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ABSTRACT 

As more legged robots have begun to be developed for their obvious advantages 

in overall maneuverability and mobility over rough terrain and difficult obstacles, 

their shortcomings over flat terrain have become more apparent. These robots plod 

along at extremely low speeds even when the ground is flat and level due to the fact 

that virtually all legged robots use a very stable, very slow walking gait to move, 

regardless of whether the ground is flat or rough. 

The simplest way of solving this problem is to use the same method as legged 

animals: simply change the gait fiom a walk to a faster more dynamic gait in order to 

increase the robot's speed. It would be extremely useful if legged robots were capable 

of moving across flat ground at high velocities while still retaining their ability to 

cross extremely rough or broken ground. Unfortunately, dynamic gaits are quite 

difficult to program by hand and only minimal research has been done on them. 

This thesis evaluates the use of two different types of learning algorithms (a 

genetic algorithm and a modified gradient-climbing reinforcement learning 

algorithm) as applied to the problem of developing dynamic gaits for a simulation of 

the Sony Aibo robot. The two algorithms are tested using a random starting 

population and a high-fitness starting population and the results from both tests are 

compared. 



The research focuses on three different types of dynamic gaits: the trot, the canter, 

and the gallop. The efficiencies of the learned gaits are compared to each other in 

order to try to determine the best type of high-speed gait for use on the Aibo robot. 

Problems with the design of the Aibo robot as related to performing dynamic gaits are 

also identified and solutions are proposed. 

Thesis Supervisor: Greg Andrews 

Title: Member of the Technical Staff 

Thesis Advisor: Brent Appleby 
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Chapter 1 Introduction 

The field of robotics has two main branches, industrial robotics and mobile 

robotics, but until relatively recently researchers focused primarily on industrial 

robotics. This was because the large robots used in industrial applications were 

relatively easy to design and program. They sat in fixed positions and performed the 

same tasks over and over again. This meant that they required no real intelligence or 

sensing ability, since their programmers knew everything about the robot's 

environment beforehand and therefore could program in the precise set of actions 

they wanted the robot to carry out. Mobile robots, on the other hand, have to operate 

in constantly changing and unpredictable environments. Thus, these kinds of robots 

needed sensors to learn about their surroundings and enough intelligence to process 

the data from these sensors and to determine the best course of action. The difficulty 

of achieving this, combined with the limited range of mobile robots due to power 

constraints kept these robots from being anything but university research projects for 

some time. 

However, in the last decade or so processors and power supplies have advanced to 

the point where mobile robots can now actually be used for practical purposes. 

Mobile robots are currently used for entertainment, search and rescue, scouting, 

inspection of hazardous environments, and many other purposes. The military in 

particular has come to see the massive potential of mobile robots in helping to gather 

information and limit casualties in future conflicts. 

The simplest mobile robots use wheels or tracks to move around because those 

locomotion systems are fast, efficient, and easy to control. Unfortunately, they cannot 

effectively traverse the more extreme terrain that is commonly found in the real 

world. On a battlefield in particular, a mobile robot is likely to have to deal with 

crossing large gaps, rubble, and rocky terrain. Thus, the military is turning more 

towards legged robots, which have the ability to handle almost any terrain because the 

robot can vary the height and placement of its feet to adapt to the topography of the 

ground. Legged robots can also use their legs to lift their bodies up, allowing them to 



climb over obstacles that would block a normal wheeled robot and they can go up 

slopes that wheeled robots could not simply by leaningtheir bodies forward and thus 

shifting their center of mass as the slope changes. 

This ability to adapt to changing conditions and overcome most obstacles ensures 

that the recent interest in legged robots will continue to grow as they become more 

sophisticated. The military is already hoping to use them for scouting missions where 

sending in a person would be too dangerous and for carrying supplies places ordinary 

vehicles could not reach. However, legged robots still possess a number of drawbacks 

and there is considerable room for improving them through future research. 

1.1 Problem Statement 

As more legged robots have begun to be developed for their obvious advantages 

in overall maneuverability and mobility over rough terrain and difficult obstacles, 

their shortcomings over flat terrain have become more apparent. Wheeled vehicles 

can cover flat terrain very efficiently and at a high rate of speed while legged 

platforms have been forced to plod along at nearly the same speeds they use to 

traverse rough terrain. This is primarily due to the fact that virtually all legged robots 

use a very stable, very slow walking gait to move, regardless of whether the ground is 

flat or rough [2,3,9, 10, 16,21,23,35,36,39,40,43,45,48,50,53,56,59]. 

Some attempts have been made to get around this problem by adding powered 

wheels or even skates to legged robots in order to allow them to travel across level 

ground much faster [22]. Unfortunately, the additional drive trains, wheels, and other 

parts necessitated by this approach add a considerable amount of weight and 

complexity to the robot making the robot more expensive to build and much more 

likely to break. 

A simpler way of solving this problem is to use the same method as legged 

animals: simply change the gait fiom a walk to a faster more dynamic gait in order to 

increase the robot's speed. Changing gaits allows an animal to move much faster and 



more efficiently than they can at a walk by decreasing the amount of legs on the 

ground at any given time. This allows faster movement because the animal's body 

can move forward more per step. In a walk, at least three feet are on the ground at all 

times and only one foot is moved at a time, thus it takes three individual steps for the 

animal's body to move forward one stride length. In a trot, two feet are on the ground 

at any given time, but the two feet move in concert, so it only takes one step to move 

the animal's body forward one stride length. In a gallop, there are times when no feet 

are on the ground, which allows the animal to greatly extend its effective stride length 

and move even faster than it can while trotting. 

The benefit of these more dynamic gaits is that they can greatly increase the 

forward movement of an animal without requiring a corresponding increase in the 

speed of the leg movements. For example, a gallop might be 5 times faster than a 

walk, but only require the animal to move its legs twice as fast as it would when 

walking. The drawback of these gaits is, of course, that they are far less stable than a 

walk. When walking, a four legged robot can be paused at any point in the gait and it 

will not fall over because it always has a stable tripod of three legs to stand on. Such 

is not the case with faster gaits such as trots and gallops. The only reason an animal 

can remain upright while performing these gaits is due to the inertia of its body. The 

slower the animal goes the less stable the gait becomes. This dynamic instability is 

why these dynamic gaits are only truly viable over smooth terrain. 

Nevertheless, a large proportion of the world does consist of smooth terrain, 

especially in and around cities and other places humans live, which is where most 

robots will be used. Therefore, it would be extremely usefbl if legged robots were 

capable of moving across flat ground at speed while still retaining their ability to 

cross extremely rough or broken ground. Currently, legged robots are not used nearly 

as much as wheeled ones in large part due to how extremely slow they are. The 

ability to utilize dynamic gaits to achieve speeds nearer to those of their wheeled 

counterparts would close this gap and make legged robots far more u s e l l  and 

versatile than they currently are. 



1.2 Objectives 

The objective of this thesis is to demonstrate that machine learning algorithms can 

be used to develop fast and efficient dynamic gaits for legged robots. Dynamic gaits 

show great potential for significantly expanding the capabilities of legged robots, but 

have proven extremely difficult to program properly due to their instability and the 

large number of parameters that define them. An individual gait might be made up of 

twenty or so parameters and can be very sensitive to any perturbations in those 

parameters. This makes finding a decent gait via either trial and error or systematic 

search methods almost impossible. Machine learning algorithms, however, are 

designed to solve this exact type of problem, where the search space is extremely 

large and possesses many local maxima. Thus these algorithms should prove more 

successful at developing dynamic gaits than the trial and error or mathematically 

driven attempts that many other researchers have used. 

This thesis will also compare the results achieved by two very different forms of 

learning algorithtlas to both each other and to manually developed gaits in an attempt 

to determine which approach is more suited to solving the problem. The two learning 

algorithms that were chosen were a genetic algorithm (GA) and a gradient-climbing 

reinforcement learning algorithm (GCRL). Genetic algorithms are good at exploring 

very large search spaces and zeroing in on the general area of overall maxima. 

Gradient-climbing reinforcement learning algorithms tweak a single base set of 

parameters to slowly improve it. They are good at finding the specific parameters of a 

maxima, but generally the maxima they find is a local one rather than a global one. 

Thus, the best gaits will most likely be generated by using the GA to hone in on a few 

promising parameter sets and then using the GCRL to refine them. 



1.3 Overview 

The outline of this thesis is as follows: Chapter 2 provides some background 

information on different types of gaits, defining what various gaits are called, when 

they are used, and what differentiates them from each other. It then details what kind 

of research has been done with gaits as applied to robotics and gives examples of 

several experiments that have been done to try and enable legged robots to move 

more quickly across smooth terrain. 

Chapter 3 describes the support programs that were written so that the machine 

learning algorithms could be applied to the problem of gait generation. The chapter 

first focuses on the simulator that was used to test out all the gaits in a controlled, 

though still randomized, environment. Then, it explains the gait program that was 

written to take in a set of parameters and output the commands necessary for the 

simulated robot to move. This section will also detail what all the gait parameters are 

and why each was chosen. 

Chapter 4 focuses on the genetic algorithm, detailing how it works, why it was 

chosen, and then presenting the results from the tests using it. There were two rounds 

of learning: in the first, gaits were generated using a random starting population, in 

the second, the best gaits from several runs of the first round of testing were used as 

the starting population. The chapter concludes with an analysis of the gaits that were 

found in the second phase of learning. 

Chapter 5 is laid out exactly like chapter 4, but focuses on the gradient-climbing 

reinforcement learning algorithm rather than the GA. Background on the algorithm is 

given, the results from the two rounds of learning are shown, and then the gaits from 

the second round of learning are analyzed. 

Chapter 6 compares the results from the two learning methods for both rounds of 

testing and analyses which is better and why. It also compares the different types of 

gaits that were generated to determine the overall best type of gait for high-speed 

running with the Aibo. The chapter concludes by detailing various lessons that were 

learned during the course of the research, identifies problems with the design of the 



Aibo with respect to dynamic running, and proposes some solutions to these 

problems. 

Chapter 7 summarizes the information presented in the thesis. This chapter also 

goes over future areas of research, such as possible improvements to the gait 

controller, testing the gaits on actual hardware, and incorporating sensor data into the 

learning algorithms so as to allow online learning by the robot. 



Chapter 2 Background 

2.1 Overview of Gaits 

There are several different ways to classify gaits, but the main categories used are 

symmetriclasymmetric and staticldynamic [20]. Symmetric gaits are those in which 

the phase difference in the footfalls of the legs on one side of the animal's body 

mirrors the phase difference of the legs on the other side of the body [66]. Examples 

of symmetric gaits include walking, trotting, and pacing, among others. Asymmetric 

gaits are gaits in which the phase differences between the legs on one side of the body 

do not mirror the phase differences between the legs on the other side of the body 

[ 1 91. Canters, gallops, and bounds are examples of asymmetric gaits. Symmetric gaits 

tend to be more stable than asymmetric gaits due to the mirroring of the legs on each 

side of the body which helps to counter pitching and rolling during the gait. 

Static gaits are gaits in which there is a stable triangle of legs on the ground 

throughout the entire gait and the center of mass remains within this triangle. An 

illustration of this is shown in Figure 2.1. These gaits are called static because the 

animal could be frozen at any point in the gait without falling over. The only truly 

static gaits are various types of walks. Dynamic gaits do not have a stable triangle of 

feet at all times and in fact the number of feet on the ground at any given time can 

vary from zero to four throughout the course of the gait. Examples of dynamic gaits 

are trots, canters, paces, and gallops. 



Figure 2.1: Stability Triangle for a Lizard I"' 

In general, asymmetrical dynamic gaits are the fastest and least stable, while 

symmetrical static gaits are the slowest and most stable. For the purposes of this 

research we will be focusing on dynamic gaits since attaining high rates of speed is 

the primary goal. The speed of a legged system is primarily determined by the 

amount of legs in the return phase at any given time [60]. The return phase is the 

portion of the leg's movement when it is going forward. The maximum speed of the 

legs during return is limited because the animal lets the legs swing forward like 

pendulums so that they do not have to input any energy into the legs during this 

phase. Therefore there is a lower limit on the stride frequency for any given gait. 

Increasing forward speed therefore requires increasing the stride length of a gait. 

Stride length is the amount of forward distance covered by the body during the course 

of one full leg cycle. 

Having more legs in the return phase means that fewer of the legs are moving 

backwards and propelling the animal. Thus the animal is getting more overall forward 

body movement per leg during each leg's propulsion phase, which means that as the 

number of legs in return increases, so does the stride length and the overall travel 

speed. For example, in a walk, the number of legs in return averages out to be around 

one; therefore three legs are being used to propel the animal forward one stride 

length. In a trot, diagonal pairs of legs move in sequence, so the number of legs in 

return varies from slightly less than two, for slow trots that have periods with all four 

legs on the ground, to slightly more than two for trots that have a brief flight phase. 

Because of this, trots tend to be significantly faster than walks. 

Flight phases during a gait have the effect of greatly increasing the stride length 

by increasing the average number of legs in return, since during the flight phase all 



four legs are in return. The longer the flight phase lasts, the greater the stride length 

increase and the greater the overall speed of the animal, even though the frequency of 

each leg cycle doesn't change much. As a matter of fact, stride frequency can change 

by as little as ten percent over a doubling of a quadruped's forward speed [17]. The 

faster a runner wants to move, the longer the flight phase has to be. This is why the 

fastest gallops actually contain two flight phases during the course of a single stride. 

Figure 2.2: Plot of Leg Phasing vs. Ground Time Fraction for Different Gaits IU1 

However, while the overall speed of an animal is linked to the average number of 

legs in return over a full step cycle, gaits are defined by the phasing differences 

between the animal's footfalls. This is why plodding trots can have fewer legs in 

return and be slower than quick walks and why racing trots, which have a long flight 



phase, can be faster than some gallops. Varying the ground contact time of the legs 

during the stride can vary the animal's forward speed by a significant amount. This 

can be seen in Figure 2.2, which plots different horse gaits based on the percentage of 

the time the hind legs are on the ground and the phase interval between the same side 

front and back legs. The three lobes of the graph correspond to three different gaits: 

paces, canters, and trots; but within those lobes the suspension time, and hence the 

overall speed of the horse, varies widely. 

