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ABSTRACT

A two-part study was conducted to determine methods for producing ultra-high molecular
weight polyethylene with high thermal conductivity by way of polymer chain orientation. The
first portion of this report surveys current research involving polyethylene chain orientation
and manufacturing. This section includes analysis of shish-kebab morphology, past polymer
thermal studies, self-reinforcement studies, manufacturing techniques, and experimental
techniques for low thermal conductivity materials.

The second portion reviews the results of an experiment conducted to test the feasibility of
stretched thermoforming of UHMW-polyethylene. Sheets of UHMWPE were stretched and
tested for anisotropy in thermal conductivity. For samples with draw ratios of X 10,
anisotropy in thermal conductivity was observed to increase. These results show potential for
future development of this proposed methodology.
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1. Introduction

Ultra-high molecular weight polyethylene has been shown in past studies to exhibit

increased thermal conductivity as its polymer chain orientation increases. In these studies,

chain orientation is achieved by various mechanical stretching techniques. However, methods

for developing this technology have not been widely adopted, partly because of a lack of

understanding of the mechanisms involved in the thermal property changes and partly because

the manufacturing processes have not been fully developed. The first portion of this report will

review past research regarding the relationship between polymer chain orientation,

morphology, and thermal conductivity. The second portion will describe an experiment

conducted to test a possible manufacturing approach for oriented UHMW-polyethylene.

1.1. General information regarding UHMWPE

Ultra-high molecular weight polyethylene, commonly referred to as UHMWPE, is a

thermoplastic composed of very long polymer chains and characterized by strong mechanical

properties. Amongst its many notable qualities are its high impact strength, high resistance to

corrosion, high resistance to abrasion, and low coefficient of friction.

1.2. Applications

Because of these very advantageous characteristics of UHMWPE, it has been

commercialized for many purposes. Ultra-high molecular weight polyethylene fibers have

been developed into rope products such as Dyneema SK651 because they are have high

strength to weight ratios and offer vibration damping under elongation (Govaert et al., 1993).

These fibers are used in high strength applications ranging from bullet-proof vests to high

Dyneema SK65 is a registered product of DSM
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strength ropes. (DSM) The low abrasion and low friction qualities of UHMWPE makes it a

popular choice for industrial handling applications, and it has been the material of choice for

hip and joint replacements since the 1970s (Wu et al., 2000).

1.3. Thermal Properties and Potential Demand

Despite the advantageous mechanical properties of UHMWPE, product design is

limited by the low thermal conductivity of polyethylene. With typical thermal conductivity

values ranging from 0.4 to 0.5 W/m K (Goodfellow), ultra-high molecular weight polyethylene

is out of specifications for designs that require significant heat transfer. Such engineering

applications could include electronic enclosures or small motor housings.

Furthermore, the concepts explored in this study for improving the thermal conductivity

of polyethylene could potentially be applicable for other types of polymers. For this reason,

engineers and researchers that utilize or study other plastics may benefit from an improved

understanding of the thermal conductivity characteristics of UHMWPE.
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2. State of Current Research

The widespread use of ultra-high molecular weight PE is due in part to the extensive

research that has been conducted to better understand this polymer. In this section of the

report, relevant past research will be reviewed and discussed. The section will begin by

exploring the current theory of polymer chain structures to better understand micro- and nano-

scale heat transfer mechanisms. It will then shift focus to thermal conductivity experiments,

mechanical properties experiments, and methods for quantitative thermal conductivity testing.

2.1. Current theory on polymer chain structures

Research is being conducted to characterize the mechanisms of polymer orientation and

morphology. One important component of this research is an induced morphology known as

shish-kebab structure (Pornnimit and Ehrenstein, 1992). This paper will provide a summary of

the current state of the shish-kebab research because this research field is both extensive and

still in development.

