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ABSTRACT

In Haiti, wood and wood charcoal are common fuels for cooking. This practice has contributed
to deforestation, leading to erosion and fatal floods. The availability of charcoal made from a
different source other than wood, such as agricultural waste, might provide Haitians with an
alternative, more sustainable fuel, which in turn may reduce fuel prices. MIT students have
developed various methods for producing charcoal out of simple inexpensive devices. In a
current manufacturing process, carbonized bagasse is crushed to a powder, then mixed and
agglomerated with yucca binder into balls. A novel method may reduce operator exposure and
inhalation of charcoal fines by keeping primary manufacturing phases in the oil drum and
reducing the operational steps of transferring the material from one location to another. The goal
of this thesis was to understand, test, and optimize the parameters of this novel crushing and
agglomeration process. The final prototype was found to effectively crushing charcoal and mix
charcoal with binder to some extent, while being an inexpensive alternative to reduce overall
charcoal exposure. However, the mixing and agglomeration was not sufficiently uniform and
further designs should be considered to increase uniformity of mixing of binder and charcoal.
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Title: Associate Professor of Mechanical Engineering

Thesis Supervisor: Amy Smith
Title: Edgerton Center Instructor
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1. Introduction

In developing countries, cooking fuel is essential to daily living. In Haiti, a country

already suffering from severe deforestation, finding a fuel source other than wood and wood

charcoal may lessen the effects of environmental degradation and also provide an alternative,

affordable source of charcoal',2 . Furthermore, charcoal bums more cleanly than wood and is

better for human health than other non-carbonized sources of fuel.

One alternative charcoal manufacturing methodology, developed by Shawn Frayne, Amy

Smith, Jessica Vechakul, and other MIT students, uses bagasse, a sugarcane waste material3 ,4,5.

Though with great potential, this process, however, requires operators to transfer the material

from one location to another for each step in manufacturing. A newer method developed by Amy

Banzaert conducts major steps of the manufacturing process all in the same oil drum.

Consequently, this method may significantly reduce the risk of charcoal dust inhalation for

operators, and improve the handling characteristics of the briquette material, thereby reducing

the number of machines and handling steps involved.

The process has not been optimized, however, and requires further design, study, and

testing. The goal of this undergraduate thesis is to understand the relationships of the drum

characteristics, speed of rotation, the ratio of water, yucca material, and charcoal, and other

aspects of the process as it affects the production of charcoal small "balls".

The goal of this thesis was to design specific machinery and methodologies that are

constrained by the new working concept to better understand these relationships and limitations

of this approach.
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1.1 Background

1.1.1 Charcoal as a Fuel Source

Around the world, 2.4 billion people burn biomass for cooking and heating6. Biomass

materials include wood, charcoal, raw or processed agricultural waste materials, and dung.

Exposure to biomass smoke can cause health problems such as acute respiratory infections (ARI)

in children, chronic lung afflictions such as asthma, lung cancer and complications during

pregnancy7 . Charcoal, or carbonized biomass materials, however, is a better fuel source than

wood because charcoal burns more cleanly and is smokeless8. Furthermore, it can be stored for a

longer period of time without degradation.

1.1.2 Energy Use in Haiti

In Haiti, about 90% of households choose wood charcoal9. Other data sources suggest

otherwise, that rural areas tend to primarily use fuelwood, whereas urban areas tend to use

charcoal (Tables 1-1 and 1-2)1°. Nevertheless, the use of both fuelwood and wood charcoal has

contributed significantly to severe deforestation, which has resulted in erosion and fatal

flooding l, 2 (Figure 1-1). Furthermore, the cost of charcoal is prohibitive for the average

Haitian. As the supply for wood and wood charcoal becomes increasingly limited because of

deforestation, the consequence is an increasing cost of fuel. Thus, the availability of another type

of fuel source besides wood and wood charcoal may provide more options for individuals and

reduce overall prices'3. Finding a material other than wood may also lessen the effects of

environmental degradation, and provide an alternative, affordable, cleaner and more sustainable

source of fuel.
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Table 1-1. Modern and solid cooking fuel use in Haiti in 200014.
Urban % Rural % National %

Modern Solid Total Modemrn Solid Total Modern Solid Total
7.9 91.9 100 0.7 99.2 100 4.1 95.8 100

Modern cooking fuels include electricity, LPG, natural gas, kerosene, and gasoline. Solid fuels include fuelwood,
straw, dung, coal, and charcoal.

