9) and the control constraint,
(4.2.12), subject to the governing equa-

, Eqn. (4.3.1).

a sufficient condition for the satisfac-

tion of these constraints at all times is that the sets

of possible outputs and controls lie within the hyper-

parallelopipeds givenby Eqns. (4.2.9) and (4.2.12) re-

spectively.
The state

as follows:

]

where,

X is an (

governing equations (4.3.1) can be expressed

= A ¥ + Gw (4.3.2)
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the matrix A and the vector G are as spccified.

w is the unknown-but-bounded disturbance.

In STC, the initial state vector g(O) is uncertain
and is regarded as belonging to a set of possible initial
state given by QE(O) (2) which can be approximated by an
ellipsoid and is given by:

X(0) en(0) = {X:(X-X ) ' '(X-K)<1}  (4.3.3)

X
=0
where,

Y = a characteristic positive definite matrix

describing the ellipsoidal set QE(OJ.

Xé = (2n-m) - dimensional vector denoting the center

Q— .
X0
It is shown in (2) that the state vector x(t), at

any time t, is contained within an ellipsoidal set Q;(t) given

by:

X(t)ea(t) = {x: (X-X )T (o) (X-X <1k (4.3.3)

where

I'(t) is a positive definite matrix (or a positive
semi-definite matrix in the case where the ellipsoids are
expressed in terms of support functions--Appendix C) which

" satisfies the equations: [See Appendix D].
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AL LR+ R o+ seoyr o+ 86
dt B(t)
r¢o)y = vy
B(t) > 0, is a free parameter that enters in

the construction of the ellipsoid. (4.3.5)

If Eqn. (4.3.5) is solved for T'(t), then the el-
lipsoids bounding the set of possible states at the
corresponding times are defined.

‘ The hypothesized structure for the estimate feed-
back control, u = kX, is expressed in terms of x and e

in Eqn. (4.2.7), therefore, we can write

X
u = {Kxhellg]
= K i (4.3.6)
where
KX = X and Ke = KS2

It is shown in (1) that if the set of possible states
Q; is bounded, the set of possible controls Qu is also

bounded and is simply a linear transformation of the set

of possible states. This set is bounded by the ellipsoid
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— e =1 —
= . (1T 1 L - KX e D
u {g.(g KX J'[KIK'] ~(U K;o)il} (4.3.7)
where
KX =1U

In order to satisfy the control constraint, the bound-
ing ellipsoid for the set of possible controls, Eqn.
(4.3.7), must lie within the control constraint hyper-
parallelopiped given by Eqn. (4.2.12). Figure 4.3.1
illustrates this condition for a two-dimensional case.

This condition is satisfied if:

K.TK."< T.* j=1,2...1 (4.3.8)

where K% is the jEE-row vector of the control gain mat-
rix K.
Eqn. (4.3.8) represents the statement of the control
constraint.
. In a similar manner, the system output Eqn. (4.2.2)
may also be expressed in terms of X as follows:

o ox
[H 0] [3]

«
]

= H

=1

(4.3.9)

Since the output given by Ean. (4.3.9) is just a
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/ | ellipsoid bounding
the set of possible
controls

<« parallelopiped de-
fining the control
constraints.

1

Fig. 4.3.1 Sufficient Condition for the Sat-
isfaction of the Control
Constraints.

(the constraints are satisfied if
the bounding ellipsoid is con-
tained within the parallelopiped).
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linear transformation of the system state X, it follows

that with a bounded system state the output is also bounded

by the ellipsoid

Q= {y: (Y-

, ) (HIT TN -AX) <t (4.3.10)

where H

&

X
In order to satisfy the output constraint, the bound-
ing ellipsoid for the set of possible outputs, Eqn; (4.3.10),

must lie within the output constraint hyper-parallelopiped

given in Eqn. (4.2.9). This condition is satisfied if:

H.THY < S/ i=1,2,...p (4.3.11)

where Ei is the i:c—}—1 row vector of the system output matrix

H.
It is shown in (1) that if the system output is given

by:

y = Hx + Du + Ew (4.3.12)

then a sufficient condition for the output constraint to

be satisfied is
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{EiQEi + (H#DK%. F(ﬁ+DK};;

, , 1/2 %
o) ™ & E7 N 7 N
+ z[EithL(H+DK)i F(H+Dk)ij }<Si

i=1,2,...,p (4.3.13)
where
Ei is the iEbvrow of E
(ﬁ4DK)i is the it} row of (H+DX) .

Eqn. (4.3.11) or Eqn. {(4.3.13) represents the state-

ment of the output constraint.

Now for a constant B, the governing equation (4.3.5)

becomes:

dr (t) - (% .1 —. 1 @_QC

Sgp- = (B+g BIIT + T (Regpl) '+

Y (0)=y

g > C 1is now a constant (4.3.14)

Eqn. (4.3.14) reveals that (2) a large B tends to
make the system unstable while a small B tends to amplify

the effect of the input bound Q.

Hence, by choosing appropriately the free paramecter
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B and a stable (K#%BI), it is possible to find a steady-
state solution. Under the condition of stable (K+%BI)
the steady-state solution may be shown to be the unique

solution FS of the Lyabunov equation (55)

(A +

D] b=

BI)T +T_ (K + 281) '+ —é—'GQ t= o (4.3.15)

and

I, > 0 ~ (4.3.16)

Furthermore, if the system is controllable from the dis-

turbance, i.e, if

rank [G,A G,..., A~ "G] = (2n-m) (4.3.17)

then in fact

Iy > 0 (4.3.18)

Therefore, in order for the steady state solution Ps
to define an ellipsoid, the condition for stable
(K + %BI) must first be satisfied. In this case, I, de-
fines a steady state set, Qg, in accordance with (4.3.4),
with the implication that if system starts with an initial
state that is within QS, i.e., x(0)eQg, then. the system
state will lie within this set at all times.

The synthesis problem is then to find

(i) a positive free parameter R

(1ii) a gain matrix for the observer, L

(iii) a gain matrix for the control, K
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that yield a stable (A + %—Bl’) and maximize Q subject to
the Lyapunov equation (4.3.15), the output constraint,
Eq. (4.3.11) or Eqn. (4.3.13) and the control constraint,

Eqn. (4.3.8).
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SOLUTION PROCEDURE

5.1 Introductiomn

The main goal in this study is to be able to use a
full state feedback control but only after the reconstruc-
tion of this state is accomplished in the form of a state

~
estimate, x, when a whole or part of this state, x, is not

available. The control law used in this study is:

A

u = Kx (5.1.1)

After stating our observation/control problem in a
STC prespective, the synthesis problem was formulated in
Section 4.3 as a constrained non-linear optimization
problem of the form:
Determine: B,L and K that yield a maximum Q subject
to:

1. Governing equation

(K+%BI)T+T(K+%81)'+%-@QC“= 0 (5.1.2)

2. Output constraint

L i=1,2,3...p (5.1.3)

Jasi

.TH{ < S.
S M g |
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R, Tk} < T; j=1,2,3,...1 (5.1.4)
4, Beta constraint

g8 >0 (5.1.5)

-

5. Ellipsoidal representability constraint

(R+381) is stable (5.1.6)

Two main approaches (1) for solving the non-linear
constrained optimization problem posed above have been

identified as:

(i) The Direct Search approach.

(ii) The Lagrange approach.

Figure 5.1.1 1illustrates the different routes that
are possible in each approach.

In the Direct Search approcach, a search is performed
over the independent variables and is restricted to the
feasible region where all constraints are satisfied.

Usoro (1) developed a computer program based on the
Direct Search approach where the problem was reduced to
an unconstrained optimizafion-problem. The control law
(a full-state feedback control) used in (1) assumes avail-

ability and knowledge of the whole state, i.e.,
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u = Kx (5.1.7)

In this study the emphasis is placed on including
an extension to the already existing and‘working program
developed in (1) so as to be able to use either the control
law given by Egn. (5.1.1) or the one given by Eqn. (5.1.7)
at the choice of the designer. This study allows us to judge
the effect on the control when we use a state estimate
feedback instead of an original state feedback.

In the Lagrange approach, Lagrange multipliers in
conjunction with Kunn-Tucker conditions are used to reduce
the constrained nonlinear optimization problem to that of
solving a set of simultaneous cquations.

Recently, Negahdaripour (56) developed an algorithm
based on the Lagrange approach. He asserts that the problenm
to be solved has been reduced in dimension and the computa-
tional time has been decreased_in comparison to the Direct

Search approach.

5.2 Solution Techniques:

As stated earlier, the synthesis problem is to maxi-
mize Q subject to Eqns. (5.1.2), (5.1.3), (5.1.4), (5.1.5)
and (5.1.6). The special structure of this problem is
exploited in reducing it from a constrained nonlinear op-

timization problem to an unconstraincd cptimization
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problem. To this end, assuming that B,L and K are suit-
ably chosen, the matrix (K+%BI) will be known and then
the Lyapunov equation, Eqn. (5.1.2), can be solved for
I' as a function of Q. For a scalar Q, the relationship

between I' and Q is linear and is given by (1):

—
"

oQ (5.2.1)

Substituting for T into Eqns. (5.1.2), (5.1.3) and
(5.1.4), the governing equation, the output constraint

and the control constraint become:

| (R+381)0 + 0(R+Z81)' + £ GG'=o (5.2.2)
_}__IieﬁiQ < st i=1,2,...p (5.2.3)
‘_K:jegj'.q < 1 j=1,2...r (5.2.4)

It follows from the inequalities, Eqns. (5.2.3) and

(5.2.4), that Q should satisfy:

*
S,
Q< —=— i=1,2,...p (5.2.5)
HioH,'
T,
Q< %fg%fj j=1,2,...T (5.2.6)

=) -]
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In order to satisfy the output and control constraints,
the objective function, Q, should he less than or equal
to the smallest of the right-hand sides of the inequali-

ties, Eqns. (5.2.5) and (5.2.6), that is:

®
s;/(H;0H, ") i=1,2,...p

Q = min { (5.2.7)

* — —
T./(K.06K.' i=1 Cee
J/(__J K, ) j=1,2,...1

By defining Q in this way, three of the constraints,
Eqns. (5.1.2), (5.1.3) and (5.1.4) have been satisfied.

