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Abstract 

Chapter 1. Metal-Based Turn-On Fluorescent Probes for Sensing Nitric Oxide 

Nitric oxide, a reactive free radical, regulates a variety of biological processes. 

The absence of tools to detect NO directly, rapidly, specifically and selectively 

motivated us to develop metal-based fluorescent probes to visualize the presence of 

NO. We have prepared and investigated Co(II), Fe(II), Ru(II), Rh(II), and Cu(I1) 

complexes as turn-on fluorescent NO sensors. Our exploration has provided insight 

into how the interaction of transition metal centers with nitric oxide can be utilized for 

NO sensing. 

Chapter 2. Fluorescence-Based Nitric Oxide Detection by Ruthenium Porphyrin 

Fluorophore Complexes 

The ruthenium(I1) porphyrin fluorophore complexes [Ru(TPP)(CO)(Ds-R)] (TPP 

= tetraphenylporphinato dianion; Ds = dansyl; R = irnidazole (im), I, or thiomorpholine 

(tm), 2) were synthesized and investigated for their ability to detect nitric oxide (NO) 

based on fluorescence. The X-ray crystal structures of 1 and 2 were determined. The Ds- 

im or Ds-tm ligand coordinates to an axial site of the ruthenium(I1) center through a 



nitrogen or sulfur atom, respectively. Both exhibit quenched fluorescence when excited 

at 368 or 345 nm. Displacement of the metal-coordinated fluorophore by NO restores 

fluorescence within minutes. These observations demonstrate fluorescence-based NO 

detection using ruthenium porphyrin fluorophore conjugates. 

Chapter 3. Nitric Oxide-Induced Fluorescence Enhancement by Displacement of 

Dansylated Ligands from Cobalt 

The cobalt complexes, [Co(Ds-AMP),] (1) and [Co(Ds-AQ),] (2), where Ds-AMP 

and Ds-AQ are the conjugate bases of dansyl aminomethylpyridine, Ds-HAMP, and 

dansyl aminoquinoline, Ds-HAQ, respectively, were synthesized in two steps as 

fluorescence-based nitric oxide (NO) sensors and characterized by X-ray 

crystallography. The fluorescence of both complexes was significantly quenched in 

CH3CN or CH30H compared to that of the free Ds-HAMP or Ds-HAQ ligands. 

Addition of NO to a CH3CN solution of 1 or 2 enhanced the integrated fluorescence 

emission by factors of 2.1(+0.3) or 3.6(*0.4) within 35 or 20 min, respectively. 

Introduction of NO to methanolic solutions similarly increased the fluorescence by 

1.4(*0.1) for 1 or 6.5(*1.4) for 2 within 1 h. These studies demonstrate that 1 and 2 can 

monitor the presence of NO with turn-on emission, and that their fluorescence 

responses are more rapid than those of previously reported cobalt systems in 

coordinating solvents such as CH3CN and CH30H. 'H NMR and IR spectroscopic data 

revealed the formation of a {Co(NO)2)'0 cobalt dinitrosyl adduct with concomitant 

dissociation of one ligand from the cobalt center as the metal-containing product of the 

NO reactions, indicating NO-induced ligand release to be the cause of the fluorescence 

increase. 



Chapter 4. Fluorescent Nitric Oxide Detection by Copper Complexes Bearing 

Anthracenyl and Dansyl Fluorophore Ligands 

Anthrancenyl and dansyl fluorophore ligands (AnCH2pipCS2K (I), Ds-Hen (2), 

Ds-HAMP (3), Ds-HAQ (4), and Ds-HAPP (5)) were prepared for copper(I1). Five 

copper complexes, [Cu(A.CH2pipCS2),] (6), [Cu(Ds-en),] (7), [Cu(Ds-AMP),] (8 ) , 

[Cu(Ds-AQ),] (9), and [Cu(Ds-APP)(OTf)] (lo), were synthesized for fluorescent nitric 

oxide (NO) detection and were characterized by X-ray crystallography. A decrease in 

fluorescence of free ligands (1 - 5) coordinated to the Cu(I1) center was observed in all 

Cu(I1) complexes (6 - 10). The fluorescence of fluorophore ligands in Cu(I1) complexes 

was restored in the presence of NO in a CH,OH/CH,Cl, solvent. Furthermore, 

compounds 7,8, and 10, exhibited fluorescence response to NO in aqueous pH 7.0 or 9.0 

buffered solutions. Fluorescence enhancement of these Cu(1I) complexes occurs by NO- 

induced reduction from Cu(I1) to Cu(I), as demonstrated spectroscopically. The present 

work suggest that a copper(I1) complex would be effective as a fluorescent probe for 

sensing NO in both organic and aqueous settings. 

Chapter 5. Direct Nitric Oxide Detection In Aqueous Solution by Copper(I1) 

Fluorescein Complexes 

Fluorescein-based ligands (FL, n = 1 - 5) for Cu(I1) were synthesized and their 

photophysical properties were determined. Introduction of nitric oxide (NO) to a pH 7.0 

buffered solution of Cu(FLn) (1 pM CuCl, and 1 pM F Ln) induces an increase in 

fluorescence at 37 "C. The fluorescence response of Cu(FLn) is direct and specific, which 

is a significant improvement of commercially available small molecule-based probes 

that are capable only of indirect NO detection. NO-triggered fluorescence increase of 



Cu(FLn) occurs by reduction of Cu(I1) to Cu(1) with concomitant dissociation of the N- 

nitrosated fluorophore ligand from copper. Spectroscopic and product analyses of the 

reaction of the copper fluorescein complex with NO suggest that the N-nitrosated 

fluorescein ligand (FL,-NO) is the species for fluorescence turn-on. Density functional 

theory (DFT) calculations of FL5 versus FL5-NO reveal how N-nitrosation of the 

fluorophore ligand causes the fluorescence increase. The investigation of copper-based 

probes described in the present work is the basis for developing a metal complex for 

fluorescent NO detection. 

Chapter 6. Visualization of Nitric Oxide in Living Cells by a Copper-Based 

Fluorescent Probe 

Nitric oxide (NO) is a highly reactive gaseous free radical that serves as a 

messenger for cellular signaling. To visualize NO in living cells, a turn-on fluorescent 

probe was designed and synthesized for use in combination with microscopy. Unlike 

existing fluorescent sensors, the construct, a Cu(I1) complex of a fluorescein modified 

with an appended metal-chelating ligand (FL), directly and immediately images NO 

rather than a derivative reactive nitrogen species (RNS). Nitric oxide produced by both 

constitutive (cNOS) and inducible (iNOS) NO synthases in live neurons and 

macrophages is detected by the Cu(1I)-based imaging agent in a concentration- and 

time-dependent manner. The sensitivity to nM levels of NO and the spatiotemporal 

information provided by this complex demonstrate its value for numerous biological 

applications. 

Appendix. Fluorescent Detection of Nitric Oxide by a Rhodium Fluorophore 

Embedded in a Silastic Polymer Using Two-Photon Microscopy 



A Silastic membrane embedded with a dirhodium fluorophore conjugate, [Rh2(p- 

02CPr),(Ds-pip)] (Ds-pip = dansyl-piperzine), was prepared. Nitric oxide (NO) in 

aqueous media replaces the Ds-pip bound to the dirhodium core in the solid state, 

inducing the fluorescence increase observed by two-photon spectroscopy. This 

observation is the first effort for NO detection using two-photon microscopy and 

represents an initial step toward fiber-optic-based NO sensing in aqueous media using 

this dirhodium-containing polymer. 
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Chapter 1 

Metal-Based Turn-On Fluorescent Probes 

for Sensing Nitric Oxide 



Introduction 

Nitric oxide (NO) is produced by inducible and constitutive nitric oxide 

synthases (iNOS and cNOS) resulting in a wide range of concentrations in biological 

Depending on its concentrations in an organism, NO has diverse biological 

functions. At the low concentrations generated by cNOS, having both endothelial and 

neuronal isoforms (eNOS and nNOS), NO can regulate vasodilation, defend against 

pathogens, and effect long term p~tentiation.'-~ In contrast, the micromolar 

concentrations of NO produced by iNOS stimulate the formation of reactive nitrogen 

species (RNS), which affects carcinogenesis and neurodegenerative disorder~.~-~t~."'~ 

Since NO is a reactive free radical that rapidly diffuses through most cells and 

 tissue^,"^'^ it is critical to have a method to follow NO immediately upon production. 

Such a method can enhance an understanding of nitric oxide activity in vivo. 

Fluorescence detection allows imaging of intracellular and extracellular NO when 

combined with microscopy, providing high spatiotemporal res~lution'~~'~ compared to 

other methods such as chemilumine~cence,~~ EPR spectroscopy,13 and amperometry.16 

For bioimaging of NO, the commercial organic molecule-based sensors, o- 

diaminonaphthalene (DAN) and o-diaminofluoresceins (DAFs) (Figure 1.1), are 

commonly used.13#17 Their fluorescent response, however, arises upon formation of a 

triazole species by oxidized NO products such as N203. They are therefore unable to 

monitor NO itself, which means that NO-related bio-events would not be evaluated in a 

real-time manner. 

There are several requirements for fluorescent nitric oxide sensors to be useful in 

biology. Probes should be non-toxic and afford direct, fast, reversible, specific, and 

selective NO detection. It is preferable that they contain fluorophores that excite and 

emit in the visible or near-infrared region, which is relatively impervious to interference 



from cellular damage by UV light. Real-time imaging with spatial information is 

desirable. 

To address the lack of suitable NO sensors, we have investigated the reactions 

between nitric oxide and transition metal complexes to devise metal-based fluorescent 

sensors that satisfy the aforementioned criteria. This chapter describes the possible 

strategies of nitric oxide sensing utilizing redox active transition metal centers. The 

evolution of transition metal-based probes to achieve a viable biosensor are also 

described, accompanied by detailed mechanistic studies by our and other research 

groups. 

Strategies for Metal-Based Fluorescent Nitric Oxide Sensing 

The first metal-based fluorescent nitric oxide sensor, an iron cyclam complex, 

exhibited diminished emission intensity upon NO binding to the iron center? An iron 

dithiocarbamate complex with an acridine-TEMPO ligand also displayed a decrease in 

fluorescence after NO binding.lg Fluorescence enhancement is generally preferred over 

fluorescence quenching when monitoring an analyte in biological systems. When we 

embarked on our research, no examples of metal-based tum-on fluorescent nitric oxide 

sensors existed. Our strategies to design transition metal-based fluorescent probes with 

an increase in fluorescence upon introduction of NO are described herein. 

Fluorophore Displacement without Metal Reduction. This approach relies 

upon the formation of a metal-nitrosyl addud, releasing a fluorophore that was initially 

quenched by coordination to a paramagnetic transition metal center by electron or 

energy transfer (Scheme l.la)?' Fluorophores can bind the metal center as axial ligands. 

Introduction of nitric oxide causes their release from the metal center with concomitant 



fluorescence turn-on. This strategy has been applied in an iron cyclam complext2* 

ruthenium porphyr in~~~ and dirhodium tetracarboxylate com~lexes.~~ 

Metal Reduction without Fluorophore Displacement. Nitric oxide reduces 

Cu(11) to Cu(1) in the presence of an alcohol or water (ROH), forming RON0 and H' (R 

= Me or H), without loss of the ligand from the metal center (Scheme l.lb)." Detailed 

mechanistic studies of the reduction of Cu(I1) to Cu(1) by NO suggested to us that their 

Cu(11)-based nitric oxide chemistry might form the sensors. Specifically, fluorophore 

fluorescence, quenched by a paramagnetic Cu(I1) environment, is restored upon NO- 

induced reduction to a diamagnetic Cu(1) species having fluorophore ligands (Scheme 

l.lb). We devised three Cu(I1) complexes utilizing this ~ t r a t e g y . ~ ~ # ~ ~  

Metal Reduction with Fluorophore Displacement. Reductive nitrosylation has 

been reported in the reactions of NO with complexes of metals, including Co and Fe?427- 

29 In the cobalt and iron systems, the ligand can also be displaced by NO via reductive 

nitro~ylation?'~~~ In this reaction, fluorophore ligands initially coordinated to the metal 

are dissociated with a concomitant fluorescence increase upon exposure to NO. The 

displacement of fluorophore ligands by NO allowed us to design our first fluorescent 

NO sensors, cobalt-DATI (DATI = dansyl-aminotroponimine, Figure 1.2) and other 

cobalt compounds, which are described below (Scheme l . l ~ . i ) ? ~ ~ ~  

During the metal reduction by NO, the nitrosonium ion, NO+, is formed as 

shown in Scheme l.lb. It can then react with an amine functionality to produce an N- 

nitr~samine.~~ Upon addition of NO, a fluorophore containing an amine motif 

coordinated to the metal center is readily N-nitrosated via an intramolecular pathway, 

followed by its dissociation and consequent fluorescence enhancement (Scheme 1.lc.ii). 

Increased fluorescence was observed in the NO reaction of a copper anthracenyl-cyclam 

complex prepared via the N-nitrosation of a cyclam ligand?' Utilizing this fluorophore- 



displacement strategy via N-nitrosation of the ligand, new metal-based nitric oxide 

sensors were developed. We constructed a dicobalt(I1) tetracarboxylate scaffold and a 

copper(I1) fluorescein complex based on this approach for nitric oxide sensing by turn- 

on fluores~ence.~~ 

Cobalt(I1) Complexes 

Co-DATI Systems. The reaction of air-stable cobalt(I1) tropocoronand complexes 

with NO were previously studied in our lab~ratory.~ Their NO reactivity suggested 

that Co(I1)-DATI systems of the dansyl-containing aminotroponimine ligands, HRDATI 

and H2DATI-4 (Figure 1.2), may be suitable targets for fluorescent NO sensors. We 

prepared four Co(I1) complexes: [CO(~T~ATI),] (I), [CO('~"DATI),] (2), [CO(~'DATI)~] (3), 

and [Co(DATI-4)] (4) (Figure 1 . 3 ) . ~ ~  These Co(I1) complexes all have a pseudo- 

tetrahedral geometry with dihedral angles between the Somembered chelate rings in 1, 

2,3, and 4, of 76.1°, 81.4", 73.80f and 62.29 respectively." These various values reflect the 

different steric requirements of the R substituents. The dansyl groups in 3 and 4 align in 

a parallel-planar fashion, with an average distance between the ring planes of 3.5(1) A 

and 3.63(9) & respectively. These distances are within the range for n-n stacking 

interaction~,~~ which could possibly quench the fluorescence of the dansyl groups. 

The fluorescence of the cobalt complexes (40 pM) is significantly quenched to 

only 5 - 6% of the intensity of the free ligands in CH2C12 (Figure 1.4)." Quenching of 

fluorescence is hypothesized to result from the interaction between the excited 

fluorophore and the empty or filled d orbitals on the transition metal via electron or 

energy transferO2O Upon addition of NO to the CH2Cl2 solution of 1, a slow and steady & 

fold fluorescence increase relative to the starting complex 1 was noted over 6 h (Figure 



1.4)." The initial fluorescent NO response of 4, however, is faster than that of 1. A two- 

fold fluorescence increase caused by the reaction of 4 with NO occurred within 3 min in 

CH2C12 and continued to rise over 6 h to a final Cfold increaseOa The NO detection limit 

of 4 is 50 - 100 pM. The tetramethylene linker chain of 4 (Figure 1.3) effects greater 

distortion at the Co(I1) center than occurs in 1,2, and 3, which may result in its different 

NO reactivity. 

The NO-induced fluorescence enhancement is a consequence of fluorophore 

dissociation upon formation of Co(1I)-dinitrosyl adducts in the reaction. These reactions 

were monitored by IR and 'H NMR spectroscopy. Several hours after addition of excess 

NO to CH2C12 solutions of 1, two IR bands at 1838 and 1760 an-' appeared, indicating 

the formation of dinitrosyl cornplexe~.~ The 'H NMR spectrum after NO reaction 

revealed two sets of resonances for diamagnetic compounds corresponding to the free 

ligand HiPQATI and the (Co(NO),)'O species [CO(NO),(*~~ATI)].~ Thus, the NO 

reaction proceeds by a reductive nitrosylation mechanism (Scheme 1.2), consistent with 

a fluorescence increase resulting from fluorophore dissociation upon NO binding to 

Co(II) (Scheme 1.1 c.i) . 
Dicobalt(I1) Tetracarboxylate Complex. A dicobalt(I1) tetracarboxylate complex 

with N-donor ligands, [CO~(~-O~CA~~~~)~(O~CA~~~~)~(~~)~], where 02CArTo1 = 2,6-di(p- 

toly1)benzoate and py = pyridine, was previously reported by our lab~ratory.~~ The 

properties of this complex, such as air-stability and N-donor ligand binding to the metal 

core, inspired us to examine a carboxylate-bridged dimetallic complex with 

fluorophore-appended nitrogen bases coordinated to the metal center as a fluorescent 

NO sensor. A dicobalt(I1) complex, with dansyl-piperazine (Ds-pip) as the fluorophore, 

was prepared and demonstrated to exist in solution as an equilibrium mixture of 



windmill [CO~(~-O~CA~~~')~(O~CA~~~~)~(DS-~~~)~] (5 ) and p ad dle w he el [ C 02(p- 

02CArT01)4(Ds-pip)2] (6) geometric isomers, the ratio of which depends on temperature 

(Figure 1.5)." Complex 6 is the predominant species in solution at room temperature. 

When non-fluorescent 6 (100 pM) was allowed to react with 150 equiv of NO, a 

9.6-fold fluorescence increase occurred within 1 h in CH2Cl, and emission maximum 

shifted from 503 nm to 513 nm (a = 350 nm)?2 IR spectroscopy in situ revealed, two 

noticeable bands at 1864 and 1783 cm-', consistent with the formation of a Co(1) 

dinitrosyl adduct. The band attributed to a carboxylate C-0 stretching mode at 1610 

an-' in 6 disappeared and was replaced by a new band at 1745 cm-I assigned to the free 

carboxylic acid during the NO reaction. These results indicate a structural change at the 

metal center involving the carboxylate ligand~?~ X-ray crystallographic analysis of a 

dicobalt tetranitrosyl complex [CO~(~-O~CA~~~'),(NO)~] and N-nitroso dansyl-piperazine 

formed during the reaction indicate that NO reductively nitrosylates 6 at the dicobalt(I1) 

core to generate NO', which in turn nitrosates the ligand with concomitant dissociation 

from cobalt and turn-on fluorescence emission (Scheme 1.3). The observed formation of 

the N-nitrosated fluorophore ligand helps to explain the emission maximum shift after 

the NO reaction.32 Thus, the fluorophore dissociation strategy (Scheme l.lc.i), involving 

N-nitrosation of the fluorophore ligand during reductive nitrosylation at the metal 

center, is responsible for the increase of fluorescence upon treatment of these dicobalt 

systems with NO. 

Other Cobalt Dansyl Complexes. To improve the aqueous solubility as well as 

the kinetics of fluorescence turn-on by NO in the Co(I1) systems, we synthesized the 

non-fluorescent air-stable Co(I1) complexes [~~(DS-AMP)~] (7) and [CO(DS-AQ)~] (8) 

(Figure 1.6), where Ds-AMP and Ds-AQ are the conjugate bases of dansyl- 



aminomethylpyridine (Ds-HAMP) and dansyl-arninoquinoline (Ds-HAQ). These Co(I1) 

complexes were obtained in high yield and only two steps?' X-ray crystal structure 

determinations of both complexes revealed a pseudotetrahedral geometry with a 

dihedral angle (8 = 76.8" for both 7 and 8) similar to those of the Co-DATI complexes 

(Figure 1.6). 

Fluorescence enhancement of 7 and 8 upon NO treatment was observed in both 

CH3CN and CH30H solvents, which are more similar to aqueous media than less polar 

CH2C12. For example, upon admission of NO to CH3CN solutions of Co(11) complexes 

(10 pM), the fluorescence was increased by 2.1-fold within 35 min for 7 and by 3.6-fold 

within 20 min for 8, restoring half of that displayed by two equiv of the free ligands, Ds- 

HAMP or Ds-HAQ (A, = 342 nm)." To understand further the mechanism of the NO- 

induced fluorescence increase, we investigated the NO reaction with 7 in situ by IR 

((Co(NO),), v,, = 1766 and 1693 cm-') and 'H NMR (two sets of diamagnetically shifted 

peaks) spectroscopy." A diamagnetic dinitrosyl adduct, presumably [Co(Ds- 

AMP)(NO),], and one free Ds-HAMP ligand were formed in the NO reaction of 7, 

analogous to the reaction of Co-DATI complexes with NO (Scheme 1.2). Thus, NO 

sensing by turn-on fluorescence of 7 and 8 occurs by ejection of one fluorophore ligand 

from the cobalt coordination sphere via reductive nitrosylation, as described in Scheme 

1.1c.i. 

Co-FAT1 Systems. The dansyl group that was used in the cobalt complexes 

above is not optimal for in vivo imaging of NO because it requires high excitation 

energy, which can damage cells. We therefore designed two Co(I1) complexes with 

fluorescein-based ligands, each with an arninotroponiminate moiety, [Co("TATI-3)] (9) 

and [CO('~'FATI-~)] (10) (Figure 1.7)? Although X-ray structure determinations of 9 and 



10 were not obtained, both complexes are expected to be mononuclear based on mass 

spectrometric analysis. Compound 10 might have a dinuclear structure by analogy to 

that of the related complex [CO,('RSATI-~),] (SAT1 = salicylaldimine) (Figure 1.8)) 

however? 

Addition of excess NO to CH30H solutions of both 9 and 10 (10 pM) showed a 

fluorescence increase of only 20% over 4 h for 9 and 3-fold over 22 h for 10 (kX = 503 

nm, &, = 530 nm), which is significantly slower than encountered with the previous 

Co(I1) systems.27a3237#.38 Infrared studies of the reaction of 9 with NO indicates that 

mononitrosyl(1630 cm-') and dinitrogen (2114 cm") adducts were formed? We cannot 

rule out the formation of dinitrosyl species, however, since an intense band for the 

fluorescein carboxylic acid at 1759 an-' overlaps with the IR bands of v,, in (Co(NO),]. 

Complex 10 also formed the 2117 cm-' band which most likely corresponds to a 

dinitrogen adduct. Since multiple products are formed during the reaction, it is not 

clear from which species fluorescence enhancement arises. Based on IR studies of 9 and 

10, emission may be increased due to the formation of mononitrosyl or dinitrogen 

adducts. 

Iron(I1) Complexes 

Iron(I1) Mmc-cyclam. An Fe(I1) methoxycoumarinomethyl-cyclam (Mmc- 

cyclam) scaffold containing a fluorescamine-PROXYL group (11, Scheme 1.4) was 

synthesized as a ratiometric fluorescent NO sensor with the aim of utilizing the 

fluorophore-displacement strategy (Scheme l.la).,l When 1 1 is excited at 360 nm, 

fluorescence resonance energy transfer (FRET) occurs from Mmc-cyclam (A, = 360 nm, 

hrn = 410 nm) to fluorescarnine-PROXYL (& = 385 nm, Am = 470 nm). Treatment of 11 



in a pH 7.4 buffered solution (40 pM) with the NO-releasing agent NOC-7 produced an 

increase in emission intensity over 1 h at 410 nm and 470 nm by 1.17-fold and 0.75-fold, 

respectively." The NO detection limit for 11 is less than 100 nM. The fluorescence turn- 

on of 11 by NO arises from dissociation of fluorescarnine-PROXYL upon NO binding to 

the iron center, showing the restored fluorescence of Mmc-cyclam (Scheme 1.4). 

Although 11 is capable of monitoring NO by fluorescence turn-on at a physiological pH, 

it is not practical for the bio-imaging of NO due to its sensitivity to 0, slow response to 

NO, and small increase in fluorescence intensity. 

Diiron(I1) Tetracarboxylate Complex. Several diiron(I1) terphenylcarboxylato 

complexes with N-donor ligands have been rep0rted.3~~' We prepared a diiron(I1)-based 

NO sensor [Fe,(p-02CArTo1),(Ds-pip),] (12, Figure 1.9) by an approach similar to that 

used for dicobalt(I1) complexes 5 and 6.32 Exposure of 12 (0.1 mM) to 1 equiv of NO in 

CH,C12 elicited a 4-fold increase in emission intensity within 5 min (A, = 350 nm)? The 

reaction of 12 with 0, however, also led to fluorescence enhancement by 2.&fold over 

15 min. Infrared spectroscopic studies of 12 (0.5 mM) with 10 equiv of NO revealed two 

new IR bands at 1797 and 1726 cm-', consistent with formation of an Fe(NO), unit, and 

concomitant loss of the carboxylate stretching band at 1605 cm-'. These observations 

possibly indicate generation of a diiron tetranitrosyl complex with two bridging 

carboxylate ligands during the reaction." Thus, the NO-induced fluorescence increase 

would occur by ligand dissociation from the diiron core. Although 12, like 11, reacts 

with NO resulting in a fluorescence increase, the 0,-sensitivity of 12 renders it 

unsuitable as a NO sensor. 

Ruthenium(I1) Tetraphenylporphyrins 



Ruthenium(I1) porphyrins form stable nitrosyl complexes upon exposure to 

NO? The axial positions on the Ru(I1) center are available for fluorophore ligands as 

well. The affinity of NO for the Ru(I1) porphyrins was therefore utilized to devise a new 

NO sensor based on the fluorophore-displacement strategy (Scheme Ma). We 

constructed ruthenium carbonyl tetraphenylporphyrin complexes with a dansyl- 

derivatized axial base, imidazole (Ds-im) or thiomorpholine (Ds-tm), [Ru(TPP)(CO)(Ds- 

im)] (13) and [Ru(TPP)(CO)(Ds-tm)] (14) (Figure 1.10). These compounds are expected 

to detect NO via the fluophore-displacement strategy." The fluorophores are 

coordinated to the axial site of the Ru(I1) center trans to CO via the nitrogen atom of 

imidazole or sulfur atom of thiomorpholine, as confirmed by an X-ray structure 

determination (Figure 1 .lo). 

Reaction of 13 and 14 (10 @) with 100 equiv of NO in CH2C12 afforded a 19-fold 

increase in fluorescence within 20 min and an immediate 1.3-fold increase in 

fluorescence, respectively (A, = 368 nm for Ds-im, A, = 345 nm for Ds-tm). Isolation and 

characterization of the Ru-containing product in the NO reactions of 13 revealed that 

both CO and dansyl-containing fluorophore ligands dissociate from the Ru(11) center 

during the reaction. The product isolated is [RU(TPP)(NO)(ONO)].*~~~~~ Release of the 

free fluorophore ligand from Ru(I1) formed during the NO reaction of 13 was monitored 

by 'H NMR spectroscopy." Thus, the fluorescence enhancement that occurs upon 

addition of NO to 13 and 14 arises from displacement of Ds-im or Ds-tm from the axial 

sites, restoring their turn-on emission (Scheme I. la). 

Dirhodium(I1) Tetracarboxylates 



Various ligands including nitric oxide can be coordinated as axial ligands to a 

tetra-bridged dirhodium core? A nitrosyl adduct obtained from the reaction of NO 

with solid [Rh,(p-02CMe),] can be reversed upon heating to 120 OC," suggesting that a 

dirhodium fluorophore complex might potentially be a reversible NO sensor. We 

designed dirhodium tetracarboxylate scaffolds containing bound fluorophores [Rh,(p- 

02CMe),(Ds-pip)] (15) and [Rh,(p-02CMe),(Ds-im)] (16) (Figure 1 .I 1). These compounds 

were synthesized in situ by the reaction of [Rh,(p-02CMe),] of Ds-pip or D ~ - i m . ~  X-ray 

crystallographic studies of the isolated dirhodium tetracarboxylate complexes with Ds- 

pip and Ds-im revealed coordination to the axial positions of the dirhodium core by the 

piperazine and imidazole nitrogen atoms, respe~tively.~ 

When 15 was exposure to 100 equiv of NO in 1,2-dichloroethane (DCE), there 

was an immediate 26-fold increase in fluorescence (Ig ,  = 345 nm).z A 16-fold increased 

fluorescence was observed upon addition of 100 equiv of NO to a DCE solution of 16 

(3L, = 365 nm).= The fluorescence response of both compounds was reversible and their 

sensitivity to NO extended to -4 pM solutions. 

NO sequentially generates mono- and dinitrosyl adducts with dirhodium 

tetracarboxylates. Although the mononitrosyl species has not been isolated, dirhodium 

dinitrosyl complexes were obtained and characterized by IR spectroscopy ([Rh2(p- 

02CMe)4(NO)2It  NO = 1729 and 1698 cm-' in KBr, v,, = 1702 cm-* in DCE) and X-ray 

crystallography (Figure 1.12).23 Thus, the NO-induced fluorescence turn-on is due to the 

formation of metal nitrosyl species with concomitant dissociation of dansyl 

fluorophores from the quenching environment of the R .  core (Scheme Ma). 

A kinetic study of the reaction at -80 OC revealed it to be complete within the 1- 

ms mixing time of the stopped-flow experiment, corresponding to an on-rate of at least 



4 x lo6 s" at 40 "C? Fast and reversible NO detection utilizing dirhodium complexes 15 

and 16 suggests their potential value as real-time imaging agents for NO in biological 

systems. They are incompatible with aqueous media, however, since water itself can 

displace the fluorophore ligand and bind to the dirhodium core. One approach to 

achieve water-compatibility is to isolate a solution of the dirhodium sensor behind a 

Silastic membrane that is impermeable to water, but permits NO gas transport. In one 

such experiment, the fluorescence of a 20 pM Ds-pip and 40 pM [Rh,(p-02CMe),] 

solution in CH2C1, which was sequestered from a saturated aqueous NO solution by 

the membrane, immediately increased upon application of the nitric oxide (Figure 

1.13a)? In a separate strategy the dirhodium sensor was embedded within the Silastic 

membrane. When membrane-encapsulated [Rh,(p-02CPr),(Ds-pip)] was treated with an 

aqueous solution of NO, an immediate fluorescence increase was observed (Figure 

1.13b).% These experiments illustrate a potential approach to fascinating fiber-optic or 

film-based NO sensing devises for study in biological fluids using dirhodium- 

containing polymers. 

Copper(I1) Complexes 

Copper(I1) Dansyl Complexes. Nitric oxide reduces Cu(I1) to Cu(I), a process 

that has been well-investigated.', Quenching of the fluorescence of the luminescent 

ligand by coordination to a paramagnetic Cu(I1) center can be restored by NO-induced 

reduction to diamagnetic Cu(1) (Scheme l.lb). We applied this strategy to develop two 

water-soluble Cu(I1) complexes [C~(Ds-en)~] (1 7) and [~~(DS-AMP)~]  (18) (Figure 1.14), 

where Ds-en is the conjugate base of dansyl ethylenediamine.25t478* X-ray crystal 



structures of both 17 and 18 indicate that the Cu(I1) center is coordinated by two dansyl- 

containing ligands (Figure 1.14) 

The fluorescence response of 17 and 18 to NO was monitored with 10 nM 

sensitivity in both organic and aqueous buffered solutions. Fluorescence experiments 

demonstrated significant Cu(1I)-induced quenching in both organic (4:l 

CH30H:CH2C12) and aqueous buffered solutions, compared to the free ligands (a, = 342 

nm).= Upon addition of NO to an organic solution of 17 and 18 (20 pM, 4:l 

CH30H:CH,C12), emission intensity was immediately increased by 6.1-fold for 17 and 

8.8-fold for 18 with a sensitivity of 10 nM.= Addition of NO to an aqueous buffered 

solution (50 mM CHES, pH 9, 100 mM KCl) of 17 or 18 (10 pM) also caused a 

fluorescence increase by 2.3- or 2.0-fold, respectivelymZ Although this pH is not within 

the typical physiological range, these complexes allowed for the first time NO sensing 

in purely aqueous solutions with significant fluorescence turn-on at physiological 

relevant concentrations. 

