
Experimental Investigation of Internal Tide Generation by

Two-Dimensional Topography using Synthetic Schlieren

by

Paula Echeverri Mondragon

B.S., Aerospace Engineering (2004)
Massachusetts Institute of Technology

Submitted to the Department of Mechanical Engineering
in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2006

@ 2006 Massachusetts Institute of Technology. All rights reserved.

The author hereby grants to Massachusetts Institute of Technology permission to
reproduce and

to distribute copies of this thesis document in whole or in part.

Signature of Author..........................
Depn tment

C ertified by ............. ...........................

Assistant Professor

of/Mchanical Engineering

Of My 12, 2006

Thomas Peacock
of Mechanical Enginnering

Thesis Supervisor

A ccepted by............................. .........
Lallit Anand

Professor of Mechanical Engineering

ACHUSETTS INSTJtITEI Chairperson, Department Committee on Graduate Students

BARKER

MAS
OF TECHNOLOGY

JUL 14 2006

LIBRARIES



Experimental Investigation of Internal Tide Generation by

Two-Dimensional Topography using Synthetic Schlieren

by

Paula Echeverri Mondrag6n

Submitted to the Department of Mechanical Engineering
on May 12, 2006, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

An experimental investigation of internal tide generation at two-dimensional topography was

carried out using the synthetic Schlieren experimental technique. Two linear models were

tested: Balmforth, lerley and Young's [1] subcritical solution for a Gaussian ridge and Hurley

and Keady's [153 super-critical solution for a knife-edge. The former was modified to account

for the effects of viscosity in the propagating wave beams.

The experiment set up comprised a wave-tank with a linear salt-water stratification and a

sliding stage on which the topography oscillated horizontally to simulate tidal flow. The wave

field was measured by capturing the distortion of a pattern of random dots placed on a light

sheet behind the tank using a CCD camera, and using the synthetic Schlieren processing of the

movies obtained.
Four experiments were performed, for wave beams propagating close to 250 and 560 from

the horizontal for each topographic feature. The subcritical theory over-predicted the peak

disturbance over the Gaussian ridge by a maximum of 50%, and it correctly predicted the profile

shape and evolution along the wave beam and throughout one period of the oscillation. The

supercritical knife-edge theory predicted the disturbance amplitude, shape and evolution within

experimental error. The results showed that at Reynolds numbers below O(105), viscosity

suppresses nonlinear effects and smoothes out instabilities predicted by inviscid models that

would lead to overturning.
These experiments have motivated the construction of a larger wave-tank to achieve higher

Reynolds numbers. Future experiments will investigate nonlinear internal tide generation,
overturning and mixing in unstable wave beams and flow separation over topography.

Thesis Supervisor: Thomas Peacock
Title: Assistant Professor of Mechanical Enginnering
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Chapter 1

Introduction

1.1 The role of internal tides in the deep ocean

Tidal currents flowing back and forth over ocean ridges generate internal gravity wave beams

that propagate away from topography, as shown schematically in figure 1-1. This is one of

the processes that draws energy from the moon's orbit around the earth, such that the moon

recedes from us by a few centimeters every year. The internal wave beams ultimately dissipate

and generate mixing, which affects the thermohaline circulation in the ocean. These reasons

have sparked a great interest in developing a detailed understanding of internal wave generation

by topography, which will improve estimates of energy conversion from the tides and shed light

on the subsequent dissipation of internal waves.

The energy transferred from barotropic tidal currents into a barocinic internal wave field

account for a large fraction of energy lost from the tides. The importance of tidal conversion

over topography was realized by Egbert and Ray [5], who used Topex/Poseidon satellite al-

timeter data to constrain a tidal model and localize the rates of energy dissipation from the

lunar and solar tides, which had been previously estimated to total 3.7 T W. The distribution

of the energy flux from the tides over the ocean surface is shown in figure 1-2. About 1 T W

of this occurs in the deep ocean, in particular in regions with large topographic features, where

the tidal dissipation measured is much larger than the estimated dissipation due to bottom

friction only. These observations have been investigated further, for instance by Merrifield and

Holloway [25}, who used the Princeton Ocean Model (POM) to do a numerical simulation of

10
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Figure 1-1: Schematic of internal tide generation in the deep ocean.

the barotropic tides over the steep Hawaiian ridge and found a 9.7G W energy flux in the form

of an internal wave of tidal frequency, also referred to as an internal tide.

Most of the energy in the wave beam that propagates away from topography is in the first

spatial mode that corresponds to the horizontal scale of the topography. The subsequent

dissipation of internal tides in the ocean is not yet fully understood, but it is established

that overturning and mixing are most likely to occur for beams with higher wave numbers, as

explained by St. Laurent and Garret [33], who investigate the spatial distribution of mixing

in an internal wave field. Internal waves with higher wave numbers are generated by local

nonlinear phenomena over steep bathymetry or else have evolved from low mode waves and

therefore occur further from their generation site.

Observations have reported mixing associated with internal waves radiated off steep topog-

raphy. Ledwell et. at. [?] found high levels of mixing over the rough bathymetry along the

mid-Atlantic ridge in the Brazil basin. Lueck and Mudge [23] report mixing locally over the

Cobb seamount in the north-eastern Pacific; Rudnick et. al. [32] observed turbulent mixing

over the Hawaiian ridge; and Lien and Gregg f20] observed high levels of shear and turbulence

along the internal wave beam radiated off the shelf break near Monterey Bay. The trans-

fer of energy to higher modes may take place through different processes, including nonlinear

wave-wave interactions such as the parametric subharmonic instability (PSI), which has been

simulated numerically by MacKinnon and Winters 24]; and scattering by rough bottom topog-

11
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Figure 1-2: Energy loss from the barotropic tide calculated by Egbert and Ray [5] from satellite
altimetry data.

raphy, discussed by St. Laurent and Garret [33]. Another process that transfers internal wave

energy to higher modes is the reflection of the beams off slopes that coincide with the angle

of the beam propagation (critical slope), and Nash et. al. [27] measured high levels of mixing

on the critical continental slope off the coast of Virginia. As pointed out by Cacchione et. al.

[3], the slope of the continental shelf often coincides with the propagation angle of first mode

internal waves, which suggests that these have a role shaping the continental shelf.

Ultimately, the mixing associated with internal tides, which may dissipate as much as the

1 T W of tidal energy loss in the deep ocean, is important because it can help drive ocean

circulation. This was first suggested by Munk and Wunsch [26], who estimate that 2.1 T W of

power is required to maintain the circulation observed in the deep ocean, and note that only

about 1 T W is input by wind action on the ocean surface. This argument has been reviewed

by Wunsch and Ferrari [40], who argue that the spatial distribution and magnitude of the

dissipation of internal tides should be included in ocean circulation models. The oceanographic

interest in this topic has motivated much research, including projects such as the Hawaii Ocean-

Mixing Experiment (HOME), which aims to bring together theory with numerical and field

12



observations of the energy cascade from tides to turbulent mixing off the Hawaiian ridge [13].

1.2 Studies of tidal conversion by two-dimensional topography

The observations made by Egbert and Ray [5] motivated analytical studies focused on mod-

elling internal tide generation at primarily two-dimensional (2D), idealized topographies and

estimating linear tidal conversion rates. Further numerical studies test these predictions and

expand the investigation into nonlinear regimes. There is an emphasis on 2D topographies

because these are the strongest generator of internal tides in the ocean: as pointed out by Hol-

loway and Merrifield [12], tidal currents can flow around 3D mounts but not around long ridges,

in which case the barotropic currents are forced to displace vertically and generate baroclinic

disturbances.

Four non-dimensional parameters that characterize 2D internal tide generation. They are

introduced here following the nomenclature of Garrett and Kunze [9]. The first two parameters

relate the relevant time scales in the system: w/f relates the tidal frequency w to the Coriolis

frequency f, and wIN relates w to the Brunt-Vaiisala or buoyancy frequency N, which describes

the vertical stratification:

N(z)2 g p(z)(1.

Here, z is the vertical coordinate, p(z) is the local density, g is the gravitational acceleration

and p,, is a constant reference density value that can be taken to represent the local density in

a Boussinesq fluid. These parameters govern the angle 0 of propagation of the wave beams via

the dispersion relation for small amplitude, 2D internal waves:

a = tano= N2- 2  (1.2)
VN2 _,,21

such that wave beams only propagate if f <w < N.

The other two parameters relate relevant spatial scales: the criticality parameter e = h /a

is the ratio of the maximum slope h of bottom topography described by z = h(x), to the

slope of the radiated wave beam a = k/m = tan0; and the tidal excursion parameter kuo/w,

which is the ratio of the tidal displacement A = uo/w, where uO is the maximum velocity of the

13



tides, to the horizontal scale of the topography k 1 . The tidal currents, the dimensions of the

topography and the angle of propagation of internal wave beams are indicated in figure 1-1.

The early analytical results of Bell [2] considered tidal conversion by weak topography

(e < 1) with arbitrary excursion in a fluid of infinite depth. Under the weak topography

assumption the bottom boundary condition can be linearized and applied at z = 0 rather than

at z = h(x); the solution is then found using Fourier analysis. Bell's work has been extended

to other parameter regimes by a number of researchers, including Llewellyn Smith and Young

[21], who solved the problem for weak topography and short tidal excursion (kuo/w < 1) in

finite-depth and varying stratification. For short tidal excursion the equations can be linearized

about hydrostatic equilibrium by neglecting advective terms. Another relevant solution is that

of Balmforth, Ierley and Young [1], who account for finite-slope, subcritical topography (e < 1)

and assume kuo/w < 1 in infinite depth.

The case of strongly supercritical topography has also been investigated analytically using

linearized equations, with the canonical configuration being a knife-edge. St. Laurent et. al.

[34] obtained a matrix problem for a knife-edge, a step or a top-hat ridge by matching boundary

conditions, then found the modal solutions numerically; and Llewellyn Smith and Young found

an analytic expression for the energy flux radiated from a knife-edge [22]. Recently, Petrelis,

Smith and Young [30] used a Green's function approach to find a solution for a triangular ridge

that spans subcritical to supercritical parameter regimes. These solutions were obtained for

finite-depth boundary conditions. The work of Hurley and Keady [15] on oscillating elliptical

cylinders can also be adapted to account for the wave field generated by an oscillating knife-edge

in a fluid of infinite depth.

Numerical estimates of tidal conversion rates by idealized, 2D topographies were obtained

by Khatiwala [16]. These have served as a preliminary test of linear models of subcritical

generation. Khatiwala did a non-hydrostatic and nonlinear numerical simulation using the

MIT General Circulation Model (GCM) to test the effects of finite depth on estimates of

energy flux at Gaussian and sinusoidal subcritical topographies. In doing so, he extended his

investigations to consider the transition into supercritical regimes. For a critical Gaussian ridge

he predicted a 10 - 20% increase in energy flux with respect to estimates using Bell's model

for weak topography. This is in agreement with estimates by Balmforth, Ierley and Young [1],

14



who predict that the energy flux from a critical Gaussian ridge is 14% greater than predicted

using Bell's model.