The two other constraints, non-negativeness of B
and stability of (K#%BI), are checked by setting the objec-
tive function Q equal to zero whenever any of these con-

straints are violated, that is

U]
o

If B < 03 Q
(5.2.8)

1
o

If (K+%BI) is unstable; Q

It is clear that by exploiting the special structure
of the problem, it has been reduced to an unconstrained
optimization problem but the starting point for 8,L and K,
must meet the conditions that £>0 and (K+%BI) is stable.

The solution procedure is summarized as follows:



(1) Generate feasible starting matrices L and K
and parameter B.
(ii) Given B,L and X, solve Eqn. (5.2.2) for 6.
(iii) Compute Q using Egns. (5.2.7) and (5.2.8)
(iv) Search over L,K and 8, and repeat steps (ii)

and (iii) until the optimum Q is obtained.

Figure 5.2.1 shows a flow-chart for the solution

procedure. It includes the two cases:

Case (i): the full-state x is available for feed-

back control.

Case (ii): a part of the state is not available
and then an observer is used to re-

. A
construct a state estimate X.

Note that in the case where the system is not ob-
served, the Lyapunov equation and the objective function

are given by:

(A+BK+281)6 + e(msx%m}wé GG'=0 (5.2.9)
s¥ /(M. 0H:) i=1,2 :
bi (_}‘1 ns 1F1L 44450 .P
= { Y : L, (5.2.10)
* /(K. 8K! i=1,2,...
3/ (%5055 t

The difference between Eqn. (5.2.9) and Iqn. (5.2.2)

is obvious. Matrix A has the form (See Eqn. (4.3.1))
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A+BK | BKS2

E = ["_U’ﬂ_?:iﬁ 1 (5.2.11a)

the relationship between H and H is given by Eqn. (4.3.9)
H=[H 0]; (5.2.11bj
and that between K and X is given by Eqn. (4.3.6)
K= [K KSZ] (5.2.11c)

Although the flow-chart in Fig. 5.2.1 defines the solu-
tion procedure, certain computational issues require con-

sideration:

Selecting a non-singular transformation for
the case where an observer is used.

- Generating a feasible starting point.

- Solving the Lyapunov equation.

- Searching over the independent variables by

using an optimization search method.

5.2.1 Selecting a Nonsingular Transformation:

A reduced-order observer requires a selecticn of

a nonsingular transformation of the form (see Appendix B)

-1
S = [%] (5.2.12)

The nonsingular transformation requircs a choice of a
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matrix N such that the square matrix S is well-conditioned.

Matrix M given by Egn. (4.2.3) is assumed to be linearly
independent of rank m. Therefore, it is possible to
select the (n-m)xn matrix N satisfying Eqn. (3.3.10),
n = NX, where n is the order of g and m<n.

The nonsingular transformation S is achieved (57)
by assigning the maximum value ofMij to the elements of N
on the diagonal of S—l. Also the average value of the
elements of M is assigned to appropriate locations in S'1
such that S becomes non singular. The method was originally
implemented in the last version of the computer program
OPTSYS of the Mechanical Engineering Department and

adopted in this study.

5.2.2 Generating a Feasible Starting Point:

Generating a feasible starting point in the solution

procedure means that B,L and K are selected such that

(i) 8 > 0.
(ii) (& + %—SI) is stable.

The first condition does not constitute any problem.
For the second condition we need to generate a stabilizing
K and a stabilizing L in order to make the matrix

(A + %BI) stable,
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It follows from the special structure of the matrix
K, given by Eqn. (5.2.11a) that the eigenvalues are pre-
scribed by those of (A + BK) and (P-LR).

First for a stabilizing K, we know that the character-
istic values of the matrix (A+BK) can be arbitrarily
located in the complex plane by choosing K suitably if the
pair (A,B) is controllable or at least stabilizable.

Bass (58) showed that for a controllable system des-

cribed by:

X = Aﬁ + Bg

u = kx

K= B'Z (5.2,13)

where Z = Z'>0 satisfies the Lyapunov equation:

[-(A+yI}]Z + Z[-(A+yI)]' =- 2BB' (5.2.14)

for some y>||A|], where ||A|| is the norm of the matrix A.

The norm is defined as:

= < 1
i ]
[TAI] = Max{z Ay (5.2.15)
i -
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Armstrong (58) relaxed Bass's requirement from com-
plete controllability to stabilizability.

Second, for a stabilizing L, we know that the charac-
teristic values of the matrix (P-LR) are identical to

those of (P'-R'L') since:

det[AI-(P-LR)] = det[AI-(P'-R'L'}] (5.2.16)

Matrix (P'-R'L') has the same structure as the matrix
(A+BK). Therefore, the characteristic values of
(P'-R'L') can be arbitrarily located by choosing L' approp-
riately if the pair (P',R') is completely controllable.
From Chapter 3, we know that the pair (P',R') is completely
controllable if (P,R) is reconstructible. If this condition
were satisfied the’generation of a stabilizing L' becomes
similar to that of a stabilizing K by using Bass algorithm,

The Bass algorithm was originally implemented in
Uséro's work tl) for the generation of a stabilizing K

and it is adopted in this study to generate both K and L.

5.2.3 Solving the Lyapunov Equation

In the solution of this problem, the Lyépunov Equa-
tion appears two times. It is the governing equation:
(5.2.2) if the system is observed .and (5.2.9) if it is not
and the second time in Bass subroutine for the generation

of stabilizing X and L. There are several methods for
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solving the Lyapunov equation. These are (59):

(i) Direct Solution Methods
(ii) TIterative Solution Methods

(iii) Transformation Solution Methods.

In transformation solution methods, the Lyapunov equa-
tion is reduced by similarity transformations to some
structure easier to solve. TFor example in the Bartels-
Stewart algorithm (60), the system is reduced to a real
Schur form by orthogonal similarity transformations. The
Bartels-Stewart algorithm was adopted in Usoro's work (1)
because of its computational speed and because it does
generate eigenvalues as by-products. This algorithm is

retained in this study.

5.2.4 Optimization Search Method:

The search over the independent variables (B8, the
elements of the gain matrix K, and the elements of the
observation matrix L) is performed by Powell method (61).
The method is illustrated in the flow-chart presented in
Fig. 5.2.2 (61). In this method, the iterative procedure
involves carrying out a succession of single.variable
searches in each of '"n" sets of independent directions
beginning initially with the cocordinate directions where
"n'" is the ovder of the problem, Powell search method was

adopted origirally by Usoro (1) is retained in this study
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because it has been reported by others (62) as effective

in related fields. Note that Powell's method assume uni-
model objective functions and so in order to obtain global
optima for multi-modal functions the use of several start-

ing points is recommended.

5.3 Description of the Computer Program

Two preograms for solving the problem posed in this
study have been developcd based on the techniques dis-
cussed in Section 5.2. The structures of these pro-
grams are similar in all points of view except in the
nonsingular transformation., One of the two programs con-
tains the nonsingular transformation as discussed in Sec-
tion 5.2.1. In this case the input system matrices are:
A, B, G, H, D, E and M. The program select a matrix N
such that the nonsingular matrix S given by Eqn. (5.2.12)
is well conditioned. The matrices P and R are computed
direéctly according to the partitioning of the system
matrix given by Eqn.(B7). The second program does not con-
tain this option. Therefore, the partitioning of the sys-
tem matrix is performecd externally and then the matrices P
and R are supplied to the input data in addition to
A, B, G, H, D, E and M.

For a starting point, a positive "g" is supplied by

the designer znd stabilizing K and L are generated using



131
Bass algorithm. Another option exists that a starting

point is selected by the designer using any suitable method.

It should be noted that the condition on Y1 that 1is
1
2
Bass Algorithm is not a necessary condition and so

(Yli[iA+%BI[}) and on y, that is (YZZEIP'* 81{]) in the
Y15}1A+%6I11 and yziliP'+%BI[| may be tried and this may
in some cases yield good starting points. When the option
is to use Bass algorithm to generate a starting point, the
designer must scan the search region by suitably varying
B,Yl and Y, and decide on the '"best' starting point to
adopt. This procedure greatly improves the chances of
obtaining a global optimum for a multi-modal function, and
may reduce the computation time required to obtain the
solution. When the other option is used, the best parameter
R 1s that is less than twice the smallest eigenvalue of
the closed loop system in absolute value (B must be positive).

The objective function value is computed as described
in Section 5.2 and illustrated in Fig. 5.2.1. The search
over the independent variables is performed using Powell
method as illustrated in Fig. 5.2.2. Although Powell
method is adopted in this study, any suitable ncnlinear
optimization method can in fact be employed in place of
Powell method.

Both of the two programs contain the two options

for solving the Set-thcoretic control problem at the choice



of the designer as

- Option (i):

- Option (ii):

shown in Fig. 5.2.3.
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the case where the full-state x is
available or assumed available for a
feedback control. This constitutes
the original program developed by

Usoro (1).

the case where a part of
is not available and then
order observer is used to
a state estimate X. This
an extension developed in

the state x
a reduced-

reconstruct
constitutes
this study.
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Chapter ©
APPLICATIONS AND RESULTS

6.1 Introduction

The need to adequately control the PWR power plant was
emphasized in Chapter 2. It was stated that the goal is
to coordinate the reactor control rods and the turbine
throttle valves so as to avoid large deviations in plant
variables. Keeping the plant variables within prespecified
bounds at all times is a major requirement for the accepta-
bility of the performance of the system. In Chapter 4,
it was shown that this class of problems is better
addressed by using Set-Theoretic Control technique. The ap-

plication in this Chapter consists of:

(1) constructing a full-state feedback control
system which employes an observer to re-
construct the state estimate when not all
the components of the state vector are avail-

able for measurement.