It is well known that polymer chains, especially in high molecular weight polymers,

exhibit entanglements and non-oriented structures in their unstretched state. When a force,

often via a flow field, is used to stretch the polymer chains, they undergo a transition to the

shish-kebab morphology by way of mechanisms that are not entirely clear to this day. A recent

study theorized that the shish structure, which is shown in Figures 1 and 2 and appears as the

shaft part of the polymer chain, is created when nearby chains that are aligned with the flow

field stretch out and disentangle. These shish structures then act as nucleating sites for kebab

structures which are also shown in Figures 1 and 2 and appear as radial disks. It is not clear

exactly how kebab structures form, but some believe they form from coiled sections of the
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polymer chain. The Somani et al. (2005) study theorized that shish structures form between

polymer chains before kebab structures form. They based this theory on the fact that after

kebab structures were dissolved using nitric acid, scanning electron microscopy still showed

interconnected shish structures. (Somani et al., 2005)

Shish Structure

Kebab
Structures

Figure 1: Schematic drawing of shish-kebab microstructure in polyethylene. (Adapted from
Somani et al. (2005) originally from Processing of Polymers 18:189,1997)

i. I I11) 

ii I

Figure 2: Scanning electron microscopy images of shish-kebab structures. Kebab structures are
the lateral, disk-like structures connected by multiple shish structures. (Images from Somani et
al. (2005) originally from American Physical Society)
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This attempt at characterizing shish-kebab morphology could prove crucial for

understanding and designing methods for orienting UHMWPE chains with the ultimate goal of

improving directional thermal conductivity. In particular, some studies indicate that the

mechanisms required for polymer orientation and shish-kebab formation are dependent on

strain rate. Thus, according to these studies, researchers interested in the fabrication of

oriented polymers must control for the strain rate of the polymer chain in order to ensure

proper morphology (Somani et al., 2005). At the same time, one must note that much of the

research on shish-kebab formation is inconclusive (Somani et al., 2005) and will require

significant advancements before large-scale manufacturing practices should be based on these

characterizations.

2.2. UHMWPE thermal studies

Studies have been conducted to understand the factors that affect the thermal

conductivity of polyethylene. Different groups have taken different approaches and some of

the more notable studies are discussed in this section.

A study in 1995 explored the relationship between UHMWPE chain orientation and

thermal conductivity. The study, conducted by Nysten, Gonry, and Issi (1995), tested a large

span of draw ratios on PE films and measured their respective thermal conductivities. The

samples were drawn at 3930K and draw ratios2 ranged from 21 to 98. The data, shown in

Figure 3, indicated highly anisotropic thermal conductivity in the stretched polymers. For

example, a film with X = 40 tested at 80°K had an anisotropy factor of thermal conductivity of

26. The results varied with temperature and draw ratio, but generally showed similar

anisotropy in thermal conductivity. Furthermore, it was observed that the thermal conductivity

2 Draw ratio is defined as the final length of the sample after stretching divided by the initial length
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in the transverse direction only decreased slightly while the thermal conductivity in the

longitudinal direction increased dramatically. The authors note that the thermal conductivity

continues to improve for draw ratios greater than 20 because of an increase in the transverse

crystallite size and continued alignment of polymer chains in the amorphous phase. (Nysten et

al., 1995)

101

Thermal

conductivity 100

[W m'1 K'1

10-1

1,o-

1 10 100
Temperature K]

Figure 3: Results from Nysten experiments of sample with X = 40. Thermal conductivity is
shown as A for longitudinal direction, as A for the transverse direction, and as I for the
unstretched, "pristine" sample. (Adapted from Nysten et al., 1995)

The conclusions reached in the Nysten et al. study are consistent with the findings of a

previous study that are shown in Figure 4. In the Anandakumaran study, researchers found that

crystallinity increases rapidly as the polymer is stretched. As the draw ratio continues to

increase, the crystallinity increases slower and eventually reaches a maximum.

(Anandakumaran et al., 1988)
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Figure 4: Polyethylene crystallinity is shown for varying draw ratios. Measurements are made
from density and heat of fusion methods. Crystallinity increases as the polyethylene stretches
until it reaches a limit at a draw ratio of about 100. (Adapted from: Anandakumaran et al.,
1988)

While the results from the Nysten et al. study do indicate that stretch-induced polymer

orientation can improve thermal conductivity in the direction of stretching, the mechanisms for

polymer orientation are not completely clear, and the shish-kebab morphology is not analyzed.