NO-induced fluorescence enhancement in these Cu(I1) systems occurs by 

formation of a diamagnetic Cu(1) species, as mentioned previously, as well as 

dissociation of the sulfonamide functionality by protonation. Evidence that a Cu(1) 

species forms in the NO reactions of the Cu(I1) complexes was provided by EPR 

spectroscopy, which displayed a decrease in the Cu(11) EPR signal.= The protonation of 

the sulfonamide functionality was observed by IR spectroscopy (v,, = 3083 cm-').= A 

proton was generated from the reaction of ROH, either CHQH or H,O, with NO+ 

produced during the course of the NO reactions. Further support for the proposed 

mechanism was provided by the reactions of NO in the absence of ROH and of ROH 

with NOBF,. The 'H NMR spectrum indicated that complete dissociation of dansyl 



ligands does not occur after the NO reaction? Therefore, fluorescence is increased by 

NO-induced reduction of Cu(I1) to Cu(1) without complete dissociation of fluorophore 

ligand from the Cu center (Scheme 1.lb). 

Copper(I1) Conjugated Polymer. A conjugated polymer (CPla), composed of a 

bipyridyl-substituted poly(p-phenylene vinylene), was prepared as a fluorophore 

ligand for Cu(I1) (Figure 1.15):~ The fluorescence of CPla was sigruficantly quenched in 

the presence of Cu(I1). Addition of 300 equiv of NO to Cu(I1)-CPla (19) in 4:l 

CH2C12:CH3CH20H immediately induced a 2.8-fold fluorescence enhancement (lb, = 462 

nm, = 542 nm)? This fluorescence response is caused by reduction of Cu(I1) to Cu(1) 

without fluorophore release (Scheme l.lb), as described above for 17 and 18. The 

fluorescence increase by NO was not observed in the absence of added ROH. Selectivity 

studies versus other reactive nitrogen species such as nitrosothiol (RSNO), NO+, and 

HNO, were performed and revealed that only nitroxyl elicited an immediate 2.8-fold 

increase in fluorescence." The detection limit for NO by 19 is 6.3 nM, which was 

measured by using the NO-releasing agent S-nitroso-N-acetylpenicillamine (SNAP)." 

Copper(I1) Anthracenyl-Cyclam. A copper(I1) complex of a cyclam dervative 

having pendent anthracyl groups, CU(DAC)~+ (2 0 ) (DAC = bis(9- 

anthracylmethyl)cyclam), was recently reported (Figure 1.16):' Addition of excess NO 

to the weakly-fluorescent 20 in aqueous CH,OH (10:l CH30H:H20) solution resulted in 

slow restoration of anthracene emission over 45 ~nin.~' This increase in fluorescence 

occurs by release of the N-nitrosated DAC ligand from the Cu center with concomitant 

reduction of Cu(I1) to Cu(1) (Scheme 1.lc.ii). The presence of a Cu(1) species during the 

NO reaction was determined by UV-vis spectroscopy (disappearance of a d-d 

absorption band at 566 nm) and electrochemical studies?' Formation of the N-nitrosated 



DAC ligand during the reaction was confirmed by ESI-MS (m/z = 610 corresponding to 

[DAC + NO]+) and 'H COSY NMR spectroscopy (1:l E:Z isomers)." The ligand 

dissociation in the NO reaction of 20 may be explained by the less basic nature of the N- 

nitrosoamine and the geometric mismatch between the cyclam ring and Cu(I), which 

prefers a tetrahedral coordination environment. 

Copper(I1) Fluorescein Complex. For intracellular NO sensing we applied the 

strategy described in Scheme 1.lc.ii to design a Cu(I1) fluorescein complex. The Cu(I1) 

fluorescein-based NO sensor CuFL (21) (FL = 2-(2-chloro-6-hydroxy-5-[(2-methyl- 

quinolin-8-ylamino)-methyl]-39xo-3H-xanthen-9-y1)be~oic acid) was formed in situ by 

reacting FL with CuCl, in a 1:l ratio at pH 7.0 (50 mM PIPES, 100 mM KCl) (Figure 

1.17).33 Introduction of NO to a non-fluorescent buffered solution of 21 (1 pM) at 37 OC 

led to an immediate 11-fold fluorescence enhancement, which continued to rise to 16- 

fold over 5 min with a sensitivity of 5 nM.= Compound 21 is highly specific for NO over 

other biologically relevant species such as HNO, NO,-, NO, ONOO-, and H,O,." 

As described in Schemes 1.lc.ii and 1.5, NO-induced metal reduction of Cu(I1) to 

Cu(I), forming the N-nitrosamine of FL (FL-NO), occurs in the NO reaction of 21. 

Reduction of Cu(I1) to Cu(1) by NO during the reaction was confirmed by following the 

decrease of Cu(11) EPR signals.33 The formation of the N-nitrosated FL ligand was 

proved by product analysis using LC-MS and comparison with independently prepared 

FL-NO. The red-shifted UV-vis spectrum observed following the addition of excess NO 

to 21 is the same as that of free FL and different from the spectrum observed upon 

mixing free FL with the Cu(1) salt [Cu(CH,CN),](BF,), indicating that FL-NO dissociates 

from the Cu center? Thus, the turn-on fluorescence is a result of N-nitrosated 

fluorophore displacement via reduction of the metal center (Scheme 1.lc.ii). 



The ability of 21 to deted NO directly, rapidly, and specifically at a physiological 

pH encouraged us to apply it to image NO production in live cells. We tested 21 for its 

ability to visualize biological NO in Raw 264.7 murine macrophage cells, for iNOS- 

generated NO, and in SK-N-SH human neuroblastoma cells, for cNOS-produced NO. 

Time-dependent NO generation in Raw 264.7 cells stimulated with bacterial 

lipopolysaccharide and interferon-y was monitored by 21 using fluorescence 

microscopy (Figure 1.18).33 The fluorescence intensity derived from 21 was diminished 

in Raw 264.7 cells in which iNOS silenced by RNA interference (Figure 1.18), or in the 

presence of p-methyl-~Oarginine (L-NMA), a known inhibitor of iNOS.= These control 

experiments indicate that the observed results originate from the reaction of 21 with 

NO. We also investigated the ability of 21 to detect NO produced by cNOS in SK-N-SH 

cells. The NO-induced fluorescence response, monitored after simultaneous 

administration of 17gestradiol and 21 to the cells, was complete within 5 rnin (Figure 

1.19).= A diminished fluorescence response occurred in the presence of the cNOS 

inhibitor p-nitro-L-arginine (L-NNA) (Figure 1.19), confirming that NO generation is 

responsible for the fluorescence increase? Cytotoxicity assays of Raw 264.7 and SK-N- 

SH cells treated with 21 for 5 days demonstrated > 80% cell survival, proving 21 to be 

non-toxic to live cells and an excellent candidate for bio-imaging studies of nitric 

oxide? 

Summary 

Nitric oxide, being a reactive and unstable species, mediates beneficial and 

harmful biological events in the cardiovascular, immune, and nervous systems. 

Fluorescent probes have been developed for visualizing nitric oxide in biology. The 



commonly used organic molecule-based sensors are not capable of direct NO detection, 

a requirement for understanding fully the activity of NO in bioorganisms. Metal-based 

NO sensors are promising candidates for direct and specific NO detection, utilizing NO 

binding to the metal center. We and other groups have devised a variety of metal 

complexes described here as fluorescent NO sensors. Cobalt(I1) complexes containing 

dansyl and fluorescein moiety (1 - lo), iron(I1) complexes (11 and 12), ruthenium(I1) 

porphyrins (13 and 14), and dirhodium(I1) tetracarboyxlates (15 and 16) clearly afford 

direct NO detection by fluorescence turn-on through interaction of nitric oxide with the 

metal centers. NO chemistry at the copper(II) centers also provides a valuable approach 

to fluorescence-based NO sensing (17-21). Very recently, the Cu(I1) complex of a 

fluorescein-based ligand (21) has made NO detection at pH 7.0 and in live cells a reality. 

As summarized here, strategies for NO sensing by metal complexes include 

fluorophore displacement without metal reduction and metal reduction with or without 

fluorophore displacement. These approaches have facilitated novel for NO detection. 

Taken together, the metal complexes described here unequivocally demonstrate that 

fluorescent complexes of transition metal ions are appropriate and practical for 

investigating the roles of NO itself in biology. We anticipate significant advances in this 

new area in the near future. 
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(a) Fluorophore Displacement without Metal Reduction 

NO 
FL-Mn+Ln.l # FL + (Ln-l)Mn+(NO)n 

"OFF" "ON" 

(b) Metal Reduction without Fluorophore Displacement 

NO, ROH 
FL-Mn+LnOI - FL-M("-')+ + RON0 + H+ 

"OFF" "ON" 

(c) Metal Reduction with Fluorophore Displacement 

NO 
i. FL-Mn+Ln-l FL (or FL-N-NO) + (L,~)M(~-~)+(NO), 

"OFF" "ON" 

"OFF" #'ON" 

Scheme 1.1. Strategies for Metal-Based Nitric Oxide Sensing. 



NO, e-, H+ 
[CO(~~'DATI)~] * [CO(~~'DATI)(NO)~] + H'"DATI 

Scheme 1.2. NO Reactivity of Co-DATI Complexes. 



Scheme 1.3. Nitric Oxide Reactivity of 5 and 6. 



Scheme 1.4. Nitric Oxide Detection by 11. 
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Scheme 1.5. Nitric Oxide Sensing by 21. 
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Figure 1.1. Schematic drawings of DAN and DAFs. 



Figure 1.2. Schematic drawings of HRDATI and H,DATI-4. 



Figure 1.3. ORTEP diagrams of [Co('PVATI),] (I), [CO('~"DATI),] (2), [CO(~'DATI),] (3), 

and [Co(DATI-4)] (4) showing 50% probability thermal ellipsoids. The figure adopted 

from ref. 28 was modified. 
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Figure 1.4. Fluorescence responses of (a) H~QATI and [CO("QATI)~] (1) and (b) of 1 

upon addition of excess NO, excited at 350 nm. The figure adopted from ref. 28 was 

modified. 



Figure 1.5. ORTEP diagrams of windmill [ C O ~ ( ~ - O ~ C A ~ ~ ~ ~ ) ~ ( O ~ C A ~ ~ ~ ~ ) ~ ( D ~ - ~ ~ ~ ) ~ ]  (5) and 

paddlewheel [ C O ~ ( ~ - O ~ C A ~ ~ ~ ~ ) , ( D S - ~ ~ ~ ) ~ ]  (6) showing 50% probability thermal 

ellipsoids. The phenyl rings of ArTolCO; ligands have been omitted for clarity. The 

figure adopted from ref. 32 was modified. 



Figure 1.6. ORTEP diagrams of [Coos-AMP),] (7) and [Co(Ds-AQ),] (8) showing 50% 

probability thermal ellipsoids. The figure adopted from ref. 37 was modified. 



Figure 1.7. Schematic drawings of [CO('~'FATI-~)] (9) and [CO('~'FATI-~)] (10). 



Figure 1.8. ORTEP diagram of [CO,('RSATI-4),] showing 50% probability thermal 

ellipsoids (top) and schematic drawing of HPSATI (bottom). The figure adopted from 

ref. - 38 was modified. 



Figure 1.9. ORTEP diagram of [Fe,(,~-O~CAr~~~),(Ds-pip)~] (12) showing 50% probability 

thermal ellipsoids. The phenyl rings of ArTolCO; ligands are omitted for clarity. The 

figure adopted from ref. 32 was modified. 



Figure 1.10. ORTEP diagrams of [Ru(TPP)(CO)(Ds-im)] (13) and [Ru(TPP)(CO)(Ds-tm)] 

(14) showing 50% probability thermal ellipsoids. The figure adopted from ref. 22 was 

modified. 



Figure 1.11. Schematic drawings of [Rh,(p-02CMe),(Ds-pip)] (15) and [Rh,(p- 

02CMe),(Ds-im)] (16). 



Figure 1.12. ORTEP diagram of [Rh2(p02CMe),(NO),] showing 50% probability thermal 

ellipsoids. The figure adopted from ref. 23 was modified. 
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Figure 1.13. (a) Fluorescence response of a CH,Cl, solution of 15 protected by a Silastic 

membrane against water in the outer vial (right) and upon introduction of 1.9 mM 

aqueous NO (aq) into outer vial (left). (b) Fluorescence response of Silastic membrane- 

embedded [Rh,(p-02CPr),(Ds-pip)] in water (left) and after exposure to a saturated NO 

aqueous solution (right). The figure (a) taken from ref. 23 was modified. 



Figure 1.14. ORTEP diagrams of [Cu(Ds-en),] (17) and [CU(DS-AMP)~] (18) showing 

50% probability thermal ellipsoids. The figure adopted from refs. 25 and 48 was 

modified. 



Figure 1.15. Schematic drawing of CPla. 



Figure 1.16. Schematic drawing of [Cu@AC)l2+ (20). 
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Figure 1.17. Schematic drawing of CuFL (21). 
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Figure 1.18. Detection by 21 of NO produced in Raw 264.7 cells activated by LPS and 

IFN-y or in Raw 264.7 cells silenced with iNOS. Time depicted in the figure is the total 

incubation of time of 21 with only cells or with cells pre-treated with LPS and IFN-y for 

4 h. The figure adopted from ref. 33 was modified. 
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Figure 1.19. Detection by 21 of NO produced in SK-N-SH cells activated by 178  

estradiol in the absence or presence of inhibitor (L-NNA). Time depicted in the figure is 

the total time of co-treatment of 21 and 17B-estradiol. The figure adopted from ref. 33 

was modified. 



Chapter 2 

Fluorescence-Based Nitric Oxide Detection 

by Ruthenium Porphyrin Fluorophore Complexes 

This chapter is based on previously published work (Lim, M. H.; Lippard, S. J., Inorg. 

Chem. 2004,43, 6366-6370). This work was supported by NSF grant CHE-0234951. We 

thank Dr. Sumitra Mukhopadhyay for assistance with the X-ray structure 

determinations and Dr. Scott A. Hilderbrand for helpful discussions. The MIT DCIF 

NMR spectrometer was funded through NSF grants CHE-9808061 and DBI-9729592. 



Introduction 

Nitric oxide, well known as an atmospheric pollutant, also serves as a 

messenger in the cardiovascular, immune, and nervous systems.'-5 To understand these 

diverse biological functions, direct sensing of NO in a manner that maps its spatial and 

temporal distribution would be most valuable. Currently, NO can be monitoredG7 by 

chemiluminescence~ amperometryI8 EPR spectro~copy,~" or fluore~cence.'~-'~ Research 

in our laboratory focuses on the synthesis of fluorescence-based sensors in which NO- 

induced displacement of a fluorophore, quenched when bound to a metal center, is 

accompanied by light emission upon excitation at a proper wavelength. Previous 

applications of this strategy revealed that [CO(~DATI),], [Co(DATI-4)] and [Rh2(p- 

OAc),(Ds-R)] complexes, where DATI is dansyl aminotroponiminate and Ds-R is an 

imidazole or piperazine derivatized dansyl group, display dramatic increases in 

fluorescence upon exposure to N0.'7j'8 These complexes are stable in the presence of 0, 

an important requirement for biological applications, but additional tactics are required, 

including faster response rates and water compatibility. We have therefore been 

exploring other synthetic platforms to approach these goals. 

Nitric oxide binds to the heme iron of soluble guanylyl cyclase (sGC) selectively 

over 02.'9120 The coordination environment of this NO-binding iron center has inspired 

the fabrication of fiber optic probes that are embedded with a fluorescent dye-labeled 

heme domain of sGC or cytochrome c' to detect N0.21/22 These probes, however, report 

only local NO concentrations at their tips and are unsuitable for intracellular work. An 

iron complex of a methoxycoumarin-pendant cyclam and 2,2,5,5-tetramethyl- 

pyrrolidine-N-oxide covalently linked to fluorescamine was designed as a fluorescent 

model of sGC. Unfortunately, this sensor is unstable in air and displays only a weak 

fluorescent response to 



The reactivity of nitric oxide with metalloporphyrins has been extensively 

Ruthenium porphyrins form stable nitrosyl adducts upon exposure to 

In this chapter we describe the synthesis and characterization of ruthenium 

porphyrin complexes with axially bound fluorophores. We demonstrate that a 

fluorophore coordinated to ruthenium in this manner can be released by NO, resulting 

in turn-on fluorescence upon excitation. This ruthenium porphyrin fluorophore scaffold 

is the first example of a fluorescent NO sensor incorporating a metalloporphyrin 

Experimental 

General Considerations. All reagents for syntheses were purchased from 

Aldrich and used without further purification. Dichloromethane (CH2C12) and 

tetrahydrofuran (THF) were purified by passage through alumina columns under an Ar 

atmosphere. Diethyl ether (Et,O), hexanes, and ethyl acetate (EtOAc) were used as 

received. Compound dansyl-imidazole (Ds-im) was synthesized as previously 

reported.18 Nitric oxide (Matheson 99%) was purified as de~cribed.'~~~' NO was 

transferred by a gastight syringe in a glove box. NO reactions were performed under 

anaerobic conditions to avoid adventitious reactions of the gas with 4. Fluorescence 

emission spectra were recorded at 25.0 f 0.2 OC on a Hitachi F-3010 spectrophotometer. 

NMR spectra were measured on a Varian 300 spectrometer or an Inova 500 MHz 

spectrometer at ambient temperature and referenced to internal 'H and 13C solvent 

peaks. FT-IR spectra were obtained on an Avatar 360 spectrophotometer and W-vis 

spectra on a Hewlett-Packard 8453 diode array spectrophotometer. ESI-MS analysis was 

performed on an Agilent 1100 series instrument. 

X-ray Crystallographic Studies. A suitable crystal was mounted in Paratone N 

oil on the tip of a glass capillary and frozen in a -100 "C nitrogen cold stream. Data were 



collected on a Bruker APEX CCD X-ray diffractometer with Mo K a  radiation (A = 

0.71073 A) controlled by the SMART software package and refined and solved with the 

SAINTPLUS and SHELXTL software  package^.,^-^^ The general procedures used for data 

collection are reported elsewhere? Empirical absorption corrections were calculated 

with the SADABS program? The structures of 1 and 2 were solved by the Patterson 

method. All non-hydrogen atoms were refined anisotropically and the structure 

solution was checked for higher symmetry with PLATON.37 In the crystal structure of 1, 

a disordered Et20 molecule in the lattice was refined over two positions, each with a 0.5 

occupancy factor. One and one-half CH2C12 molecules in the structure of 2 were 

disordered. In the first disordered CH2Cl, one of the chlorine atoms resides in two 

positions, each assigned an occupancy factor of 0.5. In the remaining 0.5 CH2C12, the 

carbon atom was disordered over two sites modeled with 0.5 occupancy factors each. 

The highest electron density in the final difference Fourier maps for 1 and 2 was 1.573 

and 1.542 e/A3, respectively, in the vicinity of the ruthenium atom. 

Dansyl-thiomorpholine (Ds-tm). To a solution of dansyl chloride (2.9 g, 11 

mmol) in 200 mL of THF were added thiomorpholine (1.1 g, 11 mmol) and Cs2C03 (4.2 

g, 13 mmol). The reaction was allowed to stir overnight, filtered, and the solvent was 

removed by rotary evaporation. The crude solids were purified by column 

chromatography (silica, 6: 1 hexanes:EtOAc; Rf = 0.29 by TLC), yielding a yellow product 

(2.8 g, 8.4 mmol, 77%): mp: 144-146 "C. 'H NMR (500 MHz, CDCI,): 6 (ppm) 8.56 (lH, d, 

J =  5 Hz), 8.3 (lH, d, J = 10 Hz), 8.19 (lH, dd, J =  7.25, 1.5 Hz), 7.57-7.51 (2H, m), 7.19 

(lH, dd, J = 7.5, 0.5 Hz), 3.55-3.53 (4H, m), 2.89 (6H, s), 2.67-2.64 (4H, m). 13C NMR (125 

MHz, CDCl,): 6 (ppm) 152.0, 133.6, 130.9, 130.5, 130.3, 130.2, 128.3, 123.3, 119.5, 115.5, 

47.5,45.6,27.5. FTIR (KBr; cm-'): 2985 (w), 2953 (w), 2917 (w), 2862 (w), 2825 (w), 2783 



(w), 1612 (w), 1590 (m), 1579 (m), 1572 (m), 1501 (w), 1478 (w), 1463 (w), 1443 (w), 1411 

(m), 1401 (m), 1379 (w), 1355 (m), 1319 (m), 1288 (m), 1228 (w), 1199 (w), 1183 (w), 1171 

(w), 1140 (m), 1102 (w), 1080 (m), 1043 (w), 1018 (w), 965 (m), 942 (w), 914 (s), 835 (w), 

814 (w), 801 (w), 789 (m), 775 (w), 689 (s), 659 (m), 623 (m), 569 (s), 530 (w), 502 (w), 452 

(m). ESI(+)MS (m/ z): [M+H]' Calcd. for C1,H2,N2O2S, 337.1; Found 337.4. 

[Ru(TPP)(CO)(Ds-im)] (1). A portion of Ds-im (55 mg, 0.18 mmol) was added to 

a solution of [Ru(TPP)(CO)] (45 mg, 0.060 mmol) in 2 mL of CH2C1, after which Et20 

was slowly diffused into the solution at 0 OC. Purple crystals of X-ray quality were 

grown over one day and isolated in 93% yield (0.058 g, 0.056 mmol): mp > 260 - 262 OC 

(decomp). FI7R (KBr; cm-I): 3164 (w), 3144 (w), 3126 (w), 3103 (w), 3074 (w), 3045 (w), 

3022 (w), 2972 (w), 2945 (w), 2971 (w), 2945 (w), 2864 (w), 2830 (w), 2788 (w), 2771 (w), 

1938 (s), 1593 (m), 1568 (w), 1437 (m), 1387 (m), 1350 (m), 1304 (m), 1261 (w), 1202 (w), 

1176 (m), 1163 (m), 1062 (m), 1008 (s), 934 (w), 834 (w), 796 (m), 757 (m), 751 (m), 736 

(w), 717 (m), 700 (m), 677 (w), 664 (w), 636 (m), 591 (m), 559 (w), 538 (w), 525 (w), 492 

( w), 461 (w). UV-vis in CH2C12 [Lm / nm (8, M-' cm")] : 313 (2.0 x 1 04), 413 (2.3 x lo5), 534 

(2.0 x lo4), 567 (4.6 x lo3), 601 (1.3 x lo3). 'H NMR (300 MHz, CD,C12): 6 (ppm) 8.60 (8H, 

s), 8.43 (lH, d, J = 8.5 Hz), 8.26-8.22 (4H, m), 7.90 (4H, dm, J = 7.3 Hz), 7.78-7.64 (14H, 

m), 7.52 (lH, dd, J =  7.6, 1.1 Hz), 7.32-7.19 (3H, m), 7.13 (lH, d, J =  7.7 Hz), 6.46 (lH, d,J 

= 8.8 Hz), 2.83 (6H, s). 13C NMR (100 MHz, CDC13): 6 (ppm) 180.1, 152.3, 143.3, 142.4, 

134.0, 133.8, 133.1, 131.4, 131.2, 130.0, 129.9, 129.1, 128.1, 127.0, 126.3, 126.0, 123.4, 122.4, 

121.2, 115.5, 115.3, 114.3,45.1. Anal. Calcd. for C,H,N,O,RuS: C, 69.08; H, 4.15; N, 9.40; 

Found: C, 68.78; H, 4.21; N, 9.09. 

[Ru(TPP)(CO)(Ds-tmll (2). A portion of Ds-tm (9.1 mg, 0.027 mmol) was added 

to a solution of [Ru(TPP)(CO)] (10 mg, 0.013 mmol) in 2 mL of CH2C12. The resulting 



solution was layered with hexanes and cooled to 0 OC. Purple crystals of X-ray quality 

were grown over 4 days and collected (0.013 g, 0.012 mmol, 91%): mp > 255 - 257 OC 

(decomp). UV-vis in CH2C12 [a,/ nm (8, M-' cm-I)]: 312 (2.5 x lo4), 412 (2.1 x lo5), 531 (2.1 

x lo4), 569 (5.1 x lo3), 602 (2.0 x lo3). FTIR (KBr; cm-I): 3104 (w), 3075 (w), 3052 (w), 3022 

(w), 2985 (w), 2943 (w), 2937 (w), 2865 (w), 2832 (w), 2790 (w), 1951 (s), 1595 (m), 1574 

(w), 1568 (w), 1527 (m), 1503 (w), 1486 (w), 1477 (w), 1453 (w), 1440 (m), 1405 (w), 1394 

(w), 1373 (w), 1350 (m), 1320 (w), 1305 (m), 1282 (w), 1264 (w), 1230 (w), 1216 (w), 1201 

(w), 1175 (m), 1157 (w), 1141 (m), 1094 (w), 1071 (s), 1008 (s), 962 (w), 945 (w), 909 (m), 

885 (m), 846 (w), 834 (w), 793 (s), 754 (m), 737 (m), 716 (m), 700 (s), 672 (w), 664 (w), 637 

(w), 619 (w), 595 (w), 577 (w), 567 (m), 540 (w), 527 (w), 499 (w), 462 (w),452 (w), 415 

(w). 'H NMR (500 MHz, CD2Cl,): 8 (ppm) 8.64 (BH, s), 8.51 (lH, s), 8.22 (4H, br, s), 8.00 

(4H, br, s), 7.76-7.64 (14H, m), 7.36 (2H, s), 7.16 (lH, s), 2.86 (6H, s), 1.11 (4H, br, s), -2.23 

(4H, br, s). Anal. Calcd. for C61H,N603RuS2*CH2C1,: C, 64.02; H, 4.33; N, 7.22; Found: C, 

64.47; H, 4.29; N, 7.21. 

Results and Discussion 

Syntheses of Fluorophore-Derived Ruthenium Porphyrin Complexes. 

Ruthenium carbonyl tetraphenylporphyrin complexes [Ru(TPP)(CO)(L)], with L 

= Ds-im (1) or Ds-tm (2), were readily prepared from solutions of [Ru(TPP)(CO)] and 

the dansyl-derivatized axial base, imidazole or thiomorpholine, in CH2C12. Crystals of 1 

were grown by vapor diffusion of Et20 into the resulting solution over one day at 0 OC 

and isolated in 93% yield. When a CH2C12 solution of [Ru(TPP)(CO)] and Ds-tm was 

layered with hexanes, X-ray quality crystals of 2 were grown over 4 days at 0 OC in 91% 

yield. 



X-ray Crystal Structure Determinations of [Ru(TPP)(CO)(Ds-im)l (1) and 

[Ru(TPP)(CO)(Ds-tm)] (2). 

Crystallographic data for 1 and 2 are summarized in Table 2.1, and selected 

bond distances and angles are contained in Table 2.2. The crystal structures of 1 and 2 

indicate that the fluorophores are coordinated to the axial site of the ruthenium center 

trans to the carbonyl group via the nitrogen atom of imidazole and the sulfur atom of 

thiomorpholine, respectively (Figure 2.1). In the crystal structure of 1, the Ru-Cc0 and 

RU-N,, distances, 1.834(4) A and 2.166(3) & and the Ru-C-0 and Nim-Ru-Cc0 angles, 

179.2(3)" and 179.54(16)", are consistent with those in the [Ru(TPP)(CO)(l-MeIm)] 

analogue reported p r e v i o ~ s l y . ~ ~  Compound 2 is the first crystallographically 

characterized ruthenium porphyrin complex that contains a sulfur-donor axial ligand 

trans to a carbonyl group. The Ru-S bond length, 2.499(2) is the longest reported for 

ruthenium porphyrin complexes containing S-donor axial ligands,"' reflecting the 

strong trans influence of the carbonyl ligand. 

Fluorescence Properties. 

Fluorescence studies revealed 39-fold and 2.0-fold quenching of the dansyl 

group fluorescence in 1 and 2, respectively, when compared to that of the free Ds-im or 

Ds-tm ligands (Figures 2.2a & 2.2b). In the solid state, 1 and 2 are not fluorescent. Upon 

addition of NO to solutions of these compounds, an increase in fluorescence was 

observed. Reaction of a 10 ,uM dichloromethane solution of 1 with 100 equiv of NO 

afforded a 19-fold increase in the integrated fluorescence emission (Figure 2.3a). The 

fluorescence response was complete in less than 20 min. Restoration of fluorescence to 

the,value of free Ds-im in the reaction of 1 with NO does not occur, most likely due to 

an inner filter effect. Ruthenium porphyrin complexes have strong absorption bands at 



the same wavelengths where excitation and emission of the fluorophore occurs, thus 

absorbing some of the light excitation and emission, resulting in a diminished 

fluorescence response. A similar effect was observed in the reaction of 2 with NO. When 

100 equiv of NO were introduced into a 10 PM dichloromethane solution of 2, a 1.3-fold 

increase in fluorescence was exhibited (Figure 2.3b). The response is much more rapid, 

however, being complete in 3 min. Compounds 1 and 2 display turn-on fluorescent 

detection of NO 1-2 orders of magnitude more rapid than our previously reported 

Co(I1) sensors.17 

Nature of the Reaction of [Ru(TPP)(CO)(Ds-im)] (1) with Nitric Oxide. 

When [Ru(TPP)(CO)] is treated with excess NO, the product is [Ru(TPP)(NO)- 

(ON0)].26r30 In order to determine whether similar chemistry might apply in the present 

case, the Ru-containing product from the reaction of 1 with NO was isolated from a 

CH2C1,/ pentane solution under anaerobic conditions and characterized by IR and UV- 

vis spectroscopy. The IR spectrum displayed bands at 1854 cm-' (vs, v,,), 1520 (m, 

vx(ONO)), and 932 (m, v, (ONO)) cm-' in KBr (Figure 2.4). In addition, the product 

exhibited an optical spectrum with a,, values of 411 (Soret band), 563, and 607 (sh) nm 

(Q bands) in CH2C12 (Figure 2.5). These data are consistent with those previously 

reported for [RU(TPP)(NO)(ONO)]].~~~~~ An X-ray analysis of crystals grown by the slow 

evaporation of a CH2C12 solution of the complex isolated from the NO reaction revealed 

the presence of [Ru(TPP)(NO)(ONO)] (57% yield), with an 8-fold rotational disorder of 

the axial ligands about the Ru-0 bond. The X-ray crystal structure (Figure 2.6) is 

consistent with those previously reported in the l i t e ra t~ re .~~  In addition, the 'H NMR 

spectrum of the reaction of 1 with NO indicated the presence of free Ds-im (Figure 2.7). 



Taken together, these results demonstrate that nitric oxide treatment causes both Ds-im 

and CO to dissociate from the axial sites of the Ru(I1) center (Scheme 2.1). We therefore 

conclude that the fluorescence enhancement of 1 and 2 observed upon reaction with NO 

arises from displacement of Ds-im or Ds-tm from their axial positions, liberating the 

fluorophores from the quenching environment of the Ru(I1) center and restoring 

fluorescence. 