(ii) determining the maximum input disturbance
amplitude which the system can tolerate
without violation of the state and control
constraints following the solution procedure

presented in Chapter 5.
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(iii) Simulating time responses of potential

system states and controls in presence of
input disturbances. The simulations are
obtained from time integration of the
associated governing dynamic equations us-
ing a fourth-order Runge-Kutta integration

routine, DYSYS (63).

Before we proceed to the application to the power
plant, the solution proéedure is illustrated with a

3rd order system in order to give an insight into the

steps to follow,

6.2 Illustrative Example

Consider a third-order marginally stable system

described by

xi 1 0] X 1
iz = 0 1 X + u + 1
x3 -1 0 X 1

(6.2.1)
z=X, = (1 00 ] (Xl
.
X3 (6.2.2)
i Xy i} 1 0 0 xﬂ
. [xsl RS

(6.2.3)
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z 1s the measurement output

y 1is the system output vector.

The constraints imposed on the state variables and

the control are given as:

lxll < 1.0
|x5] < 1.0
lu] < 1.0

The problem is to find a control u to keep the system
state and control within constraint limits in the pres-
ence of the input disturbance w.

It is clear from Eqn. (6.2.2) that we have two in-
accessible state variables: X, and Xz- In this case we
need to use an observer to reconstruct the whole state
vector x. The observer reconstructs a state estimate g

from the measured output z. A hypothesized structure

for a full-state feedback control is

u = K% , (6.2.4)

We shall design a reduced-order observer since it is
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cheaper to design and implement. A sufficient condition
for the existence of the reduced »cder observer is the ob-
servability of the system.

The observability matrix is:

2 1 0 0O
M' A'M' ATAM'Y =
[M* ATM' A'“MT) [ 01 U}
0 0 1

Since the rank of the observability matrix is 3, the system
is observable.

Let us define anew state vector X4 given by:

. = [2] = Pi; (6.2.5)

The non-singular transformation relating the state

vector X to the new state vector X4 is given by

(6.2.6)

| W—
i
=
| A—

ke

where,

N
]

=

e

e
f
2
~
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The matrix M is known and given by Eqn. (6.2.2). A

good choice of the matrix N is

N = 1 \ (6.2.7)

Eqn. (6.2.6) becomes

f1._0 0]
x; = |0 1 0! x
0 0 1]
i.e., X; =X (6.2.8)

It happens in this example that the non-singular trans-
formation is an identity matrix but this is not always the

case., The inverse of this matrix is:

-1
M _
[§] = 5y S,]
i.e., 0
S2 =11 (6.2.9)
0
From Egn. (6.2.6) we get
-1
I EAT z
x = [x) [F) = I8 8,0 [
X = Syz * S,n (6.2.10)
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(6.2,11)

and similarly
/\_S A
X =354z % 5,1

It is preferable to express % in terms of. x. and the

error vector e where,
(6.2,12)

- I

|=»

e =

(6.2.11) becomes

Eqn.
nt Szﬂ

N
X =

Slz + Szﬂ - 82
(A-n)

Nx + &
2

= 81M§ + 82 X

= (SIM + SZN)5 + 823
(6.2.13)

X + S,e
2 28

(6.2.4), the contrcl law

where (slM‘ + 8,N) = I(3x3).
Substituting for R in Eqn,.

becomes
u = Kx + KSzE
X
(K Ks,] [ |
(6.2.14)

"_K_:.XZ

By following the remaining steps from Appendix B, we

find that the error dynamics are given by:
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e = (AZZFLAlZJ e(t) (6.2,15)
where,
0 0
Ayy = [ 1, Ay, = [1 0]
22 -1 0 12

It becomes clear from Eqn. (6.2.14) that if we were
able to eliminate completely the error vector e or at
least to make it die out quickly by an appropriate choice
of L, we would then be practically feeding back the
original state vector X.

Combining Eqns. (6,2.1), (6.2.14) and (6.2.15),

we get
o - - a
B ][
).(2 A+BK ; BKSZ XZ 1
X, ! X 1
.::7). = — e e b e .é.'é. + 6 w
?l 0 0 0 t AZZ-LA12 1
e 0! \€ ) \ 0
. J \ ! »
(6.2.16)

Note that if the disturbance were not observed,

the error dynamics will be governed by (see Appendix B).

e(t) = (A,, - LAy, )e(t) - TGw (6.2.17)

2

where



141

In order to compute the maximum allowable input
disturbance; the constraints on the state variables
and the control are translated into the form given by

Eqns: (4.2.10) and (4.2.13) as follows:

Si = (1.0)2 = 1,0; Si is a number
* .

s, = (1.0)2 = 1,0; S; is a number

T = (1.0)% = 1.0

The maximum allowable input disturbance is computed

by using Eqn. (5.2.7)

N ) .
S,/ (H,8H,) i=1,2

(6.2.18)
T

e B e

X, 6K, j =
/( 39K5) j=1

where,

H=[ ]

K

[K KSZ]; S2 is a matrix.

The problem is solved by using the computer pro-
gram described in Chapter (5) for the following three

cases:
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(1) assuming a full-state feedback of the
structure u = kx where all the states

are assumed known. In this case:

X

= (A+BK)x + Gw
;/(H BH1) i=1,2
and Q = min ;/(K 6k ) j=
(ii) using a reduced order-observer. In this

case the governing equations are given
by Eqn. (6.2.16) and Q is computed from

Egqn. (6.2.18).

(1i1) using a reduced order-observer but we
assume that the disturbance is not ob-
served. In this case we substitute
Egn. (6.2.17) for Eqn. (6.2.15) in the
governing equations and then use Eqn.

(6.2.18) for the computation of Q.

The results are summarized in Table 6.2.1

It is clear that Case 2 is very cleose to Case 1,
whereas Case 3 does not represent the right picture since
an input is not fed to the observer. We, therefore, de-
duce that in order to have a true state reconstruction all
inputs supplied to the original system must be supplied to

the observer.
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Case 2 shows that by an appropriate design of the
obsefver, i.e., a good selcction of the observation gain
matrix L, we can obtain virtually the same control gain
matrix K as with a full-state feedback.

The response characteristics of the three cases were
investigated by simulation studies of their transient re-
sponses to a step input. In each case the step input is
the maximum tolerable amplitude of the disturbance. The
cases were run at zero steady state conditions for two
seconds before being subjected to the disturbance as
shown in the figures. In these figures, the numbers
stand for the different variables as indicated in Table
6.2.2. Figure 6.2.1 shows the disturbance Q% for each
case where the values are given in Table 6.2.1. The time
responses of the states X;5X,, and Xz and the control u
are illustrated in Fig. 6.2.2, 6.2.3, 6.2.4, and 6.2.5
respectively. The observer was subjected to a severe
condition since the errors on the non-measured states X,
and Xg were given an initial value of 10% of the maximum

deviation of X, and x., respectively as shown in Fig.

3
6.2.6 and 6.2.7. The observer is designed such that the
errors die out quickly. For case 2, errors do in fact die

out rapidly whereas for case 3, they do not. Even under

this severe condition the similarity between cases (1) and
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Table 6.2.2

Indication of the Different Variables
of the Marginal System

Variables Case (1) Case (2) Case (3)
*
States
xl 1 4 9
xz 2 5 10
x3 3 6 11
%
Errors
e1 in x2 7 12
e, in Xz 8 13
%
Control
u 14 15 16
%
Disturbance
w 17 18 19
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(2) is clear according to the transient responses of the
states and control as shown in the corresponding figures.
The observer may be initiat:u such that g{0)=§(0)
which means e(0)=0., This situation is illustrated by Fig.
6.2.8 and 6.2.9. In Fig. 6.2.8, the errors start with zero
initial value and stay with zero value whereas for case 3
shown in Fig. 6.2.9, even though the errors start with zero
initial value, they persist as time goes on. It follows
from the assumption e=0 that g(t)=§(t) for all t>0, i.e.,
thé state of the observer tracks exactly the state of the
original system. Figure 6.2.10 shows the control of the
three cases for this particular situation. Figure 6.2.10
is different from Fig. 6.2.5 in that the controls 14 and
15 for case 1 and case 2 respectively are completely

identical if the assumption e=0 where considered.

6.3 Application to the PWR Power Plant

" As stated in the intrcduction, one of the objectives
of this application is to reconstruct the state estimate
by using an observer. In order to reconstruct the state
estimate as accurately as possible, the input disturbance
is considered observed by the reduced-order observer. It
was shown in the illustrative example of Section 6.2 that
the case where the disturbance is assumed not to be ob-

served is not a realistic situation. Therefore, in this
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application, the following two cases are considered:

(i) the case where the full-state X is
assumed available for a feedback control

A}

Eékg.

(ii) the case where a part of the state X is
not available and then a reduced-order ob-
server is used to reconstruct the state es-

timate X for a feedback control u=kX. The

input disturbance is observed.