Furthermore, the more recent theory of strain rate-induced orientation was not incorporated in

these experiments. (Nysten et al., 1995)

A separate study by Sun et al. shows a similar peak for the polymer orientation factor.

However, because the study focuses on a different stretching methodology known as dry-

spinning, the draw ratios of the Nysten study cannot be directly compared to the after-draw

ratios of the Sun et al. study. (Sun et al., 2005)

Studies have also shown that the thermal conductivity of polyethylene is dependent on

its molecular weight. Researchers began understanding this phenomenon as early as 1965

when a study (Hansen and Ho, 1965) documented that the thermal conductivity of UHMWPE
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increases linearly with the square root of the molecular weight until a point where the thermal

conductivity levels off. Another study (Kamal et al., 1983) indicated that the relationship

between thermal conductivity and molecular weight was also affected by temperature and they

proposed an empirical equation that related these terms. (Kamal et al., 1983)

The challenge of determining the optimal draw-down ratio for both thermal and

mechanical properties is further complicated by the findings of the aforementioned Sun et al.

(2005) study. The study reports that the optimal draw-down ratio might be correlated with the

degree of molecular entanglement in the polymer (Sun et al., 2005). If this is the case,

researchers and engineers interested in determining the appropriate draw-down ratio for a

given polymer would have to consider the degree of fiber entanglement in addition to

molecular weight and temperature.

Finally, a study by Minkova tested the effects of radiation on UHMWPE. The study

found that radiation does not affect the polymer crystallinity but instead increases the heat of

melting. (Minkova, 1988) This information could also be useful for researchers interested in

altering the thermal properties of UHMWPE.

2.3. Self-reinforcement

Due to substantial interest in UHMWPE for engineering applications, significant

research has been conducted to better understand the mechanical properties of the material in

addition to the thermal properties. To do so, models have been developed to understand and

predict the mechanical behavior of polyethylene. For example, a 1993 study focused on the

time-dependent deformation of a commercial polyethylene fiber produced with polymer chain

orientation. In this study, the fibers were modeled to have mechanical contributions from
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delayed elastic and plastic flow components in series, and the proposed model was shown to be

accurate to within 10% (Govaert et al., 1993). Similar studies have also been undertaken with

other parameters but an in-depth discussion of these models is beyond the scope of this

research.

Self-reinforcement research has also been applied to manufacturing techniques and is

described in the next section of this report.

2.4. Manufacturing and Fabrication

As mentioned above, researchers have investigated methods of improving the Young's

modulus of polyethylene by orienting the polymer fibers. Amongst others, two important

methods have been used to achieve polymer chain orientation via extrusion methods: melt

deformation and solid-phase deformation. Melt deformation refers to the process by which the

polymer is heated to a molten state and extruded to cause flow-induced orientation. This

orientation is maintained by cooling the PE under pressure. Previous studies have used this

method to achieve stretching ratios of up to X = 35 on fibers no greater than 25 mm in length

(Southern and Porter, 1970). The second method for inducing orientation is solid deformation,

in which the polyethylene is extruded while solid at elevated temperatures around 110°C

(Pornnimit and Ehrenstein, 1992). This method has been shown in a previous studies to

provide draw ratios of up to X= 16 (Imada et al., 1971). It should be noted that these draw

ratios cannot be directly compared to the higher draw ratios reported in the Nysten et al. study

because the Nysten et al. study used stretching methods instead of extrusion methods to induce

orientation.
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Studies have also been conducted to develop methods to induce and maintain

orientation during injection molding and achieve the desirable crystal structure known as shish-

kebab structure. While inducing orientation in the extruder is not complicated, maintaining

fiber orientation is difficult because it is difficult to control cooling conditions and flow

properties during injection molding processes. Nonetheless, methods have been created to

overcome these challenges. By increasing injection pressure, the crystallite melting

temperature is raised above the die temperature. If these parameters are used with a die that

has large flow gradients, the extruded polymer tends to show high fiber orientation. These

methods are shown to improve the Young's modulus from 1.4 kN/mm 2 to 17 kN/mm 2 and

improve the tensile strength from 27 N/mm2 to 160 N/mm2 . Furthermore, the Pornnimit and

Ehrenstein study indicates that polymers extruded with high molecular orientation show

improved dimensional stability at high temperatures and homogenous transparency.