Table 1-2. Distribution of women 15-49 by type of fuel used for cooking, by sector in Haiti 15.
Urban % Rural % Total %

Electricity 0.0 0.0 0.0
LPG, natural gas 2.9 0.3 1.5

Biogas 1.7 0.2 0.9
Keronsene 3.3 0.2 1.7

Coal, lignite 0.0 0.0 0.0
Charcoal 86.6 17.9 49.4

Firewood, straw 5.3 81.3 46.4
Dung 0.0 0.0 0.0

Gasoline 0.0 0.0 0.0
Other 0.1 0.1 0.1
Total 100.0 100.0 100.0

Number of women 4655 5499 10154

Figure 1-1: Area of Haiti susceptible to soil erosion because of deforestation' 6

In Haiti, there is an estimated 5.2 million available tons of fuelwood (Table 1-3). In

contrast, bagasse has an estimated potential availability of 33,000 tons (Table 1-4) or greater,

given that sugarcane agriculture is a major industry of Haiti 7. That is, the supply of fuelwood is
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158 times greater that of bagasse. However, fuelwood harvesting is not sustainable, while

bagasse supply is renewable each year. Nevertheless, any available alternative fuel source, such

as bagasse charcoal, would alleviate the burdens of fuel costs to some extent. Furthermore,

sugarcane is the major agriculture in Haiti,

Table 1-3: Land area, forest area and fuelwood production, 199918
Total Land Area Forest Area Fuelwood Production

Thousand square km Million tons
Haiti 28 1 5.2

Total North America 21370 5493 116.8
Total World 130484 38616 1443.7

Table 1-4: Estimated potential availability of bagasse, 199919
Cane sugar production Bagasse potential availability

Thousand tons Thousand tons
Haiti 10 33

Total North America 16957 55279
Total World 98821 322156

1.2 Prior Art: existing charcoal manufacturing models

1.2.1 Western Charcoal Production

Generally, there are two basic methods of making charcoal, direct and indirect. The direct

method uses heat from incomplete combustion of the organic matter that provides for the heat for

pyrolysis or carbonization of raw biomass to charcoal. The rate of combustion is controlled by

regulating the amount of oxygen allowed. The process is stopped by eliminating oxygen before

the charcoal begins to burn.

In the indirect method, an external heat source, which requires an additional fuel source,

is applied to a closed but vented airless chamber, called a retort. This retort is usually some kind

of a metal furnace. The indirect method results in a higher yield of high quality charcoal with
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less smoke and pollutants and requires less smoke and pollutants. It is generally easier and

requires less attention than the direct method".

These production methods usually produce wood charcoal of sufficient density for use;

this charcoal does not require crushing and then agglomeration. Briquette charcoal, however, by

definition is the use of crushed charcoal that is then agglomerated with a binder with high

pressure.

1.2.2 MIT Charcoal Manufacturing for Haiti

In rural areas of Haiti, Amy Smith and D-Lab IAP 2003 students observed that by using

an alternate source of biomass to produce charcoal, they may help to reduce further

environmental degradation21. They developed a charcoal production method using bagasse, an

agricultural waste product from sugarcane processing. Further work developed the briquette

press to avoid practice of hand-formed briquettes2 2. Bagasse should not be burned directly in

households because it does not burn cleanly, like many other biomass materials2 3.

By using materials that would have otherwise been thrown away or burned to clear space,

households could not only recycle agricultural waste, but also provide an alternate source of fuel.

The use of this method may also slow down the rate of deforestation in the country. Although

this concept was not entirely new, Amy Smith and her team developed a method appropriate for

the available materials and skills for rural Haiti. Related research has shown that other types of

agricultural waste, such as peanut shells, coconut husks, corn cobs, and saw dust, can be

converted into charcoal by employing similar techniques24 .

That MIT team developed a process by which bagasse could be transformed into charcoal

briquettes by using a simple oil drum kiln and a binder made from cassava. Cassava is a root

crop, also known as manioka, and is a relatively robust crop that can be grown relatively easily
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in infertile soil. Cassava is widely available in rural areas of Latin America and Haiti. Tests of

these briquettes showed that the new 'sugarcane charcoal' did not produce smoke and heated

food sufficiently 25.