Overall, estimates from linear analytical models, numerical simulations and measurements

of ocean altimetry are in reasonable agreement and suggest a high level understanding of energy

conversion rates by 2D topography in the deep ocean. For instance, linear models have been

used to make estimates of the total tidal conversion by bathymetry that are comparable to

the corresponding values suggested by Egbert and Ray [5]. St. Laurent and Garret [33] do a

perturbation expansion to the expression for energy flux obtained using Bell's model. They

estimate 3.8 i 1.7G W of energy flux over 106 km2 of rough bathymetry in a region of the mid-

Atlantic ridge. Llewellyn Smith and Young [21] use their finite-depth model to estimate 0.25G W

in an area of the same size made up of seamounts of 1.6 km radius and 0.32 km high, chosen

from statistical samples to represent be representative of the ocean floor. After extrapolating

for the extension of the ocean floor, which is about 361 x 106 km2, these estimates are within an

order of magnitude of the world wide conversion rate of 1 T W that Egbert and Ray estimate

as unaccounted for by bottom friction [5].

There has also been reasonable agreement in the estimates of tidal conversion rates at

supercritical topography. For example, by modelling the Hawaiian ridge as a knife-edge, St.

Laurent et. al. [34] estimate that it converts energy at a rate of 21G W. This is close to 20G W

of estimated tidal dissipation obtained by Egbert and Ray [5] from the ocean surface elevation

at the site; and also comparable to 9.7G W, which is the numerical prediction of the energy

flux away from the Hawaiian ridge by Merrifield and Holloway [25].

This agreement supports the use of linear models to estimate tidal conversion rates, which

are integral quantities; but there is no consistent understanding throughout the different studies

of the structure of the wave field, in particular as e and kuo/w increase. For instance, Balmforth,

Ierley and Young [1] observe that, for generation problems with large subcritical e and strong

forcing, their linear solution shows reversals in the vertical stratification along radiated wave

beams, which Petrelis et. al. [30] also note in their linear solution to supercritical generation.

These buoyancy instabilities hypothetically allow overturning and mixing. The numerical

experiments performed by Khatiwala for the same large, subcritical e show high local velocities

that would break down linear theory and result in strong shear, but there is no evidence of
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overturning in the region. As mentioned above, there is evidence from field observations of

mixing near sites of supercritical generation, although the mechanisms at work have not been

identified. The presence of instabilities in the wave field and the onset of overturning is yet to

be understood.

A more accurate account of the presence of instabilities could help improve predictions of

mixing and dissipation, and how these affect ocean structure and circulation. The previous

discussion suggests that linear solutions for topography with finite and even large slopes are not

good enough to describe the local wave field or to predict the onset of overturning and mixing.

Numerical and field experiments may provide further insight, but they are hindered by limited

resolution. A series of laboratory experiments would therefore be a good approach.

To date, there have been no controlled and quantitative laboratory experiments to test any

of the predictions made using linear analytical models. These experiments would be useful to

corroborate the local structure predicted by the linear models and to investigate the mechanisms

that smoothen the singularities found in the linear wave field solutions in nonlinear regimes.

1.3 Overview of the experimental investigation

The goal of this work is to perform a quantitative experimental study to test the predictions

of existing linear, analytical models of internal tides generation by idealized, 2D topography.

The experimental wave fields were obtained using a novel optical technique called synthetic

Schlieren (SS) [35]. These were compared to the analytical wave fields predicted by Balmforth,

Ierley and Young [1] for a finite-slope, subcritical Gaussian ridge, and of Hurley and Keady [15]

for a strongly supercritical knife-edge ridge. To warrant the comparison with experimental

data in which the effect of dissipation was manifest, we modified Balmforth's analytical model

to account for weak viscosity; this was already accounted for by Hurley and Keady [15].

For practical reasons we chose to simulate internal tide generation at 2D topographies in the

absence of background rotation. This is a relevant scenario because 2D topographies are strong

generators: for instance, St. Laurent et. al. [34] use a 2D model to estimate tidal conversion at

the Hawaiian ridge, and this is within 0(5%) of the tidal conversion estimates from observations.

Furthermore, the SS technique has been proven to give accurate quantitative data for nominally
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2D wave fields [35]. The effect of removing background rotation is an increase in the energy

flux: Bell's theory for a Gaussian ridge suggests a 15% increase in this case.

Chapter 2 is an overview of the experimental arrangement and the SS technique. Chapter

3 introduces the general analytic problem for linear internal wave generation, and chapters 4

and 5 present the solutions to this problem and accompanying experimental results for the

Gaussian and the knife-edge ridges, respectively. Chapter 6 is a discussion of the comparisons

between experimental results and linear analytical solutions, as well as a discussion of experi-

ments outside of linear generation regimes, for which we seek evidence of instabilities and flow

separation. Finally, chapter 7 presents conclusions and suggests future experimental studies of

internal tides.
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Chapter 2

Experimental Arrangement

2.1 Generation of internal tides

Internal tides are generated by side to side currents flowing over topographic features. In the

laboratory, we simulated internal tide generation in the frame of reference of tidal currents, by

moving a topographic feature from side to side inside a tank filled with salt-stratified water.

The experiments were performed in a 1.32m-long, 0.2m-wide and 0.66m-high tank with

20 mm-thick Plexiglas walls; illustrated in figures 2-1 and 2-2. A support frame of 80/20

beams was placed surrounding the tank and used to mount two motion controlled traverses.

One of these was used to drive the topography motion and the other was used to hold a PME

conductivity and temperature (CT) probe. Both the tank and the support frame were clamped

to a lab bench and levelled to within 0.040 with the horizontal as measured using a Starrett

spirit level.

An UHMW polyethylene sliding stage, shown in figure 2-3, was placed on the base of the

tank and also levelled to within 0.04' with the horizontal. One side of the stage was connected

through a pulley to a spring mounted on the support frame, and the other side was similarly

connected to a traverse driven by a Lintech stepper motor, as illustrated in figure 2-1. The 2D

topographic features used to generate the wave field were flush-mounted to the moving surface

of the stage. One of the topographic features was a Gaussian ridge, cut out of insulating

foam using a CNC foam-cutter, that was ho = 14.7 ± 0.2 mm-tall and had a standard deviation

of o- = 20 mm, which is shown on the stage in figure 2-3. The other topography was a
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Figure 2-3: Photograph of the sliding stage with a Gaussian topography

Figure 2-4: Photograph of the knife-edge

16.0 ± 0.2 mm-tall and 1.0 ± 0.2 mm-thick knife-edge, machined out of stainless steel, shown in

figure 2-4.

The side walls of the tank were lined with Blockson filter material, a coarse coconut-hair

matting, as shown in figure 2-1. The matting trapped the wave beams generated by the edge of

the moving surface and the pulleys, preventing them to enter the field of view. It also damped

the wave beams reflected from the end walls. Figure 2-5 shows a beam reflected off the matting

that decreases 70% amplitude.

The topography mounted on the sliding stage followed a sinusoidal trajectory in the hor-

izontal plane. This was specified using LabVIEW and commanded to the traverse via a NI

PCI-7344 motion control card and an API Controls P261 micro-stepper drive. The setup was

used to generate smooth sinusoidal trajectories with excursion amplitudes A between 0.9 mm

and 7 mm, and time periods Tp between 6 s and 12 s. There were slight discrepancies between

the commanded and the actual trajectories, possibly due to elasticity in the wire and some

stick-slip as the stage slowed down at either end of its oscillation. The true trajectories were

measured by capturing the motion of the topography using a JAI CV-M4+CL CCD camera,

with a resolution of 1268 by 1024 pixels, and a BitFlow RoadRunner video card. The posi-

tion of the topography during the movie was tracked using MATLAB. Figure 2-6 shows two
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sample trajectories where the commanded amplitudes were A = 3.5 mm for an oscillation with

Tp = 6.16 t 0.04 s and A = 1.25 mm for Tp = 11.92 ± 0.04 s. The actual amplitudes achieved

were 2.58 ± 0.05 mm and 0.90 ± 0.05 mm, respectively. Note that the sinusoids are slightly

flattened when stick-slip was starting to take place, most dramatically for the latter trajectory,

which corresponds to the slowest experiment performed. The maximum velocity of the flow

over the topography was obtained by fitting a linear slope through the section of the trajectory

around the center of the oscillation. This was averaged over 5 to 10 sweeps of the topography

in order to get an accurate estimate.

A linear density stratification was established in the experimental (wave) tank using the

Oster double-bucket technique [10]. The double-bucket system used, which is shown in figure

2-7, comprised two 90-liter buckets, three pumps and two Omega FTB601 flow meters. The first

bucket was filled with salt-water of 1130 + I kg/ m3 and the second bucket was filled with fresh

water. Water from the first bucket was pumped into the second bucket at 0.75 t 0.011/ min,

and simultaneously the mixed water was pumped into the bottom of the experimental tank at

1.50 ± 0.011/ min, yielding a constant density change. The third pump was used to constantly

recirculate the water in the second bucket and keep the mixture homogeneous. Saltier water

flowing into the experimental tank displaced the lighter, fresh-water upward, creating a vertical

stratification. The tank was filled with 158 liters in 105 min, and the stratification was left to

settle for an hour before any experiments were carried out.

The density profile in the experimental tank was measured using the CT probe. The

temperature-voltage output was calibrated using an OMEGA HH42 digital thermometer accu-

rate to 0.01 *C. Then, the probe was calibrated to measure density. The conductivity voltage

output consists of an amplified voltage across two sensor terminals that, when submerged in

a sample of salt-water, is affected by salt concentration and by temperature. Therefore, a

calibration surface was plotted by interpolating two curves of density as a function of conduc-

tivity at two different temperatures. An example is shown in figure 2-8. This was obtained

by measuring the voltage output and the density of two sets of ten salt-water samples between

1000 kg/ m3 and 1100 kg/ M3 . The densities were measured using an Anton Paar DMA 38

density meter that is accurate to 0.1 kg/ m3 . The first set of samples was kept at 19.0 ± 0.1 *C

and the second at 24.0 ± 0.1*C using Neslab RTE-140 temperature control units and confirmed
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Figure 2-7: Double-bucket system

using the digital thermometer. Thus, the two set of samples spanned the variations in density

and temperature found in the tank. The conductivity and temperature-voltage outputs from

the probe were connected to a NI BNC-2090 connector block and captured using a NI DAQ

PCI-6036E data acquisition card and the NI Measurement and Automation software interface.