Conclusions 

New fluorophore-derived ruthenium porphyrin complexes have been prepared, 

which can be used for direct fluorescence-based detection of NO. The fluorescence 

increase observed during the reaction of these non-fluorescent complexes with NO is 

the result of the dissociation of fluorophore from the axial site of the ruthenium center. 

 his study further demonstrates the value of fluorophore displacement as a valid 

strategy for the development of NO sensors and paves the way for the development of 

water-soluble, even more rapidly responding metalloporphyrins toward the ultimate 

goal of sensing nitric oxide in living cells. 
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Table 2.1. Summary of X-ray Crystallographic Data 

Formula c62H43N703.$us C62.5H48C13N603RuS2 
formula weight 1075.16 1202.61 
space group p2, / c Pi 
a, A 12.773(3) 11.241 (2) 
bt A 20.264(4) 15.233(3) 
c, A 20.711(4) 16.615(3) 
a, deg 97.00(3) 
PI deg 107.79(3) 97.90(3) 
Iff deg 103.00(3) 
V, A3 5104.3(18) 2711.2(9) 
z 4 2 
pcalCr g 1 cm3 1.399 1.473 
crystal size (mm3) 0.15 x 0.08 x 0.06 0.10 x 0.08 x 0.05 
T, "C -100 -100 
p(Mo Ka), mm-' 0.405 0.568 
total no. of data 37390 19865 
no. of unique data 9005 9446 
no. [of params 684 714 
GOF" 1.099 1.032 
Rb 0.0510 0.0795 
wR2 0.1271 0.1729 
max, min peaks, e/ A3 1.573, -0.573 1.542, -0.979 

a GOF (Goodness of fit on F2) = { ~ [ w ( F ~ - F ~ ) ~ ] / ( m - n ) } ~ ~ ~  (m = number of reflections, n = 
number of parameters refined) 
"=~IIFol-IFCI I/ZIFoI 

2 2 112 WR' = {w(F:-F:)~/x[w(F, ) 1) 



Table 2.2. Selected Bond Distances (A) and Angles (deg)" 

[Ru(TPP) (CO) (Ds-im)] (1) 

[Ru (TPP) (CO) (Ds- trn)] (2) 

" Numbers in parentheses are estimated standard deviations of the last significant 

figures. Atoms are labeled as indicated in Figure 2.1. The full list of bond lengths and 

angles is in the supporting information of the previous reference, which is available at 

http: / / pubs.acs.org (Lim, M. H.; Lippard, S. J., Inorg. Chem. 2004,43,6366-6370). 



c-3 = TPP 

Scheme 2.1. Nitric Oxide Chemistry of 1. 



Figure 2.1. ORTEP diagrams of [Ru(TPP)(CO)(Ds-im)] (1, top) and [Ru(TPP)(CO)(Ds- 

tm)] (2, bottom) showing 50% probability thermal ellipsoids. 
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Figure 2.2. Fluorescence emission spectra of (a) 1 (10 pM, solid line) and Ds-im (10 pM, 

dashed line) and of (b) 2 (10 pM, solid line) and Ds-trn (10 pM, dashed line) in CH,CI,. 
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Figure 2.3. Fluorescence response of [Ru(lTP)(CO)(Ds-im)] (1) and [Ru(TPP)(CO)(.Ds- 

tm)] (2) to NO. (a) Upon addition of 100 equiv of NO to a CH2C12 solution of 1 (10 p,M), 

individual spectra (solid lines) were recorded at 1,3,5,10,15, and 20 min. Dashed line 

is at 0 min. (b) Spectrum 3 min after addition of 100 equiv of NO (solid line) to a CH,C12 

solution of 2 (10 pM). Dashed line is at 0 min. 



Figure 2.4. IR spectra (in KBr) of [Ru(TPP)(CO)(Ds-im)] (1, dotted line) and 

[Ru(TPP)(NO)(ONO)] (solid line). The IR bands at 1938 cm-' and 1854 cm" correspond 

to vco and vNo of 1 and [Ru(TPP)(NO)(ONO)], respectively. The features of v, (ONO) 

and vs (ONO) were displayed at 1520 and 932 cm-', respectively. 
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Figure 2.5. UV-vis spectrum of the isolated NO reaction product in CH2Cl2. The spectra 

match those reported for [Ru(TPP)(NO)(ONO)], as described in refs. 26 and 30 of the 

text. Inset: expanded spectrum from 450 nm to 750 nm. 



Figure 2.6. ORTEP diagram of [Ru(TPP)(NO)(ONO)] showing 20% probability thermal 

ellipsoid. Crystal data for [Ru(TPP)(NO)(ONO)](-60 "C): M = 789.79, space group 14/m 

(No. 87), a = 13.6428(17) c = 9.7359(17) A, V = 1812.1(4) A3, Z = 2, p = 1.447 g / ~ r n - ~ ,  

dark red plate, R(F) = 5.75% (1 > 20 (I)). The crystal structure of [Ru(TPP)(NO)(ONO)] 

was consistent with that previously reported in the literature.26 





Chapter 3 

Nitric Oxide-Induced Fluorescence Enhancement 

by Displacement of Dansylated Ligands from Cobalt 

This chapter is based on previously published work (Lim, M. H.; Kuang, C.; Lippard, S. 

J., ChernBioChern 2006, in press). This work was supported by NSF grant CHE-0234951. 

The MIT DCIF NMR spectrometer was funded through NSF Grant CHE-9808061. We 

thank Chaoyuan Kuang for his assistance with preparing the cobalt complex 2. 



Introduction 

The study of nitric oxide (NO), a reactive gaseous free radical, is of interest in 

biological chemistry, where it regulates a variety of important signaling proces~es."~ 

Investigations of the biological functions of NO would significantly benefit from a 

method that allows for its direct and selective detection with simultaneous spatial and 

temporal resolution. Fluorescence-based NO sensing is a suitable methodology to 

satisfy these  requirement^.^^ Organic molecule-based fluorescent NO sensors are 

currently available, but most only exhibit fluorescence turn-on with an oxidized NO 

species such as N203 rather than NO itself. Consequently, they are not capable of 

providing spatiotemporal details about NO production in biological systems.e69 In 

previous work we described cobalt-based fluorescent sensors for direct NO detection by 

a fluorophore-displacement strategy (Scheme 3.1).'@13 Formation of a metal nitrosyl 

species causes dissociation of the fluorophore from the quenching environment of the 

paramagnetic Co(I1) ion with concomitant fluorescence emission. 

Figure 3.1 depicts the dansyl-containing aminotroponimine ligands, HRDATI (R 

= Bz, ' ~ r ,  and Bu; DATI = dansyl-aminotroponimine) and H2DATI-4 employed in our 

earlier s t ~ d i e s . ' ~ ~ ~ ~  The fluorescence of the Co(I1) complexes, [CO(~DATI)J and 

[Co(DATI-4)], is significantly quenched relative to that of the free ligands in CH2C12 

solution. Treatment of the cobalt complexes with excess NO for several hours leads to 

an increase in fluorescence due to release of the fluorophore-appended ligand and 

formation of a cobalt dinitrosyl species. Additional Co(I1) complexes were prepared to 

improve the fluorescence properties by replacing the dansyl groups with fluorescein 

emitting units.12 The resulting Co(I1) arninotroponiminate complexes, [Co(FATI-n)] (n = 

3 or 4), displayed increased fluorescence emission over the course of several hours 

following addition of excess NO in CH,OH, accompanied by the formation of 
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mononitrosyl and dinitrogen adducts.12 In the case of [Co(FATI-4)], a 3-fold increase in 

fluorescence occurred 22 h after NO introduction. A dicobalt tetracarboxylate system 

gave a 9.6-fold fluorescence increase in 1 h, but only in non-coordinating solvents such 

as CH2C1,.13 

The goal of the present study was to investigate further the fluorophore- 

displacement strategy discovered in our previous work to obtain more advanced 

systems, ultimately for use in biological samples. Our specific aim was to achieve 

solubility in aqueous media and to improve the kinetics of turn-on emission by NO 

utilizing non-fluorescent Co(I1) complexes. We therefore synthesized and characterized 

two new air-s table Co(I1) complexes, [Co(Ds-AMP),] (1) and [Co(Ds-AQ),] (2), where 

DS-AMP and Ds-AQ are the conjugate bases of dansyl arninomethylpyridine (Ds- 

HAMP) and dansyl arninoquinoline (Ds-HAQ). These complexes bear a dansyl emitting 

unit and pyridine or quinoline metal-binding units. They can be prepared in high yield 

in only two steps and can detect NO (g) in CH3CN. Their rate of response to NO is >10 

times faster than those of the previously described Co(DAT1) and Co(FAT1) systems.'LF12 

The synthesis, characterization, and mechanism of fluorescence enhancement, which 

involves NO-induced release of one of the ligands from the cobalt center with formation 

of a dinitrosyl species, are described herein. 

Experimental Section 

Materials and Procedures 

All reagents were purchased from commercial suppliers and used without 

further purification. Acetonitrile (CH3CN) and dichloromethane (CH,Cl,) were purified 

by passage through alumina columns under an Ar atmosphere. 5-Dimethylamino-N-(2- 

pyridylmethy1)-1-naphthalenesulfonamide (Ds-HAMP) was prepared as described 



elsewhere.14 Nitric oxide (Matheson 99%) was purified by a method adapted from-the 

l i terat~re?~~'~ For fluorescence experiments, NO (g) was transferred to an anaerobic 

fluorescence cuvette by using a gastight syringe in the glove box. Fluorescence emission 

spectra were recorded at 25.0 k 0.2 "C on a Hitachi F-3010 spectrophotometer. NMR 

spectra were collected on a Varian 500 spectrometer operating at ambient temperature 

and referenced to internal 'H and 13C solvent peaks. IR spectra were obtained on an 

Avatar 360 FTIR instrument and ESI-MS analyses were performed on an Agilent 1100 

series instrument. 

X-ray Crystallographic Studies. A single crystal suitable for data collection was 

mounted in Infineum V8512 on the tip of a glass capillary and frozen in a -100 "C 

nitrogen cold stream. Data were collected on a Bruker APEX CCD X-ray diffractometer 

with Mo Ku radiation (A = 0.71073 A) controlled by the SMART software package.17 The 

general procedures used for data collection are reported elsewhere." Empirical 

absorption corrections were calculated with the SADABS program.lg Structures were 

solved by direct methods and refined with the SAINTPLUS and SHELXTL software 

 package^.^ All non-hydrogen atoms were refined anisotropically. Hydrogen atoms 

were assigned idealized positions and given a thermal parameter equivalent to 1.2 

times the thermal parameter of the atoms to which they were attached. All structure 

solutions were checked for higher symmetry with PLATON." In the structure of 2, two 

CH2C12 molecules per molecule of 2 were assigned. The carbon atom of one CH2Cl2 

molecule was disordered over two positions with 0.5 occupancy factors. The highest 

electron density in the final difference Fourier maps for 2 was 1.224 e/A3 in the vicinity 

of the cobalt atom. 

[Co(Ds-AMP),] (1). To a CH30H solution (5.0 mL) of Ds-HAMP14 (0.17 g, 0.50 

mmol) was added a 0.1 M aqueous solution of KOH (5.0 mL, 5.0 mmol). The solvent 



was evaporated under reduced pressure. The resulting residue was dissolved in CH30H 

(10 mL) and cobaltous acetate (44 mg, 0.25 mrnol) was added. The solution was refluxed 

for 7 h and slowly cooled to room temperature over a 2 h period. X-ray quality purple 

crystals were obtained, collected by filtration, and washed with cold CH,OH (0.12 g, 

0.17 mmol, 67%): m.p. z 230 OC (decomp). FI?R (KBr, cm-I): 3111 (vw), 3085 (vw), 3071 

(VW), 3031 (vw), 3018 (vw), 2994 (vw), 2950 (vw), 2937 (vw), 2903 (vw), 2873 (vw), 2836 

(w), 2802 (vw), 2788 (vw), 1609 (m), 1588 (m), 1566 (m), 1500 (w), 1488 (m), 1458 (m), 

1437 (m), 1411 (w), 1402 (m), 1391 (m), 1329 (m), 1302 (m), 1291 (m), 1272 (vs), 1224 (w), 

1212 (w), 1196 (w), 1180 (s), 1151 (s), 1111 (m), 1070 (m), 1055 (m), 1026 (m), 995 (w), 977 

(vw), 967 (w), 949 (vw), 923 (s), 910 (s), 888 (m), 836 (m), 817 (m), 785 (s), 763 (m), 733 

(m), 721 (m), 682 (w), 655 (w), 637 (s), 620 (s), 575 (s), 555 (s), 538 (w), 529 (w), 499 (w), 

484 (m), 463 (vw), 413 (vw). Anal. Calcd. for CoC36H36s204N,-0.5H20: C, 57.75; H, 4.98; 

N, 11.22; Found C, 58.20; H, 4.96; N, 11.09. 

5-Dimethylamin~K(8-quinolinyl)-l-naphthalenesulfonamide, (D s- HAQ). 

Triethylamine (0.51 mL, 3.7 mmol) was added to a CH2C12 solution (20 mL) of 

8-aminoquinoline (0.27 g, 1.9 mmol) and dansyl chloride (0.50 g, 1.9 mmol). The 

mixture was stirred for 2 h at room temperature and was washed with an aqueous 

saturated NaHCO, solution. The aqueous solution was extracted with CH2Cl2 (3 x 10 

mL) and the organic phase was dried over anhydrous magnesium sulfate. The final 

product was purified by column chromatography (SiO, 3:l hexanes:ethyl acetate; R/ = 

0.25 by TLC) and isolated as a yellow powder (0.41 g, 1.1 mmol, 59%): m.p. 147 - 151 OC. 

'H NMR (500 MHz, CDCI,): 6 (ppm) 2.81 (s, 6H), 7.12 (d, 1 = 7.5, lH), 7.34 - 7.37 (m, 

3H), 7.45 - 7.48 (m, lH), 7.56 - 7.59 (m, lH), 7.69 - 7.71 (m, lH), 8.02 (dd, 1 = 8.25,1= 1.5, 

lH), 8.38 (dd, 1 = 7.25, I = 1.0, lH), 8.46 (dd, J = 8.5, lH), 8.50 (dd, J = 8.5, lH), 8.72 (dd, 1 



= 4.5, J = 2.0, lH), 9.56 (s, 1H). 13C NMR (75 MHz, CDCI,): 6 (ppm) 151.9, 148.7, 138.3, 

136.3, 134.5, 134.2, 130.9, 130.3, 130.0, 129.8, 128.6, 128.2, 126.9, 123.1, 122.1, 121.7, 119.3, 

115.4, 114.0, 45.6. FTIR (KBr, cm"): 3256 (m), 3131 (w), 3071 (vw), 2995 (w), 2956 (w), 

2876 (vw), 2842 (vw), 2787 (vw), 1611 (m), 1585 (m), 1573 (m), 1504 (s), 1482 (w), 1472 

(m), 1456 (m), 1430 (vw), 1411 (m), 1403 (vw), 1392 (w), 1383 (w), 1363 (m), 1333 (m), 

1305 (s), 1256 (w), 1232 (m), 1200 (m), 1180 (w), 1146 (vs), 1105 (w), 1088 (m), 1070 (ww), 

1060 (w), 1045 (vw), 962 (w), 946 (m), 927 (m), 887 (w), 850 (m), 821 (m), 791 (vs), 753 

(m), 735 (w), 685 (m), 627 (s), 594 (w), 580 (m), 557 (m), 569 (s), 538 (m), 497 (w), 486 (m), 

418 (w). ESI(+)MS (m/ z): [M+H]+ Calcd for C~IHI~N~O~S,  378.1; Found, 378.1. 

[Co(Ds-AQ),] (2). To a CH,OH solution (5.0 mL) of Ds-HAQ (0.10 g, 0.26 mmol) 

was added a 0.1 M aqueous solution of KOH (2.6 mL, 0.26 mmol). The solvent was 

evaporated under reduced pressure. The resulting residue was dissolved in CH30H (5.0 

mL) and cobaltous acetate (0.023 g, 0.13 mmol) was added. The solution was refluxed 

for 6 h and slowly cooled to room temperature over 1 h. A purple solid was collected 

and washed with diethyl ether (0.092 g, 0.11 mmol, 87%): m.p. 309 - 310 OC. X-ray 

quality purple crystals were obtained by the vapor diffusion of hexanes into a CH2C12 

solution of the purple complex at room temperature. FTIR (KBr, cm-I): 3111 (vw), 3085 

(VW), 3071 (vw), 3068 (vw), 3011 (vw), 2997 (vw), 2948 (w), 2867 (vw), 2831 (w), 2788 

(w), 2768 (w), 1604 (w), 1583 (m), 1474 (w), 1465 (s), 1436 (w), 1419 (vw), 1382 (s), 1355 

(w), 1319 (s), 1287 (vs), 1272 (m), 1245 (w), 1231 (w), 1190 (m), 1178 (w), 1156 (w), 1129 

(vs), 1116 (s), 1071 (m), 1059 (w), 1040 (w), 957 (m), 941 (m), 869 (s), 839 (w), 831 (m), 805 

(m), 788 (vs), 762 (m), 736 (vw), 685 (w), 666 (vw), 627 (vs), 582 (vs), 569 (m), 551 (w), 539 

(w), 525 (w), 496 (w), 491 (w), 450 (w). Anal. Calcd. for CoC,H,S,0,N,mH20: C, 60.79; H, 

4.62; N, 10.13; Found C, 60.73; H, 4.49; N, 10.21. 
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Results and Discussion 

Syntheses and Structural Characterization of Cobalt Complexes 

: The main goal in the present study was to investigate cobalt(I1) complexes as 

fluorescent NO sensors. To improve the solubility of complexes in this class, we 

synthesized [Co(Ds-AMP),] (1) and [Co(Ds-AQ),] (2). These compounds, which contain 

N-donor atoms as metal-binding units and a dansyl group for emitting light (Ds- 

HAMP14 or Ds-HAQ, 1 and 2, respectively; Figure 3.2), can be prepared in only two 

steps in good yield by combining Co(OAc), with two equiv of the ligand in CH30H in 

the'presence of a base. Both compounds are air-stable. 

X-ray quality purple crystals of the cobalt complexes were obtained by slowly 

cooling a CH30H solution of 1 and layering hexanes on a CH2C1, solution of 2. 

Crystallographic data for 1 and 2 are summarized in Table 3.1, and their molecular 

structures with the atom-labeling schemes are depicted in Figure 3.3. Selected bond 

lengths and angles are listed in Table 3.2. In each complex, the cobalt center is four- 

coordinate with the nitrogen atoms supplied by the two bidentate ligands. In the 

structure of 1, the Co-Namide bonds (1.941(4) A and 1.956(4) A) are shorter than those of 

Co-N,,,,, (2.020(3) A and 2.043(3) A). Similarly, the Co-Nmi, bonds (1.956(4) A and 

1.959(4) A) are shorter than those of Co-NqUinoIine (2.028(4) A and 2.033(4) A) in the 

structure of 2. Highly distorted tetrahedral geometries about the Co(I1) centers in 1 and 

2 are revealed by the relevant bond angles of the complexes. For example, the 

N(1)-Co-N(2) and N(3)-Co-N(4) angles (81.95(15)' and 81.66(14)' for 1; 82.66(16)' and 

82.46(16)' for 2) in both structures are significantly less than the 109.5' expected for a 

perfect tetrahedron. The N(1)-Co-N(3) (107.76(14) for 1 and 114.17(16) for 2) angle is 

significantly smaller than the N(2)-Co-N(4) angle (127.98(15) for 1 and 121.06(16) for 2), 

presumably, due to steric repulsion between the dansyl substituents of the ligand 



framework. The dihedral angle, 0, measured between the planes of the two five- 

membered chelate rings is 76.8' in both structures. These geometric features are similar 

to those observed in other four-coordinate Co(I1) complexes with sulfonamide nitrogen 

d o n ~ r s . ~ ~ ! ~ ~  

Fluorescence Spectroscopic Measurements 

Fluorescence studies of 1 and 2 (10 pM) were conducted in the polar 

coordinating solvent CH3CN and indicated 4.7(f1.2)-fold and 7.9(f0.9)-fold quenching 

(Ae, = 342 nm), respectively, compared to the free ligands (Figure 3.4). Upon addition of 

100 equiv of NO to these CH3CN solutions of the weakly emissive cobalt complexes, the 

fluorescence intensity increased by 2.1 (f0.3)-fold within 35 min for 1 and 3.6(*0.1)-fold 

within 20 min for 2 (Figure 3.5). In a polar protic solvent such as CH30H, 1.6(*0.3)-fold 

and 16(*3)-fold quenching in fluorescence were observed for 1 and 2, respectively 

(Figure 3.6). When the CH30H solutions of these cobalt complexes (10 ,uM) were 

allowed to react with 100 equiv of NO, a 1.4(&0.1)-fold (1) and 6.5(*1.4)-fold (2) 

fluorescence increase in integrated emission occurred within 60 min (Figure 3.7). These 

fluorescence studies demonstrate that the two cobalt complexes 1 and 2 can sense NO 

using the fluorophore-displacement strategy, with a significantly faster fluorescence 

response than previously obtained by the related cobalt systems CO(II)-DATI'~~" and 

Co(I1)-FAT1 (Table 3.3).12 The successful fluorescence-based NO detection was 

performed in both CH3CN and CH30H solvents that have dielectric constants closer to 

that of water (37.5 for CH,CN and 32.6 for CH30H, versus 80.2 for water) than CH2C12 

(9.1). 
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Investigation of the Chemistry of the Cobalt Complexes with Nitric Oxide 

In order to gain an understanding of the underlying mechanism of the NO- 

induced fluorescence turn-on we examined the reactivity of these cobalt systems more 

closely. Formation of a Co-nitrosyl species was monitored by following the reactions of 

1 and 2 with NO using vibrational spectroscopy. 

The time-dependent IR spectra of a CH3CN solution of 1 following addition of 

100 equiv of NO were recorded (Figure 3.8). The initial purple solution turned brown 

upon exposure to NO. After five minutes after NO introduction, the IR spectrum 

displayed a band at 1693 cm-: indicating formation of a Co-mononitrosyl species, and 

two bands at 1766 and 1847 cm-', indicating the presence of a Co-dinitrosyl adduct. The 

mononitrosyl appears to be the first species formed, and the intensities of the two bands 

at 1766 and 1847 cm-' slowly increased over 60 min, while that associated with the 

mononitrosyl disappeared during this time period. The appearance of two stretching 

bands at 1766 and 1847 cm-' is consistent with the IR spectra of other Co-dinitrosyl 

complexes, which exhibit symmetric and asymmetric stretching modes between 1750 - 

1798 and 1820 - 1876 ~ m - ~ . ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  These observations suggest stepwise coordination of 

NO to the cobalt center. 

When no further changes in the IR spectra were observed, the reaction mixture 

was examined by 'H NMR spectroscopy. The 'H NMR spectrum revealed resonances 

consistent only with the presence of diamagnetic species in solution (Figure 3.9). For 

example, proton resonances corresponding to the dimethylamino functionality 

(-N(CH3)T) of the dansyl group were distinguished at 2.83 6 for the dissociated ligand 

and at 2.85 6 for the ligand bound to cobalt. 

As discussed above, when excess NO was allowed to react with 1, the 



fluorescence was enhanced by half the value corresponding to Ds-HAMP emission from 

two equiv of free ligand (Figure 3.10). This result demonstrates that NO binding 

releases one ligand from the cobalt center with corresponding restoration of emission. 

When 1 was exposed to 5 equiv of NO in CH3CN, only a 1.4-fold increase in 

fluorescence intensity was observed. The low sensitivity of 1 to small amounts of NO 

may reflect the need for multiple steps required to reduce Co(I1) to Co(1) in order to 

generate the final product [Cops-AMP)(NO),]. This process is depicted in Scheme 3.2, 

which parallels that previously proposed for the reaction of dicobalt(I1) complexes with 

N0.13 

Taken together, the fluorescence, IR, and 'H NMR spectroscopic results for the 

reaction of 1 with NO indicate that excess NO displaces one Ds-AMP ligand from the 

metal center, forming a diamagnetic dinitrosyl adduct, presumably [Cops- 

AMP)(NO),], {CO(NO),}'~ (Scheme 3.2). Attempts to separate and isolate the Ds-HAMP 

ligand and [Co(Ds-AMP)(NO),] complex from the resulting solution in order to assess 

whether the fluorescence increase is caused by the dinitrosyl cobalt species, the 

dissociated ligand, or both were unsuccessful. We, however, have previously 

characterized the related dinitrosyl cobalt complex obtained from the reaction of 

[CO('~~DATI)CI,] with NO (g), which was not fluores~ent.~ We therefore conclude that 

the dansyl moiety released from cobalt in the present reactions is the source of the NO- 

induced fluorescence enhancement. 

Conclusions 

Two cobalt complexes containing dansyl-functionalized bidentate ligands were 

synthesized and characterized. Both complexes are air-stable and show significant 

fluorescence quenching in CH3CN and CH30H, compared to the emission of the free 



ligands. Upon addition of excess NO, fluorescence is restored. The fluorescence-based 

NO response of both complexes in coordinating solvents such as CH,CN and CH,OH is 

faster than that of other cobalt sensors previously reported. Nitric oxide replaces one 

ligand from the cobalt center forming a dinitrosyl cobalt complex with turn-on 

emission, as demonstrated by IR and 'H NMR spectroscopy. Although the response 

represents an improvement over previous cobalt-based systems, the reaction is still slow 

for some bioimaging applications. In addition, solubility in aqueous media would be 

required for most studies of this kind. These efforts were an important step in the 

evolution of fluorescein-based ligands for metal-mediated NO sensing to monitor nitric 

oxide production in living cells? 
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Table 3.1. Summary of X-ray Crystallographic Data 

[CO(DS-AMP),] (1) [CO(DS-AQ),] -2CH2C12 
(2*2CH2C1,) 

formula C,H,CoN,04S2 C,H39C14CoN,0,S2 
formula weight 739.76 980.68 
space group P21/ c PI 
a, A 19.533(3) 9.998(2) 
br A 11.0613(18) 10.852(2) 
c, A 16.975(3) 22.118(4) 
a, deg - 89.26(3) 

Pt deg 113.733(3) 88.94(3) 
Y, deg - 64.35(3) 
V, A3 3357.4(10) 2162.9(7) 
z 4 2 
PCalc, g 1 cm3 1.463 1.506 
crystal size (mm3) 0.10 x 0.06 x 0.05 0.10 x 0.07 x 0.03 
T, "C -100 -100 
p(Mo Ka), mm-' 0.686 0.792 
0 limits, deg 1.14 - 26.49 1.84 - 25.50 
total no. of data 26959 16660 
no. of unique data 6946 7945 
no. of params 446 597 
GOFa 1.268 1.169 
R~ 0.0788 0.0726 
wR2 0.1473 0.1824 
max, min peaks, e / A3 0.596, -0.507 1.224, -0.561 

a GOF (Goodness of fit on F2) = { Z [ w ( ~ ~ - ~ : ) ~ ] l ( m - n ) } ~ ~ ~  (m = number of reflections, 
n = number of parameters refined) 

R = ZIIFoI-IFcII/~IFol 
2 2 112 ' wR2 = {~[w(F,~-F:)~]/~[w(F~ ) I} 
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Table 3.2. Selected Bond Distances (A) and Angles (deg)' 

" Numbers in parentheses are estimated standard deviations of the last significant 
figures. Atoms are labeled as indicated in Figure 3.3. The full list of bond lengths and 
angles is in the supporting information of the previous report, which is available at 
http:/ / www.chembiochem.org (Lim, M. H.; Kuang, C.; Lippard, S. J., ChemBioChem 
2006, in press). 

The angle 8 is the dihedral angle between the planes of the two five-membered chelate 
rings. 



Table 3.3. NO Detection Times of Cobalt Complexes 

Complex Solvent NO detection Reference 
time (min, h) 

[Co (iprDATI)2] CH,Cl, 6 h  11 
[CO (DATI-4)] CH2C12 6 h  10 , l l  
[ ~ o , ( ~ - ~ , ~ ~ r ~ ~ ' ) , ( ~ s - p i p ) ~ ]  CH,Cl, l h  13 
[Co ('"FATI-4)] CH30H 22 h 12 
[Co(Ds-AMP),] CH3CN, CH30H 35 min, 1 h this work 
[ Co(Ds-AQ),l CH3CN, CH30H 20 min, 1 h this work 



Scheme 3.1. Fluorophore Displacement Strategy. 
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Figure 3.1. Schematic drawings of HRDATI and H,DATI-4. 



Figure 3.2. Schematic drawings of Ds-HAMP and Ds-HAQ. 



Figure 3.3. ORTEP diagrams of [Co(Ds-AMP),] (1, left) and [Co(Ds-AQ),] (2, right) 

showing 50% probability thermal ellipsoids. 
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Figure 3.4. Fluorescence emission spectra in CH,CN: (a) 1 (10 pM, dotted line) and Ds- 

HAMP (20 pM, solid line); (b) 2 (10 pM, dotted line) and Ds-HAQ (20 pM, solid line). 

Excitation is at 342 nm. 
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Figure 3.5. Fluorescence responses of a CHJN solution of 1 (10 pM, dotted line) upon 

addition of 100 equiv of NO (5, 10, 15, 20, 25, 30, 35 min, solid lines) (left, a). Right: 

fluorescence response of a CH,CN solution of 2 (10 pM, dotted line) after introduction 

of 100 equiv of NO (3,6,10,15,20 min, solid lines) (right, b). Excitation is at 342 nm. 
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Figure 3.6. Fluorescence emission spectra in CH@H. (a) 1 (10 pM, dotted line) and Ds- 

HAMP (20 pM, solid line); (b) 2 (10 pM, dotted line) and Ds-HAQ (20 pM, solid line). 

Excitation is at 342 nm. 
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Figure 3.7. Fluorescence response of a CH,OH solution of (a) 1 (10 pM, dotted line) 

upon addition of 100 equiv of NO (6,10,15,20,30,40,50, 60 min, solid lines) and (b) a 

10 pM solution of 2 in CH,OH (dotted line) after admission of 100 equiv of NO (6, 10, 

15,20,30,40,50,60 min, solid lines). 
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Figure 3.8. Solution IR spectra of the reaction of 1 (2 mM) and 100 equiv of NO in 

CH,CN (0,5,15,40,60 min). 



Figure 3.9. 'H NMR spectrum taken 2 h after the reaction of 1 (1 mM) with 10 equiv of 

NO in CD3CN: (500 MHz, CD3CN): 6 = 2.83 (s, 6H), 2.85 (s, 6H), 4.63 (s, 2H), 5.04 (s, 2H), 

6.95 (d, J = 7.5, lH), 7.03 - 7.05 (m, lH), 7.18 (d, J = 8.0, lH), 7.27 (d, J = 7.5, lH), 7.38 (t, J 

= 7.5, lH), 7.43 - 7.49 (m, 3H), 7.56 (t, J = 7.0,2H), 7.61 (t, J = 8.0, lH), 7.89 (t, J = 7.5, lH), 

8.08 (s, lH), 8.20 (dd, J = 6.5, J = 1.0, lH), 8.32 (d, = 9.0, lH), 8.38 (t, J = 6.0,2H), 8.42 (d, 

J = 1.5, lH), 8.49 (d, J = 3.5, lH), 8.62 (d, 1 = 8.0,lH). 
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Figure 3.10. Fluorescence emission spectra in CH,CN: 1 (10 pM, dotted line), Ds-HAMP 

(20 pM, dash-dotted line), and 1 (10 pM) with 100 equiv of NO at 35 min (solid line). 
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Introduction 

The discovery of nitric oxide (NO) as a biological signaling messenger stimulated 

to a wide range of NO-related research activities with the ultimate aim of elucidating 

the precise biological functions of This goal is very challenging, however, since 

NO is a highly reactive free radical. A critical mission of the research is to pinpoint the 

location of NO formation and NO-induced events at the cellular level. Thus, an 

indicator to visualize NO in biological systems is desired, which can provide selective 

and direct NO detection with spatiotemporal resolution. The most promising approach 

for sensing the presence of NO is the use of fluorescence methodologies. 