6.3.1 The Linear Time-Invariant System

In Section 2,4.6, a linearized model of the power
plant was developed. A set of 10 first order differential

equations represent the entire PWR power plant as follows:

d - _ : _—
EFGC = 0.614526T€ 5.58660 8Ty 5.58660 5%2

+ 385.36 6o . (6.3.1)

d - -2 -
HfGTf = 5,15147.10 "4C —0.638126'1‘f 3.24600 oT

-3.49920 ¢T,., + 241.37 Spex

C2 t (6.3.2)

d - n "41'\‘ 5 "'2 .7 -
af-ﬁTCl— 5.5888.10 7"sC 9.8744.10 STf 3.68720 &bl
-2
- 1 + 3 2
3.7962.10 6TC2 3.54620 GTCL + 2.618606pext

(6.3.3)
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d - A=l ) -2 .
It 6T, = 5.5889.10 "6C + 9.8744,10 "8T. + 0.14691 U%l
-0.32575 SQQ + 2,61860 6Cext (6.3.4)
d (=~
— = -0,2 4 6.3.5
7 7L 0.21411 8T, + 0.21411 6T, ( )
d _ - ‘T . c .
rEd GTb = 0.32502 ¢ o 1.60550 STP + 1,28050 6Tm
(6.3.6)
d SPS
— 6T = 4.78740 8T, -7.78180 ST + 354.95357
dt m P m PSO
(6.3.7)
a ¢f -3 °Ps se
9F p— = 6.61226.107° 8T -0.93331 5= -0.14572 —
SO Yo} o)
(6.3.8)
a 6LT 6PC SLT
=— —— = 0.18200 5— - 0.18200 +—- (6.3.9)
dt T, Ps L 10
SP sP SP Se
I 5o = 2.20000 =% - 2,00000 5= -9.31400 2
co SO co =20
+ 2.00000 2 (6.3.10)
o)
Equation (6.3.8) is further approximated from Eqn.
(2.4.14) by assuming that the change in the feedwater tem-
perature 6TFW is small and can be neglected. In matrix
notation, the system can be described in state space form
by:
X = AX + Bu + Gw (6.3.11)

where,
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a 10th—dimensiona1 state vector having the

E:
state variables of the power plant as components
(Table 2.4.5).

u = a second-dimensional control vector. Its two

components are:

u; = 6pext which is the external re-

activity of the reactor control rods.

682
u, = E-n-which is the fractional change in the
20 steam by-pass valve coefficient

(position).

w = a scalar input disturbance. It is the fractional

change in the main steam valve coefficient (position)

Se

£
o]

A and B are matrices, and G is a vector. All are of ap-

propriate dimensions.

In this study, the variable Ge/eo is considered the
input disturbance because &t is seen as representing the
load demand. It is desired to find the maximum ampiitude
of the input disturbance which the system can tolerate
without violation of the potential system state constraints
and control constraints,

The potential system state and output are:

(i) the core average coolant temperature, Tcl'
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(ii) the hot leg coolant temperature, TcZ' In the model,

TcZ represents the core outlet temperature, but in the
model reduction, it has bhcen lumped with the
hot leg temperature THL with a single time
constant as given by Eqn. (2.4.23).
(iii) the steam pressure in the steam generétor PS
(iv) the steam pressure in front of the nozzle chest

of the HP turbine, Pc

(v) the reactor power level P,

The reactor power level P is a system output which
is expressed in terms of the state variables by Eqn.

(2.4.2)

. -3 o -3 ) -2
b 2.1343.107° 8C - 1.5947.107° 8T - 1.4497.107“8T
-2 _
- 1.4497.107°8T , + o, , (6.3.12)

The turbine power output LT is an important system
output but no constraint bounds were considered on the
excursions of this variable since it is considered to
be directly controlled by 66/50 which is treated as the
input disturbance.

The fuel temperature Tf is a critical state var-

iable but.no constraint bounds were considered on this



161

variable because, with a maximum tolerance of more than

ny

8% as shown in Table 6.3.2, it was found that the same
results are obtained with or without the constraint bounds

on the excursions of Tf.

In matrix notation, the system outputs are given

by:
y = Hx + Du + Ew (6.3.13)
where,
y = a fifth-dimensional system output vector
H,D are matrices and E is a vector. All are of
appropriate dimensions.
The control problem is to find a control vector u
such that
u = KX (6.3.14)
where,
X is the state estimate vector of the state

vector X
K is a control gain matrix of appropriate dimen-

sions.

In order to be able to use a full-state estimate feed-
back control given by Eqn. (6.3.14), the non-measurable

state variables are first reconstructed via an "observer'.
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The inaccessible state variables considered here are:

(i) the delayed neutron precursor concentra-
tion C.
(ii1) the average fuel temperature Te.

(iii) the average coolant temperature T”l‘
w

The remaining seven state variables of the vector

X are assumed measured. In matrix notation, the measure-

ment output vector, z is given by:

z = Mx (6.3-15)

where,

= a seventh-dimensional measurement output

e

vector.

M a 7x10 measurement matrix.

Equations (6.3.11), (6.3.13) and (6.3.15) constitute
the linear time-invariant dynamic system of the PWR power
plant described in state-space form, The system matrices
are given in Table 6.3.1. The matrix coefficients are ob-
tained upon substitution from the parameter values for a
typical 1200 MWe plant at 100% power. The parameter

values are given in the tables of Chapter 2,
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6.3.2 -System Output and Control Constraint Bounds:

In the presence of load demand changes, the con-
trol objective is tc find a control u givenby Ean. (6.3.14)

such that:

i=1,2,...5 (6.3.16)

j=1,2 (6.3.17)

at all times.

The constraint bounds on the excursions of the system
output and control are given in Table 6.3.2, Some of the
maximum percent changes from steady state value are ob-
tained from references (64,65).

The bounds on the reactor control rods reactivity are

calculated from Eqn. (2.4.7) as follows:

_ 1 1
(6p)max - (Spext)max+g¥[af(ﬁTf)max+7ac
(STcl max * GTCZ max)]
where
(Gp)max = $1 which is the maximum reactivity

that a reactor is allowed to reach.
In this case the reactor is prompt

critical.
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'r r
(8T ) oy s (8T q) iy and (8T

- are g¢gi
ax cé)max given

in Table 6.3.2.

it

B* fraction of delayed neutron

|1}

oe and G fuel and coolant temperature coefficients.

At the 100% operating load level, about which the
plant was linearized, the core reactivity S8p is equal to
zero, so the maximum possible external reactivity 5pext
which is induced by the reactor control rods at steady state
is equal to the reactor inherent feedback reactivity of

$0.4204 induced by fuel and coolant temperature changes.

It follows that (5Dext)maxmust lie between +351.0 prompt
critical reactivity. These are the constraint
bounds on the excursions of the control rods reactivity
considered in this study.

At the operating load level, the steam by-pass con-
trol valve position e, is equal to 0.21918 lbm/sec.psi. At
110% overpower, the maximum possible €, is equal to
0.2411 lbm/sec.psi. It follows that €, musf lie between
zero {completely closed) and 0.2411 {completely open).

So at 100% power level, the possible perturbation in e,
becomes: -0.21918 < ¢e < + 0.02192. In order to prevent an
over-estimation or an under-estimation, we consider a pos-
sible perturbation in €, to occur at 50% power level. In

this case we have: -0.12055 < de, < +0.,12055.

2
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Note that the maximum percent changes in the pres-

sures PS and PC from steady-state values given in Table

6.3.2 are assumed.

6.3.3 Set-Theoretic Control Results and Transient Response
Simulations

In applying Set-Theoretic control to the power plant
control problem, the input disturbance Ga/so is modeled
by an unknown-but-bounded uncertainty and the control
objective is to find the control that maximizes the tol-
erable disturbance amplitude, subject to output and con-
trol constraints. In this procedure, the constraints on
the outputs and controls are translated into parameters

S? and T; defined in Chapter 4 as follows:

K i=1,2,...5 (6.3.183)

il

(y

(

imax

)2 5=1,2 ©(6.3.19)

"

Cde o Pude 5

u.
jmax

" For the constraints specified, the corresponding values
of S; and T; are given in Table 6.3.2.

This problem is solved, as described in Chapter 5,
using the computer program discussed in Chapter 5. The re-

sults are obtained for the two cases:

(i) the case where the full-state vector X
is assumed available for measurement.
(ii) the case where only the measurement out-

put vector z is available.
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The resultant control gain matrix Kl for the first

case, the resultant control gain matrix KZ and the observa-

tion gain matrix L for the second case are given in Table

6.3.3. By comparing the two matrices K1 and Kz, we find

that the only difference resides in the two elements: K19

ot

and K29' From these resuits, it is clear that from the
measurement output vector z, the reconstructed state

A - -
vector X yields virtually the same control gain matrix:

Ll 2 K

9°
The maximum tolerable disturbance amplitude is
5.53576% and 5.53498% for the first and second case re-
spectively. The system eigenvalues for the two cases are
given in Table 6.3.4. The bounds on possible variable ex-
cursions are given in Table 6.3.5.

The Set-Theoretic control system is further tested by
studying the transient responses of the power plant for the
two cases. By implementing on the power plant model the

A

control u=K,x for the first case and u=K,x for the

second case, we are simulating the time responses of the

3

closed loop systems. In the sct of simulations, the system
was rTun at steady state conditions correspondihg to the
100% operating load level for few seconds before being
subjected to a step down change in main steam control

valve position as follows:
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Table 6.3.4 171
Eigenvalues of the Closed Loop
System
Case (1) Case (2)
System Not Observed System Observed
Free Parameter
B 0.164 0.164
Maximum Toler- 5.53579 % 5.53498%
able Disturb- '
ance Amplitude
Closed- Al -0.19014 -0.1877
Loop Rz -0.68849 -0.68918
Eigen-
values Az -0.082251 -0.082251
Ay -0.30022 - 30.61136 -0.30001-j0.61129
AS -0.30022 + j0.61163 -0.30001+j0.61129
Ag -1.9698 -1.9694
x7 -3.6526 -3.6551
Ag -3.177 - j1.0527 -3.1771-j1.0527
Ag -3.177 j 1.0527 -3.1771+3j1.0527
klO -8.8956 -8.8956
All -6.2627-j8.1353
Alz —?.2627+j8.1353
k13 -6.2625
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(1) in case 1, 5€ = -0.,0553579
, -0

(ii) in case 2, °% = - £.0553498
0

The results for corresponding variables in the two
cases are plotted on the same graph for ease of comparison.
The labels for the variables in each case are given in
Table 6.3.6. The time respones of representative variables
are presented in Figure 6.3.1. The sudden closing of the
main steam control valve causes an instantaneous decrease
in the main steam flow rate and a consequent decrease in
nozzle chest pressure accompanied by decrease in tur-
bine power output. The load reduction is accompanied
by an increase in the steam pressure inside the steanm
generator. This response is in good agreement with the
"Average-Temperature Program' assigned to the PWR power
plant shown in Fig, 2.2.5. Tﬁe sudden increase in the
secondary pressure inside the U-tube steam generator causes
a sudden change in the heat removal rate and hence a
consequent incréase in the primary coolant temperature . The
tube metal temperature increases in consequence. Since
the temperature of the primary fluid increased inside the
UfSG, it follows that the cold leg temperature increases.
With the sudden increase in the primary coolant temperature,

the contrcl action taken is such that the average coolant



Labels tc the Variables
of the PWR Power Plant

Table 6.3.,0
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65/50

Variables System Ot :c¢rved| System Not Observed
®
States
§C 11
éTf 12
éTcl 3 13
6TC2 4 14
GTCL 5 15
BTP ) 16
6Tm 7 17
SPS/PSO 8 18
SLT/LTO 9 19
8P /P _ 10 20
%
Errors
error in ¢C, ey 21
€Trror in de, e, 22
error in STu, e 23
*
Controls
Spext 24 25
662/620 26 27
%
System Output
‘ §P/P 28 29
o
*
Disturbance
30




temperature decreases due to: 175

(i) the reactor inherent feedbacks which
are the moderator temperature and

Doppler feedbacks. ‘

(ii) a negative reactivity induced externally
by the reactor control rods which are
manipulated by the reactor control sys-
tem according to the "Average-Temperature

Program'.