With the input of several other MIT mechanical engineering students, the process has

been developed to produce higher quality briquettes. The original method is taken from "Fuel

from the Fields: A Case Study of Sugarcane Charcoal Technology," with latest student

developments in italics:

Making the kiln: Ventilation holes were cut in an empty 55 gallon oil drum. These holes
allow air to flow through the kiln as the fire gets started and then can be sealed off to provide
the low-oxygen environment necessary for carbonization.

Carbonizing the bagasse: The drum was filled with dried bagasse and ignited. When the
proper temperature was reached, which is indicated by a change in the color and quantity of
smoke produced, the ventilation holes were sealed. After several hours, the bagasse was
converted into charcoal.

Forming the briquette: The carbonized bagasse was moistened and then crushed into a
powder. A binder was made by boiling grated cassava root to form a sticky porridge. The
binder was mixed with the charcoal dust and then hand-formed into briquettes.

Extrusion: Currently, briquettes are no longer formed by hand. MIT students in the 2.009
Product Engineering Process class developed an extruder that took mixtures of binder and
charcoal powder into briquettes; the briquettes required further pressing26

Compressing: Pressed briquettes have a higher density, and therefore have a higher energy
density, thereby allowing the briquettes to burn longer 7.

Drying and Hardening: After drying in the sun for about a few days and then baked from the
heat given off from the oil drum kiln, briquettes harden considerably and are ready for use.

1.2.3 New Proposed Manufacturing Method

A new proposed charcoal production method may significantly reduce the risk of

charcoal dust inhalation for operators, and improve the handling characteristics of the briquette

material. Rather than transferring the carbonized bagasse from one oil drum to other machines or
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locations to crush, agglomerate, and briquette the material, this model may allow for both

crushing and agglomeration in the same oil drum used for carbonization.

In particular, it was serendipitously discovered that by turning a small-scale drum mock-

up, balls of charcoal automatically formed or "agglomerated." These charcoal "balls" did not

have sufficient density and required further pressing. Moreover, not all charcoal fines

agglomerate into balls and the agglomeration process were not consistent. Furthermore, specific

parameters of spinning and binder ratios in relation to the quality of agglomeration and briquettes

were not well-understood. Finally, it was not understood how a small-scale model would

translate in practice for the real-scale oil drum.

1.3 Thesis Objectives

The question this thesis attempts to address is, "How can we optimize the characteristics

of the formation of charcoal balls?" The goal of this thesis is to understand the relationships of

the drum characteristics, speed of rotation, the ratio of water, yucca binder, and charcoal, as well

as other aspects of the process as it affects the production of charcoal "ball-like" briquettes in

order to understand if and how this agglomeration process may replace existing extrusion and

pressing prototypes. This thesis involves two general phases: (1) the selection of design criteria

and the design of prototype and (2) the testing of specific parameters of the prototype.
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2. Design Process

2.1 Design Constraints and Criteria

2.1.1 Existing Constraints

There were two primary issues of the existing process: the number of operational steps in

transferring bagasse, and the associated health risks from charcoal dust inhalation. Consequently,

the constraint that served as the basis of the design process was to keep the process in a 55-liter

oil drum that can easily be used for three phases of the manufacturing process: the carbonization

phase in the kiln, the crushing phase, and the agglomeration phase. Furthermore, this design must

also be practical for testing specific parameters of the crushing and agglomeration process.

2.1.2 Description of Design Criteria

Table 2-1 lists primary design criteria that motivate this thesis. Concern for ease of

operation contained within the oil drum, reduction of exposure to charcoal fines, and ball or

briquette quality are the primary design specification. The other criteria (cost, maintenance,

materials) are common criteria for design for "intermediate" or "appropriate" technologies.

Table 2-1: Design Criteria for Crushing and Agglomeration Processes
Design criteria Description

Operational steps The crushing and agglomeration phase is after the carbonization phase. The transfer from
carbonization to crushing and agglomeration needs to be easily connected.