An early small-molecule fluorescent probe for NO detection is o- 

diaminonaphthalene (DAN, Figure 4.1), which responds to the presence of NO 

oxidation products (e.g. NO;, N203) with an increase of the fluorescence intensity. As 

such, it can serve only as an indirect NO sensorm6 Moreover, DAN requires high-energy 

excitation for fluorescence imaging, which can damage cells. To improve upon the 

properties of DAN, several o-diaminofluorescein compounds (DAFs, Figure 4.1) were 

prepared as fluorescent NO indicators. These compounds have been used for imaging 

NO in biological media, but the increased fluorescence of these compounds still 

requires an oxidized NO species. Like DAN, DAFs are also indirect NO  sensor^."^ 

Our approach to obtain a probe for detecting NO directly has been utilize the 

chemistry of transition metal complexes. Rapid interaction of the metal center with NO 

initiates subsequent chemistry leading to the desired sensing. We have reported several 

metal complexes as fluorescent NO indicators following this strategy, including 

fluorophore-displacement by NO from the metal center with concomitant fluorescence 

turn-on (Scheme 4.1a)."&13 Although this initial tactic allows us to detect NO directly 

based on fluorescence with metal complexes, it occurs only in organic solvents. In 



aqueous environments, water molecules can replace the fluorophore ligand from the 

metal center, leading to fluorescence turn-on in the absence of NO. On the basis of these 

discoveries, we devised another strategy for NO detection, which involves the 

reduction of a metal center by NO. Nitric oxide reduces a paramagnetic metal center to 

a diamagnetic state, restoring the quenched fluorescence of a ligand fluorophore, which 

remains coordinated to metal (Scheme 4.lb).l4#l5 

This chemistry is exemplified by reduction of a Cu(I1) dithiocarbamate complex 

to the Cu(1) form with NO (Scheme 4.1b).16 The Cu(I1) phen or dmp complexes (phen = 

1,lO-phenanthroline, dmp = 2,9-dimethyl-1,lO-phenanthroline) were reported similarly 

to react with NO in alcoholic and aqueous media to yield the corresponding Cu(1) 

compounds (Scheme 4.1b).17 In the present work we have utilized this chemistry to 

detect NO by preparing copper(I1) complexes with a dansyl or an anthracenyl group as 

the fluorophore. These complexes can detect NO by fluorescence turn-on in both 

organic and pH 7.0 or 9.0 buffered aqueous solutions. The only prior example of 

fluorescent NO detection with a Cu(I1) complex occurs in aqueous methanol by a 

different mechanism, reduction of Cu(I1) by NO followed by dissociation of the N- 

nitrosated ligand (Scheme 4.1c).18 The Cu(I1)-based NO sensors presented here 

brodened the scope of metal coordination chemistry for NO detection. 

Experimental 

Materials and Procedures 

All reagents were purchased from commercial suppliers and used as received 

unless stated otherwise. Acetonitrile (CH3CN), dichloromethane (CH,Cl,), 

tetrahydrofuran UHF), and toluene were purified by passage through alumina columns 

under an Ar atmosphere. Methanol (CH30H), ethyl acetate (EtOAc), ethanol 



(CH,CH,OH), diethyl ether (Et20), and hexanes were used as received. Nitric oxide 

(NO) (Matheson 99%) was purified by the method reported previously.10 NO was 

transferred to the reaction solutions by a gastight syringe in the glove box. All NO 

reactions were performed under anaerobic conditions. Fluorescence emission spectra 

were recorded at 25.0 + 0.2 "C or 37.0 f 0.2 "C on a Hitachi F-3010 or a Photon 

Technology International fluorescence spectrophotometer. NMR spectra were obtained 

on a Varian 300 or 500 spectrometer and IR spectra were recorded on an Avatar 360 

FTIR Instrument. ESI-MS analyses were performed on an Agilent 1100 series 

instrument. 

X-ray Crystallography. Suitable crystals were mounted in Paratone N oil on the 

tips of glass capillaries and frozen under a -100 or -123 "C nitrogen cold stream. Data 

were collected on a Bruker APEX CCD X-ray diffractometer with Mo K a  radiation (A = 

0.71073 A) controlled by the SMART software package.19 The general procedures used 

for data collection are reported elsewherea2' Empirical absorption corrections were 

applied with the SADABS program." Data were processed using the SAINTPLUS and 

SHELXTL, software packages.a23 The structures were solved by direct method. All non- 

hydrogen atoms were refined anisotropically. Hydrogen atoms were assigned idealized 

positions and given a thermal parameter of 1.2 times the thermal parameter of the atom 

to which they were attached. The structure solutions were checked for higher symmetry 

with PLATON.24 In the structure of 9, one DMF and 0.5 CH,OH solvent molecules are 

included. In the 0.5 CH30H molecule, a disordered carbon atom was refined 

isotropically. The highest electron density in the final difference Fourier maps for 9 was 

1.215 e/A3, in the vicinity of this disordered methanol. 

Electrochemistry. Cyclic voltammograms were recorded in an MBraun glovebox 

under N, with an EG&G model 263 potentiostat. A three-electrode setup was employed, 



consisting of a Ag/AgN03 reference electrode (0.01 M in CH3CN with 0.5 M 

(Bu4N)(PF6), a platinum mesh auxiliary electrode, and a platinum disk working 

electrode. The supporting electrolyte was 0.1 M or 0.5 M (Bu4N)(PF6) in CH3CN or 

CH2C12. Cyclic voltammograms were externally referenced to the Cp2Fe/ Cp2Fe+ couple 

(Conversion Cp2Fe/Cp2Fe+ scale to NHE scale, Cp2Fe/Cp2Fe+ = +460 mV vs SCE 

((Bu4N)PF6 in CH2Cl2), SCE = +242 mV vs 

Spectroelectrochemistry. A three-electrode setup was used consisting of a 

Ag/ AgC1 reference electrode, a platinum mesh working electrode, and a platinum wire 

auxially electrode. The supporting electrode was 0.1 M (Bu4N)PF6 in CH2Cl,. The copper 

sample solutions (0.2 mM) were prepared in air and purged with N2 for 20 min before 

electrolysis in a 1 mm UV-vis cell containing the three electrodes. Optical spectra were 

obtained with a Spectral Instruments 440 Series spectrophotometer with continuously 

flowing current from a Bioanalytical Systems (BAS) Model CV-50W 

potentiostat / galvanostat. 

EPR Spectroscopy. X-band EPR spectra were recorded on a Bruker EMX EPR 

spectrometer (9.37 GHz). Temperature control was performed with an Oxford 

Instruments ESR900 liquid-helium cryostat and an ITC503 controller. Nitric oxide gas (1 

equiv) was directly transferred by a gastight syringe into a 4 mM CH2C12/ CH,OH (1 / 4) 

solution of copper complexes in an EPR tube. The solution was then frozen at liquid N2 

and the sample measured at 50 K. 

Syntheses. The ligand Ds-Hen (5-Dimethylamino-N-(2-aminoethy1)-1- 

naphthalenesulfonamide, 2) and copper complex [C~(Ds-en)~] (7) were prepared by 

previously reported methods.P28 The synthesis of 5-dimethylamino-N-(8-quinoliny1)-1- 

naphthalenesulfonamide (Ds-HAQ, 4) is described elsewhere.12 



Po tassi um 4-(Anthracen-9-ylmethyl)piperazine-l-dithiocarbamate (An- 

CH2pipCS2K, 1). A portion of 1-anthracen-9-ylmethyl-piperazine-2HC1" (0.056 g, 0.16 

mmol) was added to an aqueous solution of KOH (0.033 g, 0.59 mmol, 4.0 mL). The 

produced yellow solids were collected, dried in vacuo, and redissolved in diethyl ether 

(10 mL). Upon addition of potassium hydroxide (9.0 mg, 0.16 mmol) and carbon 

disulfide (9.7 pL, 0.16 mmol) to the reaction solution, a pale yellow precipitate 

immediately formed. The mixture was stirred overnight at room temperature. The solid 

was filtered, washed with Et20, and dried in vacuo (0.046 mmol, 0.12 mmol, 73%): mp = 

240 - 242 "C (decomp). 'H NMR (500 MHz, d,-DMSO): 6 (ppm) 2.46 (4H, t, 1 = 4.5), 4.24 

(4H, s), 4.41 (2H, s), 7.51 (2H, t, 1 = 7.0), 7.56 (2H, t, 1 = 7.0), 8.08 (2H, 1 = 8.5), 8.50 (2H, d, 

J = 9.0), 8.57 (lH, s). 13C NMR (125 MHz, d6-DMS0):b (ppm) 213.7, 130.9, 130.9, 129.7, 

128.8, 127.2, 125.8, 125.1, 125.0, 53.2, 53.0, 49.0. FTIR (KBr, cm-'): 3082 (vw), 3051 (w), 

3047 (vw), 2991 (w), 2923 (w), 2904 (w), 2857 (vw), 2857 (w), 2799 (w), 2766 (vw), 1624 

(w), 1525 (w), 1493 (w), 1465 (m), 1454 (sh, vw), 1444 (m), 1411 (s), 1356 (w), 1338 (w), 

1295 (w), 1273 (m), 1251 (m), 1213 (vs), 1182 (w), 1160 (vw), 1135 (m), 1118 (m), 1102 (w), 

1026 (m), 1005 (w), 992 (m), 981 (m), 922 (s), 899 (vw), 881 (m), 866 (w), 857 (w), 836 (w), 

802 (m), 774 (m), 774 (w), 756 (w), 727 (vs), 707 (w), 655 (w), 634 (w), 602 (w), 559 (w), 

517 (w), 485 (w), 443 (vw), 417 (w). ESI(-)MS (m/ z): [M-K]- Calcd for C2H19NN,S,, 351.1; 

Found, 351.5. 

5-Dimethylamino-N-(2-pyridylmethyl)-l-naphthalenesulfonamide (Ds-HAMP, 

3). A 0.55 g (5.0 mmol) portion of 2-(aminomethy1)pyridine was added to an aqueous 

solution of NaOH (0.20 g, 5.0 mmol, 5.0 mL). To this solution was added slowly over 15 

min a THF (10 mL) solution of dansyl chloride (1.4 g, 5.0 mmol) with stirring. The 

resulting mixture was stirred for 4 h at room temperature and the THF solution was 



removed under reduced pressure. The yellow oil thus obtained was purified by column 

chromatography (SiO, 4:3 hexanes:ethyl acetate; R, = 0.22 by TLC), yielding a pale 

yellow product (1.2 g, 3.6 mmol, 73%): mp = 122 - 124 OC. 'H NMR (300 MHz, CDCl,): 6 

(ppm) 2.87 (6H, s), 4.23 (2H, d, J = 5.4), 6.27 (lH, m), 7.03 (2H, d, J = 7.5), 7.16 (lH, d, J = 

7.5), 7.45 - 7.59 (3H, m), 8.24 - 8.36 (3H, m), 8.47 (lH, d, J = 8.4). 13C NMR (125 MHz, 

CDCl,): 6 (ppm) 154.9, 152.0, 149.0, 136.6, 134.7, 130.6, 130.0, 129.8, 129.8, 128.5, 123.2, 

122.5, 121.9, 119.1, 115.4, 47.8, 45.6. ETIR (KBr, cm-I): 3071 (br, m), 2971 (w), 2939 (w), 

2860 (w), 2826 (w), 2783 (w), 2660 (vw), 1615 (vw), 1591 (m), 1575 (m), 1502 (vw), 1479 

(m), 1463 (m), 1451 (m), 1443 (m), 1403 (w), 1358 (vw), 1325 (vs), 1311 (m), 1294 (w), 1256 

(vw), 1228 (w), 1199 (w), 1176 (vw), 1152 (s), 1143 (s), 1105 (vw), 1094 (vw), 1074 (m), 

1045 (w), 1005 (w), 976 (vw), 966 (vw), 943 (w), 927 (vw), 897 (w), 851 (m), 838 (w), 830 

(w), 824 (w), 790 (s), 767 (m), 693 (w), 680 (w), 636 (s), 628 (s), 606 (m), 581 (vw), 569 (s), 

537 (m), 516 (w), 499 (w), 483 (m), 444 (w), 405 (w). ESI(+)MS (m/z): [M+H]' for 

C18H2&@2s, 342.1; Found, 342.4. 

5-Dimethylamino-{3-[4-(3-amino-propyl)-piperazin-l-yl]-propyl}-l naphthal- 

enesulfonamide (Ds-HAPP, 5). To a CH2Cl2 solution (120 mL) of 3-[4-(3-amino-propy1)- 

piperazin-1-yl]-propylamine (1.2 mL, 5.6 mmol) at 0 OC was added dropwise a CH,C12 

solution (20 mL) of dansyl chloride (0.30 g, 1.1 mmol) over 1 h. The solution was 

allowed to warm slowly to room temperature as it was stirred overnight. A white solid 

was filtered and the filtrate was collected. A pH 2 aqueous solution (50 mL) was added 

to the filtrate and the aqueous layer was collected. The pH of the solution was adjusted 

to 11 by addition of sodium hydroxide. The solution was extracted three times with 

CH2C12. Removal of the CH2C12 solvent gave a viscous yellow oil (0.32 g, 0.72 mmol, 

65%). 'H NMR (300 MHz, CD30D): 6 (ppm) 1.45 (2H, p, J = 6.9), 1.60 (2H, p, J = 7.2), 



2.03 - 2.40 (12H, m), 2.61 (2H, t, J = 6.9), 2.84 - 2.88 (BH, m), 7.25 (lH, d, J = 7.8), 7.52 - 

7.59 (2H, m), 8.17 (lH, dd, J = 7.2, J = 1.2), 8.31 (lH, d, J = 8.7), 8.53 (lH, d, J = 8.4). I3c 

NMR (125 MHz, CDCI,): 6 (ppm) 153.3, 137.1, 131.3, 131.2, 131.0, 130.5, 129.3, 124.5, 

120.6,116.5. FTIR (KBr, cm-I): 3435 (br, m), 3064 (vw), 2941(m), 2872 (w), 2811 (m), 2770 

(m), 1612 (w), 1588 (m), 1575 (m), 1503 (w), 1474 (sh, w), 1462 (m), 1406 (w), 1392 (sh, w), 

1369 (vw), 1353 (m), 1311 (s), 1269 (sh, vw), 1231 (w), 1201 (w), 1161 (sh, w), 1142 (vs), 

1092 (w), 1072 (vw), 1059 (vw), 1043 (vw), 1008 (vw), 986 (vw), 971 (vw), 944 (w), 899 

(VW), 836 (vw), 824 (vw), 791 (s), 740 (w), 682 (w), 623 (s), 571 (s), 499 (vw), 486 (vw), 461 

(vw), 435 (vw). ESI(+)MS (m/ z): [M+H]+ Calcd for C,H,N,02S, 434.3; Found, 434.2. 

[Cu(AnCH,pipCS,),] (6). A dark brown solid was obtained from an aqueous 

solution (10 mL) of 1 (30 mg, 0.077 mmol) and copper(I1) nitrate (8.9 mg, 0.038 mmol). 

The residue was filtered, washed with water and Et20 several times, and dried in vacuo 

(28 mg, 0.037 mmol, 97%): mp = 260 - 260 "C. X-ray quality crystals were obtained by 

vapor diffusion (CH2C12/ Et20) at room temperature. FTIR (KBr, cm-I): 3433 (br, w), 3080 

(VW), 3048 (w), 2923 (w), 2900 (w), 2850 (w), 2801 (w), 2766 (w), 1622 (w), 1492 (s), 1434 

(m), 1382 (vw), 1363 (w), 1336 (w), 1294 (w), 1274 (w), 1250 (vw), 1232 (vs), 1180 (vw), 

1124 (w), 1093 (vw), 1019 (w), 989 (m), 946 (vw), 925 (vw), 886 (w), 864 (vw), 843 (vw), 

801 (vw), 775 (vw), 730 (s), 706 (vw), 656 (vw), 635 (vw), 602 (vw), 59 (vw), 446 (vw), 430 

(vw). Anal. Calcd. for CuC,H,S4N4-0.5H20: C, 61.95; H, 5.07; N, 7.22; Found: C, 62.33; 

H, 5.09; N, 7.03. 

[Cu(Ds-AMP),] (8). To a CH30H solution (5.0 mL) of 3 (0.11 g, 0.31 mmol) was 

added a 0.1 M KOH solution (3.1 mL, 0.31 mmol). The solvent was evaporated under 

reduced pressure. The resulting residue was dissolved in CH30H (10 mL) and copper 

acetate (32 mg, 0.16 mmol) was added. The solution was refluxed for 7 h and slowly 



cooled to room temperature. The blue microcrystalline powder (97 mg, 0.13 mmol, 81%) 

was collected and washed with cold CH30H and Et20: mp = 213 - 215 "C. X-ray quality 

blue crystals were obtained by slow evaporation of CH3CN. FTIR (KBr, cm"): 3068 (w), 

2978 (w), 2933 (w), 2824 (w), 2824 (w), 2783 (w), 1608 (m), 1589 (m), 1570 (m), 1502 (w), 

1474 (m), 1456 (m), 1439 (m), 1425 (m), 1408 (m), 1392 (m), 1357 (w), 1329 (w), 1281 (vs), 

1271 (vs), 1229 (m), 1206 (w), 1197 (w), 1186 (w), 1136 (m), 1112 (w), 1101 (w), 1091 (w), 

1073 (w), 1060 (w), 1046 (m), 1028 (w), 1005 (w), 998 (w), 970 (vw), 945 (m), 908 (m), 897 

(w), 887 (w), 861 (m), 834 (w), 825 (w), 815 (w), 800 (m), 780 (w), 764 (m), 735 (w), 716 

(m), 687 (w), 655 (w), 632 (s), 603 (w), 578 (s), 559 (s), 536 (w), 515 (vw), 488 (m), 467 

(vw), 457 (vw), 420 (w). Anal. Calcd. for CUC~H~S~O,N,~~.~H,O:  C, 57.39; H, 4.95; N, 

11.15; Found: C, 57.01; H, 4.70; N, 11.07. 

[Cu(Ds-AQ),] (9). To a CH30H solution (5.0 mL) of 412 (0.10 g, 0.26 mmol) was 

added a 0.1 M KOH solution (2.6 mL, 0.26 mmol). The solvent was evaporated under 

reduced pressure. The resulting residue was dissolved in CH30H (5.0 mL) and copper 

acetate (26 mg, 0.13 mmol) was added. The solution was refluxed for 6 h and slowly 

cooled to room temperature. A dark brown solid was collected and washed with Et,O 

(0.088 g, 0.11 mmol, 83%): mp = 199 - 201 "C (decomp). X-ray quality brown crystals 

were obtained by vapor diffusion (DMF/ Et20). FTIR (KBr, cm-I): 3108 (w), 2988(w), 

2940 (w), 2866 (w), 2830 (w), 2787 (w), 1610 (w), 1578 (m), 1502 (vs), 1467 (m), 1382 (s), 

1355 (w), 1322 (vs), 1296 (s), 1273 (w), 1239 (w), 1228 (w), 1189 (m), 1132 (vs), 1114 (w), 

1090 (w), 1072 (w), 1060 (w), 1045 (w), 957 (m), 942 (m), 870 (m), 825 (m), 787 (s), 752 

(w), 685 (w), 628 (s), 585 (s), 567 (m), 544 (w), 527 (w), 494 (w), 461 (vw). Anal. Calcd. 

for %uC,H,S,O,N,-H,O: C, 60.45; H, 4.59; N, 10.07; Found: C, 59.99; H, 4.50; N, 9.98. 



[Cu(Ds-APP)(OTf)l (10). A portion of 5 (50 mg, 0.12 mmol) was added to a 

CH30H solution (3.0 mL) of copper(I1) triflate (42 mg, 0.12 mmol). The solution was 

stirred for 1 h and removed. The residues were dissolved in CH2C12 (5.0 mL) and a 

white solid was removed by filtration. Evaporation of solvent from the filtrate provided 

a blue solid (67 mg, 0.10 mmol, 90%): mp = 116 - 119 "C (decomp). X-ray quality blue 

crystals were obtained by vapor diffusion (CH2C12/Et20) at room temperature. FTIR 

(KBr, cm-I): 3306 (w), 3258 (w), 2944 (w), 2873 (w), 2836 (vw), 2789 (w), 1610 (vw), 1590 

(w), 1575 (w), 1500 (vw), 1461 (w), 1439 (vw), 1407 (w), 1391 (vw), 1352 (vw), 1287 (s), 

1243 (s), 1225 (w), 1162 (m), 1146 (m), 1116 (w), 1090 (vw), 1070 (vw), 1062 (vw), 1029 (s), 

965 (vw), 946 (vw), 928 (vw), 899 (vw), 839 (w), 792 (m), 760 (vw), 740 (vw), 683 (vw), 

638 (s), 573 (m), 517 (m). Anal. Calcd. for CuC,H,F3N,0,S2-2CH2C12: C, 36.84; H, 4.70; 

N, 8.59; Found: C, 37.09; H, 4.67; N, 8.73 ('H NMR spectrum also presented CH,C12 

molecules in the material). 

Results 

Syntheses of Ligands. 

Potassium 4-(anthracen-9-ylmethyl)piperazine-l-dithiocarbamate (AnCH,pipCS, 

K, 1, Figure 4.2) was synthesized from the reaction of 1-anthracen-9-ylmethyl- 

pipera~ine.2HCl~~ and carbon disulfide in the presence of a base. Bidentate ligands 

bearing dansyl groups (2 - 4) were prepared by the reaction of the amines and dansyl 

chloride according to previously reported  procedure^.'^/^^ A tetradentate ligand (5) was 

also obtained, which contains the dansyl group as a light-emitting unit (Figure 4.2). 

Slow addition of the precursor amine, 3-[4-(3-amino-propy1)-piperazin-1-yl]- 
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prapylamine, to the solution of dansyl chloride over 1 h at 0 OC afforded the desired 

pr0duc.t 5 in moderate yield without further purification. 

Synthesis and Structural Characterization of Copper Complexes. 

[Cu(AnCHpipCS,),l (6). The copper complex 6 was prepared from an aqueous 

solution of Cu(N03), and 1 in the ratio of 1:2. X-ray quality brown crystals were 

obtained by vapor diffusion of Et20 into a CH,C12 solution of 6. The compound 

crystallizes in the monoclinic space group P2,/ c with Z = 2. Crystallographic data for 6 

are summarized in Table 4.1 and the molecular structure with the atomic labeling 

scheme is shown in Figure 4.3. The copper atom occupies a special position requiring a 

center of inversion and is coordinated by the four sulfur atoms in a square planar 

geometry. One of the two Cu-S distances, 2.2694(13) is the shortest reported for 

copper dithiocarbamate complexes, which fall in the range of -2.28 A - -2.32 A?" The 

C-S bond lengths, 1.713(5) A and 1.715(5) A, lie between the values of a C-S single 

bond, -1.81 and a C=S double bond, -1.69 A.30J2 Similarly, the C-N bond length, 

1.323(6) &" has significant double bond character, indicating delocalization of the n- 

electrons over the S2CN moiety. Thus, the S2CN groups are coplanar with the CuS, core. 

Selected bond lengths and angles are listed in Table 4.2 and are consistent with those of 

previously reported analogous copper c~mplexes.~ '  

fCu(Ds-AMP) J (8) and [Cu(Ds-AQ)J (9). The copper(I1) complexes 8 and 9 (Ds- 

AMP and Ds-AQ are the conjugate bases of 3 and 412) were prepared from a methanol 

solution of Cu(OAc), and the appropriate ligand in the ratio of 1:2 in the presence of a 

base. X-ray quality blue crystals of 8 were obtained by slowly evaporating a CH3CN 

solution. Dark brown crystals of 9 were grown by vapor diffusion of Et,O into a DMF 

solution. Crystallographic data for 8 and 9 are summarized in Table 4.1. The molecular 



structures with the atomic labeling schemes are presented in Figure 4.3 and selected 

bond lengths and angles are listed in Table 4.2. The copper centers of 8 and 9 are 

coordinated by four nitrogen atoms from bidentate Ds-AMP or Ds-AQ ligands. In the 

structure of 8, the Co-N,,,,, bonds (1.949(4) A and 1.979(4) A) are shorter than those of 

CO-N,,,~,~~, (1.992(4) A and 2.003(4) A). Like 8, the Co-Namlde bonds (1.943(3) A and 

1.944(3) A) are shorter than those of CO-N,,~~,,,, (1.993(3) A and 2.001(3) A) in the 

structure of 9. The dihedral angles for 8 and 9,0, measured between the planes of the 

two five-membered chelate rings, are 39.3" and 45.8", respectively, indicating distorted 

tetrahedral copper coordination geometry. Comparison of the dihedral angles of 7,28 8 

and 9 (O = 3.9", 39.3" and 45.8") suggests that the copper complex 9 would be easier to 

reduce to a Cu(1) species anticipated as its NO reaction product, since it needs less 

reorganization than 7 and 8. The bond lengths and angles of 8 or 9 are consistent with 

those of the previously reported [Cu(L),] compounds, where L = N-(2-pyridylmethy1)- 

toluenesulfonamide or N-(2-pyridylmethyl)trifluoromethylsulfonamide), and of 

[Cu(qnsa),] (qnsa = N-q~inolin-8-~l-napht alene~ulfonamide).~~~~~ 

[Cu(Ds-APP)(OTf)l (10). Vapor diffusion of Et,O into a CH2C12 solution of 

copper(I1) triflate and 5 in a ratio of 1:l produced blue X-ray quality crystals of 10. The 

molecular structure of 10 with the atomic labeling scheme is shown in Figure 4.3 and 

crystallographic data are summarized in Table 4.1. The copper center is pentacoordinate 

with four nitrogen atoms from the tetradetate Ds-APP ligand (Ds-APP is the conjugate 

base of 5) and one oxygen atom from a triflate anion, arranged in an axially elongated 

square-pyramidal geometry. The bond lengths of Cul-N1, Cul-N2, Cul-N3, and 

Cul-N4 are 1.983(3), 2.071(3), 2.028(3), and 1.987(2) A, respectively. The Cul-03 

distance is 2.364(2) A, which is within the range of -2.34 A to -2.53 A for Cu(I1)-OTf in 



the Cambridge Structural Database (CSD version 5.26). The ratio of the two basal angles 

(168.26(11)" and 159.67(11)") in a square-pyramidal structure, z (an index of the degree 

of trigonality, 0.14),35 is close to 0, indicating nearly idealized geometry. The copper 

center lies slightly above the basal plane. The bond lengths and angles of 10 are similar 

to those of the previously published copper complexes [Cu(bapp)(Cl]]Cl and 

[Cu(bapp)(ClO,)] (ClO,) (bapp = 1,4-bi~(3-aminopropyl)piperazine).~~ Selected bond 

lengths and angles are provided in Table 4.2. 

Electrochemistry of Copper Complexes. 

The electrochemical behavior of 6 was studied by cyclic voltammetry in CH2C12. 

The copper complex 6 undergoes both a one-electron oxidation (Cu(II)/ Cu(II1)) anda 

one-electron reduction (Cu(II)/Cu(I)) processes at a platinum electrode, which is 

consistent with the previously reported studies of copper dithiocarbamate complexes 

(Scheme 4.2).37 A representative cyclic voltammogram of 6 is shown in Figure 4.4. A 

reversible oxidation at +0.10 V (AE = 0.083 V in Figure 4.4b) and a quasi-reversible 

reduction at -0.87 V (AE = 0.55 V in Figure 4.4~) were observed in CH2C1, (vs 

Cp2Fc / Cp2Fc+). 

The reduction potentials of 7,8 and 9 (vs Fc/ Fc+) in CH,CN for the Cu(II)/ Cu(1) 

couple are of -1.5 V (irrev), -0.82 V (rev, AE = 0.13 V) and -0.70 V (rev, AE = 0.12 V), 

respectively, confirming that 9 is more easily reduced than 7 and 8 (Figure 4.5a). This 

trend is predicted based on the above comparison of the dihedral angles in the crystal 

structures of 7,8, and 9. The Cu(I1) complex 10 showed a reduction wave (Cu(II)/ Cu(1)) 

vs Fc/Fc+ of -1.32 V in CH2Cl2 (Figure 4.5b). 



Fluorescence Studies. 

[Cu(AnCHgipCS,),] (6). An initial fluorescence study of 6 indicated 3.1(&0.3)-fold 

quenching in CH2C12/CH30H (1:l) relative to the free ligand (1) at an excitation 

wavelength of 370 nm (Figure 4.6a). Administration of excess NO (g) to a solution 

(CH2C12:CH30H, 1:l) of 6 resulted in a 5.5(*0.6)-fold fluorescence increase within 60 min 

(Figure 4.6b). 

[Cu(Ds-en),] (7), [Cu(Ds-AMP),] (S),  [Cu(Ds-AQ),] (9), and [Cu(Ds-APP)(OTf)] (1 0). 

Coordination to Cu(I1) quenched the fluorescence of the ligands in solutions of 7,8, and 

9. A 31(52)-, 23(*0.5)- or 61(*1)-fold decrease in fluorescence compared to that of the 

free ligands 2,3 or 4 was observed in CH30H:CH2C12 solutions of 7, 8, or 9 (20 ,uM) 

(Figures 4.7a, 4.7b, and 4.7~). Upon addition of 100 equiv of NO to CH30H solutions of 

7,8, and 9, the fluorescence of the 2,3, and 4 ligands was restored. The respective 

increases in integrated fluorescence were 6.1(&-0.2)-, 8.8(*0.1)- and 3.0(*0.4)-fold, 

respectively within less than 3 min (Figures 4.7a, 4.7b, and 4.7~). The NO detection limit 

of 10 nM for 8 was obtained by fluorescence measurements of solutions treated with 

decreasing concentrations of NO. Compound 8 therefore has a significantly improved 

detection limit relative to that of our previous metal complexes, which have pM NO 

detection l i r n i t ~ . ~ / ~ ~  

Additional fluorescence measurements indicated that the water-soluble Cu(I1) 

complexes 7 and 8 are capable of NO detection at pH 9.0. A 4.3(*0.5)-fold or 

4.5(+0.6)-fold decrease in the fluorescence intensity of 2 and 3, respectively, was 

observed in aqueous buffered solutions (50 mM CHES, pH 9.0,100 mM KC1) of 7 and 8 

(10 ,uM) at 37 "C (Figures 4.8a and 4.8b). A fluorescence increase of 2.3(*0.2)-fold or 



2.0(*0.2)-fold was exhibited upon administration of 100 equiv of NO to the pH 9.0 

buffered solutions of 7 or 8, respectively, within 30 min (Figures 4.8a and 4.8b). 

A methanol solution of 10 (20 pM) displayed a lO(k0.6)-fold quenching in 

fluorescence, relative to the free ligand 5 (20 pM) (Figure 4.9a). The fluorescence was 

immediately increased by 2.3(kO.l)-fold after addition of excess NO (Figure 4.9a). 

Moreover, 10 (10 pM) showed a 2.6(&0.2)-fold decrease in fluorescence in pH 7.0 

buffered solution (50 mM PIPES and 100 mM KCl), compared to the ligand 5 (Figure 

4.9b). Upon addition of excess NO, the fluorescence of 10 was enhanced by 1.6(&0.3)- 

fold over 10 min (Figure 4.9b). Although the fluorescence change is not large following 

addition of NO to the pH 7.0 buffered solution of 10, these observations suggest that a 

copper complex containing dansyl fluorophore could be designed for NO detection at a 

physiological pH. 