(Pornnimit and Ehrenstein, 1992)

The Pornnimit and Ehrenstein method of injection molding high-orientation ultra-high

molecular weight polyethylene is only one way to attain these characteristics. Another method

for fabricating oriented PE fibers is called electrospinning. This method creates thin fibers by

exposing dilute polymer solutions to high-voltage electric fields. At the appropriate voltage

and distance parameters, the polymer solution will form a jet to the electrical ground, and thus

creates a fiber or group of fibers. These fibers have diameters that can range from micrometer

scale to hundreds of nanometers. (Hillersborg et al.) Figure 5 shows a sample set up for

electrospinning setup.
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Figure 5: Simplified setup of electrospinning process. A highly oriented polymer fiber is
created between the high voltage solution reservoir and the grounded plate.

Another method for producing oriented ultra-high molecular weight polyethylene fibers

is known as dry spinning and is used in industrial settings because it produces good fiber

quality at low cost. Figure 6 shows a typical dry spinning setup.

('8"I
I'O~

h ct i ir'[17O I L t'

T 1 5 C .ql '
'I 

8

©

[Il. l . IL

( 1 "C ')

Figure 6: Diagram of typical dry spinning process used for manufacturing highly oriented
UHMWPE fibers. (1) spinneret, (2) spinning line oven, (3) guide roller, (4) first roller machine,
(5) second roller machine, (6) draw box, (7) third roller machine, and (8) winder. (Source: Sun
et al.)
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A method called after-drawing is used when processing UHMWPE to disentangle the polymer

chains and control the fiber properties after it leaves the spinneret. Research has shown that

fibers can be created with optimum draw-down parameters to display the aforementioned

shish-kebab morphology, lower crystallinity, and higher melting temperature compared with a

free extrusion sample...." (Sun et al., 2005) These characteristics are certainly desirable for

many industrial applications and should thus be considered for oriented polymer

manufacturing.

Finally, it is worthwhile to mention that manufacturing technology does currently exist

for thermoforming polyethylene from solid sheets. For example, industry has developed

technology to thermoform high density polyethylene (HDPE) despite the material's technical

challenges including its high processing temperature, difficult mold design requirements, and

the sag that is induced in the sheet during heating. The additional costs of thermoforming

polyethylene are offset by its superior mechanical and thermal properties. (CPChem 2006) At

this point, there is no known industrial application of the stretching techniques proposed in the

experimental section of this report.

2.5. Low Thermal Conductivity Testing Methods

Although the experiment component of this study adopts a chiefly qualitative

determination of anisotropy, it is useful to also note that other experimental methods could be

employed if further quantitative research is desirable. The primary challenge when

quantitatively measuring thermal conductivity in low conductivity materials is accounting for

heat losses. In particular, there are three sources of thermal losses that present challenges for

such testing: 1) convection of sample and lead wires, 2) radiation of sample, and 3)

conductivity through metal lead wires. The first challenge is perhaps the easiest to overcome
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by testing the sample in vacuum conditions. Second, to overcome the losses associated with

the conductivity of lead wires and the radiation of the sample, experiments must be designed in

such a way that these heat losses are negligible. In cases where this is not possible, modulated

thermal inputs can be used to differentiate thermal conductivity from other thermal transfer

mechanisms. Apparatuses exist to perform such experiments and are discussed below.