This control action is accompanied by a decrease in re-
actor power level.

Note that the Set-Theoretic control system causes
a closing of the steam by-pass control valve in order
to minimize excursions of the state variables.

The time responses of the errors in the three in-
accessible state variables are shown in Fig. 6.3,2. The
errors were allocated a 10% of the maximum deviations of
the corresponding state variables as initial values in
order to use the reduced order observer under a severe con-
dition. The designed observation gain matrix L given in
Table 6.3.3 was able to cause the errors to dié out rapidly
as shown in corresponding figures in less than a half second.
Some of the state variables as well as controls are affected

by the errors associated with the state reconstruction
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as shown in the time responses, The average coolant tem-
peraturc at the core is the most affected state variable.
The difference of the time response for the 2nd case
from that of the 1lst case is considerable.. The difference
in time responses can be considered to give a measure of per-
formance of the state reconstruction.

It must be emphasized that since the implemented
controls u = Kl£ or u = K2§ are of the proportional feed-
back type without integral control action, the steady state
values of the variables are non-zero as evident in the cor-

responding figures.
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Chapter 7 193
CONCLUSIONS AND RECOMMENDATIONS

This study provides an extensicn to the Set-Theoretic
control synthesis technique as reformulated in (1). Also
it demonstrates the applicability of this technique to more
practical situations and opens the door for its adaptation
to other control problems.

The Set-Theoretic control synthesis technique has been
applied to a PWR power plant control problem for two cases.
In fhe first case the full-state Vector is assumed available
for measurement and in the second case some state variables
are inaccessible. A good design of the observer which in-
volves choosing appropriate observation gain matrix can re-
construct the full-state vector without much error. In the
application to the power plant, the observer was tested under
severe conditions by allocating high initial values to the
errors in order to study the applicability of Set-Theoretic
control technique under this severe situation. The design
of K and L provided by this technique generated results
which show that Set-Theoretic Control is an affective and
promising scheme. The difference between the time re-
sponses of the second case from those given in the first
case are small in most of the step responses of the power
plant. The other advantage of the Set-Theoretic control

technique is that it addresses control problems associated
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with PWR power plants since keeping critical plant variables
within prespecified bounds at all times is a vital requirement.
With the full state feedback control structure coordination be-
tween the primary and secondary ioops is achieved and this
helps to yield satisfactory response characteristics for the
power plant.

The recommendations for future work in the field of
state reconstruction would be to design observers in cases
where measurements are noise-corrupted in addition to the
process disturbance. Concerning the solution algorithms
adopted in this study, they are slow and no attempt has been
made to investigate other algorithms since the goal was first
to test and implement the state reconstruction to Set-
Theoretic control in an existing and working algorithm.
Lagrange approach seems to be promising (56). Implementing
the state reconstruction to a Set-Theoretic Control using
Lagrange approach and also investigating other algorithms
then. can be used in the Direct Search approach are sub-

jects of interest for future work.
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EQUATIONS FOR SIMULATIOM OF A PWR POWER PLANT

In this Appendix, we present the equations that are
the basis for the simulated PWR power plant. The equations
for the primary side (reactor core, pressurizer and steam
generator of U-tube type) are derived following the model-
ing procedure presented in (21) and as applied in (213§§9223'
The equations for the secondary side {turbine and feedwater
heaters) are taken from (29,30). Because the number of these
equations is large, we have further reduced the overall
power plant model to a set of ten equations in linearized

form.

A.1 Neutron Kinetics and Reactivity Feedback

The most commonly known neutron kinetics model is
the space-independent point kinetics. This model is derived
from the time-dependent neutron transport equation follow-
ing Henry (35,36) by the use of perturbation weighting
functions. A key assumption in the derivation is that the
spatial shape of the neutron flux density does not change
appreciably as time goes on. The point kinetics equations

are given by:
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. ® 6
e e O A (A.1)
e Ao EZ P(t) - A.C., i=1,2.,.6 (A.2)
It L P iCis 3244 .
where
P(t) = reactor power level
p(t) = reactivity
B* = fraction of fission peutrons produced as
delayed neutrons. B = I Biq
Bi* = delayed neutron fraction for iEh-group.
xi = decay constant of the izh~delayed neutron
precursor.
A = prompt neutron generation time.
Ci(t)= delayed neutron precursor density in power

units.

L3
Reactivity p(t) is commonly expressed in units of 8 or
. * .
equivalently in dollars (8p = B is equivalent to $1).
" The point kinetics equation are linearized about an

operating condition Po’ C. and zero reactivity. If devia-

io
tions from the operating values are §P, 6Ci and §p respec-

tively, the linearized point kinetics equations are given

as.
: G *
d &p 8*sp B
8P . B8P, 5 a.sc. + Bosp (A.3)
at 0 A Po i=1 A
g,
2ec, = 282 - ajecy, i=1,2,...6  (A.4)
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S§p and 6Ci are expressed in terms of the normalized

quantities 6p/8*and 6Ci/P0 respectively.

The reactivity 8p consists of a part §p induced by

ext
using the control rods and another Spfb induced by temperature

and/or pressure feedbacks inherent to the reactor:

8p = Spext + SDf.b, (A.5)

The inherent feedbacks in Eqn. (A.5) serve as coupling
between the point kinetic equations (A.3), (A.4) and the
core heat transfer equations as well as the pressurizer,
There are other feedbacks inherent to the reactor but they
are not considered because their time constants are much
longer (hours and days) that those of interest to this study

(seconds and minutes),

A.2 Core Heat Transfer

The heat transfer rate from fuel surface to coolant is
given by:

-T ) (A.6)

4 = Ashfc (s c

where, AS = heat transfer area
hfc = heat transfer coefficient for fuel-to-coolant
TS = fuel temperature in surface node
Tc = coolant temperature.

The fuel is divided into 6 nodes as shown in Fig. 2.4.1

with a heat balance of the form:
dei .
— = (he - > , 3 .
prprfi T {heat gcnerated)i + (heat flow in);
- (heat flow out)i, i=1,2,...n (A.7)
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where,

subscript i denotes node i

pe = fuel density
C

u

pf fuel specific heat capacity.

Vfi volume of fuel node 1i.

T

gi = temperature of fuel node 1i.

The average fuel temperature is obtained as follows

(18):
£1Vg1 Y TeaVep *oo ¥ Tey Vst

Vfl + Vf2+...+Vfi+...V

..+¥T,. C

T £6 "6

fe
i=1,2..,6 (A.8)

By adding the 6 equations of (A.7) we can obtain the

heat balance equation for the average fuel temperature

dT A:h
f _ f feff
dt (cmp)f P - (meif (Tf'Tc) . (A.9)

where,
f = fraction of power released in the fuel.
h £ = cverall fuel-to-coolant heat transfer coefficient
et including resistances in fuel as well as film

resistance.

Af = area chosen as a basis for application of
h
eff"
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The fuel with the effect of cladding is lumped in

only one node, and the only state variable is the average
fuel temperature, Tf. The entire effect of the cladding

is simply a thermal resistance in the overall heat trans-
fer coefficient. The thermal resistance of the fuel is
corrected for the fact that the average fuel temperature
Tf is used. The thermal resistance across the gas gap de-
pends on the gas in the gap, the gap thickness, the fuel
surface properties and power history (21,33).

In the lumped parameter model of the core, two cool-
ant nodes are used for each fuel node to obtain a good |
approximation to the average coolant temperature (21,27,37).
Figure (2.4.2) shows a schematic of the fuel-coolant heat
transfer model.

The average coolant temperature of the first node
TCl is taken as the temperature to determine the heat

transfer rate dge

U = Ag Pegr (TeTeyp) (A.10)

The outlet temperature is taken as the average of
the second node TCZ' Using the heat balance equation (A.7)
for the first coolant node and the second coolant node

respectively, we get:
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aT . A.h mC
Cl _ (1-f) £ leff i i p i
T - ey Pt rme s TeTed) - Gede, (Tep-Trp)
p-Cq P Cy p 1
(A.11)
ar Az h e
C2 (1-£) £f “eff p
= P+ - (To-T ) - ( Yo (Than-TAy)
dt (mcp)Cz 7Thup)t2 f “c1 me c,""Ccz °C1
(A.12)
where,
TLP = reactor lower plenum temperature,
m_; = mass of coolant in node i1 (assumed equal
for node 1 and node 2).
Cpe = specific heat of coolant.