So why do animal's change gaits at all? A trot could cover pretty much the entire 

velocity range of a quadruped without the necessity of shifting between gaits. The 

reason lies in energy consumption. As Figure 2.3 shows, different gaits are most 

efficient at different speeds, so while an animal could use a trot for everything, it 

would waste a tremendous amount of energy to do so. 

Select 

Speed (meters / second) 

Figure 2.3: Efficiency vs. Speed for Typical Horse Gaits 16' 

The transition between gaits occurs where the efficiency lines overlap. These 

transition speeds can actually be predicted fairly accurately for a wide variety of 

animals using a dimensionless quantity known as the Froude number [38]. The 

Froude number F is given by 



where v is the velocity of locomotion, g is gravitational acceleration, and I is a 

characteristic length, usually taken to be the length from the animal's hip to the 

ground while standing. The Froude number is a dimensionless speed that is derived 

from the movement of a mass through an arc. Dynamically similar behaviors have 

similar Froude numbers, which is why a horse transitions between a walk and a trot at 

nearly the same Froude number as a dog does 1121. At Froude numbers greater than 

one, the force required to make the animal pivot in an arc over a planted foot exceeds 

the force of gravity, thus requiring it to leave the ground and run [26]. Generally 

however, animals switch from a walk to a trot at a Froude number of 0.5 and begin 

galloping at a Froude number of 2.5 [6]. 

When moving, animals tend to start with a walk and transition to a trot, then a 

canter, and finally a gallop as they increase their speed. The focus of this paper is on 

developing and testing trotting, cantering, and galloping gaits for a quadruped robot, 

so these gaits are explained in more detail in the following sections. 

2.11 Trot 

Figure 2.4: Trotting Horse 

The trot is a symmetrical dynamic gait that is primarily used for medium speeds. 

When quadrupeds increase their speed from a walk, the trot is generally the first gait 

they employ. For the trot, diagonal pairs of legs move in concert, touching the ground 



and lifting off together. The phasing for each leg, normalized for stride period, can be 

seen in Figure 2.5. In this figure the left front leg is used as the zero leg, meaning that 

all the phases are calculated from the time that the left front foot hits the ground. For 

instance, if a trot had a stride period of one second then the left front foot and right 

hind foot would both land at time zero, while the right front and left hind foot would 

land 0.5 seconds later. If the stride period was 4 seconds then the right front and left 

hind feet would land 2 seconds after the left front and right hind feet. This method of 

normalizing the leg phasing for stride period is used for all subsequent leg phasing 

figures as well. 

Trot 

Figure 2.5: Leg Phasing for a Trot 

In the traditional trot, each leg stays on the ground half the time and is in the air 

half the time, however the ground contact percentage can vary from much greater 

than 50% in plodding trots to significantly less than 50% in racing trots. The trot is 

more stable than most of the other dynamic gaits since it has two legs grounded at the 

same time and the line of support between the grounded legs passes diagonally under 

the animal's body [MI. The trot is actually the fastest gait for some reptiles and 

amphibians because their short stance height in comparison to their body length and 

the fact that their spines bend side to side more easily than up and down prevent them 

from effectively employing faster gaits such as canters and gallops [63]. 



Canter 

Figure 2.6: Horse in a Slow Left Canter 

The canter is an intermediate gait used between a trot and a gallop. It is one of the 

smoothest of all the gaits and is used to cover moderately long distances efficiently at 

relatively high speeds. Canters contain elements of both the trot and the gallop, as one 

would expect from a transition gait. One diagonal pair of legs operates together, like 

the trot, while the other two legs operate separately, like a gallop. In the canter, the 

diagonal pair of legs is grounded first. Following the diagonal leg's support phase the 

individually moving front foot touches down and there may be a period of flight after 

this foot is lifted up. Then the individually moving hind foot touches down and there 

is generally no period of flight before the diagonal pair of legs is grounded again. A 

slow canter with no flight period is shown in Figure 2.6. This is a very stable gait 

because there are periods where three legs are on the ground creating a support 

triangle, as in a walk, and periods where two diagonal legs are on the ground creating 

a support line under the body, as in a trot. However, there are also phases with only 

one or zero legs on the ground, which makes this a fast gait due to the high average 

number of legs in return. 



Left Canter 

Figure 2.7: Leg Phasing for a Left Canter 

There are two main forms of the canter: the left canter and the right canter. The 

difference between the two is merely which diagonal pair of legs operates in tandem 

and different animals prefer to use the right or left canters much in the same way that 

people are left or right handed. The leg phasing for a left canter is shown in Figure 

2.7. There are also other forms of the canter, such as the cross canter, but they are not 

very widely used and are not considered "true" canters because their leg phasing is 

different the traditional canter. 

2.1.3 Gallop 

Figure 2.8: Cheetah in a Rotary Gallop 

The gallop is a high speed gait that is commonly used by almost all biological 

quadrupeds, from dogs to horses. It is characterized by the two front feet hitting the 

ground sequentially followed by the two back feet, which also strike the ground 



sequentially. There can be one or two flight phases during the gallop depending on 

the speed with which the animal is moving. The first flight phase, which is always 

present, occurs after the front legs lift off the ground and before the hind legs have 

touched down. This flight phase is called "gathered" because all of the legs are tucked 

beneath the body. The second flight phase occurs at high speeds and is generally 

shorter than the gathered phase. It occurs after the rear legs have lifted off and is 

known as "extended because all the legs are stretched out forwards and backwards 

during this phase [15]. 

Rotary Gallop Transverse Gallop 

Figure 2.9: Leg Phasing for Rotary and Transverse Gallops 

LF RF 

LH RII 

There are two main types of the gallop: the transverse gallop and the rotary 

gallop. In the transverse gallop, the legs on the same side of the body are the first to 

touch down when both the front and rear pairs of legs hit the ground. In this gallop 

the body undergoes two rolls per stride due to the fact that both the fore and the rear 

legs cause a roll to the same side when they land. In the rotary gallop, the opposite 

foot strikes the ground first in the front and hind legs pairs, i.e., if the left leg hits the 

ground first when the front legs touch down, the right leg will hit the ground first 

when the rear legs touch down. This means that the body only undergoes one roll per 

stride since the first pair of legs causes a roll to one side and the next pair corrects the 

roll. 

The two gallops seem to be preferred fairly equally among animals, but there is 

some research that indicates the transverse gallop might be favored more by animals 

with a stiff spine while the rotary gallop is favored more by animals with a flexible 
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spine. The rotary gallop also appears to allow for two flight phases to be achieved 

more easily than the transverse gallop, while the transverse gallop appears to be more 

stable overall [55]. This means that the rotary gallop is better for achieving high top 

speeds, while the transverse gallop is better for stable running at lower speeds. The 

transverse gallop is also less likely to cause leg interference than the rotary gallop 

since the phase difference between the front and the rear legs is greater [18]. 

2.2 Current Research on Gaits on Robotics 

2.2.1 Gait Research on Aibos 

There has actually been a fairly significant amount of research done on trying to 

make Aibo robots move faster than their standard walk speed. This research has 

primarily been driven by the RoboCup robotic soccer tournament in which teams of 

various types of robots play a soccer game against each other. One of the divisions in 

the competition is an all Aibo division and since all the robots being used are the 

same, the competitors can only beat each other by having better control software than 

their opponents. Obviously teaching one's Aibos to run faster than everyone else's 

would give you a sizable advantage in a game where getting to the ball first is an 

important factor in winning. 

In the beginning, most speed improvements to the Aibos were made by creating a 

set of parameters to define a gait and then hand-tuning them in order to achieve the 

best possible speed. As time went on however, researchers discovered that by using 

their hand-tuned gaits as a base parameter set and then applying a learning algorithm 

of some sort they could develop much faster gaits than were previously possible. 

One of the first attempts to use an evolutionary algorithm to learn a gait for an 

Aibo was performed by Hornby et al. [24] while helping Sony to try to develop a 

trotting gait for use in the first consumer version of the Aibo in 1999. They used a 



steady-state evolutionary algorithm in their trials and were moderately successful. A 

steady-state evolutionary algorithm works by choosing one of two operators, 

mutation or combination, and applying them on the current set of gaits to obtain the 

new generation. If mutation is chosen, the algorithm randomly chooses two 

individuals from the set of gaits, mutates the values of the one with the highest score, 

and replaces the lower scoring gait with the new mutated gait. If combination is 

chosen, the algorithm randomly picks three individuals, combines pieces from the 

two with the top score, and replaces the lowest scoring individual with the new gait. 

This type of evolutionary algorithm keeps a large number of individuals from the 

previous generation every time it creates a new generation, so it doesn't evolve as fast 

as some other learning algorithms do. Nevertheless, the researchers were able to 

develop a pacing gait that moved at 17 crn/s, which was much better than any 

previous gait that Sony had been able to develop via hand-tuning. A pace is a gait in 

which the legs on each side of the body move in concert with each other and the left 

pair of legs has a phase offset of 0.5 from the right pair of legs. 

The main benefit to come out of this research however, was the evaluation 

program that was used to test parameter sets and give fitness scores. The program the 

researchers developed was almost fully autonomous, thus greatly decreasing the 

amount of time needed to run a series of trials. For each parameter set, the robot 

would use its onboard camera to face itself towards a colored strip placed on the 

opposite wall. It would then load the gait to be tested, travel for an allotted period of 

time, and see how far it got. Distance traveled was calculated using the robot's 

onboard distance sensor, which measured the distance to the far wall at the beginning 

and end of the trial to get the distance covered by the gait. The robot then used its 

head camera to determine what angle it was at in relation to the color strip once the 

trial finished and from that calculated how straightly it had traveled. The speed and 

straightness values were then multiplied to come up with a fitness score for the gait. 

Finally, the robot turned around to find the colored strip on the wall in the direction it 

had just come from, centered itself on it, and evaluated the next individual. Versions 

of this evaluation program were used for most subsequent machine learning gait 

research using Aibo robots. 
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Figure 2.10: Aibo Learning Setup IU1 

The next major attempt at improving an Aibo's speed was made by the University 

of South Wales in preparation for the 2003 RoboCup [28]. In this experiment, the leg 

phasing was fixed and only the leg path was modified. The leg path started out as a 

simple rectangle and there were twelve parameters that allowed the algorithm to 

move each of the four comers of the rectangle in three dimensions to create a new leg 

path. The path for the front legs and the rear legs could be modified separately, which 

resulted in a total of 24 parameters for the algorithm to optimize. The algorithm they 

chose to use was Powel's (direction set) method for multidimensional minimization 

[52]. This method minimizes along each direction in a multidimensional space and 

notes the effectiveness of each direction. It then uses that information to derive new 

directions in order to minimize the function as fast as possible. 
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Figure 2.2.11: Evolved Leg paths for the Aibo 

This team developed a gait that moved at 27 c d s ,  a moderate improvement over 

the speed of the previous best hand-tuned gait at 25 c d s  and a significant 

improvement over the speed of the previous best learned gait at 17 c d s .  The UNSW 

learned gait was also much more stable than any of the previous hand-tuned gaits. 

The leg trajectories that were developed by the algorithm can be seen in Figure 2.10. 

After seeing the success of the UNSW team, other teams began using learning 

methods to try and optimize their gaits as well. The University of Texas at Austin 

decided to use a more constrained half-elliptical foot path for their gait, which 

consisted of the foot stepping forward in a smooth arch and moving backwards in a 

straight line. This decreased the overall search space for their problem and allowed 

them to add in parameters that controlled overall stride time and fraction of time on 

the ground without significantly increasing the convergence time for their algorithm. 

The algorithm that the UT Austin team chose to use was gradient-climbing 

reinforcement learning. This algorithm takes a base parameter set and creates 

variations on it by randomly adding or subtracting a set amount to each parameter. It 

then evaluates each of the new parameter sets and based on that information adjusts 

the base parameter set to move it along the perceived steepest upward gradient of the 



multidimensional search space. Using this method, UT Austin was able to find a 

stable gait with a speed of 29.1 cm/s [30]. 

Camegie Mellon University also decided to see if it could use machine learning to 

improve the speed of its Aibos for the RoboCup competition [7]. However, rather 

than specify their control parameters in terms of the leg trajectories, they decided to 

focus on controlling the trajectory of the robot's body. They did this by simply 

specifying the place that each foot would be set down and then saying that once the 

foot was on the ground it had to pass through its "neutral position" at a certain time 

that was calculated to maintain the current trajectory of the body. The set down 

coordinates, neutral position coordinates, foot velocities, stride times, and leg 

phasing, were all part of the parameters that could be set. The CMU team decided to 

use a type of genetic algorithm to learn the parameters for the fastest gait. Their 

genetic algorithm worked somewhat like the evolutionary algorithm used by Homby 

et al. in the first attempt at applying learning to the problem of developing gaits for 

the Aibo [24]. It started with a set of individual gaits and then applied one of two 

operators to them: mutation or crossover. Mutation took a single individual and 

modified it to create a new individual, while crossover took two individuals, split 

them along a random point and crossed the pieces to create two new individuals. 

These operations were performed until an entirely new generation was made, but the 

previous generation was still kept as well. The gaits from the new generation were 

then evaluated and both the new generation and the old one were combined into one 

large list. The worst M individuals from the list were removed in order to return the 

list to the specified generation size and the process was then repeated. Another feature 

of the CMU algorithm was "radiation". Whenever too many individuals were 

clustered in a tight region, radiation was applied that greatly increased the mutation 

and crossover rates, spreading the individuals out and widening the search area. 

Radiation was used in the first phase of the algorithm to make sure the search covered 

a wide range of possible gaits, and then was turned off for the second phase so that 

the algorithm could focus on improving the best gait it had found during its search in 

phase one. Using this method, the CMU team was able to find a gait with a speed of 

29.6 cmls. 