The accuracy of the density measurements obtained using this technique was approximately

0.5 kg/M 3 , corresponding to 0.25% of the working density range. This was confirmed by com-

paring the density measurements using the probe and the density meter for two test samples

at intermediate temperatures.

The calibrated probe was then mounted on a motion-controlled traverse and driven vertically

through the tank, while its conductivity and temperature voltage outputs were recorded and

translated into a density profile using the calibration surface. The density profile for a typical

experiment is shown in figure 2-9, which shows a very constant slope of -148 ± 5kg/m 4 .

The background density measured 10 cm above the bottom surface was p = 1065 kg/ M3 , and

using this as a reference value, the buoyancy frequency was calculated using the definition in

equation (1.1) to be N = 1.17 ± 0.02 rad/ s. Note that, since the density varies between 1050

and 1080 kg/ m3 in the wave field of interest, this value of the buoyancy frequency can vary

about 0.008 rad/ s depending on the choice of p,,, which is within the measurement uncertainty.

While we were able to measure the salinity profile using the CT probe, we determined that
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a faster and equally accurate method was to obtain the density profile using the dispersion

relation for Boussinesq waves in the absence of background rotation (from equation (1.2) for

f = 0):

sine = - (2.1)
N

The forcing frequency w was known and the beam angle 0 was measured from a processed

experimental image of a wave beam using the Radon transform in MATLAB, as was done

previously by Peacock and Weidman [29]. The Radon transform maps the sum of the intensities

in a column of pixels into a single horizontal line. This was used to measure the beam angle by

rotating the image by 1 0 increments and noting the angle at which the largest intensity peak

was observed, which is when the full length of a bright wave beam collapsed onto one point.

Using this method, the value of N measured for the same stratification shown in figure 2-9 was

N = 1.20 ± 0.02 rad/ s, and the linearity of the stratification was evident in the uniformity of

the wave beams.

The viscosity coefficient v for salt water of 1070 kg/ m3 at room temperature of 21 'C was

measured to be 1.10 t 0.04 x 10-6 m 2 / s using a size 75 glass capillary kinematic viscometer.

This value varied by 0.04 x 10-6 m2/s over the 1050 to 1080kg/ m 3 range in the region of

interest in the wave field. An AR-1OOON rheometer was also used to measure the kinematic

viscosity of a salt-water sample at 1070 kg/ m3 by placing the sample between two rotating

plates and measuring the shear stress. The value of v measured was 1.10 ± 0.02 x 10-6 m 2 / s,

and this remained constant to within 0.02 x 10-6 m 2 / s for shear rates from 10 to 1000 Hz.

2.2 Measurement of internal tides: synthetic Schlieren

The wave field was studied using the SS technique developed by Dalziel et. al. [4], which

measures the changes in the refractive index of a medium by tracking the apparent distortions

of an image viewed through the medium. This principle is used to measure weak perturbations

to a density gradient, which have a linear effect on the refractive index gradient of a stratified

flow.

The refractive index field n(x, z) in a 2D stratified flow in the vertical plane can be decom-
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Figure 2-10: Schematic side-view of the synthetic schlieren set up

posed into three terms:

n(x, z) = nw, + nrb(z) + n'(x, z), (2.2)

where n,, = 1.33 is the refractive index of fresh water, nb corresponds to the increase in the

refractive index by the base stratification, and n' is the effect of small amplitude perturbations

to the stratification. The relationship between the refractive index and the density gradient

can be approximated as

Vn = 3(nw/p.)Vp, (2.3)

where pw = 1000 kg/ m 3 is the density of fresh water and 83 0.184 for salt-water stratifications

[39].

Figure 2-10 shows a schematic of the vertical plane in which a light ray described by ((y, z)

travels from a light source, through a tank containing a stratification, and towards an observer

or a camera. The distance between the back wall of the tank and an image behind it is denoted

as B, the inner width of the tank is W, the full distance between the image and the camera in

front of the tank is L, and the thickness of the tank walls is T. The path ((y, z) must curve
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towards the higher refractive index to satisfy Snell's law

6 n(y,z)ds = 0, (2.4)

where ds is the integration variable along C. For light rays that are almost parallel to the

y-direction across the tank, the variational principle applied to equation (2.4) yields

d2C 2] 1 dn(z) 1 dn(z)
-- - + - ::::L (2.5)[ ~ dy n dz n dz

such that
1 .2 1 0n(Z)

((y,z) = (i +ytani + y2 + 1 (2.6)
2 n(z) Oz(26

Here, (; and #5 are the position and angle of incidence of a light ray entering the stratifica-

tion. The refraction of light causes an apparent displacement of the image viewed through the

disturbed medium that can be denoted by A( and that is proportional to the perturbations:

A(=--1 - W W+2 B+2 T P- (2.7)
2 2L nair nwaU Pw

where nair = 1 is the refractive index of air and nwall = 1.49 is the refractive index of the acrylic

wall.

The experimental arrangement was set up as illustrated in figure 2-10, where the relevant

distances were B = 0.465 t 0.001 m, W = 0.200 ± 0.002 m, L _ 4.30 ± 0.05 m and T = 0.019 m.

The image used was a random pattern comprising dots 0.5 mm in diameter and spaced about

0.5 mm apart, printed on a transparency and put on a 30 by 25 cm Per'f Alite electroluminescent

sheet. The apparent distortion of the pattern caused by the wave field was captured at 6 frames

per second using the CCD camera. This was placed far from the front of the tank in order

to minimize parallax, such that the area imaged subtended an angle of less than 30 and the

dots-size was about 4 square pixels.

The intensity variations in the light source introduce noise to the experimental measurement

because apparent displacements are measured by tracking the changes in intensity in the movie,

as will be explained below. The light sheet intensity was found to be as stable as the intensity

of the fluorescent tubes that had been used as a light source in previous SS experiments by
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Sutherland et. al. [35]. These intensity variations were measured by removing the pattern

and placing the CCD camera directly in front of the light sheet. Figure 2-11 shows the time

series of the intensity values for two separate pixels on the image of the light sheet and for

two different light sheet intensity settings. The time series exhibit peak-to-peak fluctuations

in intensity P on the order of 5/255 (the intensity of an 8-bit image can vary between 0/255

in black regions and 255/255 in white regions). These were typical variations throughout the

light sheet and no spatial correlations were observed.

The intensity values in the images of the pattern of dots during the experiments varied by

about 110/255 between the darkest and the lightest regions of the image. We maximized this

contrast range by setting the light sheet intensity to its maximum possible value whilst keeping

a small camera aperture f/5.6 in order to have a good field of view. By increasing the contrast

range we minimized the effect of the light sheet fluctuations on the appearance of the pattern

of dots, and thus avoided spurious measurements of its apparent displacement.

Thermal noise was minimized during the experiments by turning off the air conditioning in
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the laboratory and by placing a 1.5 m-long tunnel with Plexiglas windows and insulated walls

immediately in front of the camera. These measures reduced the ambient thermal fluctuations

in the room, which change the refractive index between the camera and the experiment, thus

curving the light rays and affecting the apparent displacement of the image. In particular,

considering equation (2.7), for a fixed distance L between the camera and the image, the

method is most sensitive for large B, and therefore more sensitive to noise close to the camera.

To measure the apparent displacement observed, the movies were processed using the soft-

ware DigiFlow. The displacement of the image changes the intensity distribution of the array of

pixels that constitutes each frame in the movie captured with the CCD camera. DigiFlow uses

a correlation function over interrogation windows of 19 by 19 pixels in size to track the changes

of the intensity distribution over the pixel array. The measurement of apparent displacement

using DigiFlow is accurate to ±0.02 pixels when the whole pattern is traversed across the cap-

tured image [4], but the working value of the accuracy for smaller apparent displacements is

±0.1 pixels.

This is converted to perturbations to the density gradient p, using equation (2.7) and output

over the entire wave field as an image with an intensity map given by

P(, ) - + G + 127, (2.8)
2 Pwater

where G is a scaling factor chosen such that P'I/Pwater spans the range [-1 : 1]. This means

that P(i, j) has values between [0 : 2551 over the full field and can therefore be mapped onto

an 8-bit image. This output can be readily converted to perturbations to the square of the

buoyancy frequency AN 2 = -gp./P.

The experimental data was also filtered to remove any unaccounted noise, such as vibrations

in the tank, remaining ambient drifts and a possible thermal expansion of the pattern. DigiFlow

measures the apparent displacement with respect to a reference image when the fluid is at rest,

so the reference image used was the average of 12 frames in a 2 s period to reduce high frequency

noise. The experiment results presented in Chapters 4 and 5 are the values of AN 2 across

cross sections of the internal wave beams. The time series of AN 2 at every point on the cross

sections were passed through a 10th-order low-pass filter with cut-off frequency of 1.88 rad/ s,
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and through an 8th-order high-pass filter with cut-off frequency of 0.31 rad/ s. These filters

removed disturbances that occur on time scales significantly greater or less than the forcing

frequency w. Finally, the values of AN 2 were averaged over four consecutive periods of the

internal wave in steady state.

Figure 2-12 shows the apparent displacement due only to these mitigated sources of noise,

measured in the experiment in the absence of any flow field. The amplitude of the noise was of

the order of 0.01 pixels, which, for a typical experiment with p. = 1065kg/ M3 , B = 0.465m,

and L = 4.30 m would correspond to AN 2 of the order of 10- 4 rad2 / S2. The amplitude of the

disturbance in an internal wave beam in the experiment was roughly 0.04 rad2 / S2, so this noise

corresponds to a signal to noise ratio of 0(40).
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Chapter 3

Governing Equations

This chapter presents the form of the Navier-Stokes equations used to model the generation and

propagation of internal waves for different configurations in chapters 4 and 5. We follow the

discussion in sections 3 to 5 of LeBlond and Mysak [19] to express the Navier-Stokes equations in

a rotating frame of reference, linearize them about hydrostatic equilibrium, and express them

in an approximately Cartesian space. Viscosity terms are retained to obtain an analytical

solution that accounts for the effects of viscosity on the propagating wave beams generated in

the experimental tank. The problem is reduced to a single governing equation with boundary

conditions for 2D tidal conversion with small excursion in an infinitely deep fluid.

3.1 Linear Navier-Stokes equations for the stratified ocean

The adiabatic Navier-Stokes equations govern the velocity, pressure and density fields u(r, t),

p(r, t), and p(r, t) respectively, where r is a position vector and the flow is specified following

an Eulerian approach. In particular, fluid motion in the ocean is specified with respect to the

earth, which is a rotating frame of reference.