If deviations from thc operating values are GTf, 6TC1

and GTCZ’ the linearized equations for the core heat trans-

fer are:
fp A. h
d _ Yo sp Uf Meff i
T e T mep p, ey, e e (A.13)

d gp o B0 ep A Merr op op gy
dt " “cl (mcpicl P ZichiC1 f°'Cc1’ '‘m’C1
(5TC1-5TLP) (A.14)

(1-£)P, sp  Ap hoge

d m
6T, = 2 S8 & o (6T 6Ty) - (D)
dt " 'c2 mcpY e, Py Zlmcp)cz £ °°C1’ '‘m’c2

(8T.p-8Tq) (A.15)



A.3 Piping and Plenums

mixed volumes (21).

207

Piping sections and plenums are modeled as well-

It is assumed that the heat trans-

fer to the metal walls in these sections 1is small and can

be omitted and that the plenums perform their mixing

function perfectly.

where,

Qal SN
o+

Q-}Q-

STUP

STHL

ST

IP

GTOP

GTCL

8Tip

The linearized equations are:

(%JUP

(STCZ

-8T

(Pur (6Typ-6T

UP)

HL)

'm .
() 1p (8Tyy-6Typ)

Dop (6Tp-8Tgp)

( wen 8Top-8T¢y)

m
(m LP

(ST

-8T; p)

(A.

(A.

(A.

(A.

(A.

(A.

16)

17)

18)

19)

20)

21)
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the subscript UP stands for recactor upper plenun,

HL for hot leg pipe, IP for steam generator inlet

plenum, OP for

steam gencrator outlet plenum, CL

for cold leg pipe and LP for reactor lower plenum,

GTP is the deviation in the primary coolant tempera-

ture in the steam generator.

m is mass flow rate

m is mass of

A.4 Pressurizer

coolant.

The pressure of the reactor coolant system (RCS)

has some feedback on the rest of the system thrcugh the

pressure coefficient of reactivity mp in Eqn. (A.5). This

is contained in the feedbacks term épf b The pressurizer

maintains the RCS pressure at a constant value during

steady-state operation of the plant. Details of its func-

tion ‘are found in (21,25,29,38,39,40). Figure 2.4.3

shows a schematic of
pressure changes are
system. This system
pressurizer pressure
there is no feedback

of the system.

the pressurizer. During a transient,
limited by the pressurizer control
regulates the pressurizer level,

and reactor coolant pressure. However,

from pressurizer water level on the rest

A pressurizer pressure equation is given in linearized
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d _ , "
It de = aléPp + azéq'Faséwsu + a4éwsp + aséTsu +

qésTsp (A.22)

with SW =

7
i
" ™=
<4
’.J
w
e
%i
Hn

where,
P_ is the pressure of the primary side.

q 1is the rate of heat addition to the fluid with
electric heater.

mass flow of surge water into (or out of) the
pressurizer depending on the coolant average
temperature.

su

W__ mass flow of spray water.
Tsu surge water temperature.

Tsp spray water temperature

a's are coefficients to be determined from algebraic
substitutions.

V. volume of iEE coolant node
B. slope of coolant density versus temperature cuve.

T. temperature of iEh coolant node,

Eqn. (A.22) is based on mass, energy, and volume
balances and the assumption that saturation conditions

always apply for the steam-water mixture in the pressurizer.

AN



de
= + 7 - W
dt wsu Vsp s
dM
> =y
T dt S
dE
W h o PV r g
dt su su Sp sp s’s pw
dES
—~= =W h - PV
dt s's Vs
+ = Y
Vi Vs XT
where,
Mw = mass of water in the pressurizer.
MS = mass of steam in the pressurizer.
WS = flashing rate (or condensing rate) in the
pressurizer.
E.,Es = internal cnergy of water and steam in the
pressurizer respectively.
hsu’th’hs = are enthalpies of surger water, spray

water and steam respectively.

<
It

T water volume, steam volume and total
volume respectively.

In the reduction process of the overall power plant
model, Eqn. (A.22) for the pressurizer as well as that of

the pressurizer pressure control system are neglected.

A.5 The Stecam Generator

This model (27,28,29) consists of a primary coolant
lump, a heat conducting metal lump, and a secondary cool-

ant lump. For the primary coolant lump, an energy balanc

210

e
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is made on theprimary coolant which results in the primary
coolant temperature, Tp as a state variable, The govern-

ing equation is given in linearized form

$Tp _ Mplpp (§T+o-8T,) - (ege Mpm (8T_-8T.) (A.23)
dt mpCpp IPp °°P mpcpp p m
where,
m_,m are mass of primary coclant in the UTSG and
P*P its flow rate respectively.
Cpp = specific heat of primary coolant.

(heff) m - heat transfer coefficient for primary coolant
p to metal (includes portion of the metal re-
sistance as well as the film resistance).

A n - primary side to U-tube metal heat transfer
P area.
Tm = U-tube metal temperature.

For the heat conducting metal lump, an energy balance
is also made on the tube metal which results in the tube
metal temperature Tm as a state variable. The governing

equation is given in linearized form

d ST = (heffA)pm ST -8T - heffA)ms ST -&T
& T " — ¢ P ) m_C. (8T =8Tg4¢)
m - pm m-pm
(A.24)
. oT
with - sat
$Tsat = 57— 9P

S



212

where,

mm = mass of tube metal,

Cpm = specific heat of tube metal.
_— tube metal to secondary coolant heat
transfer area.
(heff)ms = hecat transfer coefficient for metal to
o secondary coolant (includes a portion
of the metal resistance as well as the film
resistance).

T .
sat = slope of saturation temperature versus
BPS saturation pressure curve,
PS = steam pressure.

Equation (A.24) is based on the assumption that
saturation conditions exist throughout the secondary cool-
ant lump. This assumption leads to consider the steam
pressure P_ as a state variable for the seccndary coolant
lump. The governing equation for the secondary ccolant lump

is given in linearized form by:

1 oT oh

d sat S
e = 1 y: - + \‘T
dt Sps K {(beffA)mséTm [(heffA)ms BPS ISBPS
. e
+ - + W - W - =Y (A.25
eo(hs th)]SPS hscpséTFW “s(hsthW) on (A.25
where,
TFW = feedwater temperature
ES = fractional change in volue coefficient, ¢ (equal
0 to a constant x valve area) and zero denotes
steady state condition.
K = constant to be determined by algebraic substitu-

tions.
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Equation (A.25) is based on the assumption that any

drop in the downstream or turbine pressure will not change
the steam flow rate WS from the steam generator. This
assumption is commonly known as the "critical flow" assump-

tion. Following this assumpticn, it is possible to write

Ws = ePS

or in linearized form

SW_ = e 6P + W ot (A.26)

where,

zero denostes values at steady state conditions.

Equation (A.25) is obtained by applying mass balances
for the water and steam components, an energy balance on
the secondary coolant, and a volume balance on all the
secondary coolant in the whole steam generator.

The steam generator is equipped with a three element
feedwater controller which maintains a programmed water
level on the secondary side during normal plant opera-
tion. Three signals determine the main feedwgter value
position as shown in Fig. 2.4.5: the level error signal, the
steam fiow rate signal, and the feedwater flow rate signal.
Details about the steam generator water-level control are
given in reference (41). In this study, the feedwater

flow is assumed to be controlled perfectly. Perfect feed-
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water flow control means that at every instant, the feed-

water flow is assumed equal to the steam flow

(o]

€

- (A.27)

(o}

A.6 The Turbine and Feedwater Heaters

This model was originally developed by (34) and used
with modifications in (29,30). This model is reduced
physically in Section 2.4 for computatioal purpose. For a
review of dynamic models of some widely used steam turbines
and their speed-governing systems, reference (42) may be
consulted. Typical parameters are also given.

A block diagram of the model is shown in Fig. 2.4.6.
The governing equations are derived:(lg) by applying

physical laws on the different subsystems as follows:

(i) nozzle chest, Fig. A.1l.
(ii) high pressure turbine, Fig. A.2.
(iii) reheater and moisture separator, Fig. A.3.
(iv) low pressure turbine, Fig. A.4.
(v) feedwater heater No. 1, Fig. A.S5.

(vi) feedwater hater No. 2, Fig. A.6.
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The resulting state variables of the model are described in

Table A.1.

(i) nozzle chest, Fig. A.1l:

\

A mass balance over the constant volume VC and an

energy balance will result in the following:

dM _ ..
IF = WpW,

"dE _ ooy
It - Wlhs Nshc.

The mass can be written as M=p V_ and the energy
stored in VC can be expressed as E=Muc. u_ is eliminated

by using Callendar's empirical state equation

_ 1
Pv, = 2 [K;h, - k, - kgP_] (A.28)

where k., k2’ and k3 are constants. The product PCk3 is
small and can be neglected. The relationship between

hc and u. that is (hc = u, + PCVC] becomes

Cc

\

dh Ky -1 dug
It g a4t | (#.29)

After substitution and linearization, the governing equa-

tions are:
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State Variables of the Turbine and Feedwater Heaters

GpC

sh
c
H__

CO
1"

- Swy
Wzn
(o]

dp
R

5W%

20

13
Shey

§Tpy

GWHPZ

Whp2

Change in the_density of the steam in the nozzle
chest (1bm/ft3).

Fractional change in the enthalpy of the nozzle
chest.

Fractional change in the flow rate of steam
entering the moisture separator,

Density of steam in the reheater tube side
(1bm/ft3).

Fractional change in enthalpy of reheater tube
side.

Fractional change in flow rate of steam leaving
the reheater shell side

Heat transfer in the reheater shell to tube
(Mw-hr/sec).

Fractional change in flow rate of steam leav-

ing LP turbine to the condenser,

Change in the enthalpy of feedwater in heater 1
(B/1bm)

Change in feedwater temperature leaving heater
2 (°F).