The gaits found by the CMU and UT Austin teams were impressive in 

comparison to the previous speeds that the Aibo was capable of, but were decidedly 

lackluster in comparison to those achieved by biological quadrupeds. Using the 

Froude numbers of 0.5 for a trot and 2.5 for a gallop and with a leg length of 14 cm, 

theoretically the Aibo should be starting to trot at speeds of 82.9 cm/s and begin 

galloping at speeds of 185.3 c d s .  Most of the reason that the best Aibo speeds are so 

low has to do with the design of the Aibo itself; the lack of springs on the legs to 

absorb impacts, the slow movement and low torque of the motors, the inflexible 

spine, and the design of the legs prevent it from running full out as an actual animal 

would. However, a large part of the reason for the slow speeds also stems from the 

constraints that were placed on the learning algorithms by the researchers. These 

constraints were added because the researchers emphasized stability over speed and 

because they were doing their learning on actual Aibo robots rather than in simulation 

and didn't want to break them. In addition, the RoboCup researchers wanted the Aibo 

to remain in a crouched position on its front legs while moving since this position 

allows the Aibo to more easily catch the ball. Unfortunately, it also greatly decreases 

the stride length and freedom of movement for the fiont legs resulting in a large 

decrease in the speed that the Aibo can achieve. 

2.2.2 Galloping Robots 

One of the few robots actually capable of bounding and galloping is the Scout I1 

robot. It uses an extremely simple design with two degrees of freedom per leg: an 

actuated pivot at the shoulder and a passive linear spring damper in line with the leg. 

In addition, its controller is only set to read whether the foot is in the air or on the 

ground. Yet using simple open loop control systems, researchers have been able to 

get the robot to bound and even implemented a rotary gallop achieving speeds as high 

as 1.3 mls [5  11. When the foot is in the air, the controller moves the leg to a specified 

touchdown angle and holds it there until the foot hits the ground. Once the foot is on 



the ground, the controller moves the foot backward at maximum torque until it passes 

a specified take off angle. The controller does not try to stop the leg at this takeoff 

angle, it just stops applying torque and lets the leg coast backwards until the sensors 

tell it that the foot is no longer on the ground, at which point the controller moves the 

leg back to the touchdown angle. The coasting phase during the backward sweep of 

the leg is important because if the controller tried to stop the leg at the predetermined 

takeoff angle it would slow the leg down as it approached the angle, thus causing the 

leg to either slow the robot's forward motion or making the foot drag along the 

ground, both of which could lead to instability. 

I 
Figure 2.12: Scout I1 Robot 15'' 

The Scout I1 is a physical implementation of the Spring Loaded Inverted 

Pendulum (SLIP) model for legs in a dynamic gait. Seyfarth et al. [57], and 

Chigliazza et al. [8], have found that for some leg touchdown angles SLIPS become 

self-stabilized provided that leg spring stiffness is properly adjusted and a minimum 

running speed is exceeded. In this case, stabilized means that if the robot's running 

speed is increased or decreased due to an outside force or small ground variation it 

will return to the set speed automatically without any intervention from the controller. 

The higher the running speed, the less sensitive the system becomes to perturbations. 

Unfortunately, as of yet, the precise reason for this self-stabilizing behavior is not 

well understood. 
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Figure 2.13: SLIP Leg Model 

Other work has been done on galloping robots using two-dimensional simulations 

[44, 3 1, 33, 381. One of the most interesting of these studies was done by Krasny and 

Orin [34]. It is one of the only experiments to use both an asymmetric mass 

distribution and articulated legs in its robotic model as well as using an evolutionary 

algorithm to help develop the gait controller. The robot model had perfect actuators at 

the shoulder and elbow of each leg and the elbow joint had a torsional spring 

connecting the actuator to the joint so that the leg could bend and absorb the impact 

energy when the foot touched down. The controller for this simulator worked much 

like the previously discussed gallop controller [5 11. While in flight, the leg would be 

moved to a specified touchdown angle and when on the ground the shoulder actuator 

would push the leg backwards at a constant set torque until the leg left the ground. 

When the foot passed beneath the shoulder the elbow actuator would move a 

specified amount to add back the energy to the spring that was dissipated due to 

impact losses with the ground. One of the more unique features of the controller was 

that the leg actually started moving backwards from the set touchdown angle when 

the foot was still 5 cm off the ground. This was done so that the leg would be 

traveling backwards when it struck the ground, thus helping to minimize speed losses 

due to inadvertent breaking by the impact of the legs. 

Using this simulation, Krasny and Orin were able to implement bounding, 

cantering, and galloping on their robot model. Most impressively, the speeds achieved 

and energy per distance traveled curves closely resembled what one would expect 

from biological quadrupeds of similar size. The results are tempered by the fact that 



the simulation was two-dimensional, the actuators and sensor data were perfect, and 

the simulation was initiated with the robot already moving forward in mid-flight 

rather than having it start from a standing position. Nevertheless, this was one of the 

few experiments to achieve results that mirrored those seen in real animals. 

Figure 2.14: Krasny and Orin's Simulated Gallop 



Chapter 3 Algorithms 

3.1 Simulator 

For this research it was decided to use an Aibo ERS-7 robot. The Aibo was 

chosen because it is one of the most advanced legged robots commercially available 

and there has been a considerable amount of previous gait research done on it. In 

addition, most experiments on dynamic gaits have relied on simulations with perfect 

sensors and other unrealistic assumptions that I wanted to avoid by using a much 

more realistic model of a currently existing robot. It was decided to use a simulator 

rather than the actual Aibo robot for this thesis because a simulator allowed for much 

more controllable conditions than would be possible with real world testing and, more 

importantly, enabled the learning algorithms to try a wide range of gaits without fear 

of breaking the robot. 

Yobotics Simulation Construction Set was the program that was chosen to create 

the simulation because it both extremely easy to use and very flexible in terms of how 

the controller interfaces with the simulator. Yobotics is a fully three-dimensional 

simulation that automatically calculates the equations of motion and force interactions 

for any object you create in the simulation. Thus, it allows the researcher to focus on 

the design of the robot and its controller rather than wasting time concentrating on 

physics and transformation matrices. The program can quickly and accurately 

simulate rigid body physics and allows the user to define ground contour and contact 

models as well as add any obstacles that they desire, such as ramps, gaps, and poles. 

It also allows access to all joint positions, velocities, and torques and can plot real- 

time graphs of any variable. Yobotics generates 3D grapbics of ones simulation as it 

runs and gives the user texture mapping and camera controls. The simulations can be 

stopped, recorded, or rewound at any time and the parameters of the simulation can 

be modified while the simulation is running. The simulations can also be expanded 

using the Java-based Application Programmers Interface (API). 



To create a model in Yobotics, one merely enters the masses and inertias of the 

various links that make up the robot and then specifies where the links connect and 

what kind of joint is at the connection. Each degree of freedom in a joint 

automatically has an actuator associated with it and these actuators can either be 

controlled and used as simulated servos or left as uncontrolled free-swinging joints. 

Ground contact points that will interact with the chosen ground contact model can be 

added anywhere on the robot as needed. 

The measurements of the links and the sweep ranges of the joints for the 

simulated Aibo were obtained fiom the Sony manual on model information for the 

ERS-7 [6 11. The masses and inertias of the links were estimated fiom measurements 

done on actual Aibo robots, but were somewhat limited in accuracy due to the fact 

that the Aibo could not be taken apart and the pieces weighed separately. The torque 

limits for the motors were also estimated at 0.7 Nm. One ground contact point was 

placed on each foot to simulate the fact that the Aibo stands on spheres rather than 

using flat rectangular feet. 

Table 3.1: Simulation Masses and Inertias 

Link 
Body 

Hip 
Upper Leg 
Lower Leg 
Neck 
Head 
Foot 

Masses (kg) 
1 

0.0085 
0.04165 
0.041 65 
0.0272 
0.1 088 
0.0085 

I, (kg m? 
0.00333 

1.25E-06 
3.08E-05 
2.35E-05 
1.88E-06 
9.02E-05 
5.00E-07 

Iw (kg mz) 
0.001 58 

1.25E-06 
3.08E-05 
2.35E-05 
1.88E-06 
5.06E-05 
5.00E-07 

h (kg mq 
0.00333 

1.25E-06 
9.00E-06 
1.10E-05 
1.88E-06 
9.02E-05 
5.00E-07 
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Figure 3.1: Aibo Robot Specifications 1611 

The simulation is set up so that the user can set the number of individuals tested 

per generation and the total number of generations for the learning program to run. 

The user can also set the length of time for each run; in the case of this research it was 

set to twelve seconds. Once the time limit for the run is reached or if the robot falls 

over prior to the time expiring, the program resets and tests the next individual. 



Figure 3.2: Yobotics Simulation 

3.2 Gait Program 

The gait program takes the 17 parameters shown in Table 3.2 and turns them into 

a working gait. These parameters set the variables for the basic pieces that make up a 

gait: the foot path, the leg phasing, the stride time, and the fiaction of time spent in 

each portion of the foot path. 



Table 3.2: Gait Parameters 

Choosing how the foot path is set up is a fairly important factor in determining 

how successful the gaits your program can generate will be. Various teams have used 

various types of foot paths from trapezoids [28] to semi-ellipses [30]. I choose to use 

a foot path that was a modification of a semi-ellipse. A normal semi-ellipse foot path 

uses an inverted parabolic trajectory when moving the foot forward and then uses a 

linear trajectory to move the foot straight backwards. The modified foot path used in 

this research is shown in Figure 3.3. 
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Figure 3.3: Foot Path 

As can be seen fiom Figure 3.3, the modified semi-elliptical foot path has three 

sections rather than two. The first part of the path is the "step" section, which is an 

inverted parabolic trajectory, this is followed by the "early retraction" section, where 

the foot moves back and down along a linear trajectory, and last is the "thrust'' 

section, where the leg moves straight back along a linear trajectory. 

The path is traced out using two control primitives written for the Aibo by Greg 

Andrews called LegLinear and LegQuadratic. LegLinear moves the foot fiom its 

current position along a linear trajectory to the specified final position at a constant 

speed. The parameters for this primitive are the x, y, and z coordinates of the 

commanded position relative to the hip of the leg being moved, the speed of the foot, 

and a force threshold that wasn't used in this application. LegQuadratic moves the 

foot in an inverted parabolic trajectory. The parameters for this primitive are the 

coordinates of the final commanded position relative to the hip, the lift height of the 

foot at its highest point relative to the starting position of the foot, the speed of the 

foot, and a force threshold that wasn't used. The set foot speed for LegQuadratic is 

based off of the linear distance between the initial and final positions of the foot, not 

on the distance of the parabolic path that the foot actually travels. For instance, if the 

foot was commanded to step forward four centimeters with a speed of four 



centimeters per second, it would always take one second to complete the movement 

regardless of the specified lift height. The only restriction on LegQuadratic is that the 

lift height must be higher than the height of the final commanded position of the foot. 

The semi-elliptical foot path was modified to include an early retraction stage for 

two main reasons: to decrease impact losses and to increase stability. Biological 

quadrupeds commonly begin moving their legs back and down before they actually 

touch the ground when they are running. This is done so that their feet are moving 

backwards at the desired running speed prior to touching down, which helps 

minimize energy losses from the impact and makes the gait more efficient. Early 

retraction has also been included in some of the more successful robotic gallop 

studies [34, 321. This stage also helps increase the stability of the gaits in the 

simulation. Without an early retraction stage, the end of the step stage made the foot 

come straight down onto the ground which ended up occasionally causing the leg to 

punch the ground, throwing the body up slightly so that the foot was in the air for a 

good proportion of the thrust phase. This led to wobbling and yawing that would 

increase until the robot fell over. With the early retraction stage however, the foot is 

always moving down and back at an angle when it hits the ground rather than straight 

down or down and forward as it would be if the foot struck the ground during the step 

stage. This decreases the tendency for the robot to push itself into the air when its foot 

touches down and makes the all the gaits more stable. 

The stride period and ground fraction variables are used to calculate the velocities 

of the primitives for each stage of the foot path. Stride period is the total amount of 

time, in seconds, it takes for the foot to traverse the entire foot path and ground 

fraction is the fraction of the stride period that the foot is not in the step stage. So, if 

the stride period was one second and the ground fraction was 0.6, the step stage 

would last for 0.4 seconds and the total time for both the early retraction and the 

thrust stages would be 0.6 seconds. This means that the ground fraction variable is not 

the actual fraction of time the foot is on the ground since the foot touches down part 

way through the early retraction stage. The true fraction of the stride period that the 

foot is on the ground is therefore always somewhat less than the ground faction 

variable. 



When the simulation is initialized, the robot starts out in a semi-crouched position 

as is shown in Figure 3.2. After one second has passed so that the robot and its 

actuators can settle properly, the gait program starts, and the robot begins moving. 

The left front leg is the leg that all of the other leg phase shifts are keyed off of, so its 

phase is always zero and it always begins each run by stepping forward. The other 

legs begin by moving backwards and then lift off and step forward at the 

appropriately calculated time so that when they begin the early retraction stage they 

have the correct phasing with respect to the left fiont leg. The set phase differences 

are maintained by varying the velocity of the legs during the step stage to correct for 

any errors that have occurred. This ensures that the legs remain phase locked 

throughout the run. 

To make the simulation more realistic, the controller was run with an update rate 

of 32 ms, which was the actual update rate of the controller on the real Aibo. This 

update rate greatly complicated the implementation of the controller since the fastest 

gaits generally had stride periods of 0.2 seconds, which meant that the controller was 

only updating one to three times per stage as the robot's legs traveled along the 

commanded foot path. This introduced errors into the gait, which is the reason that 

the velocities of the legs had to be adjusted during the step stage to maintain the 

proper phasing. It also meant that a gait wouldn't run perfectly every time; slight 

variations in the point during the stride at which the updates occurred combined with 

the natural oscillations of the robot's body as it ran could cause a leg to hit the ground 

at different times than it should have and could result in it falling over. The 

randomness in the simulation, which appeared to be caused by a combination of the 

slow update rate and the interaction of the robot with the ground contact model as it 

ran, meant that no two runs were ever exactly the same. These variations in the runs 

had to be taken into consideration when designing the learning programs used in my 

research. 



Chapter 4 Genetic Algorithm 

4.1 Overview 

Genetic Algorithms (GA) are a powerful yet simple optimization method that can 

perform well in high-dimensional, non-linear, and largely unknown parameter search 

spaces. They are a direct search method that uses principles based upon the 

Darwinian evolution of DNA, such as selection, crossover, and mutation, to modify 

individual parameter sets in order to maximize their fitness with respect to some 

evaluation function over the course of several generations [4]. 