Ease of operation Other parameters include minimal human force required to operate, minimal operational
steps required, and minimal time required to produce balls

Safety Reduction of operator's exposure to charcoal particulates and other safety concerns
Cost Fewer parts and simpler manufacturing results in lower cost with little or no additional costs

to the existing oil drum kiln.
Maintenance Locally repairable

Materials Locally available and accessible and durable
Ball/Briquette Ball/briquette quality depends on a number of factors, but the primary concern is if

quality balls/briquettes will have a consistent ratio (of water, yucca binder, and charcoal), and
sufficient density. Other parameters (which will not be evaluated in this thesis) include
moisture weight and heat value.
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2.2 Strategies and Concepts

2.2.1 Initial Mock-Up and Ideas Generation

An initial mock-up of a turning drum had been built by Amy Banzaert and Shauna Mei

with a Poland Springs water dispenser jug on a shaft. First, a crushing rod made of a steel metal

pipe was placed in the jug as the jug turned, thereby crushing charcoal pieces into a powder.

Next, the crushing rod was removed, and yucca binder was added. It was unintentionally

observed that the mixture of bagasse charcoal powder and binder formed balls by turning the

drum (Figure 2-1). The initial crushing and agglomeration protocol suggested a limited number

of parameters to adjust and optimize (Table 2-2).

Figure 2-1: Image of Initial Mock-Up of Small-Scale Model

Table 2-2: Outline of Initial Crushing and Agglomeration Protocol
Phase Description

Crushing Place crushing rod in jug and seal jug. Spin jug for about 15 minutes to achieve some
charcoal fineness. Remove metal rod and visually approximate amount of charcoal

Binder Preparation Initial binder ratio was 10:1 ratio of water to yucca powder. Initial binder to charcoal
ratio was 1:5 ml/g. Yucca powder needed to be mixed with some water to create a
solution before adding to the pot of boiling water on medium heat. Mix continuously to
prevent binder from burning.

Agglomeration Add binder solution to drum and spin drum for about 15 minutes to achieve some level of
agglomeration.

14



Based on this initial model, several process variables were observed: crushing time,

crushing fineness, ingredients ratio, ingredients preparation, spinning speed, spinning time,

agglomeration percentage (Figure 2-2).

Crushing
total time rushing Result
average speed charcoal fineness
crushing force charcoal mass

Agglomeration 
spinning speedgglomeration Result

spinning total time agglomeration percentagespinning total time
Ingredients Ratio

water (ml)
yucca powder (ml)

Figure 2-2: Input and Outputs of Initial Manufacturing Process

This mock-up, however, was only a possible method for crushing and agglomeration

process. Consequently, the thesis was not limited to this initial mock-up and manufacturing

protocol, but could be altered. Consequently, the design process was completed for these two

processes and concepts fulfilling the design criteria were generated and compared against each

other.

2.2.2 Crushing Process

For the crushing process, several ideas were generated and two major strategies were

examined (Table 2-3, Figure 2-3). Major concerns included minimizing the number and

difficulty of operational steps required from carbonization to crushing, and reducing charcoal

dust exposure for operators. By looking only at the crushing process without looking at the

agglomeration, both concepts seemed reasonable, though the mortar-pestle model seemed to

have some difficulty in maintaining a more dust-free environment.

15



Figure 2-3: Concepts for Crushing Process

Table 2-3: Concepts for Crushing Process
The Pestle: Pestle or plunger with large surface area The Spinning Drum: A spinning drum with crushing balls
through top cover used to mash bits by spinning a rod or on bearings

Challenges: * Benefits:
- More energy lost compared to spinning drum - May not lose as much energy as crushing
- Cost of plunger · Challenges:
- Difficulty of mashing - Potentially slower rate of crushing
- Manufacturing precise hole/rod diameter - User exposure to charcoal from hatches

clearances - Drum orientation for agglomeration
- User exposure to charcoal if the hole is too large - Crushing balls or rods would need to be recollected
- Drum orientation for agglomeration before agglomeration.