Fractional change in flow rate of fluid leav-
ing heater 2 to heater 1,



217

, » A}
3 1_________%_ V‘C, Pe .___4,.._}1(:’ W2

Fig. A.1 Nozzle Chest

BHP

Fig. A2 HP Turbine
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1

4 S0 = g 18 -6i,) (A.30)
a th ) Shc
It K:; = Ny 6W1 * o, ohS + n36w2 + n4HZ; (A.31)
with

oW, = 6WS x NUTSG

= [e 8P  + W_, gi] x NUTSG (A.32)
WZ is given by the empirical relationship [IBM].
W, = g2 A, [P p. - Ppo,100? (A.33)

- where,

n's are coefficients to be determined by
algebraic substitutions.

gravitational constant = 32.2 lbmft/lbf-secz.

n

gC
NUTSG

ff

number of U-tube steam generators in
the power plant.

Ak2 = constant
PR = pressure of steam entering the reheater. -

0, = density of steam leaving HP turbine to the
moisture separator.

Equation (A.33) can be expressed in terms of the
state variables by using Callender's empirical relationship

on Pc and PR’
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- 1 .

PC = E. pc[thc kz] (A.34)
e 4 .

PR = . pR[thR kz] (A.35)

It is assumed that the quality of the steam entering
the nozzle chest and entering the reheater shell side is

approximately 1.0. Therefore, the following equations are

obtained

oh
sh_ = e 8P (A.36)
oT
- sat
6T . = B 8P _ (A.37)
nhg
3p,
80, = 7, 5Py (A.39)

(ii) high pressure turbine, Fig. A.2

A mass balance will result in

dM _ _— " ;
aT = W - Wy - Wppp
" ) ’
Let Wpup = KBHP wz and M = TWZWZ’ where K is a

BHP
constant (a fraction of steam entering the HP turbine that

is extracted to feedwater heater 2) and T2 is a time con-

stant associated with volume of bleed lines. The linearized



form of the mass balance

SW

2 _ 1

-K
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SW
(A.40)

_d
dt Wy, Ty

(iii) reheater and moisture

BHP 81, e ]

711
“20 20 \

separator, Fig, A.3:

A mass balance and an

encygy balance on the shell

side of the rehecater will result in the following equations

dM _ ' ,

IF - W2 - WS

dE _ ! _
R QR + thg

IVShR.

The reheater volume remains constant, so the mass

\

is given by M = VR

p

and the internal energy is E=Mup.

up can be eliminated by using an equation similar to

Eqn. (A.29).
ing equations are:
d 1 S
'd——t‘ (SQR = VT [O“é
Sh,,
d R
— = N, OW! + 1
dt hoo 5 2 6

with

Upon substitution and linearization, the govern-

- 6W.] (A.41)

Sh

Ny
8hpg

+ +

¢h
g

S
UPRLE * % (aL42)
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h ~}1f xvg
sW) = (_% =)Wy - =—8h (A.43)
fg “ fg &
_ 0.5 0.5
W3 - gC }\3 [PRDR] ) (A44)

where n's are coefficients to be determined Sh_ is as given
o

by Egqn. (A.38) and PR is as givenby Eqn. (A.35).

A mass balance on the tube side is given by:

M _ e
at = Ypr " Vpr
The reheater is assumed a "well-mixed tank". Let M be

3
given by M = t,, Wi, where Tpy 1s @ time constant. The
4N i . A

governing equation in linearized form is:

d dSW! SW SW1

PR 1 PR PR

T i = v g~ - (A.45)
PRO R1 PRO PRO

3 I - 3 ~iti : i =
With “PR following the critical flow, NPR EZPS’
and SWPR’ in linearized form, given by:
6&2
§ Wpp = €20%P5 * Wppo 0 : (A.46)

where,

€, is the coefficient of the by-pass valve
and €50 is its operating value.

The derivation of the reheater heat transfer QR
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l/ WPR

; - Réheater
WS, hz Moisture Wé’ h nghR
”—;;“’”‘Separator e \\J//r———*—
2 '1)2 VR QR PR’ QR
! ATt
l Y Vpr
“ms’ hf

Fig. A.3 Moisture Separator and
Reheater,

\
RS’hR
LpP

L

—
Wi, h

H_’F ‘
“BLP @ ¥ V3o g0 Py

Fig. A.4 LP Turbine.
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is based on two assumptions:

(i) the dynamic heat transfer is assumed to be
‘equal to the steady state heat transfer modified

by a time constant.

(ii) the heat transfer coefficient for heat trans-
fer across the reheater tubes is assumed to vary
linearly with the tube side flow rate.

d .
) Qr .o - H Wpp * Wpp :
R2 4T R = Hg [

(TS_TR)

where

TR2 is a time constant
TS is main steam temperature, Eqn. (A.37)
TR is reheat steam temperature

HR is overall heat transfer cocfficient.

TR can be expressed in terms of the state variables
by assuming that the superheated steam on the tube side of
the reheater behaves as an ideal gas, that is PR=RpRTR.
The enthalpy is given by hR=uR+PR/pR. The linearized
equation of Tp is

-1

§Tp = [R + Cyl™" shy (A.47)

where,
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it

Cv = specific heat at constant volume.

The governing equation for QR in linearized form is

\

d .1 1 ) . ‘
It R Tro [F1R (Tg-Tp) (8Wpp+dWpp)

1y , ) )
+ SHp (Wpp + Whp) (8T -8Tp) - 6Qp]  (A.48)

(iv) 1low pressure turbine, Fig. A.4:

A mass balance will result in:

S S

dt 3 BLP 3
T ! = X 1 £ W - he < 5 3
Let wBLP hBLPWS and M TyzWgs where RBLP is the

fraction of steam entering the LP turbine that is extracted
to fecdwater heater 1 and Tz is a time constant associated
with‘volume of bleed lines. The governing equation in
linearized form is:

1-K 51!
LBy sw 5

B
5 Wy

(A.49)
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(v) feedwater heater No. 1, Fig. A.5:

An energy balance on the tube side of the heater 1is:

dE _
at = Qw1 * Po "rw o Brw Ve

-— A - s - Y it -
Let M = TH1 WFW for a "well mixed tank™ assumption

where TH1 is a time constant and let the energy be E=M uéw.

The fluid is in l1iquid state and so it is assumed incompres-

sible, the internal energy 1is uéw = héw since the change 1in
Al

(Pv)ﬁw is very small. The heat transfer from the shell
side to the tube side, QHl is expressed as an effective

flow on the shell side multiplied by a constant H., (34)

FW

,{.

Q1 = Hew (Wppp * Vppy)

W = K

pLp = Kppp ¥

-
Assuming that inlet enthalpy change is zero (6h0 = 0), the

governing equation in linearized form is:

H Sht!
d FW . FW
Y 6ht. = —— [K W, + W, ] - —
at "Urw Ty Vpy — BLP 3 HP24 Tl
1
h! h,.. dsW
) FW (Koo W + W) SWo - FW FW
T wz" BLP'3 HPZZ TUFW T Why dt
H1"FW !

(A.50)
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Where the constant Mg, is the latent heat removed from

the steam entering the shell side. 8W, is given by the

3
linearized form of Eqn. (A.44) and SWFW is given by Eqn.
(A.27) and consequently a%éwpw can be known.

(vi) feedwater heater No. 2, Fig. A.6:
9 Lo,

Similarly, an energy balance is done on feedwater

heater No. 2 with the same assumpticns except that we set

Shpy = C

ing equation in linearized form is:

p26TFW where sz is the specific heat. The govern-

d 1 v y
= 8T = hd Y 7 SW + 7!
S N R s by (Kppgp®ify *+ oMo+ SHpp)
2
HPW
- M 1 'J AT 71 : n K ¥
w7 Wppplip* Mg + Wpp) ¥y * Ohpy]
FIY
Tey Dpy  d8Wgy
) T CL W dt (A.51)
‘H2 P, FW
where,
A = 71! - ENOA
SW, = WY - 8w}

Hyy is the latent heat removed from the stean.

A mass balance on feedwater heater No. 2 will give

a .
at * Ypup * Wns t Ypr 7 Yupe
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Let M = Thp2 WHPZ for a "well-mixed tank" assumption

. . - . W = K A\
where THPZ is a time constant and let ABHP RHP hz.
Upon linearization and division by WHPZO’ the governing

equation in linearized form is:

W
d HP2 1
- & = — [K SW,+8W_ +8WL.]
dt wHPZO THPZWHPZO BHP™ "2 ms PR
1 Slypy (A.52)

THp2  "Hp20
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DERIVATION OF THE REDUCED-ORDER OBSERVER

a linear time-invariant dynamic system as

Ax + Bu + Gw (B.1)

Mx (B.2)

n-dimensional state vector

r-dimensional control vector
m-dimensional measurement outputs vector
scalar input disturbance

and M are matrices with appropriate
dimensions

n-dimensional vector.

Let consider a new state vector x; given by

=1

[=] (B.3)

S

So that the first m elements of X, are equal to z.

We need a non-singular transformation relating x to the

new state vector X

1

Assume that the system is observable, m<n, and the

rows of M are linearly independeqt. In this case an

(n-m)xn matrix N is selected so that



Eciuat ions (B

n = Nx
z M
[i] [f\?]x
-1

M
X {ﬁ] X1
?E. = [Slsz} FF;]
x=8;2+5,1n

1), (38.5) and (B.6) give

M - ) -
X1 %, = A [yl x; * Bu+ Gu

This may be written as:

Let

Z z

d - — }“/i ~ h l\_i‘ €
at [i] = [ﬁ] A [51021 [i] + [N]Bl{ ;

z zZ B G

d (= . J Ry = 1 21,
ar (§) = Iyp) 15 [glu s (g
Boe P+ Vgt Bu + Gy
Z=1Jz + Rn+ Bju+ Gw
Z=12-Jz - 819.
Z is of crder mx1.

L

N

~

] LW

(B.

(B.

(B.

(B.

(B.

(B
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7)

8)

.9)

.10)
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Note that the instantaneous values of the variables

z and u are available for measurement and consequently

dz/dt can be determined.