In the field of robotics, evolutionary algorithms, of which genetic algorithms are a 

subset, have become a popular tool for developing complex behaviors that would be 

difficult to program manually. However, much of this research has focused on 

developing controllers such as neural networks for statically-stable wheeled robots 

that can adapt to changing environments [ l l ,  47, 651. Another area of interest has 

been artificial life, where evolutionary methods are used to develop complex 

interactive behaviors for multiple virtual or robotic agents in an artificial environment 

in order to provide insight into the behavior of biological systems [62]. 

There has been only limited interest in using genetic algorithms to develop 

dynamically stable gaits for legged robots even though they seem well suited to the 

task. This might, in part, be due to the fact that there is a significant bootstrapping 

problem with dynamic legged systems, where only a small fraction of the possible 

parameter sets lead to actual stable gaits. In most evolutionary learning algorithm 

studies the researchers start off with a gait or system that is guaranteed to be stable 

and then search within that stable space for new and interesting solutions to their 

problem. With dynamic legged systems however, a large portion of the time and 

effort involved is used just trying to locate an area within the parameter space that is 

somewhat stable. The difficulty of this problem may have encouraged most 



researchers to focus on developing statically stable gaits instead, though there have 

been a few that have attempted to tackle the problem [5 1,34,32]. 

4.2 Implementation 

The genetic algorithm starts off with a population of N parameter sets that make 

up the first generation. In the case of this research, N was chosen to be 35 in order to 

provide an appropriate amount of diversity within each generation so as to improve 

the quality of the results. The initial generation can either be entirely random or 

consist of user loaded parameter sets. If the user provides an array of parameter sets 

that is smaller than the chosen population size, the algorithm fills in the extra slots by 

breeding together the provided parameter sets until the population is full. All of the 

parameter sets that are added, whether they are randomly generated or bred fiom user 

provided parameter sets, are run through a program to test them for feasibility before 

they are added to the population. This program just checks to make sure that all the 

points on the foot path fall within areas that the foot can actually reach, none of the 

sections of the path require extraordinarily fast or slow speeds, and that the step 

height is higher than the early retraction stage starting height as well as at least 5 cm 

below the shoulder height. It also checks to make sure that during the thrust stage the 

front feet go back to at least the point directly below the shoulders and that the rear 

feet go back to a point at least one centimeter behind the hips. This condition was 

found to greatly increase the proportion of stable gaits discovered by the algorithm. 

Once the population has been created, the simulator tests each individual and 

records its fitness score. The fitness score was calculated by taking position checks 

every tenth of a second, adding up the total distance traveled in centimeters, and 

subtracting out a minor directionality penalty if necessary. The robot started out 

facing the positive y-direction, but if the robot got turned around so that it was 

traveling in the negative y-direction, the linear distance it traveled in the negative y- 

direction was subtracted from the fitness score as shown in Equations 4.1 and 4.2. 



The reason that the total distance traveled was used as the fitness measure was 

because maximizing it maximizes both speed and stability as well. If pure speed were 

used as the fitness function, the program would probably just learn to leap forward at 

maximum torque and crash on its face since that would achieve the highest speed, 

therefore some measure of stability needed to be included in the fitness function as 

well. The faster a gait is, the more distance it will cover in a given amount of time and 

the more stable the gait is, the longer it will stay upright and consequently the more 

distance it will cover during the run. A very slow stable gait will get a low fitness 

score using this system, but so will a very fast unstable gait. 

The direction penalty was put in to encourage straighter gaits. The reason that it is 

such a weak penalty is that for many gaits the Aibo bounced around a lot at the 

beginning when it started moving and ended up facing in a different direction by the 

time the gait settled into stability. If gaits were punished because the robot started out 

facing the wrong direction due to bouncing at the beginning, it would greatly retard 

the learning process since many good gaits would be unnecessarily punished. In 

addition, many good gaits had a slight yaw to them so that the robot ended up running 

in a large circle. This behavior needed to be punished somewhat, but not to the point 

where the algorithm would not properly learn from a gait just because it ran in a 

circle, especially since other researchers have found small curves during the course of 

a gait easy to correct for using yaw control [32]. Gaits that fell over in less than 3 

seconds were given a flat fitness score of five. 

Once the all the parameter sets in the population had been tested and their fitness 

scores recorded, likelihoods were calculated for each individual. It was 

experimentally determined that proportional likelihoods gave the best overall 

performance for this application. With proportional likelihoods, each individual has a 



chance to be selected based on its relative fitness in relation to the summed fitness 

scores of the entire generation and this fraction is the individual's likelihood score. So 

the likelihood score of individual j is its relative fitness r j  as given by: 

where D is the domain of all the individuals in the generation and F is the fitness 

score for a given individual. 

Once all the fitness scores have been recorded and the likelihoods have been 

calculated, the algorithm creates the next generation of individuals. To do this, the 

algorithm first takes the top M individuals with the highest fitness scores and copies 

them over to the next generation unchanged. This is called elitism and is used to 

preserve particularly good individuals so that their influence in the gene pool is 

maintained through the generations. Initially, these elites were retested each 

generation and the new scores overwrote the older ones, but, as was mentioned in 

Chapter 2, the simulator had an element of randomness to it which would sometimes 

make the gaits work very well and sometimes make the robot fall over right away. 

This meant that the elite's scores did not always stay high when they were retested, 

which diminished their influence on the gene pool and negated the entire purpose of 

having elites. This lead to periodic setbacks in the learning process as can be seen in 

Figure 4.1, which slowed the learning rate down. Thus, the program was changed so 

that the elites were still retested each generation, but their fitness scores were only 

changed if they were higher than they were before. 



Mean and Max Fitness for a Canter Using Original GA 

Figure 4.1: Mean and Maximum Fitness Scores for a Run Using the Original GA 

After the elites were added, all the rest of the slots in the next generation were 

filled in by breeding the individuals from the previous generation. Breeding begins by 

selecting two individuals based on their likelihood scores i.e., a parameter set with a 

likelihood score of 0.1 would have a 10% chance to be chosen. Once two parents are 

chosen they are mated together using a simple crossover procedure. During the 

crossover one of the parents is randomly chosen as Parent 1 and the other is 

designated Parent 2. A random point is chosen along Parent 1 and fiom that point 

onward all the parameters are deleted and replaced with the corresponding parameters 

fiom Parent 2, creating a single new individual that is the child of Parent 1 and Parent 

2. An example of the crossover operation being performed to create two children can 

be seen in Figure 4.2. 



Parent 1 Crossover point Child 1 

Parent 2 I Child 2 I 

Figure 4.2: Example of Single-Point Crossover I"' 

After the new child has been created, a mutation operator is applied to introduce 

some random variation and prevent the solutions from clustering too much. The 

amount of mutation that occurs is based on the mutation percentage, which was set to 

15%. This meant that for each parameter in the child parameter set, there was a 15% 

chance that the mutation operator would be applied to it. If the mutation operator is 

applied to a parameter, the parameter can either be reset to a random number or its 

current value can be varied by a random amount. In the case of this paper's research, 

all the parameters were normalized so they could be any number fiom 0 to 99 and the 

mutation operator varied the chosen parameter from its current value by some random 

number between &lo. Having the mutation operator change the parameter to an 

entirely new number is generally the preferred method because it forces the algorithm 

to explore a wider search space, but with dynamic gaits the parameters were so 

sensitive that any large change in their value generally completely destroyed the 

parameter set's viability. Thus, a small variation of the current parameter value was 

used instead to provide some randomness to the algorithm without massively 

inhibiting the learning rate. 

Once the child had been bred and mutated, it was checked for its feasibility using 

the checking program that was detailed earlier. If the child passed the testing it was 

added to the next generation, if it did not, new parents were chosen and a new child 

was bred. This process continued until the next generation was filled, at which point 

the new generation was sent to the simulator for testing so that its fitness scores could 

be recorded. This process was repeated for 50 generations during each trial and a total 

of 3 trials were completed for the trot, the canter, and the gallop to get the initial 

results. 



Initial Results 

Trot 

The trot is usually the slowest dynamic gait as well as being one of the most 

stable. For these trials the base phase offsets were set as in Figure 2.5, though the 

algorithm could modify them by *0.1 to try out different variations on the trot. The 

number of elites was set at 5 and the mutation rate was .15%. 

Mean and Max Fitness for a Trot Using GA 

Figure 4.3: Plot of the First Run for the Trot Using the GA 



Mean and Max Fitness for a Trot Using GA 

Figure 4.4: Plot of the Second Run for the Trot Using the GA 

Mean and Max F m  for a Trot Using GA 

Figure 4.5: Plot of the Third Run for the Trot Using the GA 



The first trial shows a slow, almost linear progression in the fitness indicating that 

there is still considerable room for improvement in the gaits that it found. Normally, 

one would expect the plot of the fitness scores to flatten out as the gaits reached their 

maximum values since no further improvements could be made. Since the first trial 

shows no flattening of the fitness line, these gaits have not yet approached their 

highest fitness values. 

The second trial came closer to maxing out the fitness of its gaits as can be seen 

from the way that the fitness climbs rapidly and then begins to taper off, but it has not 

yet flattened out entirely. The reason that trial two climbed to a much higher fitness 

level than trial one is because in trial two the GA happened upon a region of very 

stable fast trots. The trots in that area of parameter space seem to have consistently 

high fitness values and are not nearly as sensitive to varying the parameters as most 

gaits seem to be. This kept the averages for each generation high meaning that more 

individuals were contributing to the genetics of the next generation rather than having 

a few elites dominate everything. Thus, the GA was able to more fully explore this 

stable region and find better gaits than it would have if it was forced to only search in 

tight proximity to a few elite gaits as it would in a more unstable region where the 

average score of each generation was low. 

The third trial was interesting because it climbed extremely fast in the beginning, 

then leveled off for a long time, and finally, made an abrupt jump upward. This 

happened because the GA became stuck in an unstable region around generation 10. 

Virtually every variation it tried in this region resulted in extremely poor fitness 

values as demonstrated by the low fitness averages for each generation. Thus, the 

elites came to dominate the gene pool more and more, but since the elites were within 

the unstable region, as their influence on the gene pool grew they locked the GA into 

that particular area of the search space. Luckily, the mutation factor eventually broke 

the GA out of that area and allowed it to move to a much more stable one, resulting in 

a massive jump in maximum fitness and an even larger one in the average fitness. 

However, the delay in learning caused by becoming stuck indicates that significant 

improvement can probably still be made to the gaits in this trial. 



4.3.2 Canter 

The canter is a transition gait between a trot and a gallop. It is generally a fast yet 

extremely smooth gait with none of the jarring variations in body height that are 

present in the trot and, to a lesser extent, the gallop. For these trials the base phase 

offsets were set as in Figure 2.7, though again the algorithm could modify them by 

k0.1 to try out different variations on the canter. The number of elites was kept at 5 

and the mutation rate was kept at 15%. 

Mean and Max Fitness for a Canter Using GA 

Figure 4.6: Plot of the First Run for the Canter Using the GA 



Mean and Max Fitness for a Canter Using GA 

Figure 4.7: Plot of the Second Run for the Canter Using the GA 

Mean and Max Fitness for a Canter Using GA 
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In the first trial for the canter, the GA became stuck in an unstable region just as 

in the third trial for the trot. However, this time the fitness climbed even more rapidly 

and achieved a much higher fitness value. It is obvious that the region is extremely 

unstable due to the very low average fitness scores for each generation, which led to 

the GA get locked into that area of the parameter space, but unlike in trial three of the 

trot, this time the mutation factor was unable to break the GA out of the unstable 

region. The maximum fitness the GA had found was just so high that mutation could 

never find anything better and the GA plateaued. The GA was able to make some 

minor improvements to the fitness as time went on, but it remained in the unstable 

area for virtually the entirety of this trial and there is probably not much improvement 

that can be made on these gaits. 

Trial two climbed steadily until generation 35 or so and then began leveling off. 

The gaits it found were all fairly stable and it appears that there is some room for both 

improving them and finding an even more stable region due to the fact that the 

maximum fitness is still increasing slightly and the average fitness continues to climb 

steadily as well. When the GA becomes stuck in a particular area, the average fitness 

tends to level off and unless the mutation factor can break the GA out of that area the 

maximum fitness will soon level off as well once the GA finds the best gait within 

that region. Since the average fitness has not yet leveled off in trial two, the gaits can 

most likely still be significantly improved upon. 

In the third trial the average fitness flattens out around generation 30 though the 

maximum fitness continues to climb. The fitness of these gaits can still be improved, 

but probably not by a significant amount since the GA is in a stable region with a 

high maximum fitness and thus will probably not be able to break out and find a 

better region. 



Gallop 

The gallop is normally the fastest of all the dynamic gaits for a quadruped. For 

these trials the base phase offsets were set for a transverse gallop as in Figure 2.9. The 

reason that the transverse gallop was chosen instead of the rotary gallop was that in 

nature it seems that animals with more rigid spines, such as horses and cattle, tend to 

favor the transverse gallop [55] .  Since the Aibo has no ability to flex its spine at all, 

this type of gallop seemed the most appropriate. The number of elites was kept at 5 

and the mutation rate was kept at 15%. 

Mban and Max Fitness for a Gallop Using GA 
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Figure 4.9: Plot of the First Run for the Gallop Using the GA 



Mean and Max Fitness for a Galop Using GA 

Generation 

Figure 4.10: Plot of the Second Run for the Gallop Using the GA 

Mean and Max Fitness for a Galop Using GA 

Figure 4.11: Plot of the Third Run for the Gallop Using the GA 



Both trials one and two show a typical GA progression with the maximum and 

average fitness scores climbing rapidly at first and then leveling off. The averages 

seem moderately high as well, indicating that the GA isn't just stuck in a region of 

instability. This means that there is probably little further improvement to be made on 

the gaits in these two trials. 

In the case of trial three, neither the maximum or average fitness scores have 

leveled off yet, so some improvement can still be made to these gaits. Again, the fact 

that the average fitness scores are still going up slightly shows that the GA is not 

trapped in an unstable region. 

Unfortunately, the fitness scores for all three of these trials are actually lower than 

the fitness scores found for the canter and even most of the trots. The reason for this 

most likely has to do with the design of the Aibo robot, which makes it difficult to 

initiate flight stages. Without large flight stages the only way a gallop can remain 

stable is to increase its ground fraction so that it becomes more of a lurching walk 

rather than a fast gallop. These issues will be discussed in more detail in the analysis 

section. 