One apparatus developed for measuring the thermal conductivity of thin fibers uses a

heater system to eliminate heat losses caused by lead wires. For each point at which a lead

wire contacts the sample, a heating guard is thermally grounded to the lead wire. This guard is

maintained at the same temperature as the sample at the point of measurement via a control

loop. By maintaining the lead wire and the sample at the same temperature, the conduction

through the wire approaches zero. Once this is accomplished, a separate thermocouple can be

used to measure the temperature difference between the heating guards. The temperature

difference between the heating guards is equal to the temperature difference between the

designated points on the sample. (Piraux et al., 1987) This method appears to be satisfactory

for minimizing conduction heat losses, but it is unclear how it addresses radiation heat losses.

Another measurement method was used in an automobile parts study in 2000 in which

researchers employed modulated differential scanning calorimetry (MDSC) to determine the

heat capacity and thermal conductivity of 43 polymeric parts (Abu-Isa, 2000). The study

found that MDSC provided quick results that were satisfactory when compared to literature

values. (Abu-Isa, 2000) The advantages of the MDSC are derived from its ability to use a

modulated thermal input to differentiate between the reversible and non-reversible

thermodynamic events. (Carpentier, 2002) An alternative method known as the Angstrom

method uses time-modulated thermal inputs to determine the thermal diffusivity of materials.
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(Lopez-Baeza et al., 1987) While different experiment design setups are required for different

types of Angstrom method experiments, it appears that the short sample, semi-infinite method

studied in Lopez-Baeza et al. (1987) could be utilized for thermal measurements on stretched

ultra-high molecular weight polyethylene. Regardless of the specific method chosen, special

attention should be paid to ensure that the measurement method does not unknowingly alter the

structure of the polymer, which would cause errors in the thermal data.

Other thermal conductivity measurement methods are available, especially for thin film

experiments, and could be further researched if the aforementioned methodologies are not

applicable to the specific experimental requirements.
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3. Experiment

Thus far, this report has focused on surveying past research efforts. In this section,

original experimental results are reported for a preliminary stretching method for UHMW-

polyethylene.

3.1. Purpose

The experiments conducted were designed to explore the feasibility of stretching pre-

fabricated sheets of ultra-high molecular weight polyethylene (UHMWPE) for the purpose of

improving its thermal conductivity in the direction of stretching. This method is a variation

from the research discussed earlier in this report, as most research has focused on orienting

polymer fibers rather than sheets. This study also considers the implications on the

manufacturability of stretched UHMWPE. While other polymers were considered for testing,

UHMWPE was chosen due to its widespread use in industry and its high polymer chain length

which facilitates stretching. If this type of experiment shows satisfactory results, it could be

used in the development of a process for stretching and forming UHMWPE in a manner similar

to conventional thermoforming.

3.2. Experimental set-up

Commercial sheets of UHMWPE were purchased from a commercial vendor3 at

varying thicknesses. Because of the low-friction and high strength qualities of UHMWPE, the

process of determining the optimal stretching method was difficult. To properly stretch the

material without reaching failure, the material was heated and placed under tensile load.

However, UHMWPE was observed to undergo a phase transition at approximately 140°C at

3 UHMW-Polyethylene sheets were purchased from McMaster-Carr Supply Co.
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which the material was observed to fail under tensile loads that would otherwise not cause

failure. At this temperature, the material also became transparent. For this reason, temperature

control became the most critical factor for developing an effective stretching method. Several

methods were attempted and are explained below, and ultimately a method using oil to create a

stable heating environment was used.

The first method considered for stretching the polyethylene was convection heating in

an oven. A strip of PE film was fastened to a stretching mechanism shown in Figure 7 and the

entire assembly was placed inside a convection oven. After the system had equilibrated, the

assembly was used to stretch the strip of PE. After each stretching, the oven and assembly was

allowed to equilibrate before the next stretch was conducted. This method had three major

shortcomings: first, it required opening the oven to stretch the material, and thus caused non-

uniformities in the convection of the oven. Second, it was very difficult to mount the

UHMWPE to the assembly because at these temperatures, the sample easily slipped from the

assembly. Third, stretching was conducted in discrete non-repeatable steps that would not

provide useful information regarding strain rates. Despite these factors, samples were

stretched to approximately 4 times the original length. After additional stretching, this method

caused the samples to break. For this reason, this method was not used.
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Figure 7: Diagram of original stretching device. This device was not used for samples reported
in these results.