From Egqns. (B.8) and (B.10), the plant is expressed as:
n = Pn + Vz + Byu + Gyw (B.8)

Z = Rn + Gyw (B.11)

According to the theory of observers, see Section (4.2),

the dynamics of the estimate vector are given by:

A= PR+ Vz + Byu + G,w + L(Z-(RA*G,W))  (B.12)

where L is the gain matrix to be determined by the designer.

Therefore, by using Eqn. (B. 10)

A= (P-LR)n + (V-LJ)Z + (B,-LB;)u + (QZ-Lﬁl)W+Li
(3.13)
Let g = n - Lz (B.14)

Or equivalently, Eqn. (B.14) may be expressed by:

q=[LI]T¢

1=3>ilee
21il

= T X, (B.15)
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Similarly, if Eqn. (B.9) is multiplied by the aribtrary

gain matrix, L, and subtracted from Eqn. (B,8), we get

where

a = (P-LR)n + (V-LI)z + (B,-LB)u + (G,-LG,)w

a=n- Lz

= [-L In].[%] = Tx, (B.16)

By adding and subtracting the term (P-LR)Lz in the right-

hand side of Eqn. (B.13), we get

where

where

Eqns.

g = (P-LR)G + (PL-LRL + V-LJ)z + TBgu + TGow (B.17)

G
_r—ly _ Myn
["N‘]B’ 9,3“ l-—G‘—Z] = [N]EJ"

(B.16) and (B.17) can be written as:

q = Fq + Cz + Uu + Ww (B.18)
q =Fg + Cz + Uu + W (B.19)
F = P-LR

C = PL-LRL + V-LJ

U = TBy

W= TG (B.20)

3
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The estimate x is expressed as: 33

Z
[S; S,] [%—‘}

S;2 * 8,1 | (B.21)

Using Eqn. (B.14), we may express Eqn. (B.19) as:

(54
n

Slf + Szci + Lz)

(8, + S,L)z + 5,3 (B.22)

Eqns. (B.18) and (B.20) define an (n-m) state dynamic
system that provides an estimate X of x.
The dynamics of the error are found by subtracting

Eqn. (B.18) from Eqn. (B.19)

=n-n=F@®@n) =Fe (B.23)

In the case of an observer, the control law is ex-

pressed as:

u = kx (B.24)

where K is a gain matrix for the controller. From Eqn.

(B.21):
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u = K(S;z + S,n) (B.25)

Adding and Subtracting the te m KSzg_and making the
appropriate substitutions for both z and n and also recog-
nizing that SlM + SZN = I(nxn), we get:

u=kx + KS, e. (B.26)

The plant with its reduced-order observer may be
conveniently described in terms of the state vector x and

the error vector e as follows:

ol

= Ax + B(Xx + KSZE) + Gw

jo-

= Fe = (P-LR)e (B.27)

or, in matrix notation,

X A+BK! BKS,
[Z1 = -vipar”

The computation may be repeated for the case when the

CHE

+{ g] W (B.28)

disturbance is not observed by the observer, i.e., when
the only input to the observer is the control input u.
The result in matrix notation is given by:

x [A+BK:BKS,
I Bl s A

jolix

i
= t:T@:; ‘]W (B.Zg)



235

Appendix C

SUPPORT FUNCTION REPRESENTATION OF SETS (1,2)

Consider a closed convex set & of a vector X as shown
in Fig. C.1. The support function s(n) defines all the
support hyperplanes which touch the boundary of the set @,
and so, it provides a useful representation of the set. The

support function s(n) is defined by:

s(n) = maximum {x'n} (C.1)
all x e @

n'n =1
It is shewn in (2) that as n varies, the support hyper-
" planes '"sweep around'" the boundary of Q. The set Q can be
expressed as:

Q@ = {x: x'n < s(n) for all n, n'n = 1} (C.2)

Let the closed convex set be an ellipsoid defined by

9 = {xi [x-x- 1" T Ix-x ] < 1} (C.3)

where,

Rx denotes the set of vector x
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Vector ., of unit length
A (Q'D = 1)

A
Support hyperplane
of Q@ corresponding

to 1_1_1

A closed
convex set &

T ' '
Vector é-maxtgl)gi

W
ot

%
. ~ - 1. . L3 A N = ! £ + =
d is a vector in direction of 0y with length d X (El)gi s(gi)

Fig. C.1 Support Function of a Closed Convex Set
of Two-Dimensional Vector X.
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X, denotes the center of the ellipsoid

' is a positive definite matrix,

If s(n) denotes the support function of the ellipsoid
defined by (C.3), we can find Xnax (n) of Eqn. (C.1) by
introducing a Lagrange multiplier X and solving the set

of equations:

9 A -1 ‘
r X glxex )T exg) - 110 = o (c.4)
to get
X (n) = x_ - L I'n
Smax t= =0 A -

- (C.5)

Some of the characteristic properties of the support

function for ellipscid are:



(i) the vector sum of two ellipsoids with Fl

and T', with centers x;, and x,, respectively is:

5

Sqspdm)=n'[x g*x,0] + /o' on /0T

e (C.6)

Thus the vector sum is not an ellipsoid.

(ii) Consider two ellipsoids Ql and 2, with common

centers (say, the origin) defined by T. and

1
Pz. Assume that Fl > FZ SO (F1~F2) is
positive definite. It follows from (C.5)

that

S.(n) > S.(n for 2l1ll n
1 \___/ Z 3 it}

which means that Q.2 Q

12 8y (@

1 contains Qz).
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SETS OF REACHABLE STATES (1,2)

Consider a linear dynamic system subjected to an

unknown-but-bounded input disturbance w(t)

X(t) = A(t)x(t) + G(t) w(t)
x(0)e QX(O)
w(t)e Qw(t) (D.1)

If the system starts from an initial unknown-but-
bounded state x(0) in the presence of w(t), it undergoes time
excursions which depend on the dynamic characteristics of
the system and the control action taken at subsequent times.
In order for the excursions of the system states to be con-
sidered acceptable, the sets of possible states at every
instant of time should be contained in the corresponding
prespecified target set. This is easily visualized for

the 'discrete time case

x(mA+A) = ¢(nA)x(nd) + AG(nd)w(nh)
x(0)e 2_(0)
w(niA)e Qw(nA) (D.2)

where

o (nA) = I+8A(nA) (D. 3)
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The set Qx(nA) containing all possible x(nA) is called

the set of reachable states, It follows that

Qx(nA+A) = {x: §é¢(nA)§l + AG(nA)w,

' glsﬂx(nA), E?QW(HA)}
(D.4)

Qx(nA+A) can be expressed as a vector sum of two sets

as follows:

Q (nA+a) = ﬁx(nL\.+A|nA) + Qg (n8) (D.5)

where,

QX(nA+AlnA) = {x: §é¢(nA}§l,gleQx(nA)} (D.6)

QGw(nA) = {x: x = AG(nA)w, weQw(nA)} (D.7)
Using support functions, Eqn. (D.5) is given by:

Sx(nA+A)(E) - s;(nA+A[nA)(2) * sgy () (D.8)

By defining:

Sx(nA)(E) support function Qx(nA)

sw(nA)(E) support function of Qw(nA)

Eqn. (D.8) reduces to
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SX(HA+A) (T_}_) = Sx<nﬂ)[¢’! (nA)Q—}+S‘M(_nA)-[AG' (HA)_I}_J (D.9)

I1f QX(O) and Qw(nA) are ellipsoic: defined by

QX(O) = {x: (Efgo)'w'l(g;ED) <1} (D.1Q)

Qw(nA]=={E: E’qu(nA)E <1} (D.11)

the corresponding support functions are given by:

1

Sxcoy (@) = mix  + [n'yn? (D.12)

Sw(nA) (n) = {QYQE] (D.13)

o]

where x, is the center of the states.
Assume that QX(nA) is bounded by an ellipsoid des-

cribed by:

Qx,b(nA) = {x: (5F§O)'F_l(nA)(§;§o)§;} (D.14)

then the corresponding support function is:

o

Sx(aa),b @ = X, * [ntTnlt o (D.15)

Using Eqs. (D.11) and (D.15), equation (D.9) is re-

duced to
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1

- : z
Sx(nA+pfm = n'é(na)x + [n'¢ (nA)T (n2)¢ (nd)n]
1
+[n'G(nA)Q(nA)G' (na)naly? (D.16)
Eqn. (D.16) is not the support function of an el-
lipsoid. A bounding ellipsoid can be obtained by using

Holder's inequality

1 2 -1

(1-v)~ b, "+ v by > (by+by) (D.17)
0 <v <l
with
1
by = [n'¢(nAT(na)¢(mb)n]? (D.18)
1
b, = [n'G(na) Q(nA) G'(nd)na’)? (D.19)

Using Holder's inequality, the support function of a

bounding ellipsoid is given by:

Sx(na+a),p @ = nTend)x,

1
+[l%v n'¢(MA)T (nA)e! (nA)y%.Azp_*G(nA)Q(nA)G' (nd)n]?

(D.20)

Substituting for v=AB(nA) in Eqn. (D.20)



Sx(na+a),b B = n'e(nd)x,

N

+[n" (g (PO InA) 9Tna) + F7isG(n8)Q(nA)6" (n)n]

(D.21)

It follows that the ellipsoid bounding the set of reach-

able states is given by:

R, pnd) = {x: (x-x)'T 7 08 (x-x,) < 1} (D.22)

where T'(nA) satisfies

Pars) = ey ¢ T (8)6 " (n8)+56 (na) TR 61 (na)
(D.23)
reo) = v

1
K?_B(nﬁ) >0

- The solution for the corresponding continuous-time
system described by Eqn. (D.1) is obtained by applying the
di;crete to continuous time limit: Ean. (D.3), A»c, n+e, and
nA>t. The resultant bounding ellipsoid for the set of reach-

able states is given by:

PP 1
Qx,b(t) = {x: (x X,

TN (rxg) & 1 (0.20)
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where T'(t) satisfies

Aro) = AT F TOAT(R) + B(OT(E) +

6(t) T 6

re) =y

(D,25)