4.4 Secondary Results 

For the second phase of learning for the genetic algorithm the gaits found in the 

initial phase of learning were used to try and find even better gaits for the trot, canter, 

and gallop. To this end, for each of the three types of gaits, the best five individuals 

were taken from each of the three trials that were done with the GA during the first 

phase of learning. These fifteen parameter sets were combined with the best single 

gait from each of the three trials that were done with the gradient-climbing 

reinforcement learning algorithm during the first phase of learning. This gave a total 

of eighteen gaits, which were used to seed the first generation of the GA for the 

second phase of learning. The remaining seventeen individuals of the first generation 



were created by breeding together the eighteen seed gaits based on their fitness scores 

using the same breeding function and likelihood selection method that was used to 

create each new generation as is described in Section 4.2. Once the initial population 

was generated, the GA ran just as it did in the initial round of learning, but in this 

case, since the seed gaits were being used as the first generation rather than randomly 

generated gaits there was only one trial for each the trot, the canter, and the gallop. 

The mutation factor was kept at 15% for these runs, but the number of elites was 

increased to seven because it was found that this aided the learning process by 

keeping more of the gaits fiom the first generation that were known to be good. 

Mean and Max F m s  for a Trol Using the GA 

Figure 4.12: Plot of the Second Phase of Learning forthe Trot Using the GA 
t 



Mean and Max Fitness for a Canter Using the GA 

Figure 4.13: Plot of the Second Phase of Learning for the Canter Using the GA 

Mean and Max Fitness for a Gabp Using the GA 

Figure 4.14: -Plot ~f the f$ecgnd,Phaae of Learning for the Gallop Using the GA 



The trot showed the most improvement, while the maximum fitness of the canter 

and the gallop didn't increase much at all. However, though the maximum fitness 

scores did not significantly increase during the phase two trials, the best gaits did 

become much more consistent as the generations passed. As mentioned previously, 

the simulator did not generally give the same results twice when testing a gait due to 

errors in timing caused by the slow update rate of the controller. The best gaits found 

during phase one of the learning tended to be extremely inconsistent, occasionally 

doing very well, but usually falling over quite quickly. The gaits found in the second 

phase of the research were only slightly better in terms of fitness, but gave much 

more consistently high scores and fell over less when they were repeatedly tested. 

4.5 Analysis of Gaits 

4.5.1 Trot 

Table 4.1: Parameters for the Trot Learned by the GA 

60 
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Figure 4.15: Height for the Aibo During the GA Trot 
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Figure 4.16: Pitch and Roll for the Aibo During the GA Trot 



As expected, the trot found by the GA was a fairly steady gait with relatively 

small variations in height, pitch, and roll. Height measurements were taken from the 

center of the chest, pitch was taken from the difference in the heights of the front and 

hind hips on the right side, and roll was taken from the difference in the heights of the 

left and right sides of the chest. As the robot runs, the height fluctuates by about 1 

centimeter, the pitch by 3 degrees, and the roll by 4 degrees. 

For a normal trot, the diagonal pairs of legs work in tandem, but the trot found by 

the GA is a little different because the back feet are on the ground for a longer 

amount of time than the front feet, which means that there are brief periods where 

only one back foot is on the ground and all three other feet are in the air. The results 

of this can be seen in Figures 4.15 and 4.16. Initially, the body is tilted to the left with 

a roll angle of about -2 degrees as the left front and right back legs touch down. The 

Aibo then begins rolling to the right because its center of mass is on the right side of 

the support line since the weight of the robot's head means that the Aibo's center of 

mass is slightly forward of the middle of the body which the support line runs under. 

The left front leg is then picked up and only the right back foot is on the ground 

causing the robot to roll to the right briefly. Next, the right front foot and left back 

foot pair hits the ground causing a small roll back to the right from the impact 

followed by a large roll to the left because now the center of mass is to the left of the 

support line. The robot pitches up every time a diagonal leg pair touches down and 

then falls back its minimum value of about 2.5 degrees before the next diagonal leg 

pair hits causing it to pitch upwards again. Both the pitch and the height reach their 

minimum values whenever a pair of feet hit the ground and their maximum values 

right before the front foot lifts off the ground. The roll on the other hand, cycles at 

about half the rate of the pitch and height. The reason the data curves become 

distorted after 8.7 seconds is that the robot stumbles a bit at that point. 

The reason that the Aibo's path curves slightly to the right is unknown. It might 

have something to do with the bouncing observed in the back legs of the robot while 

it's trotting or with the fact that the front feet stay on the ground for a shorter time 

than the back feet. 
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Figure 4.17: Trajectory for the Aibo During the GA Trot 
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Figure 4.18: Velocity for the Aibo During the GA Trot 



The average velocity for this trot was 75.8 cmls and varied at the same frequency 

as the height and the pitch. When a pair of legs touches down, they accelerate 

backwards increasing the speed. Then the front leg is picked up and the back leg 

begins to slow down as it approached its target position, causing the robot's velocity 

to drop rapidly. Finally, the other pair of legs touches down and the robot speeds up 

again. 
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Figure 4.19: Foot Contacts for the Robot During the GA Trot 

- 

For the trot found by the GA, the fkont left and back right legs are supposed to hit 

the ground together, then when they lift up the right fiont leg is supposed to land 

followed closely by the back left leg. This phasing is actually similar to that of a 

canter though in a canter the delay between the front right and back left leg is larger. 

As the Aibo runs however, the phasing shifts somewhat due to the slow update rate of 

the controller, so the phasing isn't always perfect as can be seen in Figure 4.19. The 
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Figure 4.21: Power Used by the Aibo During the GA Trot 

In Figures 4.20 and 4.21, hip joints refer to the joints that swing the legs forward 

and backward, upper leg joints are the joints that spread the legs outward or inward, 

and the lower leg joints are the knee joints. Figure 4.21 also uses the same legend as 

4.20 for plotting the individual legs. The power plots were found by multiplying the 

speeds and torques of each joint. 

For the hip joints, the maximum torque and power come during the period that the 

foot is first picked up and begins to swing forward. This is because for this gait the 

leg must complete the step forward section of the leg path in 39.7% of the total stride 

time so the foot is traveling fastest during this section and the hip torque needs to 

ramp up to accelerate the foot. The step forward section is also the part of the stride in 

which the phase errors are compensated for so the torque varies every stride as the 

required speed varies.. Naturally, since the torques and speeds are highest in that 

section the power requirements are highest there too. 

In the knee joints, the highest torques come when the foot hits the ground and the 

leg begins moving backwards, while during the step forward section of the foot path 



controller compensates for these errors to bring the phasing back to its correct values, 

but cannot make the phasing perfect for every stride. 

The rear legs are on the ground for 44.9% of the stride while the front legs are on 

the ground for only 32.3% of the stride. The hind legs also have a tendency to bounce 

a bit on the ground leading to the breaks in the foot contacts seen in Figure 4.19. The 

reason that the back legs stay on the ground longer than the front legs and tend to 

bounce is unknown. Looking at the gait parameters one would expect the back legs to 

be on the ground less than or equal to the amount of time that the fiont legs are on the 

ground. This discrepancy may have something to do with the fact that the back legs 

are pushing the Aibo forward while the front legs are pulling it forward or it may be 

because there is more weight over the front legs due to the mass of the head. 
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Figure 4.20: Torques for the Aibo During the GA Trot 



they are nearly zero. This indicates that the knee joints are actually the ones providing 

the most thrust in this stage rather than the hips. The reason that the torques for the 

front legs are negative while the torques for the back legs are positive during the 

thrust stage is because the knees bend in opposite directions. 

The torque and power required for the upper leg joints is minimal throughout the 

gait because the stance width is almost zero and the joints just have to maintain that. 

Canter 

Table 4.2: Parameters for the Canter Learned by the GA 
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Figure 4.22: Height for the Aibo During the GA Canter 

Plot of Pitch for the Aibo 

Plot of Roll for the Aibo 

-6 
8 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9 

Time (sec) 

Figure 4.23: Pitch and Roll for the Aibo During the GA Canter 



The roll variation for the canter is about 9 degrees, which is more than double the 

roll variation for the trot, though the height and pitch variations are about the same at 

1 centimeter and 2.5 degrees respectively. The average roll remains near zero, but the 

average pitch is actually less than the average pitch for the trot at 3.3 degrees. As with 

the trot, the reason for the slight tilt to the upwards is unknown since the front and 

back leg heights are set to be the same. 

The maximum roll angle of 4 degrees occurs just before the right front foot 

touches down. When the right front foot hits the ground, it acts as a break slowing the 

speed of the Aibo. This causes the leg to hit the ground hard, bouncing the robot up 

so that its pitch increases sharply and making the robot roll to the left. Shortly after 

the Aibo pitches upward, it begins to fall back down again. About halfivay through 

the fall, when the robot is tilted to its minimum roll value of -4 degrees, the left front 

leg hits the ground and also acts as a break, making the robot bounce up again and tilt 

back to the right. The bounce is not as severe in this case because the robot was 

higher off the ground when the left front leg hit than it was when the right front leg 

hit, so the left front leg didn't push as hard against the ground since it was already 

near its maximum extension when it touched down. After the bounce from the left 

front leg, the robot falls back down to its minimum pitch value of 2.2 degrees as it 

continues rolling right. Finally the right front leg hits the ground again and the 

process is repeated. The back legs don't seem to contribute much to either the pitch or 

the roll of the gait. 

The canter is the straightest of the gaits overall, though the robot does make a 

large turn to the right at the beginning before it properly settles into the canter. The 

tendency to curve to the right is still present, but it is less pronounced, perhaps due to 

the higher speed creating a larger momentum for the Aibo and making it more 

difficult to turn. 
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Figure 4.24: Trajectory for the Aibo During the GA Canter 
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Figure 4.25: Velocity for the Aibo During the GA Canter 
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Figure 4.26: Foot Contacts for the Aibo During the GA Canter 

The average velocity for the canter developed by the GA was 80 crnls. The 

velocity profile of the Aibo while it is cantering is somewhat odd due to the problems 

that occurred with the right back foot during the gait. That foot did not hit the ground 

with the correct phasing and when it was on the ground it bounced a lot. The reason 

for this slight stuttering along the ground is unknown, but it appears to be related to 

the large bounces caused by the front legs when they touch down. 

When the front right foot touches down, it acts as a break and the velocity drops 

off massively while the body begins to roll left from the impact. The touch down of 

the back left foot then accelerates the robot forward. Since the body is tilted to the 

left, the front left leg hits the ground early so it is not properly in phase with the right 

back leg. In addition, because it hits early, the leg is still in the tail-end of its step 

forward phase so it is coming almost straight down when it hits. This causes the front 

of the Aibo to bounce, meaning that the front left leg stays on the ground a shorter 

time than it should and making the robot's roll rightwards. It also briefly bounces the 



back right leg off the ground causing the velocity to dip again. Then the back right 

foot lands on back the ground and continues accelerating the Aibo, making the 

velocity rise to its previous value as the pitch of the Aibo falls back to its minimum. 

Finally, the front right foot hits the ground hard due to the low pitch angle and high 

positive roll angle and the process repeats itself. 

The bouncing of the front feet due to their acting as breaks to the Aibo's forward 

motion account for the reason that the front feet are only on the ground for 30.9% of 

the stride while the rear feet are on the ground for 47.9% of the stride. 
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Figure 4.27: Torques for the Aibo During the GA Canter 
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Figure 4.28: Power Used by the Aibo During the Canter 

For the hip joints, again most of the torque is applied during the step forward 

stage just as in the trot; however, for the canter the velocities required during this 

stage are higher because the step length is 9.2 cm as opposed to 7.9 cm while the 

completion time is the same as it was in the trot. Thus the duration of the high torques 

is longer and the power levels needed are much larger. The high speed required 

during the step forward stage also leads to somewhat higher torque and power values 

for the knee joints than were necessary for the trot, though the torques for the thrust 

stage are very similar. The upper leg joint torques are also somewhat higher because 

there are many points in the gait where only one leg is on the ground so a higher level 

of torque is required to keep the legs from splaying outward than in the trot where 

two legs on opposite sides of the body were down at the same time. Overall, this gait, 

while fast is not very power efficient due to the large step forward speed required. 



Table 4.3: Parameters for the Gallop Learned by the GA 
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Figure 4.29: Heights for the Aibo During the GA Gallop 



Plot of Pitch for the Aibo 

Plot of Roll for the Aibo 
5 I I 1 I I I I I I 

I I I I I I I I I 

8 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9 
Time (sec) 

Figure 4.30: Pitch and Roll for the Aibo During the GA Gallop 

For the GA transverse gallop the height, pitch, and roll peaks all match up 

together fairly well unlike with the canter and the trot where the height and pitch 

changed at twice the rate of the roll. The height and pitch variations are about double 

those of the trot at 1.8 cm and 7 degrees respectively, while the roll variation is about 

the same as for the trot at 4.2 degrees. Experiments with animals [42] and with other 

galloping robot simulations [32] have shown that the height variation is typically 

about 10% of a quadruped's standing height. In the case of the Aibo, the standing 

height is 12 cm so the height variation in this gait is somewhat larger than is typical, 

but that is not surprising given that this gait is too slow to be called a true gallop. 

The robot starts out perfectly level and then the left front leg touches down 

causing the robot to make a large roll to the right. This is followed by the right front 

leg coming down causing the Aibo to roll slightly to the left. Next, the left back leg 

hits the ground and the robot rolls slightly to the right and finally, the right back leg 

touches down, inducing a large roll to the left. The robot pitches up from a minimum 

of about -1 degrees as the left front leg comes down and then pitches up even faster 



after the right front leg touches down. Once the left back leg hits the ground the Aibo 

begins pitching down again and continues to do so after the right back leg hits. The 

cycle then repeats itself. As before, the height follows the pitch curve fairly closely. 