The unforced and dissipative momentum equation includes a Coriolis term due to the back-

ground rotation of the frame of reference:

Du Vp
+ 20 x u+-- - g = V 2u, (3.1)

Dt p
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where the convective derivative is
D = - +uV (3.2)
Dt at

and 0 is the angular velocity of the earth (I1n = 7.29 x 10-5 rad/ s), g = -gi = -9.81 m/ s 2

is the gravitational acceleration and v is the viscosity coefficient. The viscous term is usually

neglected in descriptions of high Reynolds number fluid motion in the ocean, but it is retained

here because viscosity plays an important role in a laboratory setting.

The density equation for an incompressible fluid is

Dp
--- pi u Vp 0;(3.3)Dt

and conservation of mass is

Dp
Pt + V-pu = Yt +pV -U= 0, (3.4)

which, substituting equation (3.3) for an incompressible fluid, reduces to the continuity equation

V -u = 0. (3.5)

Equations (3.1), (3.3) and (3.5) can be linearized about background, simple-harmonic tidal

currents with maximum tidal speed no and tidal frequency w; in a density and pressure-

stratified ocean. This is the state U(t) =(uo cos wt, 0, 0), p = po(z) and p = po(x, z, t) =

-po(z)zg+cox cos(wt), where co is some constant. We consider small perturbations u'(x, y, z,

p'(X, y, z, t) and p'(x, y, z, t) about this equilibrium state and substitute these into the equations

(3.1) to (3.5). If the excursion parameter now/k < 1, both parts of the advective term are

small compared to the time derivative of the horizontal velocity:

u - Vu = (uo + u) - Vu < Ut. (3.6)
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Therefore neglecting the products of small quantities yields

ut + 2 x u+ V - = vV 2u, (3.7)
Po Po

Pt + wPoz = 0, (3.8)

and

V -u = 0; (3.9)

where the primes have been dropped. Note that the last term in the momentum equation is

now modified by a pre-factor p/po, and it is the only term in which the density perturbation

has a first order effect that cannot be neglected. This is called the buoyancy force, which acts

as a restoring force responsible for internal waves in density-stratified flows.

3.2 Approximation to a Cartesian frame of reference

The spatial domain of internal waves is small compared to the curvature of the earth. Internal

waves are generated in ocean depths H = O(103 m) and their first mode propagates through

horizontal scales L = O(105 m), as reported by St. Laurent and Garret [33], with respect to the

radius of the earth which is R = 6.4 x 106 m [19]. This domain can therefore be approximated as

a Cartesians rather than a curvilinear space, which simplifies the manipulation of the governing

equations, via a 3-plane approximation.

The position vector r can be expressed in spherical coordinates (A, #, r), where A is the

longitude angle, # is the latitude angle and r is the distance from the center of the earth.

Alternatively, as shown in figure 3-1, r can be described with local curvilinear coordinates

(x, y, z); these are centered at r = R (where R is the radius of the earth), longitude A = Ao and

latitude # = #0 ; such that (x, y, z) = (R(A - Ao), R(# - #0), r - R). These frames of reference

rotate with the earth with angular velocity fl = Q(0, cos #, sin #).\

The linearized equations (3.7) to (3.9) can be expressed in terms of non-dimensional curvi-

linear coordinates and velocities defined as

(X, y, Z)' =G, Y, (3.10)
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Figure 3-1: Definition of spherical (A, # r) and local curvilinear (x, y, z) coordinates on the
earth.

and

(u, v, w) = (3.11)

where U is a characteristic horizontal velocity. An initial approximation can be made straight

away for local disturbances about latitude #0 such that Ly'/R < 1. Under this approximation

and using the definitions in (3.10) and (3.11), the momentum equations (3.7) become

Ut + 2Q -v sin p0 + - cos #o + w cos 0) +(-- = vu1,, (3.12)
R )po(1 - z' HIR) Ox ='x

vt + 2u sin o + - cos 00 + 1= vvy, (3.13)
Vt R po(l - z'H/R) (y3

i op pg
wt - 20u cos 00 + 1 O+ - = VwZZ; (3.14)

P z Po

the density equation (3.8) remains unchanged, and the continuity equation (3.9) becomes

um + vY + 1+ H wz 1 - tano y - v tan 0 L + 2w H (1 - tan$OOY) = 0. (3.15)
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In order to use the #-plane approximation we assume that the horizontal domain of the flow

is less than the radius of the earth such that

L2
(L <2 1; (3.16)

also that the ocean is a thin layer of fluid around the earth

H < 1; (3.17)
R

and finally that the fluid motion takes place at low enough latitudes so

L tan 0 < 1. (3.18)
R

Neglecting small terms under assumptions (3.16) to (3.18), the pressure term in the momentum

equations (3.12) readily simplifies back to the form p 1 (p:, ps, ,pz) and the continuity equation

simplifies to

uX + vY + wz = 0. (3.19)

Furthermore, by the same approximation, a line element in space that can be expressed as

ds 2 = r 2 cos 2 OdA 2 + r 2dqd 2 + dr2  (3.20)

simplifies to

ds2 ~ dx 2 + dy 2 + dz 2. (3.21)

This means that the space (x, y, z) behaves as a Cartesian space. Overall, the approximate

equations remain in the form of equations (3.7) through (3.9) stated with respect to coordinates

(x, y, z), which can be treated as Cartesian coordinates.

Finally, the f-plane approximation can be made. The background rotation of the earth is

approximately

0 ~ (0, f, f + 0y), (3.22)
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where

f = 2Q cos 0 , f = 2Q sin #0 and # = 2Q cos q0 /R. (3.23)

Assuming that L cos #$/R < 1, the vertical component of the background rotation is approx-

imately constant and we can neglect Oy, which gives the f-plane equations. Furthermore, if

the projection of the depth is small with respect to the horizontal scale of the motion

H H < L,
tan 0

and if the thickness of the fluid layer is small with respect to horizontal scale of the motion

H< L; (3.24)

then the horizontal component f can be neglected. The momentum equation (3.7) thus sim-

plifies to

Ut + f(-v,u,0) + -g- = vV 2 u. (3.25)
Po Po

3.3 Governing equation for linear internal waves in 2D

Equations (3.8), (3.9) and (3.25) can be used to model internal waves generated in the ocean

or in a laboratory setting.

To study internal waves it is convenient to express the density field in terms of the buoyancy

frequency N given by equation (1.1), which is proportional to the squared root of the background

stratification. Furthermore, if the flow satisfies the Boussinesq condition that the variations in

density are small over a characteristic vertical distance, namely Ap/po(z) ~ N 2 H/g < 1, then

a constant reference value of density can be used throughout the vertical domain: po(z) = p,.

The density field in a 2D, Boussinesq flow is therefore composed of three terms:

N2z b
p(x, z, t) = P( 1 - - , (3.26)

where b(x, z, t) is the perturbation to the buoyancy field from the background stratification. In

the experiments described in the following sections, the background stratification was constant
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with buoyancy frequency N ~ 1.18 rad/ s, and the depth of the water above the bottom of the

topography was H ~ 0.5 m; so the Boussinesq parameter was N 2 H/g = 0(10-1).

Using expression (3.26), equations (3.8), (3.9) and (3.25) for perturbations about background

tidal currents with small excursion in a Boussinesq flow become

ut - fV +p = vV 2u, (3.27)

Vt + fu + Py = vV 2v, (3.28)

wt - b + p, = vV 2W, (3.29)

bt + N2 w = 0, (3.30)

U= + W = 0. (3.31)

To describe the experimental flow, which is 2D and has no background rotation, we neglect any

motion across the width of the tank and set the velocity component v = 0 and the rotation

f = 0 respectively. The equations therefore reduce to

Ut +Px = vV 2u, (3.32)

wt - b + pz = VV 2w, (3.33)

bt + N 2w = 0, (3.34)

UX + Wz = 0. (3.35)

The harmonic time-dependence of the tidal forcing U(t) = (no cos Wt, 0) allows us to simplify

equations (3.32) through (3.35) by supporting the use of a streamfunction

4(x, z, t) = Re [O(x, z)e~wt] , (3.36)

such that u(x, z, t) = Re[(-V).(x, z), VI'(x, z))e-4t]. The continuity equation (3.35) is satisfied

immediately, and equations (3.32) to (3.34) become a single partial differential equation for V):

w2V 2V)(X, z) - N 2 Vkxx(x, z) = iwVV 4 0(X, z). (3.37)
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3.4 Boundary conditions

We solve equation (3.37) for internal wave beams propagating from topography in a semi-

infinite domain, constrained only by the bottom boundary, where the solution must also satisfy

the radiation condition.

Previous solutions for tidal conversion in the ocean satisfy the inviscid equations and the

inviscid bottom boundary condition, including the solutions by Bell [2] and Balnforth, Ierley

and Young [1]. In the case of the experiment, for which the flow is weakly viscous, a thin Stokes'

boundary layer develops over the surface of the topography. The viscous boundary condition

that there is no-slip between the flow and the surface is satisfied by the Stokes' layer, so weakly

viscous generation can be approximated by solving the inviscid generation problem. This is

done by Hurley and Keady [15], who quote Rosenhead [31] for a discussion of the boundary

condition in the presence of a Stokes' layer. The thickness of the Stokes' layer in the experiment

is (2v/w)'/ 2  O(10 3 )m, where w ~ 1rad/ s and v ~ 1.1 x 10- 6 m2/s.

Inviscid generation is governed by equation (3.37) for v = 0 together with the inviscid,

no-normal flow boundary condition:

[U(t)+u(x, h(x), t)] - Vh(x) = 0, (3.38)

which implies that the streamlines of the flow must follow the shape of the topography:

O(x, h(x)) = uoh(x). (3.39)

The solution must then be corrected to satisfy the viscous problem in the far field (given by

equation (3.37) when v 0 0), since the Reynolds number is not large in the experiments;

therefore the viscous term affects the propagating beams. Typically for the experiments Re =

uo/kv is only 0(10), where no = wA = 0.01 m/s and k = 1/0.08 m-1.

In the following chapters, equations (3.37) and (3.39) are simplified further so that the

inviscid boundary value problem can be solved in the context of the specific form of the bottom

topography for a subcritical Gaussian ridge and a knife-edge ridge. The solutions are corrected

for weak viscosity by assuming a linear dependence in the direction of the propagation of the
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waves that satisfies the viscous equation (3.37).
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Chapter 4

Generation at a Gaussian ridge

Topography is often idealized as a Gaussian ridge to study subcritical generation of internal

waves. Experiments were performed using a Gaussian ridge to compare to the theoretical

model of Balmforth, Ierley and Young (1]; one experiment simulated subcritical generation and

another simulated near-critical generation, thus spanning the regime in which the model is

valid. The analytical solution for comparison with experiments was corrected to account for

the effects of viscosity in the propagating beams, following the discussion in section 3.2.