NO Reactivity of Copper Anthrancenyl Complex 6. 

To investigate further the species responsible for the fluorescence enhancement 

upon the reaction of 6 with NO, spectroelectrochemical, infrared, and fluorescence 

studies were carried out. The optical spectrum of 6 (20 pM) with 682 equiv of added NO 

in CH2C12/ CH,OH (1:l) showed a decrease of the charge transfer band at )k, = 436 nm 

(E = 1.3 x lo4  M-'cm-' for 6) (Figure 4.10a), which suggests the formation of a Cu(1) 

species. To help identify the NO-induced transformation, spectroelectrochemical 

studies were first carried out. As shown in Figure 4.4, cyclic voltammogram of 6 

revealed reversible one electron oxidation (Cu(II)/Cu(III)) and quasi-reversible 

reduction (Cu(II)/Cu(I)). Two potentials, +0.50 V and -0.75 V, were selected to 

electrolytically generate Cu(I11) and Cu(1) species from the Cu(I1) complex 6, which was 



monitored by UV-vis spectroscopy during electrolysis. A progress of the electrolysis at 

+0.50 V was accompanied by a change in the optical spectrum from that of 6 to 

[ C U ( A ~ C H ~ ~ ~ ~ C S ~ ) ~ ] '  (6'), shifting the maximum wavelength of its charge transfer band 

from 436 nm to 426 nm (Figure 4.10b). In addition, the charge transfer band of 6 at &, = 

436 nm was slowly abolished upon the reduction at -0.75 V (Figure 4 .10~)~  which 

indicates the formation of a Cu(1) species similar to that observed in the NO reaction of 

6. These spectroelectrochemical features of 6 are similar to those of previously described 

copper dithiocarbamate complexes." 

Based on these results, we conclude that a diamagnetic Cu(1) species forms in 

reaction of 6 with NO. Addition of [Cu(CH,CN),](BF,) to ligand 1 in a ratio of 1:2 

produces a fluorescence intensity the same as that in the NO-induced fluorescence 

increase of 6, as shown in Figure 4.11. This result lends further support to be proposed 

mechanism for the fluorescence enhancement that accompanies the reaction of 6 with 

NO. The Cu(1) species generated by reacting NO with 6 in CH30H/ CH2C12 may exist in 

two different forms in solution: a copper nitrosyl adduct (Cu(I1)-'NOt+Cu(I)-NO') or a 

Cu(1) compound without a bound nitrosyl. We ruled out the formation of a copper 

nitrosyl compound in the NO reaction of 6 (CH30H/CH2Cl,) by the absence of any IR 

band (KBr) in the 1600 - 1900 cm-' r e g i ~ n . ' ~ ) ~ ~  Thus, introduction of NO reduces the 

copper center, forming NO', which can react with solvent molecules CH30H or with the 

ligand 1, possibly at the sulfur atoms of the dithiocarbamate moiety. Such a nitrosothiol 

(RS-NO) or thiol (RS-H) group, however, is also not consistent with the IR spectrum of 

the product (v,, = 1400 - 1600 cm-'; v,, = 2500 - 2600),39/40 suggesting either that it is 

not generated during the reaction or that it might overlap with other IR bands of the 

copper complex. Nitric oxide in the absence of CH30H did not enhance the fluorescence 



intensity of 6 in the same manner as that in the presence of the alcohol, which suggests 

that the NO+ cation, generated in the reaction of NO with 6, may react with solvent 

CH30H molecules, forming RON0 species (Figure 4.12). Therefore, the reaction of 6 

and NO would appear to occur by reduction of Cu(I1) to Cu(I), forming NO+ in solution, 

as shown in Scheme 4.3. This conclusion is supported by previously reported nitric 

oxide studies of the Cu(I1) complexes [Cu(phen),12+ and [Cu(dmp)J2+.17 

NO Reactivity of Copper Dansyl Complex 8. 

An anticipated mechanism of the fluorescence enhancement of 7,8,9, and 10 by 

NO (Scheme 4.3) is that nitric oxide induces the formation of a diamagnetic Cu(1) 

species with partial dissociation of the sulfonamide functionality due to protonation by 

H+ formed during the reaction. To investigate this possibility the reaction of 8 with NO 

was examined in depth. A significant fluorescence increase of 8 occurs in the presence 

of NO and protonation of its sulfonarnide functionality would be readily observable by 

IR spectroscopy without overlap with another N-H functionality on the ligand (Figure 

4.2). 

The formation of a Cu(1) species in the reaction of 8 with one equiv of NO in 4:l 

CH,OH:CH,Cl, was indicated by the observation of a -15% decrease in the initial Cu(I1) 

EPR signal intensity at 50 K (Figure 4.13). Since only a -40% reduction in fluorescence 

was observed upon addition of the Cu(1) complex [Cu(CH,CN),](BF,) to 3 in the 

presence of a base (N(Et),) in 4:l CH30H:CH,Cl, (Figure 4.14), the Cu(1) formed in the 

reaction with NO would restore some fluorescence of ligand 3. Reduction of Cu(I1) 

therefore cannot be completely responsible for the fluorescence rise in the reaction of 8 

with NO, however. 



As with the Cu(I1) complex 6, the NO-triggered fluorescence enhancement does 

not occur in a pure CH2C12 solution of the copper complex 8 (Figure 4.15), which 

suggests that a protic solvent such as methanol or water is required (Scheme 4.3). In 

addition, there was no IR (KBr) signal in the 1600 - 1900 cm-' region that could be 

ascribed a copper nitrosyl functionality.'6138 Upon reduction of Cu(I1) to Cu(1) by NO in 

the reaction of 8, one equiv of NO' and H' appear to form. Both the NO' and H' cations 

can react with a sulfonamide functionality, causing its dissociation from the copper 

center with a concomitant turn-on emission. The infrared spectrum of the reaction 

product of NO with 8 in 4:l CH30H:CH2C12 following solvent removal did not reveal an 

IR band corresponding to vNNaI4' but a band at 3083 cm-' (in KBr) appeared (Figure 

4.16). We assign this feature to vN-, arising from the protonation of ligand at the 

sulfonamide functionality. The 'H NMR spectrum of the reaction solution of 8 and NO 

did not reveal complete dissociation of the protonated ligand 3 from the copper center 

(Figure 4.17), however. Thus, the protonated sulfonamide group, generated from the 

NO reaction of 8, might be partially bound to, or dangling from, the coordination 

sphere, causing an increase in fluorescence intensity. 

The Cu(I1) complex 8 was also allowed to react with an NO' source, NOBF,. 

Upon addition of 1 equiv of NO' to a CH30H/CH2Cl, solution of 8, the fluorescence 

increased by half that obtained in the NO-triggered emission turn-on (Figure 4.18). A 

band at 3083 cm-' (in KBr), arising from v ~ - ~ ,  was also observed in the reaction of 8 with 

NO', but a feature due to v,, of a sulfonamide functionality or vN,of a copper nitrosyl 

species was not observed (Figure 4.16). These results are consistent with NO' reacting 

with methanol to form CH30N0 and H'. The latter can protonate the sulfonamide 



functionality with partial release from the copper center, providing fluorescence turn- 

on. 

Discussion 

To achieve the direct NO detection based on fluorescence we prepared 

copper(I1)-based sensors. Copper anthracenyl and dansyl complexes examined in the 

present work display a significant fluorescence turn-on in the presence of NO, which 

clearly suggests that these Cu(I1)-based probes are capable of its direct detection. Only 

the Cu(I1) complexes 7,8, and 10 were tested for fluorescent NO response in aqueous 

media due to the poor solubility of 6 and 9. Compounds 7 and 8 could detect NO in pH 

9.0 buffered solutions. At pH 7.0, ligands 2 and 3 bound to the Cu(I1) center become 

protonated at the sulfonamide functionality and as a result there is no fluorescence 

quenching in 7 (10 pM) or 8 (10 ,uM) under these conditions.2728 They cannot, therefore, 

be used to sense NO at a physiologically relevant pH. To improve the affinity of the 

fluorophore ligands for the Cu(I1) center, additional N-donor atoms were introduced. 

As anticipated, the Cu(I1) complex 10 of the tetradentate ligand 5 exhibits quenched 

fluorescence in both organic and pH 7.0 buffered solutions that is resorted when NO is 

introduced. Although only a 1.6-fold fluorescence enhancement of 10 occurs upon 

treatment of NO, this observation demonstrates the potential utility of metal-based 

sensors for NO in biological media and contributed significantly to our development of 

a better nitric oxide sensor (see chapter 5). 

Nitric oxide detection occurs by the Cu(I1) reduction in both the copper 

anthracenyl and dansyl systems. Spectroscopic studies revealed that NO reduces Cu(II), 

forming NO'. The resultant Cu(1) species is responsible for the fluorescence increase in 

the NO reaction. Free ligands such as 1 and 3 in the presence of [Cu(CH,CN),](BF,) are 



fluorescent, compared to their properties with Cu(II), as shown in Figs. 4.11 and 4.14. 

Although, we were unable to characterize the Cu(1) species by X-ray structural analyses, 

infrared studies showed no formation of copper nitrosyl complexes during the NO 

reactions. We can therefore rule out Cu-NO compounds as the species responsible for 

the fluorescence turn-on in the present work. A protic solvent is required for the NO- 

induced fluorescence increase, suggesting that the nitrosonium ion formed during the 

reaction reacts with the solvent molecules, CH,OH or H,O, driving the formation of 

fluorescent species and the final Cu(1) compound (Scheme 4.4),17 Thus, introduction of 

NO may cause fluorescence enhancement of the copper complexes via reduction 

followed by the formation of NO', which in turn reacts with solvent molecules such as 

methanol and water. 

Summary 

Five copper(I1) complexes (6 - 10) were synthesized and characterized as 

fluorescent nitric oxide sensors. Copper(I1)-induced fluorescence quenching was 

observed in all five compounds, relative to that of the free ligands. A significant turn-on 

emission was observed upon addition of NO (g) to an organic or aqueous solution of all 

the Cu(I1) complexes. Interestingly, 7,8, and 10 exhibited a fluorescence increase in a 

pH 7.0 or 9.0 buffered aqueous solution upon treatment with NO. Mechanistic studies 

indicate that the fluorescence enhancement is basically caused by NO-triggered 

copper(I1) reduction and generation of a diamagnetic Cu(1) species. This work 

demonstrates that Cu(I1) complexes can function as a fluorescence-based turn-on NO 

sensors in both organic and aqueous environments. This discovery forms the 

foundation for developing metal-based probes for NO detection in biological systems. 
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Table 4.1. Summary of X-ray Crystallographic Data 

formula C40H38C~N4S4 
formula weight 766.52 
space group P21/ c 
a, A 21.418(4) 
b, A 8.5585(17) 
c, A 10.154(2) 
a, deg - 
PI deg 102.08(3) 
Yf  dep - 
v, A 1820.1(6) 
z 2 
Pcalcf g cm3 1.399 
crystal size 0.10 x 0.05 x 0.03 
(mm3) 
T, "C -100 
p(Mo Ka),  mm-' 0.865 
8 limits, deg 1.94 - 25.50 
total no. of data 13611 
no. of unique 3395 
data 
no. of params 223 
GOFa 1.147 
R~ 0.0738 
WR' 0.1324 
max, min 0.469, -0.494 
peaks, e /  A3 

a GOF (Goodness of fit on F2) = {2[~(F2-F:)~]l(m-n)}'/~ (m = number of reflections, n = 

number of parameters refined) 
R = 211FoI-IFcII/~IFoI 

2 2 112 wn2= {W(F,~-F:)~/Z[W(F, ) 1) 



Table 4.2. Selected Bond Distances (A) and Angles (deg)a 

Cul-S1 
Cul-S2 
S1-C1 
S2-C1 
Nl-Cl 

S1-Cul-S1 A 

a Numbers in parentheses are estimated standard deviations of the last significant 
figures. Atoms are labeled as indicated in Figure 4.3. 

The angle O is the dihedral angle between the planes of the two five-membered 
chelate rings. 



(a) Fluorophore Displacement 

NO - FL-M(Ln) - FL + (Ln)M-NO 
"OFF" "ON" 

(b) Metal Reduction 

NO FL-M(~-~)+(L,) + NO+ 

FL-M"+(L,) 
/ "ON" 

"OFF" (FL)(Ln)M-NO 

"ON" 

(c) Metal Reduction and Ligand Nitrosation 

NO 
Mn+(FL) - M("')+ + FL-NO 

"OFF "ON" 

FL = Fluorophore ligand, M = Metal, L = Ligand 

Scheme 4.1. Strategies of Nitric Oxide Detection Using Transition Metal Complexes. 



Scheme 4.2. One-Electron Oxidation/ Reduction of 6. 



- FL-M"+(L,) - FL- M("'))+(L,) + RON0 + H+ 
ROH 

Non-fluorescen t Fluorescent ROH = water or alcohol' 

Scheme 4.3. NO Reactivity of Cu(I1) Complexes. 
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Scheme 4.4. Proposed Reaction Pathways of Cu(I1) Complexes with NO. 
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Figure 4.1. Schematic drawings of DAN and DAFs. 



Figure 4.2. Schematic drawings of AnCH2pipCS2K (I), Ds-HAQ (2), Ds-HAMP (3), Ds- 

Hen (4), and Ds-HAPP (5). 





Figure 4.3. ORTEP diagams of 6 ,  8, 9, and 10 showing 50% probability thermal 

ellipsoids. 
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Figure 4.4. Cyclic voltammgram of 6 in CH,Cl, (1 mM) with 0.5 M (Bu,N)(PF,) as 

supporting electrolyte and a scan rate of 50 mV/ s (a, +1.0 V to -1.5 V) and variable scan 

rates (b (left), 0.0 V to -1.5 V and c (left) +0.55 V to 0.0 V). The right panels of b and c 

plot current as a function of (scan rate)'I2. 



V (vs FC/FC+) 

10 

5 

0 

-5 

-10 

-15 

7 
- 

- 

- 

' 

1 0.5 0 -0.5 -1 -1.5 -2 

V (vs FCIFC') 



Figure 4.5. Cyclic voltammgrams of (a) 7, 8, and 9 in CH,CN (2 mM) and (b) 10 in 

CH2C12 (4 mM) with 0.5 M (Bu,N)(PF,) as supporting electrolyte with a scan rate of 50 

mV/ s. 
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Figure 4.6. (a) Fluorescence emission spectra of 1 (20 pM, solid line) and 6 (20 pM, 

dashed line) in CH,OH/CH,Cl, (1:l) (A, = 370 nm). (b) Fluorescence response of 6 

(dashed line, 0 min) upon addition of 682 equiv of NO (g) (solid lines) at 3,5,8, 12,15, 

30,50, and 60 min. 
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Figure 4.7. Left: emission spectra of 2 (a), 3 (b), and 4 (c) (40 pM, solid line) and 7 (a), 8 

(b), and 9 (c) (20 ,uM, dashed line) in CH,OH/CH,Cl, (4:l) at 25 "C. Right: emission 

spectra of 7 (a) and 8 (b) (20 pM, dashed line) upon immediate addition of 100 equiv of 

NO (g) (solid lines). (c) Fluorescence response of 9 (20 pM, dashed line) to 100 equiv of 

NO (g) (solid lines) at 1 and 3 min at 25 OC (right). Excitation wavelength is at 342 nm. 
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Figure 4.8. (a) Left: fluorescence emission spectra of 2 (20 pM, solid line) and 7 (10 pM, 

dashed line) at pH 9.0 (50 mM CHES, 100 mM KC1). Right: fluorescence response to of 7 

(10 pM, dashed line) to 100 equiv of NO (g) at 3,6,10,15,20, and 30 min (solid lines) at 

37 "C. (b) Left: emission spectra of 3 (20 pMf solid line) and 8 (10 pMf dashed line) in pH 

9.0 CHES buffered solution. Right: fluorescence response of 8 (10 pM, dashed line) to 

100 equiv of NO (g) at 3, 6, 10, 15, 20, 25, and 30 min (solid lines) 37 "C. Excitation 

wavelength is at 342 nm. 
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Figure 4.9. (a) Right: emission spectra of 5 (20 pM, solid line) and 10 (20 pM, dashed 

line) in CH,OH at 25 "C. Left: fluorescence response to of 10 (20 pM, dashed line) to 682 

equiv of NO (g) within 5 min (solid line) at 25 "C. (b) Right: emission spectra of 5:(10 

pM, solid line) and 10 (10 pM, dashed line) at pH 7.0 (50 mM PIPES, 100 mM KC1). Left: 

fluorescence response of 10 (10 pM, dashed line) to 682 equiv of NO (g) at 2 and 6 min 

(solid lines) 37 "C. Excitation wavelength is at 342 nm. 
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Figure 4.10. Optical spectra (a) from the reaction of 6 (20 ,uM) (dotted line) with 682 

equiv of NO (solid line) over 60 rnin in CH2C12/ CH,OH (1 / 1). Spectra of a solution of 6 

(200 pM in CH2C12 with 0.1 M (Bu,N)PF, 1 mm UV-vis cell) during oxidation (b) and 

reduction (c). The current at +0.50 V (b) or -0.75 V (c) is continually provided when 

optical spectra were collected for 40 min. 
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Figure 4.11. Fluorescence spectra of a 1:l CH30H:CH,Cl, solution of 6 (20 pM, dashed 

line) and 1 (40 pM) with [CU(CH~CN)~](BF~) (20 pM) (solid line). 
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Figure 4.12. Fluorescence response of a 20 pM solution of 6 in CH2C12 (dashed line) 

upon addition of 100 equiv of NO (solid line). The dotted line is the fluorescence 

spectrum of 6 in CH,OH/ CH2C12 (1:l) at 60 min after administration of 682 equiv of NO 

(g).. 



Magnetic Field (G) 

Figure 4.13. EPR spectra of a 4 mM solution of 8 in 4:l CH,0H:CH2C12 (dashed line) 

after addition of 1 equiv of NO (solid line). One equiv was used to avoid contamination 

by the EPR signal of free NO. 
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Figure 4.14. Fluorescence spectra of a 4:l CH,OH:CH,Cl, solution of 3 (40 pM) without 

(dotted line) and with (solid line) [Cu(CH,CN),](BF,) (20 pM) in the presence of 

triethylamine (40 pM). 
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Figure 4.15. Fluorescence response of a 20 p M  solution of 8 in CH2C12 (dashed line) 

upon addition of 100 equiv of NO (solid line). 
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Figure 4.16. IR spectra of 8 (top), 8 with 10 equiv of NO (middle), and 8 with one equiv 

of NOBF, (bottom) in KBr. , 
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Figure 4.17. 'H NMR spectra (6.6 - 9.0 ppm) of Ds-HAMP (4 mM in 4:l CH,OH:CD,Cl, 

top), a reaction solution of 2 (4 mM in 4:l CH,OH:CD,Cl,) with 10 equiv of NO 

(bottom), and the latter solution to which was added Ds-HAMP (0.6 mM, middle). 
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Figure 4.18. Fluorescence spectra of 4:l CH,0H:CH2C12 solution of 8 (dotted line), 8 

with NOBF, (solid line), and 2 with NO (dashed line). 
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Introduction 

Nitric oxide (NO) is produced in a biological context by nitric oxide ~ynthases."~ 

The properties of NO allow for its varied involvement in physiological and 

pathophysiological pathways,ge6t7 but the details of how it performs its biological roles 

are not fully understood. The development of a method capable of detecting NO in 

biology has been an intriguing challenge for chemists, biologists and engineers. Small- 

molecule fluorescent sensors for NO have the potential to provide a practical method 

for visualizing its presence and movement in vitro and in viv~."~ 

A few basic requirements are necessary for the design of biologically useful NO 

fluorescent probes>9 including water-solubility, cell-membrane permeability, and 

visible or near-IR excitation and emission wavelengths. Most importantly, these sensors 

must have the capability for direct, specific and rapid detection of NO. In addition, 

sensors that give fluorescence enhancement by reaction with NO are preferred for 

imaging NO in biological systems over those that respond to NO with a fluorescence 

decrease. 

The commonly used, current generation of NO probes is based on organic 

molecules?'~ Although these probes satisfy the basic requirements for bioimaging NO, 

they have the critical limitation that their fluorescence response is not driven by NO, 

but by an oxidized NO species. This requirement means that the most available sensors 

cannot provide direct, real-time imaging of NO. Since NO is relatively stable under 

physiological conditions," new sensors for direct NO detection are desired for better 

exploration of NO-signaling in biology. 

To achieve direct detection of nitric oxide, our laboratory has designed NO 

sensors employing transition metal complexes. Interaction of these complexes with NO 

offers the promise of investigating nitric oxide itself in biological media. In the past few 



years, we have constructed several metal-fluorophore scaffolds as potential NO sensors 

including those based on cobalt,'"16 copper,'"19 iron,15 rhodium,20 and ruthenium 

~hemistry.~' Our general strategy for NO sensing is to coordinate a fluorophore ligand 

to a metal ion to quench its fluorescence, which is restored by the interaction of NO 

with the metal center, sometimes with release of the fluorophore and concomitant 

emission turn-on (Scheme 5.1a).9 Although all of the metal complexes reported by our 

laboratory can directly interact with NO, most of the metal-fluorophore platforms are 

not stable in aqueous solutions. In some case, water can outcompete the fluorophore for 

coordination to the metal center. 

Recently, we have been exploring Cu(I1)-based probes for NO detection. The 

strategy behind these Cu(I1)-based sensors is that formation of a diamagnetic Cu(1) 

species via NO-triggered reduction alleviates the fluorescence quenching associated 

with coordination to a paramagnetic Cu(I1) center (Scheme 5.1b).17f18 Utilizing this 

strategy, we constructed Cu(1I) complexes containing dansyl groups as the fluorophore, 

which are able to detect NO in pH 9.0 buffered  solution^.'^ Unfortunately, these Cu(I1) 

dansyl compounds did not show successful NO sensing at a physiologically more 

relevant pH. Recently, a Cu(I1) cyclam complex was reported that demonstrated the 

potential of Cu(I1) systems as suitable NO indicators by a strategy different from that 

used for the Cu(I1) dansyl compounds." This complex exhibited fluorescence emission 

turn-on via NO-induced nitrosation of the fluorophore, which dissociated from the 

reduced Cu(1) in the buffered methanolic solution (Scheme 5.1~). Although the Cu(I1)- 

based systems discussed here are not satisfactory as biological NO sensors, the studies 

formed the basis of a successful approach for developing metal-based sensors to image 

NO production in live cells. 



To achieve NO sensing in a physiological context, five fluorescein derivatives 

(Figure 5.1) were prepared for binding Cu(I1). These ligands were based on molecules 

previously described for zinc-sensing bio-applications by our laboratory." The 

copper(I1) fluorescein complexes of these ligands react directly with NO with 

concomitant emission increase in pH 7.0 buffered solutions. Moreover, the detection of 

NO by these Cu(I1) probes is specific over other reactive nitrogen or oxygen species 

including HNO, NO,-, NO; ONOO-, H202 and 0;. To our knowledge, Cu(I1) probes 

are;the first complexes that are capable of the direct and specific NO detection at pH 7.0. 

The synthesis, NO-sensing ability, and mechanism of fluorescence turn-on of the 

copper-fluorescein complexes are described in this chapter. Density functional theory 

(DFT) calculations of the species responsible for fluorescence turn-on are also presented. 

Experimental 

Materials and Procedures 

All chemical reagents and solvents were obtained from commercial suppliers 

and used as received. Angeli's salt (Na2N20,) and sodium peroxynitrite (NaOONO) 

were purchased from Cayman Chemical Co. and used without further purification. 

Sodium nitrite (Na14N02 and Na15N02), xanthine oxidase and xanthine were obtained 

from Sigma-Aldrich. Whatman F254 silica gel-60 plates of 1 mm thickness were used for 

preparative TLC. Nitric oxide (NO) (Matheson, 99%) was purified by a previously 

reported method? NO was transferred to the reaction solutions by a gastight syringe in 

an anaerobic chamber. Fluorescence emission spectra were recorded on a Photon 

Technology International fluorescence spectrophotometer at 25 "C or 37 "C. The lower 

detection limit of the copper fluorescein complexes for NO was determined by 

monitoring the fluorescence intensity (1 ,uM CuCl, and 1 ,uM flurescein ligand) 



following treatment of decreasing volumes of a 1.9 mM NO-saturated aqueous solution 

or a 10 mM SNAP solution (50 mM PIPES, pH 7.0, 100 mM KC1). We assigned a 15% 

increase of the integrated emission to be the lowest detectable change on our 

instrument. A Varian 300 or 500 NMR spectrometer was used to record 'H and 13C NMR 

spectra. IR spectra were measured on an Avatar 360 FTIR instrument. UV-vis spectra 

were obtained on a Hewlett-Packard 8453 diode array or a Cary 1E spectrophotometer. 

LC-MS analyses were performed on an Agilent Technologies 1100 Series LC-MS with a 

Zorbax Extend C-18 column using a linear gradient of 100% A (95:5 H20:CH3CN; 0.05% 

HC0,H) to 100% B (95:5 CH,CN:H,O; 0.05% HC0,H) (3 min, 100% A; 15 min, 100% B; 

20 min 100% B; 30 min 100% A) at a flow rate of 0.20 mL/min (detector wavelength = 

280 nm). The MS detector was set to negative ion mode scanning in the range of m/z  = 

100 - 2000. High-resolution mass spectrometric measurements were performed by staff 

at the MIT Department of Chemistry Instrumentation Facility (DCIF). 

EPR Spectroscopy. X-band EPR spectra were recorded on a Bruker EMX EPR 

spectrometer (9.37 GHz). The temperature was maintained with an Oxford Instruments 

ESR900 liquid-helium cryostat and KC503 controller. Nitric oxide (five equiv) was 

directly transferred by a gastight syringe into a 2.5 mM DMF solution of the copper 

fluorescein complex in an EPR tube. The solution was then frozen with liquid N, and 

the spectrum was acquired at 5 K. 

X-ray Crystallographic Studies. Single crystals suitable for data collection were 

mounted in Infineum V8512 on the tip of a glass capillary and frozen in a -100 "C 

nitrogen cold stream. Data were collected on a Bruker APEX CCD X-ray diffractometer 

with Mo Ka radiation (A = 0.71073 A) controlled by the SMART software package.24 The 

general procedures used for data collection are reported elsewhere.25 Empirical 

absorption corrections were calculated with the SADABS program.26 Structures were 



solved by direct methods and refined with the SAINTPLUS and SHELXTL software 

packages.p28 All non-hydrogen atoms were refined anisotropically. Hydrogen atoms 

were assigned idealized positions and each was given a thermal parameter equivalent 

to 1.2 times the thermal parameter of the atom to which it was attached. All structure 

solutions were checked for higher symmetry with PLATON? In the structure of 

[CU(~O~L)~](BF,)~~~CH~OH, the oxygen atom of a CH30H molecule was disordered 

over two positions and assigned occupancy factors of 0.15 and 0.85, respectively. Four 

fluorine atoms of three BF, anions were also disordered over two positions (0.35 and 

0.65, 0.40 and 0.6, 0.32 and 0.68 occupancy factors, respectively) in the structure of 

[Cu2(modL'),(CH30H)] (BF4)2*CH30H. A hydrogen atom was not assigned to the oxygen 

atom of a solvent CH30H molecule, which forms a hydrogen bond to another CH30H 

molecule that is coordinated to the copper center. 

Calculation Methods. All calculations were performed by Professor M.-H. Baik 

(Indiana University) with either the Jaguar 5.5 (Schrodinger, Inc.) or the Amsterdam 

Density Function (ADF) 200.01 software package. Gas phase molecular geometries were 

optimized by the density functional method utilizing the B3LYP functional and 6-31 G** 

basis set. Single point energy calculations were performed from the optimized 

structures using the cc-pVTZ(-f) basis set, which accounts for electron correlation and 

provides reliable energies. Refinements to account for energy changes due to solvation 

were also carried out. 

Syntheses. Precursors of FL, and FL, were synthesized by modification of a 

previously reported method? The compound 2-[2-chloro-6-hydroxy-5-(quinolin-8- 

ylaminomethyl)-3-oxo-3H-xanthen-9-yl]-benzoic acid (FL, = QZ1) was prepared as 

described in the literature." 
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8-Nitro-2-quinolinecarboxylic acid methyl ester (1). To a solution (20 mL 

CH,OH and 50 mL Et20) of 8-nitro-2-quinolinecarboxylic acid (1 g, 4.27 mmol) was 

added Me3SiCHN2 (15 mL, 2.0 M in Et20) until the color of the solution became light 

yellow. The reaction solution was stirred for 4 h at room temperature. Removal of the 

solvent provided a light brown solid. The product (0.47 g, 2.0 mmol, 47%) was purified 

by column chromatography (SiO, 1:l hexanes:EtOAc; Rf = 0.55 by TLC). 'H NMR (500 

MHz, CD2C12): 6 (ppm) 4.05 (3H, s), 7.74 (lH, t, J = 7.5), 8.11 - 8.15 (2H, m), 8.31 (lH, d, J 

= 8.5), 8.43 (lH, d, J = 8.0). HRMS (m/z):  [M+Na]+ Calcd. for Cl,H,N2Na04, 255.0382; 

Found 255.0374. 

8-Amino-2-quinolinecarboxylic acid methyl ester (2). Ethyl acetate (20 mL) was 

added to a mixture of 8-nitro-2-quinolinecarboxylic acid methyl ester (0.18 g, 0.76 

mmol) and 10% Pd/ C (63 mg) and the solution was degassed with Ar for 20 min. One 

atmosphere of H2 (g) was introduced to the degassed solution overnight. The solid 

residues were removed by filteration over celite. Concentration of the filtrate produced 

the desired product (0.13 g, 0.66 mmol, 86%). 'H NMR (500 MHz, CDC1,): 6 (ppm) 4.05 

(3H, s), 6.97 (lH, dd,J= 7.5,J= 1.5), 7.18 (lH, dd,J=8.3,1= 0.5), 7.44 (lH, t,J=8.0), 8.13 

(lH, d, J = 8.5), 8.19 (lH, d, J = 8.5). HRMS (m/z): [M+Na]+ Calcd. for CllHloN2Na02, 

225.0640; Found 225.0638. 

(8-Amino-2-quinoliny1)-methanol(3). To an ethanol (8 mL) solution of NaBH, 

(0.19 g, 4.9 mmol) at 0 "C was added dropwise a THF solution (8 mL) of 8-amino-2- 

quinolinecarboxylic acid methyl ester (0.10 g, 0.50 mmol) over 5 min. The solution was 

allowed to warm to room temperature with stirring overnight. A saturated aqueous 

NaHCO, solution (3 mL) and water (2 mL) were added to the reaction, and the solution 

was extracted with CHCl, three times. The collected CHCl, layer was washed with 



brine and water and dried with MgSO,. Removal of the solvent provided the desired 

product (63 mg, 0.36 mmol, 73 %). 'H NMR (500 MHz, CDCl,): 6 (ppm) 4.95 (2H, s), 7.00 

(lH, dd, J = 7.5,J =1.5), 7.20 (lH, dd, J =  8.0,J = 1.0), 7.29 (lH, d, J = 8.5), 7.36 (lH, t, J = 

7.5), 8.12 (lH, d, J = 8.5). HRMS (m/ z): [M+Na]' Calcd. for CloHloN2Na0, 197.0691; 

Found 197.0676. 