The transverse gallop has the sharpest curve to its trajectory out of the three types 

of gaits, as can be seen from Figure 4.3 1. This is to be expected considering that the 

gallop has the highest average roll angle of the three types of gaits at 1.7 degrees and 

that for both the front and the rear pairs of legs the left leg always hits first followed 

by the right, leading to a slight yaw that makes the robot's path curve. 
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Figure 4.31: Trajectory for the Aibo During the GA Gallop 
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Figure 4.32: Velocity of the Aibo During the GA Gallop 
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Figure 4.33: Foot Contacts for the Aibo During the GA Gallop 



The average velocity for this gait was 61.8 cmls, which is considerably slower 

than the speeds of the trot or the canter. This may have been because the lower limit 

of 0.2 seconds that was imposed on the stride time was too high and the torque limits 

too low for the Aibo to perform a true galloping gait with significant flight times. The 

gallop developed by Krasny [32] had a stride time of less than 0.2 seconds even 

though the robot he simulated was much larger than the Aibo, so the Aibo would 

probably need a stride time that was even lower. Unfortunately, this was not feasible 

given the torque limits on the motors and the slow update rate of the controller. 

While running, the large jumps upwards in the velocity in Figure 4.32 are due to 

the thrust from the right back leg. Next, the velocity drops off until the left back leg 

touches down whereupon it rises briefly again and then resumes its drop until the 

back right leg touches down again. The front legs seem to have only minimal 

contribution to the velocity profile. 

The foot contacts for this gait are very strange because the right back foot is on 

the ground 52.5% of the time while the other feet are on the ground for only 27.2% of 

the time. In addition, the phase difference between the left fiont and right front legs is 

much larger than it should be. The brief touchdown periods for three of the four legs 

may be due to bouncing effects like those that occurred in the canter, but this was 

unable to be determined for certain. There were short periods of flight for this gait, 

lasting 15.1% of the stride period on average, but these flight periods actually 

occurred between the liftoff of the front left leg and the touch down of the right fiont 

leg rather than during the period between the liftoff of the front right leg and the 

touch down of the rear left leg as one would expect. The flight periods happened 

because of the unusually large phase difference between the two front legs and the 

very brief ground contact periods for both of them. 
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Figure 4.34: Torques for the Aibo During the GA Gallop 
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Figure 4.35: Power Use for the Aibo During the GA Gallop 



As with all the other gaits, most of the power was used by hips while trying to 

swing the legs forward during the step stage of the foot path. The torques and power 

required is slightly lower than for the trot because the forward step speed is also 

somewhat lower. The torques for the lower legs again peak during the thrust stage, 

though the torque for the front right leg is strangely lower than the rest, perhaps due 

to the fact that it is on the ground less than the other legs and so doesn't have time to 

ramp up to full torque. The upper leg torque is rather small because the legs are bent 

slightly inwards so there isn't as much torque trying to spread the legs out as there is 

with the other gaits. 



Chapter 5 Gradient-Climbing Reinforcement 

Learning Algorithm 

5.1 Overview 

A gradient-climbing reinforcement learning algorithm (GCRL) as implemented 

by [30] can be considered a degenerate form of standard policy-gradient 

reinforcement learning techniques [64, 51. These gradient-climbing algorithms 

converge to local optima rather than global optima and so the starting point of the 

algorithm is important. 

The algorithm begins by generating a number of candidates through small random 

perturbations of some provided seed parameter set and then evaluating those 

candidates to find their fitness scores. Next, the algorithm looks at all the candidates 

and for each parameter n, calculates the average reward function of the candidates in 

which the value of n was increased, the average reward function of the candidates in 

which the value of n was decreased, and the average reward function of the 

candidates in which the value of n was not changed. Based on this set of three 

averages for n, the algorithm calculates an adjustment number for the parameter n. 

Once adjustment numbers have been calculated for all the parameters, the 

adjustments are added to the original seed parameters to create a new seed set. An 

example of this process for estimating the gradient in a single dimension can be seen 

in Figure 5.1 
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Figure 5.1: Example of the Process for Estimating the Gradient in a Single Dimension 

5.2 Implementation 

The algorithm first starts by generating a random population of parameter sets in 

the same way that the random populations were generated in for the GA as  explained 

in Section 4.1. The same program as before was used to make sure each of the 

randomly generated parameter sets was feasible before it was added to the first 

generation. The parameter sets were also normalized just as in the GA so that each 

parameter was a number between 0 and 99. Once the first generation was created, it 

was evaluated by the simulator using the fitness function from Equations 4.1 and 4.2. 

The best parameter set from this generation was used as the first seed set for the 

GCRL. The user could also skip this first generation and just load a seed set into the 

program if desired. 



Once the first seed set had been chosen, the GCRL started up. The GCRL was 

initially implemented as described in Section 5.1, but the results obtained were 

decidedly lackluster as can be seen in Figure 5.2. The best trots developed by the GA 

in Chapter 4 had fitness scores in the 600-800 range, so having the best trots produced 

by the GCRL have fitness scores below 150 was unacceptable. 

Mean and Max Fitness for a Trot Using the Original GCRL 
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Figure 5.2: Mean and Maximum Fitness Scores for a Run Using the Original GCRL 

Thus, several modifications were made to the algorithm in an attempt to improve 

its performance. It was theorized that a large part of the reason that learning plateaued 

so fast in the original GCRL was that it treated all the variables in the parameter set as 

independent and evaluated them across all the gaits in the generation to determine 

how best to modify the seed set. In reality however, while some of the variables are 

independent, others are not, so the variables cannot be effectively evaluated 

separately. Therefore, the algorithm was changed so that instead of independently 

checking each variable it just picked the parameter set with the highest score and used 

that as the new seed set for the next generation. If no parameter set from the current 



generation was better than the score of the current seed set then that current seed set 

was kept and used to create the next generation. 

The original GCRL also used a fixed step size and uniform distribution for 

creating the variations on the seed set that made up the population of each generation. 

However, since the algorithm was now choosing the best individual from each 

generation rather than trying to estimate the gradient and then modify the seed set, it 

was decided to use a Gaussian distribution with a varying standard deviation instead. 

The new GCRL took the first seed set that was either generated from the random 

population or loaded by the user and then varied all the parameters in the seed set by 

a Gaussian random distribution with an initial standard deviation of 12 in order to 

create a new individual. This process was repeated until the entire population of 35 

individuals was created and then each member of the population was evaluated in the 

simulator using the fitness function from Equations 4.1 and 4.2. 

If a gait had been found with a higher fitness than that of the seed set, that new 

gait became the seed set for the next generation and the standard deviation for the 

distribution of the next generation was reduced by 2, making the new standard 

deviation 10. Every time a generation found an improved gait and replaced the seed 

set, the standard deviation for the next generation was reduced by 2 until the standard 

deviation hit a lower limit of 2. This was done so that the algorithm started off 

searching a fairly wide range of possible variations, but then focused its search more 

and more as the gaits improved. 

If no gait was found with a higher fitness than the seed set, the seed set was used 

again to create the next generation using the same standard deviation as before. After 

10 generations had passed with no improvement to the seed set, the standard 

deviation increased by 2 in order to widen the search area and hopellly find a better 

parameter set. This process was repeated for 50 generations to complete a single trial 

just as in the GA. Also like the GA, a total of 3 trials were run for each the trot, the 

canter, and the gallop to obtain the initial results. 



Initial Results 

Trot 

Once again the base phase offsets for the legs were set as in Figure 2.5. The initial 

standard deviation for the GCRL algorithm was 12. 
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Figure 5.3: Plot of the First Run for the Trot Using the GCRL 
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Figure 5.4: Plot of the Second Run for the Trot Using the GCRL 
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Figure 5.5: Plot of the Third Run for the Trot Using the GCRL 



The GCRL appeared to be much more prone to getting stuck in regions of 

instability and being unable to break out of them than was the GA. This is most likely 

due to the fact that the GCRL does not have a mutation function to enable it search a 

wider range of areas, though if the standard deviation becomes large enough and the 

search is run long enough it can sometimes escape these regions. When the algorithm 

does not get a good starting seed, this inability to escape unstable regions can cause it 

to perform very poorly. 

The first trial for the trot is a good example of this. The trial starts off fine with 

the mean and maximum fitness scores growing steadily, but then the means begin to 

go down as the search enters an unstable area and shortly thereafter both the mean 

and max fitness scores flat-line. However, since the maximum fitness leveled off at 

such a low number the algorithm is able to finally escape the region near the end of 

the run after the standard deviation has expanded due to the long period with no 

improvement. Unfortunately, this escape occurred in generation 49 and so the 

algorithm wasn't able to improve the gait much further, though given more time it 

certainly would have. 

The second trial is much like the first run for the canter with the GA. The fitness 

quickly jumps to a very high value, but then becomes stuck in an area of instability 

and is unable to break free even when the standard deviation becomes larger because 

the current maximum fitness is so high. This trial did however produce the highest 

scoring gait out of all three trials for the trot in the GCRL, so it was not a bad run; it's 

just very unlikely that the gait could be improved upon even if the algorithm was 

given more time. 

Trial three shows the typical progression one would expect from the GCRL 

algorithm with a sharp climb in the beginning which gradually flattens out as time 

passes. The average fitness scores stop increasing fairly early, but the maximum 

fitness is still climbing slightly when the trial ends so some improvement could 

probably still be made to this gait. 



Canter 

The base phase offsets for the legs were set as in Figure 2.7 and again the initial 

standard deviation for the GCRL algorithm was set to 12. 
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Figure 5.6: Plot of the First Run for the Canter Using the GCRL 
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Figure 5.8: Plot of the Third Run for the Canter Using the GCRL 



In the first trial, the algorithm got lucky and jumped up extremely rapidly to a 

high fitness value where it then stayed for most of the run. Near the end of the trial 

the expanded standard deviation allowed the algorithm to find a slightly better gait, 

but it is unlikely that the GCRL would improve the gait much more. 

The second trial shows the fitness leaping up, flat-lining, and then leaping upward 

again. The large leaps upward roughly correspond to the points where the standard 

deviation increased allowing the GCRL to escape the region it had become stuck in, 

however once the fitness increases the standard deviation grows smaller and the 

algorithm becomes stuck again. This indicates that for this trial the minimum standard 

deviation may have been too low for the area that the GCRL was searching. If it had 

been higher the algorithm would have probably advanced considerably faster, so there 

is definitely room for improvement in this gait. 

For the third trial the plot is typical of what one would expect from the GCRL 

with rapid advancement at the beginning and then a gradual leveling off, but the 

maximum fitness achieved by the trial is extremely low. Unfortunately, the fact that 

the fitness stopped increasing at such a low value despite the increasing standard 

deviation means that the algorithm just got unlucky and ended up trapped in a region 

with a very low maximum. It could be broken out of if the standard deviation were 

made large enough, but making it that large would almost be the same as redoing the 

random first generation and starting the entire run over. Thus, for all intents and 

purposes, it is doubtful that any further improvements can be made to this gait. 

The base phase offsets for the legs were set for the transverse gallop as in Figure 

2.9 and the initial standard deviation for the GCRL algorithm remained 12. 



Mean and Max Fitness for a Gallop Using GCRL 

Figure 5.9: Plot of the First Run for the Gallop Using the GCRL 
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Figure 5.10: Plot of the Second Run for the Gallop Using the GCRL 
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Figure 5.11: Plot of the Third Run for the Gallop Using the GCRL 

In the case of the gallop, all three trials matched the typical plot for a GCRL 

learning algorithm, though the maximum fitness for the first trial was somewhat low 

in comparison to trials two and three. One can clearly see in trials one and three how 

the average fitness for each generation decreases after the fitness plateaus and the 

standard deviation begins to increase. Unfortunately, in every case no further 

improvements were made despite the widening of the search area, indicating that it is 

not very likely that any better gaits will be found in the regions that these three trials 

cover. As stated in Chapter 4, the reason that the maximum fitness is considerably 

lower for the gallop than for the trot or canter has to do with the design of the Aibo 

robot and will be discussed in more detail in the analysis section of this chapter. 



Secondary Results 

Phase two of the testing for the GCRL was like phase two for the GA in that the 

results from phase one were used as a starting point in phase two, but because the 

GCRL only uses a single parameter set to create each new generation rather than 

using the entire population as the GA does, the testing had to be approached 

somewhat differently. Since multiple gaits couldn't be used as the seed set, the 

highest scoring gait out of all the phase one trials for both the GA and the GCRL was 

used. Once the seed set was loaded the algorithm ran just as before, with the only 

exception being that the standard deviation started out at a value of 2 rather than 12. 

This was done because the seed gait was already known to have a high fitness so the 

search could focus closely around it in the beginning of the trial. As time passed if no 

improvements were made to the gait, the standard deviation could still expand 

outward as before. 
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Figure 5.12: Plot of the Second Phase of Learning for the Trot Using the GCRL 
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Figure 5.13: Plot of the Second Phase of Learning for the Canter Using the GCRL 
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Figure 5.14: Plot of the Second Phase of Learning for the Gallop Using the GCRL 



During the second phase of learning with the GCRL, the fitness of the trot gait 

increased markedly while the canter and the gallop only became moderately better. 

This is very similar to the results obtained from the GA, though the GCRL found 

higher fitness values for the trot and the canter than the GA did. One major difference 

between the results from the GA and the GCRL is that the average fitness scores for 

each generation during the GA runs were much higher than for the corresponding 

runs with the GCRL. This is probably due to the observed tendency for the speed of a 

gait to be proportional to its sensitivity to variations. Since the GCRL only used the 

fastest gait from phase one of the learning rather than using multiple gaits it was 

much more likely to come across a large amount of poorly performing gaits during its 

search than the GA. The gallop is the gait that was actually the least sensitive to 

variations in its parameters as can be seen from the fact that the average fitness 

started out very high and only started dropping off after the standard deviation of the 

GCRL had widened considerably. This is expected because even though the gallop is 

inherently a more dynamic gait than the trot and the canter, in the case of this 

research the gallop was much slower than the other two gaits and thus more stable. 



5.5 Analysis of Gaits 

Trot 

Figure 5.15: Parameters for the Trot Learned by the GCRL 
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Figure 5.16: Height for the Aibo During the GCRL Trot 
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Figure 5.17: Pitch and Roll for the Aibo During the GCRL Trot 



The height variation for this trot is 1.1 cm, the pitch variation is 3.9 degrees, and 

the roll variation is 5.5 degrees. These values are slightly higher than those for the 

GA trot, but not significantly so. 