The second method attempted to minimize the non-uniformities in the oven involved

utilizing local heating in the middle of the sample. This allowed for the mounting mechanisms

of the assembly to remain at room temperature for improved grip. It was also expected that

locally heating the sample would eliminate the unpredictable convection patterns experienced

when opening the door of the oven. Upon testing this method, it was noted that the PE heating

was still irregular and the polymer failed at undesirably low strain levels as a result of irregular

heating. Furthermore, this method made it difficult to accurately calculate total strain because

the amount of polymer being heated changed as it was stretched. For these reasons, this

method was not used in the final experimental setup.

The convection heating methods were then modified to use contact heating. Copper

plates were placed on both sides of the polymer and were heated with electrical heaters. The

stretching assembly was maintained outside of the heating process, and thus, the mounting

mechanism remained at room temperature and did not allow slipping. Initial experiments

22
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showed that the contact heating was also irregular. Samples failed due to the heating

irregularity as they had in the previous setups. In an effort to improve thermal contact, thermal

grease was used on the copper plates, but this was unsuccessful at providing repeatable,

controlled samples.

Finally, a method was developed to control the thermal environment of the

polyethylene using oil heating. A new stretching device was assembled to stretch the sample

around a shaft. This assembly was then submerged in a heated bath of corn oil. Thermal

insulation was placed between the sample and the metal components of the device to avoid

temperature irregularities. Furthermore, a thermocouple was used to test the temperature

variances throughout the oil bath, and they were observed to be no greater than 0.5°C. This

provided a significant improvement on previous methods and the improvements to the

mounting components of the assembly allowed for a safe, effective stretching process. Under

these well controlled heating conditions, the final samples were stretched around the central

axis.

Two devices were used for this final method of polymer stretching. The significant

difference between each setup is the axis of rotation, which is adjusted in the second setup to

allow for the mounting clips to be maintained outside of the oil bath. It is important to note

that the stretching was not uniform throughout the sample because the multiple points of

contact between the polymer and the device caused various frictional forces. For this reason,

the strain value for the polymer is reported as an approximate value.
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Once the sample was stretched, it was removed from the oil bath and allowed to cool in

ambient conditions. The portion of the sample with the highest observed strain was cut and

used for thermal experiments.

3.3. Thermal Conductivity Measurements

Measuring thermal conductivity in low-conductivity materials can be difficult because

of the complexities of controlling for convection and radiation losses as well as losses through

thermocouple probes. Because determining an exact value of the thermal conductivity was

beyond the scope of this research, the samples were tested using infrared microscopy to

determine the anisotropy of thermal conductivity in the polymer. A point source heater was

built using a short copper probe connected to an electric heater and a controller. The copper

probe was contacted to the sample from the underside of the PE strip, as shown in Figure 8:

I Stage Temperature I
I Control I

J _

Copper -

point contact

Figure 8: Diagram of Experimental Setup. Polymer was heated from below by computer
controlled stage and images were taken by infrared microscope. The blue line shown
intersecting the copper point contact represents the radiation insulation placed between the
heater and the sample.
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As shown in the diagram, a small piece of cardboard was used to insulate the sample from the

radiation and convection from the heating element.

The Infrascope II4 infrared microscope was set up using a x objective. Because the

experiment was focused on relative thermal properties and because the quantitative infrared

properties of the sample were not known, the radiance setting on the infrared microscope

interface was arbitrarily set to 1.00. This indicates that the absolute values of the temperatures

measured are not valid, but the relative values are. For this reason, temperature values are not

reported in the results section.

3.4. Results

The infrared experiment indicated that the stretched polymer did indeed show

anisotropic temperature profiles while the unstretched sample did not. Stretched samples

showed increased thermal conductivity in the direction of stretching. Figures 9 and 10 shows

sample images attained for data analysis.