2-{~-Chloro-6-hydroxy-5-[(2-(methylcarboxy~quinolin-8-ylamino~methyl]-3- 

0x0-3H-xanthen-9-yl}benzoic acid (FLJ. An ethyl acetate (3 mL) solution of 8-amino-2- 

quinolinecarboxylic acid methyl ester (15 mg, 0.076 mmol) and 7'-chloro-4'- 

fluorescein~arboxaldehyde~~ (30 mg, 0.076 mmol) was stirred overnight at room 

temperature. The resulting red residue was collected, dried in vacuo, and dissolved in 

dichloroethane (2 mL). To this solution was added NaB(OAc),H (19 mg, 0.15 mmol) and 

the reaction solution was stirred overnight at room temperature. A portion of crude 

materials was purified by preparative TLC on reverse phase silica gel (R .  = 0.32, 

MeOH/H20 = 3 : 0.7) to yield a red solid (16 mg, 27 pmol, 36%): mp = 155 - 157 "C 

(decomp). 'H NMR (500 MHz, CD,OD): 6 (ppm) 3.97 (3H, s), 4.79 (2H, s), 6.53 (lH, d, J = 

9),6.61 (lH, s),6.63 (lH, d,J=8.5),6.99 (lH, s), 7.04(1H, d,J=8.0), 7.12 (lH, d,J=8.0), 

7.19 (lH, d, J = 7.5), 7.46 (lH, t, J= B), 7.68 (lH, t, J = 7.5), 7.73 (lH, t, J = 7.5), 7.99 (2H, t, J 

= 8.5), 8.15 (lH, d, J = 9.5). FTIR (KBr, cml): 3421 (br, m), 2962 (w), 2917 (vw), 2849 (vw), 

1759 (m), 1722 (m), 1627 (m), 1610 (m), 1577 (w), 1565 (w), 1519 (m), 1489 (w), 1445 (w), 

1427 (m), 1377 (w), 1283 (w), 1263 (s), 1217 (w), 1149 (w), 1100 (m), 1092 (m), 1063 (w), 

1027 (m), 873 (w), 803 (s), 769 (w), 701 (w), 617 (vw), 575 (vw), 545 (vw), 469 (vw), 403 

(vw). HRMS (m/ z): [M-HI- Calcd. for C,H,C1N207, 579.0959; Found 579.0963. Anal. 

Calcd. for C,H,,C1N,O7: C, 66.16; H, 3.64; N, 4.82; Found: C, 66.18; H, 3.53; N, 4.98. 



2-(2-Chloro-6-hy droxy-5- [(2-(carboxy)quinolin-8-ylamino)methyl]-3-oxo-3H- 

xanthen-9-y1)benzoic acid (FL,). Portions of 8-aminoquinoline-2-carboxylic acid (14 mg, 

0.076 mmol) and 7'-chloro-4'-fluoresceincarboxaldehyde32 (30 mg, 0.076 mmol) were 

added to 2 mL of EtOAc and the reaction solution was stirred overnight at room 

temperature. After removing the solvent, the resulting red residue was collected and 

dissolved in dichloroethane (2 mL) followed by the addition of N~B(OAC)~H (19 mg, 

0.15 mmol). The reaction solution was stirred and the solvent was removed after 1 d. 

The crude product was purified by preparative TLC on silica gel (1st purification: I$ = 

0.11,5:1 MeOH/ CH2Cl, 2nd purification: Rf = 0.61,3:0.5 MeOH/ 0.1 M HCl), affording 

a red solid (9.7 mg, 17 pmol, 23%): mp = 240 - 242 "C (decomp). 'H NMR (300 MHz, 

CD,OD / CD2C12): 6 (ppm) 4.72 (2H, s), 6.57 (lH, d, J = 8. I), 6.68 (lH, s), 6.93 (0.5H, d, J = 

7.5), 7.00 - 7.13 (3H, m), 7.20 (lH, d,] = 6.3), 7.32 (0.5H, t ,J= 7.5), 7.48 (lH, t,J = 8.1), 

7.53 - 7.61 (2H, m), 8.03 - 8.14 (3H, m). FTIR (KBr, cm-'): 3404 (br, m), 3048 (vw), 2962 

(w), 2923 (w), 2845 (w), 1635 (m), 1609 (m), 1576 (s), 1512 (w), 1459 (m), 1340 (w), 1303 

(w), 1261 (m), 1221 (w), 1148 (s), 1094 (s), 1015 (s), 938 (vw), 878 (vw), 859 (vw), 821 (m), 

796 (s), 745 (vw), 713 (vw), 690 (vw), 661 (vw), 628 (w), 599 (w), 582 (vw), 550 (w), 527 

(VW), 516 (vw), 492 (w), 472 (m), 460 (w), 442 (w), 435 (w), 422 (w), 413 (w), 405 (w). 

HRMS (m/z): [M+Na]+ Calcd. for C31HlgClN207, 589.07785; Found 589.0786. Anal. 

Calcd. for C31HlgClN207: C, 65.67; H, 3.38; N, 4.94; Found: C, 65.58; H, 3.32; N, 4.79. 

2-{2-Chloro-6-hydroxy-5-[(2-hydroxymethyl-q~nolin-8-ylamino~-methyl]-3- 

0x0-3H-xanthen-9-yl}benzoic acid (FL,). A solution (EtOAc, 3 mL) of (8-amino- 

quinolin-2-y1)-methanol (33 mg, 0.19 mmol)  and  7'-chloro-4'- 

fluoresceincarboxaldehyde32 (75 mg, 0.19 mmol) was stirred overnight at room 

temperature. The resulting red residue was collected, dried in vacuo, and dissolved in 



dichloroethane (2 mL). To the dichloroethane solution was added a portion of 

NaB(OAc),H (48 mg, 0.23 mmol). The solution was stirred overnight and purified by 

preparative silica TLC (Rf = 0.22, 1:l:O.g EtOAc/Hx/MeOH), affording a red solid (23 

mgi 42 ,umol, 22%): mp = 230 - 231 OC (decomp). 'H NMR (500 MHz, CD,OD): 6 (ppm) 

4.74 (2H, s), 4.77 (2H, s), 6.53 (lH, d, J = 9.5), 6.73 (lH, s), 6.97 - 7.00 (2H, m), 7.09 - 7.17 

(3H, m), 7.32 (lH, t, J = 8.0), 7.45 (lH, d, J = 8.0), 7.49 - 7.56 (2H, m), 7.99 (lH, d, J = 9.0), 

8.05 (lH, d, J = 10.5). FTIR (KBr, cm-I): 3427 (br, m), 3059 (vw), 2996 (vw), 2963 (w), 2932 

(vw), 2900 (vw), 1634 (vw), 1575 (s), 1519 (w), 1457 (m), 1419 (w), 1376 (m), 1342 (w), 

1305 (vw), 1263 (m), 1223 (w), 1151 (w), 1092 (w), 1039 (vw), 925 (vw), 881 (vw), 822 (m), 

806 (m), 712 (vw), 649 (vw), 619 (vw), 600 (vw), 550 (vw), 469 (vw). HRMS (m/z): [M- 

HI- Calcd. for C,H,C1N2O, 551.1010; Found 551.1003. Anal. Calcd. for 

C3,H,ClN20,-2H20=2CHC13=CH2C12: C, 44.74; H, 3.20; N, 3.07; Found: C, 46.46; H, 3.29; 

N, 2.84 ('H NMR spectrum also presented two CHC1, and one CH,C12 molecules per FL3 

in the material). 

2-{2-Chloro-6-hydro~-5-[(2-methyl-quinolin-8-ylamino)-methyll-3-ox~3H- 

xanthen-9-y1)benzoic acid (FLd. To 2 mL of EtOAc were added 7'-chloro-4'- 

fluoresceincarboxaldehyde (30 mg, 0.076 mm01)~~ and 8-aminoquinaldine (12 mg, 0.076 

mmol). After the reaction was stirred overnight at room temperature, the solvent was 

removed under reduced pressure. The residue was dissolved in 2 mL of MeOH and the 

reaction solution was cooled to 0 OC. A portion of NaBH, (14 mg, 0.38 mmol) was added 

and the reaction was stirred at 0 OC for 1 h before being allowed to come slowly to room 

temperature, followed by stirring overnight. The solvent was evaporated under 

reduced pressure and the crude material was purified by preparative TLC on silica gel 

(Rf = 0.34,20:1 CH2Cl,/MeOH), affording the FL, product as a magenta solid (9 mg, 17 



pmol, 22%): mp = 190 - 192 "C (decomp). 'H NMR (500 MHz, CD30D): G(ppm) 2.61 

(3H, s),4.75 (2H, s),6.50 (lH, d,J=9.5),6.76 (lH,s), 6.94-7.01 (2H, m), 7.10-7.15 (3H, 

m), 7.20 (lH, d,J= 8.5), 7.27-7.30 (lH,m),7.52-7.58 (2H, m), 7.90 (lH, d,J=8.0),8.02 

(lH, d, J = 7.5). 13C NMR (125 MHz, CD30D): 6 (ppm) 181.53, 174.38, 173.44, 159.42, 

157.67,157.31,156.08,145.00,140.59,138.63,136.52,133.77,131.01,130.17, 129.94,129.50, 

129.37,129.05,127.38,127.34,127.10,123.99,122.18,114.33,113.49,112.79,111.48,106.68, 

104.26,36.43,24.44. FTIR (KBr, cm"): 3390 (br, w), 3044 (vw), 2961 (w), 2920 (w), 2848 

(w), 1636 (m), 1606 (m), 1575 (s), 1515 (m), 1460 (s), 1374 (s), 1342 (sh, w), 1304 (w), 1258 

(VW), 1221 (w), 1149 (m), 1119 (vw), 1092 (vw), 1007 (m), 937 (vw), 883 (vw), 828 (m), 795 

(vw), 745 (vw), 714 (vw), 686 (vw), 659 (vw), 627 (w), 599 (w), 549 (w), 520 (vw), 471 (m), 

449 (vw). HRMS (m/ z): [M-HI- and [2M-HI-: Calcd, for C31H2,,ClN,0, 535.1061 and for 

C&C12N401, 1071.2200; Found, 535.1044 and 1071.2147. 

2-{2-Chloro-6-hydroxy-5-[((2-methylquinolin-8-yl~~nitroso~amino~methyll-3- 

0x0-3H-xanthen-9-y1)benzoic acid (FL,-NO). Sodium nitrite (Na14N02 or Na15N0, 5 

mg, 72 ,umol, in 100 ,uL dd H20) was added to a mixture of FL, (1.5 mg, 2.8 pmol, in 200 

pL CH30H) and 0.3 M NaOH (aq, 100 pL) on ice. Hydrochloric acid (100 pL, 6 M aq) 

was slowly introduced to the reaction solution on ice, affording a reddish precipitate. 

After the solution was centrifuged, LC-MS analyses of both supernatant and precipitate 

were performed. The precipitate included a mixture of FL,-NO and FL,. The collected 

supernatant mostly contained the desired product, confirmed by LC-MS. Excess sodium 

nitrite was removed by dialysis of the supernatant using Spectra/ Pro@ CE (SpectrumB) 

membrane and an orange solid (0.6 mg, 1.1 ,umol, 39%) was obtained by solvent 

removal using a lyophilizer and characterized without further purification. TLC (silica, 

1:9 CH30H/CH2C12) showed only one compound with Rf = 0.6: mp = 120 - 123 "C 



(decomp). FTIR (KBr, cm-'): 3419 (br, s), 3060 (vw), 2958 (vw), 2922 (w), 2846 (vw), 1762 

(m), 1725 (vw), 1704 (vw), 1689 (vw), 1642 (m), 1630 (m), 1608 (m), 1580 (sh, w), 1542 

(W), 1452 (s), 1428 (m), 1384 (m), 1303 (sh, w), 1285 (m), 1253 (sh, w), 1222 (w), 1151 (m), 

1109 (m), 1087 (br, w), 1065 (w), 1017 (m), 952 (w), 605 (vw), 874 (vw), 842 (vw), 803 (w), 

763 (w), 703 (w), 672 (vw), 621 (vw), 605 (vw), 579 (vw). It was not possible to identify 

v,, unambiguously in the IR spectrum, probably due to overlap with other peaks in the 

expected region (1200 - 1600 cm-I). Several possible intramolecular hydrogen bonding 

interactions involving the nitrosyl group may also attenuate its position and intensity. 

HRMS (mlz): [M-H+Cl]-: Calcd, for C31H20C12N30, 600.0729; Found, 600.0729. 15N NMR 

(50.71 MHz, CD30D) for FLs15NO: 6 (ppm) 167.33 and 169.61 (relative to CH,NO, as 

external standard). 'H NMR (500 MHz, CD30D, ca. 7:3 isomer mixture) selected peaks 

for _FL5-l5NO: 6 (ppm) 2.67 (0.9H, s), 2.71 (2.1H, s), 7.83 (0.3H, dd, J = 8.0,J = loo), 7.91 

(0.7H, dd, J = 7.5, J = 1.5), 7.96 (0.7H, d, J = 7.5), 8.0 (0.3H, d, J = 7.5), 8.19 (0.3H, d, J = 

8.5), 8.23 (0.7H, d, J = 8.5). HRMS (m/z): [M-H+Cl]-: Calcd, for C31H20C1,'4N~5N0, 

601.0700; Found, 601.0736. 

[CU~(~O~L'),(CH~OH)I(BF~)~~CH~OH and [ CU(~O~L)~I(BF~),*~CH~OH. T w o 

kinds of crystals were grown by vapor diffusion of Et20 into a methanol solution (3 mL) 

of 2-[(quinolin-8-ylamino)methyl] phenol (modL) (1 0 mg, 40 pmol) and copper(I1) 

tetrafluoroborate (9.5 mg, 40 pmol) at room temperature overnight. Violet (major 

product, [Cu(modL),](BF,),m2CH30H) and green (minor product, 

[Cu2(modL,')2(CH@H)](BF4)2~CH30H) colored crystals were manually separated for 

characterization. Qunatities of [Cu,(modL,'),(CH,OH)] (BF4)2CH30H sufficient for full 

characterization were not obtained. FTIR (KBr, cm-'): 3485 (br, w), 3216 (m), 3071 (vw), 

2952 (vw), 2931 (vw), 2849 (vw), 1617 (vw), 1598 (vw), 1570 (vw), 1513 (m), 1485 (m), 



1454 (m), 1384 (m), 1322 (w), 1265 (s), 1199 (vw), 1130 (sh, w), 1081 (br, vs), 1042 (br, vs), 

936 (sh, vw), 903 (vw), 881 (w), 859 (vw), 834 (w), 804 (w), 764 (s), 730 (w), 656 (vw), 633 

(VW), 618 (vw), 598 (vw), 581 (vw), 551 (w), 519 (w), 504 (w), 463 (w), 415 (w). 

Characterization of [CU(~O~L)~](BF,),-~CH~OH: mp = 223 - 225 OC (decomp). FTIR 

(KBr, cm"): 3379 (br, m), 3246 (m), 3119 (vw), 3070 (w), 3056 (w), 3026 (vw), 2940 (vw), 

2864 (vw), 1616 (w), 1596 (m), 1516 (s), 1479 (w), 1462 (s), 1400 (w), 1382 (w), 1358 (w), 

1332 (w), 1316 (vw), 1270 (w), 1248 (w), 1188 (w), 1175 (w), 1162 (sh, w), 1133 (sh, w), 

1100 (br, VS), 1080 (br, vs), 1039 (sh, vw), 936 (sh, vw), 885 (w), 867 (w), 848 (w), 832 (m), 

794 (w), 763 (s), 731 (w), 721 (w), 664 (vw), 559 (vw), 519 (w), 491 (vw). Anal. Calcd. for 

CUC~~H,B,F,N,O~~~H~O: C, 49.67; H, 4.17; N, 7.24; Found: C, 50.41; H, 4.18; N, 6.98. 

Results and Discussion 

Design Considerations for Cu(1I)-Based NO Sensors. 

Several metal-based fluorescent sensors for nitric oxide have been developed in 

our lab~ratory."'~-~l Most recently, we succeeded in fluorescent NO sensing using Cu(I1) 

dansyl complexes in pH 9.0 buffered solution, which results in the formation of a 

diamagnetic Cu(1) species (Scheme 5.1b)?7 In addition, a Cu(I1) anthracenyl cyclam 

complex showed an NO-triggered fluorescence increase in a buffered methanol solution 

by fluorophore ligand dissociation from copper following N-nitrosation (Scheme 5.lc)." 

Both observations demonstrate that a Cu(I1)-based sensor could be designed for NO 

detection in a physiologically relevant setting. To achieve this goal, fluorescein-based 

ligands for Cu(I1) were prepared, since fluorescein is water-soluble, highly emissive (@ 

= 0.95) and has excitation and emission in the visible region,33 which is not harmful for 

cellular components during NO imaging. Incorporation of a metal-binding unit to a 



fluorescein backbone provides small-molecule, metal-ion sensors, as previously 

demonstrated for Zn(II)? Similarly, a copper-binding site was linked to fluorescein to 

obtain a copper-fluorescein compound as an NO indicator at pH 7.0 (Figure 5.1). 

Synthesis of Fluorescein-Based Ligands (FL,). 

: The general assembly of fluorescein-based sensors with one metal ion binding 

site containing two nitrogen and one or more oxygen donor atoms (N,O, n = 1 or 2) has 

been previously achieved in our laboratory by using 7'-chloro-4'- 

fluorescein~arboxaldehyde.~~ This general synthesis was adopted to prepare copper(I1)- 

based NO sensors in the present study. 

The synthesis of amine ligands 8-amino-2-quinolinecarboxylic acid methyl ester 

(2) :and (&amino-2-quinoliny1)-methanol (3) was achieved by modification of a 

previously reported method, as shown in Scheme 5.2? 8-Nitro-2-quinolinecarboxylic 

acid was generated by bromination of 8-nitroquinaldine followed by hydrolysis as 

described." To prepare 8-nitro-2-quinolinecarboxylic acid methyl ester (I), 

trimethylsilyldiazomethane Me3SiCHN, which is a safer alternative to the use of 

diazomethane, was employed in the present work, affording 1 as a light-brown solid in 

moderate yield (47%) after purification on silica gel (1:l hexanes/EtOAc). 

Hydrogenation of 1 in EtOAc using 10% Pd/ C gave pure 2 in 86% yield without further 

manipulation. Upon reduction of 2 with sodium borohydride in a mixture of THF and 

EtOH, 3 was obtained in 73% yield without purification. 

Scheme 5.3 illustrates the syntheses of fluorescein-based ligands FL, - FL,. 

Combination of 2 or 3 with 7'-chloro-4'-fluoresceincarboxaldehyde32 in dry EtOAc 

resulted in precipitates of the respective intermediate imines, as shown in the scheme. 

The imines were reduced under mild conditions by using N~B(OAC)~H in 



dichloroethane. A portion of the crude materials was purified by preparative TLC, 

affording desired products FL, and FL, respectively in moderate yield. Commercially 

available amine moieties were assembled with T-chloro-4'-fluoresceincarboxaldehyde32 

to obtain pure FLD FLU3' and FL, by a similar procedure. The spectroscopic properties of 

the FL, (n = 1 - 5) compounds are summarized in Table 5.1. 

Preparation a n d  Fluorescence Studies  of Copper Fluorescein Compounds. 

The Cu(I1) fluorescein-based NO sensors Cu(FLn) (n = 1 - 5, Figure 5.1) were 

generated in situ by combining the FL, ligand with CuCl, in a 1:l ratio in pHi7.0 

buffered solution (50 mM PIPES, 100 mM KCl). Upon Cu(I1) binding to the fluorescein 

ligands FL,, a blue-shifted absorption band was observed, compared to that of free FL, 

as summarized in Table 5.1. UV-visible spectroscopy was employed to verify the 

binding stoichiometry of the FL,:Cu(II) complexes at pH 7.0. For FLU FL, and FL, Job's 

plots of CuC1,:ligand mixtures revealed a break at 0.5, indicating the formation of a 1:l 

complexes (Figure 5.2). The reaction of FL, or FL, with CuCl, however, generated a 

mixture of 1:l and 1:2 complexes in pH 7.0 buffered solution as revealed by analyses of 

the Job's plots (Figure 5.2). This mixed binding mode of FL, with Cu(I1) was also 

observed in the reaction of Cu(BF4), with 2-[(quinolin-8-ylamino)methyl] phenol (modL) 

as a model for the reaction of FL,. Two kinds of crystals [Cu(modL),](BF,), and 

[Cu2(modL'),(Me0H)] (BF,), (modL' = 2-[(quinolin-8-ylamino)methyl] phenolate) were 

obtained by vapor diffusion of Et20 into a methanol solution of Cu(BF4), and modL in a 

ratio of 1:l (Figure 5.3). The observation of 1:l and 1:2 complexes in the Cu(I1) modL 

system suggests that a similar mixed binding mode for FL, and FL, with Cu(I1). Also, 

these crystal structures reveal that one oxygen and two nitrogen atoms of the ligands 

FL, might bind to Cu(II), as in the crystal structure of [CU~(~O~L'),(CH~OH)](BF~)~. 



Crystallographic data for [Cu(modL),](BF,), and [CU,(~O~L'),(CH,OH)](BF~)~ are 

summarized in Table 5.2, and selected bond lengths and angles are listed in Table 5.3. 

As shown in Table 5.1, the fluorescence emission intensities of 1 ,uM FL, (n = 1 - 

5) pH 7.0 buffered solutions at 37 "C are slightly diminished upon addition of one 

equivalent of CuC1,. Introduction of excess NO to buffered Cu(FL ,) (1 PM FL, and 1 ,uM 

CuC1,) solutions (50 mM PIPES, pH 7.0, 100 mM KCl) causes an increase in 

fluorescence. A 2.5(f 0.1)- or 8.3(f 0.9)-fold increase in fluorescence was observed in the 

reaction of Cu(FL,) or Cu(FL,) with excess NO over 60 or 70 min (Figure 5.4a and b). 

Copper complexes Cu(FL3 and Cu(FL,) displayed 3.4(&0.1)- and 3l(fl)-fold 

fluorescence enhancements upon treatment of excess NO over 15 and 20 min, 

respectively (Figure 5 . 4 ~  and d). Lastly, a 16(fl)-fold fluorescence increase was 

observed at 5 min when Cu(FL5) was allowed to react with excess NO (immediate 

ll(f2)-fold increase in fluorescence, Figure 5.4e). The lower limit of Cu(FL5) for NO 

detection is 5 nM. The fluorescence response of the Cu(FL5) probe is specific for NO 

over other reactive species present in biological systems, including H20, (1.2(fO.l)-fold 

increase), NO; (1.2(f0.2)-fold increase), NO; (1.2(&1.3)-fold increase), HNO (1.4(f0.2)- 

fold increase) and ONOO- (2.6(*0.3)-fold increase) (Figure 5.5). A 2.0(f0.2)-fold increase 

in fluorescence was observed when Cu(FL3 allowed to react with superoxide (0;) that 

was generated by xanthine and xanthine o x i d a ~ e . ~ ~ ~  Although Cu(FL5) showed a slight 

fluorescence increase by peroxynitrite and superoxide, it is significantly less than that 

caused by NO. 

Fluorescence enhancement in the NO reactions of Cu(FL,) is not significantly 

affected in the different buffered solutions and is independent on C1- ion. When 20 mM 

potassium phosphate buffer was used to follow the NO reaction of Cu(FL5), a lO(f2)- 



fold fluorescence increase was exhibited over 5 min (Figure 5.6a). When Cu(FL5) was 

prepared in situ by the reaction of Cu(N03), with FL, in a 1:l ratio, a 12(Q)-fold increase 

was observed upon addition of excess NO over 5 min (50 mM PIPES, pH 7.0,100 mM 

KN03), as shown in Figure 5.6b. 

These results demonstrate that Cu(FLn) can detect NO with significant emission 

turn-on at a physiologically relevant pH. A comparison of the NO reactions of Cu(FLn) 

with those of a commercially available NO probe DAF-2 (0-diaminofluorescein) clearly 

highlights the unique ability of copper-based sensors for direct NO sensing (Figure 5.7). 

DAF-2 displays no increase in fluorescence upon addition of excess NO for 1 h inthe 

absence of O2 (Figure 5.7a). DAF-2 did exhibit fluorescence turn-on by using an aerobic 

pH 7.0 buffered solution, indicating that it is capable of detecting only oxidized NO 

species (Figure 5.7b). On the other hand, Cu(FLn) showed immediate fluorescence 

enhancement by NO (Figure 5.4), which clearly indicates that it is a probe that can 

directly and rapidly visualize nitric oxide in vitro and in vivo. 

Mechanism of Fluorescence Detection of NO by Cu(FLn). 

When FL, or FL, was titrated with CuC12at 25 "C, the optical absorption spectral 

changes could be fit to a one-step binding equation affording a dissociation constant 

(K,) of 0.25(&0.14) or 1.5(*0.3) pM for Cu(I1) ion (Figure 5.8). These Kd values indicate 

that the reaction solution of FL, or FL, (1 pM) with CuCl, (1 pM) contains Cu(I1) ion, free 

FL, and Cu(FL,) (n = 1, 5). To identify the species responsible for NO detection, the 

fluorescence of a Cu(I1)-free FL, solution was monitored upon treatment with excess 

NO. This solution exhibited only a small, 1.5 k 0.2-fold increase in fluorescence over 30 

min (Figure 5.9a), which suggests that Cu(I1) ion is required for fluorescence increase in 



the presence of NO. In addition, a slight, 1.3 f 0.2-fold, enhancement in fluorescence 

was observed upon addition of excess NO to a Cu(FL,) solution in the presence of a 

Cu(I1) chelator such as N,N'-1,2-ethanediylbis-(N-(carboxymethyl)glycine) (EDTA) 

(Figure 5.9b). This result indicates that the binding of FL, to Cu(I1) is indispensable for 

NO-induced fluorescence increase. These findings demonstrate that Cu(FL5), and not 

FL, or Cu(I1) ion alone, is the nitric oxide indicator showing a significant fluorescence 

turn-on in our studies. 

The mechanism of turn-on emission of Cu(FL,) by NO requires NO-induced 

reduction of Cu(I1) to Cu(I), forming NO'. The loss of Cu(I1) was monitored by EPR 

spectroscopy. The Cu(I1) EPR signal decreases by 2.9-fold upon introduction of 5 equiv 

of NO to a DMF solution of Cu(FL5), consistent with reduction to Cu(1) compound 

(Figure 5.10). It has been reported that the formation of a diamagnetic Cu(1) complex 

during NO reactions of Cu(I1) complexes can restore the quenched fluorescence of a 

fluorophore coordinated to the paramagnetic meta1.'71'"22 The fluorescence of FL, is 

unchanged when allowed to react with [Cu(CH,CN),](BF,) (Figure 5.11a). A mixture of 

FL, and Cu(1) also exhibited only a 1.3 0.1-fold increase in fluorescence over 30 min 

with the addition of excess NO over 30 min (Figure 5.11b). These results indicate that 

reduction of the copper center from Cu(I1) to Cu(1) by NO alone does not cause 

fluorescence enhancement in the NO reaction of Cu(FL,) complexes, which differs from 

prior observation for Cu(I1)-based ~ ~ s t e m s . ' ~ ~ ' ~  

The absorption of Cu(FL,) (aax = 499 nm) in pH 7.0 buffered solution red- 

shifted back to that characteristic of FL, (aax = 504 nm) upon treatment with excess NO, 

which is different from the Amax (506 nm) value of Cul(FL,) that is generated in situ by 

reaction of FL, with 1 equiv of [Cu(CH3CN),](BF,) (Figure 5.12). This observation 



indirectly suggests dissociation of the fluorescein ligand from copper during the NO 

reaction of Cu(FL5). The negative ion electrospray mass spectrum of the Cu(I1) species, 

generated in situ by the reaction of a 1:l ratio of CuC1, and FL, displays a peak with 

m/z of 632.0 corresponding to [Cu(FL,)Cl - HI- (Calcd. m/z  632.0) (Figure 5.13). The 

reaction of Cu(FL,) with NO in solution (50 mM PIPES, pH 7.0, 100 mM KC1) was 

monitored by liquid chromatography-mass spectrometry (LC-MS, low resolution MS). 

A major LC species (93 * 3%), shown in Figure 5.14a, displayed three m/z peaks at 

564.7, 600.5, and 1128.9, corresponding to the species [FL, + NO - 2H]- (Calcd. m/z 

564.1), [FL, + NO - H + C1]- (Calcd. m/z 600.1), and [2(FL, + NO) - 3H]; (Calcd. m/z 

1129.2). This LC-MS analysis of the NO-induced compound suggests that nitrosation of 

the FL, ligand to create FL5-NO occurs during the reaction of Cu(FL,) with nitric oxide. 

The fluorescence intensity of the NO reaction solution of Cu(FL,) was unchanged 30 

min after purging with Ar or after standing for several days in air. In addition, the FL5- 

N O  species is stable in pH 7.0 buffered solution for several days, as monitored by LC- 

MS. These results indicate that the NO reaction of Cu(FLn) is irreversible. 

To identify the FL, nitrosation product in the reaction of Cu(FL,) with NO, FLr 

N O  was separately prepared by reacting FL, with sodium nitrite (NaNO,) under the 

acidic conditions, which is a general procedure for producing nitroso  compound^.^ 

Treatment of a MeOH solution of FL, containing excess NaNO, (aq) over ice with HC1 

(aq) immediately induced a color change from red-orange to bright yellow. A 

precipitate immediately appeared and the supernatant was collected after 30 min by 

centrifuging the reaction mixture. Dialysis of the supernatant against water was 

performed to remove residual NaNO,. An orange solid was obtained in moderate yield 

upon lyophilization. The isolated solid was analyzed by LC-MS and its properties were 

compared with those of the material obtained in a reaction of Cu(FL,) with NO. LC-MS 



analyses of synthetic FL5-NO showed only one LC peak with m/z = 564.6, 600.1, and 

1129.2, which is consistent with the results of the NO reaction product at the identical 

retention time (Figures 5.14a and 5.14b), [FL, + NO - 2H]- (Calcd. m/z  564.1), [FL, + NO 

- H + Cl]- (Calcd. m / z  600.1), and [2(FL5 + NO) - 3H]; (Calcd. m/z  1129.2)). In 

addition, FL5-l5NO was synthesized in an analogous manner by reacting FL, and 15N- 

labeled sodium nitrite (Na15N0,). The electrospray-MS (ESI-MS) of FL5-15N0 exhibited 

m/ z peaks at 565.8,601.3, and 1131.2, as expected from the mass shift of Am/ z between 

14N0 and ',NO (Figure 5.14~). ESI-MS/ MS analysis of the major peaks with m/ z = 564.6 

or 565.8 showed that one of fragmentation products of FL5-NO having m / z  = 534.0 

(Calcd. m/z  534.1) derives from loss of the NO moiety of FL5-NO (Figure 5.15). These 

studies indicate that the NO functionality is incorporated in the final NO-induced 

reaction product of Cu(FL5). 

Nitrosation of FL, might occur at the secondary amine metal-binding site, as 

shown in Scheme 5.4, causing dissociation of nitrosated ligand from the copper center. 