The robot starts out pitched up at about 3 degrees and then the pitch bounces up 

even further as the left front and right rear feet hit the ground. After the Aibo pitches 

up fiom the initial strike of the feet on the ground it falls back to its minimum value 

of 3 degrees. At that point, the right fiont and left rear feet touch down causing a 

smaller bounce up in the pitch before the robot again returns to its minimum pitch 

value and the process repeats. The height, as usual, mirrors the pitch and both the 

height and the pitch oscillate at twice the fiequency of the roll, just as in the GA trot. 

The body also starts with a roll value of about -3.5 degrees then tilts to the right as 

the left front and right rear legs come down because its center of mass is to the right 

of the support line. Next, the Aibo rolls all the way back to the left after right front 

and left rear legs hit the ground because during this stage the center of mass is to the 

left of the support line. 

The trajectory for this trot is significantly more curved than the trajectory of the 

GA trot. This may be due to the fact that the right fiont leg is generally on the ground 

for less time than the left fiont leg which could induce a rightward curve to the Aibo's 

path. 
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Figure 5.18: Trajectory for the Aibo During the GCRL Trot 

Figure 5.19: Velocity of the Aibo During the GCRL Trot 
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Figure 5.20: Foot Contacts for the Aibo During the GCRL Trot 

The average velocity for this gait is 76.5 cmls which is slightly faster than the GA 

trot. The velocity profile takes a steep dive when the front left leg hits the ground then 

starts rising again once the back right leg touches down. A similar pattern occurs for 

the other diagonal leg pair, but on a smaller scale with the velocity dropping 

moderately when the right front leg hits and then rising after the back left leg hits. 

This shows that the front legs act as a break to slow the forward acceleration of the 

Aibo so that it doesn't fall on its face and then the back legs increase the acceleration 

again as they thrust the robot forward. 

The leg contacts are fairly normal, though the right back leg touches down 

slightly after the front left leg instead of slightly before it as it should because the 

slow update rate of the controller prevents it from correcting phase errors that are that 

small. The only unusual thing about the contacts is that the right front leg is only on 

the ground 32.4% of the time, while the other legs are all on the ground 47.9% of the 

time. 
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Figure 5.21: Torques for the Aibo During the GCRL Trot 
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Figure 5.22: Power Use for the Aibo During the GCRL Trot 



Just as in the GA trot most of the power is used by the hips swinging the legs 

forward, with the second most power being used by the knees as the legs move back 

to thrust the body forward. The power usage in this gait is somewhat higher than in 

the GA trot because the step length is longer while the stride period is the same, so 

the speeds required are higher. The upper leg joints use a minimal amount of power in 

order to keep the legs from splaying outwards. Most of the torque for these joints is 

used by the front legs since they are slowing the robot down and thus the inertia of 

the body causes a greater impact force on these legs and the controller requires a 

larger amount of torque to keep them at their specified width. 

5.5.2 Canter 

Figure 5.23: Parameters for the Canter Learned by the GCRL 



Figure 5.24: Height of the Aibo During the GCRL Canter 

Plot of Pitch for the Aibo 

L I 

8 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9 

Plot of Roll for the Aibo 

8 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9 
Time (sec) 

Figure 5.25: Pitch and Roll for the Aibo During the GCRL Canter 



This canter is almost exactly the same as the GA canter just a little faster and 

straighter. The height varies by 0.85 cm, the pitch varies by 3.1 degrees, and the roll 

varies by 9.6 degrees. So, the height variance is a little smaller than in the GA canter 

and the pitch and roll values are a little higher. The average pitch is higher at 4.1 

degrees and the trajectory is actually straighter, perhaps due to the larger inertia from 

the higher speed making the robot somewhat more difficult to turn or possibly the 

times the legs are on the ground for the left and right sides are more equal than they 

are in the GA canter. Once again, there is a sharp turn to the right at the beginning of 

the run before the Aibo settles in to the canter. 

For an explanation on how the footfall sequence relates to the pitches and rolls of 

the robot see Section 4.5.2 since the GA canter is almost identical to the GCRL 

canter. 
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Figure 5.26: Trajectory of the Aibo During the GCRL Canter 



Figure 5.27: Velocity of the Aibo During the GCRL Canter 
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Figure 5.28: Foot Contacts for the Aibo During the GCRL Canter 

105 



I . .  4 . , Y! ..+ 

The average velocity for the canter developed by the GA was 81.2 cmls. The 

velocity profile of the Aibo while it is cantering is again somewhat odd due to the 

problems that occurred with the right back foot during the gait. Just as in the GA 

canter, that foot did not hit the ground with the correct phasing and when it was on 

the ground it bounced a lot. For an explanation of this behavior see Section 4.5.2. 

Once more, the large bounces induced when the fiont feet hit the ground are the 

reason that the fiont feet are only on the ground for 30.9% of the stride while the rear 

feet are on the ground for 49.3% of the stride. 
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Figure 5.29: Torques for the Aibo During the GCRL Canter 
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Figure 5.30: Power Used by the Aibo During the GCRL Canter 

For the hip joints again most of the torque is applied during the step forward stage 

just as in the GA canter, but for the GCRL canter, the velocities required during this 

stage are slightly lower because although the step length is larger at 9.38 cm, the time 

to complete this stage is also larger resulting in a slower required speed overall. Thus 

the duration of the high torques is longer and the power levels needed are much 

larger. The torques for the knees during the thrust phase are very similar to those for 

all the other gaits, but the GCRL canter, like the GA canter has occasional spikes in 

the torque as it swings the legs forward due to the high speeds involved. The upper 

leg joint torques are again somewhat high as well because there are many points in 

the gait where only one leg is on the ground so a higher level of torque is required to 

keep the legs fiom splaymgoouhvard. This canter is faster than the GA canter and 

slightly more efficient, though it is still much less efficient than either the trot or the 

gallop. 



Gallop 

Figure 5.31: Parameters for the Gallop Learned by the GCRL 
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Figure 5.32: Height for the Aibo During the GCRL Gallop 
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Figure 5.33: Pitch and Roll for the Aibo During the GCRL Gallop 

For the GCRL transverse gallop, the height, pitch, and roll peaks all match up 

together fairly well just as with the GA Gallop. The data curves become somewhat 

irregular at about the 8.67 second mark due to a slight stumble by the right front foot, 

but the curves before that match the GA gallop data curves very well. The height, 

pitch, and roll variations are slightly less than they were for the GA gallop at 1.7 cm, 

5.8 degrees, and 3.3 degrees respectively. Unfortunately, the height variation is still 

larger than it should be due to slow speed of this gallop. 

Since the dynamics of the GCRL gallop are almost the same as those of the GA 

gallop, see Section 4.5.3 for a detailed explanation of how the footfall sequence 

affects the height, pitch, and roll of the Aibo. The only real difference in the curves 

for the two gallops is that the peaks for the roll data are lower for the GCRL gallop 

than they are for the GA gallop due to the fact that the robot is rolling and bouncing 

slightly less during the GCRL gallop. 

Again, the transverse gallop has a much sharper curve to its trajectory than the 

trot or the canter, as can be seen from Figure 5.34. The reason for this is that there is 



an average roll to right of 1.6 degrees for the gait and the that for both the front and 

the rear pairs of legs the left leg always hits first followed by the right, leading to a 

slight yaw that makes the robot's path curve. The Aibo is also traveling slower than in 

either the trot or the canter meaning it has less inertia to resist traveling in a curved 

path. 
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Figure 5.34: Trajectory for the Aibo During the GCRL Gallop 
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Figure 5.35: Velocity for the Aibo During the GCRL Gallop 
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Figure 5.36: Foot Contacts for the Aibo During the GCRL Gallop 



The average velocity for this gait was 61.6 cmls, which is almost exactly the same 

speed as the GA gallop. Possible reasons for this slow speed are given in Section 

4.5.3 as is an explanation of the gallop's velocity profile. 

Once again, the right back foot is on the ground 55.3% of the time while the other 

feet are on the ground for only 30.5% of the time and the phase difference between 

the left fiont and right front legs is much larger than it should be. There were also 

short periods of flight for this gait, lasting 14.4% of the stride period on average, but 

as with the GA gallop, these flight periods actually occurred between the liftoff of the 

front left leg and the touch down of the right front leg rather than during the period 

between the liftoff of the front right leg and the touch down of the rear left leg as one 

would expect. For a slightly more in depth discussion of possible reasons for these 

behaviors see Section 4.5.3. 
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Figure 5.37: Torques for the Aibo During the GCRL Gallop 
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Figure 5.38: Power Used by the Aibo During the GCRL Gallop 

As with all the other gaits, most of the power was used by the hips while trying to 

swing the legs forward during the step stage of the foot path, while the torques for the 

lower legs again peak during the thrust stage. The upper leg torque is rather small just 

as in the GA gallop because the legs are bent slightly inwards so there isn't as much 

torque trying to spread the legs out as there is with the other gaits. Overall, this gait 

was somewhat more efficient than the GA gallop because it used slightly less power 

during the thrust stage. This might be due to the fact that the legs stayed on the 

ground longer indicating that the robot wasn't bouncing quite as hard in the GCRL 

gait and thus the torque spikes fi-om trying to resist these impacts weren't as high. 
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Chapter 6 Conclusion 

6.1 Comparisons 

6.1.1 Learning Algorithms 

As expected, the genetic algorithm performed much better overall than the 

gradient-climbing reinforcement learning algorithm during the first round of testing. 

The GA makes use of every single individual in the population when it is creating the 

next generation, though their influence is proportional to their fitness, whereas the 

GCRL only uses the best individual from each generation in order to create the next 

one. 

When starting from a completely random initial population, the chance that any 

single individual in that population is going to be near a region of the search space 

that contains a high fitness value is rather small. The GCRL just searches in the 

general area around its seed set in an attempt to find a better parameter set. If the best 

set from the initial random generation happens to be in an area that only has a 

relatively small peak fitness, the GCRL will only be able to find that local maxima. 

In the case of the GA on the other hand, since it develops the next generation 

using multiple members from the previous generation, even if the best individual 

from the first generation isn't near a region with a high peak fitness, chances are that 

at least one of the individuals was. Thus, there is more of a chance for the GA to be 

able to zero in on a good area of the search space to explore than there is for the 

GCRL. Also, even if none of the parameter sets from the initial population are near a 

good area, the GA can perform mutation operations on its children, allowing it to 

explore other regions outside of those delineated by the initial population. 

Therefore, in general, the GA is much better at searching broad swaths of the 

parameter space in order to locate regions with high peak fitness values than the 



GCRL is, especially if the initial population is entirely random. This is born out by 

the results fiom the first phase of learning, which are shown in Table 6.1. 

Occasionally, the GCRL got lucky with its random starting population and managed 

to do rather well, but overall the GA did much better. For the trot, the GA scored an 

average of 100 better than the GCRL, for the canter it scored an average of 243.7 

better, and for the gallop it scored and average of 49 better. The differences between 

the fitness scores of the two learning algorithms was related to the overall maximum 

speed attainable by a gait given the limitations of the Aibo and the gait controller. 

Thus, the canter had the largest difference while the gallop had the smallest. This 

happened because the GCRL had a much wider range of scores for each run than the 

GA did, with the GCRL scores ranging from very bad to very good while the GA 

scores were always relatively good. Therefore, in the case of a gait like the canter 

with a very high maximum possible score, the low GCRL scores pulled the average 

down significantly; whereas with a gait that had a low maximum possible score such 

as the gallop, the GCRL trials with poor scores did not pull the average down as 

much. 

Table 6.1: Maximum Fitness Scores for Phase One of the Learning 

For the second phase of the learning, however, the GCRL generally outperformed 

the GA, which was also expected. In the second phase, the learning algorithms used 



the best gaits from phase one as seeds and, in this situation, the weaknesses and 

strengths of the two algorithms switched. 

The GA had a starting population filled with high fitness individuals, but since it 

used multiple parameter sets to create the next generation and because the mutation 

factor kept altering the children so that the GA continually explored new areas of the 

search space, the GA was unable to focus in and closely search the high fitness region 

for its absolute maximum. 

The GCRL, on the other hand, was able to do exactly that. It started with the 

highest fitness individual from phase one and used that as a base set. Then the GCRL 

searched in a tight region around the seed set to find a better individual, which it did 

in every case. This highly focused search on an area of the search space that was 

known to have high fitness scores allowed the GCRL to find better gaits more quickly 

than the GA. Undoubtedly, the GA would have found comparable gaits eventually 

and in the case of the gallop it actually did, but in general it was slower due to its 

nature of searching wide areas. 

Table 6.2: Maximum Fitness Scores for Phase Two of the Learning 

Trot 
Canter 
Gallop 

Thus, the GA was confirmed to perform considerably better when starting the 

learning from scratch because it is better able to search large areas of the parameter 

space and is not as dependent on its initial population as the GCRL is. While the 

GCRL was shown to learn faster than the GA when starting with an initial population 

that had a high fitness because it focuses on small regions of the parameter space 

better than the GA. If the GA is run long enough however, it usually does eventually 

attain about the same maximum fitness scores. 

Maximum Fitness 

GA 

838 
870 
677 

GCRL 

861 
895 
675 



Gaits 

There are many different ways to compare the efficiency of different gaits, but the 

two that seem the most popular are specific resistance and travel efficiency. The 

specific resistance of a robot is a dimensionless number calculated by taking the 

average power divided by the product of the robot's weight and its average velocity 

as seen in Equation 6.1. The lower the specific resistance is, the more efficiently the 

robot is running [14]. 

The travel efficiency is simply the total energy used by the robot divided by the 

distance it traveled. The lower this number is, the less energy the robot is using to 

travel a given distance and thus the more efficiently it is moving. The total energy 

used by the Aibo can be found by integrating the total power curve for a given run. 

The average and integrated power values can be calculated several different ways. 

With many modem power supplies negative power can be regenerated making the 

robot considerably more efficient as long as there is enough capacitance to absorb 

excess energy and prevent over-voltages. If there is not enough capacitance to 

perform regeneration, a shunt regulator can be added in order to dissipate excess 

energy in the form of heat [I]. In this case, the negative portion of the power curve 

would become saturated at 0 W, effectively eliminating the negative powers fiom the 

curve. The final way of calculatingthe average and integrated power is to just use the 

absolute value of the power curve. To facilitate comparisons to other work, all three 

ways of calculating the power (regeneration, positive power, and absolute power) will 

be used. The results of these efficiency calculations for all of the final gaits developed 



during phase two of the learning are shown in Table 6.3. For the specific resistance 

calculations the mass of the Aibo was taken to be 1.6 kilograms. 