4 The model number of the Infrascope 1I infrared microscope used was IRRIS-256LN. Microscope software was
Infrascope 11 Version 2.4a which is a copyrighted product of Quantum Focus Instruments.
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Figure 9: Infrared image of unstretched UHMWPE with point heater at 1000C applied at the
center of the image. Note that there is no significant anisotropy in the temperature profile.

Figure 10: Infrared image of stretched UHMWPE with point heater at 1000C applied at center
of image. Draw ratio is approximately X 10. Note the significant anisotropy in temperature
profile. The yellow-green interface is noted for its use in the data analysis.

26



The anisotropy value was determined by comparing the size of the yellow-green interface of

the infrared image. This interface was determined to be the clearest, most consistent method

for comparing different samples. For the sample of draw ratio 10, an anisotropy of thermal

conductivity was measured to be 1.4.

3.5. Discussion

The infrared images demonstrate the existence of anisotropic temperature profiles in the

stretched polymer. Several potential causes of uncertainty are considered and discussed in this

section. First, the use of an arbitrary radiance value should not raise concern because the

portion of the sample directly above the copper point probe was the only portion that had a

significantly different infrared radiance than the rest of the sample. Because conclusions were

not drawn from this portion of the sample, there is no reason to believe the arbitrary radiance

values are a cause for concern. Second, the proximity of the electrical heater to the sample is

shown not to affect the validity of the results. Figure 1 shows that the addition of insulation

between the heater and the sample was effective at mitigating this concern.

Figure 1 1: Infrared image of preliminary UHMWPE tests without insulation between heater
and sample (left) and with insulation (right). Note the irregular, asymmetrical heating pattern
caused by radiation and convection heating of the sample. This problem was solved with
insulation and the result is shown on the right.
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The third consideration for uncertainty in the results is the effect of radiation and convection

losses on the sample. Because the sample was not tested in a vacuum environment, it was

exposed to convection losses. Because the absolute temperature profile is not known for the

sample, it is not possible to make a precise calculation of these losses. For this reason, this

study can only conclude qualitatively that thermal conductivity anisotropy was induced.

Despite the qualitative nature of the results, it is clear that the magnitude of the

anisotropy is not as high as the anisotropy ratios that the Nysten et al. study reported for their

experiment. The Nysten study indicated that thermal conductivity could be improved by a

factor of 20 at a strain ratio of 40. (Nysten et al., 1995) Unfortunately, this study was unable to

attain strain ratios similar to those of Nysten, and thus the comparison is not ideal and the

results are of significantly different magnitude.

The differences between these results and the Nysten et al. study may be caused by a

variety of factors. First, the difference is believed to be affected by the much higher polymer

orientation of the Nysten et al. samples due to a higher draw ratio. Unfortunately, the

magnitude of this effect is not measurable because this study did not provide samples of similar

draw ratios. Second, the polymer stretching techniques for the studies were quite different.

While the Nysten et al. study reported solid-state drawing at 1200 C on hot shoes, samples used

in this study were drawn at temperatures ranging from 137°C to 1450 C. Attempts were made

to stretch the material at temperatures closer to the Nysten et al. values, but the polymer would

not deform at such temperatures. This leads to a third difference between the studies: polymer

composition. Because polymer chain size and degree of entanglement varies between different

UHMW-polyethylenes, it is possible that differences in the polymers used caused different

results. Fourth, as mentioned before, there was a significant amount of uncertainty in the strain
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measurements made in this experiment. While this would not explain all the differences in

results, it could be one of several factors that contributed to variations.
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4. Conclusions

The results of this experiment indicate that engineers could apply UHMWPE stretching

techniques in thermoforming processes to increase thermal conductivity in the direction of

stretching. For samples with draw-ratios of approximately 10, thermal conductivity in the

direction of stretching increased noticeably. The thermal conductivity in the direction

perpendicular to stretching was not observed to change. Furthermore, this study coupled with

previous studies indicates that in order to obtain higher thermal conductivity values,

researchers should develop improved stretching techniques. Further research could also be

conducted in understanding the formation of the desirable shish-kebab morphology in

UHMWPE. If these improvements are made, high thermal conductivity thermoforming could

be implemented for manufacturing.
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