The latter interpretation is based on indirect evidence provided by the optical changes 

that accompany the NO reaction of a solution of Cu(FL,) (Figure 5.12). There are two 

likely sites for nitrosation on the fluorophore, namely, the 3'-hydroxyl group of the 

xanthenone ring or the amino nitrogen atom at the 8-position of the quinoline ring. To 

determine the site of nitrosation of FL, the FL5-NO species independently generated 

was investigated by UV-vis and NMR spectroscopy. The properties of fluorescein at 

different pH values are reflected in significant optical changes upon protonation or 

deprotonation of the hydroxyl group on the xanthenone ring." Fluorescein generally 

has a dianionic form with deprotonated hydroxylate and carboxylate groups at pH 7.0.33 

The spectrum of FL, is dominated by the fluorescein absorptions in the 400 to 650 nm 

range. As shown in Figures 5.12 and 5.16, the optical spectrum of Cu(FL,) after reaction 



with NO is consistent with that of FL, suggesting that a dianionic form of FL,-NO 

exists at pH 7.0. The NO reaction product of Cu(FL5) showed a similar optical changes 

of FL, upon lowering the pH from 7.0 to 5.0 (Figure 5.16), indicating the formation of 

monoanionic fluores~ein.~ This observation suggests that nitrosation of FL, does not 

occur at the hydroxyl group on the xanthenone ring of the fluorophore. 

The 15N NMR spectrum of FL,-"NO was also obtained to clarify further the 

position of nitrosation. The 15N NMR spectrum of FL,-15N0, generated by reacting FL, 

with Na15N0, exhibited chemical shifts for the labeled 15N0 group at 167.32 and 169.61 

ppm in a ratio of 7:3 versus CH3N0, as external reference. These 15N chemical shifts of 

FL,-15N0 are similar to those of previously reported N-ni t rosamine~.~~~~~ Two different 

chemical shifts might be indicative of the presence of isomers, which is well-known for 

N-nitro~amines.~~~~ The difference of the two 15N chemical shifts, A6 = 2.29, is in the 

range of previously described values for N-nitrosamine isomers." This distribution of 

isomers was confirmed by 'H NMR spectroscopy. The NMR studies of FL,-NO clearly 

indicate that FL, is N-nitrosated at the secondary amine functionalityf3 as shown in 

Scheme 5.4. Formation of an N-nitrosamine was previously reported in the reaction of 

NO with a Cu(I1) complex in a mixed waterlmethanol solution." N-nitrosation of FL, 

will weaken its binding affinity for the metal center. In short, Cu(FL,) reacts with NO 

via NO-induced reduction of Cu(I1) to Cu(1) forming NO', which nitrosates the FL, 

ligand with concomitant dissociation from the copper center. The MS/ MS analysis of N- 

nitrosamines FL,-"NO and FL5-15N0 shown in Figure 5.15 supports this conclusion. 

One last question remains: Is FL5-NO the species responsible for enhanced 

emission? The quantum yield of synthetic FL5-NO was measured as (S(FL5-NO) = 0.58 

f 0.02 compared to fluorescein ((S = 0.95)?' Thus, FL5-NO is brighter than FL, or Cu(FL,) 



(@(FL5) = 0.077 i- 0.002 and @(Cu(FL,)) = 0.063 f 0.002 in Table 5.1). These mechanistic 

studies thus demonstrate that Cu(FL,) is capable of fluorescence-based NO sensing at 

pH 7.0 via NO-induced metal reduction followed by release of the N-nitrosated 

fluorescein ligand from the copper center, triggering concomitant fluorescence 

enhancement (Scheme 5.4). N-nitrosated FL, (FL,-NO) is the species responsible for 

fluorescence enhancement in the reaction of Cu(FLn) with NO, a conclusion supported 

by density functional theory (Dm) calculations of FL5-NO (vide i n . ) .  

The reaction pathway shown in Scheme 5.4 might explain the different observed 

fluorescence responses of Cu(FLn) (n = 1 - 5) to NO. Compound FL5-NO could be 

formed via several different reaction pathways. One such possibility (Scheme 5.5a) is 

initial NO coordination to Cu(I1) followed by NO' migration from the copper center to 

the amine functionality to produce the N-nitrosamine. The last step would be 

dissociation of N-nitrosamine from the Cu(1) center. An alternative mechanism of N- 

nitrosamine formation is direct interaction of NO with the deprotonated amine via 

inner sphere electron transfer from the copper center to the ligand to form the N- 

nitrosamine, as described in a recent report (Scheme 5.5b)? 

A comparison of the NO reactions of the Cu(I1) complexes with FL,, FL, and FL, 

reveals that the NO-induced fluorescence increase is slower when FL, has one 

additional donor atom coordinated to the Cu(I1) center (Figure 5.4). Based on the 

mechanism proposed above, this observation might be explained by two possible 

factors. The Cu(I1) complexes containing tetradentate ligands such as FL, and FL, may 

be less able to accommodate the structural rearrangements required for the planar to 

tetrahedral conversion upon Cu(1) complex formation as compared to the tridentate 

ligand FL,. As a result, the rate of the NO reactions of Cu(FL,) (n = 1,3) compared with 

Cu(FL,) decreases and consequently reduces the rate of formation of the FLdNO species 



responsible for fluorescence enhancement. The second possibility concerns the 

dissociation of FL,-NO from copper. The presence of an additional donor atom in the 

FL, chelate may decelerate the dissociation of FL,-NO from copper, which would also 

result in a slower fluorescence increase. A comparison of the Kd values for Cu(FLl) and 

Cu(FL,), 0.25(f 0.14) ,uM and 1.5(M.3) pM (Figure 5.8), respectively, supports this notion 

assuming that the Kd values for the N-nitrosated amine product follow this trend. At 

present, we are unable to determine whether one of these factors plays the main role in 

influencing the NO reactivity of Cu(FL,) or perhaps a combination of both. 

Introduction of additional donor atoms to FL, could also affect the electronic 

properties of the copper center. To address this issue, electrochemical studies were also 

attempted. The measurements of the Cu(FLn) redox potentials, however, was not 

successful and the redox potential of free Cu(I1) ion was mainly observed. This might be 

a consequence of high Kd values for the equilibrium in Scheme 5.4, which is already 

shown for Cu(FL,) (n = 1,5), and the corresponding presence of high concentrations of 

free Cu(I1) ion in solution. 

Although the mechanism of NO reaction with Cu(FL,) is not unequivocally 

proved by these experiments, the present work suggests that both electronic effects and 

binding equilibrium may affect the formation of N-nitrosamine. Moreover, the ability to 

detect NO as well as the different reactivity observed for the copper fluorescein 

compounds described herein represent an invaluable platform for devising improved 

NO sensors, suitable for the elucidation of NO function in vivo. 

DFT Calculation o f  FL, versus FLsNO. 

The "off-onf' properties of fluorescence-based sensors such as FL, are believed to 

operate by the well-established photoinduced electron transfer (PET) mechanismw 



The presence of a covalently bound nitrogen atom with free lone pair electrons will 

quench the fluorescence of the sensor in the absence of analyte. Perturbation of this 

nitrogen atom lone pair, such as by binding of a diamagnetic metal ion? will alleviate 

this quenching process, causing fluorescence "turn-on." Note that binding to a 

paramagnetic metal ion such as Cu(1I) is expected to preserve or enhance the quenching 

behavior of fluorophores." 

For the FL5/FL5-NO system, it is interesting to note that both species have a 

nitrogen atom-based free electron lone pair that might be expected to contribute to 

fluorescence quenching. In order to provide some explanation for the fluorescence 

"turn-onyf observed in the nitrosated species, density functional theory (DFT) 

calculations were performed. These calculations provide valuable information about the 

molecular orbitals (MOs) involved in the PET process. For a fluorophore to be quenched 

by an electron donor group, the MO associated with that donor must lie energetically 

within the region of the frontier orbitals associated with the fluorophore. For FL, the 

nitrogen atom lone pair is conjugated into the quinoline group, forming an antibonding 

interaction, as can be seen from the node between these two groups (Figure 5.17c), that 

generates a filled MO that lies just below the HOMO of the fluorophore (HOMO-1, 

Figure 5.18). Excitation of the fluorophore causes a reordering of these MOs due to 

electronic relaxation in the excited state, which does not affect the energy of the donor 

orbital. Electron transfer from the donor orbital into the now lower-lying, half-occupied 

MO of the fluorophore is expected to cause the observed quenching. 

In the case of FLrNO, the donor nitrogen atom has a nearly planar geometry 

with a normal vector in the plane of the quinoline group (Figure 5.17d), thus preventing 

the'same conjugation present in FL,. Instead, the nitrogen atom lone pair interacts with 

the a-system of the NO group, producing a stabilized MO at a significantly lower 



energy (Figure 5.19). This MO lies well below the frontier orbitals of the fluorophore 

and cannot act as an electron donor for purposes of quenching. This result is in 

agreement with the observed fluorescence "turn-on" of the nitrosated species. 

Summary 

Five fluorescein-based ligands (FL, n = 1 - 5) were synthesized as the framework 

for Cu(I1)-based complexes that could serve as bio-sensors for nitric oxide. The Cu(I1) 

species Cu(FL,) generated in situ by the reaction of FL, with CuC1, exhibited a 

significant increase in fluorescence upon addition of NO in pH 7.0 buffered solution. 

Turn-on emission of Cu(FLn) by NO would occur by reduction of Cu(I1) to Cu(I), 

forming NO', which nitrosates FL, to create FLn-NO, as suggested by spectroscopic and 

product analyses of the reaction. Dissociation from the copper center leads to emission 

turn-on. DFT calculations of FL5-NO relative to FL5 also support that N-nitrosation of 

FL, triggers fluorescence enhancement. The Cu(FL,) probes are the first examples of 

direct NO detection using metal complexes with fluorescence increase at pH 7.0, when 

excited at a visible wavelength. The fluorescence response to NO of Cu(FLn) is specific 

for NO over other biologically relevant reactive species such as 0 ,  H,O, N O ,  N O ,  

HNO, and ONOO-. Therefore, the Cu(I1) fluorescent complexes can directly and 

specifically detect NO at a physiologically relevant pH. 
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Table 5.1. Spectroscopic Resultsa 

Absorption Emission Ref. 
(nm), E (X lo4 ~-lcm-l) A,, (nm), ob or % 

Unbound Cu(11)' Unbound (a) Cu(11) 

FLI 504,4.3 k 0.1 499,4.0 * 0.1 520,0.083 k 0.004 520,32% k 2 this work 

FL2 503,3.8 * 0.5 496,3.8 k 0.3 520,0.084 * 0.002 520,26% + 3 this work 

FLB 503,3.9 & 0.1 497,3.9 k 0.5 520, 0.31 & 0.01 520,19% f 2 this work 

FLI 505,6.9 * 0.1 496,5.7 k 0.1 520,0.024 * 0.001 520,30% st 3 31 & this work 

FLs 504,4.2 + 0.1 499,4.0 k 0.1 520,0.077 * 0.002 520, 18% + 3 31 & this work 

a All spectroscopic measurements were performed at pH 7.0 by using 50 mM PIPES, 100 

mM KC1 buffer. Reported quantum yields are based on fluorescein, @ = 0.95 in 0.1 N 

NaOH?' ' One equivalent of CuCl, is added. OJo of fluorescence decrease upon addition 

of 1 equiv of Cu(I1) to the pH 7.0 buffered solution of FL, (1 pM), relative to that of free 

FL, (50 mM PIPES, 100 mM KCI). 



Table 5.2. Summary of X-ray Crystallographic Data 

[CU(~O~L)~I(BF~)~-~CH~OH [CU~(~O~L')~(CH,OH)](BF~)~ 
*CH30H 

formula C34H32B2CuF8N404 C34H34B2Cu2F8N404 

formula weight 797.80 863.35 
space group P21 / n P21/ n 
a, A 8.1902(8) 18.9017(9) 
b, A 11.61 12(11) 11.5733(5) 
c, A 18.2776(18) 33.3820(15) 
P! deg 95.235(2) 103.5840(10) 
V, A3 1730.9(3) 7098.2(6) 
z 2 8 
pcalc, g cm3 1.531 1.616 
crystal size (mm3) 0.10 x 0.08 x 0.03 0.15 x 0.10 x 0.08 
T, "C -100 -100 
p(Mo Ka) ,  mm-' 0.719 1.285 
0 limits, deg 2.08 - 26.49 1.87 - 26.50 
total no. of data 14096 57985 
no. of unique data 3585 14691 
no. of params 258 1113 
GOF" 1.046 1.057 
Rb 0.0482 0.0575 
wR2 ' 0.1210 0.1079 
max, min peaks, 0.731, -0.407 0.623, -0.340 
e/A3 

a GOF (Goodness of fit on F2) = {Z[W(F:-F:)~] / (m-n))112 (m = number of 
reflections, n = number of parameters refined) 

R = ZIIFol-IFcII/~IFoI 
2 2 112 ' WR' = {Z[W(F~~-F~)~] /Z[W(F~ ) 1) 



Table 5.3. Selected Bond Distances (A) and Angles (deg)" 

" Numbers in parentheses are estimated standard deviations 
of the last significant figures. Atoms are labeled as indicated 
in Figure 5.3. 



(a) Fluorophore Displacement by NO 

FL = Fluorophore ligand, M = Metal, L = Ligand 

(b) Copper(l1) Reduction by NO 

FL-CU"(L~) - - FL-CU'(L~) + RON0 
ROH 

(c) Ligand Nitrosation via Cu(ll) reduction by NO 

NO 
CU"(FL) - CU' + FL-NO 

Scheme 5.1. Strategies for Nitric Oxide Detection. 



Scheme 5.2. Syntheses of Compounds 1,2, and 3. (a) Br, AcONa, and AcOH (ref. 30), 

(b) 20% H2S04 (aq) (ref. 30), (c) Me,SiCHN, (d) Pd/ C, H, and (e) NaBH4. 



Scheme 5.3. Syntheses of FL, Ligands (n = 1 - 5, FL?). 



NO 
FL, + cull CU~~(FL,) - CUI + FL,-NO 

Won-fluorescent" "fluorescent" 

Cu(FL5), X = anion 

Scheme 5.4. NO Reactivity of Cu(FL,). 



(a) CU~~(FL,) + NO (FL,)CU~~-NO cul + FL,-NO 

(b) CU~~(FL,) + NO --- CU~(FL,-NO) - CUI + FL,-NO 

Scheme 5.5. Plausible Pathways of the Reaction of Cu(FL,) with NO. 



Figure 5.1. Schematic drawings of FL, (n = 1 - 5). 
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Figure 5.2. Job's plot for the formation of the FL,:Cu(II) complex (n = 1 (a), 2 (b), 3 (c), 4 

(d), and 5 (e)) determined by using UV-vis spectroscopy in a pH 7.0 buffered solution 

(50 mM PIPES, 100 mM KCl). The concentrations of the initial FL, (n = 1 - 5) and Cu(I1) 

solutions were 10, 10, 5,5, and 5 pM, respectively. 



Figure 5.3. ORTEP diagrams of [Cu(modL)](BF,), (top) and [CU~(~O~L')~(CH,OH)](BF,), 

(bottom) showing 50% probability thermal ellipsoids. The Cul-01 distance is 2.494 A in 

the structure of [Cu(rnodL)](BF,),. The BF; anions were omitted in the figure. 



Wavelength (nm) 

0 

480 520 560 600 640 

Wavelength (nm) 

fd) 

1 

5 0.8 
.- 
I .- 
E w 0.6 

% .- 
- .- 
f 0.4 
3 z 

0.2 

0 I 
480 510 540 570 600 480 520 560 600 640 

Wavelength (nm) Wavelength (nm) 

500 530 560 590 620 650 

Wavelength (nrn) 

Figure 5.4. Fluorescence emission spectra of a solution of Cu(FL,) (1 pM FL, and 1 pM 

CuC1,) in deoxygenated buffered solution (50 mM PIPES, pH 7.0, 100 mM KCl) before 

(dashed line) and after (solid lines) admission of 1300 equiv of NO (g) at 37 "C. 



0; H20, NO, NO,' NO HNO ONOO- 

Figure 5.5. Specificity of Cu(FL,) for NO in buffered aqueous solution (50 mM PIPES, 

pH 7.0,100 mM KCl), determined as the fluorescence response of Cu(FL,) after addition 

of 100 equivalents of 0; (0.1 U xanthine oxidase and 100 pM xanthine), H,O, NO; 

NO;, HNO (Angeli's salt Na,N,O,), NO (1.9 mM NO-saturated aqueous solution) and 

ONOO-(sodium peroxynitrite) for 2 h. The excitation wavelength was 503 nm. All data 

(F) are normalized with respect to the emission of Cu(FL5) (F(Cu(FL,))). The Cu(I1) 

species Cu(FL5) was prepared in situ by reacting FL, (1 pM) with CuCl, (1 ,uM). 
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Figure 5.6. Fluorescence emission spectra of a solution of Cu(FL,) upon addition of 

excess NO. (a) Fluorescence response of Cu(FL,) (1 p M  FL, and 1 ,uM CuCl,) in a 

deoxygenated pH 7.0 buffered solution (20 mM phosphate) before (dashed line) and 

after (solid lines) addition of 1300 equiv of NO (g) at 37 OC. (b) Fluorescence emission 

spectra of an aerobic solution of Cu(FL,) (1 pM FL, and 1 ,uM Cu(NO,),) upon admission 

of 1:300 equiv of NO at 37 OC (50 mM PIPES, pH 7.0,100 mM KNO,). 



Wavelength (nm) Wavelength (nm) 

N H ~  
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Figure 5.7. Fluorescence response of DAF-2 to NO. (a) Fluorescence emission spectra 

(Ae2,, = 495 nm) of DAF-2 (1 pM) before (dashed line) and 60 min after (solid line) 

treatment with 1300 equiv of NO in an anaerobic buffered solution (50 mM PIPES, pH 

7.0, 100 mM KC]). (b) Fluorescence emission spectra (il, = 495 nm) of DAF-2 (1 pM) 

before (dashed black line) and 1 and 6 min after addition of 1300 equiv of NO (solid 

lines) in an aerobic buffered solution (50 mM PIPES, pH 7.0,100 mM KCl). (c) Schematic 

drawing of DAF-2. 



Figure 5.8. Measurement of the dissociation constant (K,) of Cu(FLl) (+) or Cu(FL,) (a). 

CuCl, was titrated into a 5 pM FL, or FL, solution (50 mM PIPES, pH 7.0,100 mM KCl). 

The formation of Cu(FL,) or Cu(FL,) was followed by the absorbance change (AA) at 512 

nm. The titration trace was fit to the equation 

which is deduced from the equilibrium for one-step binding of Cu(I1) to FLn with a 

dissociation constant of K,: 

In the fitting equation and the figure, [CuItotd is the sum of [Cu(II)] and [Cu(FL,)]. It 

equals the total amount of CuC1, titrated into the solution divided by volume. [FLn],, is 

the sum of [FL,] and [Cu(FLn)] (n = 1,5) and equals 5 pM. 
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Figure 5.9. Fluorescence response of FL, and Cu(FL,) to NO. (a) Fluorescence emission 

spectra (A, = 503 nm) of FL, (1 pM, dashed line) and 30 min after the addition of 1300 

equiv of NO (g) (50 mM PIPES, pH 7.0, 100 mM KCl) (solid line) at 37 "C. (b) Emission 

spectra (Aex = 503 nm) of Cu(FL,) (1 pM CuCl, and 1 pM FL,) in the presence of 100 

equiv of EDTA (dashed line) and the spectrum 30 min after the addition of 1300 equiv 

of NO (g) (solid line) at 37 "C (50 mM PIPES, pH 7.0,100 mM KC1). 
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Figure 5.10. EPR spectra of Cu(FL3 (2.5 mM, solid line) and Cu(FL,) with 5 equiv of NO 

(dashed line) in DMF solution, subsequently frozen liquid N, temperature and 

measured at 5 K. The very small signal at g = 1.96 is indicative of free NO. Both the FL5- 

bound and free Cu(I1) species exist in solution at this concentration, based on the K ,  

value for Cu(FL5), which may account for the two overlapping copper(I1) EPR signals. 



0 
520 540 560 580 600 620 

Wavelength (nm) 

- 
500 530 560 590 620 

Wavelength (nm) 

Figure 5.11. Fluorescence spectra of a mixture of FL, and Cu(1) in the absence and 

presence of NO. (a) Fluorescence emission spectra (jl, = 503 nm) of 1 pM FL, (solid line) 

and FL, with the addition of 1 equiv of [Cu(CH,CN4)](BF4) (dotted line). (b) 

Fluorescence spectra of a mixture of FL, and Cu(1) before (dotted line) and after 

addition of 1300 equiv of NO (dashed line). The spectra were recorded at 37 "C in 50 

mM PIPES, pH 7.0,100 mM KC1. 
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Figure 5.12. UV-vis spectra of FL, (5 pM, black line), Cu(FL,) (5 pM CuC1, and 5 pM FL,  

blue line) and Cu(FL,) treated with 1300 equiv of NO (g) (red line) in aqueous solution 

(50 mM PIPES, pH 7.0,100 mM KCl). The green line is the spectrum of FL, (5 pM) with 

the addition of 1 equiv [Cu(CH,CN,)] (BF,) . 
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Figure 5.13. ESI(-)MS spectrum of the Cu(FL,) species. A peak at m / z  632.0 corresponds 

to [Cu(FL,)Cl - HI- (Calcd. m/  z 632.0). 
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Figure 5.14. LC-MS analyses of FL5-NO (left, LC; right, ESI-MS). (a) A solution obtained 

by reacting Cu(FL,) (7 ,uM) with 670 equiv of NO (50 mM PIPES, pH 7.0,100 mM KC1). 

Chelex was added to the NO reaction solution followed by filtration to remove copper 

residues for LC-MS analysis. The peaks with m/ z of 564.7,600.5, and 1128.9 correspond 

to [FL, + NO - 2H]- (Calcd. m/z  564.1), [FL, + NO - H + C1]- (Calcd. m/ z 600.1), and 

[2(FL5 + NO) - 3H]; (Calcd. m/z  1129.2). (b) FL5-NO after dialyzing (H,O) the reaction 

solution of FL5 with Na14N02 to remove residual sodium nitrite. (c) FL,-15N0 obtained 

by the reaction of FL, with H15N0, followed by dialysis against H20. The peaks with 

m/z  of 565.8, 601.3, and 1131.2 correspond to [FL, + ',NO - 2H]- (Calcd. m/ z 565.1), 

[n, + ISNO - H + C1]- (Calcd. m/z  601.1), and [2(FL,, + 15NO) - 3H]; (Calcd. m/z  

1131.2). 
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Figure 5.15. MS/ MS analyses of FL5-NO. (a) MS/ MS analysis for 564.7 or 546.6 MS 

peaks in Figures 14a & 14b. (b) Summarized MS/ MS analyses of the 564.6 peak for FL5- 

"NO and 565.8 peak for FL5-15N0 MS peaks. (c) Proposed fragmentation patterns of 

FL5-NO based on MS/ MS analyses of (b). 
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Figure 5.16. UV-vis spectra of FL, and NO reaction solutions. (a) Spectra of FL, (3 pM) 

at pH 5.2, 6.0, 6.7, and 7.0 (dashed, dot-dashed, dotted, and solid lines) in aqueous 

solution (100 mM KC1) with pH adjusted by KOH or HC1. (b) Spectra of Cu(FL,) (3 pM 

CuC1, & 3 p M  FL,) solution after NO reaction taken at pH 5.0,5.8, 6.7, and 7.0 (dashed, 

dot-dashed, dotted, and solid lines). 



Figure 5.17. Isosurface plots (isodensity value = 0.5 a.u.) of the key molecular orbitals in 

the FL,/FL,-NO system. The LUMO (a), HOMO (b), and HOMO-1 (c)  of FL, and 

HOMO-15 (d) of FL,-NO are shown. 
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quenching 

Figure 5.18. Molecular orbital diagram for the ground (left), excited (middle), and 

charge-transfer (right) states of FL,. The lowering of the HOMO and LUMO associated 

with the fluorophore in the excited state is due to electronic relaxation which would not 

be expected to significantly alter the energy of the nitrogen-based MO. Non-radiative 

relaxation of the charge-transfer state returns the molecule to the ground state. R, = 2- 

methylquinoline and R, = fluorophore. 
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Figure 5.19. Relative energy spacings of the molecular orbitals for the ground states of 

FL, (left) and FL,-NO (right). The NNO-based orbital, HOMO-15, of FL,-NO is expected 

to be too low in energy to act as a donor for fluorescence quenching. 
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Visualization of Nitric Oxide in Living Cells 

by a Copper-Based Fluorescent Probe 
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Introduction 

In biological systems nitric oxide (NO) is a ubiquitous species. It mediates both 

physiological and pathological processes in living organisms.'-7 In mammalian cells, 

NO is produced by three isoforms of NO synthase (NOS): neuronal NOS (nNOS), 

endothelial NOS (eNOS) and inducible NOS (iNOS), the catalytic activities of which 

are well-chara~terized.'~'~ Functionally, NOSs can be categorized as cNOS or iNOS. 

cNOS, including nNOS and eNOS, is regulated by the cytosolic calcium concentration 

and produces physiological quantities of NO. The Ca(I1)-independent iNOS that 

provides the pathophysiological concentrations of NO is controlled by gene 

transcription. Direct in vivo detection of NO in real time is difficult, since it rapidly 

diffuses and reacts with cellular components. Although methods like 

chemiluminescence,9 EPR spectro~copy,'~ and amperometry" have been applied for 

NO bio-imaging, they suffer from low spatial resolution and, in some cases, require 

complicated instrumentation. An alternative means to image intracellular and 

extracellular NO is by light emission from fluorescent sensors in combination with 

rnicros~opy.'~~'~ A protein-based intracellular NO sensor incorporating soluble 

guanylate cyclase was recently reported, but the probe requires genetic encoding for 

its preparation and generates another biologically active molecule, cyclic guanosine 

monophosphate (cGMP), which can induce further cellular responses.'-7 The cGMP 

molecules bind both NO-associated and NO-free protein probes, resulting in 

fluorescence increase. The signal thus generated reflects the intracellular level of 

cGMP rather than N0.13 Other small-molecule-based fluorescent probes for NO, 

including o-diaminonaphthalene (DAN), o-diaminofluoresceins (DAFs), and o- 

diaminocyanines (DACs), have been do~umented, '~/ '~~'~ but their fluorescence changes 

upon reacting with oxidized NO products, not with NO itself. Since NO has a lifetime 



up to several minutes under certain  condition^,'^ alteration of the fluorescence of 

organic molecules containing an o-diamine functionality does not monitor real-time 

production of NO. A previously described pyrene-nitronyl probe detects NO directly, 

but requires high excitation energy,17 which produces cellular autofluorescence, and it 

cannot provide spatiotemporal information. 

In previous work (chapter 5), we devised imaging agents to detect NO directly 

in vitro at neutral pH. These probes are Cu(I1) complexes containing a fluorescein- 

based ligand that provides suitable excitation and emission wavelengths as well as 

brightness for NO bioimaging. This chapter describes application of a copper(I1) 

fluorescein-based compound, CuFL (FL = FL, in chapter 5, Figure 6.1), to cellular 

imaging of NO. This probe reacts rapidly and specifically with NO over other 

potentially interfering reactive nitrogen species (RNS) to afford bright light emission 

with nM sensitivity, as reported in chapter 5. This cell-permeable reagent images NO 

produced by cNOS and iNOS in live cells. The present study demonstrates that CuFL 

can directly image nitric oxide production in living cells by turn-on fluorescence, a 

significant advance over all prior agents. Furthermore, our work proves the utility of 

metal coordination chemistry for biological imaging in the complex milieu of the cell. 

Experimental 

Cell Culture and Materials. Raw 264.7, SK-N-SH, and HeLa cells were 

purchased from the American Type Culture Collection (ATCC). All three cell lines 

were maintained in Dulbecco's modified Eagles' media (DMEM) (GibcoBRL) 

containing 10% (v/v) heat-inactivated fetal bovine serum (FBS) (HyClone), 1 mM 

sodium pyruvate (Sigma), 100 units/ ml penicillin, 100 pg/ ml streptomycin 

(Invitrogen), and 0.1 mM nonessential amino acid solution for minimal essential 



medium (Sigma). All cells were grown at 37 "C in a humidified atmosphere of 10% 

CO,. A nitrite assay was performed with Griess reagents (Promega) on Raw 264.7 cells 

grown in DMEM free of phenol red. Calcium sensor fluo-4 AM was purchased from 

Invitrogen. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] was 

obtained from Sigma-Aldrich. 

MTT Cytotoxicity Assay. SK-N-SH cells were seeded in 96 well plates (1000 

cells in 100 pL per well) for 24 h, after which CuFL (FL = FL, in chapter 5) or the N- 

nitrosofluorescein derivative (FL-NO = FL,-NO in chapter 5) (1 pM) in DMEM (100 

pL) was introduced (stock solution of CuFL or FL-NO: 5 mM in 1:l DMSO:H,O). Cells 

treated with or without (control) CuFL were incubated for 5 days followed by the 

addition of 20 ,uL MTT (5 mg/ mL in PBS) for 2 or 4 h. The media were removed and 

DMSO (200 pL) was added into each well to dissolve the residue. The absorbance at 

550 nm was measured by using a microplate reader. An MTT assay for Raw 264.7 cells 

was performed by essentially the same method, except that fewer cells (500 per well) 

were seeded and a lower concentration of MTT (20 ,uL of 1 mg/ mL) was employed. 

Silencing of iNOS in Raw 264.7 Cells by Short Hairpin RNA-Induced RNA 

Interference. In order to establish that NO is responsible for the fluorescence response 

detected in stimulated Raw 264.7 cells, we generated a cell line in which the 

expression of iNOS was constitutively silenced by RNA interference. The RNAi 

experiment was performed by Dr. Dong Xu. The plasmid vector used for short hairpin 

RNA-induced RNAi on iNOS was pcDNA3.1-Zeo(-)-U6, a derivative of 

pcDNA3.1-Zeo(-) (Invitrogen) with a U6 promoter at the 5' end of its multiple cloning 

site." The pair of DNA strands designed for hairpin RNA-induced silencing of iNOS 

in Raw 264.7 cells (Scheme 6.1) was synthesized by Invitrogen. Experimental details 



are described elsewhere.lg 

Western Blot Analysis on iNOS Expression in Raw 264.7 Cells. Cytosolic and 

nuclear extracts of Raw264.7 cells were prepared as previously published? The 

procedure is slightly revised from that described in the TransFactor extraction kit 

manual (Clontech). The protein components of the extracts were resolved by SDS- 

PAGE on 4 - 20% Tris-HC1 ready gels (Bio-Rad) with a BenchMark Prestained Protein 

Ladder (Invitrogen) as the molecular weight indicator. The proteins separated on the 

gel were then electroblotted to a polyvinylidene difluoride membrane (Bio-Rad). The 

membrane was subsequently cut horizontally into two parts along the 60.4 kDa band 

made by the protein ladder. The bottom part, where proteins of lower molecular 

weights were blotted, was incubated with a 1:5,000 dilution of mouse anti-actin 

antibody (Upstate). The top part of the membrane, to which proteins of higher 

molecular weights were transferred, was incubated with 1:1,000 dilution of rabbit anti- 

iNOS antibody (QED Bioscience). The two pieces of membrane were then incubated 

respectively with horseradish peroxidase conjugated anti-mouse (Pierce) (1:4,000 

dilution) and anti-rabbit (Promega) antibodies (1:5,000 dilution). Both pieces were 

subsequently soaked with the ECL plus reagents (Amersham) for 1 min to develop 

chemilurninescent signals through a peroxidase-catalyzed reaction. The signals were 

later detected by exposing the membrane pieces to BioMax MR film (Eastman Kodak 

Co.). Alternatively, the PVDF membrane pieces were soaked in AEC solution 

(Calbiochem) to develop colorimetric signals. 