4.1 Analytical solution

The approach of Balmforth, Ierley and Young [1] consists on using Fourier series to solve

governing equation (3.37) for flows that are periodic in the horizontal direction, which would

occur over topography that is also periodic in x. For instance, consider the periodic topography

shown in figure 4-1, which is given by the function

h(x) = hoe-0-cosx). (4.1)

where -y = 1/ 2 0.2 and .- land o- have units of length. If y is large, the height of the topography

is significant only near x = 0, 7r, in which case 1 - cos nx ~ K2x2 . In this case the expression

in (4.1) describes a series of Gaussian ridges of the form hoeX 2 /2, 2 for which r,-1 indicates the

spacing between ridges and 4- indicates the horizontal scale of each feature.
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k1

Figure 4-1: Periodic topography with isolated Gaussian ridges h(x) = hoe-y(-cs KX), where

S=1/r2o.2.

The inviscid generation problem is solved first to find the wave field

00

(X, z) = E n (z)ei". (4.2)
n=-oo

A second-order ODE for On(z) is found by substituting 4 from equation (4.2) into equation

(3.37) with v = 0:

w2 [ - (nK)2 n] + N 2(n') 2 On = 0; (4.3)

which has solutions

O(z) = Ane-inkz + Bneinkyz, (4.4)

where y vN 2 _ w 2 /w. The radiation condition is enforced by keeping only the term in

equation (4.4) with values of n for which the exponent is always negative and the beams

propagate away from the topography. The inviscid bottom boundary condition given by

equation (3.39) is then enforced to determine the modal amplitudes An, via

00

Z Ane-ijnjk/h(x) einx - uoh(x). (4.5)
n=-oo

Equation (4.5) is converted to a linear problem to solve for An. First, the summation in
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(4.5) is simplified for symmetric topography h(x) = h(-x), which implies that

00 00

Ane-il"I ) eClesX = E Ane-ijnjkjh(x) e- (4.6)
n=-oo n=-oo

We can define p = -n and substitute this into the right hand side of equation (4.6) such that

Ane-ilnIkAh(x)e-inrx = 0APe-ipjkph(x)e-iPK. (4.7)
n=-oo P=-00

Since the exponents in both of these summations are the same, then the corresponding coeffi-

cients must also be equal, thus An = A-n. Furthermore, by summing from -oo to oo the odd

part of eintx cancels out, so the series becomes

N--oo

Ao + 2 1 Ane-ijnjk/Ah(x) cos nrx. (4.8)
n=1

Now equation (4.5) can be put in the form of an invertible matrix equation Mn1 An = Bi by

retaining a finite number of modes N. We multiply both sides of equation (4.5) by cos lrx,

integrate over Kx = [0:27r], and invoke orthogonality:

N 27r 27r
27rAo,o +2 An e-inIkh(x) cos(nrx) cos(lix)d(x) = uo cos(lrx)h(x)d(rx). (4.9)

n=1 03

Equation (4.9) is readily solved for An by evaluating the Fourier integrals numerically. Ap-

pendix A of Balmforth, Ierley and Young [1] gives slight modifications to this method that are

useful when the topography is near critical.

To account for the effect of weak viscosity on the propagating beams, then V) (x, z) =

n (=- z ) ei must satisfy the viscous version of equation (3.37) away from the topogra-

phy. Substituting 7 into equation (3.37) gives

w2 [ - (n 2 ] + N 2 (n 'On - iW [(n4 O - 2(nK) 2/4 + = 0. (4.10)

Equation (4.10) has a linear solution Vn(z) = AneI', where the roots mn must satisfy the
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characteristic polynomial

4 )2 iW z 2 N2 _ W2
mn- 2(nn)2 W - mn + (nn)4 + -(n) 2 = 0. (4.11)

The four roots are found numerically, but we only retain one of the corresponding linear terms.

Two of these terms are discarded because the corresponding roots of equation (4.11) have

positive real parts and therefore do not satisfy the radiation condition, since the amplitude of

the disturbance would grow for increasing z, which is the direction of wave propagation for

subcritical topographies. Of the remaining two terms, one corresponds to the solution that

satisfies the viscous, no-slip boundary condition inside the thin Stokes' layer. This decays very

quickly because the root has a large real part of O( v/w), so the solution is small compared

to the inviscid solution in the far field and it can be neglected. Neglecting this solution far out

weights the inconvenience of solving numerically for its modal amplitudes. Instead of solving

equation (4.9) alone, this would require solving simultaneous matrix equations in which some

of the matrices would become singular for near critical values of e.

The remaining term is approximately equivalent to a weakly viscous correction to the inviscid

solution. The inviscid problem is recovered by multiplying equation (4.11) by v and setting

v = 0, giving the inviscid roots

2 K2 N2 _ W2
M, = -(nK)2_- 2  (4.12)

If V < 1, as in the experiment, the inviscid root corrected to the leading order in V is

ml ~ 2, inv + VM,, (4.13)

where mnvi, can be found by substituting expressions (4.12) and (4.13) into equation (4.11)

and neglecting all higher orders of v. The result is

2  =- i(nKN) 4  
(4.14)

The final solution taken to represent the perturbation streamfunction is therefore
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XF(x,z,t) = Re [ 'Anenzeinxe-iWt (4.15)
.I=-00

where An are the coefficients that solve the inviscid boundary value problem, and the roots mn

allow the solution to satisfy the viscous equations in the far field approximately. For small

criticality parameter e corresponding to weak subcritical topographies, this solution approaches

the solution found for a weak topography by Bell [2].

For comparison with experiments, we express the analytical wave field in terms of the

perturbations to the buoyancy frequency AN 2 . These are equivalent to the perturbations to

the density gradient b,, which can be obtained by differentiating the density distribution given

by equation (3.26):

N 2 + AN 2 (x, z, t) - _g p(x, z, t) _ 4(N 2z + b(x, z, t)) (4.16)
P, Oz Oz

The governing density equation (3.34) is used to find b_ given the solution obtained for the

streamfunction in equation (4.15):

bt = -N 2w = -N 2 Re[V).(x, z)e ' t]. (4.17)

Since the solution is time harmonic, so is the perturbation to the buoyancy b = Re[boe"a t],

therefore

=0 (- Re[bo] sin(wt) + Im[bo] cos(wt)) = N 2 ( cos(wt) + sin(wt)).(bt~~z = 0 Bz = N2(~Re[#kx,z]cso) mI ~] i t)

(4.18)

The components Re[bo] and Im[bo] are found by comparing the coefficients of the sines and

cosines in the equation above, to re-construct

N2
AN 2 = b_ = [Im[k ,=] cos(wt) - Re[I',z] sin(wt)] . (4.19)W
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4.2 Experimental results

Two experiments were performed by oscillating a Gaussian ridge back and forth in the exper-

imental stratification; and the resulting wave fields were compared to Balmforth, Ierley and

Young's [1] linear theory. The topography was ho = 14.7 ± 0.2 mm-tall and had a standard

deviation of a = 20mm. It's characteristic horizontal scale was k-1 = 40,= 80mm and it's

maximum slope was h'm= -(ho/o) exp(-1/2) = 0.45, which corresponds to a 240 inclination

from the horizontal. The forcing frequency was changed to generate steep, subcritical wave

beams in one experiment and shallow beams at almost the critical slope in the second exper-

iment; and the excursion was short in both to ensure linear wave fields. The parameters for

the two experiments are summarized in table 4.2.1 below.

Table 4.2.1 Gaussian experiments parameters

Gaussian w(rad/s) N(rad/s) 0(0) e uo(mm/ s) kuo/w

Experiment 1 1.020 1.23 55.8 0.30 2.88 0.035

Experiment 2 0.527 1.23 25.1 0.94 1.59 0.0381

These experiments were planned to test the linear model throughout the range of non-

dimensional parameters for which it is valid: namely, where the criticality parameter is arbi-

trarily below criticality e < 1 and the excursion parameter is small kuo/w < 1. The second

experiment was particularly interesting because it was at the limit of criticality, and also because

shallow beams are more common in the ocean, where typically a = tan ~ 0.1. Furthermore,

the forcing was in the frequency range 2w < N, such that if second harmonic wave beams were

to be generated, they would be able to propagate at 0 = sin-1(2w/N), as discussed in section

1.2. Second harmonic wave beams would be generated by nonlinear interactions in the local

wave field, which has been observed in numerical simulations of super critical generation by

Lamb [17]; and also by a lee-wave mechanism as the excursion parameter is increased, as in

Bell's lee-wave theory for weak topography [2].

4.2.1 Subcritical wave beams

For the first experiment the topography was oscillated at w = 1.020 ± 0.001 rad/ s in a strat-

ification of N = 1.23 ± 0.02 rad/s, so the beams propagated at 9 = 55.8 ± 0.50 to the hor-
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Figure 4-2: Contours of AN 2 for the experimental wave field generated over a Gaussian ridge.

The wave beam propagates at 55.80 from the horizontal.

izontal. The criticality parameter was e = 0.30 ± 0.1. The maximum forcing velocity was

uo = 2.88 t 0.03mm/ s, therefore the excursion parameter was small kuo/w = 0.035 ±0.004. A

movie was captured showing the apparent distortion of pattern of dots behind the tank during

the oscillation of the topography.

A wave beam is seen clearly in figure 4-2, which shows the contours of the perturbations

to the density gradient AN 2 in a snapshot of the wave field generated by the oscillating ridge.

The location of the ridge would correspond to the bottom right-hand side of figure 4-2. This

image was obtained from a single frame of the movie, which was processed using DigiFlow.

Note that the wave field is symmetric about the topography, yet figure 4-2 is framed around

one side of the topography only in order to get a broader and more detailed view of one

of the propagating beams. At the instant when this frame was captured the phase of the
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Figure 4-3: Comparisons of experimental versus theoretical values of AN 2 across a wave beam

at # = 0. a) Comparison across cross-section 1. b) Comparison across cross-section 2.

tidal oscillation was # = wt = 37r/2. The beam propagates upward and to the left with an

amplitude of AN 2 - 0.04(rad/s)2 about the background stratification. The disturbance is

somewhat larger over the topography, where contours indicate AN 2  0.06(rad/ S)2. There is

no significant spreading or decay of the radiated wave beam, suggesting that viscosity plays a

minor role in its propagation.

A direct comparison between this experiment and the wave field predicted by theory is pre-

sented in figures 4-3 and 4-4. Figure 4-3 shows comparisons of experimental versus theoretical

values of AN 2 from left to right across the cross-sections labelled 1 and 2 in figure 4-2 at 0 = 0.