Table 6.3: Efficiency Calculations for the Phase Two Gaits 

Distance Traveled (m) 

Avg Velocity (cmls) 

Avg Regen Power (W) 
Avg Pos Power (W) 
Avg Abs Power (W) 

Regen Travel Eff. (Jlm) 
Pos Travel Eff. (Jlm) 
Abs Travel Eff. (Jlm) 

Regen Specific Res. 
Pos Specific Res. 
Abs Specific Res. 

The most efficient gait found is the GA trot with an absolute specific resistance of 

0.35, which is to be expected since the trots are the gaits with an average speed 

closest to the theoretical speed for an animal of about the Aibo's size starting the 

corresponding type of gait. This theoretical trotting speed was calculated to be 76.7 

c d s  from Equation 2.1 using a Froude number of 0.5 and a stance height of 12 

centimeters. 

What is surprising is that the gallops are also fairly efficient, even though they are 

much slower than the expected galloping speed. In fact, these gallop efficiencies are 

fairly comparable to those found by other galloping robot studies though the gallops 

found in those studies were much faster. Marhefka [37] found a specific resistance of 

0.40 (using the average absolute power) for a gallop with a top speed of 7.0 d s  for 

his simulation, though the robot used in that simulation was considerably larger than 

the Aibo. Krasny [32], who's robot ran at 4.15 d s ,  found a specific resistance of 0.59 

for his galloping robot simulation using the absolute power, 0.1 1 using positive 

power, and 0.03 using regeneration. The reason the positive and regeneration specific 

resistances are much lower than those of the GA and GCRL gallops even though the 

GA Values 

Trot 

8.34 

75.8 

1.91 

3.05 
4.2 

2.76 
4.41 

6.05 

0.16 
0.26 

0.35 

RL Values 

Trot 

8.4 1 

76.5 

2.6 

3.92 

5.25 

3.71 

5.61 
7.51 

0.22 

0.33 
0.44 

Canter 

8.8 

80.0 

4.81 

6.33 

7.85 

6.57 
8.64 

10.72 

0.38 

0.50 
0.63 

Gallop 

6.8 

61.8 

2.42 

3.29 

4.15 

4.28 

5.82 
7.35 

0.25 

0.34 
0.43 

Canter 

8.93 

81.2 

4.93 

6.29 

7.64 

6.65 

8.46 
10.28 

0.39 
0.49 

0.60 

Gallop 

6.78 

61.6 

2.12 

2.94 

3.76 

3.77 

5.22 

6.66 

0.22 

0.30 

0.39 



absolute specific resistance is considerably higher is most likely due to the fact that 

the knees on his robot model all bent the same way and the phasing on his gallop was 

better. 

The canters are far and away the least efficient of the three types of gaits, which is 

probably because of all the bouncing and large impact forces the legs are subjected to. 

These impacts caused large torque spikes, which increased the amount of power used, 

as did the extremely high speed of the step forward stage for the legs. However, since 

these large power increases were not accompanied by an equally large increase in the 

average speed, the efficiency for these canters is fairly low. 

Overall, it appears that for the Aibo, trotting gaits are the most efficient gaits for 

traveling at high speeds. The Aibo does not have the necessary torque, design, and 

sensors for it to effectively perform faster gaits such as the canter or the gallop. 

Lessons Learned 

The Aibo does not appear to have the capabilities to truly use dynamic gaits faster 

than a trot. This is due to a variety of factors involving the basic design of the robot. 

One of the Aibo's biggest problems is its size; it is so small and its legs are so short 

that it would need to have extremely low stride times in order to either gallop or 

canter. If the robot were larger, with longer legs the required stride times would be 

much larger and as a bonus, the top speed that the robot could attain would be 

significantly higher. A larger robot would also allow for motors with higher torques 

and allow room for electronics that would enable the robot to regenerate power in 

order to make it more efficient. In addition, more room for electronics would mean 

that upgraded processors or data communications could be put on the robot so that the 

controller update rate was high enough that the legs could follow the designated foot 

paths better and maintain more accurate phase differentials. 

Some design changes that would help the robot run more effectively would be to 

have the knees on both sets of legs bend the same way, preferably backwards as the 



front legs on the Aibo currently do. As the Aibo is presently designed there were 

some issues with leg interference as the robot ran and these issues would become 

more noticeable as the gaits got faster and the stride length increased. Another design 

change that would help minimize the bouncing and torque spikes that occurred in 

both the canter and the gallop would be to add torsional springs in series with the 

motors on the knees in order to help absorb the ground impacts. This change would 

also increase the efficiency of the robot by allowing it to store and release the impact 

energy helping it achieve the flight periods necessary for faster gaits [41]. Having 

springs in series with the knees enables energy to be rapidly injected into those joints 

during the thrust stage and then gradually released as the leg moves backwards along 

the ground as well, which has been found to be quite effective for galloping in 

previous studies [32, 341. 

The final change that would help the robot when using dynamic gaits would be to 

add two downward facing range sensors to the robot's body: one near the front left 

hip and the other near the back left hip. It is far more effective to preposition the legs 

at the desired forward position and use the height of the foot off the ground to trigger 

the early retraction stage than it is to just have the legs trace out their given foot path 

without any outside sensor input. For example, Krasny's [32] gallop would start by 

swinging the front legs forward to designated coordinates in a fixed amount of time. 

The legs would then stay there until the left front foot reached a specified height 

above the ground at which point it would begin the early retraction stage, followed by 

the thrust stage when the leg hit the ground. The right front leg would start its early 

retraction stage a certain amount of time after the left leg to maintain the proper 

phasing. Once the fiont legs were both on the ground, the rear legs would be in the air 

and they too would move forward to designated coordinates in a set amount of time 

and then stay there waiting for a trigger. The left back leg triggered when either the 

proper amount of time had passed according to its assigned leg phasing, or when the 

left back foot reached a certain height above the ground. The right back leg triggered 

a set amount of time after the left back leg. This system enabled the robot to adapt to 

slight variations in its roll and pitch as it ran without suffering the bouncing that 

occurred with the Aibo during the canter. It was also very effective at maintaining the 



correct leg phasing for the gait and could be applied to both the canter and the trot as 

well as the gallop. 

In terms of the gait learning process itself, some improvements could also have 

been made. In this thesis' research the robot started from a stand still and then began 

running. It might have been more effective to have the simulation start in the middle 

of the run (with the appropriate initial speed, height, and leg positions), so that one 

didn't have to worry about getting the robot to start moving and then accelerating up 

to speed. Once a good gait had been found, a different learning process could be 

performed to get the robot to transition from standing to the fill running gait. 



Chapter 7 Summary and Future Work 

7.1 Summary 

As more legged robots have begun to be developed for their obvious advantages 

in overall maneuverability and mobility over rough terrain and difficult obstacles, 

their shortcomings over flat terrain have become more apparent. Wheeled vehicles 

can cover flat terrain very efficiently and at a high rate of speed while legged 

platforms have been forced to plod along at nearly the same speeds they use to 

traverse rough terrain. This is primarily due to the fact that virtually all legged robots 

use a very stable, very slow walking gait to move, regardless of whether the ground is 

flat or rough. 

The simplest way of solving this problem is to use the same method as legged 

animals: simply change the gait from a walk to a faster more dynamic gait in order to 

increase the robot's speed. It would be extremely use l l  if legged robots were capable 

of moving across flat ground at speed while still retaining their ability to cross 

extremely rough or broken ground. Currently, legged robots are not used nearly as 

much as wheeled ones in large part due to how extremely slow they are. The ability to 

utilize dynamic gaits to achieve speeds nearer to those of their wheeled counterparts 

would close this gap and make legged robots far more use l l  and versatile than they 

currently are. 

For this thesis' research, a simulation of the Sony Aibo robot was used as a 

platform because it is one of the most capable and widely used quadruped robots. 

Unfortunately, programming dynamic gaits is extremely difficult, so evolutionary 

algorithms are used to learn the proper parameters to produce different types of gaits. 

The two algorithms that are used in this thesis are the genetic algorithm (GA) and a 

modified gradient-climbing reinforcement learning algorithm (GCRL). 

The thesis begins by providing some background information on various types of 

gaits, focusing specifically on the trot, the canter, and the gallop. It then details some 

of the other research that has been done with dynamic gaits as applied to robotics. 



Next, it describes the support programs that were written so that the machine 

learning algorithms could be applied to the problem of gait generation, focusing first 

on the simulation of the Aibo and then on the gait program that was written to take in 

a set of parameters and output the commands necessary for the simulated robot to 

move. 

The two learning algorithms used in this research were chosen due to their very 

different methods of operation. The GA breeds and mutates multiple individuals fiom 

one generation in order to create the next, while the GCRL creates many variations on 

the single best individual fiom the previous generation in order to create the next 

generation. The GA tends to be better at doing a comprehensive search of a large area 

in the parameter space and the GCRL tends to be better at doing a very thorough 

search of a small region in the parameter space. 

For each of the two algorithms there were two rounds of learning: in the first, 

gaits were generated using a random starting population, and in the second, the best 

gaits fiom several trials during the first round of learning were used as the starting 

population. The dynamics of the gaits generated fiom the second round of learning 

were then analyzed. 

The results from the two algorithms for both rounds of learning were compared 

and analyzed as well. It was found that as expected the GA did much better during the 

initial phase of learning because it is excels at doing wide-ranging searches, while the 

GCRL did better during the second round of testing because it was able to search the 

area around the high-fitness gaits more comprehensively. 

The efficiencies of the different types of gaits were also compared in order to 

determine the overall best type of gait for high-speed running with the Aibo. This 

turned out to be the trotting gait. Neither the canter nor the gallop could be performed 

by the Aibo very well due to a variety of problems with the robot's design. Finally, 

the thesis identifies these design problems and proposes possible solutions to rectify 

them on future quadruped robots. 



Future Work 

Improving the Controller 

The controller utilized in this research is able to handle a wide variety of different 

gaits, but can only perform a single gait at a time. It would be quite useful to create a 

controller that was capable of modifying the robot's speed on the fly, transitioning 

between different gaits, and performing high speed turning and trajectory control. 

Modifying the speed of the robot as it traveled would probably not be excessively 

difficult and could be accomplished by having the evolutionary algorithms learn the 

best gaits for a series of set speeds. Then to alter the robot's speed as it ran one would 

most likely just need to load the parameters for the different gaits in at a rate of a new 

gait every stride or two to transition between the gait for the current speed to the gait 

for the desired speed. For example, one could have the robot learn the optimum gaits 

for different speeds at 5 c d s  intervals. To change from running at 80 c d s  to running 

at 60 cmls would then require loading the 75 c d s  gait, waiting until the speed had 

dropped to 75 cmls, loading the 70 c d s  gait, waiting until the speed dropped to 70 

c d s  second, etc. This approach should work because though the gaits would have 

slightly different speeds, their leg phasing would be about the same so they would be 

easy to transition between, though rapid speed changes would be more difficult. 

Making a controller that could transition between different kinds of gaits, such as 

changing from a trot to a canter would be considerably harder. One possible simple 

approach might be to just have the robot make a relatively large bound and then 

change the leg phasing to the new gait while the robot is in the air. Depending on the 

speed that the legs can move and the size of the bound required this might work or it 

might not. Research into how biological quadrupeds transition between gaits would 

most likely be helpful when attempting to design this type of controller. 

Having a real-time trajectory and balance controller that could be either placed on 

top of the gait controller architecture or integrated into it is another element that will 

be required to make dynamic running useful on actual robots. Without the ability to 



turn at high speeds while the robot is galloping or to recover from an unexpected slip 

dynamic gaits will not be able to be used to perform real-world tasks. 

One area of research that has received almost no attention is trying to develop a 

dynamic gait that can operate over relatively rough terrain. This is an extremely 

complex problem that would require all of the previously mentioned control elements 

in addition to a heavy integration of sensor data into the controller. 

Transition to Actual Robots 

It would be good to try out the various gaits found in this thesis' research on an 

actual Aibo to see how well the simulation matches with reality and whether any 

unforeseen problems occur with the gaits due to the randomness and imperfection of 

real-world conditions. This could also help determine how accurate the various torque 

and power requirements are and whether the calculated efficiencies hold true in 

reality. 

A more interesting problem would be to try and build a robot using the 

recommendations from Section 6.2 that was truly designed for dynamic running and 

then developing gaits for that robot in simulation and evaluating them on the 

hardware. This would require a considerable amount of time and effort, but would 

probably prove very rewarding in the end considering the distinct lack of many actual 

robots that are capable of high speed dynamic gaits. 

Incorporating Real Time Learning and Sensory Input 

Both of the evolutionary algorithms used in this thesis' research were offline 

algorithms. Meaning that they do a full simulation run for various parameter sets, get 

the fitness scores at the end of the run, and finally, create new parameter sets based on 



those fitness scores. The problem with these offline methods is that they can only 

learn gaits for conditions that have been simulated for them and once they are placed 

on the actual robot they cease to evolve. 

Online learning methods, on the other hand, learn and adapt in real time as the 

robot runs. There are no separate trials for different parameter sets, the robot just 

learns about new situations as it experiences them. Using a temporal difference 

learning algorithm combined with a neural network is one popular method of online 

learning. It maps different states to outputs in real-time and when it comes across a 

state it hasn't seen before, it uses past experience to make a guess about the proper 

outputs and learns from the results of that guess. This means that it is always learning 

and it can adapt to new situations as they arise. One of the problems with online 

learning methods is that they require sensor data so that they can determine what state 

they are in and sensor data can often be noisy, which can inhibit the learning process. 

Another problem is determining how best to parameterize the state of the robot so that 

all of the relevant information is included without making the state space too large. 

Adding in sensory input to the controller at some point will be a necessity if 

dynamic gaits are ever going to be used on robots in the real world. They will be 

required for online learning, balance control, trajectory control, travel over rough 

terrain, and to allow the controller to make decisions about transitioning between 

different speeds and types of gaits. Yet little or no research has been done on what 

kind of sensor data would be important for the controller to have access to and how to 

best integrate noisy sensors with a gait controller. 
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