2.2.3 Agglomeration Process

For the agglomeration process, several ideas were generated and two major strategies

were examined (Table 2-4, Figure 2-4). Major concerns were again the transfer and operational

steps required from crushing to agglomeration, charcoal dust exposure, and the preparation and

optimal ratio of ingredients.

iing paddle"

'i

Figure 2-4: Concepts for Agglomeration Process
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Table 2-4: Concepts for Agglomeration Process
The Mixer: mixing and mashing rod of vertical drum The Spinning Drum: spinning drum agglomerates balls

* Benefits: * Benefits:
- No need to orient drum - Could produce briquettes or balls
- Simpler - Possible free hand to modulate timing of binder

* Challenges: adding
- Cost of mixing rod * Challenges:
- May be more labor intensive - May not efficiently and uniformly mix
- User exposure to charcoal dust - May require corrugated walls?
- Would not produce briquettes, but general - Requires drum orientation

agglomerated mass - Must remove crushing rod (used in crushing)

2.2.4 Selection of Best Strategy

Based on the strategies for both processes for crushing and agglomeration (Tables 2-3, 2-

4), the spinning drum appeared to be the most promising concept (Table 2-5). The Masher and

The Mixer were considered as one entity, while The Spinning Drum was considered another

entity. The Masher/The Mixer combination was used as a reference and +10/- were assigned

based on bench-level experiments with the initial mock-up. Despite the simplicity of the

masher/mixer, the spinning drum would require less human effort, would have less operator

exposure to charcoal, and could potentially form briquettes.

17



Table 2-5: PUGH chart com aring two major combined strategies
Specification The Masher/The Mixer The Spinning Drum

Ease of orientation O
Cost 0

Human effort required 0 ++
Exposure to dust 0 +

Briquettes 0 +
Charcoal fineness 0 0

Uniformity of mixing 0
Total 0 + 1

2.3 Proposed Final Design

For the spinning drum, three concepts were considered and compared against each other

(Table 2-6): (1) spinning drum with shafts welded on top and bottom with bearings on a stand;

(2) spinning drum with shaft through the oil drum, and (3) spinning drum on two shafts with ball

bearings. Major concerns included issues of manufacturing an oil drum that could also be used

for the carbonization phase, exposure to charcoal dust, and ease of adding a pedal power later.

Again, each concept was assigned +101/- and the first concept was set as the reference. Overall,

the shaft with welded rods at the top and bottom of the oil drum was selected because of the ease

of manufacturing and ease of orientation.

Table 2-6: PUGH chart of final design concepts
(1) Shaft at ends (2) Shaft through (3) Ball Bearings

Manufacturing 0 -
Ease of orientation 0 0
Constraints from

carbonization phase
Human effort 0 0 0

Exposure to dust 0 0 +
Quality of mixing 0 0 0

Ease of adding pedal
power attachment later

Total 0 -2 -2

18
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Figure 2-5: Final design concepts

Two steel shafts of an inch diameter and 6" in length were welded to two steel sheets

(Figure 2-5b). These two sheets were then aligned and riveted to the top and bottom of the 55-

gallon oil drum. PVC bearings were cut to cover the steel shafts and reduce friction between the

steel shaft and the wood stand. A wood stand was constructed of two wood planks crossed at the

ends (Figure 2-5a). Because the height of the wood fixtures was about 24", this oil drum could

be easily picked up and placed on the wood fixtures.

Spinning the oil drum at a rate of up to 1.6 rpm was achieved by hand with ease and

without the addition of hoops or turn shafts. Although the height of the stand allowed for easy

set-up, a taller set-up would make spinning by hand easier to reduce operator back strain.

Unlike most oil drums, this oil drum had a removable, re-sealable top cap. In developing

countries, oil drum either have a removable but not re-sealable top cap, or a top cap welded to

the drum. In either case, designs for the hatch were not considered at this stage, because testing

and characterization of this spinning was more important.

19

Jo -

shaft at nds

/-A---
· ll~

M

H
· · if



The method of welding steel shafts to steel sheets had unintended benefits. The

connection of the steel shafts to the steel sheets made alignment much easier in comparison to

aligning the steel shafts directly on the oil drum. Furthermore, the steel shaft and sheet can be

removed and adjusted later in the future if need be. In addition, steel shaft can easily be

connected to a pedal power mechanism to increase speed and free the hands of the operators.

Finally, the steel shaft welded to the steel sheet was strong and stiff enough to hold the weight of

the oil drum on one end (Figure 2-5d). In developing countries, a 6" deep hole could be dug into

the ground to allow for the oil drum to be placed evenly on the ground.