The theoretical profiles (indicated by a soft solid line) do a good job of predicting the shape

and evolution of the experimental profiles (indicated by a solid line and dashed lines at the

root mean square error), but they over-predict the peak amplitude of the wave beam. Both

theory and experiment show that the amplitude decays by 0.02(rad/ S)2 from location 1 to

location 2; but the peaks predicted by the theory are 50% higher than the experimental ones

for cross-section 1, and 40% higher for cross-section 2. Figure 4-4 shows the profiles at location

1 for instances at three additional phases of the oscillation: # = 7r/2, r and 3ir/2. The quality

of the comparison at location 1 persists throughout the entire period of the oscillation. Note

also that the pairs of beam profiles with phase difference of 7r (7r/2 versus 37r/2 and ir versus 27r)
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Figure 4-5: Contours of AN 2 for the experimental wave field generated over a Gaussian ridge.

The wave beam propagates at 25.10 from the horizontal.

are mirror images of each other, which confirms that the forcing achieved with the apparatus

is symmetric.

4.2.2 Near critical wave beams

For this experiment the topography was oscillated at w = 0.527 ± 0.001 rad/ s in the same

stratification as above, so the beams propagated at 0 = 25.1 ± 0.50 to the horizontal. The

criticality parameter was e = 0.94 t 0.1. The maximum forcing velocity was uo = 1.59 ±

0.03 mm/ s, and excursion parameter was kuo/w = 0.038 ± 0.004.

Figure 4-5 shows the contours of the perturbations to the density gradient AN 2 in a snapshot

of the wave field at # = 0. The propagating wave beam is stronger than the more subcritical one

in figure 4-2, with an amplitude of AN 2  0.06( rad/ S)2 about the background stratification.

The disturbance over the topography is as large as AN 2 ~ 0.09(rad/ S)2, but once again there

is no major spreading or decay. Note also that there is no clear indication in the wave field of

a second harmonic beam propagating at 58.90 to the horizontal, which confirms that the wave

field right above the topography is linear.
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Figure 4-6: Comparisons of experimental versus theoretical values of AN 2 across a wave beam

at q = 0. a) Comparison across cross-section 1. b) Comparison across cross-section 2.

Figure 4-6 shows comparisons of experimental versus theoretical values of AN 2 from across

the cross-sections labelled 1 and 2 in figure 4-5. The comparison between the theoretical and

experimental profiles is very similar to the comparison for the previous experiment. The theo-

retical profiles do a good job of predicting the shape and evolution of the experimental profiles,

but they over-predict the peak amplitude of the wave beam. Both theory and experiment

show that the amplitude decays by 0.04(rad/ S)2 from location 1 to location 2; but the peaks

predicted by the theory are 30% higher than the experimental ones for cross-section 1, and

20% higher for cross-section 2. There is also a distortion at the left-hand side of the beam

profiles at cross-section 1, which corresponds to the region closest to the bottom boundary.

It is reasonable to expect some disagreement between experiment and theory in this area, as

the experiment may see disturbances in the wave field excited over the moving surface. Fi-

nally, figure 4-7 shows the profiles at location 1 for instances at three additional phases of the

oscillation: 0 = 7r/2, 7r and 37r/2.

A detailed discussion of these results is presented in the discussion in Chapter 6.
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Chapter 5

Generation at a knife-edge

The solution to the problem of internal tide generation by a knife-edge can be extracted from

the solution for an oscillating ellipse by Hurley and Keady [15] or from the solution for tidal

flow over a triangular ridge by Llewellyn Smith and Young [22]. In this chapter, Hurley

and Keady's solution is reviewed and compared with experimental results. This formulation

was chosen because it is geared toward the calculation of the analytical wave field, as is the

experimental method, whereas Llewellyn Smith and Young's solution is concerned with the

calculation of the total energy flux. Indeed, Smith and Young show in their paper that their

solution for a knife-edge is a special case of Hurley and Keady's solution [22].

Two experiments were performed seeking to achieve a linear regime, and the results show

good agreement with the theoretical solution and an absence of nonlinear effects.

5.1 Analytical solution

The generation of internal waves by an oscillating elliptical cylinder can be studied with respect

to a set of coordinates (s, o-) that are aligned tangential and perpendicular to the wave beams,

namely

s=Xcos9+zsin9 and a=xsin9- zcos9, (5.1)
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Figure 5-1: Oscillating ellipse configuration and definition of coordinates (s, u). We consider

the wave beams labelled 1 and 2 that propagate upwards and to the right.

for waves propagating from the topography at an angle 0 in the upper-right quadrant. This is

shown in figure (5-1). Equation (3.37) can be written in terms of (s, 0') as

+ cot(20) +2 iAa'2V4V = 0, (5.2)49gas as2

where A = vc/2wa'2 = a(6/a')2 /2, J is the thickness of the Stokes' layer and a' is a characteristic

dimension of the cylinder in the (x, z) plane. For the inviscid problem, the last term in equation

(5.2) is zero, and the boundary condition on the topography is

+X =2 1) = -UOZ, (5.3)

where a and b denote the horizontal and vertical semi-axes of the elliptical cylinder.

Hurley and Keady first seek a solution to inviscid generation by an elliptical cylinder [14].

The problem is mapped onto a new complex plane through a Joukowski transformation, by

which the elliptical cylinder in zo = x + iz becomes a circular cylinder of radius al = (a + b)/2
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in zi, where
a 2 - b

zi = zo + 4zo (5.4)

By imposing this transformation onto equations (5.2) and (5.3), the following solution is found

to satisfy the inviscid boundary condition:

(s, o) = -i c j J1(i,)eza/cdn, (5.5)

where c2 = a 2 sin 2 0 + b2 cos2 0 and $ - (b2 uo cos 0 - iabuo sin 9) /2c 2.

A corrected solution is proposed to satisfy the viscous governing equations along the prop-

agating beam:

(s, o) = -i3c j J1(i-)ems/ceiK/cdn, (5.6)

where the roots m must satisfy the polynomial

4 _ ~ (0 2 2,M -mA2 (2 2+ic+mg+, =0. (5.7)

The two roots m that satisfy the radiation condition, by which the wave must decay along s,

have a negative real part. The fast-decaying root corresponds to the Stokes' layer that can

be neglected in the far field. The slow-decaying root can be approximated taking a boundary

layer approach [37]: assuming that the wave beam propagates uniformly along s, such that

9/ds < /go, one can neglect the derivatives along the beam with respect to the derivatives

across the beam, so equation (5.2) is approximately

(92, + iAa M - 0. (5.8)

The general solution in equation (5.6) satisfies equation (5.8) when m = mapp,-ox = -AK 3

Hurley and Keady show that for a weakly viscous flow where A < 1, the slow-decaying root

of equation (5.7) approaches this approximate value, and therefore take m = mappro; in their

solution. Note also that approaching the topography from the far field, as s --+ c, the viscous

solution 0 approaches the inviscid solution ib continuously as the integral of eAs/c. Since

V exactly satisfies the inviscid boundary condition in (5.3); thus, for A < 1, 0 approximately
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Figure 5-2: Knife edge configuration. The wave beams that propagate upwards and to the right

are again labelled 1 (radiated off the top of the topography) and 2 (reflected off the bottom

surface).

satisfies equation (5.3).

With one semi-axis of the ellipse and the tidal forcing horizontal, the streamfunction asso-

ciated with the wave beam radiated in the upper-right quadrant is described by

+(x, z) = -i Jc exp -k 3 VoXCO+zsinO + ik xsinO zcoso dk. (5.9)
10 k 2c2w C c

For the knife-edge topography a = 0 and b = ho, in which case equation (5.9) simplifies to

S(x, z) =-uoho j00 Ji(k) exp ka 3 v(x + az)(1 + 1/a 2 ) .ka dk.
2 JO k ho 2w ho

(5.10)

Note that the solution given by equation (5.10) is also valid for the downward propagating

beam that reflects off the bottom surface as shown in figure (5-2). This is equivalent to the

wave beam that radiates from the bottom of the ellipse directly onto the first quadrant, which

is labelled as beam 2 in figure 5-1.

To find AN 2 , the integrand of equation (5.10) is multiplied by the pre-factor

ka )2 [I ka )2 1+1/a2 i ,(ka )2 1+1/a2 _ia(-1
ho ho 2w ho 2w

corresponding to the derivatives of the streamline with respect to x and z, and the resulting

integral can be solved numerically. Then AN 2 is reconstructed as specified in equation (4.19).
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An important short-coming of this model is that the linear problem assumes kuo/w =

A/k- 1 < 1, whereas for any thin knife-edge the horizontal spatial scale k-1 = a -+ 0, so kuo/w

will be large even for small forcing amplitudes A. Therefore, the nonlinear terms that are

neglected in equations (3.7) to (3.9) may have a significant effect on the wave field that is not

predicted by theory. The experiments presented in the following section aimed to investigate

the validity of this model for different excursion amplitudes.

5.2 Experiment results

Two experiments were performed using a knife-edge topography and the resulting wave fields

were compared to Hurley and Keady's [15] linear theory. The topography used was ho =

16.0 ± 0.2 mm-tall and 1.0 t 0.2 mm-wide. The forcing frequency was changed to vary the

angle of propagation of the wave beams and the forcing excursion was maintained as low as

possible in an attempt to achieve linear generation. The parameters for the two experiments

are summarized in table 5.2.1 below.

Table 5.2.1: Knife edge experiments parameters

Knife edge w(rad/s) N(rad/s) 0(0) uo(mm/s) kuo/w

Experiment 1 1.020 1.19 57.6 0.84 0.82

Experiment 2 0.527 1.19 25.3 0.59 1.03

5.2.1 Steep wave beams

For the first experiment the topography was oscillated at w = 1.020 ± 0.001 rad/ s in a stratifi-

cation of N = 1.19 ± 0.02 rad/ s, so the beams propagated at 0 = 57.6 + 0.5* to the horizontal.

The maximum forcing velocity was uO = 0.84 ± 0.03 mm/ s and the excursion parameter was

large kuo/w = 0.82 ± 0.03.

Figure 5-3 shows the contours of the perturbations to the density gradient AN 2 in a snapshot

of the wave field generated by the oscillating knife-edge, which was located at the bottom left-

hand side of the frame. At the instant of this frame the phase of the oscillation was # = 0. Since

the topography was supercritical, two wave beams were radiated off the top of the knife-edge:

one beam propagated upward and the second beam propagated downward and reflected off the
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Figure 5-4: Comparisons of experimental versus theoretical values of AN 2 across a wave beam
at 0 = 0. a) Comparison across cross-section 1. b) Comparison across cross-section 2.

bottom surface. The combined wave beam is seen in the far field in figure 5-3 propagating

upward with an amplitude around AN 2 ~ 0.03(rad/ S)2 about the background stratification.