Results 

CuFL Detection of NO Produced by cNOS. 

We investigated the ability of CuFL to detect NO produced in SK-N-SH human 



neuroblastoma cells under physiological conditions, since cNOS in this cell line can be 

activated by estrogen to produce Estrogen administration leads to an increase in 

the cytosolic Ca(1I) concentration that alters the structure of calmodulin, which in turn 

activates cNOS. The NO-dependent fluorescence response, monitored after 

simultaneous administration of 17pestradiol (100 nM) and CuFL (1 pM) to the cells, 

was complete within 5 min with a 4.0 0.6-fold increase in fluorescence (Figure 6.2). 

We also demonstrated an increase in cytosolic Ca(I1) levels following addition of 17P 

estradiol to SK-N-SH cells using the calcium dye fluo-4 AM, which is consistent with 

estrogen induction of Ca(I1)-dependent NO production (Figure 6.3). A notably weaker 

intense fluorescence response was observed in the presence of the cNOS inhibitor P- 

nitro-L-arginine ( L -  NNA), pinpointing nitric oxide to be responsible for the 

fluorescence change (Figure 6.4). In a control experiment, stimulated SK-N-SH cells 

incubated with FL in the absence of Cu(1I) ion exhibited no fluorescence increase over 

a period of 25 min (Figure 6.5). This result demonstrates that CuFL, but not FL, is 

responsible for the fluorescence change. As another control, HeLa cells (a human 

cervical cancer cell line lacking the estrogen receptor) were co-treated with 17P 

estradiol(100 nM) and CuFL (1 pM) (Figure 6.6). The absence of turn-on emission in 

these cells, which do not produce nitric oxide, indicates that the fluorescence response 

of CuFL is not a consequence of its interaction with 17pestradiol. 

To evaluate the toxicity of CuFL, an MTT 13-(4,5-dimethylthiazol-2-y1)-2,5- 

diphenyltetrazolium bromide] assay was performed on SK-N-SH cells after 5 days of 

incubation with CuFL (1 pM). The result 180 f 9% survival of cells] (Figure 6.7) 

indicates that the Cu(I1)-containing probe is not toxic to SK-N-SH cells under the 

conditions of NO imaging employed herein. 
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CuFL Detection of NO Produced by iNOS. 

In macrophages, nitric oxide is produced by iNOS.11&8 Time-dependent NO 

production by Raw 264.7 murine macrophage cells pretreated with bacterial 

lipopolysaccharide (LPS) and interferon-y (IFN-y) has been previously demonstrated 

by using the Griess assay." This method colorimetrically determines the concentration 

of NO; resulting from NO oxidation in the extracellular space. Fluorescence detection 

of NO production by stimulated macrophage cells was also achieved by incubation of 

the extracellular fluid with DAN and D A F S . ~ ~ ~ ~  These dyes improved upon the 

sensitivity of Griess assay, but were unable to reveal NO production inside cells with 

spatial and temporal fidelity.25 The present CuFL construct, however, readily detects 

NO produced in activated Raw 264.7 cells by fluorescence turn-on. Macrophage cells 

were incubated with LPS (500 ng/ mL) and IFN-y (250 U/ mL) for 4 h, after which 1 ,uM 

CuFL was applied. The fluorescence response was monitored at 2 h intervals by 

microscopy (Figure 6.8). The fluorescence slowly increased over 12 h in almost every 

region of the treated cells. 

The production of nitric oxide in LPS- and IFN-y treated macrophages was 

independently confirmed by the Griess assay (Figure 6.9), which revealed identical 

kinetics of NO formation inside and outside the cells over the 12 h period of the 

experiment. To investigate further the origin of fluorescence detected by CuFL, iNOS 

was silenced in Raw 264.7 cells by short hairpin RNA (shRNA)-induced RNA 

interference (RNAi) (Figure 6.10). Upon stimulation by LPS and IFN-y, the cells with 

iNOS attenuated displayed a much weaker fluorescence response than those 

harboring only the plasmid vector (Figure 6.10), clearly demonstrating that the 

fluorescence enhancement is caused by nitric oxide production in Raw 264.7 cells. In 



addition, a notably weaker fluorescence response was observed for stimulated Raw 

264.7 cells in the presence of p-methyl-L-arginine (L-NMA), a known inhibitor of 

iNOS that attenuates NO production, than in its absence (Figure 6.11). In control 

experiments, we did not observe turn-on fluorescence emission either for Raw 264.7 

cells stimulated by LPS and IFN-y followed by FL treatment without Cu(I1) ion over 

the 12 h incubation period or for HeLa cells treated with LPS and IFN-y prior to CuFL 

incubation (Figures 6.12 & 6.13). 

The MTT assay indicated 90 k 3% survival of Raw 264.7 cells after incubation 

with CuFL (1 ,uM) for 5 days (Figure 6.14), indicating that CuFL is not toxic to this cell 

line. CuFL does not affect the expression of iNOS in Raw 264.7 cells upon introduction 

of LPS and IFN-y (Figure 6.15, Western blot analysis), which reveals that the 

concentration of CuFL used for imaging does not interrupt the biological pathways 

required for NO production via gene expression. 

NO Imaging in a Raw 264.7 and SK-N-SH Co-culture. 

The fluorescence response was also monitored in a mixture of Raw 264.7 and 

SK-N-SH cells grown on the same plate and co-treated with 17gestradiol (500 nM) 

and CuFL (1 ,uM) for 10 min. As shown in Figure 6.16, a fluorescence increase was 

observed exclusively in the SK-N-SH cells following cNOS activation by 17/?-estradiol- 

triggered Ca(I1) release into cytosol. This result demonstrates that CuFL might be used 

to provide information about which types of cells are producing NO in a 

heterogeneous tissue, and possibly be useful for identifying the time and location of 

intercellular signaling events. 



Discussion 

As described in chapter 5, copper(I1)-based probes were synthesized for direct 

NO detection. Among them, CuFL rapidly and directly detects NO at a 

physiologically relevant pH. The ability of CuFL to image NO specifically over other 

reactive nitrogen or oxygen species in living organisms, such as HNO, N O ,  NO;, 

ONO0,H202 and O;, increases its value for a wide range of biological studies. To our 

knowledge, CuFL is the first probe capable of direct, fast and specific NO detection in 

aqueous buffered solution. 

We applied CuFL to image NO production in Raw 264.7 murine macrophage 

and SK-N-SH human neuroblastoma cells (Figures 6.2 and 6.8). Our studies in both 

cell lines demonstrate that CuFL affords direct visual detection of NO production in a 

time- and concentration-dependent manner in both cNOS and iNOS living cells with > 

4-fold fluorescence enhancement and spatial resolution at the cellular level. Cell-type 

specific fluorescent NO imaging in a co-culture of the two cell lines demonstrates that 

CuFL is capable of detecting a source of nitric oxide production in a complex and 

heterogeneous biological system (Figure 6.16). 

The present study reveals the value of CuFL as a very useful probe through 

comparison of its NO imaging ability versus that of a commercially available sensor 

DAF-2 DA (o -diaminofluorescein diacetate). First of all, CuFL visualizes NO in 

estrogen-stimulated neuroblastoma cells with brighter fluorescence than DAF-2 DA (0- 

diaminofluorescein diacetate) (Figure 6.17). Secondly, the slight fluorescence increase 

of DAF-2 DA occurs 30 min after activation of cNOS, but CuFL provides the complete 

fluorescence enhancement within 5 min (Figure 6.2), the time required to transfer the 

cells to the microscope stage and image them. These results indicate that CuFL allows 

superior visualization of NO in live cells. Certain questions remain, however. The N- 



nitrosamine F L - N O  generated by the chemistry is a member of a class of reactive 

 molecule^;^^ however, an MTT assay indicates that it is not toxic at the concentration 

required for NO imaging herein with 97 + 2% survival of SK-N-SH cells treated with 

FL-NO for 5 days (Figure 6.18). Another potential problem is that the copper ion in 

this metal-based sensor might damage cells before or following its reaction with NO. 

In order to address this issue, we performed an MTT assay for cytotoxicity, which 

indicated that cells treated with 1 ,uM CuFL for 5 days were largely viable (> 80%) 

(Figure 6.7 and 6.14). Thus, under the conditions used for the present NO bioimaging 

experiments, the toxicity of CuFL is negligible. 

The cytosol contains thiols that bind Cu(I1) and might possibly convert it to 

Cu(I), a species which itself might react with oxidized NO products such as NO' or 

N203. Since NO' is rapidly hydrolyzed to NO; in water,16127f28 it will not interfere with 

NO imaging by CuFL. S-nitrosothiols, formed by reactions of thiols with NO in the 

presence of 0, react with both Cu(1I)FL and Cu(1)FL to display turn-on fluorescence, 

as demonstrated in experiments with S-nitroso-N-acetylpenicillamine (SNAP), (Figure 

6.19).29 We, thus, cannot completely rule out the possibility that the fluorescence 

increase results from reaction of CuFL with S-nitrosothiols produced by NO in the 

stimulated cells. Since the formation of S-nitrosothiol species in Raw 264.7 cells is very 

slow, in the range of 3 - 4 pmol/ mg of protein/ h (t,,, > 1000 h),30 however, CuFL may 

not react with S-nitrosothiols as fast as it does with NO in cells. Finally, reduction of 

Cu(I1) by thiols may not alter the integrity or otherwise disrupt the NO-imaging 

ability of CuFL in cells. As shown in chapter 5, Cu(I1) binding to FL is necessary for 

fluorescence turn-on by NO. Moreover, a mixture of FL and Cu(1) does not lead to 

fluorescence increase with and without the presence of NO, compared to FL. These 



experiments strongly support the conclusion that the turn-on fluorescence in the 

stimulated cells results from the direct reaction of CuFL with NO and that intracellular 

thiols do not interfere with this reaction. 

Summary 

This research has produced a Cu(I1)-based fluorescein compound CuFL for 

imaging NO in biology, a long sought obligation of many laboratories. The probe 

readily passes through cell membranes and can detect NO under physiological 

conditions. CuFL on cultures of macrophage and neuroblastoma cells reveals the time- 

dependent production of NO measurable by fluorescence enhancement, 

demonstrating the ability of the reagent to image NO over a wide range of 

concentrations. The power of CuFL is also manifest in its ability to select out cells that 

emit NO in a background of those that do not with spatiotemporal resolution at the 

cellular level. These results will encourage the use of CuFL as a direct nitric oxide 

probe for investigating NO biology in a variety of contexts. 
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Scheme 6.1. DNA Inserts for Silencing Inducible Nitric Oxide Synthase (iNOS) in 

Mouse Raw 264.7 Cells in Figure 6.10. 



FL CuFL, X = anion 

Figure 6.1. Schematic drawings of FL and CuFL (FL = F L, and CuFL = Cu(FL3 in 

chapter 5). 
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Figure 6.2. (a) NO detection in SK-N-SH cells by CuFL. Left to right: 25 min incubation 

of CuFL (1 pM) and 5, 10, 15, 25 min after co-treatment of CuFL (1 pM) and 17p  

estradiol (100 nM). Images were taken with a Nikon Eclipse TSlOO microscope after 

removing the DMEM media and washing the cells with PBS. Top: fluorescence images; 

bottom: phase contrast images. (b) Fluorescence intensity (F(t)/FcuR) from (a) was 

plotted against incubation time. 



Nitric Oxide - 

Figure 6.3. Fluorescence response of fluo-4 AM and CuFL in SK-N-SH cells. (a) Left to 

right: cells incubated with fluo-4 AM (2 pM) for 40 min, with fluo-4 AM (2 pM) for 40 

min followed by 17~estradiol(100 nM) for 10 min, with CuFL (1 pM) for 10 min, and 

co-treated with CuFL and 17P-estradiol for 10 min. Images were taken with a Zeiss 

Axiovert 200M inverted epifluorescence microscope after removing DMEM and 

washing the cells three times with PBS. The top panels are the fluorescent images and 

the bottom panels display DIC images. (b) Schematic drawing of fluo-4 AM. 



L-NNA 

Figure 6.4. NO production with or without L-NNA. Right: NO detection in cells after 

lOmin co-incubation of CuFL (1 pM) and 17/3-estradiol(100 nM). Left: NO detection in 

cells pre-treated with L-NNA for 1 h before addition of CuFL and 17pestradiol. 



Figure 6.5. Fluorescence response of FL in SK-N-SH cells. Left to right: 25 min 

incubation of FL (1 pM), and 5,10,15,25 min co-treatment of FL and 17~estradiol(100 

nM). Images were taken with a Nikon Eclipse TSlOO microscope after removing 

DMEM and washing the cells three times with PBS (top: phase contrast images/ 

bottom: fluorescence images). 



Figure 6.6. HeLa cells were cultured with DMEM. The fluorescence response was 

monitored after 30 min of incubation with CuFL (1 pM) (left) and for the cells co- 

treated with 17B-estradiol(100 nM) and CuFL (1 pM) for 30 min (top: phase contrast 

images, bottom: fluorescence images). Images were taken with a Nikon Eclipse TSlOO 

microscope after removing DMEM and washing the cells three times with PBS. 
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Figure 6.7. MTT assay of SK-N-SH cells treated with CuFL. Cells (1000 cells/well) 

were grown in 96 well plate for 1 day and then treated with CuFL (1 pM). After 5 

days, MTT (20 ,uL of 5 mg/mL) 'was added to each well for 4 h. DMSO (200 ,uL) was 

added to each well after removing media. The absorbance was measured by a 

microplate reader. 
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Figure 6.8. NO detection in Raw 264.7 macrophage cells by CuFL. Left to right: CuFL 

(1 pM) incubation with cells for 12 h, and 2,4, 6, 8 h after addition of CuFL into Raw 

264.7 cells that were pre-stimulated for 4 h with LPS (500 ng/mL) and IFN-y (250 

U/mL). The times depicted in the figure are the total incubation times with CuFL. 

Images were taken immediately after removing the media and washing the cells three 

times with phosphate-buffered saline (PBS). The instrument used was a Zeiss Axiovert 

200M inverted epifluorescence microscope with differential interference contrast 

(DIC). Top: fluorescence images; bottom: DIC images. 
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Figure 6.9. A comparison of the time dependence of NO detection by CuFL and with 

the Griess assay. The fluorescence intensity (F(,, / Fcm ( )) from Figure 6.8 (right axis) 

was plotted against incubation time. For the Griess assay, Raw 264.7 cells were grown 

in 6-well plates with DMEM free of phenol red. The plates were treated with LPS (500 

ng/mL) and IFN-y (250 U/mL) for various time periods before aliquots of media were 

taken into the 96-well plates. Griess assay reagents were then added to 96-well plates. 

The kinetics of nitrite ion formation were followed by the absorbance change at 550 

nm with a microplate reader (left axis, ( )). 
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Figure 6.10. Silencing of iNOS by RNAi in Raw264.7 cells. A plasmid expressing 

shRNA was constructed to target the mRNA of iNOS (Scheme 6.1) and transfected into 

Raw 264.7 cells. The plasmid vector without insert for RNAi was transfected to 

establish a control cell line. (a) The expression of iNOS in these two cell lines after 

stimulation by LPS and IFN-y for 12 h was investigated by Western blot analysis of 

whole cell extracts with antibodies against the protein and actin, which served as 

loading control (lane 1: cells with control plasmid vector, lane 2: cells with plasmid 

expressing shRNA for iNOS). (b) NO detection in Raw 264.7 cells with iNOS silenced 

by RNAi. The two lines in (a) were treated with LPS and IFN-y for 4 h before 8 h of 

incubation with CuFL. 



Figure 6.11. Fluorescence response of CuFL in Raw 264.7 cells. From left to right: Raw 

264.7 cells after 12 h of incubation with CuFL (1 pM) in the absence (a) and presence 

(b) of L-NMA (2 mM), and for cells pretreated by stimulation with LPS (500 ng/mL) 

and IFN-y (250 U/mL) for 4 h followed by 8 h CuFL incubation (c). Raw 264.7 cells 

sequentially treated with L-NMA for 1 h, LPS and IFN-y for 4 h, and CuFL for 8 h are 

shown in (d). Images were taken with a Zeiss Axiovert 200M inverted epifluorescence 

microscope after removing DMEM and washing the cells three times with PBS. Top: 

DIC images, bottom: fluorescence images. 



Figure 6.12. Fluorescence response of FL in Raw 264.7 cells. Left to right: 0, 2, 4, 8 h 

after addition of FL (1 pM) into Raw 264.7 cells pre-stimulated for 4 h by LPS (500 

ng/mL) and IFN-y (250 U/mL). Images were taken on a Nikon Eclipse TSlOO 

microscope after removing DMEM and washing the cells three times with phosphate- 

buffered saline (PBS) (top: phase contrast images, bottom: fluorescence images). 



Figure 6.13. HeLa cells co-treated with CuFL, LPS and IFN-y. HeLa cells were cultured 

in DMEM. The fluorescence responses were monitored for cells after 12 h of 

incubation with CuFL (1 pM) (left) and for cells incubated with CuFL for 8 h following 

4 h of stimulation by LPS (500 ng/mL) and IFN-y (250 U/ mL) (top: phase contrast 

images, bottom: fluorescence images). Images were taken by Nikon Eclipse TSlOO 

microscope after removing DMEM and washing the cells three times with PBS. 



Cells without CuFL Cells with CuFL (1 pM) 

Figure 6.14. MTT assay on Raw 264.7 cells treated with CuFL. Cells (500 cells/well) 

were grown in a 96 well plate for 1 day and then treated with CuFL (1 pM) After 5 

days, MTT (20 ,uL of 5 mg/mL) was added to each well for 2 h. DMSO (200 pL) was 

added to each well after removing the media. The absorbance was measured by a 

microplate reader. 
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Figure 6-15. Western blot analysis of cytosolic and nuclear extracts of Raw 264.7 cells. 

Lanes 1) cells without any treatment, 2) treated with CuFL (1 pM), 3) co-incubated 

with FL (1 ,uM), LPS (500 ng/mL) and IFN-y (250 U/  mL), 4). pretreated with LPS and 

IFN-y for 2 h followed by addition of CuFL, 5) co-treated with CuFL, LPS and IFN-y, 

and 6) incubated with LPS and IFN-y. 



Figure 6.16. NO detection in SK-N-SH and Raw 264.7 cells by Cum. Cells were treated 

with CuFL (1 pM) and 17B-estradiol (500 nM) for 10 min. The media were 

subsequently removed and the cells washed with PBS. Images were taken with a 

Nikon Eclipse TSlOO microscope. 



OAc 

Figure 6.17. Fluorescence response of CuFL and DAF-2 DA to nitric oxide generation 

in SK-N-SH cells. (a) Cells incubated with CuFL (1 pM CuC12 & 1 pM FL) for 20 rnin 

(left), co-treated with CuFL and 17~estradiol(100 nM) for 5 rnin (middle) and 30 rnin 

(right). (b) Cells treated with DAF-2 DA (2 ,uM) for 30 rnin (left), with DAF-2 DA (2 

pM) for 30 rnin followed by 17P-estradiol (100 nM) for 5 rnin (middle) and 30 min 

(right). Images were taken with a Zeiss Axiovert 200M inverted epifluorescence 

microscope after removing DMEM and washing the cells with PBS. The top panels are 

DIC images and the bottom panels display the fluorescent images. (c) Schematic 

drawing of DAF-2 DA. 



Cells without FL-NO Cells with FL-NO (1 pM) 

Figure 6.18. MTT assay of SK-N-SH cells treated with FL-NO. Cells (1000 cells/ well) 

were grown in 96 well plate for 1 day and then treated with FL-NO (1 PM). After 5 

days, MTT (20 ,uL of 5 mg/mL) was added to each well for 2 h. DMSO (200 pL) was 

added to each well after removing media. The absorbance was measured by a 

microplate reader. 
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Figure 6.19. Fluorescence response of Cu(1)FL and Cu(1I)FL to SNAP. (a) emission 

spectra (a, = 503 nm) obtained upon addition of 100 equiv of SNAP to a solution of FL 

with 1 equiv of [Cu(CH,CN),](BF,) b e f o ~  (dashed black line) and after 5, 10, 15, 20, 

and 30 min of incubation (black and blue solid lines). (b) emission spectra of CuFL 

before (dashed black line) and 5, 10, 15, 20, and 30 min after addition of 100 equiv of 

SNAP (black solid lines). Spectra were taken in 50 mM PIPES, pH 7.0,100 mM KC1. 



Appendix 

Fluorescent Detection of Nitric Oxide in a Rhodium Fluorophore 

Embedded in a Silastic Polymer Using Two-Photon Microscopy 

This work was supported by NSF grant CHE-0234951. We thank Professor 

Peter T. C. So and Dr. Siavash Yazdanfar for collaboration with two-photon 

microscopy. 



Introduction 

Nitric oxide (NO) has generated remarkable interest among biologists, chemists, 

and physicians since it was discovered as a cellular signaling NO regulates 

several biological events as a messenger in the cardiovascular, immune, and nervous 

systems.*13 The involvement of NO in biology has been extensively investigated; 

however, studies to date have relied upon indirect methods for determining the 

presence and concentration of NO. Thus, a sensor for the direct detection of NO is 

highly desired. Over the past two decades, several NO sensors have been developed 

employing methods such as chemilumine~cence,'~ amperometry,15 and EPR 

spectro~copy,'~'~ in addition to fluorescence-based techn~logies.'~-~l Fluorescence is 

ideally suited for monitoring NO in biological systems, since it can provide both 

temporal and spatial information with minimal invasiveness. Research in our 

laboratory focuses on developing turn-on fluorescence-based NO sensors, in which a 

transition metal center serves as a binding site for the analyte. Initially, the fluorophore 

is bound to a metal center with partially filled d-shells, resulting in a quenching of 

fluorescence. Upon NO binding to the metal center, the fluorophore is displaced, 

restoring the fluorescence. Reversible, fast responding fluorescence-based NO sensors 

containing dirhodium tetracarboxylates that operate under these parameters were 

previously reported by our lab~ratory.~~ In that work, NO replaces a bound fluorophore 

such as dansyl-piperazine from the dirhodium core, a quenching environment, leading 

to turn-on emission (Scheme A.l).  To utilize this dirhodium-based NO sensor in 

biological systems, we have extended this work to facilate its application in aqueous 

media. Here we report that aqueous NO can be monitored with a dirhodium-containing 

polymer and two-photon microscopy (TPM), which is the first step toward fiber-optic- 

based TPM NO sensing based on small molecule inorganic compounds. 



Experimental 

Materials and Procedures 

All reagents were purchased from commercial suppliers and used without 

further purification. 1,2-Dichloroethane (DCE) was used as received. Dansyl-piperazine 

( D s - p i ~ ) ~ ~  and the dirhodium complex [Rh2(p-02CPr),]33 were prepared according to 

published procedures. A SilasticB 47-4656 Biomedical Grade ETR Elastomer was 

purchased from Dow Corning; it is composed of a dimethyl and methylvinyl siloxane 

copolymer. Silastic (polydimethylsiloxane) tubing is permeable to NO and O2 gases? 

Nitric oxide (NO) (Matheson 99%) was purified by a method adapted from :the 

literature.2534 UV light was applied by a hand-held lamp (UVGL-25, VWR 

International). 

Preparation of a Silastic Membrane with the Dirhodium Complex and Ds-pip. 

The silastic membrane was sliced into 1 mm thick pieces and dried in vacuo for 1 d. The 

membrane pieces were soaked in a DCE solution of [Rh,(p-02CPr),] (100 pM) and Ds- 

pip (50 pM) for 1 d and dried in air. The membrane embedded dirhodium complex was 

dried in vacuo for 1 d and stored in a glove box. The fluorescence response was 

monitored by taking a photograph with a digital camera in light of long wave (350 nm) 

UV from the hand-held lamp. 

Study of a Dirhodium-Containing Silastic Membrane with NO. An aqueous 

solution saturated with NO was prepared by bubbling a stream of NO gas into 

deionized water for 30 min at 25 "C. A saturated aqueous NO solution (1.5 mL) was 

transferred by a gastight syringe into an anaerobic fluorescence cuvette containing a 

slice of dirhodium-containing Silastic membrane. All procedures were performed under 

an anaerobic atmosphere. After 20 min, the piece was removed from the aqueous 



solution and transferred to a storage vessel at -80 OC. 

Two-Photon Measurements. A schematic diagram of the microscopic system is 

shown in Figure A.1. Sub-100 fs pulses from a tunable, mode-locked Ti:sapphire laser 

(Tsunami, Spectra-Physics, Inc.) were directed into an inverted microscope (Axiovert 

SlOO TV, Carl Zeiss, Inc.). The center wavelength was varied from 740 - 780 nm while 

the:bandwidth was kept constant at approximately 10 nm. The average power from the 

laser was adjusted by using a variable attenuator constructed with a half-wave plate 

and Glan-Thomson polarizer. Typically, 20 mW of average power was incident on the 

microscope. Lateral scanning of the beam was achieved outside the microscope by using 

a galvanometric XY-scanning mirror pair (Model 6350, Cambridge Technologies, Inc.). 

The excitation light was directed towards the sample and focused using a 20X, 0.75NA 

objective (Fluar, Carl Zeiss, Inc.). 

Two-photon-excited fluorescence emission was collected in the epi-direction 

through the same objective and separated from the excitation beam by using a dichroic 

mirror (Chroma Technologies, Inc.). Residual excitation power was removed with an 

additional barrier filter (Schott BG39, Chroma Technologies, Inc.). The remaining 

fluorescence was collected with a photomultiplier tube (Model 7400P, Hamamatsu 

Photonics K.K.). Individual current pulses resulting from photon incidences were 

counted at the repetition rate of the laser (80 MHz) using a custom single-photon- 

counting data acquisition card. In order to construct an image, the image intensity at 

each pixel corresponded to the total photon flux collected during the pixel acquisition 

time, variable from 0.04 - 1 msec, was used. Each image consisted of 256 x 256 pixels 

spanning approximately 200 x 200 mm2. 

Results and Discussion 



Preparation and Nitric Oxide Reactivity of the Dirhodium-Containing Silastic 

Membrane. 

A slice of Silastic membrane was soaked in a DCE solution of dirhodium 

tetracarboxylate complex [Rh2(p-02CPr),] (100 pM) and Ds-pip (50 pM) for one day. 

After [Rh2(p-02CPr),(Ds-pip)] was loaded onto the Silastic membrane, the fluorescence 

response was monitored by a hand-held UV lamp. The Silastic membrane containing 

[Rh2(p-02CPr),(Ds-pip)] showed a significant fluorescence quenching relative to that of 

free Ds-pip (Figure A.2). When a saturated aqueous NO solution (1.9 mM) was 

introduced into an anaerobic fluorescence cuvette containing the silastic membrane 

embedding [Rh2(p-02CPr),(Ds-pip)], a fluorescence increase was immediately observed 

(Figure A.3). Treatment at different concentrations (1.9 mM, 0.63 mM, and 0.38 mM) 

immediately displayed enhanced fluorescence as well (Figure A.4). 

Two-Photon Experiment. 

Initial images of the Silastic membranes of Ds-pip and [Rh2(p02CPr),(Ds-pip)] 

were obtained by two-photon microscopy (Figure A.5). The average number of photons 

emitted from the membrane of [Rh2(p-02CPr),(Ds-pip)] is 3.38, which is decreased 

compared to that of free Ds-pip (# of photons = 6.02), when excited at 740 nm. 

Treatment of the membrane of [Rh2(p-02CPr),(Ds-pip)] with NO (1.9 mM, aq) restored 

the number of photons to a value similar to that of Ds-pip (Figure A.5), indicating that 

NO binds and Ds-pip is dissociated from the dirhodium core. Images of Silastic 

membranes of [Rh2(p-02CPr),(Ds-pip)] at different concentrations of NO (0.38 mM, 0.63 

mM, and 1.9 mM) were acquired by two-photon microscopy. More photons were 

emitted from the membrane treated with 1.9 mM NO (aq) than with 0.38 and 0.68 mM 



NO (aq) (Figure A.6). These observations confirm that the NO reactivity of the 

dirhodium tetracarboxylate complex in solid state is consistent with that previously 

studied in s~lution.~' 

The stability of the signal of the membrane of [Rh2(p-02CPr),(Ds-pip)] with 1.9 

mM NO (aq) was examined at a single location over 1 h, when excited at 780 nm (Figure 

A.7). No noticeable effects of photobleaching or membrane decomposition were 

observed during the collection of signals. 

The increased number of photons emitted in the reaction of the membrane of 

[Rh2(p-02CPr),(Ds-pip)] with NO indicates that NO can be monitored by using this 

inorganic material Silastic membrane having a dirhodium tetracarboxylate fluorophore 

complex combined with two-photon microscopy. Moreover, these results hold promise 

for the development of fiber-optics, using dirhodium-containing polymer capable of 

detecting NO in living systems. 

Summary 

A Silastic membrane containing embedded [Rh,(p-02CPr),(Ds-pip)] showed a 

decreased number of photons emitted relative to that of Ds-pip. When the membrane- 

encapsulated [Rh2(p-02CPr),(Ds-pip)] was treated with an aqueous solution of NO, an 

immediate increase in fluorescence was observed by two-photon spectroscopy. These 

observations represent the first example of NO detection by the combination of two- 

photon microscopy and an inorganic complex. These membrane studies are a first step 

toward fiber-optic-based NO sensing in aqueous media using a dirhodium-containing 

polymer and two-pho ton microscopy. 
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FI = Fluorophore, R = alkyl groups 

Scheme A.1. Nitric Oxide Detection of Dirhodium Dansyl Complexes. 
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Figure A.1. Schematic diagram of two-photon microscope. The commercial inverted 

microscope is indicated by the dotted line. DC, dichroic mirror; BF, barrier filter; PMT, 

photomultiplier tube; PC, personal computer. 
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Figure A.2. Left: a photo monitoring the fluorescence response of Silastic membranes of 

Ds-pip (left) and [Rh,(pO,CPr),(Ds-pip)] (right) with a hand-held UV lamp. Right: 

description of experimental apparatus. 



Figure A.3. A photo monitoring the fluorescence response in the reaction of the Silastic 

membrane containing [Rh,(p-02CPr),(Ds-pip)] (right) with NO (1.9 mM, aq) (left). 



Figure A.4. A photo monitoring the fluorescence response in the reaction of the Silastic 

membrane containing [Rh,(p-02CPr),(Ds-pip)] with NO (c: 1.9 mM; d: 0.63 mM; e: 0.38 

mM) (bottom). Top: a: Ds-pip; b: [Rh2(p-02CPr),] and Ds-pip. 



Figure A.5. Images of the membrane of Ds-pip (left, # of photons = 6.02), [Rh2(p- 

02CPr),(Ds-pip)] (center, # of photons = 3.38), and [Rh,(p-02CPr),(Ds-pip)] with NO (1.9 

mM, aq) (right, # of photons = 8.41) by two photon microscopy. Excitation is at 740 nm 

(20 mW, 25 kHz). 



Figure A.6. Images of the membrane of [Rh2(p-02CPr),(Ds-pip)] with 1.9 mM NO (aq) 

(right, # of photons = 8.5 at 10 kHz), 0.63 mM NO (aq) (center, # of photons = 49 at 1 

kHz), and 0.38 mM NO (aq) (right, # of photons = 35) by two photon microscopy. 

Excitation is at 780 nrn (20 mW). 



Time (min) 

Figure A.7. Stability of the signal of the membrane of [Rh,(p-02CPr),(Ds-pip)] with 1.9 

mM NO (aq) over 1 h. Excitation is at 780 nm (20 mW). 
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