In addition to the necessary cost of the oil drum as a kiln, the primary cost of this

prototype consisted of the wood for the frame, the 6" steel shafts and steel plates, as well as the

cost of welding and riveting.

Figure 2-5: (a) Final design of oil drum on stand (b) welded rod to steel sheet plate, riveted to oil drum prior to
adding PVC bearings, resting on the wooden stand fixtures

20



(c) wood stand alone, and (d) oil di

3. Experimental Procedure

3.1 Overview

Final experimental protocol did not differ greatly from the initial protocol (Figure 2-2).

The major difference was that rather than using yucca powder, yucca root was skinned, grated,

and squeezed for white milky liquid as a replacement (Figure 3-1). This approach was used

because in the field operators will be using real yucca root rather than yucca powder. Second, in

some cases, households in El Salvador28 grated and extract the liquid in order to keep the root for

food preparation. Consequently, extraction of liquid does not impact food use because the

extracted liquid would have been otherwise thrown away.

The crushing process was first evaluated by measuring the average charcoal fine size

through sieves over time at constant speed of 1 rpm. Thus, crushing parameters were established

for increasing time and speeds.
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The agglomeration process would normally be able to accommodate 3000 g of charcoal

provided from one run of carbonization. However, it was possible to process a minimum of at

least 1000 grams of charcoal in order to simulate conditions of a full load of 2000 g. That is, with

less than 1000 grams, charcoal fines and binder would stick to walls without simulating the

"balling" effect. There was also a constraint on the available charcoal powder provided by Amy

Smith and Amy Banzaert from their trip to El Salvador, as well as the length of time to perform
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each experiment (4 hours for a single test). Significant time was spent preparing the yucca, as

well as specific testing at each time interval after spinning the oil drum.

Yucca liquid was added to boiling water and stirred frequently for three minutes at

specified proportions (Figure This binder solution was added to the oil drum with the charcoal

and the oil drum was spun at a given speed and checked at regular intervals.

Figure 3-2: Yucca llquid added to boiling water

Agglomeration was observed by a visual presence test and later by a by mass percentage

of pieces or balls greater than 4.76 mm in size through sieves. A representative sample from the

oil drum was selected and shaken for 10 seconds. Spinning speed and the ingredients ratio were

the variables tested to understand their impact on agglomeration percentage. Agglomeration was

observed at 5 minute intervals after spinning speed. This resulted in cooling of the ingredients

after 5 minutes and may have impacted the agglomeration process after 5 minutes.

All initial tests comparing ingredients ratios and speeds were based on visual inspection,

rather than a quantitative measurement of agglomeration percentage. The laboratory space used

presented a space for the testing, but important equipment such as sieves, scales, and

thermometers were often unavailable because they had been taken and at times not returned.
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3.2 Yucca Liquid Extraction

This method of extracting yucca liquid from grated yucca was much more time

consuming and labor intensive than simply using yucca powder. In particular, the squeezing of

the grated yucca to extract liquid was cumbersome. Consequently, a mosquito net was later used

to extract liquid. There was an average of 0.276±0.059 ml of extracted yucca liquid per gram of

grated yucca. For 11 samples, a net was used to aid yucca liquid extraction, and for 10 samples

no net was used. For yucca extraction with a net, we observe 0.279±0.049 ml/g. Without a net,

we observe 0.273+0.070 ml/g.

There was no significant difference in the volume extracted per gram between samples

that used a net and samples that did not use a net. However, it appears that not using a net

increases the variation of yucca extraction. Furthermore, using a net was faster than extracting by

squeezing the yucca with one's fist. For a whole yucca root, extracting liquid with the net

required about 20 seconds, whereas extraction without a net required about 100 seconds.. In

addition, using a net also prevented yucca root from falling into the container of extracted yucca

liquid. Therefore, the net, made of mosquito net and approximately 2 mm wide, is a faster,

though not more effective, method of extracting liquid from grated yucca. The mosquito net,

however, began to rip if the grated yucca was squeezed too tightly. A more robust, durable

material should be explored and considered such as cheese cloth.