Another interesting feature of the wave field is that local disturbances over the knife-edge

were very large, reaching AN 2 > 0.10(rad/ s)2. Beyond this region the signal strength decayed

quickly and the width of the wave beam spread out. In fact, the distortions of the image close

to the knife-edge were so strong that synthetic Schlieren was no longer valid, so the contour plot

does not provide detailed information in this region. Such strong local disturbances were not

observed over the Gaussian ridge, and indeed it would be expected to find stronger disturbances

over the knife-edge, which is a more dramatic feature and both the criticality and the excursion

parameters are larger in these experiments. The wave beam in figure 5-3 also appears to spread

more and decay faster than the beams in the subcritical experiments, suggesting that viscosity

plays a more important role in the evolution of the wave field generated at a knife-edge.

A direct comparison between this experiment and the wave field predicted by theory is

presented in figures 5-4 and 5-5. Figure 5-4 shows comparisons of experimental versus the-

oretical values of AN 2 from right to left across the cross-sections labelled 1 and 2 in figure

5-3. The theoretical profiles (indicated by a solid line) closely predict the amplitude, shape,
and evolution of the experimental profiles (indicated by a soft solid line and dashed lines at the

root mean square error). Both theory and experiment show that the amplitude of the wave

beam decays by almost 50% from location 1 to location 2; and that the width of the beam

spreads from 6 cm-wide at location 1 to almost 10 cm-wide at location 2. The deviations in
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Figure 5-6: Contours of AN 2 for the experimental wave field generated over a knife-edge. The

wave beam propagates at 25.3' from the horizontal.

the wave amplitude between the theoretical and experimental profiles are less than 10% for

cross-section 1 and less than 20% for cross-section 2, at which point the experimental profile

is not as accurate because the signal is weak. Figure 5-5 shows the profiles at location 1 for

instances at three additional phases of the oscillation: # = 7r/2, ?r and 37r/2. The quality of

the comparison at location 1 persists throughout the entire period of the oscillation.

5.2.2 Shallow wave beams

The second experiment was performed to investigate shallow wave beams. The topography

was oscillated at w = 0.527 ± 0.001 rad/ s in the same stratification, so the beams propagated at

O = 25.3 ± 0.50 to the horizontal. The maximum forcing velocity was uO = 0.59 ± 0.03mm/ s,

which is representative of the slowest motion obtained reliably from the apparatus, but still

accounts for a large excursion parameter kuo/w = 1.03 ± 0.03.

Figure 5-6 shows the contours of AN 2 in a snapshot of the experiment when the phase

of the oscillation was # = 0. The two wave beams radiated off the top of the knife-edge
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Figure 5-7: Comparisons of experimental versus theoretical values of AN 2 across a wave beam

at # = 0. a) Comparison across cross-section 1. b) Comparison across cross-section 2.

and the reflection of the downward propagating beam are easier to distinguish in this image

because of the geometry. The local disturbances observed over the knife-edge were still strong,

with amplitudes up to AN 2 ~ 0.06(rad/s)2, yet not as strong as in the previous experiment

described, possibly because in this shallow beam experiment the amplitude of the tidal forcing

was slightly lower. The wave beam in figure 5-6 also appears to spread out and decay, although

the decay is not as dramatic as for the wave beam in figure 5-6, so the amplitude of the wave

beam in the far field is still around AN 2 - 0.03(rad/s)2 about the background stratification.

There are also weak disturbances to the background in the upper left-hand side and the lower

right-hand side of the frame, caused by a weak reflection of the wave beam off the damping

material on the right wall of the tank.

Most notably, there is no evidence of second harmonic beams propagating at 62.5 to the

horizontal. This indicates that, despite generation being highly supercritical and the excursion

being long, the radiated wave field was still essentially linear.

Figures 5-7 and 5-8 show the comparisons of experimental versus theoretical values of AN 2

across the cross-sections of the wave beam labelled 1 and 2 in figure 5-6; and for 0 = 7r/2, 7r

and 37r/2 at cross-section 1. The comparisons along the beam and throughout one oscillation

are still good, although some discrepancies arise that are not present in the steep wave beam
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experiment. The theoretical wave beam decays about 15% in amplitude and spreads from

16.5 to 18cm from location 1 to location 2. The experimental wave beam decays almost 30%

in amplitude and spreads in width from 9 to 12cm. Thus, the experimental wave beam is

narrower and decays faster than the theoretical prediction.

It is worth noting, however, that the two extremes of the experimental profiles at cross-

section 1 are affected by disturbances in the flow field that are unaccounted for by the theory:

below the beam, the edge between the topography and the moving surface, although smooth,

causes a disturbance (on the left side of the profiles in figures 5-7 and 5-8); and above the

beam the cross-section cuts near the weak reflection from the side wall (on the right side of the

profiles). These disturbances affect the amplitude of the profile at either side of the wave beam

cross-section, as can be seen in the profiles in figure 5-8: they cause the small bumps at the

left and the distortion of the profile at the right. In changing the shape of the profile slightly

these disturbances also change the effective width of the beam. Overall they contribute to the

discrepancies in the comparison of the experimental versus the theoretical profiles.
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Chapter 6

Discussion of results

Chapters 4 and 5 present the comparisons between quantitative experimental wave fields and

theoretical wave fields for internal tide generation by 2D topography. Care was taken to perform

experiments in the linear regimes where the theory is formally valid, and the comparisons are

indeed in good agreement. In particular we see that the theory does a good job of describing

the shape and evolution of the wave beams; Balmforth, Ierley and Young's theory [1] for the

Gaussian topography does a reasonable job of predicting the wave field amplitude, and Hurley

and Keady's [15] theory applied to generation by a knife-edge is accurate in describing the

amplitude of the internal wave beam, to within experimental errors.

6.1 Linear wave fields

A good indication of the linearity of the wave fields investigated is the absence of a clear

second harmonic signal in the shallow wave beam experiment performed with the knife-edge

topography. Figure 6-1 shows contours of AN 2 for a full frame view of the wave field around the

knife-edge (for a different experimental run with the same forcing amplitude A = 0.64±0.05 mm

and angle of beam propagation). The knife-edge experiments resulted in the most nonlinear

wave fields among the experiments described above, because generation was highly supercritical

and the excursion parameter was not small. The fact that these nonlinearities were not strong

enough to generate second harmonic beams confirms that, in order to describe this wave field,

it was valid to neglect the advective terms and linearize the governing equations in chapter 3.
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Figure 6-1: Full-frame contour plot of AN 2 in the wave field around a 250 beam. The forcing
was A = 0.65 ± 0.05 mm.

The perturbations in figure 6-1 go down to AN 2 ~ -0.05(rad/ s) 2 about a background

N 2 = 0(1). Clearly, the perturbations would not be strong enough to reverse the stable

stratification.

6.2 The role of viscosity on wave beam stability

The experiment results show that viscosity plays an interesting role in the structure of the

radiated wave beams. The experimental wave fields over the knife-edge (in figures 5-3 and 5-6)

showed significant decay and spreading away from the topography, suggesting a large viscosity

effect; whereas the experimental wave fields achieved with the Gaussian ridge (figures 4-2 and

4-5) showed minor decay of the propagating beam. A good indication of the effect of viscosity

in the wave beams can be obtained by comparing theoretical profiles of AN 2 across the beams

radiated off each topographic feature for different values of viscosity. This is shown in figure

6-2, where the profiles shown are taken at the cross-sections labelled 1 in figures 5-3 and 4-2,

respectively. By decreasing the value of the viscosity coefficient v by an order of magnitude

(from 1.1 x 10-6 m2 / s to 1 x 10-7 m 2/ s) the wave beam radiated off the knife-edge changed

dramatically and became a very sharp disturbance: it's amplitude increased by 250% and it's

width decreased by almost a factor of 2. This change in viscosity corresponds to an increase

in Reynolds number from Re = 3 to 34. On the other hand, for the same change in viscosity,
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Figure 6-2: Profiles of AN 2 for decreasing values of viscosity. Both profiles are taken at cross
sections 1 for a) the knife-edge experiment in figure 5-3, and b) the Gaussian ridge experiment
in figure 4-2.

the wave field radiated off the Gaussian ridge only changed slightly: it's amplitude increased

by 40% and it's width was not changed noticeably. The increase in Reynolds number was of

the same order of magnitude, from Re = 209 to 2300.

Viscosity smoothed out strong features in the supercritical wave field such that the wave

beams remained stable to buoyancy and shear, contrary to the predictions of inviscid linear

theory. Balmforth, Jerley and Young [1] observe that, for generation problems with large

subcritical e and strong forcing, the inviscid linear model used in this paper predicts buoyancy

instabilities (reversals in the vertical stratification) along radiated wave beams. Petrelis et.

al. [30] note the same in their inviscid and hydrostatic solution to supercritical generation.

These reversals of the stratification can be seen in figure 6-3 from Balmforth, Ierley and Young

[1], which shows the contours of constant buoyancy N 2 z + b for generation by a Gaussian

topography with long excursion and criticality increasing from e = 0.2 to 0.8. A buoyancy

instability criteria is the condition

9(N2 z ± b) = N 2 + AN 2 < 0, (6.1)
wz

which is satisfied for e > 0.5 and large excursion in figure 6-3. On the other hand the wave
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Figure 6-3: Snapshots of the buoyancy field for large excursions such that euok/w =1/2 and
criticality parameters are a) e = 0.2, b) e = 0.4, c) e 0.6, and d) e = 0.8. From Balmforth,

Ierley and Young.

beams observed in the experiments presented here were all stable to buoyancy, since the negative

perturbations to the stratification along the wave beam were at most AN 2 = -0.05( rad/s~)2

over a background stratification N 2 = 1.19( rad/s~)2.

The comparisons in figure 6-2 suggest a strong dependence of instabilities on viscosity at the

low Reynolds numbers found in the laboratory. A generation scenario with higher Reynolds

number but the same excursion and high criticality parameters could result in buoyancy insta-

bilities. This is the case for the nearly critical generation problem at the Gaussian ridge that

is presented in section 4.2.2, which has e = 0.94 and kuo/w = 0.038. Figure 6-4a shows an

analytical cross-beam profile of AN 2 that corresponds to the location of cross section 1 in figure

4-5 at # = lr, but this time the profile was calculated for a value of viscosity v = 10-9 m 2 / s,

which corresponds to Re = 1.3 x i0 5. The strong negative perturbations of the buoyancy

field AN2 = -3.9( rad/s~)2 about the background stratification N 2 = 1.51( rad/s~)2 result in a

buoyancy instability.
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Figure 6-4: Profiles of AN 2 on unstable wave beams generated by a near-critical Gaussian
topography at high Reynolds numbers Re = O(10). a) Analytical profile at cross section 1
for the experiment in figure 4-5 when v = 10-9 m 2/ s. b) Analytical profile at a similar cross
section for an internal tide generated over a Gaussian ridge with typical oceanic dimensions
and forcing parameters.