Although yucca in El Salvador may be easier to extract liquid from29, this may not be true

of other yucca roots in other countries that may potentially use this method of charcoal

manufacturing. One possible cause for the variations in the amount extracted per grated gram is

that some of the grated yucca that was weighed was not extracted, as it fell aside before liquid
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could be extracted from it. In addition, yucca presumably has variations in moisture content as

well. Some roots may be drier than others, and therefore have less liquid to begin with.

4. Prototype Testing: Results and Discussion

4.1 Crushing Process

4.1.1 Results

We measured the mass of charcoal of three different sizes: "fine" (less than 2 mm),

"medium" (between 2 mm and 4.76 mm), and "large" charcoal (greater than 4.76 mm). Overall,

we observe that the percentage of fine as well as medium charcoal increased significantly after

25 minutes (Figure 4-1). Although the percentage of large charcoal appeared to decrease, it did

not decrease significantly. Finally, variation of the percentage of fine charcoal and large charcoal

decreased over time.
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Figure 4-1: Percentage of Charcoal of Varying Fineness over Time

Comparing the ratio of fine to large charcoal at each time interval (Figure 4-2), a

significant difference between 3 minutes and 8 minutes was observed. After 8 minutes, the fine

to large ratio continued to increase, but there did not appear to be a significant difference

between 8 and 13 minutes, and 13 and 25 minutes.

Comparing the ratio of fine to medium charcoal at each time interval, no significant

difference from 3 minutes to 13 minutes was observed. However, a significant difference

between 13 minutes and 25 minutes was observed.

Comparing the ratio of medium to large charcoal at each time interval (Figure 4-1),

significant differences between 3 minutes and 13 minutes, as well as 13 minutes and 25 minutes

were observed. There did not appear to be a significant difference between 3 and 8 minutes and 8

and 13 minutes.
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Figure 4-2: Ratios of Charcoal Fineness vs. Crushing Time

4.1.2 Discussion

The results suggested that within 8 minutes of crushing, the amount of fine charcoal

compared to the large charcoal fines increased significantly. In addition, within 13 minutes the

ratio of medium charcoal fines to large charcoal fines increased significantly as well. Overall,

within the first 13 minutes, there was an increase of medium and very fine charcoal compared to

the large charcoal fines.

After 13 minutes, however, the ratio of fine charcoal to medium charcoal increased

significantly. This suggested that after 13 minutes, crushing more effectively targeted medium

charcoal fines than large charcoal fines. This confirmed our observations that after 13 minutes

the large charcoal fines consisted primarily of incompletely combusted bagasse that would be

more difficult to crush than combusted bagasse.
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4.2 Agglomeration Process

4.2.1 Ingredients Ratio

To understand the agglomeration process, three variables were adjusted: ingredients ratio

(water, yucca, charcoal), spinning speed, spinning time. The suggested ingredients ratio of 1:4:5

yucca to water to charcoal proved insufficient. In Test 1 at 0.6 rpm, the result was a dry mixture

that was not uniformly mixed.

Consequently, increasing the proportion of water and yucca was tested at 0.6 rpm for Test

2. By visual estimation, a ratio of 1:5:3 provided for a more uniformly mixed and goopy mixture

that resulted in the presence of some agglomeration. For Test 3, an ingredients ratio of 1:3:2.6 at

0.6 rpm resulted in much more agglomeration than Test 2, which strongly suggested that closer

yucca to charcoal proportion rather than water would more aid the agglomeration of balls.

However, on a practical level, because yucca is the major cost of this process, limiting the

amount of yucca used would be ideal.

Furthermore, in the first few runs, only balls that were smaller than the size of the

grooves on the drum wall were found (Figure 4-3) and appeared to be formed in part by existing

wood twigs that were not fully carbonized (Figure 4-4). In addition, nearly all balls were

observed to be very light. When squeezed, balls would extrude out white liquid, suggesting that

the spinning did not uniformly mix the balls at all. This suggested that methods to increase

uniformity and mixing of the binder into the charcoal would increase the quality of the balls

overall. Consequently, the initial yucca to charcoal ratio of 1:5 was fixed, while the proportion of

water was adjusted.
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4.2.2 Spinning Speed

Next, two more tests at 1 rpm were tested and by visual approximation the agglomeration

mixture appeared to have just as much agglomerated as at 0.6 rpm, if not more. Spinning at a

higher speed may increase the uniformity and extent of binder mixing with charcoal.

Consequently, later tests increased the speed as much as possible to mix the binder as thoroughly

as possible.
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4.2.3 Percent Mass Agglomerated

To address the issue of uniformity of the binder solution mixing with the charcoal, two

changes were made to the protocol: (1) mixing the total mixture by hand with a long wooden

spoon, (2) increasing the water ratio by adding water at every 5 interval of spinning.

Two tests (Tests 6 and 7) were done with the initial ingredients ratio of 1:5:5 yucca to

water to charcoal at 1.6 rpm (Figure 4-5). The percent mass greater than 4.76 mm was measured.

In Test 6, 250 ml of water was added at each interval. The percentage of agglomerated charcoal

increased, but there was no significant difference in agglomeration between any interval.

However, the variation in samples decreased at each increasing interval. After 20 minutes an

agglomeration of 67.5±5.5% was achieved. Of the proportion of charcoal agglomerated,

however, only about 5% was larger than 1 cm in diameter. Most of the agglomerated mass was

in smaller pieces.
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In Test 7, 500 ml of water was added at each interval, twice the amount of Test 6. The

percentage of agglomerated charcoal increased, but there was no significant difference in

agglomeration between any interval. Unlike Test 6, the variation in samples did not decrease at

each increasing interval. After 15 minutes, an agglomeration of 88.7±11.4% was observed. The

overall proportion of agglomerated charcoal of Test 7 was significantly greater than that of Test

6, which suggests that adding more water at each interval increases the agglomeration

percentage. However, there were fewer balls greater than 1 cm in diameter from Test 7 than in

Test 6. This suggests that there may be a tradeoff in total mass agglomerated with the size of

balls.

Finally, two alternative approaches were conducted to increase mixing. First, adding a

heavy 2" diameter rod used for crushing to see if that would result in increased mixing. This only

flattened out the previous agglomerated balls into flat "coins" and did not appear to increase

mixing.

Second, four "template" balls of 4" diameter were formed by hand to see if the presence

of balls would increase agglomeration by serving as nucleation sites. After 5 minutes of

spinning, all 4" balls had disintegrated and no balls greater than 1" in diameter were found. This

suggests the presence of balls do not aid agglomeration and that there may be a limit in the size

of balls with respect to a given ingredients ratio. However, dried and hardened ball prior to

serving as nucleation sites was not tested and could be a further area of research.

Lastly, remainders of Tests 3-7 were formed into briquettes for further testing for energy

density and moisture weight (Figure 4-6).
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Figure 4-6: Image of charcoal briquettes

5. Conclusion and Future Work

5.1 Conclusion

This goal of this thesis was to develop a model of the bagasse charcoal manufacturing

process that reduced operator exposure to charcoal dust inhalation and operational steps involved

at transferring bagasse charcoal from one process to the next. Design specifications were

identified and a prototype was designed and built. This prototype was tested for its ability to

crush charcoal pieces into charcoal dust, and agglomerate charcoal dust with binder.

The crushing process of the prototype is effective, easier, and safer for operators. The

agglomeration process, however, is somewhat effective, but did not produce briquettes of

sufficient size or density for use. Furthermore, binder did not consistently mixed in the oil drum

by spinning and further research into spinning paddles may prove to be a more efficient mixing

32



method. Nevertheless, this process also reduces operator exposure to charcoal dust inhalation and

is a cheaper intermediate process method than the charcoal extruder prior to pressing.

5.2 Alternative designs

There were two variables that were not tested in this thesis: the drum diameter and the

time at which the binder was added (added all at once in the beginning). Design of a drum that

allows for an inner modular diameter may aid with increasing uniformity of mixing. Second, a

hatch on the size of the oil drum would allow for the binder to be added continuously or at

intervals. Furthermore, the addition of a pedal power to the machine would aid for hands-free

operation as well as easy operation of the binder to be mixed continuously or at intervals. Prior

art of cooking equipment should be considered, such as a four-armed paddle for mixing as well

as crushing. Finally, testing small, dried nuggets that can withstand spinning in the drum may be

able to serve as nucleation and agglomeration sites.
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