An equivalent scenario can be conceived in the ocean. To obtain similar Reynolds number

and criticality parameter we consider a Gaussian ridge ho = 32 m-tall and 4- = 400 m-wide in an

ocean with a typical stratification N = 10-3 rad/ s. For a slow harmonic current with amplitude

uo = 1 mm/ s flowing over this ridge at the semi-diurnal tidal frequency w = 2 x 10-4 rad/ s,
the relevant parameters are e = 0.95, kuo/w = 0.0125 and Re = 3.6 x 10 5 . Figure 6-4b shows

an analytical cross-beam profile of AN 2 close to the topography and at q =7r. The negative

perturbations of the buoyancy field are AN 2 = -1.07 x 10-6(rad/s)2 about the background

stratification N 2 = 10-6 ( rad/ S)2, and thus this beam would be slightly unstable. For a larger

excursion parameter, which is the case for figure 6-4a, a stronger and therefore more unstable

beam would be generated. Note typical tidal currents can be an order of magnitude higher

than the value quoted here, typically uo = 1 cm/ s, and also ocean ridges can be an order of

magnitude wider. This in itself raises the Reynolds number to O(107), where the effect of

viscosity in the propagating beam would be negligible and a near critical topography would be

likely to develop instabilities such as are predicted by the inviscid theory.

The onset of instability to vertical shear occurs for even less dramatic perturbations than
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yield buoyancy instabilities, when the Richardson number

N 2 + AN 2
Ri = < 1/4 (6.2)

(au/,z)2

[19]. Therefore, shear instabilities are also predicted for topographies with high criticality.

St. Laurent and Garrett [33] discuss instabilities to vertical shear in internal tides radiated

from steep topography, and numerical studies by Khatiwala [16] show high shear locally over

supercritical topographies. In the experiments, however, viscosity was significant enough to

smooth out instability to shear along the wave beams. Figure 6-5 shows theoretical profiles

of the density stratification N 2 + AN 2 , the square of the vertical shear (du/Oz)2 , and the

Richardson number Ri along the cross section labelled 1 in figure 5-3 for the steep beam, knife-

edge experiment. This corresponds to the experimental beam cross section with the highest

disturbances, which was in good agreement with the theory. Clearly the stability of the density

stratification is much stronger than the vertical shear. The Richardson number blows up when

the shear is zero, and even at the locations where it is smallest, it is many orders of magnitude

above 1/4.

The experimental perturbations were strongest closest to the knife-edge. If there were

instabilities in the experimental wave field these would occur very close to the topography,

where, for such large disturbances, neither the theory nor the experimental method is not

necessarily accurate. Whether or not the flow was locally unstable, we did not see evidence of

mixing even locally during the experiment.

In general, buoyancy or shear instabilities can lead to mixing either locally or in the radiated

beam, which is an open question of much interest in oceanography. Linear theory suggests that

the buoyancy disturbances are very sharp over steep topography (high criticality), such that

instabilities will occur for strong (long excursion) tidal forcing. Indeed, as mentioned in the

introduction, ocean observations of mixing have been reported locally over the Cobb seamount

by Lueck and Mudge [23], over the Hawaiian ridge by Rudnick et. al. [32], and along wave beams

radiated off the Monterey Bay by Lien and Gregg [20]; all near sites of supercritical generation.

However, it has not been established which mechanism (whether buoyancy or shear) is in place

in different cases. Neither of these instabilities or mixing is seen anywhere in the experimental
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Richardson number Ri along cross section 1 in figure 5-6.
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Figure 6-6: Full-frame contour plot of AN 2 in the wave field around a 250 beam. The forcing
was A = 2.55 ± 0.05 mm.

wave fields presented here, even for the supercritical problem, because viscosity smooths out

the disturbances to the buoyancy field. These observations clearly indicate that it is important

to consider the effect of Reynolds number when developing criteria for internal tide instabilities.

6.3 Visualizations of long excursion

The theoretical model for the knife-edge was based on a small excursion assumption that is

not formally valid for this configuration. However, the experimental observations for excursion

parameters 0(1) did not indicate nonlinear effects and still yield good agreement with theory.

The discussion in section 6.2 suggests that this is due to the soothing action of viscosity. Since

the knife-edge wave fields did show strong local disturbances, we investigated generation for

stronger forcing, looking for the onset of nonlinear effects that might indicate the breakdown

of theory. As the tidal excursion was increased, second harmonic beams became visible; and

for even longer excursion the tidal flow started separating over the topography.

Figure 6-6 shows contours of AN 2 for the same experiment set up as figure 6-1, but with

a forcing amplitude A = 2.55 ± 0.05 mm. The second harmonic beams in this wave field

are clearly visible. Thus, second harmonic beams were only observed in the experiments if the

excursion parameter was longer (high criticality alone was not enough), suggesting either that at

small excursions the Reynolds number was so low that viscosity had a larger role damping local

nonlinearities, or that the second harmonics were principally the result of a lee-wave mechanism

73



Figure 6-7: Snapshots of flow over the knife-edge. The forcing amplitude was A = 2.55
0.05 mm.

when the excursion was large, or a combination of both effects.

The strength of the disturbances over the topography for the experiment parameters in

figure 6-6 can be appreciated more clearly in figure 6-7. This shows a sequence of snapshots

of the distortions caused by the flow on a pattern of regular dots placed behind the tank,

corresponding to 0 = 0, 7r/2, 7r and 37r/2 over one period of oscillation. The distortions are

strong, and a streamline seems to separate and re-attach to the topography during the course

of the oscillation. This is the first indication of flow separation in the experiment, which is

expected for long excursion over a finite amplitude topographic feature, and which is certainly

not accounted for in linear models of tidal conversion.

Bell's analytical solution for tidal conversion over weak topography allows for long excursion,

which results in the generation of lee-waves; but there is no theory that predicts the tidal

conversion by long excursion over finite amplitude topography. The experimental and field

observations for these cases show boundary layer separation. Sutherland [36] performed a

series of experiments with steady flow induced by towing periodic, steep topography across

a stratification. Here boundary layer separation satisfied the criteria that the aspect ratio

hok > 1 and that the inverse Froude number Nho/uo > 1. This reduced the effective height of

the topographies, so the internal wave field was weaker than expected. There have also been

ocean observations of flow separation over steep topography by Farmer and Armi [6], as well

as numerical simulations showing flow separation over the Knight inlet sill by Lamb [18] and
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Figure 6-8: Snapshots of flow over the knife-edge. The forcing amplitude was A = 7.00 ±

0.05 mm.

of flow separation caused by the Antarctic Circumpolar current by Ferrari [7]. Similar results

should be expected for the experiments with harmonic forcing of sufficiently long excursion.

Indeed, repeating the visualization in figure 6-7, this time for a forcing A = 7.00 ± 0.05 mm,

shows strong flow separation and possibly the onset of mixing, as seen in figure 6-8.

The long excursion parameter regime is ripe for experimental investigation. It is a regime in

which nonlinearities arise and un-modelled mechanisms such as flow separation take place, both

of which are of much interest in oceanography. Furthermore, neither theoretical or numerical

approaches are well suited to study this regime due to its highly nonlinear behavior and the

fine spatial structure of its features.

Many processes concerning nonlinear internal waves and long excursion parameters are not

included in the scope of this work. An interesting example is the evolution in deep water of

internal wave beams radiated from steep bathymetry into high frequency and large amplitude

solitary internal waves. These have been observed in synthetic aperture radar satellite images

(mostly ERS-SAR) around the world. Zhao et. al. [41] suggest that the solitary waves seen

in the deep water basin of the South China Sea, are caused by nonlinear steepening of long

excursion internal tides generated at the steep ridge across the Luzon Strait. Similarly, New

and Da Silva [28] use remote sensing evidence of nonlinear waves in the central Bay of Biscayne

to suggest that these evolve from internal wave beams generated at the steep shelf break.
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Chapter 7

Conclusions

Internal tides are a key link in the energy transfer chain in the ocean: they draw energy from

the barotropic tide and their eventual dissipation drives ocean circulation. In particular,

the processes by which internal tides are generated determine the amount of energy transfer

from the barotropic to the barocinic tides, and generate instabilities that lead to overturning

and mixing. Linear models have been used to estimate tidal conversion and they have been

compared to numerical simulations and ocean observations of the energy flux (as reported by

[1] and [16]); but there has been no experimental study of linear models.

A series of experiments were performed using the novel synthetic Schlieren measurement

technique to simulate linear tidal conversion by two-dimensional topography. The two idealized

topographies used were a knife-edge and a subcritical Gaussian ridge; and the results were

compared with the predictions of existing theoretical models by Balmforth, Ierley and Young

[1] and Hurley and Keady [15], respectively. Both models were corrected to account for the

effect of viscosity in the propagating beams.

A linear density stratification was set up in a wave-tank and the topographic features were

mounted on a sliding stage at the bottom of the tank and oscillated back and forth to simulate

tidal currents over the topography. The wave fields generated were measured by capturing the

distortion of a pattern of random dots behind the wave tank using a CCD camera, and using

the synthetic Schlieren processing of the movies. Much care was taken to reduce noise in the

experiment measurement and to accurately account for the different experimental parameters.

We compared experimental and theoretical cross-beam profiles of perturbations to the den-
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sity gradient for wave beams generated at two different angles, for the two different topographies.

In general, the agreement between experiment and theory is good and validates the linear the-

ory that is used in ocean models. The results also show that viscosity plays an important

role in tidal generation at lower Reynolds numbers. It enforces the linearity of the wave field

over the knife-edge, and it has a moderate effect on the linear wave field over the Gaussian

ridge. This suppresses nonlinear effects, allowing better agreement with linear models that are

corrected for viscosity, and smoothens out instabilities predicted by inviscid models that would

lead to overturning.

The experimental set up could be improved to investigate the nonlinear parameter regimes

in which the linear models break down, aiming to improve ocean models. It would be desirable

to perform experiments in a larger tank to achieve a higher Re and longer excursion parameters,

in order to recreate instabilities and mixing that get smoothed out at lower Re. A problem

of particular interest is the onset of flow separation at larger excursion parameters. Many

numerical models of the ocean have bottom boundary conditions that allow slip, which does

not allow flow separation; and this in turn affects tidal conversion, as shown by Sutherland's

[36] experiments. Experiments can complement nonlinear numerical studies of internal tide

generation, which generally do not allow high resolution of the wave field, and may be only

weakly nonlinear [9]. Such considerations have motivated the construction of a larger tank

that will also be fitted with a computer-controlled, double-bucket system capable of setting up

nonlinear stratifications. Future experiments in the new system will investigate instabilities,

flow separation and nonlinear stratifications, among other open issues regarding internal tide

generation.
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